Technology transfer for adaptation
NASA Astrophysics Data System (ADS)
Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia
2014-09-01
Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.
Technology transfer to a developing nation, Korea
NASA Technical Reports Server (NTRS)
Stone, C. A.; Uccetta, S. J.
1973-01-01
An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.
Food irradiation: Technology transfer in Asia, practical experiences
NASA Astrophysics Data System (ADS)
Kunstadt, Peter; Eng, P.
1993-10-01
Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.
Innovative technology transfer of nondestructive evaluation research
Brian Brashaw; Robert J. Ross; Xiping Wang
2008-01-01
Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...
Urban development applications project. Urban technology transfer study
NASA Technical Reports Server (NTRS)
1975-01-01
Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.
Technology transfer in the NASA Ames Advanced Life Support Division
NASA Technical Reports Server (NTRS)
Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul
1992-01-01
This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.
Project for the analysis of technology transfer
NASA Technical Reports Server (NTRS)
Kottenstette, J. P.; Freeman, J. E.; Staskin, E. R.
1971-01-01
The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs.
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
Project financing of district heating/cooling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, R.D.
1986-03-01
Two issues are discussed in detail: the project finance joint venture and technology transfers. An increase if the frequency of these issues has been served in project financings. An understanding of these issues is necessary to structure project financings of alternate energy projects in the future. Capitalization needs are outlined, and typical provisions of a joint finance structure are outlined. The issue of exclusivity as it applies to technology transfers is discussed.
NASA Technical Reports Server (NTRS)
Bush, Harold
1991-01-01
Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.
Development of Technology Transfer Economic Growth Metrics
NASA Technical Reports Server (NTRS)
Mastrangelo, Christina M.
1998-01-01
The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.
1995-09-01
transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the
Documentation requirements for Applications Systems Verification and Transfer projects (ASVTs)
NASA Technical Reports Server (NTRS)
Suchy, J. T.
1977-01-01
NASA's Application Systems Verification and Transfer Projects (ASVTs) are deliberate efforts to facilitate the transfer of applications of NASA-developed space technology to users such as federal agencies, state and local governments, regional planning groups, public service institutions, and private industry. This study focused on the role of documentation in facilitating technology transfer both to primary users identified during project planning and to others with similar information needs. It was understood that documentation can be used effectively when it is combined with informal (primarily verbal) communication within each user community and with other formal techniques such as organized demonstrations and training programs. Documentation examples from eight ASVT projects and one potential project were examined to give scope to the investigation.
NASA technology utilization applications. [transfer of medical sciences
NASA Technical Reports Server (NTRS)
1973-01-01
The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.
Advanced Air Transportation Technologies Project, Final Document Collection
NASA Technical Reports Server (NTRS)
Mogford, Richard H.; Wold, Sheryl (Editor)
2008-01-01
This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.
Centre of IT Excellence for SMEs in the West Midlands, UK: A Suitable Project Methodology
ERIC Educational Resources Information Center
Thompson, Diana; Homer, Garry
2005-01-01
This paper presents an analysis of the IT Futures Centre, a European technology transfer project based at the University of Wolverhampton in the UK. After reviewing UK government policy in technology transfer, the authors highlight the project's two key elements--a new state-of-the-art building and an IT consultancy team--both of which are…
Terrestrial applications from space technology
NASA Technical Reports Server (NTRS)
Clarks, H.
1985-01-01
NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.
Users speak out on technology deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Mark; Prochaska, Marty; Cromer, Paul
2001-02-25
This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...
Software Technology Transfer and Export Control.
1981-01-01
development projects of their own. By analogy, a Soviet team might be able to repeat the learning experience of the ADEPT-50 junior staff...recommendations concerning product form and further study . The posture of this group has been to consider software technology and its transfer as a process...and views of the Software Subgroup of Technical Working Group 7 (Computers) of the Critical Technologies Project . The work reported
Technology Transfer: A Selected Bibliography.
ERIC Educational Resources Information Center
Sovel, M. Terry
This bibliography of 428 items, a product of the NASA-sponsored Project for the Analysis of Technology Transfer (PATT) at the University of Denver's Research Institute (DRI), is the initial attempt at compiling a comprehensive listing on the subject of technology transfer. The bibliography is further concerned with information which leads to a…
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.
2014-01-01
In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.
Optimizing Outcome in the University-Industry Technology Transfer Projects
NASA Astrophysics Data System (ADS)
Alavi, Hamed; Hąbek, Patrycja
2016-06-01
Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in University- Firm Technology Transfer process?
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.
2014-01-01
This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).
NASA Technical Reports Server (NTRS)
Root, Ralph; Wickland, Diane
2001-01-01
In 1997 the Office of Biological Informatics and Outreach (OBIO), Biological Resources Division, US Geological Survey and NASA, Office of Earth Science (OES), initiated a coordinated effort for applying Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data and analysis, as a technology transfer project, to critical DOI environmental issues in four study sites throughout the United States. This work was accomplished by four US Department of the Interior (DOI) study teams with support from NASA/OES principal investigators and the Office of Earth Science programs. The studies, including personnel, objectives, background, project plans, and milestones were documented in a project website at
Project Trans(m)it: Creating Dance Collaboratively via Technology--A Best Practices Overview
ERIC Educational Resources Information Center
Weber, Rebecca; Mizanty, Megan; Allen, Lora
2017-01-01
Project Trans(m)it is a collaborative research project among a cohort of intercontinental artists exploring dance creation via technological platforms. This paper seeks to disseminate our practice-led research findings on "best practices" for transferring embodied information via technology, as well as posit how technology will shape and…
The process for technology transfer in Baltimore
NASA Technical Reports Server (NTRS)
Golden, T. S.
1978-01-01
Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.
IPAD: A unique approach to government/industry cooperation for technology development and transfer
NASA Technical Reports Server (NTRS)
Fulton, Robert E.; Salley, George C.
1985-01-01
A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.
Collaborating with EPA through the Federal Technology Transfer Act
Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.
The evaluation of OSTA's APT and ASVT programs
NASA Technical Reports Server (NTRS)
1981-01-01
The results of an evaluation of NASA's Applications Pilot Test (APT) and Applications System Verification and Transfer (AVST) Programs are presented. These programs sponsor cooperative projects between NASA and potential users of remote sensing (primarily LANDSAT) technology from federal and state government and the private sector. Fifteen specific projects, seven APT's and eight ASVT's, are examined as mechanisms for technology development, test, and transfer by comparing their results against stated objectives. Interviews with project managers from NASA field centers and user agency representatives provide the basis for project evaluation from NASA and user perspectives.
Distance technology transfer course content development.
DOT National Transportation Integrated Search
2013-06-01
The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.
The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects
ERIC Educational Resources Information Center
Tang, Tian; Popp, David
2016-01-01
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
Software Engineering Research/Developer Collaborations in 2005
NASA Technical Reports Server (NTRS)
Pressburger, Tom
2006-01-01
In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.
Risk Management in Biologics Technology Transfer.
Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek
Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.
Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Spray
2007-09-30
The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less
1999-01-01
In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Based on Project Orion, an interplanetary vehicle using pulsed fission propulsion would incorporate modern technologies for momentum transfer, thermal management, and habitation design.
EPA has developed a technology transfer handbook for the EMPACT MYSound Project. The handbook highlights information and monitoring technologies developed from the EMPACT Long Island Sound Marine Monitoring (MYSound) Project. As part of the MYSound effort, telemetering data-buoys...
DEVELOPMENT OF TECHNOLOGY TRANSFER PRODUCTS FOR THE EPA EMPACT PROGRAM
A presentation was given for a National Satellite Broadcast on the development of technology transfer handbooks for the EMPACT program. These handbooks help spread the knowledge and experience developed from the EMPACT projects. Handbooks are being prepared for every fully implem...
Technology Transfer in Integrated Forest Pest Management in the South
Gerard D. Hertel; Susan J. Branham; Kenneth M. Swain; [Editors
1985-01-01
A synopsis of the technology transfer activities of the Forest Service's Integrated Pest Management Research, Development and Applications Program for Bark Beetles of Southern Pines, and the Southern Region, 1980-85, with emphasis on State demonstration projects and user involvement.
Active nursery projects at the Missoula Technology and Development Center
Brian Vachowski
2005-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) provides technical expertise, new equipment prototypes, and technology transfer services to Federal, State, and cooperator forest tree seedling nursery managers. Current projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, soil...
Selected nursery projects at the Missoula Technology and Development Center
Brian Vachowski
2007-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to federal, state, and private forest nurseries. Current and recently completed projects at MTDC include a container block steam sterilizer, shielded herbicide sprayer, time-domain reflectometry (TDR) nursery soil...
Electronic Data Interchange: Using Technology to Exchange Transcripts.
ERIC Educational Resources Information Center
Stewart, John T.
1994-01-01
Describes the Florida Automated System for Transferring Educational Records (FASTER) project, which permits the electronic exchange of student transcripts; uses of similar electronic data interchange (EDI) programs in other states; and the national SPEEDE/ExPRESS project, which uses a standard format for transferring electronic transcripts.…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,
Brian Vachowski
2006-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to Federal, State, and private forest nurseries. Current and recently completed projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, electronic soil...
Collected Papers on Wind Turbine Technology
NASA Technical Reports Server (NTRS)
Spera, David A. (Editor)
1995-01-01
R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.
Research review for information management
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1988-01-01
The goal of RICIS research in information management is to apply currently available technology to existing problems in information management. Research projects include the following: the Space Business Research Center (SBRC), the Management Information and Decision Support Environment (MIDSE), and the investigation of visual interface technology. Several additional projects issued reports. New projects include the following: (1) the AdaNET project to develop a technology transfer network for software engineering and the Ada programming language; and (2) work on designing a communication system for the Space Station Project Office at JSC. The central aim of all projects is to use information technology to help people work more productively.
Social Benefits of Space Spin-Offs: An Introduction
NASA Technical Reports Server (NTRS)
Cheeks, Nona
2005-01-01
This PowerPoint presentation defines technology transfer and discusses spin-out/off pros/cons involving whether to include a project within NASA or to contract outside NASA. The author discusses what would making the technology transfer happen by suggesting to evaluate NASA technologies/needs and find partners with ability to do business with NASA. The presentation concludes with recent Goddard successes.
DOT National Transportation Integrated Search
1999-05-01
The purpose of this project is to provide TxDOT with an improved procedure for conducting environmental site investigations at various stages during transportation infrastructure development. The project seeks to identify modern assessment technologi...
Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
2002-01-01
This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.
2014-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.
2013-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).
Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole
NASA Astrophysics Data System (ADS)
Liu, Shuang; Ma, Yan-Zhen; Yang, Yun-Fan; Liu, Song-Song; Li, Yong-Qing; Song, Yu-Zhi
2018-02-01
Not Available Project supported by the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J17KA186), the Taishan Scholar Project of Shandong Province, China, the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540408), and the Science and Technology Plan Project of Shenyang City, China (Grant No. 17-231-1-06).
Bob Simonson
2011-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to federal, state, and private forest nurseries. Current and recently completed projects at MTDC include a front and mid-mount tractor evaluation, ATV-pulled mechanical tree planter, greenhouse snow remover, freeze...
Technology transfer from NASA to targeted industries, volume 2
NASA Technical Reports Server (NTRS)
Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl
1993-01-01
This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.
ERIC Educational Resources Information Center
Emerson, Susan Vince; And Others
Third World libraries, as a rule, receive information technology, technical assistance, and training as part of international development projects. Library improvements and their intended objective, information transfer, are more effective and lasting if key administrative and policy issues are addressed by the projects. Critical success factors…
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-01-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-02-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
Fiehe, Sandra; Wagner, Georg; Schlanstein, Peter; Rosefort, Christiane; Kopp, Rüdger; Bensberg, Ralf; Knipp, Peter; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta
2014-04-01
The ultimate objective of university research and development projects is usually to create knowledge, but also to successfully transfer results to industry for subsequent marketing. We hypothesized that the university technology transfer requires efficient measures to improve this important step. Besides good scientific practice, foresighted and industry-specific adapted documentation of research processes in terms of a quality management system might improve the technology transfer. In order to bridge the gap between research institute and cooperating industry, a model project has been accompanied by a project specific amount of quality management. However, such a system had to remain manageable and must not constrain the researchers' creativity. Moreover, topics and research team are strongly interdisciplinary, which entails difficulties regarding communication because of different perspectives and terminology. In parallel to the technical work of the model project, an adaptable quality management system with a quality manual, defined procedures, and forms and documents accompanying the research, development and validation was implemented. After process acquisition and analysis the appropriate amount of management for the model project was identified by a self-developed rating system considering project characteristics like size, innovation, stakeholders, interdisciplinarity, etc. Employees were trained according to their needs. The management was supported and the technical documentation was optimized. Finally, the quality management system has been transferred successfully to further projects.
Software Engineering Research/Developer Collaborations in 2004 (C104)
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Markosian, Lawrance
2005-01-01
In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.
Johnson Space Center Research and Technology 1997 Annual Report
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.
On transferring the grid technology to the biomedical community.
Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto
2010-01-01
Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".
Technology transfer program: Perspective
NASA Technical Reports Server (NTRS)
Toyshov, A. J.
1981-01-01
Most of NASA's technology transfer activities are in the area of land use (development, suitability, and planning); forestry (including wildlife and range and vegetation inventories) agriculture related activities; and water resources. The technology dissemination function is exercised through three regional applications centers which are involved in 91 applications projects within 22 states. In addition there are approximately eight application system verification transfer (ASVT) projects, 21 university applications branches, institutionalized liason activities with public interest groups, and user requirements activities. As the result of budget cuts, the ASVT and user requirements and awareness programs are to be phased out at the end of FY81. The university applications programs are to be phased down and terminated by 1985. NASA will continue to work with the user more in an R & D and an applications development capacity, and not in a national scale or administrative way.
Overview 1993: Computational applications
NASA Technical Reports Server (NTRS)
Benek, John A.
1993-01-01
Computational applications include projects that apply or develop computationally intensive computer programs. Such programs typically require supercomputers to obtain solutions in a timely fashion. This report describes two CSTAR projects involving Computational Fluid Dynamics (CFD) technology. The first, the Parallel Processing Initiative, is a joint development effort and the second, the Chimera Technology Development, is a transfer of government developed technology to American industry.
NASA Langley Research and Technology-Transfer Program in Formal Methods
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.
1995-01-01
This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.
Aeronautics systems technology studies
NASA Technical Reports Server (NTRS)
Bauchspies, J. S.
1983-01-01
Data collection and analysis in the areas of air transportation, aircraft manufacturing and sales, airline operations, market projections, internal trade, and energy consumption; legislation and regulations, technology needs; surveys; decision-making; cost analyses; and technology transfer are discussed.
NASA's Chemical Transfer Propulsion Program for Pathfinder
NASA Technical Reports Server (NTRS)
Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.
1989-01-01
Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.
Formal methods technology transfer: Some lessons learned
NASA Technical Reports Server (NTRS)
Hamilton, David
1992-01-01
IBM has a long history in the application of formal methods to software development and verification. There have been many successes in the development of methods, tools and training to support formal methods. And formal methods have been very successful on several projects. However, the use of formal methods has not been as widespread as hoped. This presentation summarizes several approaches that have been taken to encourage more widespread use of formal methods, and discusses the results so far. The basic problem is one of technology transfer, which is a very difficult problem. It is even more difficult for formal methods. General problems of technology transfer, especially the transfer of formal methods technology, are also discussed. Finally, some prospects for the future are mentioned.
PenMap demonstration project, landslide mapping system
DOT National Transportation Integrated Search
2002-12-01
This report documents the findings of a technology transfer project to demonstrate the effectiveness of a portable field mapping system to landslide field reconnaissance work. The objective of this project was to expose the latest field data collecti...
Toward equality of biodiversity knowledge through technology transfer.
Böhm, Monika; Collen, Ben
2015-10-01
To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation. © 2015 Society for Conservation Biology.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.
1992-01-01
Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.
Urban construction and safety project
NASA Technical Reports Server (NTRS)
1975-01-01
The purpose and functions of NASA technology applications temas (TAT) are described, with emphasis on the activities of the Urban and Construction and Safety Project. The transfer and implementation of technology is discussed in five activities. Topics include: flat conductor cable, NASA house and compendium, flood insurance studies, tornado studies, and the controller for stationary diesels.
NASA Technology Transfer - Human Robot Teaming
2016-12-23
Produced for Intelligent Robotics Group to show at January 2017 Consumer Electronics Show (CES). Highlights development of VERVE (Visual Environment for Remote Virtual Exploration) software used on K-10, K-REX, SPHERES and AstroBee projects for 3D awareness. Also mentions transfer of software to Nissan for their development in their Autonomous Vehicle project. Video includes Nissan's self-driving car around NASA Ames.
PowerSat: A technology demonstration of a solar power satellite
NASA Technical Reports Server (NTRS)
Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar
1994-01-01
PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.
ERIC Educational Resources Information Center
Haverland, Edgar M.
The report describes a project designed to facilitate the transfer and utilization of training technology by developing a model for evaluating training approaches or innovtions in relation to the requirements, resources, and constraints of specific training settings. The model consists of two parallel sets of open-ended questions--one set…
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.
Beurret, Michel; Hamidi, Ahd; Kreeftenberg, Hans
2012-07-13
This paper describes the development of a Haemophilus influenzae type b (Hib) conjugate vaccine at the National Institute for Public Health and the Environment/Netherlands Vaccine Institute (RIVM/NVI, Bilthoven, The Netherlands), and the subsequent transfer of its production process to manufacturers in developing countries. In 1998, at the outset of the project, the majority of the world's children were not immunized against Hib because of the high price and limited supply of the conjugate vaccines, due partly to the fact that local manufacturers in developing countries did not master the Hib conjugate production technology. To address this problem, the RIVM/NVI has developed a robust Hib conjugate vaccine production process based on a proven model, and transferred this technology to several partners in India, Indonesia, Korea and China. As a result, emerging manufacturers in developing countries acquired modern technologies previously unavailable to them. This has in turn facilitated their approach to producing other conjugate vaccines. As an additional spin-off from the project, a World Health Organization (WHO) Hib quality control (QC) course was designed and conducted at the RIVM/NVI, resulting in an increased regulatory capacity for conjugate vaccines in developing countries at the National Regulatory Authority (NRA) level. For the local populations, this has translated into an increased and sustainable supply of affordable Hib conjugate-containing combination vaccines. During the course of this project, developing countries have demonstrated their ability to produce large quantities of high-quality modern vaccines after a successful transfer of the technology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cast Metals Coalition Technology Transfer and Program Management Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwyn, Mike
2009-03-31
The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less
NASA Technical Reports Server (NTRS)
Esgar, J. B.; Sokolowski, Daniel E.
1989-01-01
The Hot Section Technology (HOST) Project, which was initiated by NASA Lewis Research Center in 1980 and concluded in 1987, was aimed at improving advanced aircraft engine hot section durability through better technical understanding and more accurate design analysis capability. The project was a multidisciplinary, multiorganizational, focused research effort that involved 21 organizations and 70 research and technology activities and generated approximately 250 research reports. No major hardware was developed. To evaluate whether HOST had a significant impact on the overall aircraft engine industry in the development of new engines, interviews were conducted with 41 participants in the project to obtain their views. The summarized results of these interviews are presented. Emphasis is placed on results relative to three-dimensional inelastic structural analysis, thermomechanical fatigue testing, constitutive modeling, combustor aerothermal modeling, turbine heat transfer, protective coatings, computer codes, improved engine design capability, reduced engine development costs, and the impacts on technology transfer and the industry-government partnership.
Cryogenic Fluid Management Technology for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.
2010-01-01
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Disability Rehabilitation Research Project AGENCY: Office of Special Education and... Research Project (DRRP) on Knowledge Translation for Technology Transfer under the Disability and...
Bringing space technology down to earth
NASA Technical Reports Server (NTRS)
Gray, E. Z.
1974-01-01
The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.
Overview of criminal justice projects at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, D.D.
1995-07-01
The criminal justice projects at SNL include three projects for the National Institute of Justice (smart gun, restraining foam, aqueous foam, corrections perimeter), a Southwest Border study, and one involving corrections agencies. It is concluded that the national technologies developed to protect nuclear and other high value assets have enormous potential for application to crime and personal safety; the difficulty lies in simplifying the technology transfer and making the new systems affordable.
Excursions in technology policy
NASA Technical Reports Server (NTRS)
Archibald, Robert B.
1995-01-01
This technical report presents a summary of three distinct projects: (1) Measuring economic benefits; (2) Evaluating the SBIR program; and (3) A model for evaluating changes in support for science and technology. the first project deals with the Technology Applications Group (TAG) at NASA Langley Research Center. The mission of TAG is to assist firms interested in commercializing technologies. TAG is a relatively new group as is the emphasis on technology commercialization for NASA. One problem faced by TAG and similar groups at other centers is measuring their effectiveness. The first project this summer, a paper entitled, 'Measuring the Economic Benefits of Technology Transfer from a National Laboratory: A Primer,' focused on this measurement problem. We found that the existing studies of the impact of technology transfer on the economy were conceptually flawed. The 'primer' outlines the appropriate theoretical framework for measuring the economic benefits of technology transfer. The second project discusses, one of the programs of TAG, the Small Business Innovation Research (SBIR) program. This program has led to over 400 contracts with Small Business since its inception in 1985. The program has never been evaluated. Crucial questions such as those about the extent of commercial successes from the contracts need to be answered. This summer we designed and implemented a performance evaluation survey instrument. The analysis of the data will take place in the fall. The discussion of the third project focuses on a model for evaluating changes in support for science and technology. At present several powerful forces are combining to change the environment for science and technology policy. The end of the cold war eliminated the rationale for federal support for many projects. The new- found Congressional conviction to balance the budget without tax increases combined with demographic changes which automatically increase spending for some politically popular programs will make it difficult to find funding for science and technology. Also, the two political parties have very different conceptions of the appropriate future for research and development spending. All these changes create the potential for serious, perhaps unintended, consequences for the economic future of the country. In a paper entitled, 'A Conceptual Framework for Evaluating the Impact of Changes in Federal Support for Science and Technology,' we introduce a model to evaluate the effects of changes in federal spending for science and technology. This paper both provides a way of organizing informed discussions and points out important research topics for science and technology policy.
Cooperative research and development agreements at METC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlow, J.C.; Jarr, L.A.; Anderson, R.J.
1995-06-01
The Federal Technology Transfer Act of 1986 (P.L. 99-502) provided a new mechanism for joint research between private parties and the Morgantown Energy Technology Center (METC). Joint projects under this law are called Cooperative Research And Development Agreements (CRADAs) and are simply agreements between METC and the private sector to work together on a mutually beneficial project. Of primary interest to METC is the development and deployment of: (1) clean, efficient power generation technologies, (2) technologies for the characterization and exploitation of the Nation`s natural gas resource, and (3) environmental remediation technologies.
Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC
NASA Astrophysics Data System (ADS)
Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.
2010-04-01
The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.
Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H
2014-07-16
The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George
2015-03-11
Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less
EPA has developed a technology transfer handbook for the EMPACT Paso del Norte Project. The EMPACT Paso del Norte Environmental Monitoring Project is a mobile vehicle emissions project that involves the international community of El Paso, TX; Sundland Park, NM; and Juarez, Mexico...
International contributions to IAEA-NEA heat transfer databases for supercritical fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. K. H.; Yamada, K.
