Sample records for tectonically active basins

  1. Neotectonic control on drainage systems: GIS-based geomorphometric and morphotectonic assessment for Crete, Greece

    NASA Astrophysics Data System (ADS)

    Argyriou, Athanasios V.; Teeuw, Richard M.; Soupios, Pantelis; Sarris, Apostolos

    2017-11-01

    Geomorphic indices can be used to examine the geomorphological and tectonic processes responsible for the development of the drainage basins. Such indices can be dependent on tectonics, erosional processes and other factors that control the morphology of the landforms. The inter-relationships between geomorphic indices can determine the influence of regional tectonic activity in the shape development of drainage basins. A Multi-Criteria Decision Analysis (MCDA) procedure has been used to perform an integrated cluster analysis that highlights information associated with the dominant regional tectonic activity. Factor Analysis (FA) and Analytical Hierarchy Process (AHP) were considered within that procedure, producing a representation of the distributed regional tectonic activity of the drainage basins studied. The study area is western Crete, located in the outer fore-arc of the Hellenic subduction zone, one of the world's most tectonically active regions. The results indicate that in the landscape evolution of the study area (especially the western basins) tectonic controls dominate over lithological controls.

  2. Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.

    2011-01-01

    The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly stepped westward during three successive tectonic reorganizations that intervened between four stages of basin-range tectonism, the youngest of which is ongoing. These three tectonic reorganizations also intervened between four stages of volcanic activity, each of which has been distinct in the compositions of magmas erupted, in eruption rates, and in the locus of volcanic activity—which has stepped progressively westward, in close coordination with the step-wise migrations in the locus of basin-range extension. The timing of the Cenozoic tectonic reorganizations in the Death Valley region correlates closely with the documented timing of episodic reorganizations of the boundary between the Pacific and North American plates, to the west and southwest. This supports models that explain the widely distributed transtensional tectonism in southwestern North America since approximately 40 million years ago as resulting from traction imposed by the adjacent, divergent Pacific plate.

  3. Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, Gopal; Champati ray, P. K.; Mohanty, S.

    2018-01-01

    Alaknanda basin in the Garhwal Himalaya, India, is a tectonically active region owing to ongoing crustal deformation, erosion, and depositional processes active in the region. Active tectonics in this region have greatly affected the drainage system and geomorphic expression of topography and provide an ideal natural set up to investigate the influence of tectonic activity resulting from the India-Eurasia collision. We evaluated active tectonics by using high resolution digital elevation model (DEM) based on eight geomorphic indices (stream length gradient index, valley floor width-to-height ratio, hypsometric integral, drainage basin asymmetry, transverse topography symmetry factor, mountain front sinousity index, bifurcation ratio, and basin shape index) and seismicity in eight subbasins of Alaknanda basin. The integrated product, relative tectonic activity index (TAI) map, was classified into three classes such as: 'highly active' with values ranging up to 2.0; 'moderately active' with values ranging from 2.0 to 2.25; and 'less active' with values > 2.25. Further, the results were compared with relatively high crustal movement rate of 41.10 mm/y computed through high precession Global Navigation Satellite System (GNSS) based continuous operating reference station (CORS) data. Thus, we concluded that this new quantitative approach can be used for better characterization and assessment of active seismotectonic regions of the Himalaya and elsewhere.

  4. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    NASA Astrophysics Data System (ADS)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2017-11-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the function of active tectonism in the advancement of the basin.

  5. Morphometric evaluation of the Afşin-Elbistan lignite basin using kernel density estimation and Getis-Ord's statistics of DEM derived indices, SE Turkey

    NASA Astrophysics Data System (ADS)

    Sarp, Gulcan; Duzgun, Sebnem

    2015-11-01

    A morphometric analysis of river network, basins and relief using geomorphic indices and geostatistical analyses of Digital Elevation Model (DEM) are useful tools for discussing the morphometric evolution of the basin area. In this study, three different indices including valley floor width to height ratio (Vf), stream gradient (SL), and stream sinuosity were applied to Afşin-Elbistan lignite basin to test the imprints of tectonic activity. Perturbations of these indices are usually indicative of differences in the resistance of outcropping lithological units to erosion and active faulting. To map the clusters of high and low indices values, the Kernel density estimation (K) and the Getis-Ord Gi∗ statistics were applied to the DEM-derived indices. The K method and Gi∗ statistic highlighting hot spots and cold spots of the SL index, the stream sinuosity and the Vf index values helped to identify the relative tectonic activity of the basin area. The results indicated that the estimation by the K and Gi∗ including three conceptualization of spatial relationships (CSR) for hot spots (percent volume contours 50 and 95 categorized as high and low respectively) yielded almost similar results in regions of high tectonic activity and low tectonic activity. According to the K and Getis-Ord Gi∗ statistics, the northern, northwestern and southern parts of the basin indicates a high tectonic activity. On the other hand, low elevation plain in the central part of the basin area shows a relatively low tectonic activity.

  6. Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigott, J.D.; Neese, D.; Carsten, G.

    1995-08-01

    Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less

  7. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  8. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  9. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  10. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins, suggesting a greater disequilibrium in the last ones. The quantitative analysis points out the segments of the basin boundaries where the fault activity is more efficient and the resulting geomorphological implications.

  11. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial deposition within the Middle Aterno River Valley. These fluvial deposits are deeply embedded into the lacustrine sequence, thus suggesting the happening of a hydrographic connection among the originally separated tectonic depressions. This was probably due to the headward erosion by streams draining the Sulmona depression that progressively captured the hydrological networks of the Subequana basin, the Middle Aterno Valley, the L'Aquila and Paganica-Castelnuovo-San Demetrio basins to the North. Stream piracy was probably helped by an increase of the regional uplift rate, occurred between the Lower and the Middle Pleistocene. To reconstruct the paleo-landscape that characterised the early stages of these basins formation we sampled the remnants of the Quaternary erosinal/depositional surfaces and reconstructed the ancient topographic surfaces using the Topo to Raster tool of ArcGIS 10.0 package. Finally we have cross-checked the geological and geomorphological data with the model of the Middle Aterno River paleo-drainage basin obtained through the GIS based method. References Falcucci E., Scardia G., Nomade S., Gori S., Giaccio B., Guillou H., Fredi P. (2012). Geomorphological and Quaternary tectonic evolution of the Subequana basin and the Middle Aterno Valley (central Apennines).16th Joint Geomorphological Meeting Morphoevolution of Tectonically Active Belts Rome, July 1-5, 2012

  12. Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, D.M.; Snyder, W.S.; Spinosa, C.

    1991-02-01

    Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain bymore » basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.« less

  13. Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Bergner, A. G. N.; Strecker, M. R.; Trauth, M. H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M.

    2009-12-01

    The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/ 39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.

  14. Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska

    NASA Astrophysics Data System (ADS)

    Dixit, N.; Hanks, C.

    2017-12-01

    Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.

  15. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the sediment input occurred since mid-Pleistocene time respect to Pliocene-Gelasian times. Even if the absolute amount of sediment arriving in the two basins is quite different, reflecting the different extension of their source regions, this increase occurred concomitantly with both the strong decrease of tectonic activity in the surrounding belts and the onset of major glaciations in the Alpine range. Therefore we argue that a cool, highly oscillating climate, causing glacial-interglacial cycles is approximately 4 times more efficient than tectonics in promoting the erosion of mountain belts and the related detrital input in the surrounding sedimentary basins.

  16. Interaction between active tectonics, erosion and diapirism, a case study from Habble-Rud in Southern Central Alborz (Northern Iran)

    NASA Astrophysics Data System (ADS)

    Jaberi, Maryam; Ghassemi, Mohammad R.; Shayan, Siavosh; Yamani, Mojtaba; Zamanzadeh, Seyed Mohammad

    2018-01-01

    The Alborz mountain chain is a region of active deformation within the Arabia-Eurasia continental collision zone. The southern part of central Alborz Mountains, in the north of Iran, represents complex tectonics because it is located at the border of two developing continental sedimentary basins between southern central Alborz and Central Iran. An arid and semi-arid climate, a large extent of Quaternary sediments, rugged topography, salt domes and faults with historical seismicity influence the Habble-Rud River catchment. In the present research, a number of tectonic geomorphologic indices were extracted from satellite imagery and 10 m DEM (digital elevation model) data in order to identify relative tectonic activity within the basin. The indices include: stream length-gradient index (Sl), drainage basin asymmetry (Af), index of mountain front sinuosity (Smf), hypsometric integral (Hi), index of drainage basin shape (Bs), ratio of valley-floor width to valley height (Vf), and fault density (Fd). Due to the presence of heterogeneous indices for all sections of the catchment causing large extension of Habble-Rud (3260 km2), all of the variables such as extremely erodible formations, faults and folds and salt tectonics on the Southern part; were put into a matrix table. As a new approach, the variables were put into the SAW (simple additive model) model as one of MADM (multi-attribute decision-making models) techniques. The study area was divided into four regions according to the values of SAW. These classes include very high (%11), high (48.3%), moderate (34.7%), and low activity (3.4%). The result of the model suggests that the study area is located on a changing tectonic trend in central Alborz from NW-SE to NE-SW. The regions with high relative tectonic activity in HR catchment correspond to the active Garmsar and Sorkhe-Kalout faults and diapirs.

  17. Tectonically controlled sedimentation: impact on sediment supply and basin evolution of the Kashafrud Formation (Middle Jurassic, Kopeh-Dagh Basin, northeast Iran)

    NASA Astrophysics Data System (ADS)

    Sardar Abadi, Mehrdad; Da Silva, Anne-Christine; Amini, Abdolhossein; Aliabadi, Ali Akbar; Boulvain, Frédéric; Sardar Abadi, Mohammad Hossein

    2014-11-01

    The Kashafrud Formation was deposited in the extensional Kopeh-Dagh Basin during the Late Bajocian to Bathonian (Middle Jurassic) and is potentially the most important siliciclastic unit from NE Iran for petroleum geology. This extensional setting allowed the accumulation of about 1,700 m of siliciclastic sediments during a limited period of time (Upper Bajocian-Bathonian). Here, we present a detailed facies analysis combined with magnetic susceptibility (MS) results focusing on the exceptional record of the Pol-e-Gazi section in the southeastern part of the basin. MS is classically interpreted as related to the amount of detrital input. The amount of these detrital inputs and then the MS being classically influenced by sea-level changes, climate changes and tectonic activity. Facies analysis reveals that the studied rocks were deposited in shallow marine, slope to pro-delta settings. A major transgressive-regressive cycle is recorded in this formation, including fluvial-dominated delta to turbiditic pro-delta settings (transgressive phase), followed by siliciclastic to mixed siliciclastic and carbonate shoreface rocks (regressive phase). During the transgressive phase, hyperpycnal currents were feeding the basin. These hyperpycnal currents are interpreted as related to important tectonic variations, in relation to significant uplift of the hinterland during opening of the basin. This tectonic activity was responsible for stronger erosion, providing a higher amount of siliciclastic input into the basin, leading to a high MS signal. During the regressive phase, the tectonic activity strongly decreased. Furthermore, the depositional setting changed to a wave- to tide-dominated, mixed carbonate-siliciclastic setting. Because of the absence of strong tectonic variations, bulk MS was controlled by other factors such as sea-level and climatic changes. Fluctuations in carbonate production, possibly related to sea-level variations, influenced the MS of the siliciclastic/carbonate cycles. Carbonate intervals are characterized by a strong decrease of MS values indicates a gradual reduction of detrital influx. Therefore, the intensity of tectonic movement is thought to be the dominant factor in controlling sediment supply, changes in accommodation space and modes of deposition throughout the Middle Jurassic sedimentary succession in the Pol-e-Gazi section and possibly in the Kopeh-Dagh Basin in general.

  18. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less

  19. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common feature among other intraplate, tectonically active basins.

  20. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  1. MPF model ages of the Rembrandt basin and scarp system, Mercury.

    NASA Astrophysics Data System (ADS)

    Ferrari, Sabrina; Massironi, Matteo; Marchi, Simone; Byrne, Paul K.; Klimczak, Christian; Cremonese, Gabriele

    2013-04-01

    The 715-km-diameter Rembrandt basin is the largest well-preserved impact feature of the southern hemisphere of Mercury [1] (Fig. 1), and was imaged for the first time during the second flyby of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission [2]. Much of the basin interior is covered by smooth, high-reflectance plains interpreted to be of volcanic origin [1-3] that host sets of contractional and extensional tectonic structures. Notably, Rembrandt basin and its smooth plains are cross-cut by a 1,000-km-long reverse fault system [1-5] that trends ~E-W, bending toward the north within the basin. The individual faults of this system accommodated crustal shortening that resulted from global contraction as Mercury's interior cooled [1]. The current shape of the reverse fault system may have been influenced by the formation of the Rembrandt basin [5]. The emplacement of the interior smooth plains predates both the basin-related tectonism and the final development of the giant scarp, which is suggestive of either short-lived volcanic activity immediately after basin formation or a later volcanic phase set against prolonged tectonic activity. In order to quantify the duration of volcanic and tectonic activity in and around Rembrandt basin, we determined the crater count-derived ages of the involved terrains by means of the Model Production Function (MPF) chronology of Mercury [6-8], which is rely on the knowledge of the impactors flux on the planet. Crater chronology allowed us to constrain the Rembrandt basin formation to the early Calorian period and a widespread resurfacing up to 3.5 Ga ago. The volcanic activity affected both the basin and its surroundings, but ended prior to some basin-related and regional faulting. Hence, if the giant scarp begun to develop even before the basin formation (as suggested by its length-displacement profile across the basin itself, [5]) the regional tectonic activity along this structure might have started even before the Late Heavy Bombardment period and lasted for more than 300 Ma, when the volcanic activity in this part of hermean surface was already accomplished. [1] Watters T. R. et al. (2009) Science, 324, 618. [2] Solomon S. C. et al. (2008) Science, 321, 59. [3] Denevi B. W. et al. (2009) Science, 324, 613. [4] Byrne P. K. et al. (2012) LPS, 43, abstract 1722. [5] Ferrari S. et al. (2012) EPSC, 7, abstract 2012-874. [6] Marchi S. et al. (2009) The Astron. Jour., 137, 4936. [7] Massironi M. et al. (2009) Geophys. Res. Lett., 36, L21204. [8] Marchi S. et al. (2011) Plaet. Space Sci., 59, 1968.

  2. Geological timing and duration of methane seepage in different sedimentary and tectonic settings in the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Wenau, S.; Spiess, V.

    2016-12-01

    Methane seepage sites have been investigated in the Lower Congo Basin using seismo-acoustic methods in combination with geological and geochemical sampling. Pockmarks were observed in different areas of the Lower Congo Basin that are affected by different styles of salt-tectonic deformation and sedimentary input. At the salt front in the southern part of the basin, methane seepage shifts continuously westwards as previously undeformed sediments are affected by westward moving salt. Older seepage sites to the East are cut off from methane supply in the process of continuing salt-tectonic deformation. The initiation of gas accumulation and seepage directly at the deformation front is expected in the late Miocene due to salt-induced uplift. In the northern part of the basin on the lower slope, methane seepage is focused along salt-tectonic faults connecting Pliocene fan deposits to the seafloor, breaching the hemipelagic seal. These sites show indications for continuing seepage for the last 640 kyrs. Such long term seepage activity may be due to the lack of polygonal faults in the hemipelagic seal, focusing gas migration on fewer, salt-tectonic faults. Westward of the salt front, seepage features include the Regab pockmark where a potential reservoir in an Early Pleistocene channel flank is connected to the seafloor feature via a seismic chimney. Seepage activity in this area is also documented to be continuous over geologic time scales by seafloor and sub-seafloor seepage indications such as chimneys, pockmarks and buried seepage features. The Lower Congo Basin thus documents the longevity of seepage processes in the context of various tectonic and sedimentary regimes on a passive continental margin. Indications of the duration of seepage activity at individual sites may be used for methane budgeting in combination with emission rates estimated for typical seepage sites.

  3. Quaternary deformation in the central Neuquén basin (35°-37°S), Argentina: evidences for active strain partitioning.

    NASA Astrophysics Data System (ADS)

    Niviere, B.; Backé, G.

    2006-12-01

    The tectonic evolution of the Central Andes is a consequence of the relative convergence between the Nazca and the South American plates. The Neuquén basin is located in the southernmost part of the Central Andes, between latitudes 32°S and 40°S. The present day geometry of the basin has been inherited from different compressive pulses, separated by times of relative tectonic quiescence since the late Cretaceous. The complex tectonic evolution of the area has often been explained by changes in the geometry of the subducted plate. The last broad scale tectonic event in the Neuquén basin is the Miocene compressive stage referred to as the Quechua phase. The tectonic evolution of the outer part of the Neuquén Basin from the late Miocene onwards is still a matter of debate. For instance, strain partitioning has been described in the inner part of the basin, which corresponds to the modern arc area close to the Chile Argentina border. The strain regime in the foreland between 35°S and 37°S is more uncertain. Extensional tectonic features have been described in different areas of the basin, leading to the formulation of a possible orogenic collapse in response to the steepening of the oceanic slab that followed a late Miocene shallow subduction. This model accounts for the occurrence of large Pleistocene to Quaternary back-arc volcanism in the Neuquén basin. However, field structural data and borehole breakout analysis strongly support on-going compression in the basin. Our study is based on the morphostructural analysis of remote sensing data (satellite and digital elevation model images) complemented by field work. Here we show that strike-slip faulting and localized extension in the outer zone of the basin is coeval with active thrusting and folding. This can be explained by strain partitioning or segmentation processes due to the oblique convergence between the Nazca and the South American plates.

  4. Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Lubberts, Ronald K.; Ben-Avraham, Zvi

    2002-02-01

    The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.

  5. Late Cenozoic tectonic activity of the Altyn Tagh range: Constraints from sedimentary records from the Western Qaidam Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fang, Xiaomin; Wang, Yadong; Song, Chunhui; Zhang, Weilin; Yan, Maodu; Han, Wenxia; Zhang, Dawen

    2018-07-01

    The Altyn Tagh range (ATR) is the northern geological boundary of the Tibetan Plateau and plays a key role in accommodating its Cenozoic lithospheric deformation. However, knowledge of the structural style and age of uplift of the ATR is limited and controversial. The Qaidam Basin, in the southeast side of the ATR, provides an outstanding field laboratory for understanding the history and mechanisms of ATR growth. This study presents a detailed sedimentological analysis of a 1040-m-thick late Cenozoic ( 17-5.0 Ma) sedimentary sequence from the western Qaidam Basin, together with the analysis of sedimentological data from nearby boreholes and sections. Our aims were to determine the spatiotemporal evolution of the sedimentary sequences in the study area and to explore their response to late Cenozoic tectonic activity in the ATR. The results show three major intervals of the sedimentary characteristics in the study area: >17-16 Ma, 10 Ma and <5 Ma, which are closely related to the development of unconformities and growth strata recorded by high-resolution seismic reflection profiles. Combining the results with a comprehensive provenance analysis and with published records of regional climate change and tectonic activity, we discuss the possible factors responsible for the variations in the sedimentary characteristics of the studied sections. We conclude that significant tectonic responses in the western Qaidam Basin during the late Cenozoic were caused by three stages of tectonic activity of the ATR, at >17-16 Ma, 16-10 Ma and 10 Ma, during which the ATR respectively experienced tectonic uplift, fast strike-slip motion and intense uplift.

  6. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  7. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    NASA Astrophysics Data System (ADS)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  8. Present-day Horizontal Mobility in the Serbian Part of the Pannonian Basin; Inferences from the Geometric Analysis of Deformations

    NASA Astrophysics Data System (ADS)

    Sušić, Zoran; Toljić, Marinko; Bulatović, Vladimir; Ninkov, Toša; Stojadinović, Uroš

    2016-10-01

    In tectonically complex environments, such as the Pannonian Basin surrounded by the Alps-Dinarides and Carpathians orogens, monitoring of recent deformations represents very challenging matter. Efficient quantification of active continental deformations demands the use of a multidisciplinary approach, including neotectonic, seismotectonic and geodetic methods. The present-day tectonic mobility in the Pannonian Basin is predominantly controlled by the northward movement of the Adria micro-plate, which has produced compressional stresses that were party accommodated by the Alps-Dinarides thrust belt and partly transferred towards its hinterland. Influence of thus induced stresses on the recent strain field, deformations and tectonic mobility in the southern segment of the Pannonian Basin has been investigated using GPS measurements of the horizontal mobility in the Vojvodina area (northern Serbia).

  9. Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin

    2016-03-01

    The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level, while 43% of the drainage basins without occurred debris flow valleys are at a high risk level. A comparison with results from past studies demonstrated that the accuracy of these findings is greater than 85%, indicating that the basin topography created by rapid tectonic deformations is more favorable for debris flows.

  10. Tectono-sedimentary analysis using the anisotropy of magnetic susceptibility: a study of the terrestrial and freshwater Neogene of the Orava Basin

    NASA Astrophysics Data System (ADS)

    Łoziński, Maciej; Ziółkowski, Piotr; Wysocka, Anna

    2017-10-01

    The Orava Basin is an intramontane depression filled with presumably fine-grained sediments deposited in river, floodplain, swamp and lake settings. The basin infilling constitutes a crucial record of the neoalpine evolution of the Inner/Outer Carpathian boundary area since the Neogene, when the Jurassic-Paleogene basement became consolidated, uplifted and eroded. The combination of sedimentological and structural studies with anisotropy of magnetic susceptibility (AMS) measurements provided an effective tool for recognition of terrestrial environments and deformations of the basin infilling. The lithofacies-oriented sampling and statistical approach to the large dataset of AMS specimens were utilized to define 12 AMS facies based on anisotropy degree (P) and shape (T). The AMS facies allowed a distinction of sedimentary facies ambiguous for classical methods, especially floodplain and lacustrine sediments, as well as revealing their various vulnerabilities to tectonic modification of AMS. A spatial analysis of facies showed that tuffites along with lacustrine and swamp deposits were generally restricted to marginal and southern parts of the basin. Significant deformations were noticed at basin margins and within two intrabasinal tectonic zones, which indicated the tectonic activity of the Pieniny Klippen Belt after the Middle Miocene. The large southern area of the basin recorded consistent N-NE trending compression during basin inversion. This regional tectonic rearrangement resulted in a partial removal of the southernmost basin deposits and shaped the basin's present-day extent.

  11. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Vittori, E.; Kajara, R. S. A.; Kilembe, E.

    1998-04-01

    Interpretation of remotely sensed images and air photographs, compilation of geological and topographical maps, morphostructural and fault kinematic observations and 14C dating reveal that, besides obvious climatic influences, the lake water extent and sedimentation in the closed hydrological system of Lake Rukwa is strongly influenced by tectonic processes. A series of sandy ridges, palaeolacustrine terraces and palaeounderwater delta fans are related to an Early Holocene high lake level and subsequent progressive lowering. The maximum lake level was controlled by the altitude of the watershed between the Rukwa and Tanganyika hydrological systems. Taking as reference the present elevation of the palaeolacustrine terraces around Lake Rukwa, two orders of vertical tectonic movement are evidenced: i) a general uplift centred on the Rungwe Volcanic Province between the Rukwa and Malawi Rift Basins; and ii) a tectonic northeastward tilting of the entire Rukwa Rift Basin, including the depression and rift shoulders. This is supported by the observed hydromorphological evolution. Local uplift is also induced by the development of an active fault zone in the central part of the depression, in a prolongation of the Mbeya Range-Galula Fault system. The Ufipa and Lupa Border Faults, bounding the Rukwa depression on the southwestern and northeastern sides, respectively, exert passive sedimentation control only. They appear inactive or at least less active in the Late Quaternary than during the previous rifting stage. The main Late Quaternary tectonic activity is represented by dextral strike-slip movement along the Mbeya Range-Galula Fault system, in the middle of the Rukwa Rift Basin, and by normal dip-slip movements along the Kanda Fault, in the western rift shoulder.

  12. Shale hydrocarbon reservoirs: some influences of tectonics and paleogeography during deposition: Chapter 2

    USGS Publications Warehouse

    Eoff, Jennifer D

    2014-01-01

    Fundamental to any of the processes that acted during deposition, however, was active tectonism. Basin type can often distinguish self-sourced shale plays from other types of hydrocarbon source rocks. The deposition of North American self-sourced shale was associated with the assembly and subsequent fragmentation of Pangea. Flooded foreland basins along collisional margins were the predominant depositional settings during the Paleozoic, whereas deposition in semirestricted basins was responsible along the rifted passive margin of the U.S. Gulf Coast during the Mesozoic. Tectonism during deposition of self-sourced shale, such as the Upper Jurassic Haynesville Formation, confined (re)cycling of organic materials to relatively closed systems, which promoted uncommonly thick accumulations of organic matter.

  13. Problems of the active tectonics of the Eastern Black Sea

    NASA Astrophysics Data System (ADS)

    Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.

    2016-12-01

    The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional features in the Eastern Black Sea Region as well.

  14. Early Miocene Tectonic Activity in the western Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; Geletti, R.; De Santis, L.

    2012-12-01

    In the framework of the Rossmap Italian PNRA work objectives to compile extended and revised digital maps of the main unconformities in Ross Sea, Antarctica, much additional seismic reflection data, that were not available to previous ANTOSTRAT compilation, were incorporated into a new ROSSMAP interpretation. The correlation across almost all of Ross Sea, from DSDP Site 270 and Site 272 in Eastern Basin to northern Victoria Land Basin, of additional early Miocene and late Oligocene horizons that were not part of ANTOSTRAT allows interpretations to be made of fault activity and glacial erosion or deposition at a finer time resolution. New conclusions include that extensional or transtensional fault activity within the zone between Victoria Land Basin and Northern Basin, initiated by 23 Ma or earlier, and continued after 18 Ma. Steep parallel-striking faults in southern Victoria Land Basin display both reverse and normal separation of 17.5 Ma (from Cape Roberts Program-core 1) and post-16 Ma horizons, suggesting an important strike-slip component. This result may be compared with published papers that proposed post-17 Ma extension in southern Victoria Land Basin, 16-17 Ma extension in the AdareTrough, north of the Ross Sea continental shelf, but no Miocene extension affecting the Northern Basin (Granot et al., 2010). Thus, our evidence for extension through the early Miocene is significant to post-spreading tectonic models. Reference Granot R., Cande S. C., Stock J. M., Davey F. J. and Clayton R. W. (2010) Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences. Geochem. Geophys. Geosyst., 8, Q08005, doi:10.1029/2010GC003105.

  15. Hydrogeologic Framework of the Salt Basin, New Mexico and Texas

    NASA Astrophysics Data System (ADS)

    Ritchie, A. B.; Phillips, F. M.

    2010-12-01

    The Salt Basin is a closed drainage basin located in southeastern New Mexico (Otero, Chaves, and Eddy Counties), and northwestern Texas (Hudspeth, Culberson, Jeff Davis, and Presidio Counties), which can be divided into a northern and a southern system. Since the 1950s, extensive groundwater withdrawals have been associated with agricultural irrigation in the Dell City, Texas region, just south of the New Mexico-Texas border. Currently, there are three major applications over the appropriations of groundwater in the Salt Basin. Despite these factors, relatively little is known about the recharge rates and storage capacity of the basin, and the estimates that do exist are highly variable. The Salt Basin groundwater system was declared by the New Mexico State Engineer during 2002 in an attempt to regulate and control growing interest in the groundwater resources of the basin. In order to help guide long-term management strategies, a conceptual model of groundwater flow in the Salt Basin was developed by reconstructing the tectonic forcings that have affected the basin during its formation, and identifying the depositional environments that formed and the resultant distribution of facies. The tectonic history of the Salt Basin can be divided into four main periods: a) Pennsylvanian-to-Early Permian, b) Mid-to-Late Permian, c) Late Cretaceous, and d) Tertiary-to-Quaternary. Pennsylvanian-to-Permian structural features affected deposition throughout the Permian, resulting in three distinct hydrogeologic facies: basin, shelf-margin, and shelf. Permian shelf facies rocks form the primary aquifer within the northern Salt Basin, although minor aquifers occur in Cretaceous rocks and Tertiary-to-Quaternary alluvium. Subsequent tectonic activity during the Late Cretaceous resulted in the re-activation of many of the earlier structures. Tertiary-to-Quaternary Basin-and-Range extension produced the current physiographic form of the basin.

  16. Paleogeographic atlas project-Mesozoic-Cenozoic tectonic map of the world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, D.B.; Ziegler, A.M.; Hulver, M.

    1985-01-01

    A Mesozoic-Cenozoic tectonic map of the world has been compiled in order to provide the basis for detailed paleogeographic, first-order palin-spastic and paleo-tectonic reconstructions. The map is plotted from a digital database on two polar stereographic projections that depict both time and type of tectonic activity. Time of activity is shown using six colors, with each color representing approximately 40 m.y. intervals. The time divisions correspond with, and are defined on the basis of times of major changes in plate motions. Tectonic activity is divided into 7 major types: (1) Platformal regions unaffected by major tectonism; (2) Region as underlainmore » by oceanic lithosphere; (3) Regions affected by extensional tectonism-characterized by thinning and stretching of the crust, including Atlantic-type margins, Basin and Range, back-arc and pull-apart basin development; (4) Regions of crustal shortening and thickening, as in collisional orogens and Andean-type foreland-fold systems; (5) Strike-slip systems associated with little or no change in crustal thickness; (6) Subduction accretion prisms, associated with tectonic outbuilding of continental crust, and marking sutures within continents; and (7) Large scale oceanic volcanic/magmatic arcs and plateaus characterized by increased crustal thickness and buoyancy of the lithosphere. The map provides a basis for understanding the assembly of Asia, the Circum-Pacific, and the disaggregation of Pangea.« less

  17. Introduction in New perspectives on Rio Grande rift basins: from tectonics to groundwater

    USGS Publications Warehouse

    Hudson, Mark R.; Grauch, V.J.S.

    2013-01-01

    Basins of the Rio Grande rift have long been studied both for their record of rift development and for their potential as host of natural resources. Early workers described the basin geomorphology and the character of infilling sediments (e.g. Siebenthal, 1910; Bryan, 1938; Speigel and Baldwin, 1963), and subsequent research compilations provided general stratigraphic and tectonic overviews of rift basins and described their geophysical characteristics within the crust (Hawley, 1978; Riecker, 1979; Baldridge et al., 1984; Keller, 1986). Subsurface knowledge gained from hydrocarbon exploration activities coupled with detailed surface studies of basins and their flanking uplifts were presented in Geological Society of America (GSA) Special Paper 291, edited by Keller and Cather (1994a).

  18. 3.5-D model of sediment age and grain size for the Northern Gulf of Aqaba-Elat (Red Sea) using submarine cores

    NASA Astrophysics Data System (ADS)

    Kanari, Mor; Ben-Avraham, Zvi; Tibor, Gideon; Goodman Tchernov, Beverly N.; Bookman, Revital; Taha, Nimer; Marco, Shmuel

    2016-04-01

    The Northern Gulf of Aqaba-Elat (NGAE) is the northeast extension of the Red Sea, located at the southernmost part of the Dead Sea Fault, at the transition zone between the deep en-echelon submarine basins of the Red Sea and the shallow continental basins of the Arava Valley (Israel and Jordan). We aim to characterize the top sedimentary cover across the NGAE in order to check the effect of tectonics on the sedimentary column, using high resolution grain size data and radiocarbon dating of core sediments. We analyzed 11 piston cores and 9 short cores: high resolution grain-size and radiocarbon age determinations were used to compile a 3.5-D (3.5 dimensional) model of age-depth-grain size for the top 3-5 meters of the NGAE. Two general trends of the grain size spatial distribution are observed: grains are coarsest at the NE corner of the NGAE (Aqaba coastline) and grow finer with the distance to the west on the shelf and with the distance from shore to the south. Long- and short-term accumulation rates were compiled for the entire NGAE, demonstrating a distinct E-W trend on the shelf and a NNE-SSW trend in the deep basin. The 3.5-D age-depth-grain size model conforms to- and validates the tectonic structure of the shelf detailed by previous authors. We suggest that the impact of tectonic structure of the shelf is highly significant in terms of spatial variations across the shelf, both in age of the sediment and its grain size characteristics. The temporal-spatial distribution of the grain size in the deep basin of the NGAE reveals a correlation between sediment age, dominant grain size and active tectonics: fine-grain, old sediment in the margins (Late Pleistocene, as old as >40 ka on the west margin; Early Holocene, as old as 7.5 ka, on the east margin), and Late Pleistocene sediment farther south from the dominant active diagonal fault which underlies the Elat Canyon. Young coarse sediment is present in the middle of the basin, where most of the active sediment transportation (and tectonic activity) take place. The dominant sedimentary activity follows the migration of the active tectonic fault segments from east to west between 40 ka to present. We observe focusing of turbidites to the location of the dominant active tectonic fault. A spatial/temporal evolutionary model is presented for the sedimentary processes of the NGAE since 40 ka to present, suggesting three phases of development: (a) Late Pleistocene 40 to 12 ka; (b) Early to Mid-Holocene 12 to 5-4 ka; (c) Late Holocene 5-4 ka to present.

