Sample records for technology transfer plan

  1. Strategic Planning of Technology Transfer.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…

  2. Report of a Planning Conference for Solar Technology Information Transfer. Austin, Texas, 12-13 June 1979).

    ERIC Educational Resources Information Center

    Southwestern Library Association, Stillwater, OK.

    Charged with the responsibility of determining the best way to plan for solar technology information transfer within the state of Texas, participants in the Planning Conference for Solar Technology Information Transfer met to discuss the many ongoing activities related to energy information dissemination, to analyze the resources available in…

  3. Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.

  4. Technology Transfer Educational Curriculum Plan for the State of Colorado.

    ERIC Educational Resources Information Center

    Dakin, Karl J.

    A recommended plan for an educational curriculum on the topic of technology transfer is outlined. A survey was conducted to determine the current levels of ability and knowledge of technology users and of transfer intermediaries. Information was collected from three sources: individuals and organizations currently presenting educational programs…

  5. Commercial non-aerospace technology transfer program for the 2000s: Strategic analysis and implementation

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1992-01-01

    This report presents a strategic analysis and implementation plan for NASA's Office of Commercial Programs (OCP), Technology Transfer Division's (TTD), Technology Transfer Program. The main objectives of this study are to: (1) characterize the NASA TTD's environment and past organizational structure; (2) clearly identify current and prospective programmatic efforts; (3) determine an evolutionary view of an organizational structure which could lead to the accomplishment of NASA's future technology transfer aims; and (4) formulate a strategy and plan to improve NASA's (and other federal agencies) ability to transfer technology to the non-aerospace sectors of the U.S. economy. The planning horizon for this study extends through the remainder of the 1990s to the year 2000.

  6. Innovative technology transfer of nondestructive evaluation research

    Treesearch

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  7. Strategic directions and mechanisms in technology transfer

    NASA Technical Reports Server (NTRS)

    Mackin, Robert

    1992-01-01

    An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.

  8. 23 CFR 420.201 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....201 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH PLANNING AND RESEARCH PROGRAM ADMINISTRATION Research, Development and Technology Transfer Program... requirements for research, development, and technology transfer (RD&T) activities, programs, and studies...

  9. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  10. Report of a Planning Conference for Solar Technology Information Transfer. Jackson, Mississippi, September 7-8, 1978.

    ERIC Educational Resources Information Center

    Graves, Sid F., Jr., Ed.

    This summary of the decisions and recommendations of the Planning Conference for Solar Technology Information Transfer includes a brief discussion of the outline of a functioning solar energy technology network in the State of Mississippi. During the conference, participants recognized current energy information needs and recommended ways to meet…

  11. Report of a Planning Conference for Solar Technology Information Transfer in Georgia (Atlanta, Georgia, July 24-25, 1978).

    ERIC Educational Resources Information Center

    Aldridge, Mark C., Ed.

    A summary of the deliberations of the Georgia planning conference of the Solar Technology Transfer Program is presented in this report. Topic areas include background information on the Georgia conference and a summary of the discussions and recommendations dealing with solar information transfer within state systems and the need for greater…

  12. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  13. Report of a Planning Conference for Solar Technology Information Transfer in Kentucky (Frankfort, September 11-12, 1978).

    ERIC Educational Resources Information Center

    Capps, Randall, Ed.

    This summary of the deliberations of the Planning Conference for Solar Technology Information Transfer includes an outline of a functioning solar energy technology network for the State of Kentucky and a set of recommendations for future action. Four main types of information agents were identified: (1) the State Library System; (2) the State…

  14. Report of a Planning Conference for Solar Technology Information Transfer (Nashville, Tennessee, September 28-29, 1977).

    ERIC Educational Resources Information Center

    Gleaves, Edwin S., Ed.

    A summary of the deliberations of the Planning Conference for Solar Technology Information Transfer--to discuss and outline a functioning solar energy technology network in the State of Tennessee--and a set of recommendations for future action are presented in this report. Topic areas include: (1) the Tennessee Regional Library Service; (2) the…

  15. Long-term Plan for Concrete Pavement Research and Technology--The Concrete Pavement Road Map : Volume II, Tracks

    DOT National Transportation Integrated Search

    2005-09-01

    The Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map) is a holistic, strategic : plan for concrete pavement research and technology transfer. The CP Road Map is a 7- to 10-year plan that : includes 12 distinct but integrated ...

  16. Long-term Plan for Concrete Pavement Research and Technology--the Concrete Pavement Road Map (second generation) : Volume II, Tracks

    DOT National Transportation Integrated Search

    2012-07-01

    The Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map) is a holistic strategic plan for : concrete pavement research and technology transfer. The CP Road Map is a living plan that includes 12 distinct but : integrated research...

  17. WHO influenza vaccine technology transfer initiative: role and activities of the Technical Advisory Group.

    PubMed

    Francis, Donald P; Grohmann, Gary

    2011-07-01

    In May 2006, the WHO published a Global Pandemic Influenza Action Plan. A significant part of that plan involves the transfer of technology necessary to build production capacity in developing countries. The WHO influenza technology transfer initiative has been successful. Clearly the relatively small WHO investments made in these companies to develop their own influenza vaccine production facilities have had quite dramatic results. A few companies are already producing large amounts of influenza vaccine. Others will soon follow. Whether they are developing egg-based or planning non-egg based influenza vaccine production, all companies are optimistic that their efforts will come to fruition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Long-term Plan for Concrete Pavement Research and Technology--the Concrete Pavement Road Map (second generation) : Volume I, Background and Summary

    DOT National Transportation Integrated Search

    2012-04-01

    The Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map) is a holistic strategic plan for concrete : pavement research and technology transfer. The CP Road Map is a living plan that includes 12 distinct but integrated research :...

  19. Long-term Plan for Concrete Pavement Research and Technology--the Concrete Pavement Road Map : Volume I, Background and summary

    DOT National Transportation Integrated Search

    2005-09-01

    The Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map) is a holistic, strategic plan : for concrete pavement research and technology transfer. The CP Road Map is a 7- to 10-year plan that includes 12 : distinct but integrated ...

  20. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  1. 23 CFR 420.107 - What is the minimum required expenditure of State planning and research funds for research...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... planning and research funds for research development and technology transfer? 420.107 Section 420.107 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH PLANNING AND... minimum required expenditure of State planning and research funds for research development and technology...

  2. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1991--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    The member institutions of the Consortium continue to play a significant role in increasing the number of African Americans who enter the environmental professions through the implementation of the Consortium`s RETT Plan for Research, Education, and Technology Transfer. The four major program areas identified in the RETT Plan are as follows: (1) minority outreach and precollege education; (2) undergraduate education and postsecondary training; (3) graduate and postgraduate education and research; and (4) technology transfer.

  3. Manned Orbital Transfer Vehicle (MOTV). Volume 6: Five year program plan

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The five year program plan for the manned orbit transfer vehicle (MOTV) is presented. The planning, schedules, cost estimates, and supporting data (objectives, constraints, assumptions, etc.) associated with the development of the MOTV are discussed. The plan, in addition to the above material, identifies the supporting research and technology required to resolve issues critical to MOTV development.

  4. Applied technology center business plan and market survey

    NASA Technical Reports Server (NTRS)

    Hodgin, Robert F.; Marchesini, Roberto

    1990-01-01

    Business plan and market survey for the Applied Technology Center (ATC), computer technology transfer and development non-profit corporation, is presented. The mission of the ATC is to stimulate innovation in state-of-the-art and leading edge computer based technology. The ATC encourages the practical utilization of late-breaking computer technologies by firms of all variety.

  5. KSC Tech Transfer News, Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    Buckingham, Bruce (Editor)

    2012-01-01

    In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.

  6. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  7. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  8. 76 FR 43180 - Finding of Failure To Submit Section 110 State Implementation Plans for Interstate Transport for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... 12866. J. National Technology Transfer and Advancement Act Section 12(d) of the National Technology... Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use J. National Technology Transfer and Advancement Act K. Executive Order 12898: Federal Actions To Address Environmental Justice in...

  9. AgRISTARS: Renewable resources inventory. Land information support system implementation plan and schedule. [San Juan National Forest pilot test

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    The planning and scheduling of the use of remote sensing and computer technology to support the land management planning effort at the national forests level are outlined. The task planning and system capability development were reviewed. A user evaluation is presented along with technological transfer methodology. A land management planning pilot test of the San Juan National Forest is discussed.

  10. 78 FR 12961 - Findings of Failure To Submit a Complete State Implementation Plan for Section 110(a) Pertaining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Significantly Affect Energy Supply, Distribution or Use I. National Technology Transfer and Advancement Act J... Advancement Act Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (NTTAA), Public..., install and utilize technology and systems for the purposes of collecting, validating and verifying...

  11. Documentation requirements for Applications Systems Verification and Transfer projects (ASVTs)

    NASA Technical Reports Server (NTRS)

    Suchy, J. T.

    1977-01-01

    NASA's Application Systems Verification and Transfer Projects (ASVTs) are deliberate efforts to facilitate the transfer of applications of NASA-developed space technology to users such as federal agencies, state and local governments, regional planning groups, public service institutions, and private industry. This study focused on the role of documentation in facilitating technology transfer both to primary users identified during project planning and to others with similar information needs. It was understood that documentation can be used effectively when it is combined with informal (primarily verbal) communication within each user community and with other formal techniques such as organized demonstrations and training programs. Documentation examples from eight ASVT projects and one potential project were examined to give scope to the investigation.

  12. Advanced space program studies. Overall executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1977-01-01

    NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.

  13. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 2: Supporting research and technology report, phase 1 and 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio (L/D) aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. The methodology employed to generate technology payoffs, the major payoffs identified, the urgency of the technology effort required, and the technology plans suggested are summarized for both study phases. Technology issues concerning aerodynamics, aerothermodynamics, thermal protection, propulsion, and guidance, navigation and control are addressed.

  14. 77 FR 35870 - Approval of Air Quality Implementation Plans; Wisconsin; Partial Disapproval of “Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... alignment of the State and Federal definition for ``major modification'' occurs as expeditiously as possible... disapproves a state rule implementing a Federal Standard. National Technology Transfer Advancement Act In..., the requirements of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15...

  15. 78 FR 18849 - Disapproval of Implementation Plan Revisions; State of California; South Coast VMT Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... significant regulatory action under Executive Order 12866. I. National Technology Transfer and Advancement Act Section 12 of the National Technology Transfer and Advancement Act (NTTAA) of 1995 requires Federal... business hours with the contact listed in the FOR FURTHER INFORMATION CONTACT section below. FOR FURTHER...

  16. Sandia National Laboratories: News: Publications: Strategic Plan

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. Conceptual design of an orbital propellant transfer experiment. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Drake, G. L.; Bassett, C. E.; Merino, F.; Siden, L. E.; Bradley, R. E.; Carr, E. J.; Parker, R. E.

    1980-01-01

    The OTV configurations, operations and requirements planned for the period from the 1980's to the 1990's were reviewed and a propellant transfer experiment was designed that would support the needs of these advanced OTV operational concepts. An overall integrated propellant management technology plan for all NASA centers was developed. The preliminary cost estimate (for planning purposes only) is $56.7 M, of which approximately $31.8 M is for shuttle user costs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAchran, G.E.

    The author first addresses the impediments to successful technology transfer, e.g., tax programs, planning horizons, and capital availability. He emphasizes that written information emanating from universities and national laboratories, in and of itself, is usually insufficient to insure technology transfer. He notes that most information is transferred through informal channels and, most effectively, through personal contacts. Noting that Monsanto was a founding member and remains active in they Council on Chemical Research and Technology Transfer Conferences, Inc., he cites examples of their activities in the past 15 years. While geographic proximity is an important factor, usually, Monsanto's 5-year program withmore » Oxford Univ., UK, is funded at approximately $2 million; Monsanto scientists are located at Oxford to facilitate the work and bring the technology back home. 7 references« less

  19. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  20. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  1. IP Sample Plan #5 | NCI Technology Transfer Center | TTC

    Cancer.gov

    A sample Intellectual Property Management Plan in the form of a legal agreement between a University and its collaborators which addresses data sharing, sharing of research tools and resources and intellectual property management.

  2. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  3. Research utilization in the building industry: decision model and preliminary assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, R.L.; Johnson, D.R.; Smith, S.A.

    1985-10-01

    The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formatingmore » information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.« less

  4. NASA/BLM Applications Pilot Test (APT), phase 2. Volume 3: Technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques used and materials presented at a planning session and two workshops held to provide hands-on training in the integration of quantitatively based remote sensing data are described as well as methods used to enhance understanding of approaches to inventories that integrate multiple data sources given various resource information objectives. Significant results from each of the technology transfer sessions are examined.

  5. Integrated Technology Plan for the Civil Space Program, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of the Integrated Technology Plan (ITP) is to serve as a strategic plan for the OAST space research and technology (R&T) program, and as a strategic planning framework for other NASA and national participants in advocating and conducting technology developments that support future U.S. civil space missions. The ITP begins with a discussion of the national policy and NASA organization which establishes the overall framework for civil space R&T planning. The second chapter provides a top-level review of the potential users of civil space R&T, their strategic mission plans, and the technologies they have identified as needed to achieve those plans. The overall methodology used to develop a civil space technology strategy is discussed. The technical details of the 1991 strategic plan are described, ending with a review of civil space R&T priorities. The fourth chapter describes how the strategic plan is annually translated into the OAST Space R&T Program, with a summary of the fiscal year 1992 program. The ITP concludes with a discussion of requirements for technology development coordination and strategies for facilitating the transfer of civil space technology to the private sector. Several appendices also are attached that provide further information regarding budget implications of the strategic plan, organizational roles, and other topics.

  6. NASA SCIENTIFIC AND TECHNICAL INFORMATION (STI) PROGRAM PLAN

    EPA Science Inventory

    NASA's scientific and technical information (STI) is an essential product of research, facilitates technology transfer, and enhances the competitive edge of U.S. companies and educational institutions. NASA's STI is an integral part of NASA's information transfer and is critical...

  7. Solar Technology Information Transfer in South Carolina: Report of a Planning Conference (Columbia, South Carolina, August 1-2, 1978).

    ERIC Educational Resources Information Center

    Gissendanner, Cassandra S., Ed.

    The deliberations of the planning conference to discuss and outline a statewide functioning solar energy technology network and a set of recommendations for future action are presented in this report. Topic areas include background information on both the project and the current energy information system in South Carolina, along with a summary of…

  8. Geospatial Technology Strategic Plan 1997-2000

    USGS Publications Warehouse

    D'Erchia, Frank; D'Erchia, Terry D.; Getter, James; McNiff, Marcia; Root, Ralph; Stitt, Susan; White, Barbara

    1997-01-01

    Executive Summary -- Geospatial technology applications have been identified in many U.S. Geological Survey Biological Resources Division (BRD) proposals for grants awarded through internal and partnership programs. Because geospatial data and tools have become more sophisticated, accessible, and easy to use, BRD scientists frequently are using these tools and capabilities to enhance a broad spectrum of research activities. Bruce Babbitt, Secretary of the Interior, has acknowledged--and lauded--the important role of geospatial technology in natural resources management. In his keynote address to more than 5,500 people representing 87 countries at the Environmental Systems Research Institute Annual Conference (May 21, 1996), Secretary Babbitt stated, '. . .GIS [geographic information systems], if properly used, can provide a lot more than sets of data. Used effectively, it can help stakeholders to bring consensus out of conflict. And it can, by providing information, empower the participants to find new solutions to their problems.' This Geospatial Technology Strategic Plan addresses the use and application of geographic information systems, remote sensing, satellite positioning systems, image processing, and telemetry; describes methods of meeting national plans relating to geospatial data development, management, and serving; and provides guidance for sharing expertise and information. Goals are identified along with guidelines that focus on data sharing, training, and technology transfer. To measure success, critical performance indicators are included. The ability of the BRD to use and apply geospatial technology across all disciplines will greatly depend upon its success in transferring the technology to field biologists and researchers. The Geospatial Technology Strategic Planning Development Team coordinated and produced this document in the spirit of this premise. Individual Center and Program managers have the responsibility to implement the Strategic Plan by working within the policy and guidelines stated herein.

  9. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  10. Application transfer activity in Missouri

    NASA Technical Reports Server (NTRS)

    Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Experimental demonstrations and workshop instructional courses were conducted to transfer the technology of satellite remote sensing to a wide audience of resource managers. This audience included planning commissions, state agencies, federal agencies, and special councils of the Governor. Some of the experiments and workshops are outlined.

  11. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  12. Campus Nets for the Nineties.

    ERIC Educational Resources Information Center

    Neff, Raymond K.

    1994-01-01

    Describes present and future plans for the campuswide communications network at Case Western Reserve University (Ohio). Highlights include upgrading from baseband to broadband technologies; ATM (Asynchronous Transfer Mode)-based networks that allow simultaneous voice, video, and data transmission; strategic planning goals; implications for…

  13. IP Sample Plan #1 | NCI Technology Transfer Center | TTC

    Cancer.gov

    Sample letter that shows how Universities including co-investigators, consultants, and collaborators can describe a data and research tool sharing plan and procedures for exercising intellectual property rights. The letter is to be used as part of the University's application. 

  14. Space technology: A study of the significance of recognition for innovators of spinoff technologies. 1993 activities/1994, 1995 plans

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.

  15. 23 CFR 420.101 - What is the purpose of this part?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... use of FHWA planning and research funds both for planning and for research, development, and technology transfer (RD&T) activities. Subpart B describes the policies and procedures that relate to the... Institutions of Higher Education, Hospitals and Other Non-Profit Organizations. ...

  16. IP Sample Plan #3 | NCI Technology Transfer Center | TTC

    Cancer.gov

    Sample Research Resources and Intellectual Property Plan for use by an Institution and its Collaborators for intellectual property protection strategies covering pre-existing intellectual property, agreements with commercial sources, privacy, and licensing.  | [google6f4cd5334ac394ab.html

  17. Planning And Reasoning For A Telerobot

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.; Mittman, David S.; Collins, Carol E.; O'Meara Callahan, Jacquelyn S.; Rokey, Mark J.

    1992-01-01

    Document discusses research and development of Telerobot Interactive Planning System (TIPS). Goal in development of TIPS is to enable it to accept instructions from operator, then command run-time controller to execute operations to execute instructions. Challenges in transferring technology from testbed to operational system discussed.

  18. Technology transfer for women entrepreneurs: issues for consideration.

    PubMed

    Everts, S I

    1998-01-01

    This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.

  19. 78 FR 34584 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Allegheny County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Technology Under the 8-Hour Ozone National Ambient Air Quality Standard AGENCY: Environmental Protection... reasonably available control technology (RACT) for nitrogen oxides (NO X ) and volatile organic compounds...

  20. 78 FR 54960 - Approval and Promulgation of Air Quality Implementation Plans; Massachusetts; Reasonably...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... Technology for the 1997 8- Hour Ozone Standard AGENCY: Environmental Protection Agency (EPA). ACTION: Final... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds...

  1. Community Colleges in the Information Age: Gains Associated with Students' Use of Computer Technology

    ERIC Educational Resources Information Center

    Anderson, Bodi; Horn, Robert

    2012-01-01

    Computer literacy is increasingly important in higher education, and many educational technology experts propose a more prominent integration of technology into pedagogy. Empirical evidence is needed to support these theories. This study examined community college students planning to transfer to 4-year universities and estimated the relationship…

  2. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  3. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  4. State involvement in and use of LANDSAT technology

    NASA Technical Reports Server (NTRS)

    Tessar, P. A.

    1981-01-01

    The background of state involvement in LANDSAT systems planning and the status of state LANDSAT use are reviewed. Major recommendations on data continuity; frequency and pattern of observation; state representation in program management; pointable sensors for a fully operational system; data processing systems; data pricing; data copyright; data archival; and technology transfer are highlighted. Plans of the government regarding the LANDSAT system are reflected in the FY-1982 budget process are examined.

  5. Airspace Technology Demonstration 3 (ATD-3): Dynamic Weather Routes (DWR) Technology Transfer Document Summary Version 1.0

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Wang, Easter Mayan Chan

    2016-01-01

    Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.

  6. IP Sample Plan #4 | NCI Technology Transfer Center | TTC

    Cancer.gov

    Sample letter from Research Institutes and their principal investigator and consultants, describing a data and research tool sharing plan and procedures for sharing data, research materials, and patent and licensing of intellectual property. This letter is designed to be included as part of an application.

  7. Indexing NASA programs for technology transfer methods development and feasibility

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1972-01-01

    This project was undertaken to evaluate the application of a previously developed indexing methodology to ongoing NASA programs. These programs are comprehended by the NASA Program Approval Documents (PADS). Each PAD contains a technical plan for the area it covers. It was proposed that these could be used to generate an index to the complete NASA program. To test this hypothesis two PADS were selected by the NASA Technology Utilization Office for trial indexing. Twenty-five individuals indexed the two PADS using NASA Thesaurus terms. The results demonstrated the feasibility of indexing ongoing NASA programs using PADS as the source of information. The same indexing methodology could be applied to other documents containing a brief description of the technical plan. Results of this project showed that over 85% of the concepts in the technology should be covered by the indexing. Also over 85% of the descriptors chosen would be accurate. This completeness and accuracy for the indexing is considered satisfactory for application in technology transfer.

  8. 75 FR 29897 - Approval and Promulgation of Implementation Plans; New York State Implementation Plan Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272..., (212) 637-3381. SUPPLEMENTARY INFORMATION: Table of Contents I. What is the history and time frame for... Executive Order Reviews I. What is the history and time frame for State Implementation Plan (SIP...

  9. 48 CFR 970.5226-1 - Diversity plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... through (1) the Contractor's work force, (2) educational outreach, (3) community involvement and outreach, (4) subcontracting, (5) economic development (including technology transfer), and (6) the prevention...

  10. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  11. 78 FR 69773 - Approval and Promulgation of Implementation Plans; Texas; Control of Air Pollution by Permits for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... advancement and development of new technologies. FutureGen refers to a combination of technologies for carbon... National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Business Information (CBI) or other information the disclosure of which is restricted by statute. Do not...

  12. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  13. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  14. Tech Transfer News. Volume 6, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E.

    2014-01-01

    On October 28, 2011, the White House released a Presidential Memorandum entitled: Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses. With this memo, the President challenged all federal agencies conducting R&D to accelerate technology transfer and commercialization of federally developed technology to help stimulate the national economy. The NASA Technology Transfer Program responded by asking the center technology transfer offices to reach out to - and work more closely with - their regional economic development organizations to promote the transfer of NASA technologies to the local private sector for use in the marketplace. Toward that effort, the KSC Technology Transfer Office teamed with the Florida Space Coast Economic Development Commission (EDC) to host a technology transfer forum designed to increase our business community's awareness of available KSC technologies for transfer. In addition, the forum provided opportunities for commercial businesses to collaborate with KSC in technology development. (see article on page 12) The forum, held on September 12, 2013, focused on KSC technology transfer and partnership opportunities within the Robotics, Sustainability, Information Technology and Environmental Remediation technology areas. The event was well attended with over 120 business leaders from the community. KSC Center Director Robert Cabana and the Center Chief Technologist Karen Thompson provided remarks, and several KSC lead researchers presented technical information and answered questions, which were not in short supply. Florida Today and the Orlando Sentinel ran news stories on the forum and both NASA TV and Channel 6 News filmed portions of the event. Given the reaction by the media and local business to the forum, it is evident the community is recognizing the opportunities that NASA-developed technologies can provide to aspiring entrepreneurs and existing companies to bring new technologies to market, as well as the positive impact KSC technology transfer can have on the local economy. We see even more evidence of this in the efforts by several other organizations to develop programs that provide aspiring entrepreneurs with the opportunity and training needed to identify the commercial potential of specific NASA technologies and develop business plans to exploit that potential. Several initiatives include Florida Startup Quest, CareerSource Brevard Energy Launch, Rollins College Entrepreneurial Scholar of Distinction Program, and a new effort led by the University of Central Florida Office of Research and Commercialization to stimulate new business growth in Florida based on NASA technologies. The KSC Technology Transfer Office has stepped up to support each of these programs and is providing them with the NASA technologies they need to help move the economy forward.

  15. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Haley, G. M.

    1979-01-01

    The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.

  16. NASA's Microgravity Technology Report, 1996: Summary of Activities

    NASA Technical Reports Server (NTRS)

    Kierk, Isabella

    1996-01-01

    This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.

  17. NASA Technology Plan 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  18. In-Space Cryogenic Propellant Depot Stepping Stone

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Fikes, John C.

    2005-01-01

    An In-Space Cryogenic Propellant Depot (ISCPD) is an important stepping stone to provide the capability to preposition, store, manufacture, and later use the propellants for Earth-Neighborhood campaigns and beyond. An in-space propellant depot will provide affordable propellants and other similar consumables to support the development of sustainable and affordable exploration strategies as well as commercial space activities. An in-space propellant depot not only requires technology development in key areas such as zero boil-off storage and fluid transfer, but in other areas such as lightweight structures, highly reliable connectors, and autonomous operations. These technologies can be applicable to a broad range of propellant depot concepts or specific to a certain design. In addition, these technologies are required for spacecraft and orbit transfer vehicle propulsion and power systems, and space life support. Generally, applications of this technology require long-term storage, on-orbit fluid transfer and supply, cryogenic propellant production from water, unique instrumentation and autonomous operations. This paper discusses the reasons why such advances are important to future affordable and sustainable operations in space. This paper also discusses briefly R&D objectives comprising a promising approach to the systems planning and evolution into a meaningful stepping stone design, development, and implementation of an In-Space Cryogenic Propellant Depot. The success of a well-planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.