2012-07-01
An IAEA Coordinated Research Project on 'Heat Transfer Behaviour and Thermohydraulics Code Testing for SCWRs' is being conducted to facilitate collaboration and interaction among participants from 15 organizations. While the project covers several key technology areas relevant to the development of SCWR concepts, it focuses mainly on the heat transfer aspect, which has been identified as the most challenging. Through the collaborating effort, large heat-transfer databases have been compiled for supercritical water and surrogate fluids in tubes, annuli, and bundle subassemblies of various orientations over a wide range of flow conditions. Assessments of several supercritical heat-transfer correlations were performed usingmore » the complied databases. The assessment results are presented. (authors)« less
Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto
2010-01-01
Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".
Status of ERA Vehicle System Integration Technology Demonstrators
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell
2015-01-01
The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.
MHD technology transfer, integration, and review committee
NASA Astrophysics Data System (ADS)
1990-05-01
As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.
ERIC Educational Resources Information Center
Beverly, James E.; Xue, Lan; Lee, Chung-Shing
1996-01-01
Reports on the use of the Internet and World Wide Web as a virtual technology market (VTM) for information and technology transfer. The project focuses on creating awareness of technology demand (problems) and linking it to technology supply (solutions) in the field of particle technology and multiphase processes in the chemical industry. Benefits…
NASA technology applications team: Applications of aerospace technology
NASA Technical Reports Server (NTRS)
1993-01-01
This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.
Orbital transfer vehicle studies overview
NASA Technical Reports Server (NTRS)
Perkinson, Don
1987-01-01
An overview is given in viewgraph form of orbital transfer vehicle concept definition and systems analysis studies. Project development flow charts are shown for key milestones from 1985 until 1997. Diagrams of vehicles are given. Information is presented in outline form on technology requirements, cooling of propellant tanks, cryogenic fluid management, quick connect/disconnect fluid interfaces and propellant mass transfer.
Food irradiation: Technology transfer to developing countries
NASA Astrophysics Data System (ADS)
Kunstadt, Peter
This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand by also in the ASEAN region.
Issues in NASA program and project management. Special report: 1995 conference
NASA Technical Reports Server (NTRS)
Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)
1995-01-01
This volume is the tenth in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1996 Conference as follows: international partnerships; industry/interagency collaboration; technology transfer; and project management development process. A section on resources for NASA managers rounds out the publication.
USDA area-wide project for annual grasses: outcomes and impacts
USDA-ARS?s Scientific Manuscript database
This document provides a record of the research, outreach, education and technology transfer that was completed as part of the area-wide project for invasive annual grasses from 2007-2012. The overall goal of the project was to catalyze a holistic integrated management program for invasive annual g...
[Radiation Tolerant Electronics
NASA Technical Reports Server (NTRS)
1996-01-01
Research work in the providing radiation tolerant electronics to NASA and the commercial sector is reported herein. There are four major sections to this report: (1) Special purpose VLSI technology section discusses the status of the VLSI projects as well as the new background technologies that have been developed; (2) Lossless data compression results provide the background and direction of new data compression pursued under this grant; (3) Commercial technology transfer presents an itemization of the commercial technology transfer; and (4) Delivery of VLSI to the Government is a solution and progress report that shows how the Government and Government contractors are gaining access to the technology that has been developed by the MRC.
EPA has developed a technology transfer document (case-study) for the EMPACT Syracuse Lead Dust Project. The Lead Dust Project is designed to measure the lead dust content in homes and public buildings within the City of Syracuse, NY. The project also contains an educational comp...
ERIC Educational Resources Information Center
Collict, George
In 1990, the New Jersey Department of Education awarded the Randolph Township Board of Education a grant to evaluate the effectiveness of an existing technology learning activity called the "Magic Box", as part of the Teacher Developed Technology Education for the Nineties grant project. This document is comprised of three publications:…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, Omer N.; Gill, Zach
Overarching objective of this project is to reduce the size, weight and thermal losses from high temperature solar receivers by the application on microchannel heat transfer technology to solar receiver design.
NRMRL/TTSD CUSTOMER SATISFACTION FOCUS GROUP
TTB uses a variety of technology transfer products and tools to communicate risk and information about technologies and research. TTB has begun a project to use EPA's generic Customer Satisfaction Survey Information Collection Request (ICR) to determine satisfaction with their pr...
Technology Base Research Project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, K.
1985-06-01
The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.
NASA Technical Reports Server (NTRS)
Haggerty, James J.
1987-01-01
Various current or forthcoming NASA projects and experiments with potential for technology spinoff are described. NASA technological advances with existing commercial applications are outlined in the following areas: transportation; consumer; home; and recreation; medicine; resources management; energy; public safety; and manufacturing technology and industrial productivity. Specific systems, devices, and equipment are described. A concluding essay describes the NASA technology utilization/transfer effort.
Building Technological Capability within Satellite Programs in Developing Countries
NASA Astrophysics Data System (ADS)
Wood, Danielle Renee
Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. They sometimes pursue this via collaborative satellite development projects with foreign firms that provide training. This phenomenon of collaborative satellite development projects is poorly understood by researchers of technological learning and technology transfer. The approach has potential to facilitate learning, but there are also challenges due to misaligned incentives and the tacit nature of the technology. Perspectives from literature on Technological Learning, Technology Transfer, Complex Product Systems and Product Delivery provide useful but incomplete insight for decision makers in such projects. This work seeks a deeper understanding of capability building through collaborative technology projects by conceiving of the projects as complex, socio-technical systems with architectures. The architecture of a system is the assignment of form to execute a function along a series of dimensions. The research questions explore the architecture of collaborative satellite projects, the nature of capability building during such projects, and the relationship between architecture and capability building. The research design uses inductive, exploratory case studies to investigate six collaborative satellite development projects. Data collection harnesses international field work driven by interviews, observation, and documents. The data analysis develops structured narratives, architectural comparison and capability building assessment. The architectural comparison reveals substantial variation in project implementation, especially in the areas of project initiation, technical specifications of the satellite, training approaches and the supplier selection process. The individual capability building assessment shows that most trainee engineers gradually progressed from no experience with satellites through theoretical training to supervised experience; a minority achieved independent experience. At the organizational level, the emerging space organizations achieved high levels of autonomy in project definition and satellite operation, but they were dependent on foreign firms for satellite design, manufacture, test and launch. The case studies can be summarized by three archetypal projects defined as "Politically Pushed," "Structured," and "Risk Taking." Countries in the case studies tended to start in a Politically Pushed mode, and then moved into either Structured or Risk Taking mode. Decision makers in emerging satellite programs can use the results of this dissertation to consider the broad set of architectural options for capability building. Future work will continue to probe how specific architectural decisions impact capability building outcomes in satellite projects and other technologies. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1996-01-01
In fiscal year 1994, the United States government spent about $68 billion for science and technology. Although there is general agreement among policy makers that the results of this expenditure can be used to enhance technological innovation and improve economic competitiveness, there is no coherent scientific and technical information (STI) policy. The absence of a cohesive policy and STI policy framework means that the transfer and utilization of STI goes uncoordinated. This chapter examines the U.S. government's role in funding science and technology, reviews Federal STI activities and involvement in the transfer and use of STI resulting from federally-funded science and technology, presents issues surrounding the use of federally-funded STI, and offers recommendations for improving the transfer and use of STI.
Sandia National Laboratories: Sandia National Laboratories: Missions:
Transfer Browse Technology Portfolios Technology Partnerships Business, Industry, & Non-Profits Agreements Cooperative Research and Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal atmospheric flight with emphasis on aerodynamics; navigation, guidance and control; and thermal protection
DOT National Transportation Integrated Search
2006-07-01
The objectives of the peer exchange were to explore: : -Project Selection: Models/modifications that might be considered : -Project Management: Highest value/best use of our two Research Engineers : -Research Implementation: Core Curriculum developme...
NASA Technical Reports Server (NTRS)
Harrington, James L., Jr.
2000-01-01
The Minority University Space Interdisciplinary (MUSPIN) Network project is a comprehensive outreach and education initiative that focuses on the transfer of advanced computer networking technologies and relevant science to Historically Black Colleges and Universities (HBCU's) and Other Minority Universities (OMU's) for supporting multi-disciplinary education research.
Review and assessment of the database and numerical modeling for turbine heat transfer
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Simoneau, R. J.
1989-01-01
The objectives of the NASA Hot Section Technology (HOST) Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2005-11-08
This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.
International Technology Transfer the Rope to Hang the West
1989-03-28
order to provide awareness and appreciation of its importance to the security of the United States. DO R 1473 EOfTION OF V NOV 65 I.; OBSOLETE E - 7I... e Data Eme’e, USAWC MILITARY STUDIES PROGRAM PAPER INTERNATIONAL TECHNOLOGY TRANSFER The Rope To Hang The West AN INDIVIDUAL STUDY PROJECT Intended...notably the Departments of State, Commerce and Defense), and other friendly nations at odds with each other over competing demands and parochial interests
NASA Astrophysics Data System (ADS)
Saavedra-Duarte, L. A.; Angarita-Jerardino, A.; Ruiz, P. A.; Dulce-Moreno, H. J.; Vera-Rivera, F. H.; V-Niño, E. D.
2017-12-01
Information and Communication Technologies (ICT) are essential in the transfer of knowledge, and the Web tools, as part of ICT, are important for institutions seeking greater visibility of the products developed by their researchers. For this reason, we implemented an application that allows the information management of the FORISTOM Foundation (Foundation of Researchers in Science and Technology of Materials). The application shows a detailed description, not only of all its members also of all the scientific production that they carry out, such as technological developments, research projects, articles, presentations, among others. This application can be implemented by other entities committed to the scientific dissemination and transfer of technology and knowledge.
Research in space commercialization, technology transfer, and communications
NASA Technical Reports Server (NTRS)
1982-01-01
Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.
Technology base research project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, Kim
1988-07-01
The progress made by the technology base research (TBR) project for electrochemical energy storage during calendar year 1987 was summarized. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE project (e.g., Sandia National Laboratories' Exploratory Technology Development and Testing Project) for further development and scale-up. Besides LBL, which has overall responsibility for the TBR Project, Los Alamos National Laboratory (LANL), Brookhaven National Laboratory (BNL) and Argonne National Laboratory (ANL) participate in the TBR Project by providing key research support in several of the project elements. The TBR Project consists of three major project elements: exploratory research; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each project element are discussed in the following sections, which also include technical summaries that relate to the individual projects. Financial information that relates to the various projects and a description of the management activities for the TBR Project are described in the Executive Summary.
Initiatives in the Education and Training of Young People.
ERIC Educational Resources Information Center
Lister, Alan, Ed.
1985-01-01
Eight articles on educational technology's application to youth education and training describe United Kingdom's Junior Army leadership skills training; educational technology within Youth Training Scheme (YTS); YTS hotel and catering industry initiatives; Coventry's computer based learning project; cross-cultural courseware transfer; mathematics…
ERIC Educational Resources Information Center
Krutzch, Christine B.; And Others
1987-01-01
A technology transfer project for getting initial community adoption of childhood asthma management programs is described. The evolution of the project, including development of programs, packaging considerations, establishment of partnerships, implementation, and evaluation are discussed. (Author/CH)
NASA Redox system development project status
NASA Technical Reports Server (NTRS)
Nice, A. W.
1981-01-01
NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft
Feasibility Study of Commercial Markets for New Sample Acquisition Devices
NASA Technical Reports Server (NTRS)
Brady, Collin; Coyne, Jim; Bilen, Sven G.; Kisenwether, Liz; Miller, Garry; Mueller, Robert P.; Zacny, Kris
2010-01-01
The NASA Exploration Systems Mission Directorate (ESMD) and Penn State technology commercialization project was designed to assist in the maturation of a NASA SBIR Phase III technology. The project was funded by NASA's ESMD Education group with oversight from the Surface Systems Office at NASA Kennedy Space Center in the Engineering Directorate. Two Penn State engineering student interns managed the project with support from Honeybee Robotics and NASA Kennedy Space Center. The objective was to find an opportunity to integrate SBIR-developed Regolith Extractor and Sampling Technology as the payload for the future Lunar Lander or Rover missions. The team was able to identify two potential Google Lunar X Prize organizations with considerable interest in utilizing regolith acquisition and transfer technology.
The history and nature of the Baltimore applications project
NASA Technical Reports Server (NTRS)
Peake, H. J.
1978-01-01
The Baltimore Applications Project (BAP), an experiment jointly conducted by the City of Baltimore and the National Aeronautics and Space Administration (NASA), was begun in May 1974 in response to a request by the City. The main purpose of the BAP is the identification of technology for beneficial application to the City operations. An independent evaluation, performed after three years of operation, indicates very good project results and confirms the choices of the experiment's basic features. The BAP demonstrates one way to achieve successful intergovernmental transfer of Federal technology.
Automotive Stirling Engine Development Project
NASA Technical Reports Server (NTRS)
Ernst, William D.; Shaltens, Richard K.
1997-01-01
The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.
International Dynamics of U.S. National Defense Acquisition and Budgetary Policy
2012-04-30
budgets have produced innovation is that they are large enough to absorb failures. Alongside those U.S. projects that have produced genuinely helpful...technological paternity. Aside from formal technology transfers, allies emulate many of the promising U.S. projects and organizational innovations they are...Opérations Spéciales in 1992 (Micheletti, 1999; National Audit Office [NAO], 2009). However, the fact that allies selectively adopt U.S. innovations should
Advanced Energy and Water Recovery Technology from Low Grade Waste Heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexin Wang
2011-12-19
The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less
Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linville, B.
This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)
Indexing NASA programs for technology transfer methods development and feasibility
NASA Technical Reports Server (NTRS)
Clingman, W. H.
1972-01-01
This project was undertaken to evaluate the application of a previously developed indexing methodology to ongoing NASA programs. These programs are comprehended by the NASA Program Approval Documents (PADS). Each PAD contains a technical plan for the area it covers. It was proposed that these could be used to generate an index to the complete NASA program. To test this hypothesis two PADS were selected by the NASA Technology Utilization Office for trial indexing. Twenty-five individuals indexed the two PADS using NASA Thesaurus terms. The results demonstrated the feasibility of indexing ongoing NASA programs using PADS as the source of information. The same indexing methodology could be applied to other documents containing a brief description of the technical plan. Results of this project showed that over 85% of the concepts in the technology should be covered by the indexing. Also over 85% of the descriptors chosen would be accurate. This completeness and accuracy for the indexing is considered satisfactory for application in technology transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume covermore » Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank
NASA Technical Reports Server (NTRS)
Werkheiser, Arthur
2015-01-01
The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.
A Sample Handling System for Mars Sample Return - Design and Status
NASA Astrophysics Data System (ADS)
Allouis, E.; Renouf, I.; Deridder, M.; Vrancken, D.; Gelmi, R.; Re, E.
2009-04-01
A mission to return atmosphere and soil samples form the Mars is highly desired by planetary scientists from around the world and space agencies are starting preparation for the launch of a sample return mission in the 2020 timeframe. Such a mission would return approximately 500 grams of atmosphere, rock and soil samples to Earth by 2025. Development of a wide range of new technology will be critical to the successful implementation of such a challenging mission. Technical developments required to realise the mission include guided atmospheric entry, soft landing, sample handling robotics, biological sealing, Mars atmospheric ascent sample rendezvous & capture and Earth return. The European Space Agency has been performing system definition studies along with numerous technology development studies under the framework of the Aurora programme. Within the scope of these activities Astrium has been responsible for defining an overall sample handling architecture in collaboration with European partners (sample acquisition and sample capture, Galileo Avionica; sample containment and automated bio-sealing, Verhaert). Our work has focused on the definition and development of the robotic systems required to move the sample through the transfer chain. This paper presents the Astrium team's high level design for the surface transfer system and the orbiter transfer system. The surface transfer system is envisaged to use two robotic arms of different sizes to allow flexible operations and to enable sample transfer over relatively large distances (~2 to 3 metres): The first to deploy/retract the Drill Assembly used for sample collection, the second for the transfer of the Sample Container (the vessel containing all the collected samples) from the Drill Assembly to the Mars Ascent Vehicle (MAV). The sample transfer actuator also features a complex end-effector for handling the Sample Container. The orbiter transfer system will transfer the Sample Container from the capture mechanism through a bio-sealing system to the Earth Return Capsule (ERC) and has distinctly different requirements from the surface transfer system. The operations required to transfer the samples to the ERC are clearly defined and make use of mechanisms specifically designed for the job rather than robotic arms. Though it is mechanical rather than robotic, the design of the orbiter transfer system is very complex in comparison to most previous missions to fulfil all the scientific and technological requirements. Further mechanisms will be required to lock the samples into the ERC and to close the door at the rear of the ERC through which the samples have been inserted. Having performed this overall definition study, Astrium is now leading the next step of the development of the MSR sample handling: the Mars Surface Sample Transfer and Manipulation project (MSSTM). Organised in two phases, the project will re-evaluate in phase 1 the output of the previous study in the light of new inputs (e.g. addition of a rover) and investigate further the architectures and systems involved in the sample transfer chain while identifying the critical technologies. The second phase of the project will concentrate on the prototyping of a number of these key technologies with the goal of providing an end-to end validation of the surface sample transfer concept.
78 FR 70954 - Transport Format for the Submission of Regulatory Study Data; Notice of Pilot Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... extensible modern technology. SDS XML is an extension of the CDISC Operational Data Model, which is a vendor... many to be an outdated transport technology for transferring data across different hardware and... public meeting was to solicit input from industry, technology vendors, and other members of the public...
Aerospace technology as a source of new ideas.
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1972-01-01
It is shown that technological products and processes resulting from aeronautical and space research and development can be a significant source of new product or product improvement ideas. The problems associated with technology transfer are discussed. As an example, the commercialization of NASTRAN, NASA's structural analysis computer program, is discussed. Some other current application projects are also outlined.
The Continuity Project, Fall 1997 Report.
ERIC Educational Resources Information Center
Wasilko, Peter J.
The Continuity Project is a research, development, and technology transfer initiative aimed at creating a "Library of the Future" by combining features of an online public access catalog (OPAC) and a campus wide information system (CWIS) with advanced facilities drawn from such areas as artificial intelligence (AI), knowledge…
WASH (Water and Sanitation for Health) Rainwater Information Center.
ERIC Educational Resources Information Center
Campbell, D.
1986-01-01
Describes project funded by U.S. Agency for International Development to provide short-term technical assistance (general, technology transfer, institutional development and training, information support) to rural and urban fringe water supply and sanitation projects. Initial steps, special collection, and future components of rainwater network…
Technology Transfer: Marketing Tomorrow's Technology
NASA Technical Reports Server (NTRS)
Tcheng, Erene
1995-01-01
The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers all of the research efforts conducted at Langley, my studies with TAG were ab!e to provide me an excellent overview of Langley's contribution to the aeronautics industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Shawn St.; Farris, Ronald
2014-09-01
Advanced Outage Control Center (AOCC), is a multi-year pilot project targeted at Nuclear Power Plant (NPP) outage improvement. The purpose of this pilot project is to improve management of NPP outages through the development of an AOCC that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report documents the results of a benchmarking effort to evaluate the transferability of technologies demonstrated at Idaho National Laboratory and the primary pilot project partner, Palo Verde Nuclear Generating Station. The initial assumption for this pilot project was that NPPs generally domore » not take advantage of advanced technology to support outage management activities. Several researchers involved in this pilot project have commercial NPP experience and believed that very little technology has been applied towards outage communication and collaboration. To verify that the technology options researched and demonstrated through this pilot project would in fact have broad application for the US commercial nuclear fleet, and to look for additional outage management best practices, LWRS program researchers visited several additional nuclear facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.
The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.; Brown, Scott A.
The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EEREmore » predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.« less
HOST turbine heat transfer program summary
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Simoneau, Robert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding with the remainder going to analytical efforts. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
CPBR's ERTT mission is to support basic biotechnology research and the development of new, commercially valuable technologies supportive of the long-term strategic goals of EPA. The research projects selected will address these goals. It is anticipated that the pro...
NASA Astrophysics Data System (ADS)
Onishi, Yuji
The Ministry of Posts and Telecommunications (MPT), the National Space Development Agency (NASDA), and others have proposed joint space communication experiments based on the Engineering Test Satellite ETS-V. This joint international project is registered as the Peacesat Expansion / Pan-Pacific Information Network at the United Nations Space Agency Forum for the International Space Year. To make the project more recognizable, it was renamed PARTNERS (Pan-Pacific Regional Telecommunication Network Research Satellite) Project. Under the project, researchers in Japan and developing countries will perform experiments aimed at verifying satellite use technologies. The experiments are intended to promote international cooperation by providing an opportunity for technology transfer and exchange.
NASA's Microgravity Technology Report, 1996: Summary of Activities
NASA Technical Reports Server (NTRS)
Kierk, Isabella
1996-01-01
This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.
ERIC Educational Resources Information Center
Smith, Wendy; Smith, Brian C.
2016-01-01
The Maker Movement allows students to strengthen humanistic values through projects and experiences that require the use of their heads, hearts, and hands. Students are introduced to creative technologies that bridge the digital and physical worlds. Through whimsical projects, students take an interest in the concepts and ideas that might normally…
ERIC Educational Resources Information Center
Xu, Qingxing; Liang, Youyun; Tong, Yen Wah; Wang, Chi-Hwa
2010-01-01
A design project that focuses on the subject of controlled-release drug delivery devices is presented for use in an undergraduate course on mass transfer. The purpose of the project is to introduce students to the various technologies used in the fabrication of drug delivery systems and provide a practical design exercise for understanding the…
Chemical Research Projects Office: Functions, accomplishments, and programs
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1972-01-01
The purpose, technical accomplishments, and related activities of the Chemical Research Project Group are outlined. Data cover efforts made to: (1) identify chemical research and technology required for solutions to problems of national urgency, synchronous with aeronautics and space effort; (2) conduct basic and applied interdisciplinary research on chemical problems in the areas of macromolecular science and fire research, and (3) provide productive liason with the engineering community and effective transfer of technology to other agencies and industry.
The Continuity Project. Spring/Summer 1998 Report.
ERIC Educational Resources Information Center
Wasilko, Peter J.
The Continuity Project is a research, development, and technology transfer initiative aimed at creating a Library of the Future by combining features of an online public access catalog (OPAC) and a campuswide information system (CWIS) with advanced facilities drawn from such areas as artificial intelligence (AI), knowledge representation (KR),…
NASA Astrophysics Data System (ADS)
Cristini, Luisa
2017-04-01
Scientific and technological research carried out within universities and public research institutions often involves large collaborations across several countries. Despite the considerable budget (typically millions of Euros), the high expectations (high impact scientific findings, new technological developments and links with policy makers, industry and civil society) and the length of the project over several years, these international projects often rely heavily on the personal skills of the management team (project coordinator, project manager, principal investigators) without a structured, transferable framework. While this approach has become an established practice, it's not ideal and can jeopardise the success of the entire effort with consequences ranging from schedule delays, loss of templates/systems, financial charges and ultimately project failure. In this presentation I will show the advantages of integrating a globally recognised standard for professional project management, such as the PMP® by the Project Management Institute, into academic research. I will cover the project management knowledge areas (integration management, scope management, time management, cost management, quality management, human resources management, risk management, procurement management, and stakeholder management) and the processes within these throughout the phases of the project lifetime (project initiation, planning, executing, monitoring and controlling, and closure). I will show how application of standardised, transferable procedures, developed within the business & administration sector, can benefit academia and more generally scientific research.
Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center
NASA Technical Reports Server (NTRS)
Makufka, David
2010-01-01
This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity
Technology transfer personnel exchange at the Boeing Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.
1993-03-01
The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less
Technology transfer personnel exchange at the Boeing Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.
1993-03-01
The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less
PDF methods for turbulent reactive flows
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1995-01-01
Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.
Technology Applications Team: Applications of aerospace technology
NASA Technical Reports Server (NTRS)
1993-01-01
Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.