  19. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  20. A new plate tectonic concept for the eastern-most Mediterranean

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  1. Characterization of Stream Channel Evolution Due to Extensional Tectonics Along the Western Margin of North Boulder Basin (Bull Mountain), SW Montana with the Use of Geologic Mapping and Thermochronologic (U-Th/He) Dating.

    NASA Astrophysics Data System (ADS)

    Cataldo, K.; Douglas, B. J.; Yanites, B.

    2017-12-01

    Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (< 5cm) river profile data is obtained from five of the main tributaries of Bull Mountain. Comprehensive geologic mapping along the main tributaries and topographic highs of the region allowed for the identification and measurement of knickpoints, composition of detailed lithologic descriptions, and analysis of key structural features. The absence of knickpoints within the four tributaries mapped on east Bull Mountain are consistent with a lack of tectonic activity. In contrast, Dearborn Creek, on western Bull Mountain, is located along an active normal fault and presents several knickpoints. Geologic mapping confirms that the primary lithologies of the region belong to the Elkhorn Mountain Volcanics. At lower elevations, there are massive plutonic intrusions of Quartz Monzonite and Diorite, both constituents of the Boulder batholith. These lithologies contain minerals suited for low-temperature thermochronology (U-Th/He) to constrain the timing of tectonic activity (i.e. uplift and exhumation) and erosion rates in the region. High-resolution stream profiles and a 10m DEM are used to delineate watersheds and produce steepness and concavity maps of major tributaries to investigate changes in slope or topography. The effects of extensional tectonic events can reshape drainage patterns of streams and their distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.

  2. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    NASA Astrophysics Data System (ADS)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  3. Holocene vertical tectonic movements of the Taipei Basin, northern Taiwan and its implications

    NASA Astrophysics Data System (ADS)

    Chen, B.; Hsieh, M.; Lai, T.; Liew, P.

    2007-12-01

    Many geological data of the Taipei Basin, although, have been published by various studies in past decades, however, vertical tectonic movement rate of the Basin was not well understood so far. This study, therefore, used radiocarbon dates, obtained from fifteen boreholes in the Basin, to calculate the Holocene vertical tectonic movement rate. In addition to the derived tectonic movement rate, this study also discussed the causes of the tectonic patterns of the Taipei Basin. The Taipei Basin, located in the northern Taiwan, was a half graben subsided and extended along the western boundary, the Shangiao Normal Fault, of the Basin. The Holocene vertical tectonic movement rate of the Basin were calculated based on 94 radiocarbon dates in fifteen boreholes, the elevations of the radiocarbon dating samples, and the eustatic sea-level curve of the past 15 ka. The results showed the rate in the western part of the Basin, was -2.2 -- -0.9 mm/yr (negative value indicates subsiding, and positive value indicates uplifting). In the central part of the Basin, the rate was ca. -1 -- 1 mm/yr while in the eastern part of the Basin, the rate was 0.1 -- 1.6 mm/yr. Along the Shiangiao Fault, the rate of the hanging-wall was ca. -1.6 -- -0.4 mm/yr and the rate of the footwall was ca. 0 mm/yr. According to the results of this study, the present territory of the Taipei Basin was not actually consistent with the tectonic subsiding region. The vertical tectonic movement pattern demonstrated subsidence in the western part and uplift in the eastern part of the Taipei Basin. The subsidence of the western part was controlled by the extension of the Shangiao Faul. The uplift of the eastern part might be ascribed to the roll-over of the Fault. Another possibility is that the uplift of the east was controlled by the same behavior as the Western Foothills.Consequently, the deposition of the eastern part of the Basin, wass mainly related to the accommodations due to sea-level rise but not tectonic subsidence.

  4. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  5. Tectonic control on coarse-grained foreland-basin sequences: An example from the Cordilleran foreland basin, Utah

    NASA Astrophysics Data System (ADS)

    Horton, Brian K.; Constenius, Kurt N.; Decelles, Peter G.

    2004-07-01

    Newly released reflection seismic and borehole data, combined with sedimentological, provenance, and biostratigraphic data from Upper Cretaceous Paleocene strata in the proximal part of the Cordilleran foreland-basin system in Utah, establish the nature of tectonic controls on stratigraphic sequences in the proximal to distal foreland basin. During Campanian time, coarse-grained sand and gravel were derived from the internally shortening Charleston-Nebo salient of the Sevier thrust belt. A rapid, regional Campanian progradational event in the distal foreland basin (>200 km from the thrust belt in <8 m.y.) can be tied directly to active thrust-generated growth structures and an influx of quartzose detritus derived from the Charleston-Nebo salient. Eustatic sea-level variation exerted a minimal role in sequence progradation.

  6. Geomorphic indices indicated differential active tectonics of the Longmen Shan

    NASA Astrophysics Data System (ADS)

    Gao, M.; Xu, X.; Tan, X.

    2012-12-01

    The Longmen Shan thrust belt is located at the eastern margin of the Tibetan Plateau. It is a region of rapid active tectonics with high erosion rates and dense vegetation. The structure of the Longmen Shan region is dominated by northeast-trending thrusts and overturned folds that verge to the east and southeast (Burchfiel et al. 1995, Chen and Wilson 1996). The Longmen Shan thrust belt consists of three major faults from west to east: back-range fault, central fault, and frontal-range fault. The Mw 7.9 Wenchuan earthquake ruptured two large thrust faults along the Longmen Shan thrust belt (Xiwei et al., 2009). In this paper, we focus on investigating the spatial variance of tectonic activeness from the back-range fault to the frontal-range fault, particular emphasis on the differential recent tectonic activeness reflected by the hypsometry and the asymmetric factor of the drainage. Results from asymmetric factor indicate the back-rannge thrust fault on the south of the Maoxian caused drainage basins tilted on the hanging wall. For the north of the Maoxian, the strike-slip fault controlled the shapes of the drainage basins. Constantly river capture caused the expansion of the drainage basins which traversed by the fault. The drainages on the central fault and the frontal-range fault are also controlled by the fault slip. The drainage asymmetric factor suggested the central and southern segments of the Longmen Shan are more active than the northern segment, which is coherence with results of Huiping et al. (2010). The results from hypsometry show the back-range fault is the most active fault among the three major faults. Central fault is less active than the back-range fault but more active than the frontal-range fault. Beichuan is identified as the most active area along the central fault. Our geomorphic indices reflect an overall eastward decreasing of tectonic activeness of the Longmen Shan thrust belt.

  7. Neotectonic deformation model of the Northern Algeria from Paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Derder, M. E. M.; Henry, B.; Maouche, S.; Amenna, M.; Bayou, B.; Djellit, H.; Ymel, H.; Gharbi, S.; Abtout, A.; Ayache, M.

    2012-04-01

    The seismic activity of the Western Mediterranean area is partly concentrated in northern Africa, particularly in northern Algeria, as it is shown by the strongest recent earthquakes of "Zemmouri" 21 May 2003 Mw=6.9 and the "El Asnam" 10 October 1980 Ms= 7.3. This seismicity is due to the tectonic activity related to the convergence between Africa and Eurasia plates since at least the Oligocene. The deformation is mostly compressional with associated folds, strike-slip faults and thrusts, and a direction of shortening between N-S and NNW-SSE. This convergence involves a tectonic transpression which is expressed by active deformation along the plate boundary. In northern Algeria, the seismicity is concentrated in a coastal E-W thin band zone (the Tell Atlas). Active structures define there NE-SW trending folds and NE-SW sinistral transpressive faults, which affect the intermountain and coastal Neogene to Quaternary sedimentary basins (e.g. " Cheliff "basin, " Mitidja "basin, …). These reverse faults are associated with NW-SE to E-W strike-slips deep faults. The active tectonics could be explained by a simple blocks rotation kinematics model. In order to test the validity of this kinematic model, three different paleomagnetic studies have been conducted. The first one concerned the "Cheliff" basin where sedimentary Neogene formations were extensively sampled (66 sites). The second study was carried out on Miocene andesite and dacite rocks cropping out along the northern coastal zone of the "Cheliff" basin ("Beni Haoua" area, 19 sites). The third study has been carried out on the Miocene magmatic rocks (rhyolites and basalts) cropping out north-eastern part of the "Mitidja" basin ("Cap Djinet" - "Boumerdes" area, 23 sites). The obtained results show existence of paleomagnetic clockwise rotations in all the studied areas and then validates the kinematics block rotation model. Accordingly, the deformation related to the convergence between the Africa and Eurasia plates, is partly accommodated in northern Algeria by blocks rotation movements. It seems that the Tellian Atlas (northern Algeria) domain is organized as tectonic blocks with relative clockwise blocks rotation movement as in a "bookshelf" model.

  8. Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Harrab, Salah; Sainz, Antonio Casas; Bédir, Mourad; Zargouni, Fouad

    2011-07-01

    The Neogene sedimentary basins (Serravallian to Quaternary) of the Tellian tectonic foreland in north-eastern Tunisia formed within the overall NE-SW sinistral strike-slip tectonic framework of the Ras El Korane-Thibar and El Alia-Teboursouk fault systems. From stratigraphic logs, structural cross sections and interpretation of 2D seismic lines and boreholes, the pre-Neogene basement can be interpreted to be structured according to Eocene (NW-SE) compressional and Oligocene extensional phases. This basement comprises structural highs (anticlines and horsts) and subsiding areas (synclines, half-grabens and grabens) formed during the Neogene. The subsiding areas are delineated by faults striking N030E, N-S and N140E, defining (i) narrow, strongly subsiding synclines, (ii) lozenge-shaped basins and (iii) trapezoidal basins. The architecture of their fill results from the sedimentary balance between tectonics and eustatism. Halokinesis and clay diapirism (driven by Triassic and Neogene evaporites and clays) also played an important role in basin evolution, contributing to the formation of domes and diapirs along active faults.

  9. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  10. Sedimentation and tectonics in the southern Bida Basin, Nigeria: depositional response to varying tectonic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braide, S.P.

    1990-05-01

    The Upper Cretaceous Bida basin of central Nigeria is sandwiched between the Precambrian schist belts of the Northern Nigerian massif and the West African craton. Of interest is the southern part of the basin, which developed in continental settings, because the facies architecture of the sedimentary fill suggests a close relation between sedimentation dynamics and basin margin tectonics. This relationship is significant to an understanding of the basin's origin, which has been controversial. A simple sag and rift origin has been suggested, and consequently dominated the negative thinking on the hydrocarbon prospects of the basin which were considered poor. Thismore » detailed study of the facies indicates rapid basin-wide changes from various alluvial fan facies through flood-basin and deltaic facies to lacustrine facies. Paleogeographic reconstruction suggests lacustrine environments were widespread and elongate. Lacustrine environments occurred at the basin's axis and close to the margins. This suggests the depocenter must have migrated during the basin's depositional history and subsided rapidly to accommodate the 3.5-km-thick sedimentary fill. Although distinguishing pull-apart basins from rift basins, based solely on sedimentologic grounds, may be difficult, the temporal migration of the depocenter, as well as the basin architecture of upward coarsening cyclicity, show a strong tectonic and structural overprint that suggests a tectonic framework for the Southern Bida basin similar in origin to a pull-apart basin.« less

  11. Fluvial Connectivity and Sediment Dispersal within Continental Extensional Basins; Assessment of Controlling Factors using Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.

    2017-12-01

    Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.

  12. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  13. Neotectonics and geomorphic evolution of the northwestern arm of the Yellowstone Tectonic Parabola: Controls on intra-cratonic extensional regimes, southwest Montana

    USGS Publications Warehouse

    Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.

    2014-01-01

    The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.

  14. Global evaluation of erosion rates in relation to tectonics

    NASA Astrophysics Data System (ADS)

    Hecht, Hagar; Oguchi, Takashi

    2017-12-01

    Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (< 0.68 g) and short distance (< 94.34 km) are almost inexistent suggesting a strong coupling between PGA and distance to tectonic plate boundary. Groups with low erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.

  15. Expanding extension, subsidence and lateral segmentation within the Santorini - Amorgos basins during Quaternary: Implications for the 1956 Amorgos events, central - south Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Hübscher, C.; Papanikolaou, D.; Farangitakis, G. P.; Ruhnau, M.; Lampridou, D.

    2018-01-01

    New bathymetric and seismic reflection data from the Santorini-Amorgos Tectonic Zone in the southern Cyclades have been analysed and a description of the morphology and tectonic structure of the area has been presented. The basins of Anhydros, Amorgos and Santorini-Anafi have been distinguished together with the intermediate Anhydros Horst within the NE-SW oriented Santorini-Amorgos Tectonic Zone which has a length of 60-70 km and a width of 20-25 km. The basins represent tectonic grabens or semi-grabens bordered by the active marginal normal faults of Santorini-Anafi, Amorgos, Ios, Anhydros and Astypalaea. The Santorini-Anafi, Amorgos and Ios marginal faults have their footwall towards the NW where Alpine basement occurs in the submarine scarps and their hangingwall towards the southeast, where the Quaternary sediments have been deposited with maximum thickness of 700 m. Six sedimentary Units 1-6 have been distinguished in the stratigraphic successions of the Santorini-Anafi and the western Anhydros Basin whereas in the rest area only the upper four Units 3-6 have been deposited. This shows the expansion of the basin with subsidence during the Quaternary due to ongoing extension in a northwest-southeast direction. Growth structures are characterized by different periods of maximum deformation as this is indicated by the different sedimentary units with maximum thickness next to each fault. Transverse structures of northwest-southeast direction have been identified along the Santorini-Amorgos Tectonic Zone with distinction of the blocks/segments of Santorini, Anhydros/Kolumbo, Anhydros islet and Amorgos. Recent escarpments with 7-9 m offset observed along the Amorgos Fault indicate that this was activated during the first earthquake of the 7.5 magnitude 1956 events whereas no recent landslide was found in the area that could be related to the 1956 tsunami.

  16. Regression-transgression cycles of paleolakes in the Fen River Graben Basin during the mid to late Quaternary and their tectonic implication

    NASA Astrophysics Data System (ADS)

    Chen, Meijun; Hu, Xiaomeng

    2017-12-01

    An investigation into lake terraces and their sedimentary features in the Fen River Graben Basin shows that several paleolake regression-transgression cycles took place during the mid to late Quaternary. The horizontal distribution of the lowest loess/paleosol unit overlying each lake terrace indicates the occurrence of four rapid lake regressions when paleosols S8, S5, S2, and S1 began to develop. The horizontal distribution of the topmost loess/ paleosol unit underlying the lacustrine sediment in each transition zone between two adjacent terraces indicates that following a lake regression, a very slow lake transgression occurred. The durations of three lake transgressions correspond to those of the deposition or development of loess/paleosols L8 to L6, L5 to L3, and L2. It is thereby inferred that regional tectonic movement is likely the primary factor resulting in the cyclical process of paleolake regressions and transgressions. Taking these findings along with published geophysical research results regarding the upper mantle movements underneath the graben basin into account, this paper deduces that a cause and effect relationship may exist between the paleolake regression-transgression cycles and the tectonic activity in the upper mantle. The occurrence of a rapid lake regression implies that the upwelling of the upper mantle underneath the graben basin may be dominant and resulting in a rapid uplifting of the basin floor. The subsequent slow lake transgression implies that the thinning of the crust and cooling of the warm mantle material underneath the graben basin may become dominant causing the basin floor to subside slowly. Four rapid paleolake regressions indicate that four episodic tectonic movements took place in the graben basin during the mid to late Quaternary.

  17. Revised stratigraphy and reinterpretation of the Miocene Pohang basinfill, SE Korea: sequence development in response to tectonism and eustasy in a back-arc basin margin

    NASA Astrophysics Data System (ADS)

    Sohn, Y. K.; Rhee, C. W.; Shon, H.

    2001-09-01

    The Miocene Pohang Basin is a pull-apart basin formed along the eastern continental margin of Korea (ECMK) during the back-arc opening of the East Sea (Sea of Japan). The basin is filled by more than 1 km thick, nonmarine to deep-marine strata. These strata show extreme vertical and lateral lithofacies changes and have caused decades-long controversies on their nature and stratigraphy. Previous sedimentological studies suggest that the basinfill was deposited by a series of contemporaneously developed depositional systems, including fan delta, prodelta, slope apron, and basin plain. Detailed mapping and magnetotelluric surveying show, however, that the basinfill is composed of several packages of strata (sequences) that are bounded by distinct and laterally persistent stratigraphic discontinuities (sequence boundaries). This suggests that the depositional systems in the Pohang Basin developed sequentially rather than contemporaneously. Six packages of strata are identified in the basin: a nonmarine to shallow marine (transgressive) sequence (Sequence 1), a Gilbert-type-delta conglomerate (Sequence 2), and alternations of submarine conglomerates and hemipelagic mudstones (Sequences 3-6). The conglomerates and hemipelagic mudstones of the latter four sequences are interpreted to represent lowstand depositional systems (slope apron, submarine fan, and high-gradient delta) and condensed intervals, respectively. Compilation of geochronologic, paleomagnetic, and biostratigraphic data suggests that Sequence 1 formed during the gradual subsidence of the ECMK prior to 17 Ma, whereas Sequence 2 formed in response to abrupt downfaulting of the Pohang Basin at about 17 Ma. Both sequences are interpreted to have developed in response to the early Miocene back-arc-opening tectonism of the East Sea. On the other hand, Sequences 3-6 formed between 17 and about 10.5 Ma. The Pohang Basin was subject to only minor tectonism during this period and could record global sea-level fluctuations. We suggest that the four alternations of conglomerates (lowstand systems) and hemipelagic mudstones (condensed intervals) resulted most probably from the 3rd-order glacioeustatic cycles during the middle Miocene. This finding implies that the signatures of global sea-level fluctuations can be deciphered from a tectonically active sedimentary basin if the timing of regional tectonic development is well constrained, and the global sea-level chart of Haq et al. ( Haq, B.W., Hardenbol, J., Vail, P.R., 1987, Chronology of fluctuating sea levels since the Triassic. Science 235, 1156-1167; Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross, C.A., Kendall, C.G.S.C. (Eds.), Sea-Level Changes: an Integrated Approach: Soc. Econ. Paleont. Mineral. Spec. Publ. 42, pp. 71-108) may serve as a guide to basinfill interpretation even in tectonically active sedimentary basins.

  18. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  19. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength and increase the hillslope erosion during heavy rainfall. By studying the erosion rate of Hoping River watershed we can understand more about surface processes in dynamic landscape, and more over, to establish a comprehensive understanding about the evolution of the ongoing Taiwan arc-continental collision process.

  20. The Middle Pleistocene evolution of the Molise intermontane basins: revision of the chrono-stratigraphic framework and new results inferred from a deep core of the Isernia - Le Piane basin

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Patrizio Ciro Aucelli, Pietro; Cesarano, Massimo; Rosskopf, Carmen Maria

    2014-05-01

    The Molise sector of the Apennine chain includes several Quaternary intermontane basins of tectonic origin (Venafro, Isernia-Le Piane, Carpino, Sessano, Boiano and Sepino basins). Since the Middle Pleistocene, the palaeoenvironmental evolution of these basins has been strongly conditioned by extensional tectonics, dominated by fault systems with a general NW-SE trend. This tectonics has produced important vertical displacements which are testified by the elevated thickness of basin fillings and the presence of several generations of palaeosurfaces, gentle erosion glacis and hanging valleys, the latter being generally located along the borders of the basins. Our research has focused, in the last years, on clarifying the infilling nature and the Quaternary evolution of the Boiano and Sessano basins and, more recently, of the Venafro and Isernia basins, the latter being investigated also by a new deep drilling. The present paper aims at presenting the results of the detailed, integrated analysis of the palaeoenvironmental and geomorphological evolution of these basins, that allowed for constraining the chronology of the basin infillings and for clarifying the significance and age of the ancient gentle surfaces, now hanging up to hundreds of meters above the basins floors. Furthermore, the main palaeoenvironmental changes and the tectonic phases are highlighted. The dating of several tephra layers interbedded within the investigated fluvial-marshy and lacustrine-palustrine successions, allowed to correlate different basin successions, and to refer the main sedimentary facies and some of the palaeosurface generations to the Middle Pleistocene. The obtained results confirm that the Middle Pleistocene evolution of the Molise Apennine was controlled by a polyphasic extensional tectonics, with periods of relative landscape stability alternating with periods of major landscape fragmentation, due to the variable interplay of tectonic and climate. They allow, furthermore, to better decipher the Middle Pleistocene tectonic evolution providing new data on the number of phases and their differences in length, intensity and related accommodation rates.

  1. Using the salt tectonics as a proxy to reveal post-rift active crustal tectonics: The example of the Eastern Sardinian margin

    NASA Astrophysics Data System (ADS)

    Lymer, Gaël; Vendeville, Bruno; Gaullier, Virginie; Chanier, Frank; Gaillard, Morgane

    2017-04-01

    The Western Tyrrhenian Basin, Mediterranean Sea, is a fascinating basin in terms of interactions between crustal tectonics, salt tectonics and sedimentation. The METYSS (Messinian Event in the Tyrrhenian from Seismic Study) project is based on 2100 km of HR seismic data acquired in 2009 and 2011 along the Eastern Sardinian margin. The main aim is to study the Messinian Salinity Crisis (MSC) in the Western Tyrrhenian Basin, but we also investigate the thinning processes of the continental crust and the timing of crustal vertical motions across this complex domain. Our first results allowed us to map the MSC seismic markers and to better constrain the timing of the rifting, which ended before the MSC across the upper and middle parts of the margin. We also evidenced that crustal activity persisted long after the end of rifting. This has been particularly observed on the upper margin, where several normal faults and a surprising compressional structure were recently active. In this study we investigate the middle margin, the Cornaglia Terrace, where the Mobile Unit (MU, mobile Messinian salt) accumulated during the MSC and acts as a décollement. Our goal is to ascertain whether or not crustal tectonics existed after the pre-MSC rift. This is a challenge where the MU is thick, because potential basement deformations could be first accommodated by the MU and therefore would not find any expression in the supra-salt layers (Upper Unit, UU and Plio-Quaternary, PQ). However our investigations clearly reveal interactions between crustal and salt tectonics along the margin. We thus evidence gravity gliding of the salt and its brittle sedimentary cover along basement slopes generated by the post-MSC tilting of some basement blocks bounded by crustal normal faults, formerly due to the rifting. Another intriguing structure also got our interest. It corresponds to a wedge-shaped of MU located in a narrow N-S half graben bounded to the west by a major, east-verging, crustal normal fault. Below the MU, the sediments thicken toward the fault. The top of the MU is sub-horizontal and the supra-salt layers are sub-horizontal. At a first glance this geometry would suggest that the pre-salt unit and the MU are syn-tectonic and that nothing happened after Messinian times. However some subtle evidence of deformations in the UU and PQ (an anticline to the west and a small west-verging normal fault in the east) imply that some crustal tectonics activity persisted after the end of the rifting. To understand why the salt unit is wedge-shaped, we considered several scenarii that we tested with physical modelling. We demonstrate that this structure is related to the post-rift activity of the major crustal normal fault, whose vertical motion has been cushioned by lateral flow of an initially tabular salt layer, which thinned upslope and inflated downslope, keeping the overlying sediments remained sub-horizontal. Such interactions between thin-skinned and thick-skinned tectonics highlight how the analysis of the salt tectonics is a powerful tool to reveal recent deep crustal tectonics in the Western Mediterranean Basin.

  2. Early cretaceous rift sediments of the Gabon-Congo margin: lithology and organic matter; tectonic and paleogeothermal evolution

    NASA Astrophysics Data System (ADS)

    Robert, P.; Yapaudjian, L.

    The active troughs of the western Gabon-Congo margin which are part of the South Atlantic rift contain a Neocomian to barremian-aged fluvial-lacustrine series. The lithological sequence of interbedded clastic and pelitic formations constitutes a well-defined cycle. This cycle is divided into: a fluvial or piedmont stage, a lacustrine turbidite-stage corresponding to the distension paroxysm of the basin, and finally, a lacustrine deltaic stage of infilling and tectonic quiescence. The organic matter included in the shale layers is abundant and originates mainly from lacustrine Botryococcus algae and their alteration and secretion products. The geothermal history of the basin, demonstrated by the evolution of the organic matter indicates a strong hyperthermy located in the active, more subsiding part of the basin, and contemporaneous with sedimentation.

  3. 3D decompaction and sequential restoration: a tool to quantify sedimentary and tectonic control on elusive Quaternary structures

    NASA Astrophysics Data System (ADS)

    D'Ambrogi, Chiara; Emanuele Maesano, Francesco

    2015-04-01

    Basin-wide detailed 3D model, deeply constrained by the interpretation of an impressive dense seismic dataset (12.000 km, provided confidentially by ENI S.p.A.) and 136 well stratigraphies, is the core of a workflow of decompaction and sequential restoration in 3D aimed to quantify the sedimentation and uplift rate in the central part of the Po Plain (northern Italy), during Quaternary. The Po basin is the common foredeep of two opposite verging chains, the Southern Alps, to the north, and the Northern Apennines, to the south, that influenced the evolution of the foreland basin from Paleogene onward. In this particular setting there are many examples of interaction of sedimentary processes and tectonics, both at regional and local scale. During the Quaternary the complex interaction of tectonic processes, sea-level fluctuations, climate changes, and sediment supply produced the filling of the basin with the progradation of the fluvio-deltaic system, from west toward east. The most important tectonic phases can be easily recognized along the basin margin marked by the deformation and tilting of river terraces and of exposed syntectonic sediments; conversely their detection is particularly difficult in the central-distal part of the basin. In such structurally complex area analysis of syntectonic deposits and growth strata are strategic to describe the basin evolution and tectonic control; in their analysis 3D decompaction and regional tilting must be taken into account to assess the residual vertical separation that can be attributed to tectonic processes only. The Pleistocene portion of a detailed 3D model, build in the framework of the EU-funded GeoMol Project, is the starting point of a sequential restoration workflow in 3D that included the unfolding and decompaction of 6, chronologically constrained, sedimentary units ranging from 1.5 to 0.45 Myr. This previously unavailable detail in the definition of the geometry of Quaternary bodies in the central part of the Po Basin provided a set of detailed pictures that show the topography and the evolution of the infilling at different point during time. As a matter of fact the resulting 3D surfaces describe the basin configuration and the changes and migration of regional depocentres controlled by thrust activity up to the Pleistocene but also allow to highlight the interference of active tectonic and sedimentation in the central portion of the Po basin, an area considered less affected by the main structures (e.g. the Emilia and Ferrara-Romagna arcs). In the analysis of this structure also the foreland tilting has been subtracted from the topography resulting after unfolding and decompaction, for the 6 time intervals; we obtained a residual signal related to the growing anticline, and the uplift rate of the structure during its Pleistocene evolution. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu

  4. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  5. Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J. M.; Davey, F. J.; Clayton, R. W.

    2010-08-01

    Extension during the middle Cenozoic (43-26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deformational event took place close to the cessation of seafloor spreading in the Adare Basin (˜24 Ma). It reactivated a few normal faults and initiated the formation of the Adare Trough. A prominent pulse of rifting in the early Miocene (˜17 Ma) resulted in normal faulting that initiated tilted blocks. The overall trend of structures was NE-SW, linking the event with the activity outside the basin. It resulted in major uplift of the Adare Trough and marks the last extensional phase of the Adare Basin. Recent volcanic vents (Pliocene to present day) tend to align with the early Miocene structures and the on-land Hallett volcanic province. This latest phase of tectonic activity also involves near-vertical normal faulting (still active in places) with negligible horizontal consequences. The early Miocene extensional event found within the Adare Basin does not require a change in the relative motion between East and West Antarctica. However, the lack of subsequent rifting within the Adare Basin coupled with the formation of the Terror Rift and an on-land and subice extension within the WARS require a pronounced change in the kinematics of the rift. These observations indicate that extension increased southward, therefore suggesting that a major change in relative plate motion took place in the middle Miocene. The late Miocene pole of rotation might have been located north of the Adare Basin, with opposite opening sign compared to the Eocene-Oligocene pole.

  6. Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India

    NASA Astrophysics Data System (ADS)

    Ahmad, Shabir; Alam, Akhtar; Ahmad, Bashir; Afzal, Ahsan; Bhat, M. I.; Sultan Bhat, M.; Farooq Ahmad, Hakim; Tectonics; Natural Hazards Research Group

    2018-01-01

    The present study aims to assess the tectonic activity in the Erin basin (NE Kashmir) on the basis of several relevant geomorphic indices and field observations. We use Digital Elevation Model (SRTM) and Survey of India (SoI) topographic maps in GIS environment to compute the geomorphic indices. The indices i.e., convex hypsometric curve, high hypsometric integral value (Hi > 0.5), low basin elongation ratio (Eb = 0.17), low mountain front sinuosity values (Smf = 1.08 average), low valley floor width ratios (Vf < 1), topographic assymetric character (T < 1), uneven basin asymmetry factor (AF < 50), elongated shape (Bs > 4) suggest that the area is tectonically active. Moreover, prominent irregularities (knickpoints/knickzones) along longitudinal profile of the Erin River even in homogenous resistant lithology (Panjal trap) and anomalous stream gradient index (SL) values reflect that the Erin basin is dissected by two faults (EF-1 and EF-2) with NNW-SSE and SSW-NNE trends respectively. The results of this preliminary study further substantiate the recent GPS studies, which argue that the maximum strain is accumulating in the NE part of the Kashmir Himalaya.

  7. Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey

    NASA Astrophysics Data System (ADS)

    Gürer, Ömer Feyzi; Sanğu, Ercan; Özburan, Muzaffer; Gürbüz, Alper; Sarica-Filoreau, Nuran

    2013-11-01

    Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Muğla-Gökova Gulf region. During the Oligocene-Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale-Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N-S compression/transpression, during which sediments in the Eskihisar-Tınaz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene-Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yatağan Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo-Miocene sediments. Plio-Quaternary marked the activation of N-S extension and the development of the E-W-trending Muğla-Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.

  8. Early to Middle Ordovician back-arc basin in the southern Appalachian Blue Ridge: characteristics, extent, and tectonic significance

    USGS Publications Warehouse

    Tull, James; Holm-Denoma, Christopher S.; Barineau, Clinton I.

    2014-01-01

    Fault-dismembered segments of a distinctive, extensive, highly allochthonous, and tectonically significant Ordovician (ca. 480–460 Ma) basin, which contains suites of bimodal metavolcanic rocks, associated base metal deposits, and thick immature deep-water (turbiditic) metasediments, occur in parts of the southern Appalachian Talladega belt, eastern Blue Ridge, and Inner Piedmont of Alabama, Georgia, and North and South Carolina. The basin's predominantly metasedimentary strata display geochemical and isotopic evidence of a mixed provenance, including an adjacent active volcanic arc and a provenance of mica (clay)-rich sedimentary and felsic plutonic rocks consistent with Laurentian (Grenvillian) upper-crustal continental rocks and their passive-margin cover sequences. Geochemical characteristics of the subordinate intercalated bimodal metavolcanic rocks indicate formation in a suprasubduction environment, most likely a back-arc basin, whereas characteristics of metasedimentary units suggest deposition above Neoproterozoic rift and outer-margin lower Paleozoic slope and rise sediments within a marginal basin along Ordovician Laurentia's Iapetus margin. This tectonic setting indicates that southernmost Appalachian Ordovician orogenesis (Taconic orogeny) began as an extensional accretionary orogen along the outer margin of Laurentia, rather than in an exotic (non-Laurentian) arc collisional setting. B-type subduction polarity requires that the associated arc-trench system formed southeast of the palinspastic position of the back-arc basin. This scenario can explain several unique features of the southern Appalachian Taconic orogen, including: the palinspastic geographic ordering of key tectonic elements (i.e., back-arc, arc, etc.), and a lack of (1) an obducted arc sensu stricto on the Laurentian margin, (2) widespread Ordovician regional metamorphism, and (3) Taconic klippen to supply detritus to the Taconic foreland basin.