  19. 77 FR 28336 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Offset Lithographic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Technology (RACT) for sources covered by EPA's Control Techniques Guidelines (CTG) for offset lithographic..., unless the comment includes information claimed to be Confidential Business Information (CBI) or other...

  20. 78 FR 32613 - Disapproval of State Implementation Plan; Infrastructure Requirements for the 1997 8-Hour Ozone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... 12866. I. National Technology Transfer and Advancement Act Section 12 of the National Technology... information claimed to be Confidential Business Information (CBI) or other information whose disclosure is... requirements of [section 128].'' \\2\\ We find that this legislative history indicates that Congress intended...

  1. Neuroeducational Research in the Design and Use of a Learning Technology

    ERIC Educational Resources Information Center

    Howard-Jones, Paul; Holmes, Wayne; Demetriou, Skevi; Jones, Carol; Tanimoto, Eriko; Morgan, Owen; Perkins, David; Davies, Neil

    2015-01-01

    Many have warned against a direct "brain scan to lesson plan" approach when attempting to transfer insights from neuroscience to the classroom. Similarly, in the effective design and implementation of learning technology, a judicious interrelation of insights associated with diverse theoretical perspectives (e.g., neuroscientific,…

  2. 78 FR 2882 - Findings of Failure To Submit a Complete State Implementation Plan for Section 110(a) Pertaining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ..., 109 TW Alexander Drive, Research Triangle Park, NC 27709. SUPPLEMENTARY INFORMATION: I. General..., Chicago, IL 60604. EPA Region VI: Guy Donaldson, Chief, Arkansas, Louisiana, New Air Planning Section, EPA... Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions to Address Environmental...

  3. Improving Global Access to New Vaccines: Intellectual Property, Technology Transfer, and Regulatory Pathways

    PubMed Central

    2014-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers. PMID:25211753

  4. Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways.

    PubMed

    Crager, Sara Eve

    2014-11-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  5. [Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways].

    PubMed

    Crager, Sara Eve

    2015-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  6. Fuel cell systems program plan, FY 1990

    NASA Astrophysics Data System (ADS)

    1989-10-01

    A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.

  7. LANDSAT technology transfer to the private and public sectors through community colleges and other locally available institutions

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1980-01-01

    The results achieved during the first eight months of a program to transfer LANDSAT technology to practicing professionals in the private and public sectors (grass roots) through community colleges and other locally available institutions are reported. The approach offers hands-on interactive analysis training and demonstrations through the use of color desktop computer terminals communicating with a host computer by telephone lines. The features of the terminals and associated training materials are reviewed together with plans for their use in training and demonstration projects.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.C.; Killough, S.M.; Rowe, J.C.

    The purpose of the Smart Crane Ammunition Transfer System (SCATS) project is to demonstrate robotic/telerobotic controls technology for a mobile articulated crane for missile/ munitions handling, delivery, and reload. Missile resupply and reload have been manually intensive operations up to this time. Currently, reload missiles are delivered by truck to the site of the launcher. A crew of four to five personnel reloads the missiles from the truck to the launcher using a hydraulic-powered crane. The missiles are handled carefully for the safety of the missiles and personnel. Numerous steps are required in the reload process and the entire reloadmore » operation can take over 1 h for some missile systems. Recent U.S. Army directives require the entire operation to be accomplished in a fraction of that time. Current requirements for the development of SCATS are being based primarily on reloading Patriot missiles. The planned development approach will integrate robotic control and sensor technology with a commercially available hydraulic articulated crane. SCATS is being developed with commercially available hardware as much as possible. Development plans include adding a 3-D.F. end effector with a grapple to the articulating crane; closed-loop position control for the crane and end effector; digital microprocessor control of crane functions; simplified operator interface; and operating modes which include rectilinear movement, obstacle avoidance, and partial automated operation. The planned development will include progressive technology demonstrations. Ultimate plans are for this technology to be transferred and utilized in the military fielding process.« less

  9. Technology-Based Biliteracy Centers for the 21st Century Learner

    ERIC Educational Resources Information Center

    Mercuri, Sandra; Ramos, Laura

    2014-01-01

    The purpose of this reflective article is to present an alternative that incorporates the four language skills in all content areas through technology-based dual-language centers for emergent bilinguals at the elementary level. The authors propose a matrix to plan the centers and include three examples to facilitate language transfer in English…

  10. 34 CFR 636.3 - What activities may the Secretary support?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activities: (1) Planning. (2) Applied research. (3) Training. (4) Resource exchanges or technology transfers... in urban settings. (6) Problems faced by families and children. (7) Campus and community crime...

  11. 34 CFR 636.3 - What activities may the Secretary support?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activities: (1) Planning. (2) Applied research. (3) Training. (4) Resource exchanges or technology transfers... in urban settings. (6) Problems faced by families and children. (7) Campus and community crime...

  12. 34 CFR 636.3 - What activities may the Secretary support?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activities: (1) Planning. (2) Applied research. (3) Training. (4) Resource exchanges or technology transfers... in urban settings. (6) Problems faced by families and children. (7) Campus and community crime...

  13. 34 CFR 636.3 - What activities may the Secretary support?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activities: (1) Planning. (2) Applied research. (3) Training. (4) Resource exchanges or technology transfers... in urban settings. (6) Problems faced by families and children. (7) Campus and community crime...

  14. 34 CFR 636.3 - What activities may the Secretary support?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activities: (1) Planning. (2) Applied research. (3) Training. (4) Resource exchanges or technology transfers... in urban settings. (6) Problems faced by families and children. (7) Campus and community crime...

  15. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less

  16. The California Central Coast Research Partnership: Building Relationships, Partnerships and Paradigms for University-Industry Research Collaboration (Abridged Version)

    DTIC Science & Technology

    2004-04-21

    3-4 B. Strategic location ...........................................................................................5 C. Relevant R&D...and technology-based business sectors. The plan recognizes the key role of higher education in preparing a highly skilled work force and transferring...University technology R&D activities; the development of existing technology-based businesses and the creation of new ones; and the generation of

  17. Lessons Learned: Transfer of the High-Definition Circulating Tumor Cell Assay Platform to Development as a Commercialized Clinical Assay Platform.

    PubMed

    Kuhn, P; Keating, S M; Baxter, G T; Thomas, K; Kolatkar, A; Sigman, C C

    2017-11-01

    Planning and transfer of a new technology platform developed in an academic setting to a start-up company for medical diagnostic product development may appear daunting and costly in terms of complexity, time, and resources. In this review we outline the key steps taken and lessons learned when a technology platform developed in an academic setting was transferred to a start-up company for medical diagnostic product development in the interest of elucidating development toolkits for academic groups and small start-up companies starting on the path to commercialization and regulatory approval. © 2017, The American Society for Clinical Pharmacology and Therapeutics.

  18. Low Gravity Issues of Deep Space Refueling

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2005-01-01

    This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.

  19. Control of Technology Transfer at JPL

    NASA Technical Reports Server (NTRS)

    Oliver, Ronald

    2006-01-01

    Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software

  20. A Status of the Advanced Space Transportation Program from Planning to Action

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and dramatically reduce the propellant and structural mass of orbit transfer and deep space systems. Flight demonstration of ion propulsion is progressing towards launch. Ion propulsion is the primary propulsion for Deep Space 1; a flyby of comet West-kohoutek-lkemura and asteroid 3352 McAuliffe. Testing of critical solar-thermal propulsion subsystems have been accomplished and planning is continuing for the flight demonstration of an electrodynamic tether orbit transfer system. The forth and final element of the program, Space Transportation Research, has progressed in several areas of propulsion research. This element of the program is focused at long-term (25 years) breakthrough concepts that could bring launch costs to a factor of one hundred below today's cost or dramatically expand planetary travel and enable interstellar travel.

  1. Technology transfer program: Perspective

    NASA Technical Reports Server (NTRS)

    Toyshov, A. J.

    1981-01-01

    Most of NASA's technology transfer activities are in the area of land use (development, suitability, and planning); forestry (including wildlife and range and vegetation inventories) agriculture related activities; and water resources. The technology dissemination function is exercised through three regional applications centers which are involved in 91 applications projects within 22 states. In addition there are approximately eight application system verification transfer (ASVT) projects, 21 university applications branches, institutionalized liason activities with public interest groups, and user requirements activities. As the result of budget cuts, the ASVT and user requirements and awareness programs are to be phased out at the end of FY81. The university applications programs are to be phased down and terminated by 1985. NASA will continue to work with the user more in an R & D and an applications development capacity, and not in a national scale or administrative way.

  2. Eliminating Space Debris: Applied Technology and Policy Prescriptions, Fall 2007 - Project 07-02

    DTIC Science & Technology

    2008-01-01

    plan to transfer ownership of the constellation, Iridium satellites were (presume that there was more than one) scheduled to be sent out of orbit to...told the research team that administrators are “not shy” about saying, “We have a problem with your debris plan .” Usually, the licensee will work... planned maneuvers • End-of-life (EOL) support. Includes re-entry support and planned de-orbit operations • Anomaly re configuration • Emergency ser

  3. A Discussion of Two Challenges of Non-cooperative Satellite Refueling

    NASA Technical Reports Server (NTRS)

    Coll, Gregory C.; Aranyos, Thomas; Nufer, Brian M.; Kandula, Max; Tomasic, David J.

    2015-01-01

    There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.

  4. A Discussion of Two Challenges of Non-Cooperative Satellite Refueling

    NASA Technical Reports Server (NTRS)

    Coll, Gregory T.; Aranyos, Thomas J.; Nufer, Brian M.; Tomasic, David; Kandula, Max

    2015-01-01

    There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.

  5. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  6. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 2: Cryo/aerobrake vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The cryogenic/aerobrake (CAB) and the cryogenic all-propulsive (CAP) concept designs developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study are presented. The evolution of the CAB and CAP concepts is described along with the requirements, guidelines and assumptions for the designs. Operating modes and options are defined and systems descriptions of the vehicles are presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  7. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  8. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  9. Space Technology 5: Changing the Mission Design without Changing the Hardware

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.

    2005-01-01

    The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. The validation objectives are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop, test and flight-validate three capable micro-satellites with new technologies. A three-month flight demonstration phase is planned, beginning in March 2006. This year, the mission was re-planned for a Pegasus XL dedicated launch into an elliptical polar orbit (instead of the Originally-planned Geosynchronous Transfer Orbit.) The re-plan allows the mission to achieve the same high-level technology validation objectives with a different launch vehicle. The new mission design involves a revised science validation strategy, a new orbit and different communication strategy, while minimizing changes to the ST-5 spacecraft itself. The constellation operations concepts have also been refined. While the system engineers, orbit analysts, and operations teams were re-planning the mission, the implementation team continued to make progress on the flight hardware. Most components have been delivered, and the first spacecraft is well into integration and test.

  10. In-Space Propellant Production Using Water

    NASA Technical Reports Server (NTRS)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-31

    In pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions, the Petroleum Technology Transfer Council (PTTC) functions as a cohesive national organization that implements industry's directives through active regional programs. The role of the national headquarters (HQ) organization includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. PTTC relies on 10 Regional Lead Organizations (RLOs) as its main program delivery mechanism to industry. Through its regions, PTTC connects with independent oil and gas producers--through technology workshops, resources centers, websites, newsletters, and other outreach efforts.more » The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY98, and its strategy for achieving further growth in the future.« less

  12. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less

  13. Surgeon-Based 3D Printing for Microvascular Bone Flaps.

    PubMed

    Taylor, Erin M; Iorio, Matthew L

    2017-07-01

    Background  Three-dimensional (3D) printing has developed as a revolutionary technology with the capacity to design accurate physical models in preoperative planning. We present our experience in surgeon-based design of 3D models, using home 3D software and printing technology for use as an adjunct in vascularized bone transfer. Methods  Home 3D printing techniques were used in the design and execution of vascularized bone flap transfers to the upper extremity. Open source imaging software was used to convert preoperative computed tomography scans and create 3D models. These were printed in the surgeon's office as 3D models for the planned reconstruction. Vascularized bone flaps were designed intraoperatively based on the 3D printed models. Results  Three-dimensional models were created for intraoperative use in vascularized bone flaps, including (1) medial femoral trochlea (MFT) flap for scaphoid avascular necrosis and nonunion, (2) MFT flap for lunate avascular necrosis and nonunion, (3) medial femoral condyle (MFC) flap for wrist arthrodesis, and (4) free fibula osteocutaneous flap for distal radius septic nonunion. Templates based on the 3D models allowed for the precise and rapid contouring of well-vascularized bone flaps in situ, prior to ligating the donor pedicle. Conclusions  Surgeon-based 3D printing is a feasible, innovative technology that allows for the precise and rapid contouring of models that can be created in various configurations for pre- and intraoperative planning. The technology is easy to use, convenient, and highly economical as compared with traditional send-out manufacturing. Surgeon-based 3D printing is a useful adjunct in vascularized bone transfer. Level of Evidence  Level IV. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  15. Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Ma, Yan-Zhen; Yang, Yun-Fan; Liu, Song-Song; Li, Yong-Qing; Song, Yu-Zhi

    2018-02-01

    Not Available Project supported by the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J17KA186), the Taishan Scholar Project of Shandong Province, China, the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540408), and the Science and Technology Plan Project of Shenyang City, China (Grant No. 17-231-1-06).

  16. 78 FR 62509 - Approval of Air Quality Implementation Plans; Navajo Nation; Regional Haze Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Retrofit Technology (BART) provision of the Clean Air Act (CAA or Act). EPA proposed the BART FIP to reduce... included in the proposal due to the unique purpose and history of NGS and the numerous stakeholder... Use I. National Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions To...

  17. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less

  18. The flight telerobotic servicer and technology transfer

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Bradford, Kayland Z.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.

  19. Hyperspectral Technology Transfer to the US Department of Interior: Summary of Results of the NASA/DOI Hyperspectral Technology Transfer Project

    NASA Technical Reports Server (NTRS)

    Root, Ralph; Wickland, Diane

    2001-01-01

    In 1997 the Office of Biological Informatics and Outreach (OBIO), Biological Resources Division, US Geological Survey and NASA, Office of Earth Science (OES), initiated a coordinated effort for applying Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data and analysis, as a technology transfer project, to critical DOI environmental issues in four study sites throughout the United States. This work was accomplished by four US Department of the Interior (DOI) study teams with support from NASA/OES principal investigators and the Office of Earth Science programs. The studies, including personnel, objectives, background, project plans, and milestones were documented in a project website at . This report summarizes the final outcomes of the project, detailing accomplishments, lessons learned, and benefits realized to NASA, the US Geological Survey, and the participating DOI bureaus.

  20. Low lift-to-drag aero-assisted orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Savage, R. T.

    1984-01-01

    The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.

  1. 77 FR 43662 - Notice of Open Meetings To Prepare and Release 2012 Annual Report to Congress

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... ``regarding the national security implications and impact of the bilateral trade and economic relationship... and its 5-year plan, technology transfers, and outsourcing. China's activities directly affecting U.S...

  2. 77 FR 53965 - Notice of Open Meetings To Prepare and Release 2012 Annual Report to Congress

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... national security implications and impact of the bilateral trade and economic relationship between the... and its 5-year plan, technology transfers, and outsourcing. China's activities directly affecting U.S...

  3. WisDOT research program 2009 annual report.

    DOT National Transportation Integrated Search

    2009-01-01

    This is a report of research and technology transfer activities carried out by the Wisconsin Department of : Transportation through the Part II research portion of the State Planning and Research Program of the Federal : Highway Administration, U.S. ...

  4. WISDOT research program : 2009 annual report.

    DOT National Transportation Integrated Search

    2009-01-01

    This is a report of research and technology transfer activities carried out by the Wisconsin Department of Transportation through the Part II research portion of the State Planning and Research Program of the Federal Highway Administration, U.S. Depa...

  5. Virginia's transportation research peer exchange.

    DOT National Transportation Integrated Search

    2004-01-01

    To be eligible for managing State Planning and Research (SP & R) funds, a state must agree to a peer review of its management process with regard to Research, Development, and Technology Transfer (RD & T2) efforts. The Federal Highway Administration ...

  6. Economic modeling and energy policy planning. [technology transfer, market research

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Schwartz, A., Jr.; Lievano, R. J.; Stone, J. C.

    1974-01-01

    A structural economic model is presented for estimating the demand functions for natural gas and crude oil in industry and in steam electric power generation. Extensions of the model to other commodities are indicated.

  7. Benchmarking study of corporate research management and planning practices

    NASA Astrophysics Data System (ADS)

    McIrvine, Edward C.

    1992-05-01

    During 1983-84, Xerox Corporation was undergoing a change in corporate style through a process of training and altered behavior known as Leadership Through Quality. One tenet of Leadership Through Quality was benchmarking, a procedure whereby all units of the corporation were asked to compare their operation with the outside world. As a part of the first wave of benchmark studies, Xerox Corporate Research Group studied the processes of research management, technology transfer, and research planning in twelve American and Japanese companies. The approach taken was to separate `research yield' and `research productivity' (as defined by Richard Foster) and to seek information about how these companies sought to achieve high- quality results in these two parameters. The most significant findings include the influence of company culture, two different possible research missions (an innovation resource and an information resource), and the importance of systematic personal interaction between sources and targets of technology transfer.

  8. Peer exchange, "strategic goals to manage research programs : building a premier research program".

    DOT National Transportation Integrated Search

    2013-06-10

    The objectives of the District Department of Transportation (DDOT) Research, Development, & Technology Transfer (RDT) Branch Peer Exchange were: : 1. Receive peer input and perspective on RDT Strategic Plan. : 2. Obtain assistance in assessing validi...

  9. Visualizing railroad operations : a tool for planning and monitoring railroad traffic

    DOT National Transportation Integrated Search

    2009-01-01

    This report provides an overview of the development and technology transfer of the Railroad Traffic Planner application, a visualization tool with string line diagrams that show train positions over time. The Railroad Traffic Planner provides support...

  10. Advanced Turbine Systems annual program review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koop, W.E.

    1995-10-01

    Integrated High Performance Turbine Engine Technology (IHPTET) is a joint Air Force, Navy, Army, NASA, ARPA, and industry program focused on developing turbine engine technologies, with the goal of doubling propulsion capability by around the turn-of-the-century, and thus providing smaller, lighter, more durable, more affordable turbine engines in the future. IHPTET`s technology development plan for increasing propulsion capability with respect to time is divided into three phases. This phased approach reduces the technological risk of taking one giant leap, and also reduces the {open_quotes}political{close_quotes} risk of not delivering a product for an extended period of time, in that the phasingmore » allows continuous transfer of IHPTET technologies to our warfighters and continuous transfer to the commercial sector (dual-use). The IHPTET program addresses the three major classes of engines: turbofan/turbojet, turboshaft/turboprop, and expendables.« less

  11. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  12. Space technology transfer to developing countries: opportunities and difficulties

    NASA Astrophysics Data System (ADS)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  13. Space technology research plans

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1992-01-01

    Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.

  14. Electronic Commerce Resource Centers. An Industry--University Partnership.

    ERIC Educational Resources Information Center

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  15. WisDOT research program : 2014 annual report.

    DOT National Transportation Integrated Search

    2015-01-01

    WisDOT managed a $4.2 million program for research, library and technology transfer services : during federal fiscal year 2014. Ninety percent ($3.76 million) of the program is funded by the state : planning and research part 2 (SPR2) federal program...

  16. WisDOT research program : 2013 annual report.

    DOT National Transportation Integrated Search

    2013-01-01

    WisDOT managed a $4.2 million program for research, library : and technology transfer services during federal fiscal year 2013. : Ninety percent ($3.76 million) of the program is funded by the State Planning and Research Part 2 (SPR2) federal program...

  17. First Annual Symposium. Volume 1: Plenary Session

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations from the symposium are presented. The progress of the Center for Space Construction is reviewed to promote technology transfer from the University of Colorado at Boulder to the national aerospace community. This symposium was heavily weighted toward plans and methodology.

  18. Manufacturing Process Applications Team (MATeam)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.

  19. AdaNET research plan

    NASA Technical Reports Server (NTRS)

    Mcbride, John G.

    1990-01-01

    The mission of the AdaNET research effort is to determine how to increase the availability of reusable Ada components and associated software engineering technology to both private and Federal sectors. The effort is structured to define the requirements for transfer of Federally developed software technology, study feasible approaches to meeting the requirements, and to gain experience in applying various technologies and practices. The overall approach to the development of the AdaNET System Specification is presented. A work breakdown structure is presented with each research activity described in detail. The deliverables for each work area are summarized. The overall organization and responsibilities for each research area are described. The schedule and necessary resources are presented for each research activity. The estimated cost is summarized for each activity. The project plan is fully described in the Super Project Expert data file contained on the floppy disk attached to the back cover of this plan.

  20. Spinoff 2002: Fortieth Anniversary Technology Utilization Program

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Since its inception 40 years ago, NASA's Technology Transfer Program has led the way for our nation to benefit from cutting-edge aerospace technologies. In addition to contributing to U.S. economic growth, these technologies are improving the quality of life on Earth while finding new ways to protect and preserve it. NASA's research and development efforts have advanced areas in medicine, communications, manufacturing, computer technology, and homeland security. These breakthroughs, translated into commercial products, are enhancing the lives of Americans everywhere. When a congressional mandate led NASA to develop the Scientific and Technical Information (STI) Program, the Agency began a wide dissemination of its research and development results. In doing so, NASA recognized that many of its technologies were transferable to industry for the development of commercial products. As a result, the Technology Utilization Program was born in 1962. The successful program went through several changes over the years, as its philosophy, mission, and goals adapted into the Technology Transfer Program we know today. The program strives to make the latest technologies available to industry as soon as they are developed. Each year, NASA's Spinoff publication showcases new products and services resulting from commercial partnerships between NASA and private industry. In the 2002 issue, the NASA field centers reflect upon the growth that has made these innovations available to the public. The Research and Development section examines past achievements, current successes, and future goals for each of the ten NASA centers. The Commercial Benefits section proudly highlights 51 new spinoff products, including a heart pump for patients needing a heart transplant, as well as an air purifier that destroys anthrax spores. The Technology Transfer and Outreach section describes the outreach achievements and educational successes made possible through the NASA Commercial Technology Network. Each section of Spinoff 2002 provides compelling evidence of the Technology Transfer Program's success and value. With commercial products and successes spanning from work on the Apollo missions to the International Space Station, the 40th anniversary of the Technology Transfer Program invites us to celebrate our history while planning the future.

  1. The application of remote sensing to the development and formulation of hydrologic planning models

    NASA Technical Reports Server (NTRS)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.

    1977-01-01

    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  2. Development Communication Report No. 45.

    ERIC Educational Resources Information Center

    Development Communication Report, 1984

    1984-01-01

    A variety of topics related to innovative uses of media in international development are addressed in this newsletter, which includes the following articles: "The Radio Mathematics Project: New Examples of Technology Transfer," by Klaus Galda; "An Overview and Guide: Planning Instructional Radio," by Maurice Imhoof;…

  3. NASA(Field Center Based) Technology Commercialization Centers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  4. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  5. Establishing effective working relations with a potential user community - NASA Lewis Research Center experience

    NASA Technical Reports Server (NTRS)

    Foster, P.

    1977-01-01

    The NASA Lewis Research Center has held a series of six major and unique technology utilization conferences which were major milestones in planned structured efforts to establish effective working relationships with specific technology user communities. These efforts were unique in that the activities undertaken prior to the conference were extensive, and effectively laid the groundwork for productive technology transfer following, and as a direct result of, the conferences. The effort leading to the conference was in each case tailored to the characteristics of the potential user community, however, the common factors comprise a basic framework applicable to similar endeavors. The process is essentially a planned sequence of steps that constitute a technical market survey and a marketing program for the development of beneficial applications of aerospace technology beyond the aerospace field.

  6. An international technology platform for influenza vaccines.

    PubMed

    Hendriks, Jan; Holleman, Marit; de Boer, Otto; de Jong, Patrick; Luytjes, Willem

    2011-07-01

    Since 2008, the World Health Organization has provided seed grants to 11 manufacturers in low- and middle-income countries to establish or improve their pandemic influenza vaccine production capacity. To facilitate this ambitious project, an influenza vaccine technology platform (or "hub") was established at the Netherlands Vaccine Institute for training and technology transfer to developing countries. During its first two years of operation, a robust and transferable monovalent pilot process for egg-based inactivated whole virus influenza A vaccine production was established under international Good Manufacturing Practice standards, as well as in-process and release assays. A course curriculum was designed, including a two-volume practical handbook on production and quality control. Four generic hands-on training courses were successfully realized for over 40 employees from 15 developing country manufacturers. Planned extensions to the curriculum include cell-culture based technology for viral vaccine production, split virion influenza production, and generic adjuvant formulation. We conclude that technology transfer through the hub model works well, significantly builds vaccine manufacturing capacity in developing countries, and thereby increases global and equitable access to vaccines of high public health relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Satellite Power Systems (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1978-01-01

    A coplanar satellite conceptual approach was defined. This effort included several trade studies related to satellite design and also construction approaches for this satellite. A transportation system, consistent with this concept, was also studied, including an electric orbit transfer vehicle and a parallel-burn heavy lift launch vehicle. Work on a solid state microwave concept continued and several alternative approaches were evaluated. Computer determination of an optimized transistor and circuit design was also continued. Experiment/verification planning resulted in the development of a total solar array and microwave technology development plan, as well as definition of near-term research to evaluate key technology issues.