From Content to Practice: Sharing Educational Practice in Edu-Sharing
ERIC Educational Resources Information Center
Klebl, Michael; Kramer, Bernd J.; Zobel, Annett
2010-01-01
For technology-enhanced learning, the idea of "learning objects" transfers the technologies of content management, methods of software engineering and principles of open access to educational resources. This paper reports on CampusContent, a research project and competence centre for e-learning at FernUniversitat in Hagen that designed…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).
NASA Technical Reports Server (NTRS)
1976-01-01
Developments in applying aerospace medical technology to the design and production of medical equipment and instrumentation are reported. Projects described include intercranial pressure transducers, leg negative pressure devices, a synthetic speech prosthesis for victims of cerebral palsy, and a Doppler blood flow instrument. Commercialization activities for disseminating and utilizing NASA technology, and new biomedical problem areas are discussed.
The Baltimore applications project: A new look at technology transfer
NASA Technical Reports Server (NTRS)
1977-01-01
The history of cooperation between Goddard Space Flight Center and Baltimore City administrators in solving urban problems is summarized. NASA provided consultation and advisory services as well as technology resources and demonstrations. Research and development programs for 69 tasks are briefly described. Technology utilization for incinerator energy, data collection, Health Department problems, and solarization experiments are presented as case histories.
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2014-01-01
Closing Remarks: ?(1) SmallSats hold significant potential for future low cost high value missions; (2) Propulsion remains a key limiting capability for SmallSats that Iodine can address: High ISP * Density for volume constrained spacecraft; Indefinite quiescence, unpressurized and non-hazardous as a secondary payload; (3) Iodine enables MicroSat and SmallSat maneuverability: Enables transfer into high value orbits, constellation deployment and deorbit; (4) Iodine may enable a new class of planetary and exploration class missions: Enables GTO launched secondary spacecraft to transit to the moon, asteroids, and other interplanetary destinations for approximately 150 million dollars full life cycle cost including the launch; (5) ESPA based OTVs are also volume constrained and a shift from xenon to iodine can significantly increase the transfer vehicle change in volume capability including transfers from GTO to a range of Lunar Orbits; (6) The iSAT project is a fast pace high value iodine Hall technology demonstration mission: Partnership with NASA GRC and NASA MSFC with industry partner - Busek; (7) The iSAT mission is an approved project with PDR in November of 2014 and is targeting a flight opportunity in FY17.
NASA Technical Reports Server (NTRS)
Dodge, J. C.; Vermillion, C. H.
1983-01-01
A description is given of a project to transfer multiple environmental satellite data reception, processing, and interpretation capabilities from the U.S. to Bangladesh. The goal of the project is to improve the management of resources related primarily to agriculture, water development, forestry, and fisheries. It is also hoped to improve the existing cyclone/storm surge warning system. An account is given of the interagency and international cooperation underlying the project. The remote-sensing installation in Dhaka, Bangladesh, is described, and the most likely system applications are summarized. Attention is also given to the special requirements concerning this type of technology transfer, and an assessment is made of the project's practical value to Bangladesh.
Fox, Christopher B; Huynh, Chuong; O'Hara, Michael K; Onu, Adrian
2013-03-15
Many developing countries lack or have inadequate pandemic influenza vaccine manufacturing capacity. In the 2009 H1N1 pandemic, this led to delayed and inadequate vaccine coverage in the developing world. Thus, bolstering developing country influenza vaccine manufacturing capacity is urgently needed. The Cantacuzino Institute in Bucharest, Romania has been producing seasonal influenza vaccine since the 1970s, and has the capacity to produce ∼5 million doses of monovalent vaccine in the event of an influenza pandemic. Inclusion of an adjuvant in the vaccine could enable antigen dose sparing, expanding vaccine coverage and potentially allowing universal vaccination of the Romanian population and possibly neighboring countries. However, adjuvant formulation and manufacturing know-how are difficult to access. This manuscript describes the successful transfer of oil-in-water emulsion adjuvant manufacturing and quality control technologies from the Infectious Disease Research Institute in Seattle, USA to the Cantacuzino Institute. By describing the challenges and accomplishments of the project, it is hoped that the knowledge and experience gained will benefit other institutes involved in similar technology transfer projects designed to facilitate increased vaccine manufacturing capacity in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tahat, Kaher; Whelan, Susan
2015-02-01
In terms of hosting countries perspectives, Foreign Direct Investments (FDI) could have a positive effect on its developing economy, by transferring, both: resources of finance in addition to the international technology (ITT) (Choi, 1997). Multinational companies (MNC) are engaging in the transferring of the new technology, internally as well as licensing older one; they create "Spillover" (Knowledge) for facilitating the transfer of ITT in line with geographical location, period of investment, and the type of industry. Furthermore, the effect of these spillovers depends on the level of transferring this knowledge based on FDI attraction policies of the host country (Huang, 2009). Considering the Arabian Gulf council countries (GCC) as "FDI- rich hosting countries", who are not seeking for financial resources, i.e., they already have a huge financial capacity for funding their different projects, even though FDI has been powerfully presented in GCC . They saw noticeable increases in FDI inflows beginning in 2002, (www.unctad.org.fdistatistics). Therefore by assumption, FDI inflows to GCC could positively affect their economic growth through transferring the advanced technology, in order to build up their level of technology (productivity growth) as well as their economic diversification strategy. If so how this Knowledge could be diffused and measured in order to maximize its benefit and enhancing the productivity growth, and what is the current status of (GCC).
Panoramic projection avionics displays
NASA Astrophysics Data System (ADS)
Kalmanash, Michael H.
2003-09-01
Avionics projection displays are entering production in advanced tactical aircraft. Early adopters of this technology in the avionics community used projection displays to replace or upgrade earlier units incorporating direct-view CRT or AMLCD devices. Typical motivation for these upgrades were the alleviation of performance, cost and display device availability concerns. In these systems, the upgraded (projection) displays were one-for-one form / fit replacements for the earlier units. As projection technology has matured, this situation has begun to evolve. The Lockheed-Martin F-35 is the first program in which the cockpit has been specifically designed to take advantage of one of the more unique capabilities of rear projection display technology, namely the ability to replace multiple small screens with a single large conformal viewing surface in the form of a panoramic display. Other programs are expected to follow, since the panoramic formats enable increased mission effectiveness, reduced cost and greater information transfer to the pilot. Some of the advantages and technical challenges associated with panoramic projection displays for avionics applications are described below.
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator)
1980-01-01
The results achieved during the first eight months of a program to transfer LANDSAT technology to practicing professionals in the private and public sectors (grass roots) through community colleges and other locally available institutions are reported. The approach offers hands-on interactive analysis training and demonstrations through the use of color desktop computer terminals communicating with a host computer by telephone lines. The features of the terminals and associated training materials are reviewed together with plans for their use in training and demonstration projects.
Review and assessment of the database and numerical modeling for turbine heat transfer
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Simoneau, R. J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, M.A.; Cammon, T.J.
1995-09-30
The objective of this project is to increase production from the Cretaceous ``D`` Sand in the Denver-Julesburg (D-J) Basin through geologically targeted infill drilling and improved reservoir management of waterflood operations. This project involves multi-disciplinary reservoir characterization using high-density 3-D seismic, detailed stratigraphy and reservoir simulation studies. Infill drilling, water-injection conversion and recompleting some wells to add short-radius laterals will be based on the results of the reservoir characterization studies. Production response will be evaluated using reservoir simulation and production tests. Technology transfer will utilize workshops, presentations and technical papers which will emphasize the economic advantages of implementing the demonstratedmore » technologies. The success of this project and effective technology transfer should prompt-re-appraisal of older waterflood projects and implementation of new projects in oil provinces such as the D-J Basin. Three wells have been drilled by the project based on 3-D seismic and integrated reservoir characterization study. Oil production has increased in September to 54.0 m{sup 3}/D (340 bopd) after the completion of the SU 21-16-9. Combination-attribute maps from 3-D seismic data closely predicted the net-pay thickness of the new well. Inter-well tracer tests with sodium bromide indicate a high-permeability channel between two wells. An oral presentation was made at the Rocky Mountain AAPG meeting in Reno, NV.« less
NASA Technical Reports Server (NTRS)
Barr, B. G.
1986-01-01
A technology transfer program utilizing graduate students in mechanical engineering at the University of Kansas was initiated in early 1981. The objective of the program was to encourage industrial innovation in the Midwest through improved industry/university cooperation and the utilization of NASA technology. A related and important aspect of the program was the improvement of graduate engineering education through the involvement of students in the identification and accomplishment of technological objectives in cooperation with scientists at NASA centers and engineers in industry. The pilot NASA/University Industrial Innovation Program was an outstanding success based on its ability to: attract top graduate students; secure industry support; and stimulate industry/university cooperation leading to enhanced university capability and utilization of advanced technology by industry.
The USEPA has developed a technology transfer handbook for the EMPACt BirdCast bird migration monitoring project. The document is essentially a "How-To" Handbook that addresses the planning and implementation steps that were needed to develop, operate and maintain a program simil...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-07-01
This report provides an update of the New York State Energy Research and Development Authority (NYSERDA) program. The NYSERDA research and development program has five major areas: industry, buildings, energy resources, transportation, and environment. NYSERDA organizes projects within these five major areas based on energy use and supply, and end-use sectors. Therefore, issues such as waste management, energy products and renewable energy technologies are addressed in several areas of the program. The project descriptions presented are organized within the five program areas. Descriptions of projects completed between the period April 1, 1996, and March 31, 1997, including technology-transfer activities, aremore » at the end of each subprogram section.« less
The electronic transfer of information and aerospace knowledge diffusion
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.
1992-01-01
Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a motor role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.
Orbit transfer rocket engine technology program enhanced heat transfer combustor technology
NASA Technical Reports Server (NTRS)
Brown, William S.
1991-01-01
In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.
NASA Technical Reports Server (NTRS)
Byrd, Joseph S.; Flatau, Carl; Hodge, David C.; Hollis, Ralph; Leach, Eugene F.; Gilbert, Ray; Cleland, John; Leifer, Larry; Naser, Joseph; Schmuter, Samson D.
1987-01-01
The discussions of motives and requirements for telerobotics application demonstrated that, in many cases, lack of progress was a result not of limited opportunities but of inadequate mechanisms and resources for promoting opportunities. Support for this conclusion came from Telerobotics, Inc., one of the few companies devoted primarily to telerobot systems. They have produced units for such diverse applications as nuclear fusion research, particle accelerators, cryogenics, firefighting, marine biology/undersea systems and nuclear mobile robotics. Mr. Flatau offered evidence that telerobotics research is only rarely supported by the private sector and that it often presents a difficult market. Questions on the mechanisms contained within the NASA technology transfer process for promoting commercial opportunities were fielded by Ray Gilbert and Tom Walters. A few points deserve emphasis: (1) NASA/industry technology transfer occurs in both directions and NASA recognizes the opportunity to learn a great deal from industry in the fields of automation and robotics; (2) promotion of technology transfer projects takes a demand side approach, with requests to industry for specific problem identification. NASA then proposes possible solutions; and (3) comittment ofmotivated and technically qualified people on each end of a technology transfer is essential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less
Analysis of Web Site Activity and Technology Transfer Accomplishments
Daniel L. Schmoldt; Matthew F. Winn; Philip A. Araman
1997-01-01
Government research activities are coming under increased scrutiny to justify their research direction, and to validate research project existence. One way to justify research is to pay closer attention to research clientele, their needs and their willingness and ability to adopt new technologies. Because many research products are informational rather than tangible,...
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
The Role of Professional Objects in Technology-Enhanced Learning Environments in Higher Education
ERIC Educational Resources Information Center
Zitter, Ilya; de Bruijn, Elly; Simons, Robert-Jan; ten Cate, Olle
2012-01-01
We study project-based, technology-enhanced learning environments in higher education, which should produce, by means of specific mechanisms, learning outcomes in terms of transferable knowledge and learning-, thinking-, collaboration- and regulation-skills. Our focus is on the role of objects from professional practice serving as boundary objects…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.
Nofre, David
2014-07-01
The spread of the modern computer is assumed to have been a smooth process of technology transfer. This view relies on an assessment of the open circulation of knowledge ensured by the US and British governments in the early post-war years. This article presents new historical evidence that question this view. At the centre of the article lies the ill-fated establishment of the UNESCO International Computation Centre. The project was initially conceived in 1946 to provide advanced computation capabilities to scientists of all nations. It soon became a prize sought by Western European countries like The Netherlands and Italy seeking to speed up their own national research programs. Nonetheless, as the article explains, the US government's limitations on the research function of the future centre resulted in the withdrawal of European support for the project. These limitations illustrate the extent to which US foreign science policy could operate as (stealth) industrial policy to secure a competitive technological advantage and the prospects of US manufacturers in a future European market.
CELSS Antarctic Analog Project (CAAP): A New Paradigm for Polar Life Support and CELSS Research
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Straight, Christian; Flynn, Michael; Bates, Maynard; Harper, Lynn D. (Technical Monitor)
1994-01-01
The CELSS Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. Under a Memorandum of Agreement, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate . technology selection, system design and methods development, including human dynamics as required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. The CAAP facility will be highly integrated with the new South Pole Station infrastructure and will be composed of a deployed hardware facility and a research activity. This paper will include a description of CAAP and its functionality, conceptual designs, component selection and sizing for the crop growth chamber, crop production expectations, and a brief report on an initial on-site visit. This paper will also provide a discussion of issues associated with power and energy use and the applicability of CAAP to direct technology transfer to society in general and remote communities in particular.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.
A Discussion of Two Challenges of Non-cooperative Satellite Refueling
NASA Technical Reports Server (NTRS)
Coll, Gregory C.; Aranyos, Thomas; Nufer, Brian M.; Kandula, Max; Tomasic, David J.
2015-01-01
There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.
A Discussion of Two Challenges of Non-Cooperative Satellite Refueling
NASA Technical Reports Server (NTRS)
Coll, Gregory T.; Aranyos, Thomas J.; Nufer, Brian M.; Tomasic, David; Kandula, Max
2015-01-01
There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.
ERDA-NASA wind energy project ready to involve users
NASA Technical Reports Server (NTRS)
Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.
1976-01-01
The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.
Successes of Small Business Innovation Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Ganss, Meghan
2002-01-01
This booklet of success stories highlights the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. These success stories are the results of selecting projects that support NASA missions and also have high commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. This booklet emphasizes the integration and incorporation of technologies into NASA missions and other government projects. The company name and the NASA contact person are identified to encourage further usage and application of the SBIR developed technologies and also to promote further commercialization of these products.
NASA Astrophysics Data System (ADS)
Bozeman, Barry; Coker, Karen
1992-05-01
This study, based on a national survey of U.S. government laboratories, assesses the degree of success laboratories have had in transferring technology to industry, taking into account the laboratories' differing receptivity to market influences. Three success criteria are considered here, two based on self-evaluations and a third based on the number of technology licenses issued from the laboratory. The two self-evaluations are rooted in different types of effectiveness, `getting technology out the door,' in one case, and, in the other, having a demonstrable commercial impact. A core hypothesis of the study is that the two types of effectiveness will be responsive to different factors and, in particular, the laboratories with a clearer market orientation will have a higher degree of success on the commercial impact and technology license criteria. Overall, the results seem to suggest that multifaceted, multimission laboratories are likely to enjoy the most success in technology transfer, especially if they have relatively low levels of bureaucratization and either ties to industry (particularly direct financial ties) or a commercial orientation in the selection of projects.
Applications of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
Bass, B.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Eakes, R. E.; Kizakevich, P. N.; Mccartney, M.; Rouse, D. J.
1982-01-01
Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects.
NASA Technical Reports Server (NTRS)
Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.
2014-01-01
As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.
Biomedical technology transfer. Applications of NASA science and technology
NASA Technical Reports Server (NTRS)
Harrison, D. C.
1980-01-01
Ongoing projects described address: (1) intracranial pressure monitoring; (2) versatile portable speech prosthesis; (3) cardiovascular magnetic measurements; (4) improved EMG biotelemetry for pediatrics; (5) ultrasonic kidney stone disintegration; (6) pediatric roentgen densitometry; (7) X-ray spatial frequency multiplexing; (8) mechanical impedance determination of bone strength; (9) visual-to-tactile mobility aid for the blind; (10) Purkinje image eyetracker and stabilized photocoalqulator; (11) neurological applications of NASA-SRI eyetracker; (12) ICU synthesized speech alarm; (13) NANOPHOR: microelectrophoresis instrument; (14) WRISTCOM: tactile communication system for the deaf-blind; (15) medical applications of NASA liquid-circulating garments; and (16) hip prosthesis with biotelemetry. Potential transfer projects include a person-portable versatile speech prosthesis, a critical care transport sytem, a clinical information system for cardiology, a programmable biofeedback orthosis for scoliosis a pediatric long-bone reconstruction, and spinal immobilization apparatus.
Orders of Magnitude: A History of NACA and NASA, 1915 - 1980
NASA Technical Reports Server (NTRS)
Anderson, F. W., Jr.
1981-01-01
The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.
ERIC Educational Resources Information Center
Duan, Yanqing; Bentley, Yongmei; Fu, Zetian; Zografos, Konstantinos; Bemeleit, Boris
2008-01-01
This paper reports research findings from a project funded by the European Commission. The research used case studies and surveys to identify gaps between Europe and China in the level of Internet adoption in fresh-produce supply chains. The project reveals barriers to Internet adoption in China in this industry, and employs a transnational…
EPA has developed a technology transfer handbook for the EMPACT Roxbury Air Monitoring (AirBeat) Project. The purpose of AirBeat is to make real-time air quality monitoring information (for ozone, black carbon, and fine particulates) available to the Boston MA community of Roxbur...
An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Bruce; Shea, Winton
2010-12-31
Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC providedmore » $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $$1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $$118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less
An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Bruce; Shea, Winton
Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC providedmore » $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $$1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $$118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less
An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Bruce; Winton, Shea
2010-12-31
Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement endedmore » November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less
An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Bruce; Shea, Winton
2010-12-31
Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement endedmore » November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less
An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Bruce; Winton, Shea
2010-12-31
Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement endedmore » November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
City of Long Beach; Tidelands Oil Production Company; University of Southern California
2002-09-30
The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.
Space applicable DOE photovoltaic technology: An update
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Stella, P.; Berman, P.
1981-01-01
Photovoltaic development projects applicable to space power are identified. When appropriate, the type of NASA support that would be necessary to implement these technologies for space use is indicated. It is conducted that the relatively small market and divergent operational requirements for space power are mainly responsible for the limited transfer of terrestrial technology to space applications. Information on the factors which control the cost and type of technology is provided. Terrestrial modules using semiconductor materials are investigated.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn
1993-01-01
Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.
Application of NASA's advanced life support technologies in polar regions
NASA Astrophysics Data System (ADS)
Bubenheim, D. L.; Lewis, C.
1997-01-01
NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.
ERIC Educational Resources Information Center
Zinser, Richard W.; Hanssen, Carl E.
2006-01-01
This article presents an analysis of national data from the Advanced Technological Education (ATE) program regarding articulation agreements for the transfer of 2-year technical degrees to baccalaureate degrees. Quantitative and qualitative data are illustrated to help explain the extent to which ATE projects improve access to universities for…
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Freeway bottleneck removals : workshop enhancement and technology transfer.
DOT National Transportation Integrated Search
2009-12-01
As transportation improvement projects become increasingly costly and complex and as funding sources are not : keeping pace with needs in highly urbanized areas, it becomes critical that existing freeway systems be finetuned to : maximize capacity...
The TTSD of the USEPA's ORD/NRMRL has completed a series of technology transfer and risk communication handbooks, case studies, and summary reports for community-based environmental monitoring projects under EPA's Environmental Monitoring for Public Access and Community Tracking ...
Universal Signal Conditioning Amplifier
NASA Technical Reports Server (NTRS)
Kinney, Frank
1997-01-01
The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.
The flight telerobotic servicer and technology transfer
NASA Technical Reports Server (NTRS)
Andary, James F.; Bradford, Kayland Z.
1991-01-01
The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.
Space spin-offs: is technology transfer worth it?
NASA Astrophysics Data System (ADS)
Bush, Lance B.
Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.
Hendriks, Jan
2012-09-28
As health intervention, vaccination has had a tremendous impact on reducing mortality and morbidity caused by infectious diseases. Traditionally vaccines were developed and made in the western, industrialised world and from there on gradually and with considerable delay became available for developing countries. Today that is beginning to change. Most vaccine doses are now produced in emerging economies, although industrialised countries still have a lead in vaccine development and in manufacturing innovative vaccines. Technology transfer has been an important mechanism for this increase in production capacity in emerging economies. This review looks back on various technology transfer initiatives and outlines the role of WHO and other public and private partners. It goes into a more detailed description of the role of the National Institute of Public Health and the Environment (RIVM) in Bilthoven, the Netherlands. For many decades RIVM has been providing access to vaccine technology by capacity building and technology transfer initiatives not only through multilateral frameworks, but also on a bilateral basis including a major project in China in the 90 s of the previous century. Looking forward it is expected that, in a globalizing world, the ambition of BRICS countries to play a role in global health will lead to an increase of south-south technology transfers. Further, it is argued that push approaches including technology transfer from the public domain, connecting innovative enabling platforms with competent developing country vaccine manufacturers (DCVM), will be critical to ensure a sustainable supply of affordable and quality vaccines to national immunization programmes in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marton, L.
1996-02-01
Genetic manipulation of plants often involves the introduction of homologous or partly homologous genes. Ectropic introduction of homologous sequences into plant genomes may trigger epigenetic changes, making expression of the genes unpredictable. The main project objective was to examine the feasibility of using Agrobacterium-mediated gene transfer for homologous gene targeting in plants.
Empirical Knowledge Transfer and Collaboration with Self-Regenerative Systems
2007-06-01
SYSTEMS Raytheon Company Sponsored by Defense Advanced Research Projects Agency DARPA Order No. T120 APPROVED FOR PUBLIC RELEASE...FA8750-04-C-0286 5b. GRANT NUMBER 4. TITLE AND SUBTITLE EMPIRICAL KNOWLEDGE TRANSFER AND COLLABORATION WITH SELF-REGENERATIVE SYSTEMS 5c...Self-Regenerative Systems program to develop new technologies supporting granular scalable redundancy. The key focus of Raytheon’s effort was to
Enhancing Knowledge Sharing Management Using BIM Technology in Construction
Ho, Shih-Ping; Tserng, Hui-Ping
2013-01-01
Construction knowledge can be communicated and reused among project managers and jobsite engineers to alleviate problems on a construction jobsite and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology for the sharing of construction knowledge by using Building Information Modeling (BIM) technology. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format and facilitation of easy updating and transfer of information in the BIM environment. Using the BIM technology, project managers and engineers can gain knowledge related to BIM and obtain feedback provided by jobsite engineers for future reference. This study addresses the application of knowledge sharing management using BIM technology and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to demonstrate the effectiveness of sharing knowledge in the BIM environment. The results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM technology. PMID:24723790
Enhancing knowledge sharing management using BIM technology in construction.
Ho, Shih-Ping; Tserng, Hui-Ping; Jan, Shu-Hui
2013-01-01
Construction knowledge can be communicated and reused among project managers and jobsite engineers to alleviate problems on a construction jobsite and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology for the sharing of construction knowledge by using Building Information Modeling (BIM) technology. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format and facilitation of easy updating and transfer of information in the BIM environment. Using the BIM technology, project managers and engineers can gain knowledge related to BIM and obtain feedback provided by jobsite engineers for future reference. This study addresses the application of knowledge sharing management using BIM technology and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to demonstrate the effectiveness of sharing knowledge in the BIM environment. The results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM technology.