  9. Gravity study of Libya;Evaluation and Integration with Geological Data

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur; Saheel, Ahmed

    2016-04-01

    Libya is located on the Mediterranean foreland of the African Shield and covers an area of approximately 1.8 million square kilometers. Since Early Paleozoic time, Libya has been a site of deposition of large sheets of continental clastics and several transgressions and regressions by the seas with consequent accumulations of a wide variety of sedimentary rocks. Several tectonic cycles affected the area and shaped the geological setting of the country. However, the regional geology and the structural framework have been highly influenced by the Caledonian, Hercynian, and Alpine tectonic events. As a result, a total of seven sedimentary basins, namely Ghadames, Murzuq, Al Kufra, Al Butnan, Sirt, and the Offshore Pelagian Basin, were developed and were separated by intervening uplifts and platforms ( Gargaf, Tibesti, Nafusah and Cyrenaica platform). Apart from Sirt and the offshore basins, all the above mentioned basins are active since Early Paleozoic time and received several thousand feet of sediments. The capability of providing regional information on the structure of sedimentary basins makes gravity mapping, in conjunction with geological information, potentially powerful tools. In this study we used gravity mapping as our primary tool of investigation however, we also used all available geological information to better understand the regional tectonics. The gravity dataset that were used in the Gravity compilation project of Libya is not homogenous. As a result, some irregularities, apparent spikes or misties, and large shifts were obtained and were taken into consideration. Evaluation of gravity Maps of Libya and their integration with geological data provide a better understanding of the role that gravity mapping plays in the geological exploration of sedimentary basins. Results confirm the known Sirt Basin regional tectonic elements and the possible presence of NW-SE lateral wrench tectonics, crossing Ajdabiya Trough at the center of Sirt Basin. The residual gravity map supports new interpretation of the Sirwal Trough in Northern Cyrenaica. Results also indicate shallow crust along the present day coast line of Al Jabal Al Akhdar, steeply dipping toward the offshore. The depo-center of Ghadames Basin cannot be precisely defined due to the lack of gravity coverage. However, Murzuq Basin is well defined regionally, in spite of gravity gaps which make the overall coverage in the southern basins inadequate for precise interpretation.

  10. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin

    NASA Astrophysics Data System (ADS)

    Fyhn, Michael B. W.; Boldreel, Lars O.; Nielsen, Lars H.

    2010-03-01

    The Malay Basin represents one of the largest rift basins of SE Asia. Based on a comprehensive 2-D seismic database tied to wells covering mainly Vietnamese acreage, the evolution of the Vietnamese part of the basin is outlined and a new tectonic model is proposed for the development of the basin. The Vietnamese part of the Malay Basin comprises a large and deep Paleogene pull-apart basin formed through Middle or Late Eocene to Oligocene left-lateral strike-slip along NNW-trending fault zones. The Tho Chu Fault Zone constitutes a significant Paleogene left-lateral strike-slip zone most likely associated with SE Asian extrusion tectonism. The fault zone outlines a deep rift that widens to the south and connects with the main Malay Basin. In the central northern part of the basin, a series of intra-basinal left-lateral fracture zones are interconnected by NW to WNW-trending extensional faults and worked to distribute sinistral shearing across the width of the basin. Extensive thermal sagging throughout the Neogene has led to the accommodation of a very thick sedimentary succession. Moderate rifting resumed during the Early Miocene following older structural fabric. The intensity of rifting increases towards the west and was probably related to coeval extension in the western part of the Gulf of Thailand. Neogene extension culminated before the Pliocene, although faults in places remains active. Late Neogene basin inversion has been attributed to c. 70 km of right-lateral movement across major c. N-S-trending faults in the central part of the basin. However, the lack of inversion in Vietnamese territory only seems to merit a few kilometers of dextral inversion.

  11. Source and movement of helium in the eastern Morongo groundwater Basin: The influence of regional tectonics on crustal and mantle helium fluxes

    USGS Publications Warehouse

    Kulongoski, J.T.; Hilton, David R.; Izbicki, J.A.

    2005-01-01

    We assess the role of fracturing and seismicity on fluid-driven mass transport of helium using groundwaters from the eastern Morongo Basin (EMB), California, USA. The EMB, located ???200 km east of Los Angeles, lies within a tectonically active region known as the Eastern California Shear Zone that exhibits both strike-slip and extensional deformation. Helium concentrations from 27 groundwaters range from 0.97 to 253.7 ?? 10-7 cm3 STP g-1 H2O, with corresponding 3He/4He ratios falling between 1.0 and 0.26 RA (where RA is the 3He/4He ratio of air). All groundwaters had helium isotope ratios significantly higher than the crustal production value of ???0.02 RA. Dissolved helium concentrations were resolved into components associated with solubility equilibration, air entrainment, in situ production within the aquifer, and extraneous fluxes (both crustal and mantle derived). All samples contained a mantle helium-3 (3Hem) flux in the range of 4.5 to 1351 ?? 10-14 cm3 STP 3He cm-2 yr-1 and a crustal flux (J0) between 0.03 and 300 ?? 10-7 cm3 STP 4He cm-2 yr-1. Groundwaters from the eastern part of the basin contained significantly higher 3Hem and deep crustal helium-4 (4Hedc) concentrations than other areas, suggesting a localized source for these components. 4Hedc and 3Hem are strongly correlated, and are associated with faults in the basin. A shallow thermal anomaly in a >3,000 m deep graben in the eastern basin suggests upflow of fluids through active faults associated with extensional tectonics. Regional tectonics appears to drive large scale crustal fluid transport, whereas episodic hydrofracturing provides an effective mechanism for mantle-crust volatile transport identified by variability in the magnitude of degassing fluxes (3Hem and J0) across the basin. Copyright ?? 2005 Elsevier Ltd.

  12. Philippine microplate tectonics and hydrocarbon exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, J.J. Jr.

    1986-07-01

    Hydrocarbon traps in the Philippine Islands developed during a long, complex history of microplate tectonics. Carbonate and clastic stratigraphic traps formed during Mesozoic and early Cenozoic rifting and drifting. Hydrocarbons, generated in deep rift basins, migrated to the traps during drifting. Later Cenozoic compressional tectonic activity and concomitant faulting enhanced some traps and destroyed others. Seismic data offshore from Palawan Island reveal the early trap histories. Later trap histories can be interpreted from seismic, outcrop, and remote-sensing data. Understanding the microplate tectonic history of the Philippines is the key to interpreting trap histories.

  13. Morphotectonic study of the Brahmaputra basin using geoinformatics

    NASA Astrophysics Data System (ADS)

    Nath Sarma, Jogendra; Acharjee, Shukla; murgante, Beniamino

    2013-04-01

    The Brahmaputra River basin occupies an area of 580,000 km2 lying in Tibet (China), Bhutan, India and Bangladesh. It is bounded on the north by the Nyen-Chen-Tanghla mountains, on the east by the Salween River basin and Patkari range of hills, on the south by Nepal Himalayas and the Naga Hills and on the west by the Ganga sub-basin. Brahmaputra river originates at an elevation of about 5150 m in south-west Tibet and flows for about 2900 km through Tibet (China), India and Bangladesh to join the Ganga.. The Brahmaputra River basin is investigated to examine the influence of active structures by applying an integrated study on geomorphology, morphotectonics, Digital Elevation Model (DEM) using topographic map, satellite data, SRTM, and seismic data. The indices for morphotectonic analysis, viz. basin elongation ratio (Re) indicated tectonically active, transverse topographic symmetry (T = 0.018-0.664) indicated asymmetric nature, asymmetric factor (AF=33) suggested tilt, valley floor width to valley height ratio (Vf = 0.0013-2.945) indicated active incision and mountain-front sinuosity (Smf = 1.11-1.68) values indicated active tectonics in the area. A great or major earthquake in the modern times, in this region may create havoc with huge loss of life and property due to high population density and rapidly developing infrastructure. Keywords: .Morphotectonic, Brahmaputra river, earthquake

  14. The Research of Tectonic Framework and the Fault Activity in Large Detachment Basin System on Northern Margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Pan, L., Sr.; Ren, J.

    2017-12-01

    The South China Sea (SCS) is one of the largest marginal sea on southeast Asia continental margin, developed Paleogene extension-rifting continental margin system which is rare in the world and preserving many deformed characterizes of this kind system. With the investigation of the SCS, guiding by the development of tectonics and geo-physics, especially the development of tectonics and the high quality seismic data based on the development of geo-physics, people gradually accept that the northern margin of the SCS has some detachment basin characterizes. After researching the northern margin of the SCS, we come up with lithosphere profiles across the shelf, slope and deep sea basin in the northeast of the SCS to confirm the tectonic style of ocean-continental transition and the property of the detachment fault. Furthermore, we describe the outline of large detachment basins at northern SCS. Based on the large number of high-quality 2D and 3D deep seismic profile(TWT,10s), drilling and logging data, combined with domestic and international relevant researches, using basin dynamics and tectono-stratigraphy theory, techniques and methods of geology and geophysics, qualitative and quantitative, we describe the formation of the detachment basin and calculate the fault activity rate, stretching factor and settlement. According to the research, we propose that there is a giant and complete detachment basin system in the northern SCS and suggest three conclusions. First of all, the detachment basin system can be divided into three domains: proximal domain covering the Yangjiang Sag, Shenhu uplift and part of Shunde Sag, necking zone covering part of the Shunde Sag and Heshan Sag, distal domain covering most part of Heshan Sag. Second, the difference of the stretching factor is observed along the three domains of the detachment basin system. The factor of the proximal domain is the minimum among them. On the other side, the distal domain is the maximum among them. This phenomenon can be concluded as the factor is gradually increasing from the continent to the ocean. Third, the development of detachment basin is episodic which can be divided into two stages approximately: the rifting and thermal subsidence.

  15. Investigation Of North Anatolian Fault In The Sea Of Marmara: Fault Geometry, The Cumulative Extension, Age Modeling In Çinarcik Basin Using Multi Channel Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Atgın, Orhan; Çifçi, Günay; Soelien, Christopher; Seeber, Leonardo; Steckler, Michael; Shillington, Donna; Kurt, Hülya; Dondurur, Derman; Okay, Seda; Gürçay, Savaş; Sarıtaş, Hakan; Mert Küçük, H.; Barın, Burcu

    2013-04-01

    Marmara Sea is a limelight area for investigations due to its tectonic structure and remarkable seismic activity of North Anatolian Fault Zone (NAFZ). As NAFZ separates into 3 branches in the Marmara Sea, it has a complicated tectonic structure which gives rise to debates among researchers. Çınarcık Basin, which is close to Istanbul and very important for its tectonic activity is studied in this thesis. Two different multichannel seismic reflection data were used in this thesis. First data were acquired in 2008 in the frame of TAMAM (Turkish American Multichannel Project) and second data were in 2010 in the frame of TAMAM-2 (PirMarmara) onboard R/V K.Piri Reis. Also high resolution multibeam data were used which is provided by French Marine Institute IFREMER. In the scope of TAMAM project total 3000 km high resolution multi channel data were collected. 3000 km of multichannel seismic reflection profiles were collected in 2008 and 2010 using 72, 111, and 240 channels of streamer with a 6.25 m group interval. The generator-injector airgun was fired every 12.5 or 18.75 m and the resulting MCS data has 10-230 Hz frequency band. In this study, a detailed fault map of the basin is created and the fault on the southern slope of the basin which is interpreted by many researchers in many publications was investigated. And there is no evidence that such a fault exists on the southern part of the basin. With the multichannel seismic reflection data seismic stratigrafic interpretations of the basin deposits were done. The yearly cumulative north-south extension of the basin was calculated by making some calculations on the most active part of the faulting in the basin. In addition, the tilt angles of parallel tilted sediments were calculated and correlated with global sea level changes to calculate ages of the deposits in the basin. Keywords: NAFZ, multi channel seismic reflection, Çınarcık Basin

  16. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  17. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  18. Cordilleran Intermontane thermotectonic history and implications for neotectonic structure and petroleum systems, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek; Osadetz, Kirk

    2008-04-01

    Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ˜30 mK/m and ˜90 mW/m2 compared to ˜32 mK/m and 70 -80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ˜20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ˜7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north-south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ˜40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ˜10-20 mW/m2 since ˜40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ˜36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.

  19. Vitrinite reflectance data for the Permian Basin, west Texas and southeast New Mexico

    USGS Publications Warehouse

    Pawlewicz, Mark; Barker, Charles E.; McDonald, Sargent

    2005-01-01

    This report presents a compilation of vitrinite reflectance (Ro) data based on analyses of samples of drill cuttings collected from 74 boreholes spread throughout the Permian Basin of west Texas and southeast New Mexico (fig. 1). The resulting data consist of 3 to 24 individual Ro analyses representing progressively deeper stratigraphic units in each of the boreholes (table 1). The samples, Cambrian-Ordovician to Cretaceous in age, were collected at depths ranging from 200 ft to more than 22,100 ft.The R0 data were plotted on maps that depict three different maturation levels for organic matter in the sedimentary rocks of the Permian Basin (figs. 2-4). These maps show depths at the various borehole locations where the R0 values were calculated to be 0.6 (fig. 2), 1.3 (fig. 3), and 2.0 (fig. 4) percent, which correspond, generally, to the onset of oil generation, the onset of oil cracking, and the limit of oil preservation, respectively.The four major geologic structural features within the Permian Basin–Midland Basin, Delaware Basin, Central Basin Platform, and Northwest Shelf (fig. 1) differ in overall depth, thermal history and tectonic style. In the western Delaware Basin, for example, higher maturation is observed at relatively shallow depths, resulting from uplift and eastward basin tilting that began in the Mississippian and ultimately exposed older, thermally mature rocks. Maturity was further enhanced in this basin by the emplacement of early and mid-Tertiary intrusives. Volcanic activity also appears to have been a controlling factor for maturation of organic matter in the southern part of the otherwise tectonically stable Northwest Shelf (Barker and Pawlewicz, 1987). Depths to the three different Ro values are greatest in the eastern Delaware Basin and southern Midland Basin. This appears to be a function of tectonic activity related to the Marathon-Ouachita orogeny, during the Late-Middle Pennsylvanian, whose affects were widespread across the Permian Basin. The Central Basin Platform has been a positive feature since the mid to-late Paleozoic, during which time sedimentation occurred along its flanks. This nonsubsidence, along with the lack of supplemental heating (volcanism), implies lower maturation levels.

  20. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  1. Stratigraphy, Structure and Tectonics of the Eyjafjarðaráll Rift, Abandoned Southern Segment of the Kolbeinsey Ridge, North Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Karson, J. A.; Magnúsdóttir, S.; Detrick, B.; Driscoll, N. W.

    2017-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ) is a complex transform linking the northern rift zone (NVZ) on land with the offshore Kolbeinsey Ridge. The TFZ lacks a clear topographic expression typical of oceanic fracture zones. The transform zone is roughly 150 km long (E-W) by 50-75 km wide (N-S) with three N-S trending pull-apart basins bounded by a complex array of normal and oblique-slip faults. The offshore extension of the NVZ, the Grímsey Oblique Rift, is composed of several active volcanic systems with N-S trending fissure swarms, including the Skjálfandadjúp Basin (SB). The magma-starved southern extension of the KR, the 80 km NS and 15-20 EW Eyjafjarðaráll Rift (ER), is made up of dominantly normal faults merging southwards with a system of right-lateral strike-slip faults with vertical displacement up to 15 m in the Húsavík Flatey Fault Zone (HFFZ). The northern ER is a 500-700 m deep asymmetric rift, framed by normal faults with 20-25 m vertical displacement, To the south, transform movement associated with the HFFZ has created a NW- striking pull-apart basin with frequent earthquake swarms. Details of the tectonic framework of the ER are documented in a compilation of data from aerial photos, satellite images, field mapping, multibeam bathymetry, high-resolution seismic reflection surveys (Chirp) and seismicity. The TFZ rift basins contain post-glacial sediments of variable thickness. Strata in the western ER and SB basins dip steeply E along the normal faults, towards the deepest part of the rift. The eastern side of the ER and SB basins differ considerably from the western side, with near-vertical faults. Correlation of Chirp reflection data and tephrachronology from a sediment core reveal major rifting episodes between 10-12.1 kyrs BP activating both the Eyjafjarðaráll and Skjálfandadjúp rift basins, followed by smaller-scale fault movements throughout Holocene. These vertical fault movements reflect elevated tectonic activity during early postglacial time coinciding with isostatic rebound and enhanced volcanism within Iceland.

  2. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    NASA Astrophysics Data System (ADS)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions (including turbiditic successions). In the Late Cisuralian (stage 4), important differences in sedimentation patterns are registered for the western arc-related basins and eastern intraplate basins. The former were locally dominated by volcaniclastic sediments or marine deposits, and the intraplate basins are characterized by shallow marine conditions punctuated by several episodes of deltaic progradation. Finally, in the Late Permian (stage 5), volcanism and volcaniclastic sedimentation dominated in basins located along the western South American margin. The intraplate basins in turn were characterized by T-R cycles composed of shallow marine, deltaic, and fluvial siliciclastic deposits.

  3. Evolving Concepts and Teaching Approaches In Tectonics and Sedimentation.

    ERIC Educational Resources Information Center

    Graham, Stephan Alan

    1983-01-01

    Discusses five recent advances in sedimentary tectonics, noting how they are incorporated into college curricula. Advances discussed include basin type, tectonic setting, facies analysis (in conjunction with basin type/setting), stratigraphic analysis of reflection seismic data, and quantitative analysis of subsidence histories of sedimentary…

  4. The Lord Howe Rise continental ribbon: a fragment of eastern Gondwana that reveals the drivers of continental rifting and plate tectonics

    NASA Astrophysics Data System (ADS)

    Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.

    2016-12-01

    Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.

  5. Long-lived volcanism within Argyre basin, Mars

    NASA Astrophysics Data System (ADS)

    Williams, Jean-Pierre; Dohm, James M.; Soare, Richard J.; Flahaut, Jessica; Lopes, Rosaly M. C.; Pathare, Asmin V.; Fairén, Alberto G.; Schulze-Makuch, Dirk; Buczkowski, Debra L.

    2017-09-01

    The Argyre basin, one of the largest impact structures on Mars with a diameter >1200 km, formed in the Early Noachian ∼3.93 Ga. The basin has collected volatiles and other material through time, and experienced partial infilling with water evident from stratigraphic sequences, crater statistics, topography, and geomorphology. Although volcanism has not been previously associated with the Argyre basin, our study of the northwest portion of the basin floor has revealed landforms suggesting volcanic and tectonic activity occurred including Argyre Mons, a ∼50 km wide volcanic-structure formed ∼3 Ga. Giant polygons with a similar surface age are also identified on terrain adjacent to the base of Argyre Mons, indicating the structure may have formed in a water-rich environment. In addition to Argyre Mons, cones, vents, mounds, dikes, and cavi or hollows, many of which are associated with extensional tectonics, are observed in the region. Multiple features appear to disrupt icy (and largely uncratered) terrain indicating a relatively young, Late Amazonian, formation age for at least some of the volcanic and tectonic features. The discovery of Argyre Mons, along with additional endogenic modification of the basin floor, suggests that the region has experienced episodes of volcanism over a protracted period of time. This has implications for habitability as the basin floor has been a region of elevated heat flow coupled with liquid water, water ice, and accumulation of sediments of diverse provenance with ranging geochemistry, along with magma-water interactions.

  6. An Intracratonic Record of North American Tectonics

    NASA Astrophysics Data System (ADS)

    Lovell, Thomas Rudolph

    Investigating how continents change throughout geologic time provides insight into the underlying plate tectonic process that shapes our world. Researchers aiming to understand plate tectonics typically investigate records exposed at plate margins, as these areas contain direct structural and stratigraphic information relating to tectonic plate interaction. However, these margins are also susceptible to destruction, as orogenic processes tend to punctuate records of plate tectonics. In contrast, intracratonic basins are long-lived depressions located inside cratons, shielded from the destructive forces associated with the plate tectonic process. The ability of cratonic basins to preserve sedimentological records for extended periods of geologic time makes them candidates for recording long term changes in continents driven by tectonics and eustacy. This research utilizes an intracratonic basin to better understand how the North American continent has changed throughout Phanerozoic time. This research resolves geochronologic, thermochronologic, and sedimentologic changes throughout Phanerozoic time (>500 Ma) within the intracratonic Illinois Basin detrital record. Core and outcrop sampling provide the bulk of material upon which detrital zircon geochronologic, detrital apatite thermochronologic, and thin section petrographic analyses were performed. Geochronologic evidence presented in Chapters 2 and 3 reveal the Precambrian - Cretaceous strata of the intracratonic Illinois Basin yield three detrital zircon U-Pb age assemblages. Lower Paleozoic strata yield ages corresponding to predominantly cratonic sources (Archean - Mesoproterozoic). In contrast, Middle - Upper Paleozoic strata have a dominant Appalachian orogen (Neoproterozoic - Paleozoic) signal. Cretaceous strata yield similar ages to underlying Upper Paleozoic strata. We conclude that changes in the provenance of Illinois Basin strata result from eustatic events and tectonic forcings. This evidence demonstrates that changes in the detrital record of the Illinois Basin coincide with well-documented, major tectonic and eustatic events that altered and shaped North American plate margins. Chapter 4 presents 24 apatite (U-Th)/He (AHe) ages (3 - 423 Ma) taken from subsurface Cambrian and Pennsylvanian sandstones in the Illinois Basin. Time-temperature simulations used to reproduce these ages predict a basin thermal history with a maximum temperature of 170°C in post-Pennsylvanian time followed by Mesozoic cooling at 0.3°C/Myr. These thermal simulations suggest 3 km of additional post-Pennsylvanian burial (assuming 30°C/km geotherm) followed by subsequent Mesozoic - Cenozoic removal. This burial-exhumation history is concurrent with Late Mesozoic tectoniceustatic fluctuations, including Atlantic and Gulf of Mexico opening, rejuvenation of the Appalachian region, and Gulf of Mexico sediment influx, and the Cretaceous high sea level stand. The Geochronologic and thermochronologic evidence presented in the following chapters suggests the Illinois Basin potentially contains a more robust record of North American tectonics than previously thought. These observations provide a new perspective on the utility of intracratonic basins in understanding long term changes to continental bodies.

  7. Magnetic fabrics in tectonically inverted sedimentary basins: a review

    NASA Astrophysics Data System (ADS)

    García-Lasanta, Cristina; Román-Berdiel, Teresa; Casas-Sainz, Antonio; Oliva-Urcia, Belén; Soto, Ruth; Izquierdo-Llavall, Esther

    2017-04-01

    Magnetic fabric studies in sedimentary rocks were firstly focused on strongly deformed tectonic contexts, such as fold-and-thrust belts. As measurement techniques were improved by the introduction of high-resolution equipments (e.g. KLY3-S and more recent Kappabridge susceptometers from AGICO Inc., Czech Republic), more complex tectonic contexts could be subjected to anisotropy of magnetic susceptibility (AMS) analyses in order to describe the relationship between tectonic conditions and the orientation and shape of the resultant magnetic ellipsoids. One of the most common complex tectonic frames involving deformed sedimentary rocks are inverted extensional basins. In the last decade, multiple AMS studies revealed that the magnetic fabric associated with the extensional stage (i.e. a primary magnetic fabric) can be preserved despite the occurrence of subsequent deformational processes. In these cases, magnetic fabrics may provide valuable information about the geometry and kinematics of the extensional episode (i.e. magnetic ellipsoids with their minimum susceptibility axis oriented perpendicular to the deposit plane and magnetic lineation oriented parallel to the extension direction). On the other hand, several of these studies have also determined how the subsequent compressional stage can modify the primary extensional fabric in some cases, particularly in areas subjected to more intense deformation (with development of compression-related cleavage). In this contribution we present a compilation of AMS studies developed in sedimentary basins that underwent different degree of tectonic inversion during their history, in order to describe the relationship of this degree of deformation and the degree of imprint that tectonic conditions have in the previous magnetic ellipsoid (primary extension-related geometry). The inverted basins included in this synthesis are located in the Iberian Peninsula and show: i) weak deformation (W Castilian Branch and Maestrazgo basin, Iberian Range); ii) transport along the hangingwall of thrusts with very slight internal deformation (Organyà basin, Central Pyrenees); iii) record of incipient compressive strain and foliation development (Cabuerniga basin, Basque-Cantabrian Basin; Lusitanian basin, W Portugal); iv) complete inversion associated with a remarkable transport along the hangingwall of thrusts and relatively large internal deformation (Cameros basin, Iberian Range); and v) major folding and flattening linked to foliation (Mauléon basin, Northern Pyrenees; Nogueres unit, Pyrenean Axial Zone).

  8. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less

  9. Denan Depression controlled by northeast-directed Olongbulak Thrust Zone in northeastern Qaidam basin: Implications for growth of northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yu, Xiangjiang; Guo, Zhaojie; Zhang, Qiquan; Cheng, Xiang; Du, Wei; Wang, Zhendong; Bian, Qing

    2017-10-01

    The Denan Depression is a unique depression in the northeastern Qaidam basin, with a maximum Cenozoic sedimentary thickness of 5 km. Detailed field work, interpretation of seismic profiles and analyzation of well data were conducted to define the Cenozoic tectonic evolution of the northeastern Qaidam basin. All geological evidences indicate that the Denan Depression is controlled by the northeast-directed Olongbulak Thrust at its southern boundary. The Denan Depression grew in concert with the development of the northeast-directed Olongbulak Thrust at least since it began to accept the Xiaganchaigou Formation, supporting the early Cenozoic growth of the northern Tibetan Plateau. Surface and subsurface data both point to enhanced tectonic activity since the Quaternary in the northeastern Qaidam basin, leading to a more individual Denan Depression relative to the main Qaidam basin. The northern boundary of the Denan Depression is a passive boundary, and no foreland developed at the northern slope of the Denan Depression.

  10. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    NASA Astrophysics Data System (ADS)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  11. Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)

    NASA Astrophysics Data System (ADS)

    Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni

    2018-06-01

    The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and the pattern of tectonic subsidence curves allowed us to interpret the tectonic signature recorded by the sedimentary sequences of the Potiguar Basin during its evolution. In the onshore rift area, the tectonic subsidence curves presented subsidence rates up to 300 m/My during a long-term rift phase (13 Ma), which confirmed that this portion had an extensional tectonic regime. In the offshore rift, the curves presented high subsidence rates of over 300 m/My in a shorter period (5-10 My), typical of basins formed in a transtensional tectonic regime.

  12. Footwall degradation styles and associated sedimentary facies distribution in SE Crete: Insights into tilt-block extensional basins on continental margins

    NASA Astrophysics Data System (ADS)

    Alves, Tiago M.; Cupkovic, Tomas

    2018-05-01

    Depositional facies resulting from footwall degradation in extensional basins of SE Crete are studied based on detailed geological maps, regional transects, lithological columns and outcrop photos. During an extensional episode affecting Crete in the late Miocene-early Pliocene, depocentres trending N20°E and N70°E were filled with fan deltas, submarine mass-wasting deposits, sandy turbidites and fine-grained hemipelagites sourced from both nearby and distal sediment sources. Deposition of proximal continental and shallow-marine units, and relatively deep (marine) turbidites and mass-transport deposits, occurred within a complex mosaic of tectonically controlled depocentres. The new geological maps and transects in this work reveal that depositional facies in SE Crete were controlled by: a) their relative proximity to active faults and uplifting footwall blocks, b) the relative position (depth and relative height above sea level) of hanging-wall basins, and c) the nature of the basement units eroded from adjacent footwall blocks. Distal sediment sources supplied background siliciclastic sediment ('hemipelagites'), which differ markedly from strata sourced from local footwalls. In parallel, mass-transport of sediment was ubiquitous on tectonically active slopes, and so was the presence of coarse-grained sediment with sizes varying from large blocks > 50 m-wide to heterolithic mass-transport deposits and silty-sandy turbidites. We expect similar tectono-sedimentary settings to have predominated in tectonically active Miocene basins of the eastern Mediterranean, in which hydrocarbon exploration is occurring at present, and on rifted continental margins across the world.

  13. Α Deformation study in Central Greece using 20 years of GPS data

    NASA Astrophysics Data System (ADS)

    Marinou, Aggeliki; Papazissi, Kaliopi; Mitsakaki, Christiana; Paradissis, Demitris; Papanikolaou, Xanthos; Anastasiou, Demitris

    2015-04-01

    Central Greece is a region recognized for its intense tectonic activity with the main characterics being the extension in the North-South direction. This extension is revealed mainly in the form of large parallel grabens. Among these rifts is the Corinth Gulf, which is the most active tectonically, the basin between Parnassos and Kallidromo Mt, the Locris basin and the graben of North Evoikos Gulf, while in the south lays the Thebes basin and the South Evoikos Gulf. Since the late eighties the Laboratory of Higher Geodesy and the Dionysos Satellite Observatory of the National Technical University of Athens, in cooperation with several National and International Universities and Institutions have established, in various Greek areas, of high seismic activity, geodetic networks in order to monitor tectonic displacements. These geodetic networks were observed periodically using Satellite Geodesy techniques and in recent years almost entirely GPS. In this study all the available GPS data, referring to the broader area of Evia, Attiki and Viotia, for the years 1989 to 2008, are analyzed. The displacement field and its temporal changes for the area between the two major geological features, the Corinth Gulf and the Evoikos Gulf, are investigated. Αll the kinematic models that were used do not confirm that the area of study is deforming homogeneously, while an indication of a discontinuity has been detected.

  14. Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Ghasem; Ballato, Paolo; Hassanzadeh, Jamshid; Ghassemi, Mohammad R.; Strecker, Manfred R.

    2017-07-01

    Orogenic plateaus represent a prime example of the interplay between surface processes, climate, and tectonics. This kind of an interplay is thought to be responsible for the formation, preservation, and, ultimately, the destruction of a typical elevated, low-internal relief plateau landscape. Here, we document the timing of intermontane basin filling associated with the formation of a low-relief plateau morphology, followed by basin opening and plateau-flank incision in the northwestern Iranian Plateau of the Arabia-Eurasia collision zone. Our new U-Pb zircon ages from intercalated volcanic ashes in exposed plateau basin-fill sediments from the most external plateau basin (Mianeh Basin) document that the basin was internally drained at least between ∼7 and 4 Ma, and that from ∼5 to 4 Ma it was characterized by an ∼2-km-high and ∼0.5-km-deep lake (Mianeh paleolake), most likely as a result of wetter climatic conditions. At the same time, the eastern margin of the Mianeh Basin (and, therefore, of the Iranian Plateau) experienced limited tectonic activity, as documented by onlapping sediments and smoothed topography. The combination of high lake level and subdued topography at the plateau margin led to lake overspill, which resulted in the cutting of an ∼1-km-deep bedrock gorge (Amardos) by the Qezel-Owzan River (QOR) beginning at ∼4 Ma. This was associated with the incision of the plateau landscape and the establishment of fluvial connectivity with the Caspian Sea. Overall, our study emphasizes the interplay between surface and tectonic processes in forming, maintaining, and destroying orogenic plateau morphology, the transitional nature of orogenic plateau landscapes on timescales of 106 yr, and, finally, the role played by overspilling in integrating endorheic basins.

  15. Cenozoic extension along the reactivated Aurora Fault System in the East Antarctic Craton

    NASA Astrophysics Data System (ADS)

    Cianfarra, Paola; Maggi, Matteo

    2017-04-01

    The East Antarctic Craton is characterized by major intracontinental basins and highlands buried under the 34 Ma East Antarctic Ice Sheet. Their formation remains a major open question. Paleozoic to Cenozoic intraplate extensional tectonic activity has been proposed for their development and in this work the latter hypothesis is supported. Here we focus on the Aurora Trench (AT) within the Aurora Subglacial Basin (latitude 75°-77°S, longitude 117°-118°E) whose origin is still poorly constrained. The AT is an over 150-km-long, 25-km-wide subglacial trough, elongated in the NNW-SSE direction. Geophysical campaigns allowed better definition of the AT physiography showing typical half-graben geometry. The rounded morphology of the western flank of the AT was simulated through tectonic numerical modelling. We consider the subglacial landscape to primarily reflect the locally preserved relict morphology of the tectonic processes affecting the interior of East Antarctica in the Cenozoic. The bedrock morphology was replicated through the activity of the listric Aurora Trench Fault, characterized by a basal detachment at 34 km (considered the base of the crust according to available geophysical interpretations) and vertical displacements ranging between 700 and 300 m. The predicted displacement is interpreted as the (partial) reactivation of a weaker zone along a major Precambrian crustal-scale tectonic boundary. We propose that the Aurora Trench Fault is the southern continuation of the > 1000 km long Aurora Fault independently recognized by previous studies. Together they form the Aurora Fault System, a long lived tectonic boundary with poly-phased tectonic history within the EAC that bounds the eastern side of the Aurora Subglacial Basin. The younger Cenozoic reactivation of the investigated segment of the Aurora Fault System relates to the intraplate propagation of far-field stresses associated to the plate-scale kinematics in the Southern Ocean.

  16. An intramontane pull-apart basin in tectonic escape deformation: Elbistan Basin, Eastern Taurides, Turkey

    NASA Astrophysics Data System (ADS)

    Yusufoğlu, H.

    2013-04-01

    The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.

  17. Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey

    NASA Astrophysics Data System (ADS)

    Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal

    2016-04-01

    Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.

  18. Seismo-stratigraphic evolution of the northern Austral Basin and its possible relation to the Andean tectonics, onshore Argentina.