  8. Technology Transfer: A Compilation of Varied Approaches to the Management of Innovation.

    DTIC Science & Technology

    1982-12-01

    Objectives. Risk. Technical interest. Social pressure. In Phase Two of the data review, the student-annotated articles were re-ordered by chapter...Type Plans--A. J. Geare Chapter 12. Willingness 71. The Absorption Rate of Ideas--G. Gallup 72. Innovacion -Resisting and Innovation-Producing...their questionable impact on social institu- tions. While technology has been clearly beneficial to many people, it has been of dubious value in

  9. 75 FR 4742 - Approval and Promulgation of Implementation Plans; State of California; Legal Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... information provided, unless the comment includes Confidential Business Information (CBI) or other information..., please schedule an [[Page 4743

  10. Virginia and West Virginia's transportation research co-peer exchange (June 22-26, 2014).

    DOT National Transportation Integrated Search

    2015-04-01

    To be eligible for managing State Planning and Research (SP&R) funds, a state must agree to a peer review of its : management process with regard to Research, Development, and Technology Transfer (RD&T2) efforts. Specifically, the federal : regulatio...

  11. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  12. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  13. Global-to-local policy transfer in the introduction of new molecular tuberculosis diagnostics in South Africa.

    PubMed

    Colvin, C J; Leon, N; Wills, C; van Niekerk, M; Bissell, K; Naidoo, P

    2015-11-01

    Lack of innovation in diagnostics has contributed to tuberculosis (TB) remaining a global health challenge. It is critical to understand how new diagnostic technologies are translated into policies and how these are implemented. To examine policy transfer for two rapid molecular diagnostic tests, GenoType(®) MDRTBplus and Xpert(®) MTB/RIF, to understand policy development, uptake and implementation in South Africa. A policy transfer analysis framework integrating the key dimensions of policy transfer into one coherent model was used. Two phases of key informant interviews were undertaken with a wide range of stakeholders. Both tests were developed through innovative partnerships and responded to urgent public health needs. GenoType was introduced through a process that was more inclusive than that for Xpert. National policy and planning processes were opaque for both tests. Their implementation, maintenance and expansion suffered from poor communication and coordination, insufficient attention to resource implications, technical challenges and a lack of broader health systems thinking. Our analysis identified the risks and benefits of partnerships for technological innovation, the complex intersections between global and national actors and the impact of health systems on policy transfer, and the risks of rescue- and technology-focused thinking in addressing public health challenges.

  14. COMPUTER MODEL TECHNOLOGY TRANSFER IN THE UNITED STATES

    EPA Science Inventory

    Computer-based mathematical models for urban water resources planning, management and design are widely used by engineers and planners in both the public and private sectors. In the United States, the majority of the users are in the private (consulting) sector, yet most of the m...

  15. LEAD SAFE YARDS: DEVELOPING AND IMPLEMENTING A MONITORING, ASSESSMENT, AND OUTREACH PROGRAM FOR YOUR COMMUNITY

    EPA Science Inventory

    The USEPA has developed a technology transfer handbook on how to plan and implement a residential soil lead monitoring, assessment, mitigation and outreach program for residential communities. The handbook provides guidance on 1) identifying potentially impacted communities, 2) c...

  16. Western Regional Remote Sensing Conference Proceedings, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.

  17. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).

  18. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).

  19. Development of the electric vehicle analyzer

    NASA Astrophysics Data System (ADS)

    Dickey, Michael R.; Klucz, Raymond S.; Ennix, Kimberly A.; Matuszak, Leo M.

    1990-06-01

    The increasing technological maturity of high power (greater than 20 kW) electric propulsion devices has led to renewed interest in their use as a means of efficiently transferring payloads between earth orbits. Several systems and architecture studies have identified the potential cost benefits of high performance Electric Orbital Transfer Vehicles (EOTVs). These studies led to the initiation of the Electric Insertion Transfer Experiment (ELITE) in 1988. Managed by the Astronautics Laboratory, ELITE is a flight experiment designed to sufficiently demonstrate key technologies and options to pave the way for the full-scale development of an operational EOTV. An important consideration in the development of the ELITE program is the capability of available analytical tools to simulate the orbital mechanics of a low thrust, electric propulsion transfer vehicle. These tools are necessary not only for ELITE mission planning exercises but also for continued, efficient, accurate evaluation of DoD space transportation architectures which include EOTVs. This paper presents such a tool: the Electric Vehicle Analyzer (EVA).

  20. Biomass power for rural development. Technical progress report, January 1--March 31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Brief progress reports are presented on the following tasks: design packages for retrofits at the Dunkirk Station; fuel supply and site development plans; major equipment guarantees and project risk sharing; power production commitment; power plant site plan, construction and environmental permits; and experimental strategies for system evaluation. The paper then discusses in more detail the following: feedstock development efforts; clone-site testing and genetic studies; and efforts at outreach, extension and technology transfer.

  1. OpenMDAO Framework Status

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2010-01-01

    Advancing and exploring the science of Multidisciplinary Analysis & Optimization (MDAO) capabilities are high-level goals in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project. The OpenMDAO team has made significant progress toward completing the Alpha OpenMDAO deliverable due in September 2010. Included in the presentation are: details of progress on developing the OpenMDAO framework, example usage of OpenMDAO, technology transfer plans, near term plans, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations.

  2. Heavy hydrocarbon main injector technology

    NASA Technical Reports Server (NTRS)

    Fisher, S. C.; Arbit, H. A.

    1988-01-01

    One of the key components of the Advanced Launch System (ALS) is a large liquid rocket, booster engine. To keep the overall vehicle size and cost down, this engine will probably use liquid oxygen (LOX) and a heavy hydrocarbon, such as RP-1, as propellants and operate at relatively high chamber pressures to increase overall performance. A technology program (Heavy Hydrocarbon Main Injector Technology) is being studied. The main objective of this effort is to develop a logic plan and supporting experimental data base to reduce the risk of developing a large scale (approximately 750,000 lb thrust), high performance main injector system. The overall approach and program plan, from initial analyses to large scale, two dimensional combustor design and test, and the current status of the program are discussed. Progress includes performance and stability analyses, cold flow tests of injector model, design and fabrication of subscale injectors and calorimeter combustors for performance, heat transfer, and dynamic stability tests, and preparation of hot fire test plans. Related, current, high pressure, LOX/RP-1 injector technology efforts are also briefly discussed.

  3. 76 FR 62002 - Revisions to the California State Implementation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... Confidential Business Information (CBI) or other information whose disclosure is restricted by statute... normal business hours with the contact listed in the FOR FURTHER INFORMATION CONTACT section. FOR FURTHER...

  4. Reverse technology transfer; obtaining feedback from managers.

    Treesearch

    A.B. Carey; J.M. Calhoun; B. Dick; K. O' Halloran; L.S. Young; R.E. Bigley; S. Chan; C.A. Harrington; J.P. Hayes; J. Marzluff

    1999-01-01

    Forestry policy, planning, and practice have changed rapidly with implementation of ecosystem management by federal, state, tribal, and private organizations. Implementation entails new concepts, terminology, and management approaches. Yet there seems to have been little organized effort to obtain feedback from on-the-ground managers on the practicality of implementing...

  5. The Entrepreneurial and Adaptive University. Report of the Second U.S. Study Visit.

    ERIC Educational Resources Information Center

    Davies, John L.

    1987-01-01

    The report filed by senior European university administrators after their visit to U.S. universities examines the movement toward entrepreneurialism and the related issues of administrative organization and change, planning and financial management, client relations, delivery systems, technology transfer, government-school relations, and the…

  6. Aerothermodynamics and Turbulence

    DTIC Science & Technology

    2013-03-08

    Surface Heat Transfer and Detailed Flow Structure Fuel Injection in a Scramjet Combustor Reduced Uncertainty in Complex Flows Addressing... hypersonic flight data to capture shock interaction unsteadiness National Hypersonic Foundational Research Plan Joint Technology Office... Hypersonics Basic Science Roadmap Assessment of SOA and Future Research Directions Ongoing Basic Research for Understanding and Controlling Noise

  7. An Organization Development Approach to Technology Transfer in the National Forest Service.

    DTIC Science & Technology

    1981-09-01

    environmental influences such as governmental intervention. Meyer [Ref. 23: pp. 56-57] illustrates this point by presenting an analogy involving the automobile ...Command Washington, D.C. 20370 23. Director for HRM Plans and Policy (OP-150) 1 Human Resource Management Division Deputy Chief of Naval Operations

  8. Urban forestry research needs: a participatory assessment process

    Treesearch

    Kathleen L. Wolf; Linda E. Kruger

    2010-01-01

    New research initiatives focusing on urban ecology and natural resources are underway. Such programs coincide with increased local government action in urban forest planning and management, activities that are enhanced by scientific knowledge. This project used a participatory stakeholder process to explore and understand urban forestry research and technology transfer...

  9. Overview of Research Transition Products

    NASA Technical Reports Server (NTRS)

    Robinson, John

    2014-01-01

    Demonstrate increased, more consistent use of Performance- Based Navigation (PBN). Accelerate transfer of NASA scheduling and spacing technologies for inclusion in late mid-term NAS. During high-fidelity human-in-the-loop simulations of Terminal Sequencing and Spacing, air traffic controllers have significantly improved their use of PBN procedures during busy traffic periods without increased workload. Executed an aggressive, short timeframe development schedule. Developed TSS prototype based upon FAA operational systems. Conducted multiple joint FAA/NASA human-in-the-loop simulations. Performed repeated incremental deliveries of tech transfer material to non-traditional RTT stakeholders. Will continue to participate in later phases of FAA acquisition process. ATD-1 transferred Terminal Sequencing and Spacing (TSS) technologies to the FAA. TSS enables routine use of underutilized advanced avionics and PBN procedures. Potential benefits to airlines operating at initial TSS sites estimated to be $300-400M/year. FAA is planning for an initial capability in the NAS in 2018.

  10. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.

    PubMed

    Polley, John W; Figueroa, Alvaro A

    2013-05-01

    To introduce the concept and use of an occlusal-based "orthognathic positioning system" (OPS) to be used during orthognathic surgery. The OPS consists of intraoperative occlusal-based devices that transfer virtual surgical planning to the operating field for repositioning of the osteotomized dentoskeletal segments. The system uses detachable guides connected to an occlusal splint. An initial drilling guide is used to establish stable references or landmarks. These are drilled on the bone that will not be repositioned adjacent to the osteotomy line. After mobilization of the skeletal segment, a final positioning guide, referenced to the drilled landmarks, is used to transfer the skeletal segment according to the virtual surgical planning. The OPS is digitally designed using 3-dimensional computer-aided design/computer-aided manufacturing technology and manufactured with stereolithographic techniques. Virtual surgical planning has improved the preoperative assessment and, in conjunction with the OPS, the execution of orthognathic surgery. The OPS has the possibility to eliminate the inaccuracies commonly associated with traditional orthognathic surgery planning and to simplify the execution by eliminating surgical steps such as intraoperative measuring, determining the condylar position, the use of bulky intermediate splints, and the use of intermaxillary wire fixation. The OPS attempts precise translation of the virtual plan to the operating field, bridging the gap between virtual and actual surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Computer-Assisted Virtual Planning for Surgical Guide Manufacturing and Internal Distractor Adaptation in the Management of Midface Hypoplasia in Cleft Patients.

    PubMed

    Scolozzi, Paolo; Herzog, Georges

    2017-07-01

    We are reporting the treatment of severe maxillary hypoplasia in two patients with unilateral cleft lip and palate by using a specific approach combining the Le Fort I distraction osteogenesis technique coupled with computer-aided design/computer-aided manufacturing customized surgical guides and internal distractors based on virtual computational planning. This technology allows for the transfer of the virtual planned reconstruction to the operating room by using custom patient-specific implants, surgical splints, surgical cutting guides, and surgical guides to plate or distractor adaptation.

  12. Challenging the Future - Journey to Excellence. Aeropropulsion strategic plan for the 1990's

    NASA Astrophysics Data System (ADS)

    Over the past several months, the Lewis Aeropropulsion Management Council (AMC) has conducted a critical assessment of its strategic plan. This assessment clearly indicated a need for change, both in the aeropropulsion program emphasis and in the approach to carrying out that program. Customers sent a strong message that the program must improve the timeliness of research and technology products and services and must work more closely with them to develop and transfer new technology. The strategic plan defines AMC's vision for the future and underlying organizational values. It contains a set of broad strategies and actions that point the way toward achieving the goals of customer satisfaction, organizational effectiveness, and programmatic excellence. Those strategies are expected to form the basis for the development of specific tactical plans by Lewis aeropropulsion thrust teams, divisions, and branches. To guide tactical planning of the aeropropulsion program, this strategic plan outlines the agency's strategic directions and long-range aeronautics goals, the aeropropulsion goals and key objectives for achieving them, projections of Lewis aeropropulsion budgets, planned allocations of resources, and the processes that will be used to measure success in carrying out the strategic plan.

  13. Challenging the Future - Journey to Excellence. Aeropropulsion strategic plan for the 1990's

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Over the past several months, the Lewis Aeropropulsion Management Council (AMC) has conducted a critical assessment of its strategic plan. This assessment clearly indicated a need for change, both in the aeropropulsion program emphasis and in the approach to carrying out that program. Customers sent a strong message that the program must improve the timeliness of research and technology products and services and must work more closely with them to develop and transfer new technology. The strategic plan defines AMC's vision for the future and underlying organizational values. It contains a set of broad strategies and actions that point the way toward achieving the goals of customer satisfaction, organizational effectiveness, and programmatic excellence. Those strategies are expected to form the basis for the development of specific tactical plans by Lewis aeropropulsion thrust teams, divisions, and branches. To guide tactical planning of the aeropropulsion program, this strategic plan outlines the agency's strategic directions and long-range aeronautics goals, the aeropropulsion goals and key objectives for achieving them, projections of Lewis aeropropulsion budgets, planned allocations of resources, and the processes that will be used to measure success in carrying out the strategic plan.

  14. Mapping the vascular anatomy of free transplanted soft tissue flaps with computed tomographic angiography.

    PubMed

    Rozen, Warren M; Chubb, Daniel; Ashton, Mark W; Webster, Howard R

    2012-05-01

    The use of advanced imaging technologies such as computed tomographic angiography (CTA) has opened the door to the analysis of microvascular anatomy not previously demonstrable with prior imaging techniques. While CTA has been used to evaluate the vascular anatomy of donor body regions in the planning of harvest of tissue for free flap transfer, the use of CTA to evaluate tissues after tissue transplantation has not been demonstrated. The current study aimed to explore whether vascular anatomy was able to highlight CTA within transferred flaps. The arterial and venous anatomy of a transferred deep inferior epigastric artery (DIEA) perforator (DIEP) flap was explored postoperatively with the use of CTA. Intra-flap vasculature was mapped and recorded qualitatively. Postoperative CTA is able to highlight the vascular pedicle of a transferred free flap, highlight the course of individual perforators supplying the flap, and map the zones of lesser perfusion by the source pedicle. The current study has demonstrated that CTA may be of value in identifying vascular anatomy within transferred tissue, as a guide to evaluate flap perfusion and planning further surgery involving the flap. © Springer-Verlag 2011

  15. How can we transfer scientific knowledge to citizens? : Case studies from huge earthquake and tsunami researches

    NASA Astrophysics Data System (ADS)

    Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Fujikura, Katsunori

    2017-04-01

    On March 11, 2011, huge earthquake and tsunamis took place coastal regions of Northeast Japan. Coastal infrastructure collapsed due to high waves of tsunamis. Marine ecosystems were also strongly disturbed by the earthquakes and tsunamis. TEAMS (Tohoku Ecosystem-Associated Marine Sciences) has started for monitoring recovering process of marine ecosystems. The project continues ten years. First five years are mainly monitored recovery process, then we should transfer our knowledge to fishermen and citizens for restoration of fishery and social systems. But, how can we actually transfer our knowledge from science to citizens? This is new experience for us. Socio-technology constructs a "high quality risk communication" model how scientific knowledge or technologies from scientific communities to citizens. They are progressing as follows, "observation, measurements and data", → "modeling and synthesis" → "information process" → "delivery to society" → " take action in society". These steps show detailed transition from inter-disciplinarity to trans-disciplinarity in science and technology. In our presentation, we plan to show a couple of case studies that are going forward from science to society.

  16. Impact of the WIS Modernization Plan on the Joint Deployment System.

    DTIC Science & Technology

    1983-03-01

    continuous technology advances , the expected life cf a computer system is abcut eight years. In the area of large data transfers, 1UTOCIM II was superior...ocessing al -ernat:ives: (1) Ti- Sharing System (TSS) -- simultaneous access Cf :he computcer systsm by 2o- than one user (2) batch apdating...modified to remove the time-framn distirctocn cf ’deliberate’ or ’crisis’ planning. Al -nhcugh the data is now maintained quarte.rly by the Ccmmar.d and

  17. Mission and status of the US Department of Energy's battery energy storage program

    NASA Astrophysics Data System (ADS)

    Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.

    1985-05-01

    The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.

  18. Airspace Technology Demonstration 3 (ATD-3): Multi-Flight Common Route (MFCR) Technology Transfer Document Summary Version 1.0

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Bilimoria, Karl; Amer, Maryam M.; Wang, Easter M.

    2017-01-01

    This summary document and accompanying technology artifacts satisfy the second of three Research Transition Products (RTPs) defined in the ATD-3 Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's Multi-Flight Common Route (MFCR) research for efficient route corrections for en-route weather avoidance. The MFCR concept builds on the experience of the legacy Dynamic Weather Routes (DWR) and focuses on a better balance of potential savings with ATC acceptability, common route corrections options for multiple flights on similar routings, and better use of existing and/or modern automation for communication and coordination of route change options. All of these capabilities are expected to improve system performance significantly in terms of actual delay-reducing clearances issued to flights compared to that of the DWR tool and operating concept.

  19. DEVELOPING AND IMPLEMENTING A BIRD MIGRATION MONITORING, ASSESSMENT AND PUBLIC OUTREACH PROGRAM FOR YOUR COMMUNITY - THE BIRDCAST PROJECT

    EPA Science Inventory

    The USEPA has developed a technology transfer handbook for the EMPACt BirdCast bird migration monitoring project. The document is essentially a "How-To" Handbook that addresses the planning and implementation steps that were needed to develop, operate and maintain a program simil...

  20. 77 FR 25109 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... information provided, unless the comment includes Confidential Business Information (CBI) or other information... the hard copy materials, please schedule an appointment during normal business hours with the contact...

  1. 77 FR 37359 - Revisions to the California State Implementation Plan, South Coast Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Business Information (CBI) or other information whose disclosure is restricted by statute. Information that... business hours with the contact listed in the FOR FURTHER INFORMATION CONTACT section. FOR FURTHER...

  2. 78 FR 63145 - Approval and Promulgation of State Implementation Plans; Hawaii; Infrastructure Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... requirements of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... comment includes Confidential Business Information (CBI) or other information whose disclosure is... normal business hours with the contact listed directly below. FOR FURTHER INFORMATION CONTACT: Dawn...

  3. 77 FR 41051 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule Step 3 and GHG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    .... Miscellaneous manufacturing 3391, 3399 Waste management and remediation....... 5622, 5629 Hospitals/Nursing and... NSR New Source Review NTTAA National Technology Transfer and Advancement Act OMB Office of Management... SCAQMD South Coast Air Quality Management District SIP State Implementation Plan tpy Tons Per Year UMRA...

  4. Orbit Transfer Vehicle (OTV) engine phase A study, extension 1. Volume 3: Study cost estimates

    NASA Technical Reports Server (NTRS)

    Christensen, K. L.

    1980-01-01

    Program cost and planning data based on 1980 technology and shown in 1979 dollars for a 20K lb Thrust Staged Combustion Cycle Engine are presented. These data were compared with those for the Advanced Expander Cycle Engine at 10K lb and 20K lb thrust levels.

  5. 76 FR 40662 - Federal Implementation Plans for Iowa, Kansas, Michigan, Missouri, Oklahoma, and Wisconsin To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions To Address Environmental... modeling platform and data inputs EPA proposed to use to support the final Transport Rule. Notice of Data... Rule modeling, including the emissions inventories for the six states identified above. EPA provided...

  6. 76 FR 78571 - Approval and Promulgation of State Implementation Plans: Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those...: Rule 0010, What is the Employee Commute Options Program?; Rule 0020, Who is Subject to ECO?; Rule 0030, What Does ECO require?; Rule 0040, How Does the Department Enforce ECO?; Rule 0050, Definitions of...

  7. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  8. [Information exchange via internet--possibilities, limits, future].

    PubMed

    Schmiedl, S; Geishauser, M; Klöppel, M; Biemer, E

    1998-01-01

    Today, the exchange of information in the Internet is dominated by the WWW and e-mail. Discussion groups like mailing lists and newsgroups also permit communication in groups. Information retrieval becomes a crucial challenge in using the Internet. In the field of medicine, three more aspects are of special importance: privacy, legal requirements, and the necessity of transferring large amounts of data. For these problems, today's Internet doesn't provide a sufficient solution yet. Future developments will not only improve the existing services, but also lead to fundamental changes in the transfer technologies: Safer data transfer is to be ensured by new encrypting software together with the planned transfer protocol IPv6. Introducing the new transfer mode ATM will lead to better and resource saving transmission. Computer, telephone and TV networks will grow together, resulting in convergence of media.

  9. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  10. International Agreement on Planetary Protection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.

  11. A plan for time-phased incorporation of automation and robotics on the US space station

    NASA Technical Reports Server (NTRS)

    Purves, R. B.; Lin, P. S.; Fisher, E. M., Jr.

    1988-01-01

    A plan for the incorporation of Automation and Robotics technology on the Space Station is presented. The time phased introduction of twenty two selected candidates is set forth in accordance with a technology development forecast. Twenty candidates were chosed primarily for their potential to relieve the crew of mundane or dangerous operations and maintenance burdens, thus freeing crew time for mission duties and enhancing safety. Two candidates were chosen based on a potential for increasing the productivity of laboratory experiments and thus directly enhancing the scientific value of the Space Station. A technology assessment for each candidate investigates present state of the art, development timelines including space qualification considerations, and potential for technology transfer to earth applications. Each candidate is evaluated using a crew workload model driven by crew size, number of pressurized U.S. modules and external payloads, which makes it possible to assess the impact of automation during a growth scenario. Costs for each increment of implementation are estimated and accumulated.

  12. 76 FR 21807 - Approval and Promulgation of Implementation Plans; State of Nevada; PM-10; Determinations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... some may not be available in either location (e.g., confidential business information (CBI)). To inspect the hard copy materials, please schedule an appointment during normal business hours with the...

  13. Turbine Engine Hot Section Technology (HOST)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.

  14. 78 FR 18280 - Approval and Promulgation of Air Quality Implementation Plans; Nevada; Regional Haze Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... emission limits applicable to Units 1, 2, and 3 at RGGS by 18 months from January 1, 2015, to June 30, 2016.... Paperwork Reduction Act C. Regulatory Flexibility Act D. Unfunded Mandates Reform Act E. Executive Order..., or Use I. National Technology Transfer and Advancement Act J. Executive Order 12898: Federal Actions...

  15. PLANNING AND IMPLEMENTING A REAL-TIME AIR POLLUTION MONITORING AND OUTREACH PROGRAM FOR YOUR COMMUNITY: THE AIRBEAT PROJECT OF ROXBURY, MASSACHUSETTS

    EPA Science Inventory

    EPA has developed a technology transfer handbook for the EMPACT Roxbury Air Monitoring (AirBeat) Project. The purpose of AirBeat is to make real-time air quality monitoring information (for ozone, black carbon, and fine particulates) available to the Boston MA community of Roxbur...

  16. Cryogenic Fluid Management Technology for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and othermore » outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.« less

  18. User needs as a basis for advanced technology. [U.S. civil space program

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Reck, Gregory M.

    1992-01-01

    The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.

  19. ERDA-NASA wind energy project ready to involve users

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1976-01-01

    The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.

  20. Battery energy-storage systems — an emerging market for lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Cole, J. F.

    Although the concept of using batteries for lead levelling and peak shaving has been known for decades, only recently have these systems become commercially viable. Changes in the structure of the electric power supply industry have required these companies to seek more cost-effective ways of meeting the needs of their customers. Through experience gained, primarily in the USA, batteries have been shown to provide multiple benefits to electric utilities. Also, lower maintenance batteries, more reliable electrical systems, and the availability of methods to predict costs and benefits have made battery energy-storage systems more attractive. Technology-transfer efforts in the USA have resulted in a willingness of electric utilities to install a number of these systems for a variety of tasks, including load levelling, peak shaving, frequency regulation and spinning reserve. Additional systems are being planned for several additional locations for similar applications, plus transmission and distribution deferral and enhanced power quality. In the absence of US champions such as the US Department of Energy and the Electric Power Research Institute, ILZRO is attempting to mount a technology-transfer programme to bring the benefits of battery energy-storage to European power suppliers. As a result of these efforts, a study group on battery energy-storage systems has been established with membership primarily in Germany and Austria. Also, a two-day workshop, prepared by the Electric Power Research Institute was held in Dublin. Participants included representatives of several European power suppliers. As a result, ESB National Grid of Ireland has embarked upon a detailed analysis of the costs and benefits of a battery energy-storage system in their network. Plans for the future include continuation of this technology-transfer effort, assistance in the Irish effort, and a possible approach to the European Commission for funding.