Remote terminal system evaluation
NASA Technical Reports Server (NTRS)
Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.
1975-01-01
An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.
Project H - A Complete Spaceport Hydrogen Solution
NASA Technical Reports Server (NTRS)
Notardonato, William
2011-01-01
This slide presentation reviews Project H, and its importance in the development of Kennedy Space Center (KSC) as a Spaceport capable of multiple launches. It is known that current KSC cryogenic technology results in only approximately 55 % of purchased hydrogen being used. The rest is lost at various points in the process: transfer from transporting vehicle to tank, storage tank boil off, and from the tank to the intended propulsion tanks. Project H's goals would be to have local hydrogen production and liquifaction capability, and to increase the efficiency of hydrogen operations to greater than 80 %. The project envisions two phases: Phase 1 will build a smaller scale demonstration system, and phase 2 will build a full scale spaceport system. This initial project has proposed ideas for local hydrogen production, gaseous distribution, integrated refrigeration and storage, and high efficiency transfer lines that merit further investigation.
Early warning and crop condition assessment research
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1986-01-01
The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Wilson
Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO 2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules andmore » TiO 2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy conversion, and broadly applicable to problems in interface chemistry and surface physics.« less
ERIC Educational Resources Information Center
Kargbo, Michelle
2013-01-01
The purpose of this research was to identify knowledge transfer gaps and current practices, prepare current project managers to accept the challenges associated with leadership opportunities that are coming available due to retirements through cross training efforts and succession planning, and to identify the proper management of knowledge…
Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration
NASA Technical Reports Server (NTRS)
Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.
2012-01-01
NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.
Space technology transfer to developing countries: opportunities and difficulties
NASA Astrophysics Data System (ADS)
Leloglu, U. M.; Kocaoglan, E.
Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.
NASA Astrophysics Data System (ADS)
Francis, T.
2003-04-01
HYACINTH is the acronym for "Development of HYACE tools in new tests on Hydrates". The project is being carried out by a consortium of six companies and academic institutions from Germany, The Netherlands and the United Kingdom. It is a European Framework Five project whose objective is to bring the pressure corers developed in the earlier HYACE project, together with new core handling technology developed in the HYACINTH project, to the operational stage. Our philosophy is that if all one does with a pressure core is to bleed off the gas it contains, a major scientific opportunity has been missed. The current system enables pressure cores to be acquired, then transferred, without loss of pressure, into laboratory chambers so that they can be geophysically logged. The suite of equipment - HYACE Rotary Corer (HRC), Fugro Pressure Corer (FPC), Shear Transfer Chamber (STC), Logging Chamber (LC), Storage Chamber (SC) and Vertical Multi-Sensor Core Logger (V-MSCL) - will be briefly described. Other developments currently in progress to extend the capabilities of the system will be summarised: - to allow electrical resistivity logging of the pressure cores - to enable pressurised sub-samples to be taken from the cores - to facilitate microbiological experiments on pressurised sub-samples The first scientific results obtained with the HYACE/HYACINTH technology were achieved on ODP Leg 204 and are the subject of another talk at this meeting.
A Global Perspective on Virtual Reality. Grade Levels 9-12. Technology in the Classroom.
ERIC Educational Resources Information Center
American Forum for Global Education, New York, NY.
This activity packet addresses technology in the classroom, specifically using the Internet. It presents three activities that use the Internet as a resource: (1) "Whose Point of View" (the transfer of Hong Kong to Chinese control); (2) "Where to Look" (an earthquake in Afghanistan); and (3) "Research Project: The Pros and Cons of Free Trade."…
Manufacturing Technology Information Analysis Center: Knowledge Is Strength
NASA Technical Reports Server (NTRS)
Safar, Michal
1992-01-01
The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.
Using the MCPLXS Generator for Technology Transfer
NASA Technical Reports Server (NTRS)
Moore, Arlene A.; Dean, Edwin B.
1987-01-01
The objective of this paper is to acquaint you with some of the approaches we are taking at Langley to incorporate escalations (or de-escalations) of technology when modeling futuristic systems. Since we have a short turnaround between the time we receive enough descriptive information to start estimating the project and when the estimate is needed (the "we-want-it-yesterday syndrome"), creativity is often necessary. There is not much time available for tool development. It is expedient to use existing tools in an adaptive manner to model the situation at hand. Specifically, this paper describes the use of the RCA PRICE MCPLXS Generator to incorporate technology transfer and technology escalation in estimates for advanced space systems such as Shuttle II and NASA advanced technology vehicles. It is assumed that the reader is familiar with the RCA PRICE family of models as well as the RCA PRICE utility programs such as SCPLX, PARAM, PARASYN, and the MCPLXS Generator.
IVHM for the 3rd Generation RLV Program: Technology Development
NASA Technical Reports Server (NTRS)
Kahle, Bill
2000-01-01
The objective behind the Integrated Vehicle Health Management (IVHM) project is to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Technological areas discussed include: developing, validating, and transfering next generation IVHM technologies to near term industry and government reusable launch systems; focus NASA on the next generation and highly advanced sensor and software technologies; and validating IVHM systems engineering design process for future programs.
Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T
1994-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None,
1981-09-01
Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)
Johnson Space Center Research and Technology Annual Report 1998-1999
NASA Technical Reports Server (NTRS)
Abbey, George W. S.
2004-01-01
As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankin, C.J.; Banken, M.K.
The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs. Specifically, this project will identify all FDD oil reservoirs in the State; group those reservoirs into plays that have similar depositional origins; collect, organize and analyze all available data conduct characterization and simulation studies on selected reservoirs in each play; and implement a technology transfer program targeted to the operators of FDD reservoirs. Activities were focused primarily on technology transfer elements of the project. This included regional play analysis and mapping, geologic field studies, and reservoir modeling for secondary water flood simulations as used in publication folios and workshops. The computer laboratory was fully operational for operator use. Computer systems design and database development activities were ongoing.« less
Johnson Space Center Research and Technology Report
NASA Technical Reports Server (NTRS)
Pido, Kelle; Davis, Henry L. (Technical Monitor)
1999-01-01
As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.
LTRC Annual Research Program : Fiscal Year July 1, 2012-June 30, 2013
DOT National Transportation Integrated Search
2012-06-01
Contents: Budget Recap Sheets; Project Summary Sheets; FHWA Part II SPR Funded Research Program; FHWA IBRD Funded Research Program; FHWA LTAP Funded Program; FHWA STP Funded Technology Transfer & Education Program; State Funded Research Program; Fede...
LTRC annual research program : fiscal year July 1, 2015 - June 30, 2016.
DOT National Transportation Integrated Search
2015-06-01
Contents: Budget Recap Sheets; Project Summary Sheets; FHWA Part II SPR Funded Research Program; FHWA LTAP Funded Program; FHWA STP Funded Technology Transfer & Education Program; State Funded Research Program; Self-Generated Funded Research; Other D...
LTRC annual research program : fiscal year July 1, 2011-June 30, 2012.
DOT National Transportation Integrated Search
2011-06-01
Contents: Budget Recaps Sheets; Project Summary Sheets; FHWA Part II SPR Funded Research Program; FHWA IBRD Funded Research Program; FHWA LTAP Funded Program; FHWA STP Funded Technology Transfer & Education Program; State Funded Research Program; Sel...
NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank
2014-01-01
Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.
NASA Technical Reports Server (NTRS)
1992-01-01
In keeping with the NASA Administrator's announcement that technology transfer will become a fundamental mission of NASA, the Marshall Space Flight Center (MSFC) has initiated new programs to reach the heartland of U.S. industry. The Center has continued to expand its already well-established outreach program aimed at helping American business, industry, and academia at the grassroots level. The goal is to ensure that America regains and maintains its proper place of leadership among the world's technologically developed nations. MSFC's national goal is to enhance America's competitiveness in the world marketplace, fortify the value of the dollar, and ensure technological breakthroughs by American laboratories benefit taxpayers and industries. The Technology Utilization (TU) Office at MSFC believes a number of measures are possible to slow, then halt, and ultimately reverse the erosion of American technological leadership. MSFC's TU Office is reaching out to American industry on an increasingly broadening scope, facilitating the transfer of NASA derived technologies to American businesses, industries, educational institutions, and individuals. There are many valid approaches to achieving this goal. Some, such as the National Technology Initiative, begin at the top and work down through America's top corporate structure. Others, such as the technology transfer program that MSFC has implemented, begin at the one-on-one, grassroots level -- working with small and medium-sized firms that form the bulk of American industry. What can be done by one NASA center is, admittedly, limited. But by extrapolating this one-on-one approach to the more than 700 Federal laboratories, a great deal can be accomplished. This report contains an examination of outreach and in reach programs, problem statements programs, applications projects, new technology reporting, new technology administration, and the need for increased resources to further facilitate technology transfer.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
This article discusses the U.S. government technical report and the transfer of federally funded aerospace research and development in a conceptual framework of the federal government as a producer of scientific and technical information. The article summarizes current literature and research and discusses U.S. government technical report use and the importance of using data obtained from the NASA/DoD Aerospace Knowledge Diffusion Research Project. The authors make a case for changing existing U.S. technology policy and present a research agenda for the U.S. government technical report.
Ponce-de-Leon, Samuel; Velazquez-Fernandez, Ruth; Bugarin-González, Jose; García-Bañuelos, Pedro; Lopez-Sotelo, Angelica; Jimenez-Corona, María-Eugenia; Padilla-Catalan, Francisco; Cervantes-Rosales, Rocio
2011-07-01
The Mexican Government developed a plan in 2004 for pandemic influenza preparedness that included local production of influenza vaccine. To achieve this, an agreement was concluded between Birmex - a state-owned vaccine manufacturer - and sanofi pasteur, a leading developer of vaccine technology. Under this agreement, sanofi pasteur will establish a facility in Mexico to produce antigen for up to 30 million doses of egg-based seasonal vaccine per year, and Birmex will build a facility to formulate, fill and package the inactivated split-virion influenza vaccine. As at November 2010, the sanofi pasteur facility has been completed and the Birmex plant is under construction. Most of the critical equipment has been purchased and is in the process of validation. In addition to intensive support from sanofi pasteur for the transfer of the technology, the project is supported by the Mexican Ministry of Health, complemented by Birmex's own budget and grants from the WHO developing country influenza technology transfer project. Copyright © 2011. Published by Elsevier Ltd.
Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai
2012-11-01
Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Small Business Innovation Research, Post-Phase II Opportunity Assessment
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.
Technology transfer program of Microlabsat
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Hashimoto, H.
2004-11-01
A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.
ERIC Educational Resources Information Center
Raven, Rob P. J. M.; Heiskanen, Eva; Lovio, Raimo; Hodson, Mike; Brohmann, Bettina
2008-01-01
This article examines how local experiments and negotiation processes contribute to social and field-level learning. The analysis is framed within the niche development literature, which offers a framework for analyzing the relation between projects in local contexts and the transfer of local experiences into generally applicable rules. The…
ERIC Educational Resources Information Center
Massuda, Rachel
These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…
DOE tallies Class III oil recovery field projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-25
Here are details from midterm proposals submitted as part of the US Department of Energy's Class 3 oil recovery field demonstration candidate projects. All of the proposals emphasize dissemination of project details so that the results, if successful, can be applied widely in similar reservoirs. Project results will also be fed into a national petroleum technology transfer network. The proposals include: Gulf of Mexico, Gulf coast, offshore California, a California thermal, immiscible CO[sub 2], produced/potable water, microbial EOR, California diatomite, West Texas Spraberry field, and other Permian Basin fields.
Internship Progress Summary: Fall 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ralph S.; Valencia, Matthew John
2016-12-13
This fall I had the opportunity to work at Los Alamos National Laboratory for the Technology Applications engineering group. I assisted two main projects during my appointment, both related to the Lab’s mission statement: “To solve national security challenges through scientific excellence.” My first project, a thermal source transfer unit, involved skills such as mechanical design, heat transfer simulation, and design analysis. The goal was to create a container that could protect a heat source and regulate its temperature during transit. I generated several designs, performed heat transfer simulations, and chose a design for prototyping. The second project was amore » soil drying unit for use in post blast sample analysis. To ensure fast and accurate sample processing, agents in the field wanted a system that could process wet dirt and turn it into dry powder. We designed a system of commercially available parts, and we tested the systems to determine the best methods and processes.« less
DOT National Transportation Integrated Search
2016-10-01
Pavement performance : depends on the effectiveness : and timeliness of : maintenance efforts. : Deferred maintenance : increases the severity of : distresses and leads to a more : rapid decline of a pavements : condition. An effective : maintenan...
2013 Missouri Local Technical Assistance Program (LTAP) at Missouri S&T.
DOT National Transportation Integrated Search
2014-05-01
This project was established to provide training, information and technical assistance to local government agencies in Missouri. The : Missouri LTAP benefits UTC as an agent of technology transfer and also through the Missouri LTAP, UTC supports Miss...
Guidelines and recommendations to accommodate older driver and pedestrians
DOT National Transportation Integrated Search
2001-05-01
This project updated, revised, and expanded the scope of the Older Driver Highway Design Handbook published by FHWA in 1998. Development of the updated Handbook (FHWA-RD-01-103) was complemented by a technology transfer initiative to make practitione...
ERIC Educational Resources Information Center
Gormley, Wilma J.; Austin, John H.
1985-01-01
Discusses specific training methods and common characteristics of participants in workshops sponsored by Agency for International Development Water and Sanitation for Health Project for extension agents, who will act as trainers in transfer of sanitation technology in developing nations. Recommendations for conducting such workshops in…
TRANSFER AND COMMERCIALISATION OF CONTAMINATED GROUNDWATER REMEDIATION TECHNOLOGIES. (R828772)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DOT National Transportation Integrated Search
2015-08-01
Advancements and increased use of accelerated bridge construction (ABC) : often result in the use of newly developed, or modified, technologies and/or : construction techniques that are sometimes untested in this new application. : For designers and ...
Technical assistance for law-enforcement communications: Grant summary
NASA Technical Reports Server (NTRS)
Reilly, N. B.
1979-01-01
A summary overview of project activities and results are presented. The goals and objectives are reviewed and a description of the approaches used to attain them is given. The feedback received from the seminars conducted as part of the project, and results from a questionnaire about the project are included. Significant findings of the project in such areas as radio channel loading, dispatch system design, training and technology transfer are discussed. Several specific problem areas are identified and evaluated. Specific recommendations for future technical assistance efforts are presented along with an inventory of technical-assistance reports generated throughout the project.
ERIC Educational Resources Information Center
Gissendanner, Cassandra S., Ed.
The deliberations of the planning conference to discuss and outline a statewide functioning solar energy technology network and a set of recommendations for future action are presented in this report. Topic areas include background information on both the project and the current energy information system in South Carolina, along with a summary of…
Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities
NASA Technical Reports Server (NTRS)
Bailey, John W.
2004-01-01
The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at SSC.
1991-01-01
Understanding how STI is commun- aerospace knowledge- efficient and effective transfer and cated in the process of technolgical diffusion of knowledge within...However, as important international levels, diffusion of knowledge in the aeros- as the transfer and utilisation of STI is to which will help to pace...diffused is neces- diffusion of knowledge . Phase 3 ex- formation specialist). Phase 2 examined sary to successfully manage technolog- plores the information
An international technology platform for influenza vaccines.
Hendriks, Jan; Holleman, Marit; de Boer, Otto; de Jong, Patrick; Luytjes, Willem
2011-07-01
Since 2008, the World Health Organization has provided seed grants to 11 manufacturers in low- and middle-income countries to establish or improve their pandemic influenza vaccine production capacity. To facilitate this ambitious project, an influenza vaccine technology platform (or "hub") was established at the Netherlands Vaccine Institute for training and technology transfer to developing countries. During its first two years of operation, a robust and transferable monovalent pilot process for egg-based inactivated whole virus influenza A vaccine production was established under international Good Manufacturing Practice standards, as well as in-process and release assays. A course curriculum was designed, including a two-volume practical handbook on production and quality control. Four generic hands-on training courses were successfully realized for over 40 employees from 15 developing country manufacturers. Planned extensions to the curriculum include cell-culture based technology for viral vaccine production, split virion influenza production, and generic adjuvant formulation. We conclude that technology transfer through the hub model works well, significantly builds vaccine manufacturing capacity in developing countries, and thereby increases global and equitable access to vaccines of high public health relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
City of Long Beach; Tidelands Oil Production Company; University of Southern California
2002-09-30
The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.
Staff exchange with Chemical Waste Management. Final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrer, B.J.; Barak, D.W.
1993-12-01
Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry,more » but a proposal for transfer and application of PST to Wheelabrator was made.« less
The NASA technology push towards future space mission systems
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert
1988-01-01
As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far-term strategic steps. It addresses the alternative 'push-pull' approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.
NASA's Cryogenic Fluid Management Technology Project
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Motil, Susan M.
2008-01-01
The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.
Synchronous orbit power technology needs
NASA Technical Reports Server (NTRS)
Slifer, L. W., Jr.; Billerbeck, W. J.
1979-01-01
The needs are defined for future geosynchronous orbit spacecraft power subsystem components, including power generation, energy storage, and power processing. A review of the rapid expansion of the satellite communications field provides a basis for projection into the future. Three projected models, a mission model, an orbit transfer vehicle model, and a mass model for power subsystem components are used to define power requirements and mass limitations for future spacecraft. Based upon these three models, the power subsystems for a 10 kw, 10 year life, dedicated spacecraft and for a 20 kw, 20 year life, multi-mission platform are analyzed in further detail to establish power density requirements for the generation, storage and processing components of power subsystems as related to orbit transfer vehicle capabilities. Comparison of these requirements to state of the art design values shows that major improvements, by a factor of 2 or more, are needed to accomplish the near term missions. However, with the advent of large transfer vehicles, these requirements are significantly reduced, leaving the long lifetime requirement, associated with reliability and/or refurbishment, as the primary development need. A few technology advances, currently under development, are noted with regard to their impacts on future capability.
Success in large high-technology projects: What really works?
NASA Astrophysics Data System (ADS)
Crosby, P.
2014-08-01
Despite a plethora of tools, technologies and management systems, successful execution of big science and engineering projects remains problematic. The sheer scale of globally funded projects such as the Large Hadron Collider and the Square Kilometre Array telescope means that lack of project success can impact both on national budgets, and collaborative reputations. In this paper, I explore data from contemporary literature alongside field research from several current high-technology projects in Europe and Australia, and reveal common `pressure points' that are shown to be key influencers of project control and success. I discuss the how mega-science projects sit between being merely complicated, and chaotic, and explain the importance of understanding multiple dimensions of project complexity. Project manager/leader traits are briefly discussed, including capability to govern and control such enterprises. Project structures are examined, including the challenge of collaborations. I show that early attention to building project resilience, curbing optimism, and risk alertness can help prepare large high-tech projects against threats, and why project managers need to understand aspects of `the silent power of time'. Mission assurance is advanced as a critical success function, alongside the deployment of task forces and new combinations of contingency plans. I argue for increased project control through industrial-style project reviews, and show how post-project reviews are an under-used, yet invaluable avenue of personal and organisational improvement. Lastly, I discuss the avoidance of project amnesia through effective capture of project knowledge, and transfer of lessons-learned to subsequent programs and projects.
DOT National Transportation Integrated Search
2016-10-01
The Louisiana Transportation Research Center has worked closely with the Bridge : Design section of the Louisiana Department of Transportation and Development : (DOTD) to develop a workable specification for standard and localized roughness : of brid...
Development Communication Report No. 45.
ERIC Educational Resources Information Center
Development Communication Report, 1984
1984-01-01
A variety of topics related to innovative uses of media in international development are addressed in this newsletter, which includes the following articles: "The Radio Mathematics Project: New Examples of Technology Transfer," by Klaus Galda; "An Overview and Guide: Planning Instructional Radio," by Maurice Imhoof;…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Bishop, Ann P.; Kennedy, John M.
1992-01-01
Federal attempts to stimulate technological innovation have been unsuccessful because of the application of an inappropriate policy framework that lacks conceptual and empirical knowledge of the process of technological innovation and fails to acknowledge the relationship between knowled reproduction, transfer, and use as equally important components of the process of knowledge diffusion. It is argued that the potential contributions of high-speed computing and networking systems will be diminished unless empirically derived knowledge about the information-seeking behavior of the members of the social system is incorporated into a new policy framework. Findings from the NASA/DoD Aerospace Knowledge Diffusion Research Project are presented in support of this assertion.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Bishop, Ann P.; Kennedy, John M.
1992-01-01
Federal attempts to stimulate technological innovation have been unsuccessful because of the application of an inappropriate policy framework that lacks conceptual and empirical knowledge of the process of technological innovation and fails to acknowledge the relationship between knowledge production, transfer, and use as equally important components of the process of knowledge diffusion. This article argues that the potential contributions of high-speed computing and networking systems will be diminished unless empirically derived knowledge about the information-seeking behavior of members of the social system is incorporated into a new policy framework. Findings from the NASA/DoD Aerospace Knowledge Diffusion Research Project are presented in support of this assertion.
Scoping Report: Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Graham B.; Boyd, Brian K.; Petersen, Joseph M.
The purpose of this demonstration project is to quantify the energy savings and water efficiency potential of commercial laundry wastewater recycling systems and low-temperature detergent supply systems to help promote the adoption of these technologies in the commercial sector. This project will create a set of technical specifications for efficient multi-load laundry systems (both new and retrofit) tailored for specific applications and/or sectors (e.g., hospitality, health care). The specifications will be vetted with the appropriate Better Buildings Alliance (BBA) members (e.g., Commercial Real Estate Energy Alliance, Hospital Energy Alliance), finalized, published, and disseminated to enable widespread technology transfer in themore » industry and specifically among BBA partners.« less
Review and assessment of the HOST turbine heat transfer program
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena occurring in high-performance gas turbine engines and to assess and improve the analytical methods used to predict the fluid dynamics and heat transfer phenomena. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. Therefore, a building-block approach was utilized, with research ranging from the study of fundamental phenomena and analytical modeling to experiments in simulated real-engine environments. Experimental research accounted for 75 percent of the project, and analytical efforts accounted for approximately 25 percent. Extensive experimental datasets were created depicting the three-dimensional flow field, high free-stream turbulence, boundary-layer transition, blade tip region heat transfer, film cooling effects in a simulated engine environment, rough-wall cooling enhancement in a rotating passage, and rotor-stator interaction effects. In addition, analytical modeling of these phenomena was initiated using boundary-layer assumptions as well as Navier-Stokes solutions.
Somatic Mosaicism for Cancer Predisposition Genes and Pancreatic Cancer
2017-07-01
cancer or had a strong family history of cancer. Thus far all tissues from 21 of these patients have undergone targeted sequencing using a 468 gene...major accomplishments, innovations , successes, or any change in practice or behavior that has come about as a result of the project relative to...What was the impact on technology transfer? What was the impact on society beyond science and technology ? Nothing to
CVD diamond substrate for microelectronics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burden, J.; Gat, R.