    NASA Astrophysics Data System (ADS)

    Sachse, Victoria; Anka, Zahie; Pagan, Facundo; Kohler, Guillermina; Cagnolatti, Marcelo; di Primio, Rolando; Rodriguez, Jorge

    2013-04-01

    The Austral Basin is situated in a formerly and recently high active tectonic zone in southern Argentina. The opening of the South Atlantic to the east, the opening of the Drake Passage in the south, and the subduction related to the rise of the Andes to the west, had major influence on the study area. To identify the impact of the tectonic events on basin geometry, sediment thickness and depocenter migration through time, 2D seismic interpretation was performed for an area of approx. 180.000 km² covering the onshore northern Austral Basin. A total of 10 seismic horizons were mapped and tied to the stratigraphy from well reports, representing 9 syn- and post- rift sequences. The main units are: Basement (U1), Jurassic Tobifera Formation (U2), Early Cretaceous (U3), Late Cretaceous (U4), sub-unit Campanian (U4A), Paleocene (U5), Eocene (U6), Oligocene (U7), Miocene (U8), and Plio-Pleistocene (U9). Main tectonic events are identified representing the break-up phase forming graben systems and the evolution from the ancient backarc Rocas Verdes Basin to the foreland Austral Basin. Inversion and changes in the tectonic regime are concomitant with onlapping and thinning of the base of the Upper Cretaceous to Campanian sediments, while the Top of the Upper Cretaceous represents a Maastrichtian unconformity. Units depth maps show a triangular geometry since the Jurassic, tracing the north-eastern basement high and deepening to the south. Since the Campanian the former geometry of basin fill changed and deepening to the south stopped. Beginning of the foreland phase is assigned to this time as well as changes in the stress regime. Paleogene times are marked by a relatively high sedimentation rate coupled with enduring thermal subsidence, on-going rise of the Andes and changes in the convergence rates of the Nazca relative to the South American plate. Onset of sediment supply from the Andes (Incaic phase) resulted in enhanced sedimentation rates during the Paleocene, coupled with important basin subsidence at Andes foothills. An E-W transpressive deformation occurred during late Oligocene and Miocene, initiated by significant changes of plate motion between Nazca and South American plate, driving the Quechua phase of the Andean uplift. Hence, enhanced sedimentation from the rising Andes was renewed since a late Miocene unconformity.

  19. Tectonic evolution of the Anadyr Basin, northeastern Eurasia, and its petroleum resource potential

    NASA Astrophysics Data System (ADS)

    Antipov, M. P.; Bondarenko, G. E.; Bordovskaya, T. O.; Shipilov, E. V.

    2009-09-01

    The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and East Anadyr troughs. (3) The middle Miocene resumption of sedimentation was largely related to strike-slip faulting and rifting. In the Miocene to Quaternary, sedimentation was the most intense in the central and northern parts of the Anadyr Basin, as well as in local strike-slip fault-line depressions of the Central Trough. Geological and geophysical data corroborate thrusting in the southern Anadyr Basin. The amplitude of thrusting over the Main River Trough reaches a few tens of kilometers. The vertical thickness of the tectonically screened Paleogene and Neogene rocks in the southern Main River Trough exceeds 10 km. The quantitative forecast of hydrocarbon emigration from Cretaceous and Paleogene source rocks testifies to the disbalance between hydrocarbons emigrated and accumulated in traps of petroleum fields discovered in the Anadyr Basin. The southern portion of the Anadyr Basin is the most promising for the discovery of new petroleum fields in the Upper Cretaceous, Eocene, and Upper Oligocene-Miocene porous and fracture-porous reservoir rocks in subthrust structural and lithological traps.

  20. Using apatite fission track thermochronology to document the deformation sequence in an exhumed foreland basin: an example from the southern Pyrenees.

    NASA Astrophysics Data System (ADS)

    Meresse, F.; Labaume, P.; Jolivet, M.; Teixell, A.

    2009-04-01

    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France florian.meresse@gm.univ-montp2.fr The study of foreland basins provides important constraints on the evolution of orogenic wedges. In particular, the study of tectonics-sedimentation relationships is essential to date the tectonic activity. However, processes linked to wedge growth are not always completely recorded by the tecto-sedimentary markers, and thermochronological study of the basin-fill can provide further insights. In this work, we have combined apatite fission track analysis (apatite FTA) with structural analysis to precise the timing of the deformation sequence and to characterise the coupling between thrust activity, burial and denudation in the south-Pyrenean foreland basin, a proximal foredeep of the Pyrenees that has been incorporated in the Pyrenean thrust wedge. We have focused the study on a NNE-SSW cross-section of the south-vergent thrust system from the southern flank of the Axial Zone to the South-Pyrenean Frontal Thrust (SPFT), in the west-central part of the belt. This section provides a complete transverse of the South-Pyrenean Zone, here corresponding to the Ainsa and Jaca basins. Apatite FTA provides important new constraints on the south-Pyrenean foreland basin evolution: (i) Data show the southward decrease of the fission track reset level, from a total reset (indicating heating at Tmax>110°C) in the Paleozoic of the Axial Zone, to a partial reset (110°C>Tmax>60°C) in the lower-middle Eocene Hecho Group turbidites in the northern part of the Jaca basin, and to the absence of reset (Tmax<60°C) in the middle Eocene-Oligocene continental sediments of the southern part of the Jaca basin. This indicates a decreasing amount of denudation going southwards, from more than 4.5 km in the north to less than 2.5 km in the south if we assume an average geothermal gradient around 25°/km. The structural setting of the Jaca basin attests that the burial of sediments was mainly due to sedimentary accumulation. (ii) Results in the Hecho Group turbidites bring evidence of exhumation around 18 Ma on the Oturia thrust in the middle of the Jaca basin, an age that is younger than the Middle Eocene to Aquitanian deformation registered by tecto-sedimentary relationships in the southernmost part of the basin (Guarga syncline and SPFT). These tectonic movements may be related to the exhumation, at the same time, of the southern flank of the Axial Zone by out-of-sequence thrusting on the Bielsa basement thrust (Jolivet et al., 2007*). Therefore, low-temperature thermochronology reveals an out-of-sequence episode of deformation in the interior of the south-Pyrenean thrust wedge that had remained unknown due to the lack of related sedimentary record. This late tectonic activity is younger than the generally admitted Aquitanian age for the end of the Pyrenean compression, and would be linked to an ultimate internal thickening stage in the orogenic wedge (Meresse et al., this volume). (*Tectonics, 2007, vol. 26, doi: 10.1029/2006TC002080)

  1. Structural imaging of the East Beni Sueif Basin, north eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, E.; Sehim, A.

    2017-12-01

    The East Beni Sueif Basin is the only tested hydrocarbon-bearing basin on the eastern side of the Nile in Egypt. The basin is located around 150 km to the south of Cairo. This work introduces the first attempt of seismic interpretation and structural patterns of this basin, for which subsurface published works are lacking. Structural imaging of the area is achieved through interpretation of pre-stack time migration (PSTM) seismic cube and data sets of seven wells. The penetrated sedimentary section is represented by Albian-Middle Eocene sediments. The East Beni Sueif Basin is a type of the whole graben-system and is bounded by two NW-SE bounding faults. These faults had continued activity in an extensional regime associated with fault-propagating folds. The basin is traversed by a N75°E-trending fault system at basement level. This fault system separates the basin into two structural provinces. The Northwestern Province is deeper and shows more subsidence with a predominance of NW-trending longitudinal faults and N60·W oblique faults to the basin trend. The Southeastern Province is shallow and crossed by N14·W-trending faults which are slightly oblique to the basin axis. Albian time had witnessed the main extensional tectonic phase and resulted in major subsidence along basin-bounding faults associated with growth thickening of basal deposits. During Senonian time, the basin experienced a mild phase of transtensional tectonics, which formed negative-flower structures entrapping different folds along the N75°E and N60·W faults. The timing and style of these structures are similar to the Syrian-Arc structures in several Western Desert oil fields. The basin emerged during the Paleocene with scoured and eroded top Cretaceous sediments. Subsidence was resumed during the Early Eocene and resulted in 1500 m-thick carbonate sediments. Lastly, a mild extensional activity possibly occurred during the Oligocene-Miocene time. Despite the possible restricted potentiality of the source rock, the main hydrocarbon accumulation risk is attributed to retention in traps of long-span tectonic history. Reaching of main faults to surface through brittle carbonate cap rocks and limited thickness of the shale in the reservoir section risk hydrocarbon sealing. Buried structures of passive setting during the Tertiary show a minor trapping risk.

  2. The Portland Basin: A (big) river runs through it

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  3. Sedimentary and tectonic evolution of Plio Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy)

    NASA Astrophysics Data System (ADS)

    Cavinato, Gian Paolo; Carusi, Claudio; Dall'Asta, Massimo; Miccadei, Enrico; Piacentini, Tommaso

    2002-04-01

    The Fucino Basin was the greatest lake of the central Italy, which was completely drained at the end of 19th century. The basin is an intramontane half-graben filled by Plio-Quaternary alluvial and lacustrine deposits located in the central part of the Apennines chain, which was formed in Upper Pliocene and in Quaternary time by the extensional tectonic activity. The analysis of the geological surface data allows the definition of several stratigraphic units grouped in Lower Units and Upper Units. The Lower Units (Upper Pliocene) are exposed along the northern and north-eastern basin margins. They consist of open to marginal lacustrine deposits, breccia deposits and fluvial deposits. The Upper Units (Lower Pliocene-Holocene) consist of interbedded marginal lacustrine deposits and fluvial deposits; thick coarse-grained fan-delta deposits are interfingered at the foot of the main relief with fluvial-lacustrine deposits. Most of the thickness of the lacustrine sequences (more than 1000-m thick) is buried below the central part of the Fucino Plain. The basin is bounded by E-W, WSW-ENE and NW-SE fault systems: Velino-Magnola Fault (E-W) and Tremonti-Celano-Aielli Fault (WSW-ENE) and S. Potito-Celano Fault (NW-SE) in the north; the Trasacco Fault, the Pescina-Celano Fault and the Serrone Fault (NW-SE) in the south-east. The geometry and kinematic indicators of these faults indicate normal or oblique movements. The study of industrial seismic profiles across the Fucino Basin gives a clear picture of the subsurface basin geometry; the basin shows triangular-shaped basin-fill geometry, with the maximum deposits thickness toward the main east boundary fault zones that dip south-westward (Serrone Fault, Trasacco Fault, Pescina-Celano Fault). On the basis of geological surface data, borehole stratigraphy and seismic data analysis, it is possible to recognize and to correlate sedimentary and seismic facies. The bottom of the basin is well recognized in the seismic lines available from the good and continuous signals of the top of Meso-Cenozoic carbonate rocks. The shape of sedimentary bodies indicates that the filling of the basin was mainly controlled by normal slip along the NW-SE boundary faults. In fact, the continental deposits are frequently in on-lap contact over the carbonate substratum; several disconformable contacts occurred during the sedimentary evolution of the basin. The main faults (with antithetic and synthetic fault planes) displace the whole sedimentary sequence up to the surface indicating a recent faults' activity (1915 Avezzano earthquake, Ms=7.0). The stratigraphic and tectonic setting of the Fucino Basin and neighboring areas indicates that the extensional tectonic events have had an important role in driving the structural-sedimentary evolution of the Plio-Quaternary deposits. The geometry of the depositional bodies, of the fault planes and their relationships indicate that the Fucino Basin was formed as a half-graben type structure during Plio-Quaternary extensional events. Some internal complexities are probably related to the fold-and-thrust structures of the Apenninic orogeny formed in Messinian time, in this area, and to a different activity timing of the E-W and WSW-ENE fault systems and the NW-SE fault systems. We believe, based on the similarity of the surface characteristics, that the structural setting of the Fucino Basin can be extrapolated to the other great intramontane basins in Central Italy (e.g. Rieti, L'Aquila, Sulmona, Sora, Isernia basins).

  4. Kinematics of the Snake River Plain and Centennial Shear Zone, Idaho, from GPS and earthquatte data

    NASA Astrophysics Data System (ADS)

    Payne, Suzette J.

    New horizontal Global Positioning System (GPS) velocities at 405 sites using GPS phase data collected from 1994 to 2010 along with earthquakes, faults, and volcanic features reveal how contemporary strain is accommodated in the Northern Basin and Range Province. The 1994-2010 velocity field has observable gradients arising from both rotation and strain. Kinematic interpretations are guided by using a block-model approach and inverting velocities, earthquake slip vector azimuths, and dike-opening rates to simultaneously solve for angular velocities of the blocks and uniform horizontal strain rate tensors within selected blocks. The Northern Basin and Range block model has thirteen blocks representing tectonic provinces based on knowledge of geology, seismicity, volcanism, active tectonic faults, and regions with differences in observed velocities. Ten variations of the thirteen blocks are tested to assess the statistical significance of boundaries for tectonic provinces, motions along those boundaries, and estimates of long-term deformation within the provinces. From these tests, a preferred model with seven tectonic provinces is determined by applying a maximum confidence level of ≥99% probability to F-distribution tests between two models to indicate one model with added boundaries has a better fit to the data over a second model. The preferred model is varied to test hypotheses of post-seismic viscoelastic relaxation, significance of dikes in accommodating extension, and bookshelf faulting in accommodating shear. Six variations of the preferred model indicate time-varying components due to viscoelastic relaxation from the 1959 Hebgen Lake, Montana and 1983 Borah Peak, Idaho earthquakes have either ceased as of 2002 or are too small to be evident in the observed velocities. Inversions with dike-opening models indicate that the previously hypothesized rapid extension by dike intrusion in volcanic rift zones to keep pace with normal faulting is not currently occurring in the Snake River Plain. Alternatively, the preferred model reveals a low deforming region (-0.1 +/- 0.4 x 10-9 yr -1, which is not discernable from zero) covering 125 km x 650 km within the Snake River Plain and Owyhee-Oregon Plateau that is separated from the actively extending adjacent Basin and Range regions by narrow belts of localized shear. Velocities reveal rapid extension occurs to the north of the Snake River Plain in the Centennial Tectonic Belt (5.6 +/- 0.7 x 10 -9 yr-1) and to the south in the Intermountain Seismic Belt and Great Basin (3.5 +/- 0.2 x 10-9 yr-1). The "Centennial Shear Zone" is a NE-trending zone of up to 1.5 mm yr -1 of right-lateral shear and is the result of rapid extension in the Centennial Tectonic Belt adjacent to the low deforming region of the Snake River Plain. Variations of the preferred model that test the hypothesis of bookshelf faulting demonstrate shear does not drive Basin and Range extension in the Centennial Tectonic Belt. Instead, the velocity gradient across the Centennial Shear Zone indicates that shear is distributed and deformation is due to strike-slip faulting, distributed simple shear, regional-scale rotation, or any combination of these. Near the fastest rates of right-lateral slip, focal mechanisms are observed with strike-slip components of motion consistent with right-lateral shear. Here also, the segment boundary between two E-trending Basin and Range faults, which are oriented subparallel to the NE-trending shear zone, provides supporting Holocene to mid-Pleistocene geologic evidence for accommodation of right-lateral shear in the Centennial Shear Zone. The southernmost ends of NW-trending Basin and Range faults in the Centennial Tectonic Belt at their juncture with the eastern Snake River Plain could accommodate right-lateral shear through components of left-lateral oblique slip. Right-lateral shear may be accommodated by components of strike-slip motion on multiple NE-trending faults since geologic evidence does not support slip along one continuous NE-trending fault along the boundary between the eastern Snake River Plain and Centennial Tectonic Belt. Regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is driven by extension to the south in the Great Basin and not by Yellowstone hotspot volcanism or from localized extension in the Centennial Tectonic Belt. The velocity field may reveal long-term motions of the Northern Basin and Range Province. GPS-derived clockwise rotation rates are consistent with paleomagnetic rotation rates in 15--12 Ma basalts in eastern Oregon and in Eocene volcanic rocks (˜48 Ma) within the Centennial Tectonic Belt.

  5. Tectonic and Magmatic Controls on Extension and Crustalaccretion in Backarc Basins, Insights from the Lau Basin and Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Sleeper, Jonathan D.

    This dissertation examines magmatic and tectonic processes in backarc basins, and how they are modulated by plate- and mantle-driven mechanisms. Backarc basins initiate by tectonic rifting near the arc volcanic front and transition to magmatic seafloor spreading. As at mid-ocean ridges (MORs), spreading can be focused in narrow plate boundary zones, but we also describe a diffuse spreading mode particular to backarc basins. At typical MORs away from hot spots and other melting anomalies, spreading rate is the primary control on the rate of mantle upwelling and decompression melting. At backarc spreading centers, water derived from the subducting slab creates an additional mantle-driven source of melt and buoyant upwelling. Furthermore, because basins open primarily in response to trench rollback, which is inherently a non-rigid process, backarc extensional systems often have to respond to a constantly evolving stress regime, generating complex tectonics and unusual plate boundaries not typically found at MORs. The interplay between these plate- and mantle-driven processes gives rise to the variety of tectonic and volcanic morphologies peculiar to backarc basins. Chapter 2 is focused on the Fonualei Rift and Spreading Center in the Lau Basin. The southern portion of the axis is spreading at ultraslow (<20 mm/yr) opening rates in close proximity to the arc volcanic front and axial morphology abruptly changes from a volcanic ridge to spaced volcanic cones resembling arc volcanoes. Spreading rate and arc proximity appear to control transitions between two-dimensional and three-dimensional mantle upwelling and volcanism. In the second study (Chapter 3), I develop a new model for the rollback-driven kinematic and tectonic evolution of the Lau Basin, where microplate tectonics creates rapidly changing plate boundary configurations. The third study (Chapter 4) focuses on the southern Mariana Trough and the transitions between arc rifting, seafloor spreading, and a new mode of "diffuse spreading," where new crust is accreted in broad zones rather than along a narrow spreading axis, apparently controlled by a balance between slab water addition and its extraction due to melting and crustal accretion.

  6. Tectonic setting of the Taubaté Basin (Southeastern Brazil): Insights from regional seismic profiles and outcrop data

    NASA Astrophysics Data System (ADS)

    Cogné, Nathan; Cobbold, Peter R.; Riccomini, Claudio; Gallagher, Kerry

    2013-03-01

    In southeastern Brazil, a series of onshore Tertiary basins provides good evidence for post-rift tectonic activity. So as better to constrain their tectonic setting, we have revisited outcrops in the Taubaté and Resende basins and have reinterpreted 11 seismic profiles of the Taubaté Basin. Where Eocene to Oligocene strata crop out, syn-sedimentary faults are common and their senses of slip are mainly normal. In contrast, for two outcrops in particular, where syn-sedimentary faults have put Precambrian crystalline basement against Eocene strata, senses of slip are strongly left-lateral, as well as normal. Thus we distinguish between thin-skinned and thick-skinned faulting. Furthermore, at four outcrops, Precambrian basement has overthrust Tertiary or Quaternary strata. On the seismic profiles, basal strata onlap basement highs. Structures and stratigraphic relationships are not typical of a rift basin. Although normal faults are common, they tend to be steeply dipping, their stratigraphic offsets are small (tens of metres) and the faults do not bound large stratigraphic wedges or tilted blocks. At the edges of the basin, Eocene or Oligocene strata dip basinward, have been subject to exhumation, and in places form gentle anticlines, so that we infer post-Oligocene inversion. We conclude that, after an earlier phase of deformation, probably during the Late Cretaceous, the Taubaté Basin formed under left-lateral transtension during the Palaeogene, but was subject to right-lateral transpression during the Neogene. Thus the principal directions of stress varied in time. Because they did so consistently with those of the adjacent regions, as well as those of the Incaic and Quechua phases of Andean orogeny, we argue that the Tertiary basins of southeast Brazil have resulted from reactivation of Precambrian shear zones under plate-wide stress.

  7. Erosion distribution in Central Nepal Himalaya from late Pleistocene to present : evidence for recent anthropic forcing of erosion of the Lesser Himalaya

    NASA Astrophysics Data System (ADS)

    France-Lanord, C.; Lave, J.; Morin, G. P.; Gajurel, A.; Galy, A.; Bosia, C.; Sinha, R.

    2016-12-01

    Evolution of the erosion of continental surfaces through geologic times provides key evidences to assess the interplay of controls exerted by tectonic, topography, climate, and lately, human activities. Mountains belts, and particularly the Himalaya, present intense tectonic activity, contrasted seasonality marked by the monsoon, steep topography and recent socio-economic development, which makes it a laboratory to assess main issues on these complex interactions.Taking advantage of the large Sr and Nd isotopic contrasts of the main geological and physiographic Himalayan units, this study explores the time variations of the spatial distribution of erosion in Central Nepal Himalaya. Compiling Sr and Nd isotopic compositions of rivers sediments from many tributaries within the Narayani Basin in central Nepal, we first define the mean Sr and Nd isotopic compositions of the three main Himalayan geological units in this region. Then, we present isotopic chronicles of river sediments sampled at the outlet of the Narayani Basin during 21 years, and 50-kyr-long sedimentary archives drilled in the foreland basin.Using Sr and Nd isotopic compositions to trace relative geological provenances and contributions, we show that erosion distribution in the Narayani Basin remained stable for 50 kyr until the end of the 20th century. Sediment fluxes were primarily derived from erosion of the High Himalayan regions (Tethys H. and HHC) ( 80 %), i.e. from the areas presenting high reliefs and steep slopes. Erosion distribution stability during the Pleistocene-Holocene climatic transition provides new evidence for a primary control of erosion by tectonic forcing rather than climatic forcing in the Himalayas. Since 2000s, a shift of the sediment isotopic compositions reveals an intensification of erosion in the Lesser Himalaya (from 15-25% to 30-45% of the sediment budget) despite unchanged tectonic or climatic conditions. We propose that this strong increase by 2-3 fold of erosion of the Lesser Himalayan region is a consequence of recent human activities, and likely roads constructions in the Middle Hills of Nepal, highlighting the role of anthropic activities as erosion agents on sensitive environments such as can be mountain ranges.

  8. The Neogene tectonic evolution and climatic change of the Tianshui Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Peng, T.; Li, J.; Song, C.; Zhao, Z.; Zhang, J.; Wang, X.; Hui, Z.

    2013-12-01

    The Tianshui Basin, located at the conjunction of NE Tibetan Plateau and Chinese Loess Plateau, has received intensive attention recently. Fine-grained Miocene sediment was identified as loess in its north part and this pushes the onset of Asian aridification into 22 Ma. However, our sedimentological, biomarker, pollen, diatom and mammalian fossils evidence propose that these sediments were suggested to be mudflat/distal fan and floodplain deposit instead of eolian deposit. So detailed tectonic background and climate reconstruction may illustrate the controversy and shed light on the tectonic, climate and ecology interactions. Here we report our integrated studies on the tectonic evolution, climate change and paleoecology reconstruction in the Tianshui basin. Based on the magnetostratigraphy and fossil mammal ages, sedimentological and detrital fission-track thermochronologic (DFT) analysis reveals four episodic tectonic uplift events occurred at ~20 Ma, ~14 Ma, ~9.2-7.4 Ma and ~3.6 Ma along the basin and its adjacent mountains. The timing of these activities at Western Qinling have been documented at many segments of the Tibetan Plateau, so most likely they were the remote response to the ongoing India-Asia collision. Pollen, mammalian fossils and biomarker data permit us to illustrate the paleoenvironment in the Tianshui Basin. During the period of ~17-10 Ma, the climate was generally warm-humid revealed by the broad-leaved forest and low Average Chain Length (ACL) values, when the Paltybelodon and Gomphotherium were roaming near an extensive aquatic setting. In addition, the observed Middle Miocene Climatic Optimum and Middle Miocene Climatic Transition events may be a terrestrial response to global climate changes. During the interval of ~10-6 Ma, the climate was relatively arid characterized by the rapid development of steppe and appearance of the Hipparion fauna, consistent with the biomarker proxy. Although the NE Tibetan Plateau experienced a phase of active uplift around ~8 Ma, we mainly ascribe this arid interval to global change known as the C4 grass expansion, because the subsequent early Pliocene turned back to humid-warm climate again. Since ~4 Ma, it became obviously drier than the previous two arid intervals via the biomarker perspective. This dramatic dry trend may be related to the Tibetan Plateau uplift and/or global cooling, highlighting the importance and complexity of tectonic-climate interaction. Acknowledgements: This work was co-supported by the "Strategic Priority Research Program" of the CAS (XDB03020402), the (973) National Basic Research Program of China (2013CB956400) and the National Natural Science Foundation of China (41021091, 41101012).

  9. A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin

    USGS Publications Warehouse

    Poag, C.W.; Sevon, W.D.

    1989-01-01

    The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.

  10. Large Sanjiang basin groups outside of the Songliao Basin Meso-Senozoic Tectonic-sediment evolution and hydrocarbon accumulation

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Wu, X.

    2015-12-01

    The basis geological problem is still the bottleneck of the exploration work of the lager Sanjiang basin groups. In general terms, the problems are including the prototype basins and basin forming mechanism of two aspects. In this paper, using the field geological survey and investigation, logging data analysis, seismic data interpretation technical means large Sanjiang basin groups and basin forming mechanism of the prototype are discussed. Main draw the following conclusions: 1. Sanjiang region group-level formation can be completely contrasted. 2. Tension faults, compressive faults, shear structure composition and structure combination of four kinds of compound fracture are mainly developed In the study area. The direction of their distribution can be divided into SN, EW, NNE, NEE, NNW, NWW to other groups of fracture. 3. Large Sanjiang basin has the SN and the EW two main directions of tectonic evolution. Cenozoic basins in Sanjiang region in group formation located the two tectonic domains of ancient Paleo-Asian Ocean and the Pacific Interchange. 4. Large Sanjiang basin has experienced in the late Mesozoic tectonic evolution of two-stage and nine times. The first stage, developmental stage basement, they are ① Since the Mesozoic era and before the Jurassic; ② Early Jurassic period; The second stage, cap stage of development, they are ③ Late Jurassic depression developmental stages of compression; ④ Early Cretaceous rifting stage; ⑤ depression in mid-Early Cretaceous period; ⑥ tensile Early Cretaceous rifting stage; ⑦ inversion of Late Cretaceous tectonic compression stage; ⑧ Paleogene - Neogene; ⑨ After recently Ji Baoquan Sedimentary Ridge. 5. Large Sanjiang basin group is actually a residual basin structure, and Can be divided into left - superimposed (Founder, Tangyuan depression, Hulin Basin), residual - inherited type (Sanjiang basin), residual - reformed (Jixi, Boli, Hegang basin). there are two developed depression and the mechanism of rifting. 6. Sanjiang Basin Suibin Depression, Tangyuan depression, Jixi Cretaceous Tangyuan and Fangzheng rift is the key for further exploration. Yishu graben is a large core of Sanjiang region to find oil, and Paleogene basin is the focus of the external layer system exploration.

  11. Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records

    NASA Astrophysics Data System (ADS)

    Kale, Vishwas S.; Sengupta, Somasis; Achyuthan, Hema; Jaiswal, Manoj K.

    2014-12-01

    The Indian Peninsula is generally considered as a tectonically stable region, where ancient rocks, rivers and land surfaces predominate. In some parts of this ancient landscape, however, the role of tectonic landsculpting is strongly indicated by the presence of youthful topography and historical seismic activity. The present study is primarily focused on the middle domain of the Kaveri River, which displays such youthful features. The tectonic controls on this cratonic river were evaluated on the basis of the investigations of the longitudinal profiles, morphotectonic indices of active tectonics, and fluvial records. The presence of steep channel gradients, prominent knickpoints, hanging valleys, narrow bedrock gorges, and channel-in-channel morphology imply rapid erosion rates in the middle domain of the basin in response to active deformation, particularly in the reach defined by two major active faults - the Kollegal-Sivasamudram Fault and the Mekedatu Fault. Further, considering the remarkably low modern and long-term denudation rates and OSL ages of the alluvial deposits (30-40 ka), the tectonically-driven rejuvenation does not appear to be geologically recent as postulated by earlier workers.

  12. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific

    2015-04-01

    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and extensional fractures. Faults observed at sites 352-U1440 and 352-U1441 show mainly strike-slip. The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  13. Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, W.S.; Spinosa, C.; Gallegos, D.M.

    1991-02-01

    Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sedimentmore » by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.« less

  14. Neotectonic Activity from Karewa Sediments, Kashmir Himalaya, India

    NASA Astrophysics Data System (ADS)

    Agarwal, K. K.; Shah, R. A.; Achyuthan, H.; Singh, D. S.; Srivastava, S.; Khan, I.

    2018-01-01

    Intermontane basin sedimentation occurred during Pliocene-Pleistocene in the Karewa Basin which formed after the continent-continent collision resulting in the formation of Himalayan orogenic belt around Eocene. These are elongated, narrow, thrust bounded basins which have formed during the late stages of orogeny. Situated at a height of 1700-1800 m above sea level, the Karewa basin received sediments because of ponding of a pre-existing river system and the tectonic movements along the Great Himalayan Ranges in the north and the Pir-Panjal ranges in the south along active faults. About 1300 m thick sediments of largely fluvio-lacustrine, glacio-fluvio-lacustrine and eolian origin are exposed having evidences of neotectonically formed structural features such as folds and faults. Folds are more prominent in the Lower Karewa formation (Hirpur Formation) while faults (mostly normal faults) are abundant in the Upper Karewas (Nagum Formation). Drainage in the area varies from dendritic to anastomosing to parallel. Anastomosing drainage suggests sudden decrease in gradient while presence of linear features such as faults and ridges is evident by parallel drainage. Study of morphometric parameters such as stream length (Lsm) and stream length ratios (RL), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc), and elongation ratio (Re) also indicate intense tectonic activity in the recent past.

  15. Accretionary prism-forearc interactions as reflected in the sedimentary fill of southern Thrace Basin (Lemnos Island, NE Greece)

    NASA Astrophysics Data System (ADS)

    Maravelis, A. G.; Pantopoulos, G.; Tserolas, P.; Zelilidis, A.

    2015-06-01

    Architecture of the well-exposed ancient forearc basin successions of northeast Aegean Sea, Greece, provides useful insights into the interplay between arc magmatism, accretionary prism exhumation, and sedimentary deposition in forearc basins. The upper Eocene-lower Oligocene basin fill of the southern Thrace forearc basin reflects the active influence of the uplifted accretionary prism. Deep-marine sediments predominate the basin fill that eventually shoals upwards into shallow-marine sediments. This trend is related to tectonically driven uplift and compression. Field, stratigraphic, sedimentological, petrographic, geochemical, and provenance data on the lower Oligocene shallow-marine deposits revealed the accretionary prism (i.e. Pindic Cordillera or Biga Peninsula) as the major contributor of sediments into the forearc region. Field investigations in these shallow-marine deposits revealed the occurrence of conglomerates with: (1) mafic and ultramafic igneous rock clasts, (2) low-grade metamorphic rock fragments, and (3) sedimentary rocks. The absence of felsic volcanic fragments rules out influence of a felsic source rock. Geochemical analysis indicates that the studied rocks were accumulated in an active tectonic setting with a sediment source of mainly mafic composition, and palaeodispersal analysis revealed a NE-NNE palaeocurrent trend, towards the Rhodopian magmatic arc. Thus, these combined provenance results make the accretionary prism the most suitable candidate for the detritus forming these shallow-marine deposits.

  16. Cordilleran hingeline: Late Precambrian rifted margin of the North American craton and its impact on the depositional and structural history, Utah and Nevada

    NASA Astrophysics Data System (ADS)

    Picha, Frank; Gibson, Richard I.

    1985-07-01

    The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074

  17. Giant rhinoceros Paraceratherium and other vertebrates from Oligocene and middle Miocene deposits of the Kağızman-Tuzluca Basin, Eastern Turkey.

    PubMed

    Sen, Sevket; Antoine, Pierre-Olivier; Varol, Baki; Ayyildiz, Turhan; Sözeri, Koray

    2011-05-01

    A recent fieldwork in the Kağızman-Tuzluca Basin in northeastern Turkey led us to the discovery of three vertebrate localities which yielded some limb bones of the giant rhino Paraceratherium, a crocodile tooth, and some small mammals, respectively. These discoveries allowed, for the first time to date some parts of the sedimentary units of this basin. This study also shows that the dispersal area of Paraceratherium is wider than it was known before. Eastern Turkey has several Cenozoic sedimentary basins formed during the collision of the Arabian and Eurasian plates. They are poorly documented for vertebrate paleontology. Consequently, the timing of tectonic activities, which led to the formation of the East Anatolian accretionary complex, is not constrained enough with a solid chronological framework. This study provides the first biostratigraphic evidences for the infill under the control of the compressive tectonic regime, which built the East Anatolian Plateau.