  1. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report 1994--1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among its member institutions. This group of research oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs) agreed to work together to initiate or revise education programs, develop research partnerships with public and private sector organizations, and promote technology development to address the nation`s critical environmental contamination problems. The Consortium`s Research, Education and Technology Transfer (RETT) Plan became the working agenda. The Consortium is a resource for collaboration among the member institutions and with federal an state agencies, national and federal laboratories, industries, (includingmore » small businesses), majority universities, and two and four-year technical colleges. As a group of 17 institutions geographically located in the southern US, the Consortium is well positioned to reach a diverse group of women and minority populations of African Americans, Hispanics and American Indians. This Report provides a status update on activities and achievements in environmental curriculum development, outreach at the K--12 level, undergraduate and graduate education, research and development, and technology transfer.« less

  2. Evolving the US Army Research Laboratory (ARL) Technical Communication Strategy

    DTIC Science & Technology

    2016-10-01

    of added value and enhanced tech transfer, and strengthened relationships with academic and industry collaborators. In support of increasing ARL’s...communication skills; and Prong 3: Promote a Stakeholder Database to implement a stakeholder database (including names and preferences) and use a...Group, strategic planning, communications strategy, stakeholder database , workforce improvement, science and technology, S&T 16. SECURITY

  3. The Hardwood Tree Improvement and Regeneration Center: its strategic plans for sustaining the hardwood resource

    Treesearch

    Charles H. Michler; Michael J. Bosela; Paula M. Pijut; Keith E. Woeste

    2003-01-01

    A regional center for hardwood tree improvement, genomics, and regeneration research, development and technology transfer will focus on black walnut, black cherry, northern red oak and, in the future, on other fine hardwoods as the effort is expanded. The Hardwood Tree Improvement and Regeneration Center (HTIRC) will use molecular genetics and genomics along with...

  4. Preparing the Next Generations of Technology Project Managers to Lead through Knowledge Sharing: A Case Study at a Large Transportation Company

    ERIC Educational Resources Information Center

    Kargbo, Michelle

    2013-01-01

    The purpose of this research was to identify knowledge transfer gaps and current practices, prepare current project managers to accept the challenges associated with leadership opportunities that are coming available due to retirements through cross training efforts and succession planning, and to identify the proper management of knowledge…

  5. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.

    2012-01-01

    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  6. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. These separators and their characteristics were previously discussed. A program was established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  7. Satellite Test of the Equivalence Principle, Overview and Progress

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery

    2006-01-01

    An overview of STEP, the Satellite test of the Equivalence Principle will be presented. This space-based experiment will test the Universality of free fall and is designed to advance the present state of knowledge by over 5 orders of magnitude. The international STEP collaboration is pursuing a development plan to improve and verify the technology readiness of key systems. We will discuss recent advances with an emphasis on accelerometer fabrication and test. The transfer of critical technologies successfully demonstrated in flight by the Gravity Probe B mission will be described.

  8. Test plan: the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, D.J.; Lombard, K.H.; Hazen, T.C.

    1997-03-31

    The remediation strategies that will be applied at the Czechowice Oil Refinery waste lagoon in Czechowice, Poland are designed, managed, and implemented under the direction of the Westinghouse Savannah River Company (WSRC) for the United States Department of Energy (DOE). WSRC will be assisted in the demonstration by The Institute for Ecology of Industrial Areas (IETU). This collaboration between IETU and DOE will provide the basis for international technology transfer of new and innovative remediation technologies that can be applied in Poland and the Eastern European Region as well.

  9. Guidance, navigation, and control trades for an Electric Orbit Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Zondervan, K. P.; Bauer, T. A.; Jenkin, A. B.; Metzler, R. A.; Shieh, R. A.

    The USAF Space Division initiated the Electric Insertion Transfer Experiment (ELITE) in the fall of 1988. The ELITE space mission is planned for the mid 1990s and will demonstrate technological readiness for the development of operational solar-powered electric orbit transfer vehicles (EOTVs). To minimize the cost of ground operations, autonomous flight is desirable. Thus, the guidance, navigation, and control (GNC) functions of an EOTV should reside on board. In order to define GNC requirements for ELITE, parametric trades must be performed for an operational solar-powered EOTV so that a clearer understanding of the performance aspects is obtained. Parametric trades for the GNC subsystems have provided insight into the relationship between pointing accuracy, transfer time, and propellant utilization. Additional trades need to be performed, taking into account weight, cost, and degree of autonomy.

  10. National hydrogen technology competitiveness analysis with an integrated fuzzy AHP and TOPSIS approaches: In case of hydrogen production and storage technologies

    NASA Astrophysics Data System (ADS)

    Lee, Seongkon; Mogi, Gento

    2017-02-01

    The demand of fossil fuels, including oil, gas, and coal has been increasing with the rapid development of developing countries such as China and India. U.S., Japan, EU, and Korea have been making efforts to transfer to low carbon and green growth economics for sustainable development. And they also have been measuring to cope with climate change and the depletion of conventional fuels. Advanced nations implemented strategic energy technology development plans to lead the future energy market. Strategic energy technology development is crucial alternative to address the energy issues. This paper analyze the relative competitiveness of hydrogen energy technologies in case of hydrogen production and storage technologies from 2006 to 2010. Hydrogen energy technology is environmentally clean technology comparing with the previous conventional energy technologies and will play a key role to solve the greenhouse gas effect. Leading nations have increasingly focused on hydrogen technology R&D. This research is carried out the relative competitiveness of hydrogen energy technologies employed by an integrated fuzzy analytic hierarchy process (Fuzzy AHP) and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approaches. We make four criteria, accounting for technological status, R&D budget, R&D human resource, and hydrogen infra. This research can be used as fundamental data for implementing national hydrogen energy R&D planning for energy policy-makers.

  11. Virtual Preoperative Planning and Intraoperative Navigation in Facial Prosthetic Reconstruction: A Technical Note.

    PubMed

    Verma, Suzanne; Gonzalez, Marianela; Schow, Sterling R; Triplett, R Gilbert

    This technical protocol outlines the use of computer-assisted image-guided technology for the preoperative planning and intraoperative procedures involved in implant-retained facial prosthetic treatment. A contributing factor for a successful prosthetic restoration is accurate preoperative planning to identify prosthetically driven implant locations that maximize bone contact and enhance cosmetic outcomes. Navigational systems virtually transfer precise digital planning into the operative field for placing implants to support prosthetic restorations. In this protocol, there is no need to construct a physical, and sometimes inaccurate, surgical guide. The report addresses treatment workflow, radiologic data specifications, and special considerations in data acquisition, virtual preoperative planning, and intraoperative navigation for the prosthetic reconstruction of unilateral, bilateral, and midface defects. Utilization of this protocol for the planning and surgical placement of craniofacial bone-anchored implants allows positioning of implants to be prosthetically driven, accurate, precise, and efficient, and leads to a more predictable treatment outcome.

  12. Enhanced heat transfer combustor technology, subtasks 1 and 2, tast C.1

    NASA Technical Reports Server (NTRS)

    Baily, R. D.

    1986-01-01

    Analytical and experimental studies are being conducted for NASA to evaluate means of increasing the heat extraction capability and service life of a liquid rocket combustor. This effort is being conducted in conjunction with other tasks to develop technologies for an advanced, expander cycle, oxygen/hydrogen engine planned for upper stage propulsion applications. Increased heat extraction, needed to raise available turbine drive energy for higher chamber pressure, is derived from combustion chamber hot gas wall ribs that increase the heat transfer surface area. Life improvement is obtained through channel designs that enhance cooling and maintain the wall temperature at an accepatable level. Laboratory test programs were conducted to evaluate the heat transfer characteristics of hot gas rib and coolant channel geometries selected through an analytical screening process. Detailed velocity profile maps, previously unavailable for rib and channel geometries, were obtained for the candidate designs using a cold flow laser velocimeter facility. Boundary layer behavior and heat transfer characteristics were determined from the velocity maps. Rib results were substantiated by hot air calorimeter testing. The flow data were analytically scaled to hot fire conditions and the results used to select two rib and three enhanced coolant channel configurations for further evaluation.

  13. Technology Transfer Issues and a New Technology Transfer Model

    ERIC Educational Resources Information Center

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  14. Slush Hydrogen (SLH2) technology development for application to the National Aerospace Plane (NASP)

    NASA Technical Reports Server (NTRS)

    Dewitt, Richard L.; Hardy, Terry L.; Whalen, Margaret V.; Richter, G. Paul

    1989-01-01

    The National Aerospace Plane (NASP) program is giving us the opportunity to reach new unique answers in a number of engineering categories. The answers are considered enhancing technology or enabling technology. Airframe materials and densified propellants are examples of enabling technology. The National Aeronautics and Space Administration's Lewis Research Center has the task of providing the technology data which will be used as the basis to decide if slush hydrogen (SLH2) will be the fuel of choice for the NASP. The objectives of this NASA Lewis program are: (1) to provide, where possible, verified numerical models of fluid production, storage, transfer, and feed systems, and (2) to provide verified design criteria for other engineered aspects of SLH2 systems germane to a NASP. This program is a multiyear multimillion dollar effort. The present pursuit of the above listed objectives is multidimensional, covers a range of problem areas, works these to different levels of depth, and takes advantage of the resources available in private industry, academia, and the U.S. Government. The NASA Lewis overall program plan is summarized. The initial implementation of the plan will be unfolded and the present level of efforts in each of the resource areas will be discussed. Results already in hand will be pointed out. A description of additionally planned near-term experimental and analytical work is described.

  15. Information systems for engineering sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, R.S.

    1992-02-27

    The ability of a country to follow sustainable development paths is determined to a large extent by the capacity or capabilities of its people and its institutions. Specifically, capacity-building in the UNCED terminology encompasses the country's human, scientific, technological, organizational, institutional, and resource capabilities. A fundamental goal of capacity-building is to enhance the ability to pose, evaluate and address crucial questions related to policy choices and methods of implementation among development options. As a result the United Nations Conference on Environment and Development (UNCED) Agenda 21 planning process has identified the need for better methods by which information can bemore » transferred between industrialized nations and developing nations. The reasons for better methods of information transfer include facilitating decisions related to sustainable development and building the capacity of developing nations to better plan their future in both an economical and environmentally sound manner. This paper is a discussion on mechanisms for providing information and technologies available for presenting the information to a variety of cultures and levels of technical literacy. Consideration is given to access to information technology as well as to the cost to the user. One concept discussed includes an Engineering Partnership'' which brings together the talents and resources of private consulting engineers, corporations, non-profit professional organizations, government agencies and funding institution which work in partnership with each other and associates in developing countries. Concepts which are related to information technologies include a hypertext based, user configurable cultural translator and information navigator and the use of multi-media technologies to educate engineers about the concepts of sustainability, and the adaptation of the concept of metabolism to creating industrial systems.« less

  16. Information systems for engineering sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, R.S.

    1992-02-27

    The ability of a country to follow sustainable development paths is determined to a large extent by the capacity or capabilities of its people and its institutions. Specifically, capacity-building in the UNCED terminology encompasses the country`s human, scientific, technological, organizational, institutional, and resource capabilities. A fundamental goal of capacity-building is to enhance the ability to pose, evaluate and address crucial questions related to policy choices and methods of implementation among development options. As a result the United Nations Conference on Environment and Development (UNCED) Agenda 21 planning process has identified the need for better methods by which information can bemore » transferred between industrialized nations and developing nations. The reasons for better methods of information transfer include facilitating decisions related to sustainable development and building the capacity of developing nations to better plan their future in both an economical and environmentally sound manner. This paper is a discussion on mechanisms for providing information and technologies available for presenting the information to a variety of cultures and levels of technical literacy. Consideration is given to access to information technology as well as to the cost to the user. One concept discussed includes an ``Engineering Partnership`` which brings together the talents and resources of private consulting engineers, corporations, non-profit professional organizations, government agencies and funding institution which work in partnership with each other and associates in developing countries. Concepts which are related to information technologies include a hypertext based, user configurable cultural translator and information navigator and the use of multi-media technologies to educate engineers about the concepts of sustainability, and the adaptation of the concept of metabolism to creating industrial systems.« less

  17. Next Generation Launch Technology Program Lessons Learned

    NASA Technical Reports Server (NTRS)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operatorsmore » and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.« less

  19. Research and Construction of DC Energy Measurement Traceability Technology

    NASA Astrophysics Data System (ADS)

    Zhi, Wang; Maotao, Yang; Jing, Yang

    2018-02-01

    With the implementation of energy saving and emission reduction policies, DC energy metering has been widely used in many fields. In view of the lack of a DC energy measurementtraceability system, in combination with the process of downward measurement transfer in relation to the DC charger-based field calibration technology and DC energy meter and shunt calibration technologies, the paper proposed DC fast charging, high DC, small DC voltage output and measuring technologies, and built a time-based plan by converting high DC voltage into low voltage and high current into low current and then into low voltage, leaving DC energy traceable to national standards in terms of voltage, current and time and thus filling in the gap in DC energy measurement traceability.

  20. Demonstration plan for phytoremediation of explosive-contaminated groundwater in constructed wetlands at Milan Army Ammunition Plant Milan Tennessee. Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrends, L.; Sikora, F.; Kelly, D.

    1996-01-01

    To demonstrate at Milan AAP in April 1996 through July 1997, the technical and economic feasibility of using phytoremediation in an artificial constructed wetlands for treatment of explosives-contaminated groundwater. Validated data on cost and effectiveness of this demonstration will be used to transfer this technology to the user community.

  1. Demonstration plan for phytoremediation of explosive-contaminated groundwater in constructed wetlands at Milan Army Ammunition Plant Milan Tennessee. Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrends, L.; Sikora, F.; Kelly, D.

    1996-01-01

    To demonstrate at Milan AAP in April 1996 through July 1997, the technical and economic feasibility of using phytoremediation in an artificial, constructed wetlands for treatment of explosives-contaminated groundwater. Validated data on cost and effectiveness of this demonstration will be used to transfer this technology to the user community.

  2. Using bibliographic databases in technology transfer

    NASA Technical Reports Server (NTRS)

    Huffman, G. David

    1987-01-01

    When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.

  3. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  4. Bitsy Thinks Big

    NASA Technical Reports Server (NTRS)

    2001-01-01

    AeroAstro, of Herndon, Virginia, developed a nanospacecraft core module capable of developing recyclable spacecraft designs using standard interfaces. From this core module, known as the Bitsy(TM) kernel, custom spacecraft are able to connect mission-specific instruments and subsystems for variation in mission usage. The nanospacecraft core module may be used in conjunction with an existing microsatellite bus or customized to meet specific requirements. Building on this premise, AeroAstro has developed a line of satellite communications equipment, sun sensors, and Lithium-Ion batteries which are all incorporated in its complete line of mission-specific nanospacecraft. The Bitsy technology is also a key component in AeroAstro#s satellite inspection products and orbital transfer services. In the future, AeroAstro plans to market an even less expensive version of the Bitsy technology. The plan, which is targeted to universities, markets a sort of "satellite in a kit," for less than $1 million. This technology would allow universities to build true space hardware for a fraction of the cost of launching a regular satellite.

  5. 26 CFR 1.401(a)-12 - Mergers and consolidations of plans and transfers of plan assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Mergers and consolidations of plans and... Bonus Plans, Etc. § 1.401(a)-12 Mergers and consolidations of plans and transfers of plan assets. A... in the case of any merger or consolidation with, or transfer of assets or liabilities to, another...

  6. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  7. Sentiment classification technology based on Markov logic networks

    NASA Astrophysics Data System (ADS)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  8. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  9. Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration

    NASA Technical Reports Server (NTRS)

    Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.

    2012-01-01

    NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.

  10. Community social alarm network in Slovenia.

    PubMed

    Premik, M; Rudel, D

    1996-12-01

    The article deals with a case report on the technology transfer of the Lifeline community social alarm system to Slovenia. The main reason the project was initiated is the ageing of the Slovenian population (11% of the population is 65 or over). With this system we intend to support the public's wish to allow the elderly to remain in their own homes for as long as possible instead of placing them in institutional care. Between 1992 and 1995 the following results were achieved: the acceptability of the system in the social environment was increased; a pilot control centre in Ljubljana was established and has been operational for two-and-a-half years; a national dissemination plan was prepared; the integration of the programme into other information systems has been started. One of the main conclusions is that for the successful transfer of a technology which also affects social values in society, a social innovation must support the process.

  11. System design of ELITE power processing unit

    NASA Astrophysics Data System (ADS)

    Caldwell, David J.

    The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.

  12. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  13. Clinical feasibility and efficacy of using virtual surgical planning in bimaxillary orthognathic surgery without intermediate splint.

    PubMed

    Li, Yunfeng; Jiang, Yangmei; Zhang, Nan; Xu, Rui; Hu, Jing; Zhu, Songsong

    2015-03-01

    Computer-aided jaw surgery has been extensively studied recently. The purpose of this study was to determine the clinical feasibility of performing bimaxillary orthognathic surgery without intermediate splint using virtual surgical planning and rapid prototyping technology. Twelve consecutive patients who underwent bimaxillary orthognathic surgery were included. The presented treatment plan here mainly consists of 6 procedures: (1) data acquisition from computed tomography (CT) of the skull and laser scanning of the dentition; (2) reconstruction and fusion of a virtual skull model with accurate dentition; (3) virtual surgery simulation including osteotomy and movement and repositioning of bony segments; (4) final surgical splint fabrication (no intermediate splint) using computer-aided design and rapid prototyping technology; (5) transfer of the virtual surgical plan to the operating room; and (6) comparison of the actual surgical outcome to the virtual surgical plan. All procedures of the treatment were successfully performed on all 12 patients. In quantification of differences between simulated and actual postoperative outcome, we found that the mean linear difference was less than 1.8 mm, and the mean angular difference was less than 2.5 degrees in all evaluated patients. Results from this study suggested that it was feasible to perform bimaxillary orthognathic surgery without intermediate splint. Virtual surgical planning and the guiding splints facilitated the diagnosis, treatment planning, accurate osteotomy, and bony segments repositioning in orthognathic surgery.

  14. Considerations of technology transfer barriers in the modification of strategic superalloys for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Tien, J. K.

    1983-01-01

    A typical innovation-to-commercialization process for the development of a new hot section gas turbine material requires one to two decades with attendant costs in the tens of millions of dollars. This transfer process is examined to determine the potential rate-controlling steps for introduction of future low strategic metal content alloys or processes. Case studies are used to highlight the barriers to commercialization as well as to identify the means by which these barriers can be surmounted. The opportunities for continuing joint government-university-industry partnerships in planning and conducting strategic materials R&D programs are also discussed.

  15. System Architecture Modeling for Technology Portfolio Management using ATLAS

    NASA Technical Reports Server (NTRS)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  16. Spacecraft Health Automated Reasoning Prototype (SHARP): The fiscal year 1989 SHARP portability evaluations task for NASA Solar System Exploration Division's Voyager project

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius

    1990-01-01

    A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.

  17. 29 CFR 4231.5 - Valuation requirement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., TERMINATION, AND OTHER RULES APPLICABLE TO MULTIEMPLOYER PLANS MERGERS AND TRANSFERS BETWEEN MULTIEMPLOYER... plan, or that is a significantly affected plan only because the merger or transfer involves a plan that... years before the date on which the notice of the merger or transfer is filed. (b) Significantly affected...

  18. 29 CFR 4231.3 - Requirements for mergers and transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Requirements for mergers and transfers. 4231.3 Section 4231..., REORGANIZATION, TERMINATION, AND OTHER RULES APPLICABLE TO MULTIEMPLOYER PLANS MERGERS AND TRANSFERS BETWEEN MULTIEMPLOYER PLANS § 4231.3 Requirements for mergers and transfers. (a) General requirements. A plan sponsor...

  19. Department of Defense Technology Transfer (T2) Program

    DTIC Science & Technology

    2014-04-08

    January February (1st Monday) Disposal System Performance Spec Production Representative Articles CARD – Cost Analysis Requirements Description CCE...Supportability Objectives Exit Criteria Met APB MTA FMECA FTA LORA RCM MS B Threshold/objective tradeoffs – Revised Performance Attributes MS C MS A...Evaluation FTA – Failure Tree Analysis IOT&E – Initial Operational Test & Evaluation ISR – In-Service Review ISP – Information Support Plan ITR – Initial

  20. 77 FR 61724 - Partial Approval and Partial Disapproval of Air Quality Implementation Plans for Florida...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... City Generation v. EPA, No. 11-1302 (D.C. Cir., August 21, 2012), does not alter our conclusion that... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... for the 2006 24-hour PM2.5 NAAQS. Subpart Z--Mississippi 0 3. Section 52.1270(e) is amended by adding...

  1. 2015 DOE Vehicle Technologies Office Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 8-12, 2015, in Arlington, Virginia. The review encompassed all of the work done by the FCTO and the VTO: 258 individual activities were reviewed for VTO, by 170 reviewers. A total of 1,095 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia tomore » give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less

  2. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  3. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  4. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  5. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  6. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  7. Domestic influenza vaccine production in Mexico: a state-owned and a multinational company working together for public health.

    PubMed

    Ponce-de-Leon, Samuel; Velazquez-Fernandez, Ruth; Bugarin-González, Jose; García-Bañuelos, Pedro; Lopez-Sotelo, Angelica; Jimenez-Corona, María-Eugenia; Padilla-Catalan, Francisco; Cervantes-Rosales, Rocio

    2011-07-01

    The Mexican Government developed a plan in 2004 for pandemic influenza preparedness that included local production of influenza vaccine. To achieve this, an agreement was concluded between Birmex - a state-owned vaccine manufacturer - and sanofi pasteur, a leading developer of vaccine technology. Under this agreement, sanofi pasteur will establish a facility in Mexico to produce antigen for up to 30 million doses of egg-based seasonal vaccine per year, and Birmex will build a facility to formulate, fill and package the inactivated split-virion influenza vaccine. As at November 2010, the sanofi pasteur facility has been completed and the Birmex plant is under construction. Most of the critical equipment has been purchased and is in the process of validation. In addition to intensive support from sanofi pasteur for the transfer of the technology, the project is supported by the Mexican Ministry of Health, complemented by Birmex's own budget and grants from the WHO developing country influenza technology transfer project. Copyright © 2011. Published by Elsevier Ltd.

  8. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  9. 24 CFR 401.480 - Sale or transfer of project.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PROGRAM (MARK-TO-MARKET) Restructuring Plan § 401.480 Sale or transfer of project. (a) May the owner request a Restructuring Plan that includes a sale or transfer of the property? The owner may request a... that is eligible for a Restructuring Plan. (b) When must the restructuring plan include sale or...

  10. Contemporary Aspects of Marketing in Clinical Trials Including Segments of IT and Technology Transfer.

    PubMed

    Stamenovic, Milorad; Dobraca, Amra; Smajlovic, Mersiha

    2018-01-01

    The aim of this paper is to present the marketing strategy and the application of management (marketing management) and advertising in order to increase the efficiency of innovative approach in clinical trials that include and involve the use of new technologies and transfer of technologies. This paper has a descriptive character and represents a narrative review of the literature and new model implementation. Marketing models are primarily used to improve the inclusion of a larger (and appropriate) number of patients, but they can be credited for the stay and monitoring of patients in the trial. Regulatory mechanisms play an important role in the application of various marketing strategies within clinical trials. The value for the patient as the most important stakeholder is defined in the field of clinical trials according to Kotler's value model for the consumer. In order to achieve the best results it is important to adequately examine all the elements of clinical trials and apply this knowledge in creation of a marketing plan that will be made in accordance with the legal regulations defined globally and locally. In this paper, two challenges have been highlighted for the adequate application of marketing tools in the field of clinical trials, namely: defining business elements in order to provide an adequate marketing approach for clinical trials and technology transfer and ensuring uniformity and regulatory affirmation of marketing attitudes in clinical trials in all regions in which they are carried out in accordance with ICH-GCP and valid regulations.

  11. WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: supporting developing country production capacity through technology transfer.

    PubMed

    Friede, Martin; Palkonyay, Laszlo; Alfonso, Claudia; Pervikov, Yuri; Torelli, Guido; Wood, David; Kieny, Marie Paule

    2011-07-01

    Should a highly pathogenic avian influenza virus, such as the H5N1 virus type currently circulating in birds, become transmissible among humans, an effective vaccine, rapidly available in vast quantities, would be the best tool to prevent high case-fatalities and the breakdown of health and social services. The number of vaccine doses that could be produced on demand has risen sharply over the last few years; however, it is still alarmingly short of the 13 billion doses that would be needed if two doses were required to protect fully the world's population. Most developing countries would be last in the queue to benefit from a pandemic vaccine. The World Health Organization, together with governments, the pharmaceutical industry and other stakeholders, has been implementing the global pandemic influenza action plan to increase vaccine supply since 2006. Building capacity in developing countries to manufacture influenza vaccine is an integral part of this plan, as well as research and development into more efficacious technologies, e.g. those that allow significant dose-sparing. To this end, the influenza vaccine technology transfer initiative was launched in 2007 and, to date, vaccine manufacturers in 11 developing countries have received grants to acquire the capacity to produce inactivated or live attenuated influenza vaccine for their populations. In addition, a centralized 'hub' has been established to facilitate training in the new technologies for scientists and regulators in the countries. This supplement of Vaccine is devoted to showcasing the interim results of the WHO initiative and the impressive progress made by the developing country manufacturers. Copyright © 2011 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  12. 29 CFR 4231.7 - De minimis mergers and transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false De minimis mergers and transfers. 4231.7 Section 4231.7... MULTIEMPLOYER PLANS § 4231.7 De minimis mergers and transfers. (a) Special plan solvency rule. The determination of whether a de minimis merger or transfer satisfies the plan solvency requirement in § 4231.6(a) may...