1996-11-01
Chemical Vapor Deposition (CVD) of diamond films has evolved dramatically in recent years, and commercial opportunities for diamond substrates in thermal management applications are promising. The objective of this technology transfer initiative (TTI) is for Applied Science and Technology, Inc. (ASTEX) and AlliedSignal Federal Manufacturing and Technologies (FM&T) to jointly develop and document the manufacturing processes and procedures required for the fabrication of multichip module circuits using CVD diamond substrates, with the major emphasis of the project concentrating on lapping/polishing prior to metallization. ASTEX would provide diamond films for the study, and FM&T would use its experience in lapping, polishing,more » and substrate metallization to perform secondary processing on the parts. The primary goal of the project was to establish manufacturing processes that lower the manufacturing cost sufficiently to enable broad commercialization of the technology.« less
2014-06-01
layer-by-layer manufacturing of a component by using PBF processes is accompanied by the establishment of a unidirectional heat transfer along the build...direction. Because grain growth during solidification preferably occurs in the opposite direction of heat transfer , the formation of elongated...development and deployment of phased array technology.[69] Phased array ultrasonic (PAUT) sensors use multiple elements instead of a single element
NASA Technical Reports Server (NTRS)
Rehder, J. J.; Wurster, K. E.
1978-01-01
Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.
Turbine Engine Hot Section Technology 1986
NASA Technical Reports Server (NTRS)
1986-01-01
The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.
Photonics technology and university-driven business co-creation
NASA Astrophysics Data System (ADS)
Erland Østergaard, J.; Tanev, S.; Bue Andersen, T.; Bozhevolnyi, S. I.
2012-03-01
TEK-Momentum is the Business Innovation and Technology Department in the Faculty of Engineering at the University of Southern Denmark in Odense. Since its establishment in 2010 the Department has adopted an exploratory technology transfer, open business development and co-creation strategy that goes beyond traditional technology transfer activities. This is an emerging strategy that has been shaped for the last 5 years even before the formal establishment of TEKMomentum. It emerged out of multiple dialog-based interactions with small- and medium-sized companies by focusing on matching real life problems with potential problem solvers. The main priority of such strategy is maximizing the value of the potential contributions from the multiple stakeholders and not on the technology development issues per se. In this paper we will present an overview of TEK-Momentum's approach by using as case studies two recent successful projects. The first one focuses on the commercialization of an LED illumination system. The second one focuses on the commercialization of an optical ring resonator-based temperature sensor.
Accessing NASA Technology with the World Wide Web
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Bianco, David J.
1995-01-01
NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer and technology awareness applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology OPportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. The NASA Technical Report Server (NTRS) provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people.
LANDSAT information for state planning
NASA Technical Reports Server (NTRS)
Faust, N. L.; Spann, G. W.
1977-01-01
The transfer of remote sensing technology for the digital processing of LANDSAT data to state and local agencies in Georgia and other southeastern states is discussed. The project consists of a series of workshops, seminars, and demonstration efforts, and transfer of NASA-developed hardware concepts and computer software to state agencies. Throughout the multi-year effort, digital processing techniques have been emphasized classification algorithms. Software for LANDSAT data rectification and processing have been developed and/or transferred. A hardware system is available at EES (engineering experiment station) to allow user interactive processing of LANDSAT data. Seminars and workshops emphasize the digital approach to LANDSAT data utilization and the system improvements scheduled for LANDSATs C and D. Results of the project indicate a substantially increased awareness of the utility of digital LANDSAT processing techniques among the agencies contracted throughout the southeast. In Georgia, several agencies have jointly funded a program to map the entire state using digitally processed LANDSAT data.
A Compendium of Energy Conservation Success Stories
DOE R&D Accomplishments Database
1988-09-01
Three-quarters of DOE's Conservation R and D funds have been devoted to technology research and development: basic and applied research, exploratory R and D, engineering feasibility studies, pilot-scale prototype R and D, and technology demonstration. Non R and D projects have involved technology assessment program planning and analysis, model development, technology transfer and consumer information, health effects and safety research, and technical support for rule making. The success stories summarized in this compendium fall into three general categories: Completed Technology Success Stories, projects that have resulted in new energy-saving technologies that are presently being used in the private sector; Technical Success Stories, projects that have produced or disseminated important scientific/technical information likely to result in future energy savings; Program Success Stories, non-R and D activities that have resulted in nationally significant energy benefits. The Energy Conservation research and development program at DOE is managed by the Office of Conservation under the direction of the Deputy Assistant Secretary for Conservation. Three subordinate Program Offices correspond to the buildings, transportation, and industrial end-use sectors. A fourth subordinate Program Office{endash}Energy Utilization Research{endash}sponsors research and technical inventions for all end-use sectors.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1999-01-01
This paper presents a comprehensive review and assessment of a demonstration technology transfer and commercialization prouram called "CommTech". The pro-ram was conceived and initiated in early to mid-fiscal year 1995, and extended roughly three years into the future. Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in three targeted industry sectors: environmental, surface transportation, and bioengineering. Company-supplied information served as input data to activate or start-up an internal, phased matchmaking process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations. and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from NASA Glenn support and measurable economic effects represented far-term outputs.
An assessment of research and development leadership in ocean energy technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruch, V.L.
1994-04-01
Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses inmore » other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.« less
TTSD has completed a series of technology transfer and risk communication handbooks, case studies, and summary reports for community-based environmental monitoring projects under EPA's Real-Time Environmental Monitoring, Data Delivery, and Public Outreach Program. The Program tak...
NASA Technical Reports Server (NTRS)
Levine, A. L.
1981-01-01
An engineer and a computer expert from Goddard Space Flight Center were assigned to provide technical assistance in the design and installation of a computer assisted system for dispatching and communicating with fire department personnel and equipment in Baltimore City. Primary contributions were in decision making and management processes. The project is analyzed from four perspectives: (1) fire service; (2) technology transfer; (3) public administration; and (5) innovation. The city benefitted substantially from the approach and competence of the NASA personnel. Given the proper conditions, there are distinct advantages in having a nearby Federal laboratory provide assistance to a city on a continuing basis, as is done in the Baltimore Applications Project.
Southeast Regional Experiment Station
NASA Astrophysics Data System (ADS)
1994-08-01
This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.
Magnetocaloric Materials Revolutionize Refrigeration Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momen, Ayyoub
Researchers at Oak Ridge National Laboratory have partnered with General Electric (GE) Appliances on a building technologies project to revolutionize today’s 100-year-old home refrigeration technology. Using magnetocaloric materials (MCM), they’ve eliminated the need for a vapor compression cycle, associated refrigerants, and their negative environmental impacts. The research team is currently working to determine the most effective means to transfer heat from the solid MCM, and using fluid passed through high-resolution microchannels shows promise. This technology has the potential to reduce energy consumption by 25%, and GE hopes to commercialize magnetocaloric refrigerators for use in homes by 2020.
Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Best, Philip J.; Unger, Ronald J.; Waits, David A.
2005-01-01
The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.
SMART-1, Platform Design and Project Status
NASA Astrophysics Data System (ADS)
Sjoberg, F.
SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.
NASA's Involvement in Technology Development and Transfer: The Ohio Hybrid Bus Project
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government and industry cooperative is using advanced power technology in a city transit bus that will offer double the fuel economy, and reduce emissions to one tenth of government standards. The heart of the vehicle's power system is a natural gas fueled generator unit. Power from both the generator and an advanced energy storage system is provided to a variable speed electric motor attached to the rear drive axle. A unique aspect of the vehicle's design is its use of "super" capacitors for recovery of energy during braking. This is the largest vehicle ever built using this advanced energy recovery technology. This paper describes the project goals and approach, results of its system performance modeling, and the status of the development team's effort.
Applications of aerospace technology
NASA Technical Reports Server (NTRS)
Rouse, D. J.; Brown, J. N., Jr.; Cleland, John; Lehrman, Stephen; Trachtman, Lawrence; Wallace, Robert; Winfield, Daniel; Court, Nancy; Maggin, Bernard; Barnett, Reed
1987-01-01
Highlights are presented for the Research Triangle Institute (RTI) Applications Team activities over the past quarter. Progress in fulfilling the requirements of the contract is summarized, along with the status of the eight add-on tasks. New problem statements are presented. Transfer activities for ongoing projects with the NASA Centers are included.
Heuer, R.-D.
2018-05-22
CERN general staff meeting. Looking back at key messages: Highest priority: LHC physics in 2009; Increase diversity of the scientific program; Prepare for future projects; Establish open and direct communication; Prepare CERN towards a global laboratory; Increase consolidation efforts; Financial situation--tight; Knowledge and technology transfer--proactive; Contract policy and internal mobility--lessons learned.
2010-09-15
SAMUEL SMITH (WELD TECHNICIAN, JACOBS ESTS GROUP/ALL POINTS) DISPLAYS A HEXAGON THAT WAS FABRICATED FROM FRICTION STIR WELDED PLATES OF 6AL-4V TITANIUM (ELI) USING THERMAL STIR WELDING. THIS WORK WAS PERFORMED FOR A NASA TECHNOLOGY TRANSFER INDUSTRIAL PARTNER (KEYSTONE SYNERGETIC ENTERPRISES, INC.) IN SUPPORT OF A PROJECT FOR THE U.S. NAVY
2010-09-15
ANDRÉ PASEUR (WELD TECHNICIAN, JACOBS ESTS GROUP/ERC) DISPLAYS A HEXAGON THAT WAS FABRICATED FROM FRICTION STIR WELDED PLATES OF 6AL-4V TITANIUM (ELI) USING THERMAL STIR WELDING. THIS WORK WAS PERFORMED FOR A NASA TECHNOLOGY TRANSFER INDUSTRIAL PARTNER (KEYSTONE SYNERGETIC ENTERPRISES, INC.) IN SUPPORT OF A PROJECT FOR THE U.S. NAVY
DOT National Transportation Integrated Search
2016-04-01
While structural engineering deals with mostly homogeneous manmade materials : (e.g., concrete and steel), geotechnical engineering typically involves highly varied : natural materials (e.g., soil and rock). As a result, high variance of the resistan...
Urban forestry research needs: a participatory assessment process
Kathleen L. Wolf; Linda E. Kruger
2010-01-01
New research initiatives focusing on urban ecology and natural resources are underway. Such programs coincide with increased local government action in urban forest planning and management, activities that are enhanced by scientific knowledge. This project used a participatory stakeholder process to explore and understand urban forestry research and technology transfer...
NASA Astrophysics Data System (ADS)
Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Fujikura, Katsunori
2017-04-01
On March 11, 2011, huge earthquake and tsunamis took place coastal regions of Northeast Japan. Coastal infrastructure collapsed due to high waves of tsunamis. Marine ecosystems were also strongly disturbed by the earthquakes and tsunamis. TEAMS (Tohoku Ecosystem-Associated Marine Sciences) has started for monitoring recovering process of marine ecosystems. The project continues ten years. First five years are mainly monitored recovery process, then we should transfer our knowledge to fishermen and citizens for restoration of fishery and social systems. But, how can we actually transfer our knowledge from science to citizens? This is new experience for us. Socio-technology constructs a "high quality risk communication" model how scientific knowledge or technologies from scientific communities to citizens. They are progressing as follows, "observation, measurements and data", → "modeling and synthesis" → "information process" → "delivery to society" → " take action in society". These steps show detailed transition from inter-disciplinarity to trans-disciplinarity in science and technology. In our presentation, we plan to show a couple of case studies that are going forward from science to society.
Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)
NASA Astrophysics Data System (ADS)
The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and U.S. conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies.
Knowledge Transfer Project: Cultivating Smart Energy Solutions through Dynamic Peer-to-Peer Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
As energy policy makers and professionals convene in the Oresund region for the 9th Annual Clean Energy Ministerial (CEM9), the global community is as united as ever around the common goal of accelerating the transition to global clean energy. Through sustained collective effort and thought leadership, CEM partners and stakeholders are systematically addressing the barriers to the widescale deployment of clean energy technologies. Pivotal to their progress is the efficient sharing and dissemination of knowledge. To address that need, the CEM-initiative International SmartGrid Action Network (ISGAN) launched the Knowledge Transfer Project (KTP) in March 2016 to capture, collect, and sharemore » knowledge about smart grid technologies among countries and key stakeholders. Building on ISGAN's experience with delivering deep-dive workshops, the KTP fosters meaningful international dialogue on smart grids with a focus on developing competence and building capacity. After a successful 2016 pilot project and two consecutive projects, each with a different focus and structure, the KTP has become an established practice that can support existing ISGAN or CEM initiatives. To accommodate different purposes, needs, and practical circumstances, ISGAN has adopted three basic models for delivering KTP workshops: Country-Centric, Multilateral, and Hybrid. This fact sheet describes each approach through case studies of workshops in Mexico, India, and Belgium, and invites new ideas and partners for future KTPs.« less
KSC SBIR/STTR 2004 Program Year Report
NASA Technical Reports Server (NTRS)
2005-01-01
The Kennedy Space Center Level III SBIR/STTR management staff is under the Technology Transfer Office within the Spaceport Engineering and Technology Directorate. The SBIR and STTR programs provide an opportunity for small high technology companies and research institutions to participate in Government-sponsored research and development (R&D) programs in key technology areas. The SBIR program was established by Congress in 1982 to provide increased opportunities for small businesses to participate in R&D programs, increase employment, and improve U.S. competitiveness. The program's specific objectives are to stimulate U.S. technological innovation, use small businesses to meet Federal research and development needs, increase private sector commercialization of innovations, and foster and encourage participation by socially disadvantaged businesses. Legislation enacted in December 2000 reauthorized the program and strengthened emphasis on pursuing commercial applications of SBIR projects. An SBIR Phase I contract is the opportunity to establish the feasibility and technical merit of a proposed innovation. Selected competitively, the Phase I contract lasts for 6 months and is funded up to $70,000. SBIR Phase II contracts continue the most promising Phase I projects based on scientific! technical merit, expected value to NASA, company capability, and commercial potential. Phase II contracts are usually for a period of 24 months and may not exceed $600,000. NASA usually selects approximately 40 percent of Phase I projects to continue to the Phase II level. Phase III is the process of furthering the development of a product to make it commercially available. The STTR program awards contracts to small business concerns for cooperative R&D with a nonprofit research institution. Research institutions include nonprofit research organizations, Federal laboratories, or universities. The goal of the program established by Congress is to facilitate the transfer of technology developed by a research institution through the entrepreneurship of a small business. The STIR program is smaller in funding than the SBIR program. While the proposal is submitted by the small business concern, at least 30 percent of the funding and work must originate with the research institution. STTR Phase I projects receive up to $100K for a one-year effort, and a Phase II contract receives up to $600K for two years.
Transferring new technologies within the federal sector: The New Technology Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, D.R.; Hunt, D.M.
1994-08-01
The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less
NASA Astrophysics Data System (ADS)
Estep, Judith
Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the researcher and recipient relationship, specific to technology transfer. In this research, the evaluation criteria of several research organizations were assessed to understand the extent to which the success attributes that were identified in literature were considered when reviewing research proposals. While some of the organizations included a few of the success attributes, none of the organizations considered all of the attributes. In addition, none of the organizations quantified the value of the success attributes. The effectiveness of the model relies extensively on expert judgments to complete the model validation and quantification. Subject matter experts ranging from senior executives with extensive experience in technology transfer to principal research investigators from national labs, universities, utilities, and non-profit research organizations were used to ensure a comprehensive and cross-functional validation and quantification of the decision model. The quantified model was validated using a case study involving demand response (DR) technology proposals in the Pacific Northwest. The DR technologies were selected based on their potential to solve some of the region's most prevalent issues. In addition, several sensitivity scenarios were developed to test the model's response to extreme case scenarios, impact of perturbations in expert responses, and if it can be applied to other than demand response technologies. In other words, is the model technology agnostic? In addition, the flexibility of the model to be used as a tool for communicating which success attributes in a research proposal are deficient and need strengthening and how improvements would increase the overall technology transfer score were assessed. The low scoring success attributes in the case study proposals (e.g. project meetings, etc.) were clearly identified as the areas to be improved for increasing the technology transfer score. As a communication tool, the model could help a research organization identify areas they could bolster to improve their overall technology transfer score. Similarly, the technology recipient could use the results to identify areas that need to be reinforced, as the research is ongoing. The research objective is to develop a decision model resulting in a technology transfer score that can be used to assess the technology transfer potential of a research proposal. The technology transfer score can be used by an organization in the development of a research portfolio. An organization's growth, in a highly competitive global market, hinges on superior R&D performance and the ability to apply the results. The energy sector is no different. While there is sufficient research being done to address the issues facing the utility industry, the rate at which technologies are adopted is lagging. The technology transfer score has the potential to increase the success of crossing the chasm to successful application by helping an organization make informed and deliberate decisions about their research portfolio.
Center for Biophotonics Science and Technology (CBST).
Chuang, Frank
2004-01-01
The Center for Biophotonics Science and Technology (CBST) is the only center in the country funded by the National Science Foundation and devoted to the study of light and radiant energy in biology and medicine. Our consortium of 10 world-class academic institutions and research laboratories is comprised of physical and life scientists, physicians and engineers - along with industry participants, educators and community leaders - working together to bring biophotonics to the forefront of mainstream science. The three main arms of CBST are (1) Science and Technology, (2) Education, and (3) Knowledge Transfer. The research sponsored by the center focuses on critical themes that are expected to have significant impact on current biomedical science and technology. Projects include the development of new methods in optical microscopy that work well beyond the diffraction limit; ultrafast, high-intensity X-ray lasers to resolve the structure of single biomolecules, and new devices and sensors for minimally - or noninvasive medical applications. CBST is developing a new curriculum, along with training materials, internships and research fellowships to introduce biophotonics to students and teachers at all educational levels. Finally, the knowledge transfer component of CBST is seeking to catalyze the rapid growth of biophotonics as a new technology sector by supplying intellectual capital and tools to stimulate the growth of new products and new companies. By coupling the center's biophotonics research projects with industry partners and sponsors, a unique R&D environment is created to expand the use of photons in the development of life sciences, bioengineering and health care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacAllister, D.J.; Day, R.; McCormack, M.D.
This paper gives an overview of a major integrated oil company`s experience with artificial intelligence (AI) over the last 5 years, with an emphasis on expert systems. The authors chronicle the development of an AI group, including details on development tool selection, project selection strategies, potential pitfalls, and descriptions of several completed expert systems. Small expert systems produced by teams of petroleum technology experts and experienced expert system developers that are focused in well-defined technical areas have produced substantial benefits and accelerated petroleum technology transfer.
Wireless microwave acoustic sensor system for condition monitoring in power plant environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira da Cunha, Mauricio
This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless, battery-free, maintenance-free operation, and operation in the harsh-environment of power plant equipment up to about 1100 oC. Their small size and configuration allows flexible sensor placement and embedding of multiple sensor arrays into a variety of components within power systems that can be interrogated by a single RF unit. The outcomes of this project and technological transfer respond to a DOE analysis need, which indicated that if one percent efficiency in coal burning is achieved, an additional 2 gigawatt-hours of energy per year is generated and the resulting coal cost savings is $300 million per year, also accompanied by a reduction of more than 10 million metric tons of CO2 per year emitted into the atmosphere. Therefore, the developed harsh environment wireless microwave acoustic sensor technology and the technological transfer achievements that resulted from the execution of this project have significant impact for power plant equipment and systems and are well-positioned to contribute to the cost reduction in power generation, the increase in power plant efficiency, the improvement in maintenance, the reduction in down-time, and the decrease in environmental pollution. The technology is also in a position to be extended to address other types of high-temperature harsh-environment power plant and energy sector sensing needs.« less
Space Biosensor Systems: Implications for Technology Transfer
NASA Technical Reports Server (NTRS)
Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)
1997-01-01
To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.« less
Magnetocaloric Materials Revolutionize Refrigeration Technology
Momen, Ayyoub
2018-06-25
Researchers at Oak Ridge National Laboratory have partnered with General Electric (GE) Appliances on a building technologies project to revolutionize todayâs 100-year-old home refrigeration technology. Using magnetocaloric materials (MCM), theyâve eliminated the need for a vapor compression cycle, associated refrigerants, and their negative environmental impacts. The research team is currently working to determine the most effective means to transfer heat from the solid MCM, and using fluid passed through high-resolution microchannels shows promise. This technology has the potential to reduce energy consumption by 25%, and GE hopes to commercialize magnetocaloric refrigerators for use in homes by 2020.
Technology transfer in New York City - The NASA/NYC Applications Project.
NASA Technical Reports Server (NTRS)
Karen, A.; Orrick, D.; Anuskiewicz, T.
1973-01-01
New York City faces many varied and complex problems ranging from truck hijacking to graffiti. In answer to a request from NYC officials NASA is sponsoring the efforts of a project aimed at applying aerospace-derived solutions to a series of city technical problems. An immediate result has been a pilot experiment to improve security in the City's schools. Other problem areas for NASA review have been selected from the Fire, Police and Air Resources Departments. The Project offers a significant example of a viable approach to the crucial process of bridging the communications gap between urban officials and technologists.
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Higher Education Institutions and Regional Mission: Lessons Learnt from the OECD Review Project
ERIC Educational Resources Information Center
Puukka, Jaana; Marmolejo, Francisco
2008-01-01
With the processes of globalization and localization, the local availability of knowledge and skills, and the transfer of technology and innovation to industry, small and medium-sized enterprises and the wider society have become increasingly important. In recent years, there have been many initiatives across Organization for Economic Cooperation…
ERIC Educational Resources Information Center
Tomezsko, Edward S. J.
A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…
DOT National Transportation Integrated Search
2016-10-01
Due to shale oil/gas recovery : operations, a large number : of truck trips on Louisiana : roadways are required for : transporting equipment and : materials to and from the : recovery sites. As a result, : roads and bridges that were : designed for ...
Georgia Tech Vertical Lift Research Center of Excellence
2017-12-14
Technical Project Summaries Task 1.1 (GT-1): Next Generation VABS for More Realistic Modeling of Composite Blades ...Methodology for the Prediction of Rotor Blade Ice Formation and Shedding ..................................................................... 20...software disclosures and technology transfer efforts. Task 1.1 (GT-1): Next Generation VABS for More Realistic Modeling of Composite Blades PIs
DOT National Transportation Integrated Search
2010-12-01
A number of initiatives were undertaken to support education, training, and technology transfer objectives related to UAB UTC Domain 2 Project: Development of a Dynamic Traffic Assignment and Simulation Model for Incident and Emergency Management App...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.
Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Alan D.
2014-07-24
This report describes work toward a supercritical CO 2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO 2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO 2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.
Quarterly Technical Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary K. Banken
This project has identified all FDD oil reservoirs in Oklahoma; grouped those reservoirs into plays that have similar depositional origins; collected, organized, and analyzed all available data; conducted characterization and simulation studies on selected reservoirs in each plays; and implemented a technology transfer program targeted to the operators of FDD reservoirs. By fulfilling these objectives, the FDD project has had the goal of helping to sustain the life expectancy of existing wells and provide incentive for development and exploratory wells with the ultimate objective of increasing oil recovery.
State Technologies Advancement Collaborative
DOE Office of Scientific and Technical Information (OSTI.GOV)
David S. Terry
2012-01-30
The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligatingmore » funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.« less
Potential applications of smart clothing solutions in health care and personal protection.
Meinander, Harriet; Honkala, Markku
2004-01-01
The rapid development in the fields of sensor and telecommunication technologies has created completely new possibilities also for the textile and clothing field. New smart textile and clothing systems can be developed by integrating sensors in the textile constructions. Application fields for these added-value products are e.g. protective clothing for extreme environments, garments for the health care sector, technical textiles, sport and leisure wear. Some products have already been introduced on the markets, but generally it can be stated that the development is only in its starting phase, and the expectations for the future are big. Many different aspects have to be considered in the development of the wearable technology products for the health care sector: medical problems and their diagnosis, sensor choice, data processing and telecommunication solutions, clothing requirements. A functional product can be achieved only if all aspects work together, and therefore experts from all fields should participate in the RTD projects. In the EC-funded project DE3002 Easytex clothing and textiles for disabled and elderly people were investigated. Some recommendations concerning durability, appearance, comfort, service and safety of products for different special user groups were defined, based on user questionnaires and seminars, general textile and clothing requirements and on laboratory test series."Clothing Area Network--Clan" is a research project aiming to develop a technical concept and technology needed in enabling both wired and wireless data and power transfer between different intelligent modules (user interfaces, sensors, CPU's, batteries etc.) integrated into a smart clothing system. Fire-fighters clothing system is chosen as the development platform, being a very challenging application from which the developed technology can be transferred to other protective clothing systems.