  18. Tectonic map of Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Oyhantcabal, P.

    2008-05-01

    A compilation of available data about the geology of Uruguay allowed the definition of its main events and tectonic units. Based on a critical revision of different tectonic hypothesis found in the literature, a parsimonious tectonic evolution schema is presented, in the context of Western Gondwana. The tectonic map illustrates the general features of the structure and main tectonic units of Uruguay. The Precambrian shield, cropping out in the South and Southeast of the country is an Archean to Paleoprtoerozoic basement divided in three main tectonostratigraphic terrranes: the Piedra Alta (PAT) a juvenile Paleoproterozoic unit not reworked by later events; the Nico Pérez (NPT) a complex unit composed of several blocks where Archean to Mesoproterozoic events are recognised. The NPT was strongly reworked by Neoproterozoic (Brasiliano) orogeny. The Dom Feliciano Belt cropping out in eastern Uruguay is related to Western Gondwana amalgamation. Different tectonic settings are considered: pre-Brasiliano Basement inliers; supracrustal successions representing the evolution from a back- arc to a foreland basin; a magmatic arc; and post-collisional basins and related magmatism. In lower Paleozoic the Paraná foreland basin was generated as a consequence of orogenic events. The sedimentary successions in Uruguay include continental to shallow marine deposits where the influence of carboniferous to Permian glacial episode is recorded. The Mesozoic record is characterised by the influence of extension related to the break-up of Gondwana and the formation of the Atlantic Ocean: huge amounts of tholeiitic basalt were erupted (near 30.000 km3 in Uruguay), followed by cretaceous sediments in the northern area of the country while in the south-east, bimodal magmatism and sediments of the same age are associated to rift basins. The Cenozoic is characterised by tectonic quiescence. Subsidence is only observed in the western region (Chaco-Paraná Basin) and in the east (Laguna Merín Basin).

  19. Late movement of basin-edge lobate scarps on Mercury

    NASA Astrophysics Data System (ADS)

    Fegan, E. R.; Rothery, D. A.; Marchi, S.; Massironi, M.; Conway, S. J.; Anand, M.

    2017-05-01

    Basin-edge lobate scarps are a sub-type of tectonic shortening structure on the surface of Mercury that have formed at the edge of volcanic units that fill or partly fill impact basins. We have performed a global survey of these features and find that they are widespread in basins across the planet. We obtained model ages from crater size-frequency distribution analysis for a subset of our surveyed basins, for both the smooth plains infill and for the last resolvable tectonic activity on the associated basin-edge scarps. Our results indicate that some of these lobate scarps were still accumulating strain in the late Mansurian (approximately 1 Ga). From a photogeological assessment, we find that the orientations of these basin-edge lobate scarps are similar to those reported for the global population of lobate scarps in earlier studies, appearing to align ∼north-south at low latitudes and ∼east-west at higher latitudes. However, reassessing these landforms' orientation with artificially illuminated topographic data does not allow us to rule out the effect of illumination bias. We propose that these landforms, the result of crustal shortening in response to global contraction, formed along the interface between the basin floor and the smooth plains unit, which acted as a mechanical discontinuity along which shortening strains were concentrated.

  20. Cenozoic plate reconstruction of the South China Sea region

    NASA Astrophysics Data System (ADS)

    Lee, Tung-Yi; Lawver, Lawrence A.

    1994-07-01

    Reconstructions of the South China Sea region at 60 Ma, 40 Ma, 30 Ma, 20 Ma, 10 Ma and 5 Ma are presented. We have attempted to place the South China Sea Basin in a regional tectonic framework. The tectonic evolution of the major blocks surrounding the South China Sea were analyzed, as well as the relative motions of the Indian and Australian plates. We have tried to correct the tectonic models available in this region. A 3-D graphics terminal was used to derive rotation poles for the different tectonic blocks and our model was then tested to determine its self-consistency. When the model conflicted with previous interpretations the input data were evaluated for alternative explanations. At least two, and possibly three, stages of extension can be recognized in this region. The earliest one, active in the Late Cretaceous to Eocene, involved NW-SE extension. The second one, active from the Late Eocene to Early Miocene involved north-south extension. The third stage of extension, which probably trended NW-SE, can be dated as post-Oligocene. The first extensional event produced the NE-SW trending proto-South China Sea and a series of sedimentary basins along the South China margin. Following the southeastward extrusion of Indochina, the proto-South China Sea was mostly consumed at the Palawan Trough. Renewed north-south extension in the South China continental margin started the present-day South China Sea spreading in the Oligocene. The southeastward extrusion of Indochina, blocked by Sundaland, resulted in the NW-SE trending opening of the South China Sea Basin in the Early Miocene. Collision of the North Palawan microcontinental block with the West Philippines block stopped the opening of the South China Sea at the end of Early Miocene. Spreading activity switched to the Sulu Sea Basin in the Middle Miocene but collision between the Sulu Ridge and the West Philippines at Mindanao halted the opening of the Sulu Sea at the end of the Middle Miocene. In the Late Miocene, Greater India continued its northward path and seems to have ripped open the Andaman Sea. In the Pliocene, subduction along the northern Manila Trench placed the North Luzon Arc on a collision path with the East Asia continental margin at Taiwan. Our reconstructions, along with detailed geological and geophysical information, may be used as a predictive tool for basin evolution models and block interactions in this region. The development of the South China Sea Basin, the Gulf of Thailand, the Malay Basin and the central Thailand basins are the result of collision-induced extensional forces. The Sulu, Celebes and Sumatra basins were formed as a consequence of prolonged subduction. The opening of the Pearl River Mouth, West Natuna, South China Sea, Sulu, and possibly Celebes, basins were terminated by various plate collisions. During the course of plate reorganizations major boundary faults have changed their slip senses during different stages of evolution.

  1. Cenozoic exhumation and tectonic evolution of the Qimen Tagh Range, northern Tibetan Plateau: Insights from the heavy mineral compositions, detrital zircon U-Pb ages and seismic interpretations

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wu, C.; Wang, J.; Zhou, T.; Zhang, C.; Li, J.

    2017-12-01

    The Qaidam Basin is the largest intermountain basin within the Tibetan Plateau. The Cenozoic sedimentary flling characteristics of the basin was significantly influenced by the surrounding tectonic belt, such as the Altyn Tagh Range to the north-west and Qimen Tagh Range to the south. The tectonic evolution of the Qimen Tagh Range and the structural relationship between the Qaidam Basin and Qimen Tagh Range remain controversial. To address these issues, we analyzed thousands of heavy mineral data, 720 detrital zircon ages and seismic data of the Qaidam Basin. Based on the regional geological framework and our kinematic analyses, the Cenozoic tectonic evolution of the Qimen Tagh Range can be divided into two stages. From the Early Eocene to the Middle Miocene, the Devonian (400-360 Ma) and Permian to Triassic (300-200 Ma) zircons which were sourced from the Qimen Tagh Range and the heavy mineral assemblage of zircon-leucoxene-garnet-sphene on the north flank of the Qimen Tagh Range indicated that the Qimen Tagh Range has been exhumed before the Eocene and acted as the primary provenance of the Qaidam Basin. The Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults) in the southwest of the Qaidam Basin, which can be seen as a natural study window of the Qimen Tagh Range, was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the seismic sections. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the primary mineral assemblages along the northern flank of the Qimen Tagh Range changed from the zircon-leucoxene-garnet-sphene assemblage to the epidote-hornblende-garnet-leucoxene assemblage. Simultaneously, the Kunbei fault system underwent intense south-dipping thrusting, and a nearly 2.2-km uplift can be observed in the hanging wall of the Arlar fault. We attributed these variations to the rapid uplift event of the Qimen Tagh Range. The intense tectonic activity is the far-feld effect of the full collision that occurred between the Indian-Eurasian plates.This work was financially supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2017ZX05008-001).

  2. Palaeohydrological evolution of the late Cenozoic saline lake in the Qaidam Basin, NE Tibetan Plateau: Tectonic vs. climatic control

    NASA Astrophysics Data System (ADS)

    Guo, Pei; Liu, Chiyang; Huang, Lei; Yu, Mengli; Wang, Peng; Zhang, Guoqing

    2018-06-01

    As the largest Cenozoic terrestrial intermountain basin on the Tibetan Plateau, the Qaidam Basin is an ideal setting to understand the coupled controls of tectonics and climate on hydrological evolution. In this study, we used 47,846 data of carbonate and chloride contents from 146 boreholes to reconstruct the Neogene-Quaternary basin-wide hydrological evolution of the Qaidam Basin. Our results show that during the early Miocene (22-15 Ma), the palaeolake in the Qaidam Basin was mainly situated in the southwestern part of the basin, and its water was mostly brackish. From then on, this palaeolake progressively migrated southeastward, and its salinity increased from late Miocene saline water to Quaternary brines. This generally increasing trend of the water palaeosalinity during the late Cenozoic corresponded with regional and global climate changes at that time, suggesting the dominance of climatic control. However, the paces of the salinity increase from sediments in front of the three basin-bounding ranges were not the same, indicating that extra tectonic controls occurred. Sediments in front of the Eastern Kunlun Shan to the southwest and the Altyn Shan to the northwest showed an abrupt, dramatic increase in salinity at 15 Ma and 8 Ma, respectively; sediments in front of the Qilian Shan to the northeast showed steady increase without prominent, abrupt changes, indicating the occurrence of asynchronous tectonic controls from the basin-bounding ranges. The late Miocene depocentre migration was synchronous with the hydrological changes in front of the Altyn Shan, while the more significant migration during the Quaternary was consistent with the pulsing, intense extrabasinal and intrabasinal tectonic movements along the Tibetan Plateau.

  3. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia

    NASA Astrophysics Data System (ADS)

    Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu

    2015-08-01

    Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.

  4. The Messinian of the Nijar Basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution

    NASA Astrophysics Data System (ADS)

    Fortuin, A. R.; Krijgsman, W.

    2003-08-01

    The reconstruction of the depositional events related to the Messinian Salinity Crisis (MSC) of the Mediterranean is generally hampered by an incomplete stratal record in the circum-Mediterranean basins. The sediments of the northern part of the Nijar Basin, however, provide an excellent and continuous record of Late Messinian sediments because features of severe erosion are lacking. Especially, the successions of the deeper part of the basin had sufficient accommodation space to warrant ongoing deposition and may thus serve as a testing ground for existing hypotheses regarding the MSC. Conformable contacts with the overlying Pliocene and good correlation possibilities with the adjacent, astronomically dated, Messinian of the Sorbas Basin provide the necessary age constraints. The main body of evaporites in the Nijar Basin (Yesares Formation) has been affected by local dissolution and erosion prior to deposition of the latest Messinian (Lago-Mare) facies. Pelitic float breccias show textures indicating flowage and/or mass transport and include slumped and slided stratal packets due to foundering of the mixed evaporitic-clastic margin. Increased runoff of meteoric waters probably played an important role as these packet slides are perfectly sealed by the hyposaline Lago-Mare strata. Field observations show that marginal sediments, commonly classified as the Terminal Carbonate Complex (TCC), are a lateral equivalent of the basinal Yesares evaporites. The latest Messinian deposits (Feos Formation) are characterized by a sedimentary cyclicity, related to fluctuating base levels, consisting of chalky-marly laminitic strata alternating with continental coarser clastic intervals. Despite considerable W-E facies changes and indications for discrete tectonic events, a persistent sequential pattern of eight Lago-Mare cycles is present, which are interpreted as precession-controlled variations in regional climate. Instead of one major desiccation event in the latest Messinian, the repeatedly fluctuating water levels of the Lago-Mare episode may have been the cause of the widespread vigorous erosion and canyon cutting in the "Lower Evaporites". Abrupt, non-erosional contacts with the normal marine Pliocene take place above the continental interval of the last Lago-Mare cycle, indicating that flooding took place during a period of lowered water levels. The paleogeographic configuration of the Nijar, Sorbas and Vera basins has changed considerably during the Messinian. Separation of the formerly interconnected basins is thought to have started in the late Yesares times by tectonic uplift of the basement complexes. In the latest Messinian of the Nijar Basin, two different coarse clastic supply areas can be distinguished which point to the partial emergence of the Sierra Cabrera and the Cabo de Gata block and activity of the Sierra Alhamilla and Carboneras faults. Concerning the overall regional tectonic activity, tectonics were probably also instrumental for the restoration of the Atlantic gateway in the basal Pliocene.

  5. Miocene shale tectonics in the Moroccan margin (Alboran Sea)

    NASA Astrophysics Data System (ADS)

    Do Couto, D.; El Abbassi, M.; Ammar, A.; Gorini, C.; Estrada, F.; Letouzey, J.; Smit, J.; Jolivet, L.; Jabour, H.

    2011-12-01

    The Betic (Southern Spain) and Rif (Morocco) mountains form an arcuate belt that represents the westernmost termination of the peri-mediterranean Alpine mountain chain. The Miocene Alboran Basin and its subbasins is located in the hinterland of the Betic-Rif belt. It is considered to be a back-arc basin that developed during the coeval westward motion of the Alboran domain and the extensional collapse of previously thickened crust of the Betic-Rif belt. The Western Alboran Basin (WAB) is the major sedimentary depocenter with a sediment thickness in excess of 10 km, it is bordered by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge. Part of the WAB is affected by shale tectonics and associated mud volcanism. High-quality 2D seismic profiles acquired on the Moroccan margin of the Alboran Basin during the last decade reveal the multiple history of the basin. This study deals with the analysis of a number of these seismic profiles that are located along and orthogonal to the Moroccan margin. Seismic stratigraphy is calibrated from industrial wells. We focus on the interactions between the gravity-driven tectonic processes and the sedimentation in the basin. Our seismic interpretation confirms that the formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). The fast subsidence of the basin floor coeval to massive sedimentation induced the undercompaction of early miocene shales during their deposition. Downslope migration of these fine-grained sediments initiated during the deposition of the Langhian siliciclastics. This gravity-driven system was accompanied by continuous basement subsidence and induced disharmonic deformation in Mid Miocene units (i.e. not related to basement deformation). The development of shale-cored anticlines and thrusts in the deep basin is the result of compressive deformation at the front of the gravity-driven system and lasted for ca. 15 Ma. The compressive front has been re-activated by strong siliciclastic deposition, such as in the Serravalian-Tortonian period or more recently during the Quaternary contourites deposition. The Messinian dessication of the Mediterranean Sea and the following catastrophic Pliocene reflooding caused or enhanced re-activation of the deformation.

  6. Gravity and magnetic anomalies of the Cyprus arc and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ergün, M.; Okay, S.; Sari, C.; Oral, E. Z.

    2003-04-01

    In present day, eastern Mediterranean is controlled by the collision of the African and Eurasian plates and displacements of Arabian, Anatolian and Aegean micro-plates. The boundary between African and Eurasian plates is delineated by the Hellenic arc and Pliny-Strabo trench in the west and the Cyprus arc and a diffuse fault system of the Eastern Anatolian Fault zone in the east. The available gravity and magnetic data from the easternmost Mediterranean allow to subdivide this basin into three provinces: the northeastern Mediterranean north of the Cyprus Arc; the Levant Basin south of the Cyprus Arc and east of the line that roughly continues the Suez rift trend toward the Gulf of Antalya, between Cyprus and Anaximander Mountains; and the Mediterranean Ridge, Herodotus Basin west of this line. High anomalies observed in Cyprus and the sea region at the south is prominent in the gravity data. The Bouguer gravity anomaly reaches its maximum values over Cyprus, where it is most probably caused by high dense Troodos ophiolites. The uplifted oceanic crust causes high Bouguer anomaly also seen in the vicinity of Eratosthenes Seamount. Another result obtained from gravity data is that the crust under Herodotos and Rhodes basins is somehow oceanic and Anaximander, Eratosthenes and Cyprus are continental fragments. There are no linear magnetic anomalies in the Mediterranean. But there are magnetic anomalies over the Eratosthenes seamount and as well as from Cyprus to the Antalya basin due to the ophiolitic bodies. In Cyprus, the last compressional deformations were defined near the Miocene/Pliocene boundary. The extensional deformation associated with the Antalya basin appears to be separated by a zone of the Florence rise and Anaximander Mountains affected by differential tectonic movements. Eratosthenes Seamount is a positive crustal feature in the process of collision with Cyprus along an active margin; there is clearly a potential tectonic relationship to the onland geology of Cyprus. Eratosthenes is in the process of actively being underthrust both northwards and southwards under opposing margins.

  7. Deposition and evolution of the Sivas basin evaporites (Turkey)

    NASA Astrophysics Data System (ADS)

    Pichat, Alexandre; Hoareau, Guilhem; Rouchy, Jean-Marie; Ribes, Charlotte; Kergaravat, Charlie; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2015-04-01

    The Oligo-Miocene Sivas basin (Turkey) is strongly affected by salt tectonics, best expressed in its central part. Halokinesis initiated from the Upper Eocene Hafik formation, composed of thick evaporite layers. Salt tectonics induced the formation of numerous mini basins filled with continental to marine deposits, and nowadays separated by diapiric gypsum walls or welds. Continental deposits filling minibasins developed in arid conditions. Minibasin sandstones are frequently interlayered with evaporitic deposits (gypsum and anhydrite). Two types of depositional evaporites can be distinguished: (i) evaporites precipitated in lacustrine to sebkhaic environment, (ii) gypsarenites resulting from clastic gypsum remobilization. Field observations suggest that both types of depositional evaporites were likely sourced from the recycling of adjacent salt structures. Precipitation of lacustro-sebkhaic evaporites may have been triggered by meteoric waters enriched in dissolved sulfate after the chemical dissolution of outcropping evaporites. Gypsarenite deposits can be explained by mechanical dismantling of nearby evaporite structures. Evaporitic deposits were subsequently involved in active salt tectonics. During periods of quiescent diapirism, thick sebkhaic deposits were also deposited in secondary minibasins located on former salt domes. During periods of diapiric growth, linked to regional compressive tectonics, these deposits were then locally deformed and can show strong flowage textures. When rising diapiric evaporites reached the surface, it was also able to mechanically spread out within the minibasins, forming salt glaciers. In this case, if depositional evaporites were overlying the extruded diapir, both diapiric and depositional evaporites were incorporated in salt tectonic structures. Ongoing chemical analysis should help us to precise more accurately the different sources and the dynamics of these multigeneration evaporites.

  8. Integrated studies of the recent evolution of Deception Island in the geodynamic setting of the Bransfield Basin opening (Antarctica): GEOMAGDEC Project

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; Gil-Imaz, Andrés.; Gil-Peña, Inmaculada; Galindo-Zaldívar, Jesús; Rey, Jorge; Soto, Ruth; López-Martínez, Jerónimo; Llave, Estefanía.; Bohoyo, Fernando; Rull, Fernando; Martínez-Frías, Jesús; Galán, Luis; Casas, David; Lunar, Rosario; Ercilla, Gemma; Somoza, Luis

    2010-05-01

    Deception Island shows the most recent active volcanism, evidence of several eruptions since the late 18th century, and well-known eruptions in 1967, 1969, and 1970 at the western end of the volcanic ridge of the Bransfield Trough, between the South Shetland Islands and the Antarctic Peninsula. The recent tectonic activity of the Bransfield Trough is not well defined, and it presents a controversial origin. It is currently explained by two different models: (1) Opening of the basin may be related to passive subduction of the former Phoenix Plate and subsequent rollback of the South Shetland Trench; or (2) an oblique extension along the Antarctic Peninsula continental margin generated by the sinistral movement between the Antarctic and Scotia plates. This extension develops the Bransfield Trough and spread away the South Shetland tectonic block. The GEOMAGDEC project involves a multidisciplinary and integrated research of the Deception Island based on geophysical and geological methods. The purpose of this project, funded by the Spanish research agency, is the understanding of the main processes that govern the evolution of the Deception Island into the development of Bransfield Basin during recent times. Main aims are: (1) Study of the anisotropy of the magnetic susceptibility of volcanic deposits of emerged area of Deception Island to determine the relationship between magmatism (intrusive and extrusive) with the recent tectonic activity. This task allows the reconstruction of igneous flow directions of the different volcanic units established in the island, dikes emplacement modelling in active tectonic regime, and the integration of the results obtained in a kinematic and dynamic emplacement model of the different volcanic units of the Deception Island into recent geodynamic setting of Bransfield Basin opening. (2) Lito- and crono-stratigraphy analysis of the quaternary sedimentary units that filled Port Foster (inner bay of Deception Island) on the basis of the ultra-high seismic profiles and gravity cores data acquired during oceanographic campaigns carried out using the RV. BIO/HESPERIDES. (3) Recovery of the Hydrothermal Precipitation Cells (HPCs) emplaced in Port Foster during 2001 austral summer and the mineralogical and geochemical analysis of the precipitate deposits located in the inner walls of the HPCs. The analysis of these samples will provide important information about the recent volcanic activity.

  9. Similarities and contrasts in tectonic and volcanic style and history along the Colorado plateaus-to-basin and range transition zone in Western Arizona: Geologic framework for tertiary extensional tectonics

    NASA Technical Reports Server (NTRS)

    Young, R. A.; Mckee, E. H.; Hartman, J. H.; Simmons, A. M.

    1985-01-01

    The overall temporal and spatial relations between middle Tertiary volcanism and tectonism from the Basin and Range province onto the edge of the Colorado Plateaus province suggest that a single magnetic-tectonic episode affected the entire region more or less simultaneously during this period. The episode followed a post-Laramide (late Eocene through Oligocene) period of 25 million years of relative stability. Middle Tertiary volcanism did not migrate gradually eastward in a simple fashion onto the Colorado Plateau. In fact, late Oligocene volcanism appears to be more voluminous near the Aquarius Mountains than throughout the adjacent Basin and Range province westward to the Colorado River. Any model proposed to explain the cause of extension and detachment faulting in the eastern part of the Basin and Range province must consider that the onset of volcanism appears to have been approximately synchronous from the Colorado River region of the Basin and Range across the transition zone and onto the edge of the Colorado Plateaus.

  10. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In the east, affected by the later volcanic activities, Xingning-Jinghai sag deformed complicatedly and developed a series of landward dipping faults, showing the compound graben structure. Combined with the fault activity quantitative calculation, basin subsidence history and other advanced technology, the basin tectonic evolution has been divided into rift stage and post-rift stage. Considering the extension development evolution of Xingning-Jinghai sag and the extension and thinning of lithosphere under the background of spreading of the South China Sea, we argue that the northern margin of the South China lithosphere experienced an intense stretching and thinning stage. At this period, the subsidence of the Xingning-Jinghai sag was controlled by the detachment faults, indicating a rifting stage. With the development of the detachment faults, the thickness of crust was extremely thinned. After the spreading of the South China Sea the whole sag entered into the depression period which was characterized by thermal subsidence.

  11. The Hei River Basin in northwestern China - tectonics, sedimentary processes and pathways

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Nottebaum, Veit; Schimpf, Stefan; Yu, Kaifeng; Hartmann, Kai; Stauch, Georg; Wünnemann, Bernd; Reicherter, Klaus; Diekmann, Bernhard; Lehmkuhl, Frank

    2014-05-01

    The Hei River Basin (catchment area of c. 130,000 km²) is situated at the transition between the northern margin of the Tibetan Plateau and the southern slopes of Gobi-Tien-Shan. As part of the northwestern Chinese deserts, the Ejina Basin (Gaxun Nur Basin) constitutes the endorheic erosion base of the drainage system. The basin - hosting the second largest continental alluvial fans in the world, is tectonically strongly shaped by the Gobi belt of left-lateral transpression. The tectonic setting in combination with competing climatic driving forces (Westerlies and summer/winter monsoon currents) has supported the formation of a valuable long-time sediment archive comprises at least the last 250,000 yrs. of deposition. It is composed by the interplay of eolian, fluvial and lacustrine sedimentation cycles and today is dominated by widespread (gravel) gobi surfaces, insular dune fields and shallow evaporitic playa areas. Thus, it provides excellent conditions to investigate tectonic evolution and Quaternary environmental changes. Recently, geomorphological, geophysical, neotectonic and mineralogical studies have enhanced the understanding of the environmental history and the modern depositional environment. Moreover, the role of the Hei River Basin as an important source area of silt particles which were later deposited on the Chinese Loess Plateau is evaluated. Therefore, a 230 m long drill core, sediment sections and ca. 700 surface samples throughout the whole catchment and basin were analyzed. Instrumental and historical seismicity are very low, but the proximity to active fault zones and dating irregularities in earlier publications indicate evidence for deformation in the study area. Despite flat topography, indications of active tectonics such as fault-related large-scale lineations can be observed. Seismically deformed unconsolidated lacustrine deposits (seismites), presumably of Holocene age, are evident and must be related to the nearby faults. The upper catchment is represented by the Qilian Shan mountain range and its immediate foreland. Here, a tripartite altitudinal distribution of terrestrial sediment archives is evident, which is representative of catchment-wide sedimentological processes. Insights into their formation mechanisms, therefore, add valuable perspective regarding the reconstruction of sedimentological and paleoenvironmental conditions in the depositional area of the Hei River Basin. For the characterization of provenance and dispersal of Quaternary sediments in relation to the modern depositional environment, over 200 surface samples from the whole catchment were analyzed using XRD and XRF measurements on the clay fractions, heavy minerals and bulk sediments. The clay mineral results in-particular show that it is possible to discriminate between the chlorite rich metamorphic sediments originating from greenschist bearing rocks in the Qilian Shan Mountain Range in the south, and the more intrusive rocks from the Bei Shan Mountain Range west of the Hei River Basin. Additionally, these two main sources reflect different transportation processes; the Qilian Shan sediments are mainly transported by the rivers Heihe and Beida He, and the deposition of the Bei Shan sediments is mainly driven by wind or local runoff. Grain size results of primary loess deposits indicate different eolian transport pathways, i.e., far-travelled dust input (medium silty) vs. local deflation from active fluvial channels (fine sandy). Along the altitudinal transect, the varying geomorphological settings exert a significant influence on the grain size composition showing an increased contribution of far-travelled dust at higher altitudes.

  12. Tectonic map of the Circum-Pacific region, Pacific basin sheet

    USGS Publications Warehouse

    Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.

    2013-01-01

    Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and George W. Moore (Arctic Region). Project coordination and final cartography was being carried out through the cooperation of the Office of the Chief Geologist of the U.S. Geological Survey, under the direction of General Chairman, George Gryc of Menlo Park, California. Project headquarters were located at 345 Middlefield Road, MS 952, Menlo Park, California 94025, U.S.A. The framework for the Circum-Pacific Map Project was developed in 1973 by a specially convened group of 12 North American geoscientists meeting in California. The project was officially launched at the First Circum-Pacific Conference on Energy and Mineral Resources, which met in Honolulu, Hawaii, in August 1974. Sponsors of the conference were the AAPG, Pacific Science Association (PSA), and the Coordinating Committee for Offshore Prospecting for Mineral Resources in Offshore Asian Areas (CCOP). The Circum-Pacific Map Project operates as an activity of the Circum-Pacific Council for Energy and Mineral Resources, a nonprofit organization that promotes cooperation among Circum-Pacific countries in the study of energy and mineral resources of the Pacific basin. Founded by Michel T. Halbouty in 1972, the Council also sponsors conferences, topical symposia, workshops and the Earth Science Series books. Tectonic Map Series: The tectonic maps distinguish areas of oceanic and continental crust. Symbols in red mark active plate boundaries, and colored patterns show tectonic units (volcanic or magmatic arcs, arc-trench gaps, and interarc basins) associated with active plate margins. Well-documented inactive plate boundaries are shown by symbols in black. The tectonic development of oceanic crust is shown by episodes of seafloor spreading. These correlate with the rift and drift sequences at passive continental margins and episodes of tectonic activity at active plate margins. The recognized episodes of seafloor spreading seem to reflect major changes in plate kinematics. Oceanic plateaus and other prominences of greater than normal oceanic crustal thickness such as hotspot traces are also shown. Colored areas on the continents show the ages of deformation and metamorphism of basement rocks and the emplacement of igneous rocks. Transitional tectonic (molassic) and reactivation basins are shown by a colored boundary, and if they are deformed, a colored horizontal line pattern indicates the age of deformation. Colored bands along basin boundaries indicate age of inception, and isopachs indicate thickness of platform strata on continental crust and cover on oceanic crust. Colored patterns at separated continental margins show the age of inception of rift and drift (breakup) sequences. Symbols mark folds and faults, and special symbols show volcanoes and other structural features. Affiliations are as of compilation of the data. This map was created in quadrants and then compiled together. They are the Northwest land, Northwest Marine (different compilers), Northeast, Southwest and Southeast, and parts in plate-boundary sections.

  13. Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Laurila, T. E.; Petersen, S.; Devey, C. W.; Baker, E. T.; Augustin, N.; Hannington, M. D.

    2012-09-01

    The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion.

  14. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  15. U-Pb Detrital Zircon Ages from Sarawak: Changes in Provenance Reflecting the Tectonic Evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. T.; Galin, T.; Hall, R.

    2014-12-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. Five sedimentary basins are distinguished with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic of the Sadong-Kuching Basin and were sourced by a Carnian to Norian volcanic arc and erosion of Cathaysian rocks containing zircons of Paleoproterozoic age. Sandstones of the Upper Jurassic to Cretaceous Bau-Pedawan Basin have distinctive zircon populations indicating a major change of tectonic setting, including initiation of subduction below present-day West Sarawak in the Late Jurassic. A wide range of inherited zircon ages indicates various Cathaysian fragments as major source areas and the arrival of the SW Borneo Block following subduction beneath the Schwaner Mountains in the early Late Cretaceous. After collision of the SW Borneo Block and the microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension were responsible for basin development on land from the latest Cretaceous onwards, probably in a strike-slip setting. The first episode formed the Kayan Basin in the Latest Cretaceous (Maastrichtian) to Early Paleocene, and the second formed the Ketungau Basin and the Penrissen Sandstone in the Middle to Late Eocene. Zircons indicate nearby volcanic activity throughout the Early Cenozoic in NW Borneo. Inherited zircon ages indicate an alternation between Borneo and Tin Belt source rocks. A large deep marine basin, the Rajang Basin, formed north of the Lupar Line fault. Zircons from sediments of the Rajang Basin indicate they are of similar age and provenance as the contemporaneous terrestrial sediments to the south suggesting a narrow steep continental Sundaland margin at the position of the Lupar Line.

  16. Tectono-Thermal History Modeling and Reservoir Simulation Study of the Nenana Basin, Central Alaska: Implications for Regional Tectonics and Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Dixit, Nilesh C.

    Central Interior Alaska is an active tectonic deformation zone highlighted by the complex interactions of active strike-slip fault systems with thrust faults and folds of the Alaska Range fold-and-thrust belt. This region includes the Nenana basin and the adjacent Tanana basin, both of which have significant Tertiary coal-bearing formations and are also promising areas (particularly the Nenana basin) with respect to hydrocarbon exploration and geologic carbon sequestration. I investigate the modern-day crustal architecture of the Nenana and Tanana basins using seismic reflection, aeromagnetic and gravity anomaly data and demonstrate that the basement of both basins shows strong crustal heterogeneity. The Nenana basin is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Flats fault zone. The Tanana basin has a fundamentally different geometry and is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. NE-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. Seismic refection data, well data, fracture data and apatite fission track data further constrain the tectonic evolution and thermal history of the Nenana basin. The Nenana basin experienced four distinct tectonic phases since Late Paleocene time. The basin initiated as a narrow half-graben structure in Late Paleocene with accumulation of greater than 6000 feet of sediments. The basin was then uplifted, resulting in the removal of up to 5000 feet of Late Paleocene sediments in Eocene to Oligocene time. During Middle to Late Miocene time, left lateral strike-slip faulting was superimposed on the existing half-graben system. Transtensional deformation of the basin began in the Pliocene. At present, Miocene and older strata are exposed to temperatures > 60°C in the deeper parts of the Nenana basin. Coals have significant capacity for sequestering anthropogenic CO 2 emissions and offer the benefit of enhanced coal bed methane production that can offset the costs associated with the sequestration processes. In order to do a preliminary assessment of the CO2 sequestration and coal bed methane production potential of the Nenana basin, I used available surface and subsurface data to build and simulate a reservoir model of subbituminous Healy Creek Formation coals. The petroleum exploration data were also used to estimate the state of subsurface stresses that are critical in modeling the orientation, distribution and flow behavior of natural coal fractures in the basin. The effect of uncertainties within major coal parameters on the total CO2 sequestration and coal bed methane capacity estimates were evaluated through a series of sensitivity analyses, experimental design methods and fluid flow simulations. Results suggest that the mature, unmineable Healy Creek Formation coals of the Nenana basin can sequester up to 0.41 TCF of CO2 while producing up to 0.36 TCF of CH4 at the end of 44-year forecast. However, these volumes are estimates and they are also sensitive to the well type, pattern and cap rock lithology. I used a similar workflow to evaluate the state of in situ stress in the northeastern North Slope province of Alaska. The results show two distinct stress regimes across the northeastern North Slope. The eastern Barrow Arch exhibits both strike-slip and normal stress regimes. Along the northeastern Brooks Range thrust front, an active thrust-fault regime is present at depths up to 6000 ft but changes to a strike-slip stress regime at depths greater than 6000 ft.

  17. Tectonic constraints on the development and individualization of the intermontane Ronda basin (external Betics, southern Spain): a structural and geomorphologic approach.