  13. 29 CFR 4231.7 - De minimis mergers and transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false De minimis mergers and transfers. 4231.7 Section 4231.7... MULTIEMPLOYER PLANS § 4231.7 De minimis mergers and transfers. (a) Special plan solvency rule. The determination of whether a de minimis merger or transfer satisfies the plan solvency requirement in § 4231.6(a) may...

  14. Beyond Coordination: Joint Planning and Program Execution. The IHPRPT Materials Working Group

    NASA Technical Reports Server (NTRS)

    Stropki, Michael A.; Cleyrat, Danial A.; Clinton, Raymond G., Jr.; Rogacki, John R. (Technical Monitor)

    2000-01-01

    "Partnership is more than just coordination," stated then-Commander of the Air Force Research Laboratory (AFRL), Major General Dick Paul (USAF-Ret), at this year's National Space and Missile Materials Symposium. His comment referred to the example of the joint planning and program execution provided by the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Materials Working Group (IMWG). Most people agree that fiscal pressures imposed by shrinking budgets have made it extremely difficult to build upon our existing technical capabilities. In times of sufficient budgets, building advanced systems poses no major difficulties. However, with today's budgets, realizing enhanced capabilities and developing advanced systems often comes at an unaffordable cost. Overcoming this problem represents both a challenge and an opportunity to develop new business practices that allow us to develop advanced technologies within the restrictions imposed by current funding levels. Coordination of technology developments between different government agencies and organizations is a valuable tool for technology transfer. However, rarely do the newly developed technologies have direct applicability to other ongoing programs. Technology requirements are typically determined up-front during the program planning stage so that schedule risk can be minimized. The problem with this process is that the costs associated with the technology development are often borne by a single program. Additionally, the potential exists for duplication of technical effort. Changing this paradigm is a difficult process but one that can be extremely worthwhile should the right opportunity arise. The IMWG is one such example where NASA, the DoD, and industry have developed joint requirements that are intended to satisfy multiple program needs. More than mere coordination, the organizations comprising the group come together as partners, sharing information and resources, proceeding from a joint roadmap.

  15. Space transfer vehicle concepts and requirements study. Volume 2, book 3: STV system interfaces

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    This report presents the results of systems analyses and conceptual design of space transfer vehicles (STV). The missions examined included piloted and unpiloted lunar outpost support and spacecraft servicing, and unpiloted payload delivery to various earth and solar orbits. The study goal was to examine the mission requirements and provide a decision data base for future programmatic development plans. The final lunar transfer vehicles provided a wide range of capabilities and interface requirements while maintaining a constant payload mission model. Launch vehicle and space station sensitivity was examined, with the final vehicles as point design covering the range of possible options. Development programs were defined and technology readiness levels for different options were determined. Volume 1 presents the executive summary, volume 2 provides the study results, and volume 3 the cost and WBS data.

  16. From technology transfer to local manufacturing: China's emergence in the global wind power industry

    NASA Astrophysics Data System (ADS)

    Lewis, Joanna Ingram

    This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive, smaller turbines. These market opportunities, in conjunction with the continued implementation of Chinese government policies that differentially support locally-manufactured turbines, are likely to provide the necessary stimulus for China's domestic wind industry development, and its eventual emergence in the global wind industry.

  17. In-space propellant logistics. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The prephase A conceptual project planning data as it pertains to the development of the selected logistics module configuration transported into earth orbit by the space shuttle orbiter. The data represents the test, implementation, and supporting research and technology requirements for attaining the propellant transfer operational capability for early 1985. The plan is based on a propellant module designed to support the space-based tug with cryogenic oxygen-hydrogen propellants. A logical sequence of activities that is required to define, design, develop, fabricate, test, launch, and flight test the propellant logistics module is described. Included are the facility and ground support equipment requirements. The schedule of activities are based on the evolution and relationship between the R and T, the development issues, and the resultant test program.

  18. Software reuse issues affecting AdaNET

    NASA Technical Reports Server (NTRS)

    Mcbride, John G.

    1989-01-01

    The AdaNet program is reviewing its long-term goals and strategies. A significant concern is whether current AdaNet plans adequately address the major strategic issues of software reuse technology. The major reuse issues of providing AdaNet services that should be addressed as part of future AdaNet development are identified and reviewed. Before significant development proceeds, a plan should be developed to resolve the aforementioned issues. This plan should also specify a detailed approach to develop AdaNet. A three phased strategy is recommended. The first phase would consist of requirements analysis and produce an AdaNet system requirements specification. It would consider the requirements of AdaNet in terms of mission needs, commercial realities, and administrative policies affecting development, and the experience of AdaNet and other projects promoting the transfer software engineering technology. Specifically, requirements analysis would be performed to better understand the requirements for AdaNet functions. The second phase would provide a detailed design of the system. The AdaNet should be designed with emphasis on the use of existing technology readily available to the AdaNet program. A number of reuse products are available upon which AdaNet could be based. This would significantly reduce the risk and cost of providing an AdaNet system. Once a design was developed, implementation would proceed in the third phase.

  19. Operational LANDSAT remote sensing system development

    NASA Technical Reports Server (NTRS)

    Cotter, D. J.

    1981-01-01

    The reduction of $121.6 million dollars from NOAA's LANDSAT development program for FY 1982, and the shortened time period for transferring remote sensing technology to the private sector resulted in changes in the Agency's plans for managing the operational system. Proposed legislation for congressional consideration or enactment to establish conditions under which this private sector transfer will occur, and the expected gradual rise in the price of data products are discussed. No money exists for capital investment and none is projected for investing in an operational data handling system for the LANDSAT D satellite. Candidates knowledgeable of various aspects of the needs and uses of remote sensing are urged to consider participation in NOAA's advisory committee.

  20. The DoD Enterprise Model. Volume 1. Strategic Activity and Data Models

    DTIC Science & Technology

    1994-01-01

    Provide Administrative Services: Inform & Advise provides explanations and expert opinions to people on such matters as health benefits , legal rights...level functional template for all DoD Corporate Information Management (CIM) initiatives. Major Defense activities have already benefitted from using...evaluating plan performance "• DvWm9 C"S" of Acto (e.g., occupational safety and health , "• De 10 Fl environmental protection, technology transfer

  1. JPRS Report, Science and Technology: Europe, German Aerospace Industry Competitiveness.

    DTIC Science & Technology

    1991-05-31

    construction , in which the German aerospace industry is involved (Alpha Jet, Tornado, Jaeger 90), are not directly transferable, since they deal with...INTA 1,500 100 Japan NASDA 938 749 U.S. NASA 23,0003 7,653 1. Planned after completion of construction phase (cun mately 100) 2. Annual average...for five-year construction phase 3. Excluding contractors rently approxi- Source: DLR, DASA III.5 Fiscal Aspects, Subsidies Taxes and duties affect

  2. ICAT and the NASA technology transfer process

    NASA Technical Reports Server (NTRS)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  3. The Pilot Land Data System: Report of the Program Planning Workshops

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An advisory report to be used by NASA in developing a program plan for a Pilot Land Data System (PLDS) was developed. The purpose of the PLDS is to improve the ability of NASA and NASA sponsored researchers to conduct land-related research. The goal of the planning workshops was to provide and coordinate planning and concept development between the land related science and computer science disciplines, to discuss the architecture of the PLDs, requirements for information science technology, and system evaluation. The findings and recommendations of the Working Group are presented. The pilot program establishes a limited scale distributed information system to explore scientific, technical, and management approaches to satisfying the needs of the land science community. The PLDS paves the way for a land data system to improve data access, processing, transfer, and analysis, which land sciences information synthesis occurs on a scale not previously permitted because of limits to data assembly and access.

  4. Technology transfer from the viewpoint of a NASA prime contractor

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon

    1992-01-01

    Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.

  5. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation. © 2015 Society for Conservation Biology.

  6. Liquid metal magnetohydrodynamics (LMMHD) technology transfer feasibility study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Hays, L. G.; Alper, M. E.

    1973-01-01

    The potential application of liquid metal magnetohydrodynamics (LMMHD) to central station utility power generation through the period to 1990 is examined. Included are: (1) a description of LMMHD and a review of its development status, (2) LMMHD preliminary design for application to central station utility power generation, (3) evaluation of LMMHD in comparison with conventional and other advanced power generation systems and (4) a technology development plan. One of the major conclusions found is that the most economic and technically feasible application of LMMHD is a topping cycle to a steam plant, taking advantage of high temperatures available but not usable by the steam cycle.

  7. Orders of Magnitude: A History of NACA and NASA, 1915 - 1980

    NASA Technical Reports Server (NTRS)

    Anderson, F. W., Jr.

    1981-01-01

    The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.

  8. Fly-By-Light/Power-By-Wire Requirements and Technology Workshop

    NASA Technical Reports Server (NTRS)

    Baker, Robert L. (Editor); Pitts, Felix L. (Editor)

    1992-01-01

    The results of the Fly-By-Light/Power-By-Wire (FBL/PBW) Workshop held on March 17-19, 1992, at the NASA Langley Research Center are presented. The FBL/PBW program is a joint NASA LeRC/LaRC effort to develop the technology base for confident application of integrated FBL/PBW systems to transport aircraft. The objectives of the workshop were to ascertain the FBL/PBW program technical requirements and satisfy the requirements and needs from the industry viewpoint, provide a forum for presenting and documenting alternative technical approaches which satisfy the requirements, and assess the plan adequacy in accomplishing plan objectives, aims, and technology transfer. Areas addressed were: optical sensor systems, power-by-wire systems, FBL/PBW fault-tolerant architectures, electromagnetic environment assessment, and system integration and demonstration. The workshop consisted of an introductory meeting, a 'keynote' presentation, a series of individual panel sessions covering the above areas, with midway presentations by the panel chairpersons, followed by a final summarizing/integrating session by the individual panels, and a closing plenary session summarizing the results of the workshop.

  9. Communication and Cultural Change in University Technology Transfer

    ERIC Educational Resources Information Center

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  10. Weapons team engagement trainer: a transfer of high-tech military training technology to the law enforcement community

    NASA Astrophysics Data System (ADS)

    Franz, Thomas M.; Gonos, Greg; Simek, Lisa

    1999-01-01

    Six years ago at SPIE, a team of government researchers and engineers unveiled a new, military, weapons team engagement trainer (WTET). At that time, potential applications of this prototype military training device to civilian law enforcement training were realized. Subsequent action was taken under the Federal Technology Transfer Act of 1986, enabling the transfer of WTET to the private sector, through a cooperative agreement between: the Office of Naval Research (ONR), NAWCTSD, and the commercial weapons training organization Firearms Training Systems, Inc. (FATS). Planning also began for release of a commercial WTET sytem. The government research and development facility and the National Institute of Justice (NIJ) formed a cooperative agreement to make the prototype system available to military, federal, and local law enforcement agencies for use in Orlando, Florida - until a commercial version could become available. This cooperative effort has provided evidence of the effectiveness and realism of WTET with law enforcement personnel. This paper offers a technical description of the improvements made to WTET, a brief explanation of the commercialization process, a summary of the evaluations conducted to date, and insight into how that information has been used in the development of the commercial version.

  11. 2013 DOE Vehicle Technologies Office Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The 2013 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May 13-17, 2013, in Crystal City, Virginia. The review encompassed all of the work done by the FCTO and the VTO: a total of 287 individual activities were reviewed for VTO, by a total of 187 reviewers. A total of 1,382 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide anmore » opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less

  12. 2014 DOE Vehicle Technologies Office Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 16-20, 2014, in Washington, DC. The review encompassed all of the work done by the FCTO and the VTO: a total of 295 individual activities were reviewed for VTO, by a total of 179 reviewers. A total of 1,354 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunitymore » for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less

  13. An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint.

    PubMed

    Kim, Dae-Seung; Woo, Sang-Yoon; Yang, Hoon Joo; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Hwang, Soon Jung; Yi, Won-Jin

    2014-12-01

    Accurate surgical planning and transfer of the planning in orthognathic surgery are very important in achieving a successful surgical outcome with appropriate improvement. Conventionally, the paper surgery is performed based on a 2D cephalometric radiograph, and the results are expressed using cast models and an articulator. We developed an integrated orthognathic surgery system with 3D virtual planning and image-guided transfer. The maxillary surgery of orthognathic patients was planned virtually, and the planning results were transferred to the cast model by image guidance. During virtual planning, the displacement of the reference points was confirmed by the displacement from conventional paper surgery at each procedure. The results of virtual surgery were transferred to the physical cast models directly through image guidance. The root mean square (RMS) difference between virtual surgery and conventional model surgery was 0.75 ± 0.51 mm for 12 patients. The RMS difference between virtual surgery and image-guidance results was 0.78 ± 0.52 mm, which showed no significant difference from the difference of conventional model surgery. The image-guided orthognathic surgery system integrated with virtual planning will replace physical model surgical planning and enable transfer of the virtual planning directly without the need for an intermediate splint. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV.

    PubMed

    Bakker, Wilfried A M; Thomassen, Yvonne E; van't Oever, Aart G; Westdijk, Janny; van Oijen, Monique G C T; Sundermann, Lars C; van't Veld, Peter; Sleeman, Eelco; van Nimwegen, Fred W; Hamidi, Ahd; Kersten, Gideon F A; van den Heuvel, Nico; Hendriks, Jan T; van der Pol, Leo A

    2011-09-22

    Industrial-scale inactivated polio vaccine (IPV) production dates back to the 1960s when at the Rijks Instituut voor de Volksgezondheid (RIV) in Bilthoven a process was developed based on micro-carrier technology and primary monkey kidney cells. This technology was freely shared with several pharmaceutical companies and institutes worldwide. In this contribution, the history of one of the first cell-culture based large-scale biological production processes is summarized. Also, recent developments and the anticipated upcoming shift from regular IPV to Sabin-IPV are presented. Responding to a call by the World Health Organization (WHO) for new polio vaccines, the development of Sabin-IPV was continued, after demonstrating proof of principle in the 1990s, at the Netherlands Vaccine Institute (NVI). Development of Sabin-IPV plays an important role in the WHO polio eradication strategy as biocontainment will be critical in the post-OPV cessation period. The use of attenuated Sabin strains instead of wild-type Salk polio strains will provide additional safety during vaccine production. Initially, the Sabin-IPV production process will be based on the scale-down model of the current, and well-established, Salk-IPV process. In parallel to clinical trial material production, process development, optimization and formulation research is being carried out to further optimize the process and reduce cost per dose. Also, results will be shown from large-scale (to prepare for future technology transfer) generation of Master- and Working virus seedlots, and clinical trial material (for phase I studies) production. Finally, the planned technology transfer to vaccine manufacturers in low and middle-income countries is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Urban development applications project. Urban technology transfer study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  16. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  17. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    NASA Technical Reports Server (NTRS)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  18. Training rural practitioners to use buprenorphine; using The Change Book to facilitate technology transfer.

    PubMed

    McCarty, Dennis; Rieckmann, Traci; Green, Carla; Gallon, Steve; Knudsen, Jeff

    2004-04-01

    The Opiate Medication Initiative for Rural Oregon Residents trained physicians and counselors in Central and Southwestern Oregon to use buprenorphine and develop service models that supported patient participation in drug abuse counseling. The Change Book from Addiction Technology Transfer Centers was used to structure the change process. Fifty-one individuals (17 physicians, 4 pharmacists, 2 nurse practitioners, and 28 drug abuse counselors and administrators) from seven counties completed the training and contributed to the development of community treatment protocols. A pre-post measure of attitudes and beliefs toward the use of buprenorphine suggested significant improvements in attitude after training, especially among counselors. Eight months after training, 10 of 17 physicians trained had received waivers to use buprenorphine and 29 patients were in treatment with six of the physicians. The Change Book facilitated development of county change teams and structured the planning efforts. The initiative also demonstrated the potential to concurrently train physicians, pharmacists, and counselors on the use of buprenorphine.

  19. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operatorsmore » and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.« less

  20. Turbine Engine Hot Section Technology (HOST)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A two-day workshop on the research and plans for turbine engine hot section durability problems was held on October 25 and 26, 1983, at the NASA Lewis Research Center. Presentations were made during six sessions, including structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation, that dealt with the thermal and fluid environment around liners, blades, and vanes, and with material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components. The principal objective of each session was to disseminate the research results to date, along with future plans, in each of the six areas. Contract and government researchers presented results of their work.

  1. Contemporary Aspects of Marketing in Clinical Trials Including Segments of IT and Technology Transfer

    PubMed Central

    Stamenovic, Milorad; Dobraca, Amra; Smajlovic, Mersiha

    2018-01-01

    Introduction: The aim of this paper is to present the marketing strategy and the application of management (marketing management) and advertising in order to increase the efficiency of innovative approach in clinical trials that include and involve the use of new technologies and transfer of technologies. Material and Methods: This paper has a descriptive character and represents a narrative review of the literature and new model implementation. Results: Marketing models are primarily used to improve the inclusion of a larger (and appropriate) number of patients, but they can be credited for the stay and monitoring of patients in the trial. Regulatory mechanisms play an important role in the application of various marketing strategies within clinical trials. The value for the patient as the most important stakeholder is defined in the field of clinical trials according to Kotler’s value model for the consumer. Conclusion: In order to achieve the best results it is important to adequately examine all the elements of clinical trials and apply this knowledge in creation of a marketing plan that will be made in accordance with the legal regulations defined globally and locally. In this paper, two challenges have been highlighted for the adequate application of marketing tools in the field of clinical trials, namely: defining business elements in order to provide an adequate marketing approach for clinical trials and technology transfer and ensuring uniformity and regulatory affirmation of marketing attitudes in clinical trials in all regions in which they are carried out in accordance with ICH-GCP and valid regulations. PMID:29719318

  2. Social marketing for public health.

    PubMed

    Walsh, D C; Rudd, R E; Moeykens, B A; Moloney, T W

    1993-01-01

    Marketing techniques and tools, imported from the private sector, are increasingly being advocated for their potential value in crafting and disseminating effective social change strategies. This paper describes the field of social marketing as it is used to improve the health of the public. A disciplined process of strategic planning can yield promising new insights into consumer behavior and product design. But the "technology" cannot simply be transferred without some translation to reconcile differences between commercial marketing and public health.

  3. Turbine Engine Hot Section Technology, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.

  4. A Technology Transfer Plan for Civilian Performance Contingent Reward Systems in the Naval Material Command.

    DTIC Science & Technology

    1982-08-01

    OFFICE NAME AND ADDRESS 12. REPORT SATE August 1982 Navy Personnel Research and Development Center is. NURSEN OF PAGES San Diego, California 92152 49...been studied in any detail. (Moreover, as was pointed out, it was likely that keypunching would soon be contracted out anyway.) This divergence in views...expansion while basic longer-term, controlled prototype studies are being conducted. The site classification system should be used to determine the

  5. Field support activity aerospace manpower transfer to small business enterprises

    NASA Technical Reports Server (NTRS)

    Green, M. K.

    1972-01-01

    This report reiterates the major findings of the original study on the utilization of unemployed aerospace professionals in small businesses, and also provides a definition of three programs which, as a result of this study and other research into this problem, offer great potential in providing for better utilization of the nation's technically trained personal and technology resources. Details of these three programs are provided along with a recommended plan of action for their implementation.

  6. Air Force research in human sensory feedback for telepresence

    NASA Technical Reports Server (NTRS)

    Julian, Ronald G.

    1993-01-01

    Telepresence operations require high quality information transfer between the human master and the remotely located slave. Present Air Force research focuses on the human aspects of the information needed to complete the control/feedback loop. Work in three key areas of human sensory feedback for manipulation of objects are described. Specific projects in each key area are outlined, including research tools (hardware), planned research, and test results. Nonmanipulative feedback technologies are mentioned to complete the advanced teleoperation discussions.

  7. Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.

    ERIC Educational Resources Information Center

    Clinch, Richard

    This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer…

  8. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    ERIC Educational Resources Information Center

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  9. LANDSAT information for state planning

    NASA Technical Reports Server (NTRS)

    Faust, N. L.; Spann, G. W.

    1977-01-01

    The transfer of remote sensing technology for the digital processing of LANDSAT data to state and local agencies in Georgia and other southeastern states is discussed. The project consists of a series of workshops, seminars, and demonstration efforts, and transfer of NASA-developed hardware concepts and computer software to state agencies. Throughout the multi-year effort, digital processing techniques have been emphasized classification algorithms. Software for LANDSAT data rectification and processing have been developed and/or transferred. A hardware system is available at EES (engineering experiment station) to allow user interactive processing of LANDSAT data. Seminars and workshops emphasize the digital approach to LANDSAT data utilization and the system improvements scheduled for LANDSATs C and D. Results of the project indicate a substantially increased awareness of the utility of digital LANDSAT processing techniques among the agencies contracted throughout the southeast. In Georgia, several agencies have jointly funded a program to map the entire state using digitally processed LANDSAT data.

  10. Calibration of High Heat Flux Sensors at NIST

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Gibson, C. E.

    1997-01-01

    An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry, three different types of calibration facilities currently are under development at NIST: convection, conduction, and radiation. This paper describes the research activities associated with the NIST Radiation Calibration Facility. Two different techniques, transfer and absolute, are presented. The transfer calibration technique employs a transfer standard calibrated with reference to a radiometric standard for calibrating the sensors using a graphite tube blackbody. Plans for an absolute calibration facility include the use of a spherical blackbody and a cooled aperture and sensor-housing assembly to calibrate the sensors in a low convective environment. PMID:27805156

  11. Challenges and Driving Forces for Business Plans in Biobanking.

    PubMed

    Macheiner, Tanja; Huppertz, Berthold; Bayer, Michaela; Sargsyan, Karine

    2017-04-01

    Due to increased utilization of biospecimens for research and emergence of new technologies, the availability and quality of biospecimens and their collection are coming more and more into focus. However, the long-term economic situation of biobanks is still mostly unclear. Also, the common sustainable utilization of various international biobanks is challenging due to local differences in sample processing, law and ethics. This article discusses possible strategies to achieve a sustainable utilization of biospecimens as part of the business plan of biobanks. The following questions were addressed as part of a business plan: (1) How can a biobank build up and maintain an up-to-date infrastructure? (2) What kind of funding can support the sustainability of a biobank? (3) Is there an international solution for informed consents to enable sample and data sharing? (4) How can a biobank react during economically unstable periods? (5) Which kind of biobanking research is innovative? (6) What kind of education could be most needful for knowledge transfer in biobanking? (7) Does an expiration date for a biobank make sense according to the period of funding? A strategy for optimal utilization begins with sharing of resources, infrastructure, and investments at the planning stage of a biobank, and continues to the transfer of knowledge and know-how by education. For clinical biobanks in particular, a long-term funding and cost recovery strategy is necessary for sustainable utilization.

  12. 34 CFR 682.404 - Federal reinsurance agreement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transferred under a plan approved by the Secretary from an insolvent guaranty agency or a guaranty agency that... disbursement is made before October 1, 1993 or transferred under a plan approved by the Secretary from an... which the first disbursement is made before October 1, 1993 or transferred under a plan approved by the...

  13. Satisfaction with caregivers during labour among low risk women in the Netherlands: the association with planned place of birth and transfer of care during labour.

    PubMed

    Geerts, Caroline C; van Dillen, Jeroen; Klomp, Trudy; Lagro-Janssen, Antoine L M; de Jonge, Ank

    2017-07-14

    The caregiver has an important influence on women's birth experiences. When transfer of care during labour is necessary, care is handed over from one caregiver to the other, and this might influence satisfaction with care. It is speculated that satisfaction with care is affected in particular for women who need to be transferred from home to hospital. We examined the level of satisfaction with the caregiver among women with planned home versus planned hospital birth in midwife-led care. We used data from the prospective multicentre DELIVER (Data EersteLIjns VERloskunde) cohort-study, conducted in 2009 and 2010 in the Netherlands. Women filled in a postpartum questionnaire which contained elements of the Consumer Quality index. This instrument measures 'general rate of  satisfaction with the caregiver' (scale from 1 to 10, with cut-off of below 9) and 'quality of treatment by the caregiver' (containing 7 items on a 4 point Likert scale, with cut-off of mean of 4 or lower). Women who planned a home birth (n = 1372) significantly more often rated 'quality of treatment by caregiver' high than women who planned a hospital birth (n = 829). Primiparous women who planned a home birth significantly more often had a high rate (9 or 10) for 'general satisfaction with caregiver' (adj.OR 1.48; 95% CI 1.1, 2.0). Also, primiparous women who planned a home birth and had care transferred during labour (331/553; 60%) significantly more often had a high rate (9 or 10) for 'general satisfaction' compared to those who planned a hospital birth and who had care transferred (1.44; 1.0-2.1). Furthermore, they significantly more often rated 'quality of treatment by caregiver' high, than 276/414 (67%) primiparous women who planned a hospital birth and who had care transferred (1.65; 1.2-2.3). No differences were observed for multiparous women who had planned home or hospital birth and who had care transferred. Planning home birth is associated to a good experience of quality of care by the caregiver. Transferred planned home birth compared to a transferred planned hospital birth does not lead to a more negative experience of care received from the caregiver.

  14. 2017 DOE Vehicle Technologies Office Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputsmore » to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less

  15. 2016 DOE Vehicle Technologies Office Annual Merit Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia tomore » give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less

  16. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    DTIC Science & Technology

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  17. Federal Technology Transfer Act Success Stories

    EPA Pesticide Factsheets

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  18. Evaluating Technology Transfer and Diffusion.