2015 Summary Report on Industrial and Regulatory Engagement Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Kenneth David
2015-09-01
The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway of the Light Water Reactor Sustainability(LWRS) Program conducts a vigorous engagement strategy with the U.S. nuclear power industry, including the nuclear operating companies, major support organizations, the Nuclear Regulatory Commission (NRC), and suppliers. The goal of this engagement strategy is to develop a shared vision and common understanding across the nuclear industry of the need for II&C modernization, the performance improvement that can be obtained, and the opportunities for collaboration to enact this vision. The primary means of engaging the nuclear operating companies is through a Utility Working Group (UWG),more » composed of utility representatives that participate in formal meetings and bi-monthly phone calls to provide input on nuclear plant needs and priorities for II&C technologies. Two working groups were initiated during FY 2015 to provide a means for UWG members to focus on particular technologies of interest. The Outage Improvement Working Group consists of eight utilities that participate in periodic conference calls and have access to a share-point web page for acccess to project materials developed in the Advanced Outage Control Center pilot project. In the area of computer-based procedures and automated work packages, the II&C Pathway has worked with the Nuclear Information Technology Strategic Leadership (NITSL) to set up a monthly conference call with interested utility members to discuss various aspects of mobile worker technologies. Twenty one technical and project reports were delivered to the UWG during FY 2015, reflecting the work of the II&C Pathway pilot projects during the year. Distribution of these reports is one of the primary means of transferring to the nuclear industry the knowledge and experience gained during the development of advanced II&C technologies in support of LWR sustainability. Site visits to discuss pilot project activities and future plans were made to Arizona Public Service, Exelon, Duke Energy, Pacific Gas & Electric, SCANA, Southern Nuclear, South Texas Project, STARS Alliance, Tennessee Valley Authority, and Xcel. Discussions were also held on the pathway goals and activities with major industry support organizations during FY 2102, including the Institute of Nuclear Power Operations (INPO), the Nuclear Information Technology Strategic Leadership (NITSL), the Nuclear Energy Institute (NEI), and the Electric Power Research Institute. The Advanced II&C Pathway work was presented at five major industry conferences and Informal discussions were held with key NRC managers at industry conferences. In addition, discussions were held with NRC senior managers on digital regulatory issues through participation on the NEI Digital I&C Working Group. Meetings were held with major industry suppliers and consultants, to explore opportunities for collaboration and to provide a means of pilot project technology transfer. In the international area, discussions were held with Electricite’ de France (EdF) concerning possible collaboration in the area NPP configuration control using intelligent wireless devices.« less
Rossomando, Edward F; Benitez, Hubert; Janicki, Bernard W
2004-09-01
In July 1999, the National Institute of Dental and Craniofacial Research (NIDCR) convened a Blue Ribbon Panel that recommended management skills, entrepreneurship, and technology transfer should be included in dental education. The panel's recommendations were implemented in an NIDCR-funded pilot project, "Workshop Course to Promote and Develop Dental Products and Technologies." The workshop consisted of lectures presented by seven faculty members recruited from academia, government, and business, along with an analysis of a professor's invention and the barriers encountered in transforming the invention into a product. Evaluation consisted of a pre- and post-workshop survey. The workshop was presented to twenty-two participants on November 8 and 9, 2003 at the University of Connecticut School of Dental Medicine and, to refine the presentation further, will be tested at five additional dental schools (University of Pennsylvania, Harvard University, New York University, Nova Southeastern University, and University of Southern California). The results indicated that the workshop's courses would be helpful to the commercialization of inventions. In addition, dental students with experience in basic research expressed an interest in research of projects of use in dental practice. These findings suggest that pursuing research and an academic career might be more appealing if their research was product-oriented.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Technical Reports Server (NTRS)
Baresi, Larry
1989-01-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Astrophysics Data System (ADS)
Baresi, Larry
1989-03-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrinak, V.M.
The Eastern Devonian Gas Shales Technology Review is a technology transfer vehicle designed to keep industry and research organizations aware of major happenings in the shales. Four issues were published, and the majority of the readership was found to be operators. Under the other major task in this project, areal and analytic analyses of the basin resulted in reducing the study area by 30% while defining a rectangular coordinate system for the basin. Shale-well cost and economic models were developed and validated, and a simplified flow model was prepared.
A regional technology transfer program
NASA Technical Reports Server (NTRS)
1978-01-01
The final report is presented for the North Carolina Science and Technology Research Center's 14th consecutive contract period as a NASA Industrial Applications Center, serving the information needs of nine Southeastern states. Included in the report are figures for and analysis of marketing efforts, file usage, search delivered, and other services performed for clients; and information on staff changes, workshops, and special projects in 1978. An appendix contains copies of NC/STRC magazine advertisements, letters from clients, and supplementary information on NC/STRC staff and services.
Engineering and Technology in Wheelchair Sport.
Cooper, Rory A; Tuakli-Wosornu, Yetsa A; Henderson, Geoffrey V; Quinby, Eleanor; Dicianno, Brad E; Tsang, Kalai; Ding, Dan; Cooper, Rosemarie; Crytzer, Theresa M; Koontz, Alicia M; Rice, Ian; Bleakney, Adam W
2018-05-01
Technologies capable of projecting injury and performance metrics to athletes and coaches are being developed. Wheelchair athletes must be cognizant of their upper limb health; therefore, systems must be designed to promote efficient transfer of energy to the handrims and evaluated for simultaneous effects on the upper limbs. This article is brief review of resources that help wheelchair users increase physiologic response to exercise, develop ideas for adaptive workout routines, locate accessible facilities and outdoor areas, and develop wheelchair sports-specific skills. Published by Elsevier Inc.
The NASA/Baltimore Applications Project: An experiment in technology transfer
NASA Technical Reports Server (NTRS)
Golden, T. S.
1981-01-01
Conclusions drawn from the experiment thus far are presented. The problems of a large city most often do not require highly sophisticated solutions; the simpler the solution, the better. A problem focused approach is a greater help to the city than a product focused approach. Most problem situations involve several individuals or organized groups within the city. Mutual trust and good interpersonal relationships between the technologist and the administrator is as important for solving problems as technological know-how.
Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.
2000-01-01
This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.
SBIR Success Stories at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Howe, Meghan R.; Novak, George D.
1999-01-01
This booklet of success stories summarizes the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. These success stories are the results of selecting projects that best support NASA missions and also have commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. The company name and the NASA contact person are identified to encourage further interest and communication to occur.
NASA Astrophysics Data System (ADS)
Silvernail, Nathan L.
This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.
Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery
NASA Technical Reports Server (NTRS)
1993-01-01
A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.
Baquet, C R
1997-01-01
Greater attention has been given recently to information technology and telecommunication reforms and their use for the improvement of health care service delivery. Broadly defined, telemedicine is the use of advanced telecommunications technologies for the purposes of making diagnoses, conducting research, transferring patient data, and/or improving disease management and treatment in remote areas. The emphasis is on use of telecommunications technologies at remote sites. This article provides a brief overview of telemedicine, its potential clinical applications, and the various benefits and leading issues surrounding it. It also describes selected telemedicine projects conducted at the University of Maryland School of Medicine in Baltimore.
Technology Transfer Issues and a New Technology Transfer Model
ERIC Educational Resources Information Center
Choi, Hee Jun
2009-01-01
The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
SHARED TECHNOLOGY TRANSFER PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
GRIFFIN, JOHN M. HAUT, RICHARD C.
2008-03-07
The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderockmore » unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.« less
Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less
CO2CARE - Site Closure Assessment Research - Recent Results
NASA Astrophysics Data System (ADS)
Wipki, Mario; Liebscher, Axel; Kühn, Michael; Lüth, Stefan; Durucan, Sevket; Deflandre, Jean-Pierre; Wollenweber, Jens; Chadwick, Andy; Böhm, Gualtiero
2013-04-01
The EU project CO2CARE, which started in January 2011, supports the large scale demonstration of CCS technology by addressing requirements of operators and regulators face in terms of CO2 storage site abandonment. The CO2CARE consortium, consisting of 24 project partners from universities, research institutes, and the industry, investigate technologies and procedures for abandonment and post-closure safety, satisfying the regulatory requirements for the transfer of responsibility. Nine key injections sites in Europe, USA, Japan, and Australia, each with a specific (hydro) geological and environmental character, were selected for investigations. These sites can be divided into the CO2 storage types on-shore, off-shore, natural CO2 reservoir, depleted gas reservoirs, and saline aquifers. The project mainly focuses on three key areas: - well abandonment and long-term integrity; - reservoir management and prediction from closure to the long-term; - risk management methodologies for long-term safety. These key areas are in turn closely linked to the three high-level requirements of the EU Directive 2009/31/EC, Article 18 for CO2 storage which are: (i) absence of any detectable leakage, (ii) conformity of actual behaviour of the injected CO2 with the modeled behaviour, and (iii) the storage site is evolving towards a situation of long-term stability. The identification of criteria and the development of site abandonment procedures and technologies, which guarantee the fulfillment of the high-level requirements, are the major objectives in CO2CARE. These criteria have to be fulfilled prior to subsequent transfer of responsibility to the competent authorities, typically 20 or 30 years after site closure. Finally, the essential results of the different working groups in CO2CARE will feed into overall guidelines for regulatory compliance and "Best Practice" for site abandonment. Dissemination of the results will show policy makers and the general public how site abandonment procedures for CO2 storage sites can be undertaken sustainably, cost-effectively and with no adverse effect to the local population and the natural environment. After more than two-thirds of the project`s lifetime, an overview of the project`s goals and the most relevant research findings are presented.
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
NASA Technical Reports Server (NTRS)
Mcbride, John G.
1990-01-01
The mission of the AdaNET research effort is to determine how to increase the availability of reusable Ada components and associated software engineering technology to both private and Federal sectors. The effort is structured to define the requirements for transfer of Federally developed software technology, study feasible approaches to meeting the requirements, and to gain experience in applying various technologies and practices. The overall approach to the development of the AdaNET System Specification is presented. A work breakdown structure is presented with each research activity described in detail. The deliverables for each work area are summarized. The overall organization and responsibilities for each research area are described. The schedule and necessary resources are presented for each research activity. The estimated cost is summarized for each activity. The project plan is fully described in the Super Project Expert data file contained on the floppy disk attached to the back cover of this plan.
McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam
2011-05-01
The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core applies pharmaceutical industry project-management principles in an academic setting by bringing together multidisciplinary teams to fill critical scientific and technology gaps, using an experienced team of industry-trained researchers and project managers. The KU HTS proactively engages in supporting grant applications for extramural funding, intellectual-property management and technology transfer. The KU HTS staff further provides educational opportunities for the KU faculty and students to learn cutting-edge technologies in drug-discovery platforms through seminars, workshops, internships and course teaching. This is the first instalment of a two-part contribution from the KU HTS laboratory.
NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology
NASA Technical Reports Server (NTRS)
Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William
1987-01-01
A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.
PV technology and success of solar electricity in Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dung, T.Q.
1997-12-31
Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solarmore » electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.« less
Geysers advanced direct contact condenser research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, J.; Bahning, T.; Bharathan, D.
1997-12-31
The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less
Using bibliographic databases in technology transfer
NASA Technical Reports Server (NTRS)
Huffman, G. David
1987-01-01
When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.
Provincially and Locally Initiated Curriculum Program Assessment, Final Report.
ERIC Educational Resources Information Center
1999
This report is an independent assessment of the Provincially Initiated Curriculum (PIC) and Locally Initiated Curriculum (LIC) for British Columbia's Centre for Curriculum, Transfer and Technology (C2T2), which manages both PIC and LIC projects. The report makes four recommendations for C2T2's consideration: (1) a renewed emphasis on communication…
ERIC Educational Resources Information Center
Bastürk, Savas
2017-01-01
Selecting and applying appropriate research techniques, analysing data using information and communication technologies, transferring the obtained results of the analysis into tables and interpreting them are the performance indicators evaluated by the Ministry of National Education under teacher competencies. At the beginning of the courses that…
A successful experiment: The boundary spanner on the Bitterroot National Forest
Sharon Ritter
2006-01-01
The Bitterroot Ecosystem Management Research Project and the Bitterroot National Forest funded a boundary spanner to coordinate research activities taking place on the Forest, increase technology transfer and outreach, and foster increased dialogue among and between researchers and managers. Coordination involved use of a research special use permit and a GIS map to...
The Zones of Proximal and Distal Development in Chinese Language Studies with the Use of Wikis
ERIC Educational Resources Information Center
Chew, Esyin; Ding, Seong Lin
2014-01-01
Educational practitioners in the higher education institutions of the UK have increasingly promoted the use of wikis. The technology enhanced learning experience of the UK was transferred to a local higher educational agency in Malaysia through a collaborative research project called WiLearn. By examining a student cohort enrolled in Chinese…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-12-01
The University of Arizona, Arizona Statue University (ASU), and Georgia Institute of Technology is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.
NASA Technical Reports Server (NTRS)
Digman, R. Michael
1988-01-01
The goal of AdaNET is to transfer existing and emerging software engineering technology from the Federal government to the private sector. The views and perspectives of the current project participants on long and short term goals for AdaNET; organizational structure; resources and returns; summary of identified AdaNET services; and the summary of the organizational model currently under discussion are presented.
ERIC Educational Resources Information Center
Bingham, Guy A.; Southee, Darren J.; Page, Tom
2015-01-01
This paper examines the traditional engineering-based provision delivered to Product Design and Technology (B.Sc.) undergraduates at the Loughborough Design School and questions its relevancy against the increasing expectations of industry. The paper reviews final-year design projects to understand the level of transference of engineering-based…
Robotic technology evolution and transfer
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1992-01-01
A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.
The World Wide Web and Technology Transfer at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Bianco, David J.
1994-01-01
NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.
Architecture of a prehospital emergency patient care report system (PEPRS).
Majeed, Raphael W; Stöhr, Mark R; Röhrig, Rainer
2013-01-01
In recent years, prehospital emergency care adapted to the technology shift towards tablet computers and mobile computing. In particular, electronic patient care report (e-PCR) systems gained considerable attention and adoption in prehospital emergency medicine [1]. On the other hand, hospital information systems are already widely adopted. Yet, there is no universal solution for integrating prehospital emergency reports into electronic medical records of hospital information systems. Previous projects either relied on proprietary viewing workstations or examined and transferred only data for specific diseases (e.g. stroke patients[2]). Using requirements engineering and a three step software engineering approach, this project presents a generic architecture for integrating prehospital emergency care reports into hospital information systems. Aim of this project is to describe a generic architecture which can be used to implement data transfer and integration of pre hospital emergency care reports to hospital information systems. In summary, the prototype was able to integrate data in a standardized manner. The devised methods can be used design generic software for prehospital to hospital data integration.
Tietze, Mari F; Williams, Josie; Galimbertti, Marisa
2009-01-01
This grant involved a hospital collaborative for excellence using information technology over 3-year period. The project activities focused on the improvement of patient care safety and quality in Southern rural and small community hospitals through the use of technology and education. The technology component of the design involved the implementation of a Web-based business analytic tool that allows hospitals to view data, create reports, and analyze their safety and quality data. Through a preimplementation and postimplementation comparative design, the focus of the implementation team was twofold: to recruit participant hospitals and to implement the technology at each of the 66 hospital sites. Rural hospitals were defined as acute care hospitals located in a county with a population of less than 100 000 or a state-administered Critical Access Hospital, making the total study population target 188 hospitals. Lessons learned during the information technology implementation of these hospitals are reflective of the unique culture, financial characteristics, organizational structure, and technology architecture of rural hospitals. Specific steps such as recruitment, information technology assessment, conference calls for project planning, data file extraction and transfer, technology training, use of e-mail, use of telephones, personnel management, and engaging information technology vendors were found to vary greatly among hospitals.
Technology transfer within the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Plotkin, Henry H.
1992-01-01
Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.
NASA Redox Storage System Development Project
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.
1984-01-01
The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and US conservation and renewable energymore » industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies. 3 refs.« less
NASA Astrophysics Data System (ADS)
Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.
2017-09-01
Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of 'Applied Field Sensitive Process Technologies' requiring an external field to move solutes in a fluid within a fibrous (or porous) domain. This field incorporates an additional variable that makes the analysis very challenging and can create for the student a number of new problems to solve. A graduate-level course, based on active-learning approaches and High Performance Learning Environments, where transfer of knowledge plays a key role, was designed by the Chemical Engineering Department at Tennessee Technological University. This course, where the fundamentals principles of EKHD were taught to science, engineering and technology students was designed by the Chemical Engineering Department at the Tennessee Technological University, Cookeville, TN. An important number of these students were able to grasp the tools required to advance their research projects that led to numerous technical presentations in professional society meetings and publications in peered-reviewed journals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Jones, Perry T
2014-01-01
While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to themore » energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.« less
2011-06-06
8 Figure 2-10 – Peak anomaly amplitude results from the GEMTADS and pit measurements of the 4.2-in mortar (open diamonds). The modeled system...projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable orientations of the mortar are shown as lines...and measurements of the emplaced 75-mm projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable
Model Checking Verification and Validation at JPL and the NASA Fairmont IV and V Facility
NASA Technical Reports Server (NTRS)
Schneider, Frank; Easterbrook, Steve; Callahan, Jack; Montgomery, Todd
1999-01-01
We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a complex spacecraft controller. Software design and implementation validation were carried out successfully. To suggest future applications we also show how the implementation validation step can be automated. The effort was followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.
Near-Blackbody Enclosed Particle-Receiver Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Sakadjian, Bartev
2015-12-01
This 3-year project develops a technology using gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage (TES) medium for a concentrating solar power (CSP) plant, to address the temperature, efficiency, and cost barriers associated with current molten-salt CSP systems. This project focused on developing a near-blackbody particle receiver and an integrated fluidized-bed heat exchanger with auxiliary components to achieve greater than 20% cost reduction over current CSP plants, and to provide the ability to drive high-efficiency power cycles.
NASA SBIR product catalog, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems.
Chang, D P
1998-01-01
Outreach, training, technology transfer, and research are often treated as programmatically distinct activities. The interdisciplinary and applied aspects of the Superfund Basic Research Program offer an opportunity to explore different models. A case study is presented that describes a collaborative outreach effort that combines all of the above. It involves the University of California's Davis and Berkeley program projects, the University of California Systemwide Toxic Substances Research and Teaching Program, the U.S. Navy's civilian workforce at the former Mare Island Naval Shipyard, Vallejo, California (MINSY), a Department of Defense (DoD) Environmental Education Demonstration Grant program, and the Private Industry Council of Napa and Sonoma counties in California. The effort applied a Superfund-developed technology to a combined waste, radium and polychlorinated biphenyl contamination, stemming from a problematic removal action at an installation/restoration site at MINSY. The effort demonstrates that opportunities for similar collaborations are possible at DoD installations. PMID:9703494
FixO3 project results, legacy and module migration to EMSO
NASA Astrophysics Data System (ADS)
Lampitt, Richard
2017-04-01
The fixed point open ocean observatory network (FixO3) project is an international project aimed at integrating in a single network all fixed point open ocean observatories operated by European organisations and to harmonise and coordinate technological, procedural and data management across the stations. The project is running for four years since September 2013 with 29 partners across Europe and a budget of 7M Euros and is now coming to its final phase. In contrast to several past programmes, the opportunity has arisen to ensure that many of the project achievements can migrate into the newly formed European Multidisciplinary Seafloor and water column Observatory (EMSO) research infrastructure. The final phase of the project will focus on developing a strategy to transfer the results in an efficient way to maintain their relevance and maximise their use. In this presentation, we will highlight the significant achievements of FixO3 over the past three years focussing on the modules which will be transferred to EMSO in the coming 9 months. These include: 1. Handbook of best practices for operating fixed point observatories 2. Metadata catalogue 3. Earth Virtual Observatory (EarthVO) for data visualisation and comparison 4. Open Ocean Observatory Yellow Pages (O3YP) 5. Training material for hardware, data and data products used
Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans
2014-01-01
Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes in the manufacturing process and vaccine formulation, to start directly with phase 1 clinical trials.
The U.S. government technical report and the transfer of federally funded aerospace R & D
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
This article discusses the U.S. government technical report and the transfer of federally funded aerospace research and development in a conceptual framework of the federal government as a producer of scientific and technical information. The article summarizes current literature and research and discusses U.S. government technical report use and the importance of using data obtained from the NASA/DoD Aerospace Knowledge Diffusion Research Project. The authors make a case for changing existing U.S. technology policy and present a research agenda for the U.S. government technical report.
Demonstration of Spacecraft Fire Safety Technology
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2012-01-01
During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.
The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project
NASA Technical Reports Server (NTRS)
1999-01-01
The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.
NASA Technical Reports Server (NTRS)
Hoffman, Edward (Editor); Laufer, Alexander (Editor); Post, Todd (Editor); Brady, Jody Lannen (Editor)
2003-01-01
The Academy of Program and Project Leadership (APPL) and ASK Magazine is presented. APPL is a research-based organization that serves NASA program and project managers, as well as project teams, at every level of development. In 1997, APPL was created from an earlier program to underscore the importance that NASA places on project management and project teams through a wide variety of products and services, including knowledge sharing, classroom and online courses, career development guidance, performance support, university partnerships, and advanced technology tools. ASK Magazine grew out of our Knowledge Sharing Initiative. The stories that appear in ASK are written by the 'best of the best' project managers, primarily from NASA, but also from other government agencies and industry. These stories contain genuine nuggets of knowledge and wisdom that are transferable across projects. Who better than a project manager to help another project manager address a critical issue on a project? Big projects, small projects-they're all here in ASK. APPL is one of our most exciting publications about project management.
High efficiency pump for space helium transfer
NASA Technical Reports Server (NTRS)
Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert
1991-01-01
A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.
Dogs cloned from adult somatic cells.
Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk
2005-08-04
Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.
NASA Technical Reports Server (NTRS)
Horsham, Gray A. P.
1998-01-01
Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in targeted industry sectors. The company-supplied information served as input data to activate or start-up an internal, phased match-making process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations, and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from Lewis support and measurable economic effects represented far-term outputs.
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
Assay optimisation and technology transfer for multi-site immuno-monitoring in vaccine trials
Harris, Stephanie A.; Satti, Iman; Bryan, Donna; Walker, K. Barry; Dockrell, Hazel M.; McShane, Helen; Ho, Mei Mei
2017-01-01
Cellular immunological assays are important tools for the monitoring of responses to T-cell-inducing vaccine candidates. As these bioassays are often technically complex and require considerable experience, careful technology transfer between laboratories is critical if high quality, reproducible data that allows comparison between sites, is to be generated. The aim of this study, funded by the European Union Framework Program 7-funded TRANSVAC project, was to optimise Standard Operating Procedures and the technology transfer process to maximise the reproducibility of three bioassays for interferon-gamma responses: enzyme-linked immunosorbent assay (ELISA), ex-vivo enzyme-linked immunospot and intracellular cytokine staining. We found that the initial variability in results generated across three different laboratories reduced following a combination of Standard Operating Procedure harmonisation and the undertaking of side-by-side training sessions in which assay operators performed each assay in the presence of an assay ‘lead’ operator. Mean inter-site coefficients of variance reduced following this training session when compared with the pre-training values, most notably for the ELISA assay. There was a trend for increased inter-site variability at lower response magnitudes for the ELISA and intracellular cytokine staining assays. In conclusion, we recommend that on-site operator training is an essential component of the assay technology transfer process and combined with harmonised Standard Operating Procedures will improve the quality, reproducibility and comparability of data produced across different laboratories. These data may be helpful in ongoing discussions of the potential risk/benefit of centralised immunological assay strategies for large clinical trials versus decentralised units. PMID:29020010
Low-Activity Waste Pretreatment System Additional Engineering-Scale Integrated Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, Matt R.; Wilson, Robert A.