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel; Barcos, Leticia

    2014-05-01

    As a result of progressive shortening and orogenic wedge thickening, marine foreland basins tend to emerge and divide. We have analyzed possible recent tectonic activity within the late evolution stage of the Ronda basin, an intermontane basin located in the external wedge of the Gibraltar Arc, formerly connected with the Betic foreland basin and infilled by marine Upper-Miocene sediments. We analyze (1) the structures responsible for the basinward relief drop along the arc strike and the different topography of their boundaries; (2) qualitative and quantitative geomorphologic indices to asses which structures could present recent activity; and 3) the structures causing the division of the former Betic foreland basin and the isolation of the Ronda basin. Within the deformational history of the Ronda basin, late structures that control high topographic gradients and generate remarkable fault scarps group into three main types: (a) Extensional structures represented by NW-SE striking normal faults, clustered close to the current SW and NE boundaries of the basin. They usually dip towards the basin and their vertical displacement is maximum up to 1,5 km. These structures partially affect the basal unconformity of the Upper Miocene basin infill and are scarcely developed inside the basin infill. (b) Shortening structures developed both in the basin infill and in the outcropping basement near the Northeastern and Southwestern basin boundaries. They are represented by NE-SW directed plurikilometric box-folds and reverse faults, responsible for the alternation of sierras (altitudes 1000-1500 m) and valleys. (c) Strike-slip dominated structural associations where WSW-ENE lateral faults combined with folds and normal and reverse faults defined a NE-SW directed deformation band constituting the NW basin boundary. This band includes some sierras up to 1.100 m. Regarding the relief of the Ronda basin area, the abrupt slopes of the outcropping basement (heights between 500-1500 m) contrast with the relief inside the basin, a relative low-lying relief varying between 400 and 700 m. The drainage network is dendritic, although some 2nd-3rd order streams show a significant deviation to NW-SE , probably controlled by normal faults. The calculated geomorphologic indices (SLk, Vf, Smf) show anomaly zones in the footwall of normal faults, reaching their highest values in the Northeastern basin boundary (SlK > 6, Vf = 0-0.5, Smf = 1-1.15), where, additionally, the hypsometric curves display convex trajectories with HI > 0.5. Anomalous values of geomorphologic indices (SlK > 10, Vf 0-0.75, Smf 1-1.25) together with convex hypsometric curves with HI > 0.5 have also been obtained for shortening structures, such as hanging wall of reverse faults and folds. Structural criteria show that extensional and shortening structures in the Ronda basin are coetaneous and active since the Upper Miocene. Geomorphologic analyses suggest that some of these structures could continue active up to the Quaternary with low-to-medium deformation rates. Our results, together with previous sedimentological data suggest that, from the Messinian on, the Ronda basin became disconnected from the Betic foreland basin as the result of the tectonic uplift of its NW boundary.

  18. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  19. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin

    USGS Publications Warehouse

    Liu, M.; Mooney, W.D.; Li, S.; Okaya, N.; Detweiler, S.

    2006-01-01

    The 1000-km-long Darlag-Lanzhou-Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4??km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3??km/s are 0.15??km/s lower than the worldwide average of 6.45??km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4??km/s and only 0.5??km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38??km as the crustal thickness increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino-Korean and Gobi Ala Shan platforms. ?? 2006.

  20. Morphologic expression of Quaternary deformation in the northwestern foothills of the Ysyk-Köl basin, Tien Shan

    NASA Astrophysics Data System (ADS)

    Korjenkov, A. M.; Povolotskaya, I. E.; Mamyrov, E.

    2007-03-01

    The Tien Shan is one of the most active intracontinental mountain belts exhibiting numerous examples of Quaternary fault-related folding. To provide insight into the deformation of the Quaternary intermontane basins, the territory of the northwestern Ysyk-Köl region, where the growing Ak-Teke Anticline divided the piedmont apron of alluvial fans, is studied. It is shown that the Ak-Teke Hills are a sharply asymmetric anticline, which formed as a result of tectonic uplift and erosion related to motions along the South Ak-Teke Thrust Fault. The tectonic uplift gave rise to the local deviation of the drainage network in front of the northern limb of the fold. Optical (luminescent) dating suggests that the tectonic uplifting of the young anticline and the antecedent downcutting started 157 ka ago. The last upthrow of the high floodplain of the Toru-Aygyr River took place 1300 years ago. The structure of the South Ak-Teke Fault is examined by means of seismologic trenching and shallow seismic profiling across the fault. A laser tachymeter is applied to determine the vertical deformation of alluvial terraces in the Toru-Aygyr River valley at its intersection with the South Ak-Teke Fault. The rates of vertical deformation and an inferred number of strong earthquakes, which resulted in the upthrow of Quaternary river terraces of different ages, are calculated. The study territory is an example of changes in fluvial systems on growing folds in piedmont regions. As a result of shortening of the Earth’s crust in the mountainous belt owing to thrusting, new territories of previous sedimentation are involved in emergence. The tectonic activity migrates with time from the framing ridges toward the axial parts of intramontane basins.

  1. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  2. A methodology for studying tectonic subsidence variations: insights from the Fernie Formation of west-central Alberta

    NASA Astrophysics Data System (ADS)

    McCartney, Tannis Maureen

    Tectonic subsidence curves for over 300 subsurface wells in west-central Alberta indicate that the Western Canada Foreland Basin was initiated at the same time the lower units of the Fernie Formation were being deposited. This evidence is further supported by sedimentological data and fits with the timing of the onset of deformation in the Cordillera and the initiation of the foreland basin in Montana. The volume of subsidence curves in this study required an innovative methodology. Subsidence calculations were performed using customized macros in a spreadsheet. The tectonic subsidence variations were displayed in a tectonic subsidence envelope, which showed the total variation in the subsidence curves, and three suites of maps: tectonic subsidence, tectonic subsidence residuals, and tectonic subsidence ratios. Collectively, the maps of the tectonic subsidence in the Fernie Formation show that there was a western influence on subsidence during deposition of the oldest members of the Fernie Formation.

  3. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines

    NASA Astrophysics Data System (ADS)

    Marchadier, Yves; Rangin, Claude

    1990-11-01

    The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.

  4. Incorporation of New and Old Tectonics Concepts Into a Modern Course in Tectonics.

    ERIC Educational Resources Information Center

    Hatcher, Robert D., Jr.

    1983-01-01

    Describes a graduate-level tectonics course which includes the historical basis for modern tectonics concepts and an in-depth review of pros/cons of plate tectonics. Tectonic features discussed include: ocean basins; volcanic arcs; continental margins; continents; orogenic belts; foreland fold and thrust belts; volcanic/plutonic belts of orogens;…

  5. Early impact basins and the onset of plate tectonics. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1977-01-01

    The fundamental crustal dichotomy of the Earth (high and low density crust) was established nearly 4 billion years ago. Therefore, subductable crust was concentrated at the surface of the Earth very early in its history, making possible an early onset for plate tectonics. Simple thermal history calculations spanning 1 billion years show that the basin forming impact thins the lithosphere by at least 25%, and increases the sublithosphere thermal gradients by roughly 20%. The corresponding increase in convective heat transport, combined with the highly fractured nature of the thinned basin lithosphere, suggest that lithospheric breakup or rifting occurred shortly after the formation of the basins. Conditions appropriate for early rifting persisted from some 100,000,000 years following impact. We suggest a very early stage of high temperature, fast spreading "microplate" tectonics, originating before 3.5 billion years ago, and gradually stabilizing over the Archaean into more modern large plate or Wilson Cycle tectonics.

  6. Constraints on the history and topography of the Northeastern Sierra Nevada from a Neogene sedimentary basin in the Reno-Verdi area, Western Nevada

    USGS Publications Warehouse

    Trexler, James; Cashman, Patricia; Cosca, Michael

    2012-01-01

    Neogene (Miocene–Pliocene) sedimentary rocks of the northeastern Sierra Nevada were deposited in small basins that formed in response to volcanic and tectonic activity along the eastern margin of the Sierra. These strata record an early phase (ca. 11–10 Ma) of extension and rapid sedimentation of boulder conglomerates and debrites deposited on alluvial fans, followed by fluvio-lacustrine sedimentation and nearby volcanic arc activity but tectonic quiescence, until ~ 2.6 Ma. The fossil record in these rocks documents a warmer, wetter climate featuring large mammals and lacking the Sierran orographic rain shadow that dominates climate today on the eastern edge of the Sierra. This record of a general lack of paleo-relief across the eastern margin of the Sierra Nevada is consistent with evidence presented elsewhere that there was not a significant topographic barrier between the Pacific Ocean and the interior of the continent east of the Sierra before ~ 2.6 Ma. However, these sediments do not record an integrated drainage system either to the east into the Great Basin like the modern Truckee River, or to the west across the Sierra like the ancestral Feather and Yuba rivers. The Neogene Reno-Verdi basin was one of several, scattered endorheic (i.e., internally drained) basins occupying this part of the Cascade intra-arc and back-arc area.

  7. Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington

    USGS Publications Warehouse

    ten Brink, Uri S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.

    2002-01-01

    The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.

  8. Comparing The North-east German Basin With The Polish Basin, Influenced By Major Crustal Fractures

    NASA Astrophysics Data System (ADS)

    Lamarche, J.; Scheck, M.; Otto, V.; Bayer, U.; Lewerenz, B.

    The North-East German Basin (NEGB) and the Polish Basin (PB) are two intraplate sedimentary basins in Central Europe, the development of which was controlled by deep crustal structures: the Elbe Fault System and the Teisseyre-Tornquist Zone, re- spectively. 3D structural models performed separately for each basin led to indepen- dent interpretations showing major similarities, but also significant differences. The outlook of the comparison between the NEGB and the PB is to lead to a joined 3D structural model, which allows reconstructing the synthetic geodynamic evolution of the area. The NEGB and PB are NW-SE-oriented. Both were initiated during Late Carboniferous and Lower Permian, when the post-Variscan rifting affected the com- posite Palaeozoic basement of Central Europe. During Triassic to Cretaceous times, both basins evolved due to thermal subsidence and pulses of tectonic subsidence. At the end of Cretaceous, the basins were tectonically inverted. The sedimentary succes- sions of the NEGB and PB are comparable. Particularly, the Zechstein salt induced comparable sedimentary structures and provided a decoupling level between pre- and post-Zechstein rocks during the Late Cretaceous tectonic inversion in both basins. At the crustal scale, both basins are presently limited to the SW by the NW-SE-oriented Elbe Fault System, that correlates with a positive gravity anomaly. Finally, both basins show a N-S differentiation regarding the detailed subsidence history, the structural set- ting and the salt pattern. In spite of the very similar tectonic evolution of the NEGB and the PB, their large-scale geometry and inversion-related structures are different. The NEGB is asymmetric with a shallow northern slope and a steep bounding fault at the SW margin (Elbe Fault System). In the NEGB, the Late Cretaceous tectonic inversion resulted in asymmetric uplift of the SW' border along the Elbe Fault Sys- tem, and in decreasing deformation in the cover towards North. In contrast, the PB is a symmetric basin, that developed above the Teisseyre-Tornquist Zone. The tectonic inversion resulted in a rather symmetric swell, uplifted along the axis of the former basin. The occurrence and rejuvenation of the deep-seated Teisseyre-Tornquist Zone is held responsible for the symmetry of the PB during its development and later inver- sion, whereas the reactivation of the Elbe Fault Zone induced asymmetric deformation in the Mesozoic cover at the SW margin of the NEGB.

  9. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    USGS Publications Warehouse

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry and tectonic erosion vs. accretion are important controls on the ultimate survival of material from the trench, forearc, arc massif, intra-arc basins, and backarc basins, and thus on how well an ancient arc terrane preserves evidence for tectonic processes such as subduction of aseismic ridges and seamounts, oblique plate convergence, and arc rifting. Forward-facing collision involves substantial recycling, melting, and fractionation of continent-derived material during and after collision, and so produces melts rich in silica and incompatible trace elements. As a result, forward-facing collision can drive the composition of accreted arc crust toward that of average continental crust.

  10. Application of ring tectonic theory to Mercury and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1981-01-01

    It is pointed out that multiringed structures, by their presence or absence, provide a powerful tool for deciphering the thermal histories of the solid planets. The theory of ring tectonics considered by Melosh and McKinnon (1978) and Melosh et al. (1980) establishes the framework of that undertaking. The present investigation has the objective to apply this conceptualization in detail to the multiringed basins on Mercury, taking into account also a brief review concerning the current state of understanding of ring tectonics on the moon, Mars, earth, Ganymede, and Callisto. The small, icy satellites of Saturn are also discussed. The mechanics of multiple ring formation are related to the collapse of the transient basin cavity when the excavation depth and lithosphere thickness are comparable. Attention is given to the Caloris Basin on Mercury, the peak ring basins on Mercury, and the Argyre Basin on Mars.

  11. Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain)

    USGS Publications Warehouse

    Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, Victor H.; Pérez-López, R.; Giner-Robles, J.L.; Israde-Alcántara, I.; Calvo, J.P.; Williams, Ross W.

    2009-01-01

    The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.

  12. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  13. Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro

    2017-10-01

    In this study we focus on reconstructing the post-rift subsidence evolution of the Colorado Basin, offshore Argentina. We make use of detailed structural information about its present-day configuration of the sedimentary infill and the crystalline crust. This information is used as input in a backward modelling approach which relies on the assumption of local isostasy to reconstruct the amount of subsidence as induced by the sedimentary load through different time stages. We also attempt a quantification of the thermal effects on the subsidence as induced by the rifting, here included by following the uniform stretching model of lithosphere thinning and exponentially cooling through time. Based on the available information about the present-day geological state of the system, our modelling results indicate a rather continuous post-rift subsidence for the Colorado Basin, and give no significant evidence of any noticeable uplift phase. In a second stage, we compare the post-rift evolution of the Colorado Basin with the subsidence evolution as constrained for its conjugate SW African passive margin, the Orange Basin. Despite these two basins formed almost coevally and therefore in a similar large scale geodynamic context, their post-rift subsidence histories differ. Based on this result, we discuss causative tectonic processes likely to provide an explanation to the observed differences. We therefore conclude that it is most probable that additional tectonic components, other than the ridge-push from the spreading of the South Atlantic Ocean, are required to explain the observed differences in the subsidence of the two basins along the conjugate passive margins. Such additional tectonic components might be related to a dynamic mantle component in the form of either plume activity (Africa) or a subducting slab and the presence of an ongoing compressional stress system as revealed for different areas in South America.

  14. Thermal regime of the Great Basin and its implications for enhanced geothermal systems and off-grid power

    USGS Publications Warehouse

    Sass, John H.; Walters, Mark A.

    1999-01-01

    The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.

  15. Subduction processes related to the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya

    2017-04-01

    It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.

  16. The combined effects of eustasy, tectonism, and clastic influx on the development of Pennsylvanian cyclic carbonates, southern Sangre de Cristo Mountains, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Shouyeh; Humphrey, J.D.

    1991-03-01

    Pennsylvania cyclothems are well documented on stable continental shelves and the cyclicity has generally been attributed to glacio-eustasy. As a contrast, Atokan-Desmoinesian cyclic carbonates of the southern Sangre de Cristo Mountains developed in a tectonically active foreland basin, formed by thrusting along the Picuris-Pecos fault during early Pennsylvanian time. Strata exposed in two sections (Dalton Bluff, 260 m; Johnson Mesa, 340 m) are characterized by (1) shallowing-upward cycles, (2) cycles of variable thickness (5-20 m), (3) incomplete cycles, (4) cycles interrupted by terrigenous clastic input, and (5) noncyclic intervals. Allocyclic mechanisms alone cannot fully explain these observations; the authors hereinmore » propose that a complex interplay among eustasy, tectonism, and clastic sediment supply were responsible for the observed cycles. Lithofacies analysis indicates that location within the foreland basin played a significant role in cycle attributes. In the deeper portions of the basin (e.g., Dalton Bluff), an idealized cycle, from base to top consists of (1) shale/marl facies, (2) brachiopod wackestone facies, (3) phylloid algal facies, and (4) marine clastic facies. No evidence for subaerial exposure of cycle caps is noted. In contrast, in shallow portions of the basin near the forebulge (e.g., Johnson Mesa) the marine clastic facies is substituted by crinoidal grainstone/packstone facies that is capped by subaerial exposure surface. Each of the two cycles displays an overall grand (lower order) shallowing-upward cycle. This grand cycle developed as sediments infilled the initially starved foreland basin.« less

  17. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Graindorge, D.; Klingelhoefer, F.; Lallemand, S.; Laigle, M.; Lebrun, J.-F.

    2017-05-01

    The influence of the highly oblique plate convergence at the northern Lesser Antilles onto the margin strain partitioning and deformation pattern, although frequently invoked, has never been clearly imaged. The Anegada Passage is a set of basins and deep valleys, regularly related to the southern boundary of the Puerto Rico-Virgin Islands (PRVI) microplate. Despite the publications of various tectonic models mostly based on bathymetric data, the tectonic origin and deformation of this Passage remains unconstrained in the absence of deep structure imaging. During cruises Antithesis 1 and 3 (2013-2016), we recorded the first deep multichannel seismic images and new multibeam data in the northern Lesser Antilles margin segment in order to shed a new light on the structure and tectonic pattern of the Anegada Passage. We image the northeastern extent of the Anegada Passage, from the Sombrero Basin to the Lesser Antilles margin front. Our results reveal that this northeastern segment is an EW trending left-stepping en échelon strike-slip system that consists of the Sombrero and Malliwana pull-apart basins, the Malliwana and Anguilla left-lateral faults, and the NE-SW compressional restraining bend at the Malliwana Hill. Reviewing the structure of the Anegada Passage, from the south of Puerto Rico to the Lesser Antilles margin front, reveals a polyphased tectonic history. The Anegada Passage is formed by a NW-SE extension, possibly related to the rotation or escape of PRVI block due to collision of the Bahamas Bank. Currently, it is deformed by an active WNW-ESE strike-slip deformation associated to the shear component of the strain partitioning resulting from the subduction obliquity.

  18. Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)

    NASA Astrophysics Data System (ADS)

    Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.

    2008-03-01

    The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.

  19. Relations between tectonics and sedimentation along the Eastern Sardinian margin (Western Tyrrhenian Sea) : from rifting to reactivation

    NASA Astrophysics Data System (ADS)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Lymer, Gaël; Maillard, Agnès; Thinon, Isabelle; Lofi, Johanna; Sage, Françoise; Giresse, Pierre; Bassetti, Maria-Angela

    2014-05-01

    The offshore-onshore project "METYSS-METYSAR" aims at better understand the Miocene-Pliocene relationships between crustal tectonics, salt tectonics, and sedimentation along the Eastern Sardinian margin, Western Tyrrhenian Sea. In this key-area, the Tyrrhenian back-arc basin underwent recent rifting (9-5 Ma), pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma), sea-floor spreading starting during Pliocene times. Thereby, the Tyrrhenian basin and the Eastern Sardinian margin are excellent candidates for studying the mechanisms of extreme lithospheric stretching and thinning, the role of pre-existing structural fabric during and after rifting, and the reactivation of a passive margin and the associated deformation and sedimentation patterns during the MSC. We looked at the respective contributions of crustal and salt tectonics in quantifying vertical and horizontal movements, using especially the seismic markers of the MSC. Overall, we delineate the history of rifting and tectonic reactivation in the area. The distribution maps respectively of the Messinian Erosion Surface and of Messinian units (Upper Unit and Mobile Unit) show that a rifted basin already existed by Messinian time. This reveals a major pre-MSC rifting across the entire domain. Because salt tectonics can create fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined in order to decipher the effects of crustal tectonics (rifting) and thin-skinned salt tectonics. Our data surprisingly show that there are no clues for Messinian syn-rift sediments along the East-Sardinia Basin and Cornaglia Terrace, hence no evidence for rifting after Late Tortonian times. Nevertheless, widespread deformation occurred during the Pliocene and can only be attributed to post-rift reactivation. This reactivation is characterized not only by normal faulting but also by contractional structures. Some Pliocene vertical movements caused localized gravity gliding of the mobile salt and its Late Messinian and Early Pliocene brittle overburden. "METYSAR" fieldwork onshore was conducted in the Orosei region and showed that the main present-day Cedrino river follows the trend of a paleo-valley that cuts through the underlying granitic basement and alterites. These deposits, along with the basement, were likely eroded during Messinian times, then reworked during a marine transgression. Micro-fauna in these fine-grained marine sediments are of Upper Pliocene age. The strata dip by 20° to 30° and trend NNE-SSW, a direction which is sub-parallel to the main tectonic structures involved in the rifting of the margin. The tilted Pliocene strata were overlain by volcanic flows, some dating from Upper Pliocene time. Field mapping has evidenced that there was a paleo-topographic relief, trending NNE-SSW, that controlled the sediment deposition. These results indicate that the post-Messinian tectonic activity, which is also visible offshore, controlled the sedimentary architecture and the paleogeography of this area. Onshore, there are signs of neither Lower-Pliocene marine deposits nor Gilbert deltas. The absence of such sedimentary edifices, which are characteristic of the Pliocene refilling of the Mediterranean basin are clues about significant post-rift vertical movements in the Tyrrhenian sea.

  20. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  1. Identification and interpretation of tectonic features from ERTS-1 imagery: Southwestern North America and the Red Sea area

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.

    1975-01-01

    The author has identified the following significant results. The ERTS-1 imagery was utilized to study major fault and tectonic lines and their intersections in southwestern North America. A system of transverse shear faults was recognized in the California Coast Ranges, the Sierra Nevada, the Great Basin, and Mexico. They are interpreted as expressions of a major left-lateral shear which predated the San Andreas system, the opening of the Gulf of California and Basin and Range rift development. Tectonic models for Basin and Range, Coast Ranges, and Texas-Parras shears were developed. Geological structures and Precambrian metamorphic trend lines of schistosity were studied across the Red Sea rift.

  2. Influence of inherited structures on the growth of basement-cored ranges, basin inversion and foreland basin development in the Central Andes, from apatite fission-track and apatite Helium thermochronology.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Sobel, E. R.; Del Papa, C.; Jelinek, A. R.; Muruaga, C.

    2017-12-01

    The Central Andes in NW of Argentina is part of a long-lived subduction zone, active since the Paleozoic. This region experienced several tectonic cycles; each of which created an unique set of structures and may have reactivated preexisting structures. These inherited structures may exert a first-order control over the different foreland deformational styles observed along the strike in the Central Andes. Our study area is located between 26°S and 28°S on the transition between the broken foreland (Santa Barbara system), which expresses a combination of thin-skin and thick-skin styles, and the Sierras Pampeanas, which is deform in a thick-skin style. The Cumbres Calchaquies range and the associated Choromoro Basin are located in the northern part of the study area, and are the southern expression of the Santa Barbara system. Published thermochronology data suggest that the rocks from the basement experienced Late Cretaceous and Late Miocene exhumation; the associated sedimentary rocks within the Choromoro basin experienced Paleogene and Late Miocene deformational phases. In contrast, the Sierra Aconquija range, located immediately south on the transition to the Sierras Pampeanas (thick skin) foreland basin, exhibit larger amounts of Miocene exhumation and lack of Cretaceous exhumation; the associated sedimentary rocks from the Tucuman basin have not been deformed since the Cretaceous. Our goal is to understand the evolution of the structural blocks and the structures responsible for the along strike changes in foreland basin deformational styles and their relation with inherited structures from previous tectonic cycles. We are obtaining new apatite U-Th/He and fission track data to reconstruct the thermal history of the basement, accompanied by U-Pb geochronology and stratigraphy to constrain the evolution of the associated sedimentary basins. Preliminary results combined with published data suggest that inherited structures within the study area have evolved through different tectonic cycles, controlling the thicknes and the geometry of the sediments within the Mesozoic rift basin, the Miocene amount of exhumation in the basement-cored ranges and the deformation style of the associated foreland basins.

  3. Geochronology, Geochemistry and Tectonics of Subduction-Related Late Triassic Rift Basins in Northern Chile (24º-26ºS).

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.; Oliveros, V.; Celis, C.

    2016-12-01

    As plate-tectonic processes ultimately control the location, initiation, and evolution of sedimentary basins, the study of these is crucial to understand the geodynamic framework of a specific period. In northern Chile, Late Triassic depocenters crop out along the Coastal Cordillera and Precordillera. These basins have been typically associated to a continental rifting unrelated to subduction prior to the Andean orogeny. In this work, we characterize these basins and present field and analytical data suggesting the development of these basins during an active subduction system. U-Pb geochronology show the opening of these basins probably during the Anisian-Carnian (>233 Ma) with the deposition of highly mature sediments in fluvial systems, followed by the initiation of the volcanism and associated fluvial-alluvial redeposition. Furthermore, a continental (fluvial and lacustrine) deposition and its transition to shallow marine facies are recorded during the Norian to Raethian (212-200 Ma), contemporaneous with the development of acidic volcanic centers. The sedimentary provenance evidence a main detrital supply of Early Permian age ( 297-283 Ma) corresponding to volcanic and plutonic basement rocks and a minor supply close to 478 Ma related to the exhumed Famatinian arc to the east. Geochemical results from volcanic products present in the basins show a typical subduction signal (calc-alkaline trend, low HFS/LILE ratio and Nb-Ta negative anomalies), while petrography indicate a wide compositional variation more than a bimodal distribution. These basins present half-graben geometries with the recognition of structural highs separating local depocenters. Kinematic analyses carried in synrift extensional faults show a bimodal distribution of the maximum strain axes from a NE-SW to a subordinate NW-SE direction of elongation. This bimodality could be related to the co-existence of two competing strain directions associated to the breakup of Pangea and the presence of a subducting slab. These results integrates the magmatic, sedimentary and tectonic record pointing to a subduction-related extensional basin model developed over a continental substratum. The recognition of this ancient examples are important to understand an actual underrepresented basin setting.

  4. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  5. Chapter 34: Geology and petroleum potential of the rifted margins of the Canada Basin

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.

    2011-01-01

    Three sides of the Canada Basin are bordered by high-standing, conjugate rift shoulders of the Chukchi Borderland, Alaska and Canada. The Alaska and Canada margins are mantled with thick, growth-faulted sediment prisms, and the Chukchi Borderland contains only a thin veneer of sediment. The rift-margin strata of Alaska and Canada reflect the tectonics and sediment dispersal systems of adjacent continental regions whereas the Chukchi Borderland was tectonically isolated from these sediment dispersal systems. Along the eastern Alaska-southern Canada margin, termed herein the 'Canning-Mackenzie deformed margin', the rifted margin is deformed by ongoing Brooks Range tectonism. Additional contractional structures occur in a gravity fold belt that may be present along the entire Alaska and Canada margins of the Canada Basin. Source-rock data inboard of the rift shoulders and regional palaeogeographic reconstructions suggest three potential source-rock intervals: Lower Cretaceous (Hauterivian-Albian), Upper Cretaceous (mostly Turonian) and Lower Palaeogene. Burial history modelling indicates favourable timing for generation from all three intervals beneath the Alaska and Canada passive margins, and an active petroleum system has been documented in the Canning-Mackenzie deformed margin. Assessment of undiscovered petroleum resources indicates the greatest potential in the Canning-Mackenzie deformed margin and significant potential in the Canada and Alaska passive margins. ?? 2011 The Geological Society of London.

  6. Post-carboniferous tectonics in the Anadarko Basin, Oklahoma: Evidence from side-looking radar imagery

    NASA Technical Reports Server (NTRS)

    Nielsen, K. C.; Stern, R. J.

    1985-01-01

    The Anadarko Basin of western Oklahoma is a WNW-ESE elongated trough filled with of Paleozoic sediments. Most models call for tectonic activity to end in Pennsylvanian times. NASA Shuttle Imaging Radar revealed a distinctive and very straight lineament set extending virtually the entire length of the Anadarko Basin. The lineaments cut across the relatively flat-lying Permian units exposed at the surface. The character of these lineaments is seen most obviously as a tonal variation. Major streams, including the Washita and Little Washita rivers, appear to be controlled by the location of the lineaments. Subsurface data indicate the lineaments may be the updip expression of a buried major fault system, the Mountain View fault. Two principal conclusions arise from this analysis: (1) the complex Mountain View Fault system appears to extend southeast to join the Reagan, Sulphur, and/or Mill Creek faults of the Arbuckle Mountains, and (2) this fault system has been reactivated in Permian or younger times.

  7. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India

    NASA Astrophysics Data System (ADS)

    Nair, Nisha; Pandey, Dhananjai K.

    2018-02-01

    Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.

  8. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance

    NASA Astrophysics Data System (ADS)

    Berra, F.; Felletti, F.

    2011-04-01

    The Lower Permian succession of the Central Southern Alps (Lombardy, Northern Italy) was deposited in fault-controlled continental basins, probably related to transtensional tectonics. We focussed our study on the stratigraphic record of the Lower Permian Orobic Basin, which consists of a 1000 m thick succession of prevailing continental clastics with intercalations of ignimbritic flows and tuffs (Pizzo del Diavolo Formation, PDV) resting on the underlying prevailing pyroclastic flows of the Cabianca Volcanite. The PDV consists of a lower part (composed of conglomerates passing laterally to sandstones and distally to silt and shales), a middle part (pelitic, with carbonates) and an upper part (alternating sandstone, silt and volcanic flows). Syndepositional tectonics during the deposition of the PDV is recorded by facies distribution, thickness changes and by the presence of deformation and liquefaction structures interpreted as seismites. Deformation is recorded by both ductile structures (ball-and-pillow, plastic intrusion, disturbed lamination, convolute stratification and slumps) and brittle structures (sand dykes and autoclastic breccias). Both the sedimentological features and the geodynamic setting of the depositional basin confidently support the interpretation of the described deformation features as related to seismic shocks. The most significant seismically-induced deformation is represented by a slumped horizon (about 4 m thick on average) which can be followed laterally for more than 5 km. The slumped bed consists of playa-lake deposits (alternating pelites and microbial carbonates, associated with mud cracks and vertebrate tracks). The lateral continuity and the evidence of deposition on a very low-angle surface along with the deformation/liquefaction of the sediments suggest that the slump was triggered by a high-magnitude earthquake. The stratigraphic distribution of the seismites allows us to identify time intervals of intense seismic activity, which correspond to rapid and basin-wide changes in the stratigraphical architecture of the depositional basin and/or to the reprise of the volcanic activity. The nature of the structures and their distribution suggest that the magnitude of the earthquakes responsible for the observed structures was likely higher than 5 (in order to produce sediment liquefaction) and probably reached intensity as high as 7 or more. The basin architecture suggests that the foci of these earthquakes were located close to the fault-controlled borders of the basin or within the basin itself.

  9. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    USGS Publications Warehouse

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  10. New insight on the recent tectonic evolution and uplift of the southern Ecuadorian Andes from gravity and structural analysis of the Neogene-Quaternary intramontane basins

    NASA Astrophysics Data System (ADS)

    Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J. M.

    2016-10-01

    The sedimentary basins of Loja, Malacatos-Vilcabamba and Catamayo belong to the Neogene-Quaternary synorogenic intramontane basins of South Ecuador. They were formed during uplift of the Andes since Middle-Late Miocene as a result of the Nazca plate subduction beneath the South American continental margin. This E-W compressional tectonic event allowed for the development of NNE-SSW oriented folds and faults, determining the pattern and thickness of sedimentary infill. New gravity measurements in the sedimentary basins indicate negative Bouguer anomalies reaching up to -292 mGal related to thick continental crust and sedimentary infill. 2D gravity models along profiles orthogonal to N-S elongated basins determine their deep structure. Loja Basin is asymmetrical, with a thickness of sedimentary infill reaching more than 1200 m in the eastern part, which coincides with a zone of most intense compressive deformation. The tectonic structures include N-S, NW-SE and NE-SW oriented folds and associated east-facing reverse faults. The presence of liquefaction structures strongly suggests the occurrence of large earthquakes just after the sedimentation. The basin of Malacatos-Vilcabamba has some folds with N-S orientation. However, both Catamayo and Malacatos-Vilcabamba basins are essentially dominated by N-S to NW-SE normal faults, producing a strong asymmetry in the Catamayo Basin area. The initial stages of compression developed folds, reverse faults and the relief uplift determining the high altitude of the Loja Basin. As a consequence of the crustal thickening and in association with the dismantling of the top of the Andes Cordillera, extensional events favored the development of normal faults that mainly affect the basins of Catamayo and Malacatos-Vilcabamba. Gravity research helps to constrain the geometry of the Neogene-Quaternary sedimentary infill, shedding some light on its relationship with tectonic events and geodynamic processes during intramontane basin development.

  11. Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Wu, Xiaozhi

    2014-05-01

    The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.

  12. New Radar Altimeter Missions are Providing a Dramatically Sharper Image of Global Marine Tectonics

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Müller, D.; Garcia, E.; Matthews, K. J.; Smith, W. H. F.; Zaron, E.; Zhang, S.; Bassett, D.; Francis, R.