    ERIC Educational Resources Information Center

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  19. 29 CFR 4231.4 - Preservation of accrued benefits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., REORGANIZATION, TERMINATION, AND OTHER RULES APPLICABLE TO MULTIEMPLOYER PLANS MERGERS AND TRANSFERS BETWEEN... effective date of the merger or transfer than the benefit immediately before the merger or transfer. A plan...

  20. Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  1. Intranet usage and potential in acute care hospitals in the United States: survey-2000.

    PubMed

    Hatcher, M

    2001-12-01

    This paper provides the results of the Survey-2000 measuring Intranet and its potential in health care. The survey measured the levels of Internet and Intranet existence and usage in acute care hospitals. Business-to-business electronic commerce and electronic commerce for customers were measured. Since the Intranet was not studied in survey-1997, no comparisons could be made. Therefore the results were presented and discussed. The Intranet data were compared with the Internet data and statistically significant differences were presented and analyzed. This information will assist hospitals to plan Internet and Intranet technology. This is the third of three articles based upon the results of the Survey-2000. Readers are referred to prior articles by the author, which discusses the survey design and provides a tutorial on technology transfer in acute care hospitals.(1) The first article based upon the survey results discusses technology transfer, system design approaches, user involvement, and decision-making purposes. (2) The second article based upon the survey results discusses distribution of Internet usage and rating of Internet usage applied to specific applications. Homepages, advertising, and electronic commerce are discussed from an Internet perspective.

  2. NASA Goddard Thermal Technology Overview 2018

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  3. An Analysis of NASA Technology Transfer. Degree awarded by Pennsylvania State Univ.

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1996-01-01

    A review of previous technology transfer metrics, recommendations, and measurements is presented within the paper. A quantitative and qualitative analysis of NASA's technology transfer efforts is performed. As a relative indicator, NASA's intellectual property performance is benchmarked against a database of over 100 universities. Successful technology transfer (commercial sales, production savings, etc.) cases were tracked backwards through their history to identify the key critical elements that lead to success. Results of this research indicate that although NASA's performance is not measured well by quantitative values (intellectual property stream data), it has a net positive impact on the private sector economy. Policy recommendations are made regarding technology transfer within the context of the documented technology transfer policies since the framing of the Constitution. In the second thrust of this study, researchers at NASA Langley Research Center were surveyed to determine their awareness of, attitude toward, and perception about technology transfer. Results indicate that although researchers believe technology transfer to be a mission of the Agency, they should not be held accountable or responsible for its performance. In addition, the researchers are not well educated about the mechanisms to perform, or policies regarding, technology transfer.

  4. Stirling Powered Van Progam overview

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.

    1986-01-01

    The Stirling Powered Van Program (SPVP) is a multiyear, multiphase program to evaluate the automotive Stirling engine (ASE) in Air Force vans under realistic conditions. The objective of the SPVP is to transfer to manufacturer and end user(s) (i.e., on the path to commercialization) the second-generation Mod 2 ASE upon completion of the Automotive Stirling Engine Program in 1987. In order to meet this objective, the SPVP must establish Stirling performance, integrity, reliability, durability and maintainability. The ASE program background leading to the van program is reviewed and plans for evaluating the kinematic Stirling engine in Air Force vans examined. Also discussed are the NASA technology transfers to industry that have been accomplished and those which are currently being developed.

  5. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  6. Optimizing Outcome in the University-Industry Technology Transfer Projects

    NASA Astrophysics Data System (ADS)

    Alavi, Hamed; Hąbek, Patrycja

    2016-06-01

    Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in University- Firm Technology Transfer process?

  7. The NASA research and technology program on batteries

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1990-01-01

    The NASA research and technology program on batteries is being carried out within the Propulsion, Power and Energy Division (Code RP) of NASA's Office of Aeronautics, Exploration and Technology (OAET). The program includes development of high-performance, long-life, cost-effective primary and secondary (rechargeable) batteries. The NASA OAET battery program is being carried out at Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). LeRC is focusing primarily on nickel-hydrogen batteries (both individual pressure vessel or IPV and bipolar). LeRC is also involved in a planned flight experiment to test a sodium-sulfur battery design. JPL is focusing primarily on lithium rechargeable batteries, having successfully transferred its lithium primary battery technology to the U.S. Air Force for use on the Centaur upper stage. Both LeRC and JPL are studying advanced battery concepts that offer even higher specific energies. The long-term goal is to achieve 100 Wh/kg.

  8. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  9. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  10. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  11. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  12. Three CCR accomplishments receive Excellence in Technology Transfer Awards | Center for Cancer Research

    Cancer.gov

    The Federal Laboratory Consortium for Technology Transfer has recognized three CCR accomplishments with Excellence in Technology Transfer Awards. This award category honors employees of FLC member laboratories and non-laboratory staff who have accomplished outstanding work in the process of transferring federally developed technology. Read more…

  13. TTC Fellowship Program | NCI Technology Transfer Center | TTC

    Cancer.gov

    The TTC has fellowship opportunities available to qualified candidates in the field of technology transfer. This Fellowship starts with your science, legal, and/or business background to create a new competency in technology transfer, preparing you for technology transfer positions within academia, industry, or the federal government.

  14. The Change Book: A Blueprint for Technology Transfer.

    ERIC Educational Resources Information Center

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  15. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...

  16. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  17. Welcome to Ames Research Center (1987 forum on Federal technology transfer)

    NASA Technical Reports Server (NTRS)

    Ballhaus, William F., Jr.

    1988-01-01

    NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.

  18. FY05 Targeted Technology Transfer to US Independents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within amore » National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The number of contacts and inquiries received by PTTC HQ and regional offices from individuals outside the PTTC network were up 19 percent, reaching a new high in FY05 of more than 30,000 for the first time.« less

  19. 12 CFR 611.520 - Plan of transfer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the stockholders' approval; or, (4) An event occurred between the time of the vote and the transfer... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Plan of transfer. 611.520 Section 611.520 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ORGANIZATION Transfer of Authorities § 611...

  20. 12 CFR 611.520 - Plan of transfer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the stockholders' approval; or, (4) An event occurred between the time of the vote and the transfer... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Plan of transfer. 611.520 Section 611.520 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ORGANIZATION Transfer of Authorities § 611...

  1. 12 CFR 611.520 - Plan of transfer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the stockholders' approval; or, (4) An event occurred between the time of the vote and the transfer... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Plan of transfer. 611.520 Section 611.520 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ORGANIZATION Transfer of Authorities § 611...

  2. 12 CFR 611.520 - Plan of transfer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the stockholders' approval; or, (4) An event occurred between the time of the vote and the transfer... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Plan of transfer. 611.520 Section 611.520 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ORGANIZATION Transfer of Authorities § 611...

  3. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised ofmore » American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.« less

  4. The role of the University Licensing Office in transferring intellectual property to industry

    NASA Technical Reports Server (NTRS)

    Preston, John T.

    1992-01-01

    Universities in the US have a significant impact on business through the transfer of technology. This transfer of technology takes various forms, including faculty communications, faculty consulting activities, and the direct transfer of technology through the licensing of patents, copyrights, and other intellectual property to industry. The topics discussed include the following: background of the MIT Technology Licensing Office (TLO), goals of the MIT TLO, MIT's technology transfer philosophy, and important factors for success in new company formation.

  5. Diverter Decision Aiding for In-Flight Diversions

    NASA Technical Reports Server (NTRS)

    Rudolph, Frederick M.; Homoki, David A.; Sexton, George A.

    1990-01-01

    It was determined that artificial intelligence technology can provide pilots with the help they need in making the complex decisions concerning en route changes in a flight plan. A diverter system should have the capability to take all of the available information and produce a recommendation to the pilot. Phase three illustrated that using Joshua to develop rules for an expert system and a Statice database provided additional flexibility by permitting the development of dynamic weighting of diversion relevant parameters. This increases the fidelity of the AI functions cited as useful in aiding the pilot to perform situational assessment, navigation rerouting, flight planning/replanning, and maneuver execution. Additionally, a prototype pilot-vehicle interface (PVI) was designed providing for the integration of both text and graphical based information. Advanced technologies were applied to PVI design, resulting in a hierarchical menu based architecture to increase the efficiency of information transfer while reducing expected workload. Additional efficiency was gained by integrating spatial and text displays into an integrated user interface.

  6. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1992-01-01

    Progress was made in several areas on the preparation of carbon fiber composites using advanced polymer resins. Polymer infiltration studies dealt with ways of preparing composite materials from advanced polymer resins and carbon fibers. This effort is comprised of an integrated approach to the process of composite part fabrication. The goal is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft. The object is achieved through investigations at the NASA Langley Research Center and by stimulating technology transfer between contract researchers and the aircraft industry. Covered here are literature reviews, a status report on individual projects, current and planned research, publications, and scheduled technical presentations.

  7. LANDSAT technology transfer to the private and public sectors through community colleges and other locally available institutions

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1980-01-01

    Major first year accomplishments are summarized and plans are provided for the next 12-month period for a program established by NASA with the Environmental Research Institute of Michigan to investigate methods of making LANDSAT technology readily available to a broader set of private sector firms through local community colleges. The program applies a network where the major participants are NASA, university or research institutes, community colleges, and obtain hands-on training in LANDSAT data analysis techniques, using a desk-top, interactive remote analysis station which communicates with a central computing facility via telephone line, and provides for generation of land cover maps and data products via remote command.

  8. Corps Helicopter Attack Planning System (CHAPS). Positional Handbook. Appendix A. Messages. Appendix B. Statespace Construction Sample Session

    DTIC Science & Technology

    1989-10-01

    REVIEW MENU PROGRAM (S) CHAPS PURPOSE AND OVERVIEV The Do Review menu allows the user to select which missions to perform detailed analysis on and...input files must be resident on the computer you are running SUPR on. Any interface or file transfer programs must be successfully executed prior to... COMPUTER PROGRAM WAS DEVELOPED BY SYSTEMS CONTROL TECHNOLOGY FOR THE DEPUTY CHIEF OF STAFF/OPERATIONS,HQ USAFE. THE USE OF THE COMPUTER PROGRAM IS

  9. Multi-family update to the passive solar construction handbook

    NASA Astrophysics Data System (ADS)

    Howard, B. D.; Callahan, K. D.

    1983-11-01

    Builders and developers will accept passive solar construction and designs for integration with their existing practice if accurate and detailed plans of actual, proven passive solar subsystems and assemblies are made available to them. A Passive Solar Construction Handbook was developed. It focuses primarily upon single family homes. The multifamily update of the Handbook, is described and examples of the valuable builder information are shown. It represents a new breakthrough in DOE sponsored projects, performing a Technology Transfer on a most useful level.

  10. CERN and high energy physics, the grand picture

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-05-24

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

  11. Influence Diagram Use With Respect to Technology Planning and Investment

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.; DeHoff, Bryan; Rhodes, Russel E.

    2009-01-01

    Influence diagrams are relatively simple, but powerful, tools for assessing the impact of choices or resource allocations on goals or requirements. They are very general and can be used on a wide range of problems. They can be used for any problem that has defined goals, a set of factors that influence the goals or the other factors, and a set of inputs. Influence diagrams show the relationship among a set of results and the attributes that influence them and the inputs that influence the attributes. If the results are goals or requirements of a program, then the influence diagram can be used to examine how the requirements are affected by changes to technology investment. This paper uses an example to show how to construct and interpret influence diagrams, how to assign weights to the inputs and attributes, how to assign weights to the transfer functions (influences), and how to calculate the resulting influences of the inputs on the results. A study is also presented as an example of how using influence diagrams can help in technology planning and investment. The Space Propulsion Synergy Team (SPST) used this technique to examine the impact of R&D spending on the Life Cycle Cost (LCC) of a space transportation system. The question addressed was the effect on the recurring and the non-recurring portions of LCC of the proportion of R&D resources spent to impact technology objectives versus the proportion spent to impact operational dependability objectives. The goals, attributes, and the inputs were established. All of the linkages (influences) were determined. The weighting of each of the attributes and each of the linkages was determined. Finally the inputs were varied and the impacts on the LCC determined and are presented. The paper discusses how each of these was accomplished both for credibility and as an example for future studies using influence diagrams for technology planning and investment planning.

  12. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  13. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  14. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  15. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  16. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  17. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  18. Technology transfer needs and experiences: The NASA Research Center perspective

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.

    1992-01-01

    Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.

  19. Technology transfer

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank E.

    1992-01-01

    The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.

  20. A continuing program for technology transfer to the apparel industry

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  1. PACS in Töölö hospital.

    PubMed

    Kinnunen, J; Pohjonen, H

    2001-07-01

    A 3-year PACS project was started in 1997 and completed in 1999 with filmless radiology and surgery. An efficient network for transferring images provides the infrastructure for integration of different distributed imaging systems and enables efficient handling of all patient-related information on one display station. Because of the need for high-speed communications and the massive amount of image data transferred in radiology, ATM (25, 155 Mbit/s) was chosen to be the main technology used. Both hardware and software redundancy of the system have been carefully planned. The size of the Dicom image library utilizing MO discs is currently 1.2 TB with 300 GB RAID capacity. For the increasing amount of teleradiologic consultations, a special Dicom gateway is planned. It allows a centralized and resilient handling and routing of received images around the hospital. Hospital-wide PACS has already improved the speed and quality of patient care by providing instant access to diagnostic information at multiple locations simultaneously. The benefits of PACS are considered from the viewpoint of the entire hospital: PACS offers a method for efficiently transporting patient-related images and reports to the referring physicians.

  2. Risk Transfer Formula for Individual and Small Group Markets Under the Affordable Care Act

    PubMed Central

    Pope, Gregory C; Bachofer, Henry; Pearlman, Andrew; Kautter, John; Hunter, Elizabeth; Miller, Daniel; Keenan, Patricia

    2014-01-01

    The Affordable Care Act provides for a program of risk adjustment in the individual and small group health insurance markets in 2014 as Marketplaces are implemented and new market reforms take effect. The purpose of risk adjustment is to lessen or eliminate the influence of risk selection on the premiums that plans charge. The risk adjustment methodology includes the risk adjustment model and the risk transfer formula. This article is the third of three in this issue of the Medicare & Medicaid Research Review that describe the ACA risk adjustment methodology and focuses on the risk transfer formula. In our first companion article, we discussed the key issues and choices in developing the methodology. In our second companion paper, we described the risk adjustment model that is used to calculate risk scores. In this article we present the risk transfer formula. We first describe how the plan risk score is combined with factors for the plan allowable premium rating, actuarial value, induced demand, geographic cost, and the statewide average premium in a formula that calculates transfers among plans. We then show how each plan factor is determined, as well as how the factors relate to each other in the risk transfer formula. The goal of risk transfers is to offset the effects of risk selection on plan costs while preserving premium differences due to factors such as actuarial value differences. Illustrative numerical simulations show the risk transfer formula operating as anticipated in hypothetical scenarios. PMID:25352994

  3. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  4. 15 CFR 740.15 - Aircraft and vessels (AVS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transfer of technology. No technology is transferred to a national of a destination in Country Group E:1... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a... destination in Country Group E:1 (see supplement No. 1 to this part); (vi) Technology is not transferred to a...

  5. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov Websites

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's

  6. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  7. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  8. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  9. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  10. Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) Technology Transfer Model Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…

  11. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  12. Covenant Deferral Request for the Proposed Transfer of Land Parcel ED-8 at the East Tennessee Technology Park, Oak Ridge, Tennessee - Final - May 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAIC

    2009-05-01

    The United States Department of Energy (DOE) is proposing to transfer a land parcel (hereinafter referred to as 'the Property') designated as Land Parcel ED-8 at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, by deed, and is submitting this Covenant Deferral Request (CDR) pursuant to Section 120(h)(3)(C) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, and applicable U. S. Environmental Protection Agency (EPA) guidance. The Oak Ridge Reservation (ORR), which includes ETTP, was placed on the National Priorities List (NPL) in November 1989. Environmental investigation and cleanup activities are continuing at ETTP inmore » accordance with CERCLA, the National Contingency Plan (NCP), and the Federal Facility Agreement (FFA). The FFA was entered into by the DOE-Oak Ridge Office (ORO), EPA Region 4, and the Tennessee Department of Environment and Conservation (TDEC) in 1991. The FFA establishes the schedule and milestones for environmental remediation of the ORR. The proposed property transfer is a key component of the Oak Ridge Performance Management Plan (ORPMP) for accelerated cleanup of the ORR. DOE, using its authority under Section 161(g) of the Atomic Energy Act of 1954 (AEA), proposes to transfer the Property to Heritage Center, LLC, a subsidiary of the Community Reuse Organization of East Tennessee (CROET), hereafter referred to as 'Heritage Center.' CROET is a 501(c)(3) not-for-profit corporation established to foster the diversification of the regional economy by re-utilizing DOE property for private-sector investment and job creation. The Property is located in the southern portion of ETTP and consists of approximately 84 acres proposed as the potential site for new facilities to be used for office space, industrial activities, or other commercial uses. The parcel contains both grassy fields located outside the ETTP 'main plant' area and infrastructure located inside the 'main plant' area. No buildings are included in the proposed ED-8 transfer. The buildings in ED-8 have already been transferred (Buildings K-1007, K-1580, K-1330, and K-1000). These buildings are not included in the transfer footprint of Land Parcel ED-8. A number of temporary structures, such as trailers and tents (non-real property), are located within the footprint. These temporary structures are not included in the transfer. DOE would continue to be responsible for any contamination resulting from DOE activities that is present on the property at the time of transfer but found after the date of transfer. The deed transferring the Property contains various restrictions and prohibitions on the use of the Property that are subject to enforcement pursuant to State Law Tennessee Code Annotated (T.C.A.) 68-212-225 and state real property law. These restrictions and prohibitions are designed to ensure protection of human health and the environment.« less

  13. Movement plans for posture selection do not transfer across hands

    PubMed Central

    Schütz, Christoph; Schack, Thomas

    2015-01-01

    In a sequential task, the grasp postures people select depend on their movement history. This motor hysteresis effect results from the reuse of former movement plans and reduces the cognitive cost of movement planning. Movement plans for hand trajectories not only transfer across successive trials, but also across hands. We therefore asked whether such a transfer would also be found in movement plans for hand postures. To this end, we designed a sequential, continuous posture selection task. Participants had to open a column of drawers with cylindrical knobs in ascending and descending sequences. A hand switch was required in each sequence. Hand pro/supination was analyzed directly before and after the hand switch. Results showed that hysteresis effects were present directly before, but absent directly after the hand switch. This indicates that, in the current study, movement plans for hand postures only transfer across trials, but not across hands. PMID:26441734

  14. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  15. A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Shuart, Mark J.; Gray, Hugh R.

    2002-01-01

    The NASA Strategic Plan identifies the long-term goal of providing safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable scientific research, human, and robotic exploration, and the commercial development of space. Numerous scientific and engineering breakthroughs will be required to develop the technology required to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. A survey of emerging materials with applications to aerospace vehicle structures and propulsion systems was conducted to assist in long-term Agency mission planning. The comprehensive survey identified materials already under development that could be available in 5 to 10 years and those that are still in the early research phase and may not be available for another 20 to 30 years. The survey includes typical properties, a description of the material and processing methods, the current development status, and the critical issues that must be overcome to achieve commercial viability.

  16. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  17. Modeling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications to device design, feedback control, and treatment planning

    PubMed Central

    Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.

    2014-01-01

    Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697

  18. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant.

    PubMed

    Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B

    2016-04-02

    Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.

  19. A partnership in upstream HSE technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, R.E. Wahjosoedibjo, A.S.; Hunley, M.; Peargin, J.C.

    1996-11-01

    The oil and gas industry was for nearly two decades the dominant force in the Indonesian economy and the single largest contributor to the nation`s development. Because of the success of Indonesia`s long-term development and diversification program, this once-dominant sector today occupies a more equal but still vital position in a better-balanced economy. The Indonesian government understands the danger to the environment posed by rapid industrial expansion and has enacted laws and regulations to ensure the sustainable development of its resources while protecting its rain forest environment. In 1992, the government oil company approached Chevron and Texaco for assistance inmore » training its Health, Safety, and Environment (HSE) professionals. The upstream environment, health and safety training program was developed to transfer HSE knowledge and technology to PERTAMINA, PT Caltex Pacific Indonesia, a C&T affiliate, and indirectly, to the entire Indonesian oil and gas industry and government ministries. The four companies have demonstrated the effectiveness of a partnership approach in developing and carrying out HSE training. During 1994 and 1995, four groups, each consisting of about twenty representatives from PERTAMINA, the Directorate of Oil and Gas (MIGAS), the Indonesian Environmental Impact Management Agency (BAPEDAL), CPI, and Chevron and Texaco worldwide subsidiaries, traveled to the United States for an intensive four-month program of study in HSE best practices and technology conducted by Chevron and Texaco experts. This paper describes the development and realization of The PERTAMINA/CPI Health, Safety and Environment Training Program, outlines subjects covered and explains the methodology used to ensure the effective transfer of HSE knowledge and technology. The paper also offers an evaluation of the sessions and presents the plans developed by participant-teams for follow up on their return to Indonesia.« less

  20. A Revolution in the Making: Advances in Materials That May Transform Future Exploration Infrastructures and Missions

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Dicus, Dennis L.; Shuart, Mark J.

    2001-01-01

    The NASA Strategic Plan identifies the long-term goal to provide safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable research, human exploration, and the commercial development of space; and to conduct human and robotic missions to planets and other bodies in our solar system. Numerous scientific and engineering breakthroughs will be required to develop the technology necessary to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. This paper discusses those materials best suited for aerospace vehicle structure and highlights the enormous potential of one revolutionary new material, carbon nanotubes.

  1. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less

  2. 26 CFR 1.414(l)-1 - Mergers and consolidations of plans or transfers of plan assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... However, the shifting of assets between several funding media used for a single plan (such as between... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Mergers and consolidations of plans or transfers of plan assets. 1.414(l)-1 Section 1.414(l)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT...

  3. Project for the analysis of technology transfer

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Staskin, E. R.

    1971-01-01

    The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs.

  4. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.

    PubMed

    Aboul-Hosn Centenero, Samir; Hernández-Alfaro, Federico

    2012-02-01

    The aim of this article is to determine the advantages of 3D planning in predicting postoperative results and manufacturing surgical splints using CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) technology in orthognathic surgery when the software program Simplant OMS 10.1 (Materialise(®), Leuven, Belgium) was used for the purpose of this study which was carried out on 16 patients. A conventional preoperative treatment plan was devised for each patient following our Centre's standard protocol, and surgical splints were manufactured. These splints were used as study controls. The preoperative treatment plans devised were then transferred to a 3D-virtual environment on a personal computer (PC). Surgery was simulated, the prediction of results on soft and hard tissue produced, and surgical splints manufactured using CAD/CAM technology. In the operating room, both types of surgical splints were compared and the degree of similitude in results obtained in three planes was calculated. The maxillary osteotomy line was taken as the point of reference. The level of concordance was used to compare the surgical splints. Three months after surgery a second set of 3D images were obtained and used to obtain linear and angular measurements on screen. Using the Intraclass Correlation Coefficient these postoperative measurements were compared with the measurements obtained when predicting postoperative results. Results showed that a high degree of correlation in 15 of the 16 cases. A high coefficient of correlation was obtained in the majority of predictions of results in hard tissue, although less precise results were obtained in measurements in soft tissue in the labial area. The study shows that the software program used in the study is reliable for 3D planning and for the manufacture of surgical splints using CAD/CAM technology. Nevertheless, further progress in the development of technologies for the acquisition of 3D images, new versions of software programs, and further studies of objective data are necessary to increase precision in computerised 3D planning. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Russell, John

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.

  6. The human element in technology transfer

    NASA Technical Reports Server (NTRS)

    Peake, H. J.

    1978-01-01

    A transfer model composed of three roles and their linkages was considered. This model and a growing body of experience was analyzed to provide guidance in the human elements of technology transfer. For example, criteria for selection of technology transfer agents was described, and some needed working climate factors were known. These concepts were successfully applied to transfer activities.

  7. Cross Support Transfer Service (CSTS) Framework Library

    NASA Technical Reports Server (NTRS)

    Ray, Timothy

    2014-01-01

    Within the Consultative Committee for Space Data Systems (CCSDS), there is an effort to standardize data transfer between ground stations and control centers. CCSDS plans to publish a collection of transfer services that will each address the transfer of a particular type of data (e.g., tracking data). These services will be called Cross Support Transfer Services (CSTSs). All of these services will make use of a common foundation that is called the CSTS Framework. This library implements the User side of the CSTS Framework. "User side" means that the library performs the role that is typically expected of the control center. This library was developed in support of the Goddard Data Standards program. This technology could be applicable for control centers, and possibly for use in control center simulators needed to test ground station capabilities. The main advantages of this implementation are its flexibility and simplicity. It provides the framework capabilities, while allowing the library user to provide a wrapper that adapts the library to any particular environment. The main purpose of this implementation was to support the inter-operability testing required by CCSDS. In addition, it is likely that the implementation will be useful within the Goddard mission community (for use in control centers).

  8. Technology transfer: the key to fusion commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer.

  9. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  10. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  11. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  12. Mars habitat modules: launch, scaling and functional design considerations.

    PubMed

    Bell, Larry; Hines, Gerald D

    2005-07-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research, planning and design study that is exploring near- and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. Each development stage is planned as a building block to provide the economic foundation, technology advancements and operational infrastructure to support others that follow. This report presents fundamental issues and requirements associated with planning human Mars initiatives that can transfer crews, habitats and equipment from Earth to Mars orbit, deliver them to the planet's surface, and return people and samples safely back to Earth. The study builds in part upon previous studies which are summarized in SICSA's: Commercial Space Development Plan and the Artificial Gravity Science and Excursion Vehicle reports. Information and conclusions produced in this study provide assumptions and a conceptual foundation for a subsequent report titled The First Mars Outpost: Planning and Concepts. c2005 Elsevier Ltd. All rights reserved.