Washington River Protections Solutions, LLC’s (WRPS) Low Activity Waste Pretreatment System (LAWPS) Project provides for the early production of immobilized low-activity waste (ILAW) by feeding LAW directly from Tank Farms to the Waste Treatment and Immobilization Plant (WTP) LAW Facility, bypassing the WTP Pretreatment Facility. Prior to the transfer of feed to the WTP LAW Vitrification Facility, tank supernatant waste will be pretreated in the LAWPS to meet the WTP LAW waste acceptance criteria (WAC). Full-scale and engineering-scale testing of critical technology elements, as part of the technology maturation process, are components of the overall LAWPS Project. WRPS awarded themore » engineering-scale integrated testing scope to AECOM via WRPS Subcontract 58349. This report is deliverable MSR-008 of the subcontract.« less
Carter, W.D.; Rowan, L.C.
1981-01-01
The International Geological Correlation Programme (IGCP) is a worldwide cooperative research programme that began in 1974 under the auspices of the International Union of Geological Sciences. Because of the global availability of Earth resources data collected by satellites and the great interest among geologists in taking advantage of these new sources of information, a project was begun in 1976 to improve the rate of technology transfer in the field of remote-sensing exploration for energy and mineral resources. Conducting joint workshops in cooperation with COSPAR has been an important part of this project. It is to be hoped the project will improve our capability to explore, identify, and develop new resources to meet the burgeoning demands of society. ?? 1981.
An Overview of Electric Propulsion Activities at NASA
NASA Technical Reports Server (NTRS)
Dunning, John W., Jr.; Hamley, John A.; Jankovsky, Robert S.; Oleson, Steven R.
2004-01-01
This paper provides an overview of NASA s activities in the area of electric propulsion with an emphasis on project directions, recent progress, and a view of future project directions. The goals of the electric propulsion programs are to develop key technologies to enable new and ambitious science missions and to transfer these technologies to industry. Activities include the development of gridded ion thruster technology, Hall thruster technology, pulsed plasma thruster technology, and very high power electric propulsion technology, as well as systems technology that supports practical implementation of these advanced concepts. The performance of clusters of ion and Hall thrusters is being revisited. Mission analyses, based on science requirements and preliminary mission specifications, guide the technology projects and introduce mission planners to new capabilities. Significant in-house activity, with strong industrial/academia participation via contracts and grants, is maintained to address these development efforts. NASA has initiated a program covering nuclear powered spacecraft that includes both reactor and radioisotope power sources. This has provided an impetus to investigate higher power and higher specific impulse thruster systems. NASA continues to work closely with both supplier and user communities to maximize the understanding and acceptance of new technology in a timely and cost-effective manner. NASA s electric propulsion efforts are closely coordinated with Department of Defense and other national programs to assure the most effective use of available resources. Several NASA Centers are actively involved in these electric propulsion activities, including, the Glenn Research Center, Jet Propulsion Laboratory, Johnson Space Center, and Marshall Space Flight Center.
ERIC Educational Resources Information Center
Harris, Robert J.
2008-01-01
Purpose: The purpose of this paper is to report on the development of a knowledge transfer project, part funded through TE3, designed to encourage innovation and improve the capability of SMEs in the West Midlands region of the UK. Knowledge is critical to developing competency within small businesses and managers that understand how their…
ERIC Educational Resources Information Center
AlFuqaha, Isam Najib
2013-01-01
This paper is a review of blended learning as a catalyst of optimizing the achievement of learning objectives. Blended learning forms an attempt to apply the right learning technologies to match the right personal learning styles to transfer the right skills to the right persons at the right times. The paper is about rethinking the teaching and…
ERIC Educational Resources Information Center
Kneller, Robert
2007-01-01
Following the incorporation of Japanese national universities in April 2004, the ownership of university inventions is now similar to that in the USA. However, in contrast to the USA, joint research projects involving close collaboration with company researchers who are frequently named as co-inventors are common. A large proportion of university…
1993-04-01
TITLE (Include Security Classification) 12. PERSONAL AUHO(S 13a. TYPE OF REPORT 913b. TIME COVERE’ 6 14. DATE OF REPORT (Year, Month, Day) 15. PAGE...minimal experience at production and production management , there are opportunities through licensing and offset agreements to accelerate the assimilation...article. Simultaneously. the nation gains additional technological experience in the field and experier.ne in management of the projects. Israel gained
Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van derWaals heterostructure
NASA Astrophysics Data System (ADS)
Zhang, Xin-Wu; He, Da-Wei; He, Jia-Qi; Zhao, Si-Qi; Hao, Sheng-Cai; Wang, Yong-Sheng; Yi, Li-Xin
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61275058, 61527817, 61335006, and 61378073), the National Science Foundation, China (Grant No. DMR-1505852), the National Basic Research Program of China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), and Beijing Science and Technology Committee, China (Grant No. Z151100003315006).
NASA Astrophysics Data System (ADS)
van der Heiden, Patrick; Pohl, Christine; Bin Mansor, Shuhaimi; van Genderen, John
2015-07-01
The role of education and training in the aerospace sector for establishing sufficient levels of absorptive capacity in newly industrialized countries is substantial and forms a fundamental part of a nation's ability to establish and cultivate absorptive capacity on a national or organization-specific level. Successful international technology transfer as well as absorption of aerospace technology and knowledge into recipient organizations, depends prodigiously on the types of policy adopted in education and training of all groups and individuals specifically outlined in this paper. The conducted literature review revealed surprisingly few papers that translate these vital issues from theoretical scrutiny into representations that have practical policy value. Through exploration of the seven key aspects of education and training, this paper provides a practical template for policy-makers and practitioners in Asian newly industrialized countries, which may be utilized as a prototype to coordinate relevant policy aspects of education and training in international technology transfer projects across a wide variety of actors and stakeholders in the aerospace realm. A pragmatic approach through tailored practical training for the identified groups and individuals identified in this paper may lead to an enhanced ability to establish and strengthen absorptive capacity in newly industrialized countries through the development of appropriate policy guidelines. The actual coordination between education and training efforts deserves increased research and subsequent translation into policies with practical content in the aerospace sector.
Industrialization of Superconducting RF Accelerator Technology
NASA Astrophysics Data System (ADS)
Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter
2012-01-01
Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project currently being designed by the international collaboration GDE (`global design effort'). If the ILC will be built, about 18,000 SRF cavities need to be manufactured worldwide within about five years. The industrialization of SRF accelerator technology is analyzed and reviewed in this article in view of the main accelerator projects of the last two to three decades.
Technology transfer within the government
NASA Technical Reports Server (NTRS)
Christensen, Carissa Bryce
1992-01-01
The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
48 CFR 970.2770-3 - Technology transfer and patent rights.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...
Software engineering technology transfer: Understanding the process
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1993-01-01
Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.
Shoepe, Todd C; Cavedon, Dana K; Derian, Joseph M; Levy, Celine S; Morales, Amy
2015-01-01
Anatomical education is a dynamic field where developments in the implementation of constructive, situated-learning show promise in improving student achievement. The purpose of this study was to examine the effectiveness of an individualized, technology heavy project in promoting student performance in a combined anatomy and physiology laboratory course. Mixed-methods research was used to compare two cohorts of anatomy laboratories separated by the adoption of a new laboratory atlas project, which were defined as preceding (PRE) and following the adoption of the Anatomical Teaching and Learning Assessment Study (ATLAS; POST). The ATLAS project required the creation of a student-generated, photographic atlas via acquisition of specimen images taken with tablet technology and digital microscope cameras throughout the semester. Images were transferred to laptops, digitally labeled and photo edited weekly, and compiled into a digital book using Internet publishing freeware for final project submission. An analysis of covariance confirmed that student final examination scores were improved (P < 0.05) following the implementation of the laboratory atlas project (PRE, n = 75; POST, n = 90; means ± SE; 74.9 ± 0.9 versus 78.1 ± 0.8, respectively) after controlling for cumulative student grade point average. Analysis of questionnaires collected (n = 68) from the post group suggested students identified with atlas objectives, appreciated the comprehensive value in final examination preparation, and the constructionism involved, but recommended alterations in assignment logistics and the format of the final version. Constructionist, comprehensive term-projects utilizing student-preferred technologies could be used to improve performance toward student learning outcomes. © 2014 American Association of Anatomists.
Next Generation Launch Technology Program Lessons Learned
NASA Technical Reports Server (NTRS)
Cook, Stephen; Tyson, Richard
2005-01-01
In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.
Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, J.
1995-02-10
The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less
Some operational aspects of a rotating advanced-technology space station for the year 2025
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.
1988-01-01
The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.
MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-08-01
This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors andmore » hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.« less
CCS Activities Being Performed by the U.S. DOE
Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry
2011-01-01
The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188
NASA Astrophysics Data System (ADS)
Vančová, Viera; Čambál, Miloš; Cagáňová, Dagmar
2012-12-01
Nowadays, the opportunity for companies to be involved in cluster initiatives and international business associations is a major factor that contributes to the increase of their innovative potential. Companies organized in technological clusters have greater access to mutual business contacts, faster information transfer and deployment of advanced technologies. These companies cooperate more frequently with universities and research - development institutions on innovative projects. An important benefit of cluster associations is that they create a suitable environment for innovation and the transfer of knowledge by means of international cooperation and networking. This supportive environment is not easy to access for different small and mediumsized companies, who are not members of any clusters or networks. Supplier-customer business channels expand by means of transnational networks and exchanges of experience. Knowledge potential is broadened and joint innovative projects are developed. Reflecting the growing importance of clusters as driving forces of economic and regional development, a number of cluster policies and initiatives have emerged in the last few decades, oriented to encourage the establishment of new clusters, to support existing clusters, or to assist the development of transnational cooperation. To achieve the goals of the Europe 2020 Strategy, European countries should have an interest in building strong clusters and developing cluster cooperation by sharing specialized research infrastructures and testing facilities and facilitating knowledge transfer for crossborder cooperation. This requires developing a long term joint strategy in order to facilitate the development of open global clusters and innovative small and medium entrepreneurs.
NASA Astrophysics Data System (ADS)
Kutsch, Werner Leo; Asmi, Ari; Laj, Paolo; Brus, Magdalena; Sorvari, Sanna
2016-04-01
ENVRIplus is a Horizon 2020 project bringing together Environmental and Earth System Research Infrastructures, projects and networks together with technical specialist partners to create a more coherent, interdisciplinary and interoperable cluster of Environmental Research Infrastructures (RIs) across Europe. The objective of ENVRIplus is to provide common solutions to shared challenges for these RIs in their efforts to deliver new services for science and society. To reach this overall goal, ENVRIplus brings together the current ESFRI roadmap environmental and associate fields RIs, leading I3 projects, key developing RI networks and specific technical specialist partners to build common synergic solutions for pressing issues in RI construction and implementation. ENVRIplus will be organized along 6 main objectives, further on called "Themes": 1) Improve the RI's abilities to observe the Earth System, particularly in developing and testing new sensor technologies, harmonizing observation methodologies and developing methods to overcome common problems associated with distributed remote observation networks; 2) Generate common solutions for shared information technology and data related challenges of the environmental RIs in data and service discovery and use, workflow documentation, data citations methodologies, service virtualization, and user characterization and interaction; 3) Develop harmonized policies for access (physical and virtual) for the environmental RIs, including access services for the multidisciplinary users; 4) Investigate the interactions between RIs and society: Find common approaches and methodologies how to assess the RIs' ability to answer the economical and societal challenges, develop ethics guidelines for RIs and investigate the possibility to enhance the use Citizen Science approaches in RI products and services; 5) Ensure the cross-fertilisation and knowledge transfer of new technologies, best practices, approaches and policies of the RIs by generating training material for RI personnel to use the new observational, technological and computational tools and facilitate inter-RI knowledge transfer via a staff exchange program; 6) Create RI communication and cooperation framework to coordinate activities of the environmental RIs towards common strategic development, improved user interaction and interdisciplinary cross-RI products and services. The produced solutions, services, systems and other project results are made available to all environmental research infrastructure initiatives.
Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Garg Vijay; Ameri, Ali
2005-01-01
The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.
Technology Transfer at Edgar Mine: Phase 1; October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad R.; Bauer, Stephen; Nakagawa, Masami
The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed asmore » a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.« less
NASA Technical Reports Server (NTRS)
Onwubiko, Chinyere; Onyebueke, Landon
1996-01-01
This program report is the final report covering all the work done on this project. The goal of this project is technology transfer of methodologies to improve design process. The specific objectives are: 1. To learn and understand the Probabilistic design analysis using NESSUS. 2. To assign Design Projects to either undergraduate or graduate students on the application of NESSUS. 3. To integrate the application of NESSUS into some selected senior level courses in Civil and Mechanical Engineering curricula. 4. To develop courseware in Probabilistic Design methodology to be included in a graduate level Design Methodology course. 5. To study the relationship between the Probabilistic design methodology and Axiomatic design methodology.
7 CFR 1412.48 - Planting Transferability Pilot Project.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 10 2011-01-01 2011-01-01 false Planting Transferability Pilot Project. 1412.48... and Peanuts 2008 through 2012 § 1412.48 Planting Transferability Pilot Project. (a) Notwithstanding § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot Project...
NASA Astrophysics Data System (ADS)
Chilakapaty, Ankit Paul
The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.
ICAT and the NASA technology transfer process
NASA Technical Reports Server (NTRS)
Rifkin, Noah; Tencate, Hans; Watkins, Alison
1993-01-01
This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.
Cryogenic system for BERLinPro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, W.; Hellwig, A.; Knobloch, J.
2014-01-29
In 2010 Helmholtz-Zentrum Berlin (HZB) received funding to design and build the Berlin Energy Recovery Linac Project BERLinPro. The goal of this compact Energy recovery linac (ERL) is to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1-mm mrad emittance electron beam. The BERLinPro know-how can then be transferred to various ERL-based applications. All accelerating RF cavities including the electron source are based on superconducting technology operated at 1.8 K. A Linde L700 helium liquefier is supplying 4.5 K helium. The subatmospheric pressure of 16 mbar of the helium bath of the cavities will bemore » achieved by pumping with a set of cold compressors and warm vacuum pumps. While the L700 is already in operating, the 1.8 K system and the helium transfer system are in design phase.« less
Community social alarm network in Slovenia.
Premik, M; Rudel, D
1996-12-01
The article deals with a case report on the technology transfer of the Lifeline community social alarm system to Slovenia. The main reason the project was initiated is the ageing of the Slovenian population (11% of the population is 65 or over). With this system we intend to support the public's wish to allow the elderly to remain in their own homes for as long as possible instead of placing them in institutional care. Between 1992 and 1995 the following results were achieved: the acceptability of the system in the social environment was increased; a pilot control centre in Ljubljana was established and has been operational for two-and-a-half years; a national dissemination plan was prepared; the integration of the programme into other information systems has been started. One of the main conclusions is that for the successful transfer of a technology which also affects social values in society, a social innovation must support the process.
Orbital Express fluid transfer demonstration system
NASA Astrophysics Data System (ADS)
Rotenberger, Scott; SooHoo, David; Abraham, Gabriel
2008-04-01
Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging of receiving tank, purging of coupling and de-mate of the coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Sallie E.
2015-06-30
In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programsmore » and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).« less
Vehicle Electronics and Architecture
2011-08-26
NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Chris Mocnik 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 22245 9...processes throughout VEA organization 3.3 Strengthen strategic partnerships, alliances, and technology transfer 4.3 Strengthen strategic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Eddy, N.; Edstrom, D.
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.
Eugene Sander
2000-01-01
The College of Agriculture, University of Arizona, has been heavily involved in providing research, education, and outreach concerning the management of watersheds. The Barr Report of 1956, a cooperative effort of the Salt River Project, the State Land Department and the University of Arizona, was a significant beginning that addressed the productivity of watersheds in...
Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques
2017-06-26
SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to... Engineering and Single-Molecule Techniques The views, opinions and/or findings contained in this report are those of the author(s) and should not...Status: Technology Transfer: Report Date: 1 FINAL REPORT Project Title: Probing Enzyme-Surface Interactions via Protein Engineering and
NDE Software Developed at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Roth, Donald J.; Martin, Richard E.; Rauser, Richard W.; Nichols, Charles; Bonacuse, Peter J.
2014-01-01
NASA Glenn Research Center has developed several important Nondestructive Evaluation (NDE) related software packages for different projects in the last 10 years. Three of the software packages have been created with commercial-grade user interfaces and are available to United States entities for download on the NASA Technology Transfer and Partnership Office server (https://sr.grc.nasa.gov/). This article provides brief overviews of the software packages.
The importance of design thinking in medical education.
Badwan, Basil; Bothara, Roshit; Latijnhouwers, Mieke; Smithies, Alisdair; Sandars, John
2018-04-01
Design thinking provides a creative and innovate approach to solve a complex problem. The discover, define, develop and delivery phases of design thinking lead to the most effective solution and this approach can be widely applied in medical education, from technology intervention projects to curriculum development. Participants in design thinking acquire essential transferable life-long learning skills in dealing with uncertainty and collaborative team working.
NASA Technical Reports Server (NTRS)
1988-01-01
The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.
nanoSTAIR: a new strategic proposal to impulse standardization in nanotechnology research
NASA Astrophysics Data System (ADS)
López de Ipiña, J. M.; Salvi, O.; Hazebrouck, B.; Jovanovic, A.; Carre, F.; Saamanen, A.; Brouwer, D.; Schmitt, M.; Martin, S.
2015-05-01
Nanotechnology is considered one of the key technologies of the 21st century within Europe and a Key-Enabling Technology (KET) by Horizon 2020. Standardization has been identified in H2020 as one of the innovation-support measures by bridging the gap between research and the market, and helping the fast and easy transfer of research results to the European and international market. The development of new and improved standards requires high quality technical information, creating a fundamental interdependency between the standardization and research communities. In the frame of project nanoSTAIR (GA 319092), the present paper describes the European scenario on research and standardization in nanotechnology and presents a proposal of a European strategy (nanoSTAIR) to impulse direct “pipelines” between research and standardization. In addition, strategic actions focused on integration of standardization in the R&D projects, from the early stages of the design of a future business (Project Proposal), are also described.
Thermal Protection System (Heat Shield) Development - Advanced Development Project
NASA Technical Reports Server (NTRS)
Kowal, T. John
2010-01-01
The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.
Technology transfer from the viewpoint of a NASA prime contractor
NASA Technical Reports Server (NTRS)
Dyer, Gordon
1992-01-01
Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.
Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raade, Justin; Roark, Thomas; Vaughn, John
2013-07-22
Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when usedmore » with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.« less
Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay
The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume dealmore » with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, M.L.
This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less
The NASA Langley building solar project and the supporting Lewis solar technology program
NASA Technical Reports Server (NTRS)
Ragsdale, R. G.; Namkoong, D.
1974-01-01
The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.
Neurotechnology: expanding opportunities for funding at the National Institute of Mental Health.
Huerta, M F; Curvey, M F; Koslow, S H
1994-10-01
The National Institute of Mental Health recognizes the importance that creative development of technology and methodology play in brain and behavioral science research. This institute is making major efforts to support such development through specific initiatives, like the Human Brain Project. In addition, this Institute is actively building bridges between business and academic research communities to make optical use of funds for the research and development of commercially viable technologies relevant to all aspects of the Institute's mission through the Small Business Innovation Research and Small Business Technology Transfer Programs. Together, these efforts will culminate in a more vigorous scientific enterprise, and ultimately benefit the entire mental health community and society.
Progress Toward National Aeronautics Goals
NASA Technical Reports Server (NTRS)
Russo, Carlo J.; Sehra, Arun K.
1999-01-01
NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.
Microgravity Fluid Management Symposium
NASA Technical Reports Server (NTRS)
1987-01-01
The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.
Cases in the relation of research on remote sensing to decisionmakers in a state agency
NASA Technical Reports Server (NTRS)
Jondrow, J. W.
1975-01-01
The use is considered of various management tools in order to assess their effects on the anticipated relevance of the remote sensing research to the needs of government agencies. Among these tools are different organizational structures and ways of functioning, which are applied to the design and management of projects and to the communication of research results. The characteristics of data and information flow, and technology transfer are discussed along with the management of three projects and a remote sensing data center in terms of the use of some tools for influencing these processes.
Information technology as tool for change.
Itkonen, P
1999-12-01
It looks that networking welfare thinking and implementations of network projects only follow the development of data transfer possibilities. It is a danger that seamless chain of care in health care is just a data transferring generator based on easy connections, only creating needs for new data transferring. This is an 'illusion of core skills' that does not extend to the development of the contents of services. Easy access to the system makes more contacts and need for more also clinical services. New needs for data transfer burden the personnel with unnecessary information and networking functional model does not emancipate them to use their substantial skills. It means more costs and it is also a danger that normal life will be medicated. Public sector cannot finance all these new possibilities and consequences of modern technology. Does all this create a new combination of public and private sector and push them to allocate responsibilities in developing work? If the public and private sectors do not find the balance in controlling this development, also actors outside health care get to influence the choices and health care loses its autonomy. It becomes a business means for companies producing data transfer and network services. From the prioritization point of view this is not a good vision for financing and delivery of health care services either in public or private sector.
ERIC Educational Resources Information Center
Washington Higher Education Coordinating Board, 2006
2006-01-01
This publication contains the following: (1) Competency-Based Transfer Pilot Project--Final Report. Executive Summary (January 2006); and (2) Competency-Based Transfer Pilot Project: Final Report on House Bill 1909 (January 2005). In 2003, the legislature and governor enacted House Bill 1909 to create a pilot project on competency-based transfer…
GAS INJECTION/WELL STIMULATION PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
John K. Godwin
2005-12-01
Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learnedmore » form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.« less
Outlook for grid service technologies within the @neurIST eHealth environment.
Arbona, A; Benkner, S; Fingberg, J; Frangi, A F; Hofmann, M; Hose, D R; Lonsdale, G; Ruefenacht, D; Viceconti, M
2006-01-01
The aim of the @neurIST project is to create an IT infrastructure for the management of all processes linked to research, diagnosis and treatment development for complex and multi-factorial diseases. The IT infrastructure will be developed for one such disease, cerebral aneurysm and subarachnoid haemorrhage, but its core technologies will be transferable to meet the needs of other medical areas. Since the IT infrastructure for @neurIST will need to encompass data repositories, computational analysis services and information systems handling multi-scale, multi-modal information at distributed sites, the natural basis for the IT infrastructure is a Grid Service middleware. The project will adopt a service-oriented architecture because it aims to provide a system addressing the needs of medical researchers, clinicians and health care specialists (and their IT providers/systems) and medical supplier/consulting industries.
NASA Technical Reports Server (NTRS)
1980-01-01
The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.
Supporting Knowledge Transfer in IS Deployment Projects
NASA Astrophysics Data System (ADS)
Schönström, Mikael
To deploy new information systems is an expensive and complex task, and does seldom result in successful usage where the system adds strategic value to the firm (e.g. Sharma et al. 2003). It has been argued that innovation diffusion is a knowledge integration problem (Newell et al. 2000). Knowledge about business processes, deployment processes, information systems and technology are needed in a large-scale deployment of a corporate IS. These deployments can therefore to a large extent be argued to be a knowledge management (KM) problem. An effective deployment requires that knowledge about the system is effectively transferred to the target organization (Ko et al. 2005).