    2015-12-01

    Marine gravity, derived from satellite radar altimetry, is a powerful tool for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. The ability to infer seafloor tectonics from space was first demonstrated in 1978 using Seasat altimeter data but the spatial coverage was incomplete because of the short three-month lifetime of the satellite. Most ocean altimeters have repeat ground tracks with spacings of hundreds of kilometers so they do not resolve tectonic structures. Adequate altimeter coverage became available in 1995 when the United States Navy declassified the Geosat radar altimeter data and the ERS-1 altimeter completed a 1-year mapping phase. These mid-1990's altimeter-derived images of the ocean basins remained static for 15 years because there were no new non-repeat altimeter missions. This situation changed dramatically in 2010 when CryoSat-2, with its advanced radar altimeter, was launched into a non-repeat orbit and continues to collect data until perhaps 2020. In addition the Jason-1 altimeter was placed into a 14-month geodetic phase at the end of its lifetime. More recently the 1.5 times higher precision measurements from the AltiKa altimeter aboard the SARAL spacecraft began to drift away from its 35-day repeat trackline. The Chinese HY-2 altimeter is scheduled to begin a dense mapping phase in early 2016. Moreover in 2020 we may enjoy significantly higher resolution maps of the ocean basins from the planned SWOT altimeter mission with its advanced swath mapping ability. All of this new data will provide a much sharper image of the tectonics of the deep ocean basins and continental margins. During this talk we will tour of the new tectonic structures revealed by CryoSat-2 and Jason-1 and speculate on the tectonic views of the ocean basins in 2020 and beyond.

  13. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences active folding of the Rajang Group fold-thrust belt to present and these events reactivated old major faults and minor related dislocations. From geomorphic analysis associated with sedimentary record, we posit that the terrain could have undergone high uplift rates since 5 Ma or multi-phased uplift with periodic intermittent pulses of high and low uplift rates.

  14. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan.

    PubMed

    Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane

    2014-10-01

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center.

  15. Late-Miocene thrust fault-related folding in the northern Tibetan Plateau: Insight from paleomagnetic and structural analyses of the Kumkol basin

    NASA Astrophysics Data System (ADS)

    Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing

    2018-05-01

    Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.

  16. Integrating facies and structural analyses with subsidence history in a Jurassic-Cretaceous intraplatform basin: Outcome for paleogeography of the Panormide Southern Tethyan margin (NW Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-06-01

    We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.

  17. Recognized Multiple Rifts of the Neoproterozoic in the Initiation of the Tarim Craton (NW China) and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    He, B.; Jiao, C.; Huang, T.; Zhou, X.; Cai, Z.; Cao, Z.; Jiang, Z.; Cui, J.; Yu, Z.; Chen, W.

    2017-12-01

    The Tarim Basin is the largest, oil-bearing and superimposed basin in the northwest of China. The development and tectonic property of the initial Tarim basin have been acutely disputed and remain enigmatic. Urgently need to reveal the origin and formation dynamics of the Tarim Carton and evaluate the potential of the deep energy resources. However, covered by vast desert and huge-thickness sedimentary strata, suffered by multiple tectonic movements, seismic data with low signal- to- noise ratio in the deep are the critical difficulties. We analyse 4 field outcrops, 18 wells, 27 reprocessed seismic reflection profiles with high SNR across the basin and many ancillary ones and aeromagnetic data. We find about 20 normal fault-controlled rift depressions of the Cryogenian and Ediacaran scattered in the Tarim basin, which developed on the Precambrian metamorphic and crystalline basements and covered by the epeiric sea and basin facies sediments of the Lower Cambrian. The structural styles of the rifts are mainly half grabens, symmetrical troughs and horst-grabens. The regional differences exist obviously in spatial and temporal. The WNW-ESE-trending faults occur in the central part and northern of the basin and the NE, and the NEE-trending faults occur in the southern parts, which response with the anomaly of aeromagnetic. Some main faults of the Ediacaran inherited from the Cryogenian and some occurred newly, the more rifting depressions occurred during the Ediacaran. The extensional NNW-SSE-oriented and NNE-SSW-oriented paleostress field occurred simultaneously during rifting, and accompanied with the clockwise shearing. According to the activities of syn-sedimentary faults, magmatic events and sediments, the tectonic properties of the rifts are different depending on their locations in the Tarim craton. The rifting phases mainly occurred from 780 Ma to 615 Ma. The formation of rifts were associated with the opening of the South Tianshan Ocean and the South Altun-West Kunlun Oceans, which located at the north and south margin of the Tarim block, respectively, in response to break-up of the Rodinia supercontinent. The multiple rifts recognized reflect the fine-scale structure of the initiation of the Tarim craton and is the significant for understanding of the plate system and formation dynamics.

  18. Basin deconstruction-construction: Seeking thermal-tectonic consistency through the integration of geochemical thermal indicators and seismic fault mechanical stratigraphy ​- Example from Faras Field, North Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Pigott, John D.; Abouelresh, Mohamed O.

    2016-02-01

    To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.

  19. Sedimentation and tectonics of the Sylhet trough, Bangladesh

    USGS Publications Warehouse

    Johnson, S.Y.; Nur Alam, A.M.

    1991-01-01

    The Sylhet trough, a sub-basin of the Bengal Basin in northeastern Bangladesh, contains a thick fill (12 to 16 km) of late Mesozoic and Cenozoic strata that record its tectonic evolution. Stratigraphic, sedimentologic, and petrographic data collected from outcrops, cores, well logs, and seismic lines are used to reconstruct the history of this trough. -from Authors

  20. Geodynamical Nature of the Formation of Large Plates of Platforms, Jointed in North Caspian Oil and Gas Basin

    ERIC Educational Resources Information Center

    Seitov, Nassipkali; Tulegenova, Gulmira P.

    2016-01-01

    This article addresses the problems of tectonic zoning and determination of geodynamical nature of the formation of jointed tectonic structures within the North Caspian oil and gas basin, represented by Caspian Depression of Russian platform of East European Pre-Cambrian Craton and plate ancient Precambrian Platform stabilization and Turan…

  1. Investigation of lunar crustal structure and isostasy

    NASA Technical Reports Server (NTRS)

    Thurber, Clifford H.

    1987-01-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.

  2. Late Neogene and Active Tectonics along the Northern Margin of the Central Anatolian Plateau,TURKEY

    NASA Astrophysics Data System (ADS)

    Yildirim, C.; Schildgen, T. F.; Melnick, D.; Echtler, H. P.; Strecker, M. R.

    2009-12-01

    Margins of orogenic plateaus are conspicuous geomorphic provinces that archive tectonic and climatic variations related to surface uplift. Their growth is associated with spatial and temporal variations of mode and rate of tectonics and surface processes. Those processes can be strongly linked to the evolution of margins and plateaus thorough time. As one of the major morpho-tectonic provinces of Turkey, the Central Pontides (coinciding with the northern margin of the Central Anatolian Plateau (CAP)) display a remarkable topography and present valuable geologic and geomorphic indicators to identify active tectonics. Morpho-tectonic analysis, geological cross-sections, seismic profiles, and geodetic analysis reveal continuous deformation characterized by brittle faults from Late Miocene to recent across the northern margin of the CAP. In the Sinop Peninsula and offshore in the southern Black Sea, pervasive faulting and folding and uplift of Late Miocene to Quaternary marine deposits is related to active margin tectonics of the offshore southern Black Sea thrust and the onshore Balifaki and Erikli faults. In the Kastamonu-Boyabat sedimentary basin, the Late Miocene to Quaternary continental equivalents are strongly deformed by the Ekinveren Fault. This vergent inverse and thrust fault with overstepping en echelon segments deforms not only Quaternary travertines and conglomerates, but also patterns of the Pleistocene to Holocene drainage systems. In the southern Kastamonu-Boyabat basin, an antithetic thrust fault of the Ekinveren Fault system deformed also Quaternary fluviatile terrace deposits. Farther south, a dextral transpressive splay of the North Anatolian Fault (NAF) deforms pediment surfaces and forms the northern flank of the Ilgaz active mountain range. The Ilgaz Range rises up to 2587 m.a.s.l and is delimited by active segments of the NAF.The Central Pontides are located at the apex of northward convex arc of the NAF. Geodetic analysis indicate a deviation of the slip vectors and strain partitioning in the Central Pontides due to the large restraining bend geometry of the NAF. DEM analysis and field observations reveal that the Central Pontides integrate an active bivergent wedge, indicating out-of sequence thrusting and topographical asymmetry, with a gentle pro-wedge northern slope and a steep retro-wedge southern slopes, and regional surface tilting from south to north. Uplifted presumably Late Pleistocene to Holocene marine terraces 4 to 40 m.a.s.l. along the coast and well developed pediment and fill and strath terrace surfaces ranging from 10 to 300 m above along the Gokirmak and Kizilirmak rivers will provide chronological constraints on the uplift and incision rates of the study area.

  3. Geologic map of the Basque-Cantabrian Basin and a new tectonic interpretation of the Basque Arc

    NASA Astrophysics Data System (ADS)

    Ábalos, B.

    2016-11-01

    A new printable 1/200.000 bedrock geological map of the onshore Basque-Cantabrian Basin is presented, aimed to contribute to future geologic developments in the central segment of the Pyrenean-Cantabrian Alpine orogenic system. It is accompanied in separate appendixes by a historic report on the precedent geological maps and by a compilation above 350 bibliographic citations of maps and academic reports (usually overlooked or ignored) that are central to this contribution. Structural scrutiny of the map permits to propose a new tectonic interpretation of the Basque Arc, implementing previously published partial reconstructions. It is presented as a printable 1/400.000 tectonic map. The Basque Arc consists of various thrust slices that can expose at the surface basement rocks (Palaeozoic to Lower Triassic) and their sedimentary cover (uppermost Triassic to Tertiary), from which they are detached by intervening (Upper Triassic) evaporites and associated rocks. The slice-bounding thrusts are in most cases reactivated normal faults active during Meso-Cenozoic sedimentation that can be readily related to basement discontinuities generated during the Hercynian orogeny.

  4. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.

  5. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  6. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-01-01

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  7. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-12-31

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  8. Active shortening, intermontane basin formation, and geomorphic evolution in an orogenic plateau: Central Puna Plateau, NW Argentina (24°37'S, 67°03'W)

    NASA Astrophysics Data System (ADS)

    Strecker, Manfred R.; Alonso, Ricardo N.; Bookhagen, Bodo; Freymark, Jessica; Pingel, Heiko

    2017-04-01

    The high-elevation Andean Plateau (Altiplano-Puna; 4km) is a first-order morphotectonic province of the Central Andes and constitutes the world's second largest orogenic plateau. While there are many unifying basin characteristics in this region, including internal drainage, semi-arid to arid climate and associated deposition of evaporites, there are notable differences between the northern and southern parts of the plateau. In contrast to the vast basins of the Altiplano (north) and incipient establishment of fluvial connectivity and sediment transport to the foreland, the Puna (south) comprises numerous smaller basins, bordered by reverse-fault bounded ranges up to 6 km high. The plateau is internally drained and fluvial connectivity with the foreland does not exist leading to thick sedimentary basin fills that comprise continental evaporites, volcanic and clastic deposits, typically between 3 and 5 km thick. However, repeated impacts of climate change and superposed tectonic activity in the southern plateau have resulted in further basin differentiation, abandonment or re-arrangement of fluvial networks and impacts on sediment transport. Here we report evidence for sustained contractional tectonic activity in the Pocitos Basin in the southern plateau. On the western margin of the basin fanning of dipping strata and regraded, steeply inclined gravel-covered pediment surfaces and wind gaps associated with gravel derived from distant sources in the west document late Tertiary to Pleistocene growth of an approximately N-S oriented and N plunging anticline. The growth of the eastern limb of this anticline has caused the isolation of a formerly more extensive basin. In addition, Late Pleistocene and Holocene lake shorelines and lacustrine deposits are tilted eastward along the same structure and InSAR measurements of deformed lake terraces document that the fold is growing. Despite widely reported extensional faulting in the southern Puna, we conclude (1) that the central sectors of the plateau are deformed by active shortening, suggesting that the kinematic changeover from shortening to neotectonic extension on the plateau must be highly disparate in space and time; (2) sustained deformation within the plateau results in a high degree of basin compartmentalization, which impacts the fluvial network and re-distribution of sediments, leading to similar geomorphic and sedimentary processes, although highly disparate in space and time.

  9. Detrital zircon microtextures and U-PB geochronology of Upper Jurassic to Paleocene strata in the distal North American Cordillera foreland basin

    NASA Astrophysics Data System (ADS)

    Finzel, E. S.

    2017-07-01

    Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.

  10. Wrench tectonics in Abu Dhabi, United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, M.; Mohamed, A.S.

    1995-08-01

    Recent studies of the geodynamics and tectonic history of the Arabian plate throughout geologic time have revealed that Wrench forces played an important role in the structural generation and deformation of Petroleum basins and reservoirs of the United Arab Emirates. The tectonic analysis of Abu Dhabi revealed that basin facies evolution were controlled by wrench tectonics, examples are the Pre-Cambrian salt basin, the Permo-Triassic and Jurassic basins. In addition, several sedimentary patterns were strongly influenced by wrench tectonics, the Lower Cretaceous Shuaiba platform margin and associated reservoirs is a good example. Wrench faults, difficult to identify by conventional methods, weremore » examined from a regional perspective and through careful observation and assessment of many factors. Subsurface structural mapping and geoseismic cross-sections supported by outcrop studies and geomorphological features revealed a network of strike slip faults in Abu Dhabi. Structural modelling of these wench forces including the use of strain ellipses was applied both on regional and local scales. This effort has helped in reinterpreting some structural settings, some oil fields were interpreted as En Echelon buckle folds associated with NE/SW dextral wrench faults. Several flower structures were interpreted along NW/SE sinistral wrench faults which have significant hydrocarbon potential. Synthetic and Antithetic strike slip faults and associated fracture systems have played a significant role in field development and reservoir management studies. Four field examples were discussed.« less

  11. Cenozoic tectonic events at the border of the Paraná Basin, São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, A. J.; Amaral, G.

    2002-03-01

    In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo. The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map. The study area, during the Cenozoic, has been affected by five strike-slip tectonic events, which generated mainly strike-slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE-SW, E-W, NW-SE, N-S, and NNE-SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike-slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.

  12. The Bowland Basin, NW England: Base metal mineralisation and its relationship to basin evolution

    NASA Astrophysics Data System (ADS)

    Gaunt, Jonathan Mark

    The Bowland Basin of NW England is a Carboniferous half graben. The Basin was initiated in the Devonian and actively extended during the Carboniferous until the late Westphalian. From the late Westphalian to the early Permian the Bowland Basin underwent inversion in response to Hercynian collision tectonics. Renewed subsidence commenced in the Permian and continued until inversion in the Cenozoic. The sedimentary succession of the Bowland Basin is dominated by Carboniferous strata, but some Permo-Triassic strata are present. The basal sedimentary succession may be comprised of Devonian to early Dinantian syn-rift clastics. The main Dinantian succession is comprised of interbedded limestones, calcareous mudstones and clastic strata. The Dinantian strata include the Waulsortian-facies Clitheroe Limestone and the Limekiln Wood Limestone, both of which host mineralisation. The overlying Namurian is comprised of shales and sandstones. The diagenetic history of the Limekiln Wood Limestone and Waulsortian-facies Clitheroe Limestone in the Cow Ark-Marl Hill Moor district is a function of changes in the burial environment during the Carboniferous. Both exhibit a pre-basin inversion diagenetic sequence that changes with time from shallow to moderate burial depth cements. Late Carbonifeous basin inversion resulted in the formation of tectonic stylolites. Tectonic stylolitisation was postdated by dolomitisation and silicification. Dolomitisation and silicification are suggested to have taken place in the deep burial environment. The base metal mineralisation studied in this work comes from the Cow Ark- Marl Hill Moor district, which is sited on the present basin inversion axis. Mineralisation occurs as four distinct episodes (Period 1, Period 2, Period 3 and Post-Period 3) within a complex multigeneration vein suite. The vein suite, which postdates tectonic stylolitisation and hence end-Carboniferous basin inversion, is comprised of calcite, baroque dolomite, baroque ankerite and siderite. The veins, which are often spatially associated with faults, exhibit a variety of morphologies, and are largely hosted by hydraulic shear fractures. Compositional variations between the different vein carbonates occur with time and the calcites, baroque dolomites, baroque ankerites and siderites are interpreted to have had several different fluid sources. Fluids precipitating siderite, baroque dolomite and baroque ankerite may have been produced by clay mineral transformations and decarboxylation of organic matter within the calcareous strata. The multiple vein calcite generations belong to three MnO:FeO compositional classes, each occupying a specific paragenetic position. The trend from ferroan to manganoan calcite with time may be a consequence of calcite-forming fluids being derived from successively shallower depths within the sedimentary succession, or of increased permeation by meteoric fluids. (Abstract shortened by ProQuest.).

  13. Forearc Basin Location Originating From Tectonic Inversion Along an old Ophiolite Suture : the Gulf of Guayaquil-Tumbes Basin (Ecuador-Peru Border)

    NASA Astrophysics Data System (ADS)

    Bourgois, J.; Witt, C.

    2008-12-01

    The Gulf of Guayaquil-Tumbes basin (GGTB) located along the Andean forearc (Ecuador-Peru border) developed in the tectonic wake of the coastwise, northward migrating North Andean block (NAB). The Industrial multichannel seismic and well data (Witt and Bourgois, in press) document that E-W trending low- angle (10-20°) detachment normal faults accommodated the main basin subsidence steps during the Late Pliocene-Quaternary times (1.8-1.6 Ma to Present). It includes the Posorja Jambeli and the northward dipping Tumbes Zorritos detachment systems (PJDS and TZDS) located respectively along the northern and southern edge of the basin. A major transfer system, the N-S trending Inner Domito Banco Peru fault system bounds the detachment systems to the West. The right lateral transcontinental strike-slip system of the Dolores Guayaquil Megashear bounds the basin to the East. Since the PJDS and TZDS extend 80 to 120 km at seafloor they must penetrate the brittle continental crust, far below the 6-8 km thick sediment accumulation at basin depocenters. We assume that detachments extend deep into the 8-10 km thick brittle crust down to the Nazca-South America plate interface at less than ~20 km beneath sea bottom at site. The active TZDS, which connects landward with the continental structures assumed to be part of the eastern frontier of the NAB is the master detachment fault system controlling the basin evolution through time. Gravimetric and geologic data show that depocenters are located along the 80-60 Ma obduction bounding at depth the Cretaceous ophiolite of northern Andes from the westward underthrusted South America continental basement (Bourgois et al., 1987). Because inference suggests the obduction megathrust to branch upward to the TZDS, we hypothesized that tectonic inversion occurred along the ophiolite suture during the GGTB evolution, at least for the past 1.8-1.6 Myr. The 80-60 Ma ophiolite suture is an old zone of weakness, which reactivation from the NAB northward drift controlled the GGTB location. Bourgois, J., Toussaint, J-F, Gonzales, H., Azema, J., Calle, B., Desmet, A., Murcia L.A., Acevedo, A.P., Parra, E., and Tournon, J., 1987, Geological history of the Cretaceous ophiolitic complexes of Northwestern South America (Colombia Andes): Tectonophysics, v. 143, p. 307-327. Witt, C. and Bourgois, J., Forearc basin formation in the tectonic wake of a collision-driven, coastwise migrating crustal block: the example of the North Andean block and the extensional Gulf of Guayaquil-Tumbes basin (Ecuador-Peru border area): Geological Society of America Bulletin, in press.

  14. The morphology and nature of the East Arctic ocean acoustic basement

    NASA Astrophysics Data System (ADS)

    Rekant, Pavel

    2017-04-01

    As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.

  15. Géodynamique et évolution thermique de la matière organique: exemple du bassin de Qasbat-Tadla, Maroc centralBasin geodynamics and thermal evolution of organic material: example from the Qasbat-Tadla Basin, central Morocco

    NASA Astrophysics Data System (ADS)

    Er-Raïoui, H.; Bouabdelli, M.; Bélayouni, H.; Chellai, H.

    2001-05-01

    Seismic data analysis of the Qasbat-Tadla Basin allows the deciphering of the main tectonic and sedimentary events that characterised the Hercynian orogen and its role in the basin's structural development. The global tectono-sedimentary framework involves structural evolution of an orogenic foreland basin and was the source of rising geotherms in an epizonal metamorphic environment. The complementary effects of these parameters has led to different source rock maturity levels, ranging from oil producing to graphite domains. Different maturity levels result from three distinct structural domains within the basin, each of which exhibit characteristic geodynamic features (tectonic contraints, rate of subsidence, etc.).

  16. Origin of the Dongsha Event in the South China Sea

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyuan; Sun, Longtao; Pang, Xiong; Zheng, Jinyun; Sun, Zhen

    2017-12-01

    Post-rift tectonic activities have been widely observed in the northern continental margin of the South China Sea, especially during the late Miocene. Large numbers of faults became active. Unconformities, uplift of faulted blocks, sequence tilting, erosion along the Dongsha massif and canyon incision were also discriminated at this stage in the Pearl River Mouth basin (PRMB) and the area to the east. This tectonism has been named Dongsha Event. A number of hypotheses have been put forward to explain the mechanism of the Dongsha Event, such as high-velocity lower crustal flow, magmatic underplating, and arc-continent collision. To investigate the tectonic dynamics, sequence contact relationships, fault activities, and magmatism were analyzed along large numbers of seismic profiles that cover the eastern PRMB and Southwest Taiwan Basin. The timing, affected regions, and differences in the intensity of tectonic deformation were assessed, upon which the plate bending model was favored. In order to check the reasonableness of plate bending model, effective elastic thickness and other geodynamic parameters were calculated constrained by uplift area width and regarding the trench as sediment filling. A maximum Te value of 27 km and a minimum value of 4 km were obtained. Integrating with the former stress field calculation, we conclude that the Dongsha Event was mainly affected by subduction and collision of the South China Sea toward the Philippine Sea plate. This event commenced at about 10 Ma and peaked at around 3.6 Ma. Although the high effective elastic thickness required is a problem to be addressed, this research provides by far the most comprehensive evidences to the mechanism of the Dongsha Event.

  17. Post-orogenic evolution of mountain ranges and associated foreland basins: Initial investigation of the central Pyrenees

    NASA Astrophysics Data System (ADS)

    Bernard, Thomas; Sinclair, Hugh; Ford, Mary; Naylor, Mark

    2017-04-01

    Mountain topography, including surrounding foreland basins, results from the long-term competition between tectonic and surface processes linked to climate. Numerous studies on young active mountain ranges such as the Southern Alps, New Zealand and Taiwan, have investigated the interaction between tectonics, climate and erosion on the topographic landscape. However most of the mountain ranges in the world are in various stages of post-orogenic decay, such as the European Alps, Urals, Caledonides, Appalachians and Pyrenees. The landscape evolution of these decaying mountains, which involve relatively inactive tectonics, should appear simple with progressive and relatively uniform erosion resulting in a general lowering of both elevation and topographic relief. However, in a number of examples, post-orogenic systems suggest a complex dynamism and interactions with their associated foreland basins in term of spatio-temporal variations in erosion and sedimentary flux. The complexity and transition to post-orogenesis is a function of multiple processes. Underpinning the transition to a post-orogenic state is the competition between erosion and crustal thickening; the balance of these processes determines the timing and magnitude of isostatic rebound and hence subsidence versus uplift of the foreland basin. It is expected that any change in the parameters controlling the balance of erosion versus crustal thickening will impact the topographic evolution and sediment flux from the mountain range and foreland basin to the surrounding continental margin. This study will focus on the causes and origins of the processes that define post-orogenesis. This will involve analyses of low-temperature thermochronological and topographic data, geodynamical modelling and sedimentological analyses (grainsize distribution). The Pyrenees and its associated northern retro-foreland basin, the Aquitaine basin, will form the natural laboratory for the project as it is one of the best documented mountain range/foreland basin systems in the world. Initial results of a review of the low-temperature thermochronological data using inverse modelling, illustrates the asymmetric exhumation of the mountain range, and the diachronous timing of decelerated exhumation linked to the transition to post-orogenesis. This study is part of the Orogen project, an academic-industrial collaboration (CNRS-BRGM-TOTAL).

  18. Characterizing land subsidence mechanisms as a function of urban basin geohazards using space geodesy

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.

    2016-12-01

    Land subsidence in urban basins will likely become a more significant geohazard in many of the global sedimentary basins as population growth, resource availability, and climate change compound natural and anthropogenic contributors that influence basin elevation. Coastal basins are at the greatest risk where land subsidence is additive to sea level rise, thereby increasing the rate of exposure to coastal populations. Land surface elevation change is a function of many different parameters, including: elastic and inelastic surface response to managed and natural groundwater levels; anthropogenic activities (hydrocarbon extraction, wastewater injection, fracking, geothermal production, and mass redistribution); local tectonic deformation and regional tectonic drivers (such as repeated uplift and subsidence cycles above subduction zones); climate change (influencing the timing, magnitude, nature and duration of seasonal/annual precipitation and permafrost extent); material properties of the basin sediments (influencing susceptibility to soil compaction, oxidization, and dissolution); post glacial rebound; isostatic flexure associated with sea-level and local mass changes; and large scale gravitational processes (such as growth faults and landslides). Geodetic measurements, such as InSAR and GPS, help track spatial and temporal changes in both relative and absolute basin elevation thereby helping to characterize the mechanism(s) driving the geohazards. In addition to a number of commercial radar satellites, European Space Agency's Sentinel-1a/b satellites are beginning to provide a wealth of data over many basin targets with C-band (5.5 cm wavelength). The NISAR (NASA-ISRO Synthetic Aperture Radar) L-band (24 cm wavelength) mission (anticipated 2021 launch) will image nearly every basin globally every 12 days and data from the mission will help characterize land subsidence and many other solid-Earth and hydrologic geohazards that impact urban basins.

  19. Investigation of lunar crustal structure and isostasy. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurber, C.H.

    1987-07-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. Themore » present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.« less

  20. Increased sedimentation following the Neolithic Revolution in the Southern Levant

    NASA Astrophysics Data System (ADS)

    Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel

    2017-05-01

    The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.

  1. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    NASA Astrophysics Data System (ADS)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western segment border fault should be a pure thrust; (5) uplift along the northern and central segments may point out to the presence of a salt diapir at depth, aiding vertical movement and local uplift of the structure; (6) geometry of seismic units of the neighboring basins is consistent with halokinesis related to the antiform growth during the Jurassic; (7) sedimentary filling of the neighbouring basins shows relationship to antiform development and growth into a structural high before the Late Miocene Alpine event. These data suggest that: (1) pre-existing basement faults and their reactivation played important role on the development of Montejunto complex tectonic structure; (2) important vertical movements occurred as the result of regional and local (diapir) tectonics; (3) subsidence in neighbouring basins may have promoted maturation, and possible targets with strong potential for hydrocarbon trapping and accumulation may have also developed; (4) diapir tectonics initiated before the Cretaceous; (5) given the topography, and the geometry and inferred kinematics of all segments, it seems that the Montejunto structure formed in a restraining bend controlled by inherited late-Variscan basement faults.

  2. Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.

    PubMed

    Laxon, S; McAdoo, D

    1994-07-29

    The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.

  3. Bathymetry of the Levant basin: interaction of salt-tectonics and surficial mass movements

    NASA Astrophysics Data System (ADS)

    Gvirtzman, Zohar; Reshef, Moshe; Buch-Leviatan, Orna; Groves-Gidney, Gavrielle; Karcz, Zvi; Makovsky, Yizhaq; Ben-Avraham, Zvi

    2015-04-01

    A new high resolution bathymetric map of the Levant Basin between Israel and the Eratosthenes Seamount reveals previously undetected folds, faults and channels. The map facilitates a regional map-view analysis of structures that were previously examined only in cross section. The systematic mapping of morpho-structural elements in the entire basin is followed by a kinematic interpretation that distinguished between two main processes sculpting the seabed from bottom and top: salt tectonics and sediment transport. We show that the contractional domain related to salt tectonics is far more complex than previously thought. Ridges, previously interpreted as contractional folds are, in fact, surficial undulations of the seabed reminiscent of sediment waves. Moreover, other folds previously interpreted as downdip contraction of the westward gliding Plio-Quaternary section are, in some parts of the basin, caused by updip climbing of this section eastwards as a result of the regional pattern of salt flow away from the Nile Cone. In the context of sediment transport, we show that the northern Sinai continental slope is covered by a dense net of turbidite channels, whereas the Levant slope has no channels at all. Particularly interesting is the Levant Turbidite Channel, described and named here for the first time. This feature begins at the southeastern corner of the Mediterranean at water depths of ~1100 m, continues along the valley between the Sinai and Levant slopes, and reaches the deepest part of the basin, in water depths of ~2500 m, northeast of the Eratosthenes seamount. However, this prominent feature cannot be explained by the current drainage, consisting of two minor rivers that enter the basin at that point, and thus most likely reflects periods of wetter climate and/or lower sea-level, when these rivers were more active and possibly connected to the submarine channel system.

  4. Sedimentary record of late Paleozoic to Recent tectonism in central Asia — analysis of subsurface data from the Turan and south Kazak domains

    NASA Astrophysics Data System (ADS)

    Thomas, J. C.; Cobbold, P. R.; Shein, V. S.; Le Douaran, S.

    1999-11-01

    The Turan and south Kazak domains (TSK) are in central Asia, between the Caspian Sea and the Tien Shan. The area is covered by sediments, deposited since the Late Permian during a series of tectonic events closely related to the history of two oceanic domains, Paleotethys and Neotethys. Sedimentary basins on the TSK therefore provide constraints on the tectonic development of the southern margin of Eurasia since the Late Permian. Our study is based on structure-contour maps and isopach maps of five key stratigraphic markers, of Late Permian to Tertiary age. Isopach maps help locate major faults and delimit sedimentary basins, providing information on vertical motions and, in some instances, horizontal motions. Subsidence associated with extension appears to have dominated the TSK, from the Late Permian to the Eocene. The extension may have been of back-arc type in southern Eurasia, next to the active margin, where the Paleotethys and Neotethys successively subducted toward the north. Here, sedimentary basins are both wide and deep (up to 15 km). During the Mesozoic, two compressional events of regional significance occurred in association with accretion of continental blocks at the southern margin of Eurasia. The first one, at the end of the Triassic, led to strong selective inversion of basins over the Turan domain. The second one, during the Late Jurassic-Early Cretaceous, had weaker effects. Since the Oligocene, following collision of both India and Arabia with Eurasia, inversion has become more generalized and compressional basins have formed on the TSK. Throughout the entire history of development of the TSK, from the Late Permian to the Tertiary, structures of Paleozoic and early Mesozoic age have exerted a strong control on sedimentation and especially on the location of depocenters. The south Kazak domain has registered little subsidence, in comparison with the Turan domain, where some basins have become very deep.

  5. Relationships between sinkholes areal distribution and main tectonic alignments in Abruzzo (Central Italy)

    NASA Astrophysics Data System (ADS)

    Ferrini, G.; Moretti, A.; De Rose, C.; Stagnini, E.,; Serafini, M.

    2012-04-01

    Intermountain basins, developed at the back side of the Apennines overturning front, are the most evident morphological expressions of extensional tectonics in Central Italy and can be recognized in many different sections of the chain. L'Aquila basin and the adjoining Subequana valley are part of a single NW-SE elongated depression (about 60 km long) which began to develop about in the early Quaternary in response to the identification of various regional extensional tectonic alignments and the consequent starting of the basin subsidence. This impressive morphological element is characterized by the presence of several large funnel-shaped features (locally named Fosse = trench) which affect mainly the Meso-Cenozoic carbonatic bedrock but also the Neogenic clastic sedimentary filling of the valley. Some of these last elements are often occupied by ponds or significant artesian water resurgences like the Sinizzo Lake where, during L'Aquila earthquake of April 6th 2009, the shores collapsed and strong microseismic activity, deep rumbles and flow rate changes were reported for the following months. The Fosse mapped in the L'Aquila basin have widths in the order of hundreds of meters, a considerable difference of elevation respect the rims and present a general morphology very close to that of the classic dissolution karst sinkholes. Their evolution/localization is strictly related to the active fault systems which controls also the main tracts of the relief; the low volume of residual sedimentary deposits within the depression, not comparable with the total volume of rock removed, indicates that surface karst dissolution phenomena are absent or secondary. The elevations of the floor of many Fosse are higher respect the actual flood plain depending on their age; in fact relict circular forms, recognizable at upper altitude on the relief slope, confirm that the phenomenon has been active for a considerable period of time. About the genesis of this features, even if at present there is no evidence of hydrothermal activity or gas diffusion, morphological and geostructural analogy with the hydrothermal field of San Vittorino (Rieti) suggest dissolution processes related to the rising of underground mineralized fluids (piping) and a subsequent collapse phase, in a classic sink-hole evolutionary model. To note the areal distribution of these elements developed in a narrow band , WNW-ESE oriented, running for about 40 km parallel back to the tectonic front of the Gran Sasso and coinciding, with good approximation, to the seismogenic source of the earthquake of April 6th 2009 and of the major historical earthquakes which hit the region. Geophysical survey carried out after the last strong seismic event pointed out the presence of large hidden cavities developed in the Neogene sedimentary filling of the L'Aquila basin confirming that the phenomenon cannot be considered exhausted; then a geochemical mapping of the all area is started to identify suitable sites for monitoring fluid in relation to seismic activity and to evaluate the risk of potential, sudden phenomena of gravitational collapse.