  13. Virtual surgical planning and three-dimensional printing in multidisciplinary oncologic chest wall resection and reconstruction: A case report.

    PubMed

    Sharaf, Basel; Sabbagh, M Diya; Vijayasekaran, Aparna; Allen, Mark; Matsumoto, Jane

    2018-04-30

    Primary sarcomas of the sternum are extremely rare and present the surgical teams involved with unique challenges. Historically, local muscle flaps have been utilized to reconstruct the resulting defect. However, when the resulting oncologic defect is larger than anticipated, local tissues have been radiated, or when preservation of chest wall muscles is necessary to optimize function, local reconstructive options are unsuitable. Virtual surgical planning (VSP) and in house three-dimensional (3D) printing provides the platform for improved understanding of the anatomy of complex tumours, communication amongst surgeons, and meticulous pre-operative planning. We present the novel use of this technology in the multidisciplinary surgical care of a 35 year old male with primary sarcoma of the sternum. Emphasis on minimizing morbidity, maintaining function of chest wall muscles, and preservation of the internal mammary vessels for microvascular anastomosis are discussed. While the majority of patients at our institution receive local or regional flaps for reconstruction of thoracic defects, advances in microvascular surgery allow the reconstructive surgeon the latitude to choose other flap options if necessary. VSP and 3D printing allowed the surgical team involved to utilize free tissue transfer to reconstruct the defect with free tissue transfer from the thigh. Perseveration of the internal mammary vessels was paramount during tumor extirpation. Virtual surgical planning and rapid prototyping is a useful adjunct to standard imaging in complex chest wall resection and reconstruction. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Birth setting, transfer and maternal sense of control: results from the DELIVER study

    PubMed Central

    2014-01-01

    Background In the Netherlands, low risk women receive midwife-led care and can choose to give birth at home or in hospital. There is concern that transfer of care during labour from midwife-led care to an obstetrician-led unit leads to negative birth experiences, in particular among those with planned home birth. In this study we compared sense of control, which is a major attribute of the childbirth experience, for women planning home compared to women planning hospital birth under midwife-led care. In particular, we studied sense of control among women who were transferred to obstetric-led care during labour according to planned place of birth: home versus hospital. Methods We used data from the prospective multicentre DELIVER (Data EersteLIjns VERloskunde) cohort-study, conducted in 2009 and 2010 in the Netherlands. Sense of control during labour was assessed 6 weeks after birth, using the short version of the Labour Agentry Scale (LAS-11). A higher LAS-11 score indicates a higher feeling of control. We considered a difference of a minimum of 5.5 points as clinically relevant. Results Nulliparous- and parous women who planned a home birth had a 2.6 (95% CI 1.0, 4.3) and a 3.0 (1.6, 4.4) higher LAS score during first stage of labour respectively and during second stage a higher score of 2.8 (0.9, 4.7) and 2.3 (0.6, 4.0), compared with women who planned a hospital birth. Overall, women who were transferred experienced a lower sense of control than women who were not transferred. Parous women who planned a home birth and who were transferred had a 4.3 (0.2, 8.4) higher LAS score in 2nd stage, compared to those who planned a hospital birth and who were transferred. Conclusion We found no clinically relevant differences in feelings of control among women who planned a home or hospital birth. Transfer of care during labour lowered feelings of control, but feelings of control were similar for transferred women who planned a home or hospital birth. As far as their expected sense of control is concerned, low risk women should be encouraged to give birth at the location of their preference. PMID:24438469

  15. EPA Reports to Congress on Technology Transfer

    EPA Pesticide Factsheets

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  16. 29 CFR 4231.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND OTHER RULES APPLICABLE TO MULTIEMPLOYER PLANS MERGERS AND TRANSFERS BETWEEN MULTIEMPLOYER PLANS... under section 4231 of ERISA for mergers and transfers of assets or liabilities among multiemployer... rules for de minimis mergers and transfers. The collections of information in this part have been...

  17. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    NASA Technical Reports Server (NTRS)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  18. The Transition of NASA EOS Datasets to WFO Operations: A Model for Future Technology Transfer

    NASA Technical Reports Server (NTRS)

    Darden, C.; Burks, J.; Jedlovec, G.; Haines, S.

    2007-01-01

    The collocation of a National Weather Service (NWS) Forecast Office with atmospheric scientists from NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama has afforded a unique opportunity for science sharing and technology transfer. Specifically, the NWS office in Huntsville has interacted closely with research scientists within the SPORT (Short-term Prediction and Research and Transition) Center at MSFC. One significant technology transfer that has reaped dividends is the transition of unique NASA EOS polar orbiting datasets into NWS field operations. NWS forecasters primarily rely on the AWIPS (Advanced Weather Information and Processing System) decision support system for their day to day forecast and warning decision making. Unfortunately, the transition of data from operational polar orbiters or low inclination orbiting satellites into AWIPS has been relatively slow due to a variety of reasons. The ability to integrate these high resolution NASA datasets into operations has yielded several benefits. The MODIS (MODerate-resolution Imaging Spectrometer ) instrument flying on the Aqua and Terra satellites provides a broad spectrum of multispectral observations at resolutions as fine as 250m. Forecasters routinely utilize these datasets to locate fine lines, boundaries, smoke plumes, locations of fog or haze fields, and other mesoscale features. In addition, these important datasets have been transitioned to other WFOs for a variety of local uses. For instance, WFO Great Falls Montana utilizes the MODIS snow cover product for hydrologic planning purposes while several coastal offices utilize the output from the MODIS and AMSR-E instruments to supplement observations in the data sparse regions of the Gulf of Mexico and western Atlantic. In the short term, these datasets have benefited local WFOs in a variety of ways. In the longer term, the process by which these unique datasets were successfully transitioned to operations will benefit the planning and implementation of products and datasets derived from both NPP and NPOESS. This presentation will provide a brief overview of current WFO usage of satellite data, the transition of datasets between SPORT and the N W S , and lessons learned for future transition efforts.

  19. Study of Federal technology transfer activities in areas of interest to NASA Office of Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    Forty-three ongoing technology transfer programs in Federal agencies other than NASA were selected from over 200 current Federal technology transfer activities. Selection was made and specific technology transfer mechanisms utilized. Detailed information was obtained on the selected programs by reviewing published literature, and conducting telephone interviews with each program manager. Specific information collected on each program includes technology areas; user groups, mechanisms employed, duration of program, and level of effort. Twenty-four distinct mechanisms are currently employed in Federal technology transfer activities totaling $260 million per year. Typical applications of each mechanism were reviewed, and caveats on evaluating program effectiveness were discussed. A review of recent federally funded research in technology transfer to state and local governments was made utilizing the Smithsonian Science Information Exchange, and abstracts of interest to NASA were selected for further reference.

  20. Fuel Reforming Technologies (BRIEFING SLIDES)

    DTIC Science & Technology

    2009-09-01

    Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment  To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy

  1. The Differential Effects of Collaborative vs. Individual Prewriting Planning on Computer-Mediated L2 Writing: Transferability of Task-Based Linguistic Skills in Focus

    ERIC Educational Resources Information Center

    Amiryousefi, Mohammad

    2017-01-01

    The current study aimed at investigating the effects of three types of prewriting planning conditions, namely teacher-monitored collaborative planning (TMCP), student-led collaborative planning (SLCP), and individual planning (IP) on EFL learners' computer-mediated L2 written production and learning transfer from a pedagogic task to a new task of…

  2. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    PubMed

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  3. AAC technology transfer: an AAC-RERC report.

    PubMed

    Higginbotham, D Jeffery; Beukelman, David; Blackstone, Sarah; Bryen, Diane; Caves, Kevin; Deruyter, Frank; Jakobs, Thomas; Light, Janice; McNaughton, David; Moulton, Bryan; Shane, Howard; Williams, Michael B

    2009-03-01

    Transferring innovative technologies from the university to the manufacturing sector can often be an elusive and problematic process. The Rehabilitation and Engineering Research Center on Communication Enhancement (AAC-RERC) has worked with the manufacturing community for the last 10 years. The purpose of this article is to discuss barriers to technology transfer, to outline some technology transfer strategies, and to illustrate these strategies with AAC-RERC related activities.

  4. Technology transfer methodology

    NASA Technical Reports Server (NTRS)

    Labotz, Rich

    1991-01-01

    Information on technology transfer methodology is given in viewgraph form. Topics covered include problems in economics, technology drivers, inhibitors to using improved technology in development, technology application opportunities, and co-sponsorship of technology.

  5. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    ERIC Educational Resources Information Center

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  6. Search Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  7. Available Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  8. Australian University Technology Transfer Managers: Backgrounds, Work Roles, Specialist Skills and Perceptions

    ERIC Educational Resources Information Center

    Harman, Grant; Stone, Christopher

    2006-01-01

    Technology transfer managers are a new group of specialist professionals engaged in facilitating transfer of university research discoveries and inventions to business firms and other research users. With relatively high academic qualifications and enjoying higher salaries than many other comparable university staff, technology transfer managers…

  9. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  10. Kilopower: Small and Affordable Fission Power Systems for Space

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.

  11. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  12. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Rusnak, J. J.; Freeman, J. E.; Hartley, J. M.; Kottenstette, J. P.; Staskin, E. R.

    1973-01-01

    Research activities conducted under the Program for Transfer Research and Impact Studies (TRIS) during 1972 included: (1) preparation of 10,196 TSP requests for TRIS application analysis; (2) interviews with over 500 individuals concerning the technical, economic, and social impacts of NASA-generated technology; (3) preparation of 38 new technology transfer example files and 101 new transfer cases; and (4) maintenance of a technology transfer library containing more than 2,900 titles. Six different modes of technology utilization are used to illustrate the pervasiveness of the transfer and diffusion of aerospace innovations. These modes also provide a basis for distinguishing the unique characteristics of the NASA Technology Utilization Program. An examination is reported of the ways in which NASA-generated technology is contributing to beneficial social change in five major areas of human concern: health, environment, safety, transportation, and communication.

  13. NASA Goddard Thermal Technology Overview 2017

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2017-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  14. NASA Goddard Thermal Technology Overview 2016

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  15. NASA Technology Transfer System

    NASA Technical Reports Server (NTRS)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  16. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, A.; Orgren, A.

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less

  17. Technology transfer into the solid propulsion industry

    NASA Technical Reports Server (NTRS)

    Campbell, Ralph L.; Thomson, Lawrence J.

    1995-01-01

    This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.

  18. Technology transfer of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Smith, A. D.

    1980-01-01

    The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.

  19. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  20. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  1. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  2. Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube

    DTIC Science & Technology

    2017-06-01

    other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary

  3. A Successful Model for a Comprehensive Patient Flow Management Center at an Academic Health System.

    PubMed

    Lovett, Paris B; Illg, Megan L; Sweeney, Brian E

    2016-05-01

    This article reports on an innovative approach to managing patient flow at a multicampus academic health system, integrating multiple services into a single, centralized Patient Flow Management Center that manages supply and demand for inpatient services across the system. Control of bed management was centralized across 3 campuses and key services were integrated, including bed management, case management, environmental services, patient transport, ambulance and helicopter dispatch, and transfer center. A single technology platform was introduced, as was providing round-the-clock patient placement by critical care nurses, and adding medical directors. Daily bed meetings with nurse managers and charge nurses drive action plans. This article reports immediate improvements in the first year of operations in emergency department walkouts, emergency department boarding, ambulance diversion, growth in transfer volume, reduction in lost transfers, reduction in time to bed assignment, and bed turnover time. The authors believe theirs is the first institution to integrate services and centralize bed management so comprehensively. © The Author(s) 2014.

  4. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Carroll, Carol; Johnson, Les; Baggett, Randy

    2002-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  5. Keeping Track Every Step of the Way

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Knowledge Sharing Systems, Inc., a producer of intellectual assets management software systems for the federal government, universities, non-profit laboratories, and private companies, constructed and presently manages the NASA Technology Tracking System, also known as TechTracS. Under contract to Langley Research Center, TechTracS identifies and captures all NASA technologies, manages the patent prosecution process, and then tracks their progress en route to commercialization. The system supports all steps involved in various technology transfer activities, and is considered the premier intellectual asset management system used in the federal government today. NASA TechTracS consists of multiple relational databases and web servers, located at each of the 10 field centers, as well as NASA Headquarters. The system is capable of supporting the following functions: planning commercial technologies; commercialization activities; reporting new technologies and inventions; and processing and tracking intellectual property rights, licensing, partnerships, awards, and success stories. NASA TechTracS is critical to the Agency's ongoing mission to commercialize its revolutionary technologies in a variety of sectors within private industry, both aerospace and non- aerospace.

  6. 76 FR 58020 - Prescription Drug User Fee Act IV Information Technology Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ...] Prescription Drug User Fee Act IV Information Technology Plan AGENCY: Food and Drug Administration, HHS. ACTION... information technology (IT) plan entitled ``PDUFA IV Information Technology Plan'' (updated plan) to achieve... Information Technology Plan.'' This plan will meet one of the performance goals agreed to under the 2007...

  7. University Technology Transfer Information Processing from the Attention Based View

    ERIC Educational Resources Information Center

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  8. Effetive methods in educating extension agents and farmers on conservation farming technology

    USDA-ARS?s Scientific Manuscript database

    Adoption of new technologies requires transfer of information from developers to end users. Efficiency of the transfer process influences the rate of adoption and ultimate impact of the technology. Various channels are used to transfer technology from researchers to farmers. Two commonly used ones ...

  9. Technology Transfer through Training: Emerging Roles for the University.

    ERIC Educational Resources Information Center

    Bergsma, Harold M.

    The importance of training in the technology transfer process is discussed, with special consideration to conditions in developing countries. Also considered is the role universities can play in training to promote technology transfer. Advisors on training and curriculum development are needed to introduce a new technology. Training farmers to…

  10. KSC-2013-3575

    NASA Image and Video Library

    2013-09-12

    CAPE CANAVERAL, Fla. – Lewis Parrish, senior Technology Transfer specialist for Qinetiq at NASA's Kennedy Space Center in Florida, discusses technology transfer with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson

  11. Succession Planning and Knowledge Transfer in Higher Education

    ERIC Educational Resources Information Center

    Grossman, Connie S.

    2014-01-01

    A leadership gap is occurring as the result of Baby Boomer retirements coupled with the lack of academic succession planning. Transferring organizational knowledge from leadership to successors is a challenging task during leadership change. Succession planning processes are designed for present and future organizational needs by facilitating…

  12. What Is Technology Transfer? | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  13. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector

    DTIC Science & Technology

    1985-01-01

    TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S

  14. Information Communication Technology Planning in Developing Countries

    ERIC Educational Resources Information Center

    Malapile, Sandy; Keengwe, Jared

    2014-01-01

    This article explores major issues related to Information Communication Technology (ICT) in education and technology planning. Using the diffusion of innovation theory, the authors examine technology planning opportunities and challenges in Developing countries (DCs), technology planning trends in schools, and existing technology planning models…

  15. Spatial interpretation of NASA's Marshall Space Flight Center Payload Operations Control Center using virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1993-01-01

    In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.

  16. Defense Technical Information Center (DTIC) - Its role in the USAF Scientific and Technical Information Program

    NASA Technical Reports Server (NTRS)

    Kuhn, Allan D.

    1991-01-01

    The Defense Technical Information Center (DTIC), the central repository for DOD scientific and technical information concerning studies and research and engineering efforts, is discussed. The present makeup of DTIC is described and its functions in producing technical reports and technical report bibliographies are examined. DTIC's outreach services are reviewed, as are its DTIC information and technology transfer programs. DTIC's plans for the year 2000 and its relation to the mission of the U.S. Air Force, including the Air Force's STINFO program, are addressed.

  17. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark B. Murphy

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  18. Auto-disable syringes for immunization: issues in technology transfer.

    PubMed Central

    Lloyd, J. S.; Milstien, J. B.

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself. PMID:10680248

  19. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  20. Space network scheduling benchmark: A proof-of-concept process for technology transfer

    NASA Technical Reports Server (NTRS)

    Moe, Karen; Happell, Nadine; Hayden, B. J.; Barclay, Cathy

    1993-01-01

    This paper describes a detailed proof-of-concept activity to evaluate flexible scheduling technology as implemented in the Request Oriented Scheduling Engine (ROSE) and applied to Space Network (SN) scheduling. The criteria developed for an operational evaluation of a reusable scheduling system is addressed including a methodology to prove that the proposed system performs at least as well as the current system in function and performance. The improvement of the new technology must be demonstrated and evaluated against the cost of making changes. Finally, there is a need to show significant improvement in SN operational procedures. Successful completion of a proof-of-concept would eventually lead to an operational concept and implementation transition plan, which is outside the scope of this paper. However, a high-fidelity benchmark using actual SN scheduling requests has been designed to test the ROSE scheduling tool. The benchmark evaluation methodology, scheduling data, and preliminary results are described.

  1. Next generation hyper resolution wide swath and multi-channel optical payload for CBERS series

    NASA Astrophysics Data System (ADS)

    Wang, Weigang

    2017-11-01

    The China-Brazilian Earth Resources Satellite (CBERS) program, (also called ZY-1) the result of a space technology agreement between China and Brazil, was officially signed in 1988 after the first joint work report produced by National Institute for Space Research (INPE) and the Chinese Academy of Space Technology (CAST). During the 26 years of its existence, the program of cooperation between China and Brazil in space has achieved the successful launch of three satellites. It has become a unique example of cooperation in cutting edge technology between emerging nations. CBERS satellite is the first generation data-transferring remote sensing satellite developed by China. CBERS satellite data are widely applied to crop yield estimation, exploration of land and resources, urban planning, environmental protection and monitoring, disaster reduction, and other fields. CBERS series is just like Landsat series of USA and SPOT series of France.

  2. Development of user applications for earth resources survey data in urban and regional planning in the Puget Sound area

    NASA Technical Reports Server (NTRS)

    Westerlund, F. V.

    1975-01-01

    User applications of remote sensing in Washington State are described. The first project created a multi-temporal land use/land cover data base for the environs of the Seattle-Tacoma International Airport, to serve planning and management operations of the Port of Seattle. The second is an on-going effort to develop a capability within the Puget Sound Governmental Conference, a council of governments (COG), to inventory and monitor land use within its four county jurisdiction. Developmental work has focused on refinement of land use/cover classification systems applicable at this regional scale and various levels of detail in relation to program requirements of the agency. Related research, refinement of manual methods, user training and approaches to technology transfer are discussed.

  3. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation.

    PubMed

    Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted.

  4. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation

    PubMed Central

    Paisner, Kathryn; Vanderford, Nathan L.

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer effectiveness across institutions and studies of policy changes that would improve the effectiveness of the commercialization pipeline is warranted. PMID:29721313

  5. Systematic plan of building Web geographic information system based on ActiveX control

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Li, Deren; Zhu, Xinyan; Chen, Nengcheng

    2003-03-01

    A systematic plan of building Web Geographic Information System (WebGIS) using ActiveX technology is proposed in this paper. In the proposed plan, ActiveX control technology is adopted in building client-side application, and two different schemas are introduced to implement communication between controls in users¡ browser and middle application server. One is based on Distribute Component Object Model (DCOM), the other is based on socket. In the former schema, middle service application is developed as a DCOM object that communicates with ActiveX control through Object Remote Procedure Call (ORPC) and accesses data in GIS Data Server through Open Database Connectivity (ODBC). In the latter, middle service application is developed using Java language. It communicates with ActiveX control through socket based on TCP/IP and accesses data in GIS Data Server through Java Database Connectivity (JDBC). The first one is usually developed using C/C++, and it is difficult to develop and deploy. The second one is relatively easy to develop, but its performance of data transfer relies on Web bandwidth. A sample application is developed using the latter schema. It is proved that the performance of the sample application is better than that of some other WebGIS applications in some degree.

  6. 48 CFR 970.5227-11 - Patent rights-management and operating contracts, for-profit contractor, non-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and operating contracts, for-profit contractor, non-technology transfer. 970.5227-11 Section 970.5227...-technology transfer. Insert the following clause in solicitations and contracts in accordance with 970.2703-1(b)(4): Patent Rights—Management and Operating Contracts, for-Profit Contractor, Non-Technology...

  7. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rights in data-technology... for Management and Operating Contracts 970.5227-2 Rights in data-technology transfer. As prescribed in 48 CFR 970.2704-3(b), insert the following clause: Rights in Data—Technology Transfer (DEC 2000) (a...

  8. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    DOT National Transportation Integrated Search

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  9. On transferring the grid technology to the biomedical community.

    PubMed

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, M; Gordon, C; Tien, C

    Purpose: To follow the Integrating Healthcare Enterprise - Radiation Oncology (IHE-RO) initiative of proper cross-vendor technology integration, an automated chart checker (ACC) was developed. ACC compares extracted data from an approved patient plan in the Eclipse treatment planning system (TPS) against data existing in the Mosaiq treatment management system (TMS). ACC automatically analyzes these parameters using built-in quality checklists to provide further aid in chart review. Methods: Eclipse TPS data are obtained using Eclipse scripting API (ESAPI) while Mosaiq TMS data are obtained from a radiotherapy-treatment-planning (RTP) file. Using this information, ACC identifies TPS-TMS discrepancies in 18 primary beam parametersmore » including MU, energy, jaw positions, gantry angle, table angle, accessories, and bolus for up to 31 beams. Next, approximately 40 items from traditional quality checklists are evaluated such as prescription consistency, DRR graticule placement, plan approval status, global max dose, and dose tracking coefficients. Parameters were artificially modified to determine if ACC would detect an error in data transfer and to test each component of quality checklists. Results: Using ESAPI scripting and RTP file-processing, ACC was able to properly aggregate data from TPS and TMS for up to 31 beams. Errors were artificially introduced into each plan parameter, and ACC was able to successfully detect all of them within seconds. Next, ACC was able to successfully detect mistakes in the chart by identifying deviations with its quality checklists, within seconds. Conclusion: ACC effectively addresses the potential issue of faulty cross-vendor data transfer, as described by IHE-RO. In addition, ACC was also able to detect deviations from its built-in quality checklists. ACC is already an invaluable tool for efficient and standardized chart review and will continue to improve as its incorporated checklists become more comprehensive.« less

  11. Risk Management in Biologics Technology Transfer.

    PubMed

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  12. Transfer research and impact studies program

    NASA Technical Reports Server (NTRS)

    Freeman, J. E. (Editor)

    1975-01-01

    Methods developed for stimulating interest in the transfer of NASA-originated technology are described. These include: new information packaging concepts; technology transfer via people transfer; information management systems; data bank operations; and professional communication activities.

  13. Systems autonomy technology: Executive summary and program plan

    NASA Technical Reports Server (NTRS)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  14. Administrator's Guide to Technology: Planning, Funding & Implementation.

    ERIC Educational Resources Information Center

    Aspen Education Development Group, Gaithersburg, MD.

    This document provides guidelines for administrators related to instructional technology and planning. Chapter 1 discusses planning, including developing a technology plan, facility assessment, e-rate planning, formation of a technology committee, budget planning, and hardware/software replacement plan and costs. Chapter 2 addresses…

  15. Biomedical technology transfer applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.

  16. Benefits briefing notebook: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Resource information on the transfer of aerospace technology to other sectors of the U.S. economy is presented. The contents of this notebook are divided into three sections: (1) benefit cases, (2) transfer overview, and (3) indexes. Transfer examples relevant to each subject area are presented. Pertinent transfer data are given. The Transfer Overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented.

  17. Spinoff, 1992

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1992-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  18. Spinoff 1993

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1993-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of knowledge available for transfer. Section 2 contains a representative sampling of spinoff products that resulted from secondary application of technology originally developed to meet mainline goals. Section 3 describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  19. Technology transfer to the broader economy

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon; Clark, Robert

    1992-01-01

    Approaches to the transfer of government-funded civil space technology to the broader commercial economy were addressed by Working Panel no. 4. Some of the problems related to current strategies for technology transfer and recommendations for new approaches are described in outline form.

  20. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    ERIC Educational Resources Information Center

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  1. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  2. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  3. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  4. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  5. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  6. A Complex Web of Education Policy Borrowing and Transfer: Education for All and the Plan for the Development of Education in Brazil

    ERIC Educational Resources Information Center

    Rambla, Xavier

    2014-01-01

    This article analyses how Education for All policies were transferred to Brazil and Latin America by means of ambitious educational strategic plans such as the Plan for the Development of Education and the National Education Plans -- promoted by the Federal Government of Brazil, and the Latin American Educational Goals -- promoted by the…

  7. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  8. [Conceptual foundations of creation of branch database of technology and intellectual property rights owned by scientific institutions, organizations, higher medical educational institutions and enterprises of healthcare sphere of Ukraine].

    PubMed

    Horban', A Ie

    2013-09-01

    The question of implementation of the state policy in the field of technology transfer in the medical branch to implement the law of Ukraine of 02.10.2012 No 5407-VI "On Amendments to the law of Ukraine" "On state regulation of activity in the field of technology transfers", namely to ensure the formation of branch database on technology and intellectual property rights owned by scientific institutions, organizations, higher medical education institutions and enterprises of healthcare sphere of Ukraine and established by budget are considered. Analysis of international and domestic experience in the processing of information about intellectual property rights and systems implementation support transfer of new technologies are made. The main conceptual principles of creation of this branch database of technology transfer and branch technology transfer network are defined.