Kilopower: Small and Affordable Fission Power Systems for Space
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Don; Gibson, Marc
2017-01-01
The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.
Communication and Cultural Change in University Technology Transfer
ERIC Educational Resources Information Center
Wright, David
2013-01-01
Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…
KSC Tech Transfer News, Volume 5, No. 1
NASA Technical Reports Server (NTRS)
Buckingham, Bruce (Editor)
2012-01-01
In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.
Vaccinology capacity building in Europe for innovative platforms serving emerging markets.
Hendriks, Jan; Holleman, Marit; Hamidi, Ahd; Beurret, Michel; Boog, Claire
2013-04-01
The 2012 Terrapinn World Vaccine Congress held from 16 to 18 October in Lyon addressed in a dedicated session the transfer of innovative vaccine technologies from Europe to emerging markets. Past and recent transfers and experiences from Europe's public domain were summarized by the Netherlands' National Institute for Public Health and the Environment (RIVM) in Bilthoven. The role of capacity building through training courses for developing country partners was highlighted in several recent technology transfer programs developed in collaboration with the World Health Organisation (WHO). In another stream of the Congress, a case of human vaccine technology transfer from Europe's private sector to an emerging economy recipient in India was presented. The continuing globalization of vaccinology is further illustrated by the recent acquisition in 2012 of the Netherlands' public vaccine manufacturing capacity in Bilthoven by the Serum Institute of India Ltd, an emerging vaccine manufacturer. In a parallel development, the Netherlands' government decided to transform RIVM's vaccinology research and development capacity into a new not-for-profit entity: "the Institute for Translational Vaccinology" (see citation 1 in Note section for web address). Under a public private partnership structure, InTraVacc's mission will include the fostering of global health through international partnerships in innovative vaccinology. Projected activities will include training courses and curricula, capitalizing on various currently established platform technologies and the legacy of previous "producer -producer" collaborations between the RIVM and emerging manufacturers over the past 40 y. It is suggested to consider this as a basis for a common initiative from Europe to develop and implement a practical vaccinology course for emerging countries with particular focus to the African region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaedel, K.L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less
NASA Astrophysics Data System (ADS)
Blaedel, K. L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Wang, Easter Mayan Chan
2016-01-01
Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.
van der Straeten, Jonas; Hasenöhrl, Ute
2016-12-01
In the academic debate on infrastructures in the Global South, there is a broad consensus that (post)colonial legacies present a major challenge for a transition towards more inclusive, sustainable and adapted modes of providing services. Yet, relatively little is known about the emergence and evolution of infrastructures in former colonies. Until a decade ago, most historical studies followed Daniel Headrick's (1981) "tools of empire" thesis, painting-with broad brush strokes-a picture of infrastructures as instruments for advancing the colonial project of exploitation and subordination of non-European peoples and environments. This paper explores new research perspectives beyond this straightforward, 'diffusionist' perspective on technology transfer. In order to do so, it presents and discusses more recent studies which focus on interactive transfer processes as well as mechanisms of appropriation, and which increasingly combine approaches from imperial history, environmental history, and history of technology.There is much to gain from unpacking the changing motives and ideologies behind technology transfer; tracing the often contested and negotiated flows of ideas, technologies and knowledge within multilayered global networks; investigating the manifold ways in which infrastructures reflected and (re)produced colonial spaces and identities; critically reflecting on the utility of large (socio)technical systems (LTS) for the Global South; and approaching infrastructures in the (post)colonial world through entangled histories of technology and the environment. Following David Arnold's (2005) plea for a "more interactive, culturally-nuanced, multi-sited debate" on technology in the non-Western world, the paper offers fresh insights for a broader debate about how infrastructures work within specific parameters of time, place and culture.
Viceconti, M; Testi, D; Gori, R; Zannoni, C
2000-01-01
The present work describes a technology transfer project called HIPCOM devoted to the re-engineering of the process used by a medical devices manufacturer to design custom-made hip prostheses. Although it started with insufficient support from the end-user management, a very tight scheduling and a moderate budget, the project developed into what is considered by all partners a success story. In particular, the development of the design software, called HIPCOM Interactive Design Environment (HIDE) was completed in a time shorter than any optimistic expectation. The software was quite stable since its first beta version, and once introduced at the user site it fully replaced the original procedure in less than two months. One year after the early adoption, more than 80 custom-made prostheses had been designed with HIDE and the user had reported only two bugs, both cosmetics. The scope of the present work was to report the development experience and to investigate the reasons for these positive results, with particular reference to the development procedure and the software architecture. The choice of TCL/TK as development language and the adoption of well-defined software architecture were found to be the success key factors. Other important determinants were found to be the adoption of an incremental software engineering strategy, well suited for small to medium projects and the presence in the development staff of a technology transfer expert.
Human Research Program Exploration Medical Capability
NASA Technical Reports Server (NTRS)
Barsten, Kristina
2010-01-01
NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius
1990-01-01
A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.
Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.
2004-01-01
The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.
The AMT maglev test sled -- EML weapons technology transition to transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaaf, J.C. Jr.; Zowarka, R.C. Jr.; Davey, K.
1997-01-01
Technology spinoffs from prior electromagnetic launcher work enhance a magnetic levitation transportation system test bed being developed by American Maglev Technology of Florida. This project uses a series wound linear DC motor and brushes to simplify the magnetic levitation propulsion system. It takes advantage of previous related work in electromagnetic launcher technology to achieve success with this innovative design. Technology and knowledge gained from developments for homopolar generators and proposed railgun arc control are key to successful performance. This contribution supports a cost effective design that is competitive with alternative concepts. Brushes transfer power from the guideway (rail) to themore » vehicle (armature) in a novel design that activates the guideway only under the vehicle, reducing power losses and guideway construction costs. The vehicle carries no power for propulsion and levitation, and acts only as a conduit for the power through the high speed brushes. Brush selection and performance is based on previous EML homopolar generator research. A counterpulse circuit, first introduced in an early EML conference, is used to suppress arcing on the trailing brush and to transfer inductive energy to the next propulsion coil. Isolated static lift and preliminary propulsion tests have been completed, and integrated propulsion and lift tests are scheduled in early 1996.« less
Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.
2004-01-01
The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.
NASA Technical Reports Server (NTRS)
Handley, Thomas
1992-01-01
The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.
NASA Technical Reports Server (NTRS)
Laepple, H.
1979-01-01
The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Zhong-Xiao, E-mail: zxman@mail.qfnu.edu.cn; An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn
In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies.more » As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.« less
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.
ERIC Educational Resources Information Center
Clinch, Richard
This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer…
Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia
ERIC Educational Resources Information Center
Blood, John R.
2009-01-01
Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …
From technology transfer to local manufacturing: China's emergence in the global wind power industry
NASA Astrophysics Data System (ADS)
Lewis, Joanna Ingram
This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive, smaller turbines. These market opportunities, in conjunction with the continued implementation of Chinese government policies that differentially support locally-manufactured turbines, are likely to provide the necessary stimulus for China's domestic wind industry development, and its eventual emergence in the global wind industry.
DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry J. Mazanec
2008-09-30
The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less
NASA Gulf of Mexico Initiative Hypoxia Research
NASA Technical Reports Server (NTRS)
Armstrong, Curtis D.
2012-01-01
The Applied Science & Technology Project Office at Stennis Space Center (SSC) manages NASA's Gulf of Mexico Initiative (GOMI). Addressing short-term crises and long-term issues, GOMI participants seek to understand the environment using remote sensing, in-situ observations, laboratory analyses, field observations and computational models. New capabilities are transferred to end-users to help them make informed decisions. Some GOMI activities of interest to the hypoxia research community are highlighted.
Phytoremediation of Atmospheric Methane
2013-04-15
REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1 Final Report for DARPA project W911NF1010027 Phytoremediation of Atmospheric
Chittenden County, Vermont land cover project
NASA Technical Reports Server (NTRS)
Malloy, D. E.
1981-01-01
The testing of LANDSAT applicability to urban and agricultural land use analysis at the substate level is described. It is concluded that the LANDSAT system has a place in Vermont and places like it, but that the present operation is inadequate and the need for technology transfer and excellent communication between the producers and users is fundamental to the future of the system and for the realization of benefit from the investment.
Defense Advanced Research Projects Agency Technology Transition
1997-01-01
detection of nuclear testing in space , navigation, meteo- rological monitoring, and communication. These early activities were transferred to the Military...used to detect nuclear tests in space and in the atmosphere as part of the overall basis for verification of a future nuclear test ban treaty. The first...background data to detect nuclear explosions taking place in space , and eventually also in the earth’s atmosphere. The program developed x-ray, neutron
Small Wind Turbine Installation Compatibility Demonstration Methodology
2013-08-01
was conducted for the Installation Technology Transfer Pro - gram. The project manager was Debbie Lawrence, US Army Engineer Re- search and Development...concerns (Rowley 2009). Though bases ban wind farms on or near DoD facilities when they are an- ticipated to be an unreasonable national security risk...related data collected by Fort Drum and a variety of other governmental agencies and private organizations. The pro - cess involved natural resources
2015-09-30
whales that facilitate relatively close approaches to the animals without obviously disturbing them. With this experience, during field projects in... Marine Mammal Electronic Tags” funded through a Science and Technology Transfer (STTR) program Phase II Option 1 contract, Office of Naval Research...assessment: updating photo-identification catalogs for estimating abundance, assessing the nature and extent of fishery interactions with pantropical
Impact of terrestrial solar cell development on space applications
NASA Astrophysics Data System (ADS)
Iles, P. A.
1980-06-01
Projected space missions are outlined and the cell requirements by mission type mentioned. The techniques used to produce low cost terrestrial use cells are examined for their applicability to space needs, including silicon cell fabrication, barrier formation, contact applications, coatings, and encapsulation. The most likely area for the transfer of terrestrial cell technology is in low Earth orbit missions, based on the use of the shuttle craft.
NASA Technical Reports Server (NTRS)
Dye, Scott A.
2015-01-01
New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/sq m, or 27 percent of the heat leak of conventional MLI (26.7 W/sq m). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.
NASA Technical Reports Server (NTRS)
Dye, Scott A.
2015-01-01
New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.
NASA Technical Reports Server (NTRS)
Johnson, Charles W.
2011-01-01
The vision of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) Project is "A global transportation system which allows routine access for all classes of UAS." The goal of the UAS Integration in the NAS Project is to "contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS." This goal will be accomplished through a two-phased approach based on development of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Phase 1 will take place the first two years of the Project and Phase 2 will take place the following three years. The Phase 1 and 2 technical objectives are: Phase 1: Developing a gap analysis between current state of the art and the Next Generation Air Transportation System (NextGen) UAS Concept of Operations . Validating the key technical areas identified by this Project . Conducting initial modeling, simulation, and flight testing activities . Completing Sub-project Phase 1 deliverables (spectrum requirements, comparative analysis of certification methodologies, etc.) and continue Phase 2 preparation (infrastructure, tools, etc.) Phase 2: Providing regulators with a methodology for developing airworthiness requirements for UAS, and data to support development of certifications standards and regulatory guidance . Providing systems-level, integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and human systems integration in operationally relevant environments. The UAS in the NAS Project will demonstrate solutions in specific technology areas, which will address operational/safety issues related to UAS access to the NAS. Since the resource allocation for this Project is limited ($150M over the five years), the focus is on reducing the technical barriers where NASA has unique capabilities. As a result, technical areas, such as Sense and Avoid (SAA) and beyond line of sight command and control will not be addressed. While these are critical barriers to UAS access, currently, there is a great deal of global effort being exercised to address these challenge areas. Instead, specific technology development in areas where there is certainty that NASA can advance the research to high technology readiness levels will be the Project's focus. Specific sub-projects include Separation Assurance, Human Systems Integration, Communications, Certification, and Integrated Test and Evaluation. Each sub-project will transfer technologies to relevant key stakeholders and decision makers through research transition teams, technology forums, or through other analogous means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, D.W.
1995-03-01
The project is a Class 1 DOE-sponsored field demonstration project of a CO{sub 2} miscible flood project at the Port Neches Field in Orange County, Texas. The project will determine the recovery efficiency of CO{sub 2} flooding a waterflooded and a partial waterdrive sandstone reservoir at a depth of 5,800. The project will also evaluate the use of a horizontal CO{sub 2} injection well placed at the original oil-water contact of the waterflooded reservoir. A PC-based reservoir screening model will be developed by Texaco`s research lab in Houston and Louisiana State University will assist in the development of a databasemore » of fluvial-dominated deltaic reservoirs where CO{sub 2} flooding may be applicable. This technology will be transferred throughout the oil industry through a series of technical papers and industry open forums.« less
Federal Technology Transfer Act Success Stories
Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.
Evaluating Technology Transfer and Diffusion.
ERIC Educational Resources Information Center
Bozeman, Barry; And Others
1988-01-01
Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…
Technology Transfer Network and Affiliations
NASA Technical Reports Server (NTRS)
2003-01-01
The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.
An Analysis of NASA Technology Transfer. Degree awarded by Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Bush, Lance B.
1996-01-01
A review of previous technology transfer metrics, recommendations, and measurements is presented within the paper. A quantitative and qualitative analysis of NASA's technology transfer efforts is performed. As a relative indicator, NASA's intellectual property performance is benchmarked against a database of over 100 universities. Successful technology transfer (commercial sales, production savings, etc.) cases were tracked backwards through their history to identify the key critical elements that lead to success. Results of this research indicate that although NASA's performance is not measured well by quantitative values (intellectual property stream data), it has a net positive impact on the private sector economy. Policy recommendations are made regarding technology transfer within the context of the documented technology transfer policies since the framing of the Constitution. In the second thrust of this study, researchers at NASA Langley Research Center were surveyed to determine their awareness of, attitude toward, and perception about technology transfer. Results indicate that although researchers believe technology transfer to be a mission of the Agency, they should not be held accountable or responsible for its performance. In addition, the researchers are not well educated about the mechanisms to perform, or policies regarding, technology transfer.
RATT: Rapid Annotation Transfer Tool
Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew
2011-01-01
Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991
Software Engineering Technology Infusion Within NASA
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1996-01-01
Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.
Implementing an interprofessional first-year teamwork project: some key reflections.
McNaughton, Susan Maree
2013-09-01
Implementing an interprofessional teamwork project for first-year students presents pedagogical and practical challenges. While transferable skills and attributes are important, engagement of students with limited professional experience in teamwork depends on relevance to current learning needs. This report outlines principles learned from planning and implementing a teamwork project for an interprofessional health administration and service development course. Practising interprofessional teamwork as leaders and teachers, aligning with previous, current and future teamwork content and processes and responding to student feedback and achievement have been the key factors in shaping the project over three semesters. Face-to-face and online interprofessional teamwork learning has necessitated developing resources that support self-direction, using familiar technology and providing enabling physical environments. Implications for first-year interprofessional teamwork are that structured well-resourced processes, responsiveness and alignment of learning all improve student outcomes.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1995-01-01
The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.
High-Temperature (1000 F) Magnetic Thrust Bearing Test Rig Completed and Operational
NASA Technical Reports Server (NTRS)
Montague, Gerald T.
2005-01-01
Large axial loads are induced on the rolling element bearings of a gas turbine. To extend bearing life, designers use pneumatic balance pistons to reduce the axial load on the bearings. A magnetic thrust bearing could replace the balance pistons to further reduce the axial load. To investigate this option, the U.S. Army Research Laboratory, the NASA Glenn Research Center, and Texas A&M University designed and fabricated a 7-in.- diameter magnetic thrust bearing to operate at 1000 F and 30,000 rpm, with a 1000-lb load capacity. This research was funded through a NASA Space Technology Transfer Act with Allison Advance Development Company under the Ultra-Efficient Engine Technology (UEET) Intelligent Propulsion Systems Foundation Technology project.
The OTEC connection - Power from the sea
NASA Astrophysics Data System (ADS)
Petty, D.
1980-02-01
OTEC is discussed as a means of contributing to United States energy self-sufficiency. The technology involved in the conversion of ocean thermal gradients found in tropical regions to electricity transmittable by submarine cable is examined, with attention given to the operating principles of open- and closed-cycle Rankine engines and design considerations for the evaporators, condensers and heat exchangers. The environmental impact and economics of OTEC are considered, and Department of Energy research projects in areas of OTEC technology including heat transfer, biofouling, environmental assessment, underwater electrical transmission and mooring and test plants are indicated. It is pointed out that US islands presently offer excellent markets for early commercial OTEC plants, with Gulf Coast markets requiring further technology developments to be economically attractive.
Reducing Barriers To The Use of High-Efficiency Lighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Morante
2005-12-31
With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowedmore » to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and remedial time required by the electrician and end user. (3) Minimize ongoing perceived overhead costs and inconvenience to the end user, or in other words, systems should be simple to understand and use. In addition, we believe that no lighting controls solution is effective or acceptable unless it contributes to, or does not compromise, the following goals: (1) Productivity--Planning, installation, commissioning, maintenance, and use of controls should not decrease business productivity; (2) Energy savings--Lighting controls should save significant amounts of energy and money in relation to the expense involved in using them (acceptable payback period); and/or (3) Reduced power demand--Society as a whole should benefit from the lowered demand for expensive power and for more natural resources. Discussions of technology barriers and developments are insufficient by themselves to achieve higher penetration of lighting controls in the market place. Technology transfer efforts must play a key role in gaining market acceptance. The LRC developed a technology transfer model to better understand what actions are required and by whom to move any technology toward full market acceptance.« less
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
The Federal Laboratory Consortium for Technology Transfer has recognized three CCR accomplishments with Excellence in Technology Transfer Awards. This award category honors employees of FLC member laboratories and non-laboratory staff who have accomplished outstanding work in the process of transferring federally developed technology. Read more…
TTC Fellowship Program | NCI Technology Transfer Center | TTC
The TTC has fellowship opportunities available to qualified candidates in the field of technology transfer. This Fellowship starts with your science, legal, and/or business background to create a new competency in technology transfer, preparing you for technology transfer positions within academia, industry, or the federal government.
The Change Book: A Blueprint for Technology Transfer.
ERIC Educational Resources Information Center
Addiction Technology Transfer Centers.
This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...
48 CFR 970.5227-3 - Technology transfer mission.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...
Welcome to Ames Research Center (1987 forum on Federal technology transfer)
NASA Technical Reports Server (NTRS)
Ballhaus, William F., Jr.
1988-01-01
NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.
Polymer multimode waveguide optical and electronic PCB manufacturing
NASA Astrophysics Data System (ADS)
Selviah, David R.
2009-02-01
The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.
The role of the University Licensing Office in transferring intellectual property to industry
NASA Technical Reports Server (NTRS)
Preston, John T.
1992-01-01
Universities in the US have a significant impact on business through the transfer of technology. This transfer of technology takes various forms, including faculty communications, faculty consulting activities, and the direct transfer of technology through the licensing of patents, copyrights, and other intellectual property to industry. The topics discussed include the following: background of the MIT Technology Licensing Office (TLO), goals of the MIT TLO, MIT's technology transfer philosophy, and important factors for success in new company formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoaf, C.R.; Guth, D.J.
The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1more » ref., 2 figs.« less
New low noise CCD cameras for Pi-of-the-Sky project
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.
2006-10-01
Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.
Operational LANDSAT remote sensing system development
NASA Technical Reports Server (NTRS)
Cotter, D. J.
1981-01-01
The reduction of $121.6 million dollars from NOAA's LANDSAT development program for FY 1982, and the shortened time period for transferring remote sensing technology to the private sector resulted in changes in the Agency's plans for managing the operational system. Proposed legislation for congressional consideration or enactment to establish conditions under which this private sector transfer will occur, and the expected gradual rise in the price of data products are discussed. No money exists for capital investment and none is projected for investing in an operational data handling system for the LANDSAT D satellite. Candidates knowledgeable of various aspects of the needs and uses of remote sensing are urged to consider participation in NOAA's advisory committee.
Distance learning education for mitigation/adaptation policy: a case study
NASA Astrophysics Data System (ADS)
Slini, T.; Giama, E.; Papadopoulou, Ch.-O.
2016-02-01
The efficient training of young environmental scientists has proven to be a challenging goal over the last years, while several dynamic initiatives have been developed aiming to provide complete and consistent education. A successful example is the e-learning course for participants mainly coming from emerging economy countries 'Development of mitigation/adaptation policy portfolios' organised in the frame of the project Promitheas4: Knowledge transfer and research needs for preparing mitigation/adaptation policy portfolios, aiming to provide knowledge transfer, enhance new skills and competencies, using modern didactic approaches and learning technologies. The present paper addresses the experience and the results of these actions, which seem promising and encouraging and were broadly welcomed by the participants.
Making waves: systems change on behalf of youth with HIV/AIDS.
Botwinick, Geri; Bell, Douglas; Johnson, Robert L; Sell, Randall L; Friedman, Lawrence B; Dodds, Sally; Shaw, Kimberly; Martinez, Jaime; Siciliano, Carl; Walker, Lynn E; Sotheran, Jo L
2003-08-01
To document the effects of five Special Projects of National Significance (SPNS), funded by the Health Resources and Services Administration (HRSA), on HIV care, related service systems, policy, planning, and funding for youth with HIV/AIDS. Literature on services and systems integration and technology transfer is used as a conceptual framework for the examination of HIV-informed, youth-specific changes at the local, state, and national levels. The Principal Investigators for each project and/or the Project Evaluators were interviewed several times to capture "snapshots" of evolving results from the Projects' varied activities in New York City; Newark, New Jersey; Chicago; and Miami. Some changes were consciously targeted, and others occurred serendipitously. This work covers the funding period from 1996 through 2000. There were many "ripple" effects that emanated from these Projects' presence and activities. Important lessons were learned about why systems change is necessary to effectively serve youth with HIV, how to make constructive changes happen, and how to sustain changes once they are achieved. Successful strategies included, but were not limited to, consensus-building among stakeholders, participatory planning and decision-making, collaborative referral and linkage agreements, staff sharing, co-locating services, providing technical assistance, consultation, cross-training, and engaging consumers as partners in communicating new technologies and in advocating for change.
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2004-05-07
The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine.more » This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.« less
Strategic directions and mechanisms in technology transfer
NASA Technical Reports Server (NTRS)
Mackin, Robert
1992-01-01
An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.
Water transfer projects and the role of fisheries biologists
Meador, M.R.
1996-01-01
Water transfer projects are commonly considered important mechanisms for meeting increasing water demands. However, the movement of water from one area to another may have broad ecosystem effects, including on fisheries. The Southern Division of the American Fisheries Society held a symposium in 1995 at Virginia Beach, Virginia, to discuss the ecological consequences of water transfer and identify the role of fisheries biologists in such projects. Presenters outlined several case studies, including the California State Water Project, Garrison Diversion Project (North Dakota), Lake Texoma Water Transfer Project (Oklahoma-Texas), Santee-Cooper Diversion and Re-diversion projects (South Carolina), and Tri-State Comprehensive Study (Alabama-Florida-Georgia). Results from these studies suggest that fisheries biologists have provided critical information regarding potential ecological consequences of water transfer. If these professionals continue to be called for information regarding the ecological consequences of water transfer projects, developing a broader understanding of the ecological processes that affect the fish species they manage may be necessary. Although the traditional role of fisheries biologists has focused on the fishing customer base, fisheries management issues are only one component of the broad spectrum of ecosystem issues resulting from water transfer.