  9. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2017-12-13

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  10. Program Plan for 2005: NASA Scientific and Technical Information Program

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Throughout 2005 and beyond, NASA will be faced with great challenges and even greater opportunities. Following a period of reevaluation, reinvention, and transformation, we will move rapidly forward to leverage new partnerships, approaches, and technologies that will enhance the way we do business. NASA's Scientific and Technical Information (STI) Program, which functions under the auspices of the Agency's Chief Information Officer (CIO), is an integral part of NASA's future. The program supports the Agency's missions to communicate scientific knowledge and understanding and to help transfer NASA's research and development (R&D) information to the aerospace and academic communities and to the public. The STI Program helps ensure that the Agency will remain at the leading edge of R&D by quickly and efficiently capturing and sharing NASA and worldwide STI to use for problem solving, awareness, and knowledge management and transfer.

  11. Aerospace technology transfer to the public sector; Proceedings of the Conference, Crystal City, Va., November 9-11, 1977

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Newman, M.

    1978-01-01

    The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.

  12. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology to foreign firms or institutions. 1274.915 Section 1274.915 Aeronautics and Space NATIONAL... Conditions § 1274.915 Restrictions on sale or transfer of technology to foreign firms or institutions. Restrictions on Sale or Transfer of Technology to Foreign Firms or Institutions July 2002 (a) The parties agree...

  13. Capacity building in emerging space nations: Experiences, challenges and benefits

    NASA Astrophysics Data System (ADS)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  14. Radiology 1984. A conflict of high technology and high cost.

    PubMed

    Evens, R G

    1984-12-01

    Radiology is confronted now by exciting but challenging times. The excitement derives from dramatic technological advance; the challenge from the economic constraints on health care delivery. The large and growing expense of providing health care is readily apparent and high technology medicine can too easily be blamed for the growth. The pressures for improved service at no extra cost will demand much of the negotiating skills of our specialty and our ability to survive administrative confusion and fragmentation. Equally, manpower planning is a feature of modern medicine. Often this is done from inadequate data and as a specialty we must continue to think constructively about our own future in this context, not least in recognizing the contribution of women to our specialty. Forces also to be recognized are decentralization, electronic information transfer, concerns about radiation exposure and litigation. Not least we need to be better able to define our specialty as its scope is now changing rapidly. For the future I hope that we can be part of the development of the controls which we must inevitably face; we should lead in instituting cost-accounting in our departments; we must be at the leading edge of technological change in both imaging and data transfer, and we must be both more business-like as well as act effectively as the patient's advocate. Radiology has an important and growing responsibility in patient care and most of the technological advances both improve that care and can be justified economically. I am proud to be a radiologist in 1984.

  15. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  16. Technology Transfer and Technology Transfer Intermediaries

    ERIC Educational Resources Information Center

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  17. Summary Report on Federal Laboratory Technology Transfer: FY 2003 Activity Metrics and Outcomes. 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act

    DTIC Science & Technology

    2004-12-01

    Agency, FY 1999-2003 Table 1.1 – Overview of the Types of Information on Federal lab Technology Transfer Collected in the...invention disclosure, patenting, and licensing. Table 1.1 – Overview of the Types of Information on Federal Lab Technology Transfer Collected in...results. In addition, ARS hosts a Textile Manufacturing Symposium and a Cotton Ginning Symposium at gin and textile labs to benefit county extension

  18. Training Technology Transfer Act of 1984. Hearing before the Subcommittee on Education, Arts and Humanities of the Committee on Labor and Human Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2561. Entitled the "Training Technology Transfer Act of 1984."

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This is a congressional hearing on the Training Technology Transfer Act of 1984, which would establish a mechanism for transferring the Federal Government's investment in computer programming for training systems to those organizations and groups that can use such technology in training the civilian work force. Focus is on refining this bill,…

  19. Planned development of a radioactive beam capability at the LBNL 88-inch cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.; Moltz, D.M.; Norman, E.B.

    1997-12-31

    Planned development of low-Z, proton-rich, radioactive beams ({sup 11}C, {sup 13}N, {sup 14}, {sup 15}O, and {sup 18}F) at the 88 inch Cyclotron of the Lawrence Berkeley National Lab is described. Based on the {open_quotes}coupled cyclotron method{close_quotes}, isotopes produced by (p,n) and (p,a) reactions at a high-current (30 mA), low-energy (10 MeV) medical cyclotron will be transferred {approximately}300 meters by high-speed gas-jet transport to the ECR ion-source at the 88 inch Cyclotron. Important features of this approach are its low cost, use of simple and well tested technology, applicability to nearly all elements, and avoidance of lengthy (chemical or physical)more » isotopic release delays at the production target. Developmental progress is reported for various operational components. Based on conservative estimates, e.g. 1% ECR ion-yield, extracted radioactive ion beams are projected to exceed 10{sup 6} ions/sec. Experiments which will use these beams include studies of the scattering of mirror nuclei, single and mutual excitation in inelastic scattering and single nucleon transfer reactions.« less

  20. Optical testbed for the LISA phasemeter

    NASA Astrophysics Data System (ADS)

    Schwarze, T. S.; Fernández Barranco, G.; Penkert, D.; Gerberding, O.; Heinzel, G.; Danzmann, K.

    2016-05-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.

  1. The ESA TTP and Recent Spin-off Successes

    NASA Astrophysics Data System (ADS)

    Raitt, D.; Brisson, P.

    2002-01-01

    In the framework of its research and development activities, the European Space Agency (ESA) spends some 250m each year and, recognizing the enormous potential of the know-how developed within its R&D activities, set up a Technology Transfer Programme (TTP) some twelve years ago. Over the years, the Programme has achieved some remarkable results with 120 successful transfers of space technologies to the non-space sector; over 120m received by companies making the technologies available; some 15 new companies established as a direct result of exploiting technologies; nearly 2500 jobs created or saved in Europe; and a portfolio of some 300 (out of over 600) active space technologies available for transfer and licencing. Some of the more recent technologies which have been successfully transferred to the non-space sector include the Mamagoose baby safety pyjamas; a spectrographic system being used to compare colours in fabrics and textiles; Earth observation technology employed to assess remotely how much agrochemicals are being used by farmers; and the Dutch solar car, Nuna, which, using European space technologies, finished first in the 2001 World Solar Challenge breaking all records. The paper will give a brief overview of the ESA Technology Transfer Programme and describe some of its recent successful technology transfers.

  2. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 'Benefit Briefing Notebook' was prepared for the NASA Technology Utilization Office to provide accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The contents are divided into three sections: (1) transfer overview, (2) benefit cases, and (3) indexes. The transfer overview section provides a general perspective for technology transfer from NASA to other organizations. In addition to a description of the basic transfer modes, the selection criteria for notebook examples and the kinds of benefit data they contain are also presented. The benefits section is subdivided into nineteen subject areas. Each subsection presents one or more key issues of current interest, with discrete transfer cases related to each key issue. Additional transfer examples relevant to each subject area are then presented. Pertinent transfer data are given at the end of each example.

  3. National Rocket Propulsion Materials Plan: A NASA, Department of Defense, and Industry Partnership

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA, Department of Defense, and rocket propulsion industry representatives are working together to create a national rocket propulsion materials development roadmap. This "living document" will facilitate collaboration among the partners, leveraging of resources, and will be a highly effective tool for technology development planning. The structuring of the roadmap, and development plan, which will combine the significant efforts of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program, and NASA's Integrated Space Transportation Plan (ISTP), is being lead by the IHPRPT Materials Working Group (IMWG). The IHPRPT Program is a joint DoD, NASA, and industry effort to dramatically improve the nation's rocket propulsion capabilities. This phased program is structured with increasingly challenging goals focused on performance, reliability, and cost to effectively double rocket propulsion capabilities by 2010. The IHPRPT program is focused on three propulsion application areas: Boost and Orbit Transfer (both liquid rocket engines and solid rocket motors), Tactical, and Spacecraft. Critical to the success of this initiative is the development and application of advanced materials, processes, and manufacturing technologies. NASA's ISTP is a comprehensive strategy focusing on the aggressive safety, reliability, and affordability goals for future space transportation systems established by the agency. Key elements of this plan are the 2 nd and 3 d Generation Reusable Launch Vehicles (RLV). The affordability and safety goals of these generational systems are, respectively, 10X cheaper and 100X safer by 2010, and 100X cheaper and 10,000X safer by 2025. Accomplishment of these goals requires dramatic and sustained breakthroughs, particularly in the development and the application of advanced material systems. The presentation will provide an overview of the IHPRPT materials initiatives, NASA's 2nd and 3 rd Generation RLV propulsion materials projects, and the approach for the development of the national rocket propulsion materials roadmap.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fri, R.W.

    Now that analysts have had seven months to ponder the achievements of the Earth Summit, it is time to consider the next step in attaining sustainable development. As the summit revealed, the big issues are formidable - among them, overconsumption in the North, overpopulation in the South, insufficient resource transfers from North to South, and limited resources to devote to global environmental problems. Each of these issues requires a trade-off between long-term global concerns and immediate national interests. Since technological solutions to the dilemma of furthering economic development are neither quick nor cheap, this political reality suggests that progress maymore » hinge on attention to some modest goals. Helping developing countries to define and balance their own economic and environmental priorities, and using these priorities to guide the planning of both public and private sector investments, would be welcome signs of progress. Such feasible and inexpensive assistance would exert useful leverage over the substantial transfers of financial and technological resources that are already taking place, especially in the private sector. Equally encouraging would be growing investments in the development of technology to use natural and environmental resources more efficiently and in creating the market and other institutional mechanisms needed to assure use of these technologies. Efficient resource use may not prove to be a complete answer to the big questions of environment and development, much less one with no regrets. However, it will at least reduce the cost of dealing with the hard issues, and so make them more tractable.« less

  5. Biomedical applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Castles, T. R.

    1971-01-01

    Aerospace technology transfer to biomedical research problems is discussed, including transfer innovations and potential applications. Statistical analysis of the transfer activities and impact is also presented.

  6. Identification of high-level functional/system requirements for future civil transports

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In order to accommodate the rapid growth in commercial aviation throughout the remainder of this century, the Federal Aviation Administration (FAA) is faced with a formidable challenge to upgrade and/or modernize the National Airspace System (NAS) without compromising safety or efficiency. A recurring theme in both the Aviation System Capital Investment Plan (CIP), which has replaced the NAS Plan, and the new FAA Plan for Research, Engineering, and Development (RE&D) rely on the application of new technologies and a greater use of automation. Identifying the high-level functional and system impacts of such modernization efforts on future civil transport operational requirements, particularly in terms of cockpit functionality and information transfer, was the primary objective of this project. The FAA planning documents for the NAS of the 2005 era and beyond were surveyed; major aircraft functional capabilities and system components required for such an operating environment were identified. A hierarchical structured analysis of the information processing and flows emanating from such functional/system components were conducted and the results documented in graphical form depicting the relationships between functions and systems.

  7. Rural hospital information technology implementation for safety and quality improvement: lessons learned.

    PubMed

    Tietze, Mari F; Williams, Josie; Galimbertti, Marisa

    2009-01-01

    This grant involved a hospital collaborative for excellence using information technology over 3-year period. The project activities focused on the improvement of patient care safety and quality in Southern rural and small community hospitals through the use of technology and education. The technology component of the design involved the implementation of a Web-based business analytic tool that allows hospitals to view data, create reports, and analyze their safety and quality data. Through a preimplementation and postimplementation comparative design, the focus of the implementation team was twofold: to recruit participant hospitals and to implement the technology at each of the 66 hospital sites. Rural hospitals were defined as acute care hospitals located in a county with a population of less than 100 000 or a state-administered Critical Access Hospital, making the total study population target 188 hospitals. Lessons learned during the information technology implementation of these hospitals are reflective of the unique culture, financial characteristics, organizational structure, and technology architecture of rural hospitals. Specific steps such as recruitment, information technology assessment, conference calls for project planning, data file extraction and transfer, technology training, use of e-mail, use of telephones, personnel management, and engaging information technology vendors were found to vary greatly among hospitals.

  8. Partnering Events | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  9. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  10. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  11. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  12. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  13. Standards Development Activities at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.

    2003-01-01

    The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.

  14. Maturation of enabling technologies for the next generation reignitable cryogenic upper stage

    NASA Astrophysics Data System (ADS)

    Mueller, Mark

    Following the ESA decision in November 2008, a pre-development phase (Phase 1) of a future evolution of the Ariane 5 launcher (named Ariane 5 Midlife Evolution, A5ME) was started under Astrium Prime leadership. This upgraded version of the Ariane 5 launcher is based on an enhanced performance Upper Stage including the cryogenic re-ignitable VINCI engine. Thanks to this reignition capability, this new Upper Stage shall be "versatile" in the sense that it shall fulfil customer needs on a broader spectrum of orbits than the "standard" orbits (i.e. Geosynchronous Transfer Orbits, GTO) typically used for commercial telecommunications satellites. In order to meet the challenges of versatility, new technologies are currently being investigated. These technologies are mainly related -but not limited-to propellant management during the extended coasting phases with the related heat transfer into the tanks and the required multiple engine re-ignitions. Within the frame of the ESA Future Launchers Preparatory Programme (Period 2 Slice 1), the Cryogenic Upper Stage Technology project (CUST) aims to mature critical technologies to such a Technology Readiness Level (TRL) that they can be integrated into the baseline A5ME Upper Stage development schedule. In addition to A5ME application, these technologies can also be used on the future next generation European launcher. This paper shows the down-selection process implemented to identify the most crucial enabling technologies for a future versatile Upper Stage and gives a description of each technology finally selected for maturation in the frame of CUST. These include -amongst others-a Sandwich Common Bulkhead for the propellant tank, an external thermal insulation kit and various propellant management devices for the coasting phase. The paper also gives an overview on the related development and maturation plan including the tests to be conducted, as well as first results of the maturation activities themselves.

  15. Strategies for Maximizing Successful Drug Substance Technology Transfer Using Engineering, Shake-Down, and Wet Test Runs.

    PubMed

    Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina

    2015-01-01

    The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.

  16. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and "classic" intermaxillary splints to surgical transfer of virtual orthognathic planning.

    PubMed

    Zinser, Max J; Sailer, Hermann F; Ritter, Lutz; Braumann, Bert; Maegele, Marc; Zöller, Joachim E

    2013-12-01

    Advances in computers and imaging have permitted the adoption of 3-dimensional (3D) virtual planning protocols in orthognathic surgery, which may allow a paradigm shift when the virtual planning can be transferred properly. The purpose of this investigation was to compare the versatility and precision of innovative computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints, intraoperative navigation, and "classic" intermaxillary occlusal splints for surgical transfer of virtual orthognathic planning. The protocols consisted of maxillofacial imaging, diagnosis, virtual orthognathic planning, and surgical planning transfer using newly designed CAD/CAM splints (approach A), navigation (approach B), and intermaxillary occlusal splints (approach C). In this prospective observational study, all patients underwent bimaxillary osteotomy. Eight patients were treated using approach A, 10 using approach B, and 12 using approach C. These techniques were evaluated by applying 13 hard and 7 soft tissue parameters to compare the virtual orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry and image fusion (ΔT1 vs T0). The highest precision (ΔT1 vs T0) for the maxillary planning transfer was observed with CAD/CAM splints (<0.23 mm; P > .05) followed by surgical "waferless" navigation (<0.61 mm, P < .05) and classic intermaxillary occlusal splints (<1.1 mm; P < .05). Only the innovative CAD/CAM splints kept the condyles in their central position in the temporomandibular joint. However, no technique enables a precise prediction of the mandible and soft tissue. CAD/CAM splints and surgical navigation provide a reliable, innovative, and precise approach for the transfer of virtual orthognathic planning. These computer-assisted techniques may offer an alternate approach to the use of classic intermaxillary occlusal splints. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Conceptual and empirical themes regarding the design of technology transfer programs : a review of wood utilization research in the United States

    Treesearch

    Paul V. Ellefson; Michael A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt

    2011-01-01

    Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research utilization...

  18. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  19. FY 2004 Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  20. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  1. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  2. Enhancing space transportation: The NASA program to develop electric propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Watkins, Marcus A.; Byers, David C.; Barnett, John W.

    1990-01-01

    The NASA Office of Aeronautics, Exploration, and Technology (OAET) supports a research and technology (R and T) program in electric propulsion to provide the basis for increased performance and life of electric thruster systems which can have a major impact on space system performance, including orbital transfer, stationkeeping, and planetary exploration. The program is oriented toward providing high-performance options that will be applicable to a broad range of near-term and far-term missions and vehicles. The program, which is being conducted through the Jet Propulsion Laboratory (JPL) and Lewis Research Center (LeRC) includes research on resistojet, arcjets, ion engines, magnetoplasmadynamic (MPD) thrusters, and electrodeless thrusters. Planning is also under way for nuclear electric propulsion (NEP) as part of the Space Exploration Initiative (SEI).

  3. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  4. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report

    PubMed Central

    Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2016-01-01

    Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis. PMID:27843356

  5. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report.

    PubMed

    Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2016-01-01

    Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis.

  6. Identifying research needs for wheelchair transfers in the built environment.

    PubMed

    Crytzer, Theresa Marie; Cooper, Rory; Jerome, Genevieve; Koontz, Alicia

    2017-02-01

    The purpose of this study is to describe the results of focus groups held during the Independent Wheelchair Transfer (IWT) Workgroup. The aims were to facilitate exchange of ideas on (1) the impact of the built environment on the wheelchair transfer process within the community (i.e. moving from wheelchair to and from other surfaces (e.g. furniture, toilet seat, bath bench, car seat) to participate in daily activities), (2) wheelchair users' needs during transfers in the built environment, and (3) future research directions. Live web-based conferencing using Adobe Connect technology (Clarix Technologies, Inc., Pittsford, NY) was utilized to conduct three focus groups composed of experts in the field of assistive technology. Investigators independently reviewed focus group meeting transcripts and used qualitative methods to identify main themes. Thirty-one experts in assistive technology and related fields participated in focus groups. Nine main themes were found including the effect of transfer skills training, space considerations in the built environment, wheelchair configuration, and the interaction between the built environment, user preferences, and transfer techniques. All groups raised issues about the transfer process in areas of the built environment with limited access, the effect of wheelchair users' transfer techniques, and user preferences during transfers. The area of independent transfers is multi-faceted and several factors require consideration when contemplating environmental changes to improve accessibility for wheelchair users. Obvious opportunity exists for research which could lead to advances in transfer technology, environments, and techniques for wheelchair users. Implications for Rehabilitation Tremendous opportunities for research collaborations in the field of assistive technology: To develop new terminology to describe wheelchair transfers. To improve the design of the built environment for wheelchair users. To investigate wheelchair transfer training techniques.

  7. Teacher Candidate Technology Integration: For Student Learning or Instruction?

    ERIC Educational Resources Information Center

    Clark, Cynthia; Zhang, Shaoan; Strudler, Neal

    2015-01-01

    Transfer of instructional technology knowledge for student-centered learning by teacher candidates is investigated in this study. Using the transfer of learning theoretical framework, a mixed methods research design was employed to investigate whether secondary teacher candidates were able to transfer the instructional technology knowledge for…

  8. 76 FR 8371 - Notice Correction; Generic Submission of Technology Transfer Center (TTC) External Customer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...

  9. Proceedings: international conference on transfer of forest science knowledge and technology.

    Treesearch

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...

  10. SMART-1: key technologies and autonomy implementations

    NASA Astrophysics Data System (ADS)

    Elfving, A.; Stagnaro, L.; Winton, A.

    2003-01-01

    SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 Science Plan. The main mission objective of SMART-1 is to demonstrate innovative and key technologies for scientific deep-space missions. One of the key technologies is the solar electric propulsion used as primary propulsion. The electric propulsion will be using 1400 W to transfer the 350 kg spacecraft from an Ariane 5 standard GTO to an elliptic Moon polar orbit, 10000×300 km. The total mission time is 24 months including a maximum of 18 months transfer time. The spacecraft development entered the detailed design and implementation phase in October 1999, under the responsibility of the Swedish Space Cooperation as prime contractor, and the flight acceptance is targeted for the 3rd quarter of 2002. The committed total life cost budget is 84 million Euro. Apart from the in-orbit demonstration of electric propulsion as primary propulsion, SMART-1 is implementing many other enabling technologies for deep-space missions such as deep-space transponder with communication in X-band for uplink and in X- and Ka-band for downlink, highly integrated and radiation tolerant microprocessors, FPGAs and memories, high on-board autonomy driven by ground communication only once per 4 days, maximum available power to electric propulsion by centralised and software-controlled power management, minimum propellant consumption through innovative angular momentum management. In addition, the spacecraft avionics design is tailored to the low-cost philosophy by enabling flexible integration of commercial off the shelf (COTS) equipment. The scientific instruments, five in total, support characterisation of the electric propulsion thrust environment during the long transfer phase and detailed imaging and spectroscopy of the lunar surface in visible, infrared and X-ray during the Moon orbiting phase. Several of the instruments implement new enabling technologies, e.g. swept charge devices for the X-ray spectrometer and quarts gratings for the near-infrared reflectance spectrometer. The paper summarises the baseline mission design, the projected scientific and technology output, and describe the spacecraft bus design. The main part of the paper highlights and elaborate on a number of spacecraft bus technologies; the on-board autonomy, the avionics design, and the X/Ka-band transponder.

  11. K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary

    Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of themore » subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to transfer to a separate storage and shipping facility. (6) Handling of vapor, condensate, and other waste streams generated by the process. Each of these steps is discussed in the paper, together with the current state of progress in developing the technology and requirements for continued development. A schematic of the recommended baseline WWO treatment process is given below. (authors)« less

  12. Transfer from primary maternity unit to tertiary hospital in New Zealand - timing, frequency, reasons, urgency and outcomes: Part of the Evaluating Maternity Units study.

    PubMed

    Grigg, Celia P; Tracy, Sally K; Tracy, Mark; Schmied, Virginia; Monk, Amy

    2015-09-01

    to examine the transfers from primary maternity units to a tertiary hospital in New Zealand by describing the frequency, timing, reasons and outcomes of those who had antenatal or pre-admission birthplace plan changes, and transfers in labour or postnatally. mixed methods prospective (concurrent) cohort study, which analysed transfer and clinical outcome data (407 primary unit cohort, 285 tertiary hospital cohort), and data from the six week postpartum survey (571 respondents). well, pregnant women booked to give birth in a tertiary maternity hospital or primary maternity unit in one region in New Zealand (2010-2012). All women received midwifery continuity of care, regardless of their intended or actual birthplace. fewer than half of the women who planned a primary unit birth gave birth there (191 or 46.9%). A change of plan may have been made either antenatally or before admission in labour; and transfers were made after admission to the primary unit in labour or during the postnatal stay (about 48 hours). Of the 117 (28.5%) planning a primary unit birth who changed their planned birthplace type antenatally 73 (62.4%) were due to a clinical indication. Earthquakes accounted for 28.1% of birthplace change (during the research period major earthquakes occurred in the study region). Most (73.8%) labour changes occurred before admission in labour to the primary unit. For the 76 women who changed plan at this stage the most common reasons to do so were a rapid labour (25.0%) or prolonged rupture of membranes (23.7%). Transfers in labour from primary unit to tertiary hospital occurred for 27 women (12.6%) of whom 26 (96.3%) were having their first baby. "Slow progress" of labour accounted for 21 (77.8%) of these and 17 (62.9%) were classified as 'non-emergency'. The average transfer time for 'emergency' transfers was 58 minutes. The average time for all labour transfers from specialist consultation to birth was 4.5 hours. Nine postnatal transfers (maternal or neonatal) from a primary unit occurred (4.7%), making a total post-admission transfer rate of 17.3% for the primary unit cohort. birthplace changes were not uncommon, with many women changing their birthplace plan antenatally or prior to admission in labour and some transferring between facilities during or soon after birth. Most changes were due to the development of complications or 'risk factors'. Most transfers were not urgent and took approximately one hour from the decision to arrival at the tertiary hospital. Despite the transfers the neonatal clinical outcomes were comparable between both primary and tertiary cohorts, and there was higher maternal morbidity in the tertiary cohort. although the study size is relatively small, its comprehensive documentation of transfers has the potential to inform future research and the birthplace decision-making of childbearing women and midwives. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    .... National Technology Transfer and Advancement Act Section 12(d) of the National Technology Transfer and... information claimed to be confidential business information (CBI) or other information whose disclosure is... That Significantly Affect Energy Supply, Distribution, or Use I. National Technology Transfer and...

  14. Technology Transfer: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Sovel, M. Terry

    This bibliography of 428 items, a product of the NASA-sponsored Project for the Analysis of Technology Transfer (PATT) at the University of Denver's Research Institute (DRI), is the initial attempt at compiling a comprehensive listing on the subject of technology transfer. The bibliography is further concerned with information which leads to a…

  15. Food irradiation: Technology transfer in Asia, practical experiences

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  16. Societal and economic valuation of technology-transfer deals

    NASA Astrophysics Data System (ADS)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  17. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  18. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  19. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  20. The Diffusion of Military Technologies to Foreign Nations: Arms Transfers Can Preserve the Defense Technological and Industrial Base

    DTIC Science & Technology

    1995-06-01

    required, the Defense Technology Security Administration ( DTSA ) will make a determination on whether or not advanced technologies are being risked by the...sale or transfer of that product. DTSA has this role whether it is a commercial or government-to-government transfer. The Joint Chiefs of Staff also...Office of Defense Relations Security Assistance DSAA Defense Security Assistance Agency DTIB Defense Technological and Industrial Base DTSA Defense

Top