  6. Basement inheritance and salt tectonics in the SE Barents Sea: Insights from new potential field data

    NASA Astrophysics Data System (ADS)

    Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.

    2017-12-01

    The tectonic evolution of the former `grey zone' between Russia and Norway has so far remained poorly constrained due to a lack of geophysical data. In 2014, we carried out a new aeromagnetic survey (BASAR-14) in the southern part of the new Norwegian offshore territory. Caledonian and Timanian structures, highlighted by the new potential field data, dominate the basement patterns and have exerted a strong influence on the structure and development of the overlying basins and basement highs. Clearly associated with NW-SE-oriented Timanian trends, the Tiddlybanken Basin represents an atypical sag basin that developed at the southern edge of the Fedynsky High. Regional extension and rapid sedimentation initiated the salt tectonics in the Barents Sea in the Early Triassic. Some of the pillows became diapiric during the Early Triassic and rejuvenated during subsequent Jurassic-Tertiary episodes of regional extension and/or compression. At present, quite a few large diapiric salt domes along the Nordkapp and Tiddlybanken basins are relatively shallow, locally reaching the seabed and thus show a clear bathymetric and magnetic signature. Quantitative modelling along 2D seismic transects was also carried out to constrain the structural and basement composition of the study area. The predominant NE-SW Mesozoic trend of the Nordkapp Basin represents a major crustal hinge zone between the Finnmark Platform, poorly affected by major crustal deformation, and the Bjarmeland Platform where Late Palaeozoic rifting controlled the widespread accumulation of salt deposits in Late Carboniferous-Early Permian time. The entire structure and segmentation of the Nordkapp Basin have been influenced by the inherited basement configuration highlighted by the new aeromagnetic data. Both the Nordkapp and the Tiddlybanken basins appear to lie at the edge of a peculiar thick and rigid crustal feature that coincides with a highly magnetic region. The abrupt termination of the eastern Nordkapp Basin at the edge of this magnetic domain suggests the presence of an old and thick Precambrian continental block. This magnetic and tectonic buffer controlled the Late Palaeozoic-Mesozoic rifting and the salt tectonic development of the southeastern Barents Sea.

  7. Development of multiple unconformities during the Devonian-Carboniferous transition on parts of Laurussia

    USGS Publications Warehouse

    Ettensohn, F.R.; Pashin, J.C.

    1997-01-01

    The Devonian-Carboniferous transition on Laurussia was a time of diverse geologic activity associated with the assembly of Pangea, including episodes of Late Devonian glacial-eustatic lowstand and active orogeny on four margins. Six widespread unconformities are present in the Devonian-Carboniferous (Mississippian) interval on southern parts of Laurussia. We suggest that attention to the timing and plan of the unconformities may provide ways of discerning tectonic and climatic controls on their respective origins. Indeed, unconformities generated by pure eustasy are ideally of interregional extent, whereas unconformities generated by tectonism reflect more local factors associated with the evolution of sedimentary basins. Each of the six unconformities analyzed provides evidence for concurrent eustasy and tectonism. Glaciation was apparently the dominant factor driving the development of unconformities during the latest Devonian. During the Early Carboniferous, however, the volume of glacial ice available to drive eustasy was limited and, at times, tectonism may have been the source of a subordinate eustatic signal. Development of unconformities in southern Laurussia appear to be local manifestations of tectonic and climatic processes associated with supercontinent assembly. Thus, the time may be at hand for construction of a new global stratigraphic paradigm that is based on the plate tectonic supercycle affecting continentality and climate.

  8. Kasei Vallis of Mars: Dating the Interplay of Tectonics and Geomorphology

    NASA Technical Reports Server (NTRS)

    Wise, D. U.

    1985-01-01

    Crater density age dates on more than 250 small geomorphic surfaces in the Kasei Region of Mars show clusterings indicative of times of peak geomorphic and tectonic activity. Kasei Vallis is part of a 300 km wide channel system breaching a N-S trending ancient basement high (+50,000 crater age) separating the Chryse Basin from the Tharsis Volcanic Province of Mars. The basement high was covered by a least 3 groups of probable volcanic deposits. Major regional fracturing took place at age 4,000 to 5,000 and was immediately followed by deposition of regional volcanics of the Fesenkov Plains (age 3,000 to 4,200). Younger clusterings of dates in the 900 to 1,500 and 500 to 700 range represent only minor modification of the basic tectonic geomorphic landform. The data suggest that Kasei gap is a structurally controlled breach of a buried ridge by a rather brief episode of fluvial activity.

  9. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins

    NASA Astrophysics Data System (ADS)

    Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo

    1999-04-01

    The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.

  10. Evolution of fore-arc and back-arc sedimentary basins with focus on the Japan subduction system and its analogues

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tatsuya; Matenco, Liviu; Nader, Fadi Henri

    2017-07-01

    The International Lithosphere Program (ILP) seeks to elucidate the nature, dynamics, origin and evolution of the lithosphere through international, multidisciplinary geoscience research projects and coordinating committees (Cloetingh and Negendank, 2010). The focus of the Task Force VI Sedimentary Basins activities is to foster collaborations between academia, research institutes and industry in all domains relevant for the understanding of sedimentary basins, from regional to nano-scale, from the deep earth to near surface processes (e.g., Roure et al., 2010, 2013). In this activity, it is important to develop and validate novel concepts of sedimentary basin evolution and topography building by incorporating geological/geophysical datasets and methodologies applied to worldwide natural laboratories (Cloetingh et al., 2011; Cloetingh and Willett, 2013; Matenco and Andriessen, 2013). The Task Force aims to understand and predict the processes that control the formation and evolution of the coupled orogens and sedimentary basins system through integration of field studies, analytical techniques and numerical/analogue modelling. At the same time, the Task Force aims to promote research in the domain of sedimentary basins evolution and quantitative tectonics for the study of mountain building and the subsequent extensional collapse, and their quantitative implications for vertical motions on different temporal and spatial scales (Gibson et al., 2015; Matenco et al., 2016; Roure, 2008; Seranne et al., 2015). The implications of tectonics on basin fluids (fluid-flow and rock-fluid interactions) are important to understand and predict geo-resources (e.g., Nader, 2016). Important is to initiate innovative research lines in linking the evolution of sedimentary systems by integrating cross-disciplinary expertise with a focus on integrated sedimentary basins and orogenic evolution. The key is to strengthen the synergy between academic research and applied industry in large (inter)national interdisciplinary research networks able to tackle complex problems at integrated system level.

  11. Tectonic stages in Southern Greater Caucasus and Adjara Trialeti belt in Georgia: new results on timing and structures of inverted basins

    NASA Astrophysics Data System (ADS)

    Candaux, Zoé; Sosson, Marc; Adamia, Shota; Sadradze, Nino; Alania, Victor; Enukidze, Onise; Chabukiani, Alexandre

    2017-04-01

    The Greater Caucasus mountain belt is the result of a long live subduction process and collisions of continental microplates (e.g. Dercourt et al., 1986; Barrier and Vrielynck, 2008). The northward subduction of Tethys beneath Eurasian plate initiated a back-arc basin: the Greater Caucasus basin (e.g. Adamia et al., 1981; Zonenshain and Le Pichon, 1986; Roberston et al., 1996; Stephenson and Schellart, 2010 among others). It took place from Middle Jurassic to Late Cretaceous. First compression stage started at the end of Cretaceous in the Lesser Caucasus (e.g. Rolland et al., 2010; Sosson et al. 2010, 2016) and Palaeocene-early Eocene in Crimean Mountains (northwestern continuation of the Greater Caucasus) (Sheremet et al., 2016). In southern Greater Caucasus (Georgian area) the age of deformation during the beginning of the collision is still a subject of debate: Oligocene-Lower Miocene at the frontal part (e.g. Adamia et al. 2010) or Eocene (Mosar et al., 2010). The deformation continues at Miocene, Pliocene and actual time in Kura and Rioni foreland basins (Forte et al., 2010; 2013; Mosar et al., 2010). The different timing is interpreted to be the result of the Taurides-Anatolides-South Armenian microcontinent collision with Eurasia, followed by the collision with Arabia. During the first collision, during Paleocene-Eocene, the so-called Adjara-Trialeti basin opened north of the volcanic arc. One question is if this local extension affect the timing of compression observed in the Greater Caucasus or not. In Georgia, we investigated new structural analyses, and considered unconformities and growth strata at the frontal part of deformations in Kura and Rioni forelands basins (in front of the Greater Caucasus). Our results evidence different tectonic stages and their timing. In Adjara-Trialeti, Kura and south Rioni basins deformation starts at Middle-Late Miocene. In northern Rioni basin Upper Cretaceous-Lower Paleocene compression is evidenced. The structures observed in the Greater Caucasus, forelands basins (Kura and Rioni basins) and in the Adjara-Trialeti belt are different: some are linked to thin-skinned tectonic deformations while some induces deformation at depth (thick-skinned tectonic). These observations outline the role of the inherited structures within the basement. The normal faults due to the previous extensional stages are reactivated as thrust during collision while detachment levels are observed in deposits not involved in the extensional stages. These observations bring out the importance of the chronology of the different tectonic stages to better understand the tectonic frame and geodynamic processes involved from the Early Cretaceous in this area and the role on the resulting structures.

  12. The Effect of Regional Tectonics on Faults in Bonaire and the Bonaire Basin: A Seismic Reflection Study

    NASA Astrophysics Data System (ADS)

    Brandl, C.; Reece, R.; Bayer, J.; Bales, M. K.

    2016-12-01

    Bonaire is located on the Bonaire microplate between the Caribbean and South American plates, and is part of the Netherlands Leeward Antilles as well as the ABC Islands along with Aruba and Curacao. As the major tectonic plates move they stress the microplate, which causes deformation as faulting. This study utilizes legacy seismic reflection data combined with a recent nearshore survey to study tectonic deformation in the basins surrounding Bonaire. Our legacy data covers a large portion of the ABC Islands; one dataset is a 1981 multichannel seismic (MCS) WesternGeco survey and the other is a 1971 USGS survey that we converted from print to SEGY. The modern dataset (2013) is a high-resolution MCS survey acquired off the western coast of Bonaire. We will use the legacy datasets to validate previous interpretations in the nearshore environment and extend these interpretations to the deepwater basins. Faults influenced by regional tectonics are more evident in deepwater basins because of their lateral continuity, and offset of thick sedimentary strata. A recent study of nearshore Bonaire utilizing the high-resolution seismic dataset interpreted several NE-SW dipping normal faults, which may correspond to regional extension. However, the influence is not clear, perhaps due to a lack of data or the nearshore nature of the dataset. Analysis of the legacy datasets show several areas in the surrounding basins with faults dipping NE-SW. Further analysis may reinforce observations made in the nearshore environment. Studying the tectonics of Bonaire can provide insight about the evolution of the region and help better define the effect of regional tectonic forces on the microplate. This study also shows the benefit of legacy seismic datasets that are publically available but stored as print or film in conjunction with modern data. They can provide value to a modern study by expanding the scope of available data as well as increasing the number of questions a study can address.

  13. Neotectonic Studies of the Lake Ohrid Basin (FYROM/Albania)

    NASA Astrophysics Data System (ADS)

    Nadine, H.; Liermann, A.; Glasmacher, U. A.; Reicherter, K. R.

    2010-12-01

    The Lake Ohrid Basin located on 693 m a.s.l. at the south-western border of Macedonia (FYROM) with Albania is a suitable location for neotectonic studies. The lake is set in an extensional basin-and-range-like situation, which is influenced by the roll-back and detachment of the subducted slab of the Northern Hellenic Trench. The seismicity record of the area lists frequent shallow earthquakes with magnitudes of up to 6.6, which classifies the region as one of the highest risk areas for Macedonia and Albania. A multidisciplinary approach was chosen to reveal the stress history of the region. Tectonic morphology, paleostress analysis, remote sensing and geophysical investigations have been taken out to trace the landscape evolution. Furthermore, apatite fission-track (A-FT) analysis and t-T-path modelling was performed to constrain the thermal history and the exhumation rates. The deformation history of the basin can be divided in three major phases. This idea is also supported by paleostress data collected around the lake: 1. NW-SE shortening from Late Cretaceous to Miocene with compression, thrusting and uplift; 2. Uplift and diminishing compression in Late Miocene causing strike-slip and normal faulting; 3. Vertical uplift and E-W extension from Pliocene to present associated with local subsidence and (half-) graben formation. The initiation of the Ohrid Basin can be dated to Late Miocene to Pliocene. The morphology of the basin itself shows features, which characterize the area as an active seismogenic landscape. The elongated NS-trending basin is limited by the steep flanks of Galicica and Mokra Mountains to the E and W, which are tectonically controlled by normal faulting. This is expressed in linear step-like fault scarps on land with heights between 2 and 35 m. The faults have lengths between 10 and 20 km and consist of several segments. Post-glacial bedrock fault scarps at Lake Ohrid are long-lived expressions of repeated surface faulting in tectonically active regions, where erosion cannot outpace the fault slip and are in general getting younger towards the center of the basin. Other characteristics are well preserved wineglass-shaped valleys and triangular facets. In contrast, the plains that stretch along the shore north and south of the lake are dominated by clastic input related to climate variations and uplift/erosion. Apatite fission track analysis shows a range of the apparent ages from 56.5±3.1 to 10.5±0.9 Ma, with a spatial distribution that gives evidence for the activation of separate blocks with differing exhumation and rock uplift history. Fission-track ages from molasses and flysch sediments of the basin fillings show distinctly younger ages than those from basement units. Generally, the Prespa Basin, which is located east of Ohrid Basin, reveals A-FT-ages around 10 Ma close to normal faults, whereas modelling results of the Ohrid Basin suggest a rapid uplift initiated around 1.4 Ma associated with uplift rates on the order of 1 mm/a. Therefore, we assume a westward migration of the extensional basin formation, as the initiation of the Prespa Basin can be placed well before the formation of the Ohrid Basin.

  14. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network diversion, faulted deposits, deep-seated gravitational slope deformations and large landslides. Moreover the sub-basins represent the surface evidence of traits belonging to the Norcia seismogenic structure, which have repeatedly caused earthquakes in the past, thus determining similar geological, structural and morphostructural features within the wider Norcia area, without causing the whole structure to rupture. The size of these sub-basins and, thus, the size of the relevant seismogenic segments, allows to calculate a maximum magnitude for the three sub-basins and for the seismogenic area as a whole. References Aringoli D., Cavitolo P., Farabollini P., Galindo-Zaldivar J., Gentili B., Giano S.I., Lòpez-Garrido A.C.,. Materazzi M, Nibbi L., Pedrera A., Pambianchi G., Ruano P., Ruiz-Constàn A., Sanz de Galdeano C., Savelli D., Tondi E., Troiani F. 2014. Morphotectonic characterization of the quaternary intermontane basins in the Umbria-Marche Apennines (Italy). Rend. Fis. Acc. Lincei 25 (Suppl 2), S111-S128. DOI 10.1007/s12210-014-0330-0 CPTI, Working Group, 2004. Catalogo Parametrico Terremoti Italiani, ING, GNDT, SGA, SSN, 92 pp., Bologna. Tondi, E., Cello, G. 2003. Spatiotemporal Evolution of the Central Apennines Fault System (Italy). Journal of Geodynamics, 36, 113-128

  15. Orogenic front propagation in the basement involved Malargüe fold and thrust belt, Neuquén Basin, (Argentina)

    NASA Astrophysics Data System (ADS)

    Branellec, Matthieu; Nivière, Bertrand; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2015-04-01

    The Malargüe fold and thrust belt (MFTB) and the San Rafael Block (SRB) are located in the northern termination of the Neuquén basin in Argentina. This basin is a wide inverted intracratonic sag basin with polyphased evolution controlled at large scale by the dynamic of the Pacific subduction. By late Triassic times, narrow rift basins developed and evolved toward a sag basin from middle Jurassic to late Cretaceous. From that time on, compression at the trench resulted in various shortening pulses in the back-arc area. Here we aim to analyze the Andean system at 35°S by comparing the Miocene structuration in the MFTB and the current deformation along the oriental border or the San Rafael Block. The main structuration stage in the MFTB occurred by Miocene times (15 to 10 Ma) producing the principal uplift of the Andean Cordillera. As shown by new structural cross sections, Triassic-early Jurassic rift border faults localized the Miocene compressive tectonics. Deformation is compartmentalized and does not exhibit a classical propagation of homogeneous deformation sequence expected from the critical taper theory. Several intramontane basins in the hangingwall of the main thrusts progressively disconnected from the foreland. In addition, active tectonics has been described in the front of the MFTB attesting for the on-going compression in this area. 100 km farther to the east, The San Rafael Block, is separated from the MFTB by the Rio Grande basin. The SRB is mostly composed of Paleozoic terranes and Triassic rift-related rocks, overlain by late Miocene synorogenic deposits. The SRB is currently uplifted along its oriental border along several active faults. These faults have clear morphologic signatures in Quaternary alluvial terraces and folded Pleistocene lavas. As in the MFTB, the active deformation localization remains localized by structural inheritance. The Andean system is thus evolving as an atypical orogenic wedge partly by frontal accretion at the front of the belt and by migration and localization of strain far from the front leading to crustal block reactivation.

  16. Inferring the thermal structure of the Panama Basin by seismic attenuation

    NASA Astrophysics Data System (ADS)

    Vargas-Jimenez, C. A.; Pulido, J. E.; Hobbs, R. W.

    2017-12-01

    Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we discriminate intrinsic and scattering attenuation processes in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modelled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at this ocean spreading center and show how interactions with regional fault systems cause contrasting attenuation anomalies.

  17. Thermal structure of the Panama Basin by analysis of seismic attenuation

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos A.; Pulido, José E.; Hobbs, Richard W.

    2018-04-01

    Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we estimate attenuation parameters in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modeled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features probably related to thermal anomalies detected in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at the Costa Rica Ridge and show how interactions with regional fault systems cause contrasting attenuation anomalies.

  18. Post-rift Tectonic History of the Songliao Basin, NE China: Cooling Events and Post-rift Unconformities Driven by Orogenic Pulses From Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Song, Ying; Stepashko, Andrei; Liu, Keyu; He, Qingkun; Shen, Chuanbo; Shi, Bingjie; Ren, Jianye

    2018-03-01

    The classic lithosphere-stretching model predicts that the post-rift evolution of extensional basin should be exclusively controlled by decaying thermal subsidence. However, the stratigraphy of the Songliao Basin in northeastern China shows that the post-rift evolution was punctuated by multiple episodes of uplift and exhumation events, commonly attributed to the response to regional tectonic events, including the far-field compression from plate margins. Three prominent tectonostratigraphic post-rift unconformities are recognized in the Late Cretaceous strata of the basin: T11, T03, and T02. The subsequent Cenozoic history is less constrained due to the incomplete record of younger deposits. In this paper, we utilize detrital apatite fission track (AFT) thermochronology to unravel the enigmatic timing and origin of post-rift unconformities. Relating the AFT results to the unconformities and other geological data, we conclude that in the post-rift stage, the basin experienced a multiepisodic tectonic evolution with four distinct cooling and exhumation events. The thermal history and age pattern document the timing of the unconformities in the Cretaceous succession: the T11 unconformity at 88-86 Ma, the T03 unconformity at 79-75 Ma, and the T02 unconformity at 65-50 Ma. A previously unrecognized Oligocene unconformity is also defined by a 32-24 Ma cooling event. Tectonically, all the cooling episodes were regional, controlled by plate boundary stresses. We propose that Pacific dynamics influenced the wider part of eastern Asia during the Late Cretaceous until Cenozoic, whereas the far-field effects of the Neo-Tethys subduction and collision processes became another tectonic driver in the later Cenozoic.

  19. Anthropogenic-enhanced erosion following the Neolithic Revolution in the Southern Levant: Records from the Dead Sea deep drilling core

    NASA Astrophysics Data System (ADS)

    Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel

    2017-04-01

    In addition to tectonics and climatic changes, humans have exerted a significant impact on surface erosion over timescales ranging from years to centuries. However, such kind of impact over millennial timescales remains unsubstantiated. The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.

  20. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  1. Rôle de l'halocinèse dans l'évolution du bassin d'Essaouira (Sud-Ouest marocain)

    NASA Astrophysics Data System (ADS)

    Mehdi, Khalid; Griboulard, Roger; Bobier, Claude

    2004-04-01

    The seismic reflection studies carried in the Essaouira Basin, intermediate zone between the High Atlas and the Atlantic Margin, show the presence of halokinetic structures that played a significant role in the evolution of the basin. Salt dynamics was controlled by the Atlantic rifting and the Atlasic orogen. These tectonic controls and the margin segmentation are responsible for the diachronism of salt movement. Halokinesis varied in time and space in the basin and was more active offshore, where autochtonous and allochtonous salt layers are present. To cite this article: K. Mehdi et al., C. R. Geoscience 336 (2004).

  2. Paleogeographic evolution of the western Maghreb (Berberids) during the Jurassic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmi, S.

    1988-08-01

    Several basins of the western Maghreb (northwest Africa) have been studied, taking into account their sedimentological and structural evolutions. Special attention is given to paleontological data (biostratigraphy, paleobiology, paleobiogeography). The paleogeographic pattern was the result of the differentiation in four stable blocks (Moroccan Meseta, Oran High Plains, Constantine block, Tunisian north-south ridge) which were developed between the Sahara craton and median strike-slips of the Tethys. This area, called the Berberids, was split by basins and furrows evolving during the Jurassic. Large, shallow, heterochronous initial carbonate platforms (Early Jurassic) were broken by local tectonic movements (tilting and rifting). A mature progradationmore » resulted from a rupture in the balance between carbonate production and subsidence. The result was the growth of more-or-less extended carbonate platforms along the basins margins during the Aalenian and Bajocia. From the late Bajocian, a large deltaic system prograded from the southwest and the west. Terrigenous input and large-scale tectonics provoked the filling of many basins. The southern and western areas became continental. In the north, carbonate series prograded on deltaic formations. A large, shallow platform developed on the southern rim of the Alpine Tethys. The tectonics of the basement on the southern rim of the Alpine Tethys. The tectonics of the basement became less important and sea level changes controlled the sedimentologic evolution. Bio- and chronostratigraphic correlations allow us to chart the main tectonic and eustatic events which occurred in the western Maghreb during the Jurassic.« less

  3. Fore-arc Deformation in the Paola Basin Segment (Offshore Western Calabria) of the Tyrrhenian-Ionian Subduction System

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Corradino, M.; Nicolich, R.; Barreca, G.; Bertotti, G.; Ferranti, L.; Monaco, C.

    2017-12-01

    The 3D stratigraphic architecture and Late Neogene to Recent tectonic evolution of the Paola Basin (offshore western Calabria), a segment in the fore-arc of the Tyrrhenian-Ionian subduction system, is reconstructed by using a grid of high-penetration reflection seismics. Oligocene to Messinian deposits are interpreted all along the profile. They tend to fossilize preexisting topography and reach the largest thicknesses between (fault controlled) basement highs. Plio-Quaternary deposits are found over the entire area and display variations in thickness and tectonic style. They are thicken up to 4.5 km in the depocenter of the basin, and decrease both in the east and west termination of the lines. The Paola Basin can be partitioned into two sectors with different tectonic deformation, separated by a NNW-SSE elongated area that coincides with the basin depocenter. Tectonic features associated with strike-slip restraining and releasing bends are widely spread over the western sector of the basin. Overall, they form an approximately NS-trending and geomorphically prominent ridge separating the Paola Basin from the Marsili abyssal plain. A high-angle, NNE-trending, normal fault system develops on the south-west tip of the basin, where the faults offset the Messinian horizon of ca. 500 m. Data suggest that limited vertical slip occurs along reverse faults detected at the border and inside the sedimentary infilling of the Paola Basin, reaching thickness of more than 3.8s two way travel time. The reflection sequence pattern can be interpreted as a result of the infilling of the thrust-top basin related to a prograding system, located between a growth ramp-anticline to the west and a culmination of basement-thrust sheets to the East. We propose that the Paola Basin developed near the northern edge of the Ionian slab where tearing of the lithosphere is expected. Also, the strike-slip fault system is a kinematic consequence of obliquely convergent subduction settings, where interplate strain is partitioned into arc-parallel strike-slip zones within the fore-arc, arc or back-arc region.

  4. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  5. Tectonic and climatic control of Paleogene sedimentation in the Rhenodanubian Flysch basin (Eastern Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Egger, Hans; Homayoun, Mandana; Schnabel, Wolfgang

    2002-10-01

    The Paleocene to lowermost Eocene formations of the Rhenodanubian Flysch were deposited in an abyssal environment at the continental rise to the south of the European Plate. The pattern of paleocurrents indicates a number of small distributary systems for the turbiditic material that entered the basin from the north and was deflected to the east and to the west. Heavy mineral assemblages in the turbidites suggest the erosion of medium-grade metasediments in the Danian and the progressive erosion of underlying metamorphic magmatic rocks in the Thanetian and Ypresian. The most obvious sedimentary event is the breakdown in turbidite sedimentation during the late Danian to the early Thanetian. Remarkably, this starvation of turbidites is associated with high values of chlorite in the clay mineral assemblages of interturbidite shales, indicating increased mechanical erosion of the adjoining land areas. Tectonic uplift of these areas and associated block faulting and tilting is assumed to be responsible for this increase in erosion as well as for the synchronous cutting off of the basin from the source area of the turbidites. This tectonic activity is related to the onset of the collision of the European and the Adriatic Plates. A second major event documented in the Paleogene record is the change from a predominantly siliciclastic system to a carbonate system in the latest Thanetian. Associated with the global negative carbon isotope excursion (CIE) in the upper part of calcareous nannozone NP9, calcareous mudturbidites become the prevailing rock type. Eutrophication of surface waters is indicated by acmes of diatoms, radiolaria and dinoflagellates at the level of the CIE. Together with slightly increased values of kaolinite in the clay mineral assemblages of interturbidite shales, this can be interpreted as a result of increased continental run-off due to high precipitation rates in a humid climate. The top of the increased kaolinite input is poorly constrained because of a very high input of smectite due to volcanic activity in sub-zone NP10a. This igneous activity is assigned to the opening of the Northern Atlantic Ocean and has no geodynamic relevance for the Rhenodanubian Basin.

  6. Evaluating Rifean Corridor Closure using Detrital Zircon Sediment Provenance of the Taza-Guercif Basin, Morocco

    NASA Astrophysics Data System (ADS)

    Pratt, J. R.; Barbeau, D. L.; Emran, A.

    2013-12-01

    In the late Miocene, the connection between the Mediterranean Sea and Atlantic Ocean was tectonically severed leading to severe evaporative draw down of Mediterranean sea level such that the entire basin was desiccated or near desiccated in an event from ~5.96-5.33 Ma known as the Messinian Salinity Crisis (MSC). The MSC sequestered 6% of global ocean salinity into evaporite deposits, created a deep, dry and hot basin that altered global atmospheric circulation, opened passageways for mammal migration between Europe, Africa and Arabia and ended in the largest flood observed in the geologic record. The combined effects of the Messinian Salinity Crisis make it the most important oceanic event in the last 20 million years, yet despite the dramatic ramifications of the MSC, the exact nature of its cause has remained both elusive and controversial. By examining the sedimentary provenance of Rifean Corridor, this research evaluates the progression of corridor closure and the tectonic context of the initiation of the Messinian Salinity Crisis. The difficulty in evaluating the progression of closure is due to the tectonic complexity of the Africa-Eurasia convergent plate boundary in north-central Morocco. The shortening associated with the tectonic convergence is accommodated by two genetically and tectonically distinct orogenic systems, the Rif and Atlas mountain belts, which lie in juxtaposition to the slab-rollback dominated Alboran Sea. The basins of the Rifean corridor lie between these two orogens and as such shortening and uplift associated with either or both ranges could be the cause of the corridor closure. Several hypotheses have been posited for the tectonic controls on basin emergence including slab-rollback related delamination on the Alboran margin, domal uplift of the Middle Atlas as well as a more traditional propagation of the Rifean orogenic wedge. This research provides the first quantitative provenance data for the Taza-Guercif basin in the form of LA-ICP-MS detrital zircon analysis of 10 samples from the basin-fill and 3 samples from two separate domains within the Rif. The new data reveal a lack of dramatic shifts in provenance within the basin-fill tied to corridor closure but instead reveal more subtle changes in peak zircon ages. Peak age shifts from 600 Ma to 700 Ma periodically within the strata in both open marine marls and within turbidites derived from the Middle Atlas in a pattern consistent with changes in basin bathymetry. Basin samples show an age-distribution consistent with the Rifean samples, which acquire an slight overprinting of Middle Atlas ages in the latter half of the succession. The data point to a progressive closure of the corridor through the advancement of the Rifean orogenic wedge with minor influence from uplift within the core of the Middle Atlas without a major shift in provenance during rapid basin emergence.

  7. From thrusting to transpressional tectonics in the Aghdarband Basin (NE Iran): evidence for Cimmerian oblique convergence

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Balini, Marco; Ghassemi, Mohammad Reza; Zanchetta, Stefano

    2010-05-01

    The Aghdarband Basin, consisting of a strongly deformed arc-related Triassic marine succession, is a key-area for the study of the Cimmerian events, as it is unconformably covered by mid-Jurassic gently folded sediments entirely sealing the Cimmerian compressive structures. The basin developed during part of the Triassic in a highly mobile tectonic context suggested by abrupt facies variations and local unconformities. In addition, syn-sedimentary tectonic activity is testified by the occurrence of carbonate olistholiths in the deepest parts of the basin. The marine succession, spanning from Olenekian to lowermost Carnian, shows at the base continental conglomerates andsandstones, as well as basaltic lava flows, possibly of Early Triassic age. They are followed by the shallow water Sefid Kuh Limestone, in which an intraformational unconformity has been now identified. This unit is locally covered by deep-water limestones of the Nazarkardeh Fm. which interfinger with slope facies of the Sefid Kuh Limestone. The volcaniclastic sandstone layers of the Sina Fm follow up-section with a deep unconformity, marked in several places by deep erosion and tilting of the underlying units. The Sina Fm. is in turn unconformably covered by the coal bearing shales of the Miankhui Fm., with a Norian-Rhaetian age testified by plant megafossils, marking the end of marine sedimentation and of volcanic-arc activity. The Triassic units are overthrusted to the south by Upper Palaeozoic siliciclastic successions showing in some cases a LG metamorphic imprint. They largely include the Qara Geithan Fm. consisting of granitic rocks, acidic to basic volcanics, and locally also large blocks of Permian bioclastic limestones derived from the erosion of the Palaeotethys accretionary wedge, exposed south of Aghdarband. The whole succession of the Aghdarband Basin, including the unconformable Miankhui Fm., is deeply involved in a north-verging thrust stack which interacts in the northern part of the area with an important strike-slip shear zone. Several tectonic units have been recognized within the Triassic succession, causing repetitions of the whole stratigraphic succession. Two main thrust sheets are exposed in the southern part of the basin under the Upper Palaeozoic thrust stack. Thrust faults and folds consistently show a N-directed tectonic transport, suggested by dip-slip motion along S-dipping reverse faults and axial plane geometry. Deformation occurred at shallow levels taking to the formation of cataclastic shear zones and to disjunctive and pencil cleavage in the shale layers of the succession. The thrust sheets comprise the Miankhui Fm. which shows a thick basal coal layer (up to 10 m) deeply excavated at the Aghdarband Mine. Nice examples of coal-related tectonics are exposed in open pits and tunnels of the mine. Intensive deformation of the coal, forming complex shear zones with s-c bands, causes the décollement of the Miankhui beds which show intensive tectonic thickening and repetitions mainly caused by polyphase thrust imbrications and disharmonic folding. The northernmost part of the Triassic basin shows a very complex setting, with traspressional structures given by vertical strike-slip faults and closed to tight folds with steeply plunging axes. According to our new data, up to four tectonic slices can be distinguished in this complex area. This structural zone is directly bounded to the north by severely deformed LG metamorphic rocks resulting from a volcaniclastic succession with Devonian and Carboniferous marble layers. Systematic asymmetry of major and parasitic folds, as well as rotation and torsion of axial surfaces indicate a general left-lateral transpressional regime, whereas kinematic indicators along the main fault planes show both left- and right-lateral motions. According to our relative chronology, dextral movements follow in time the sinistral ones reactivating previous Cimmerian structures and displacing also the surrounding Jurassic to Neogene succession of Kopeh Dagh in relatively recent times. Fold analyses along the area of interaction between thrust structure and the transpressional zone suggest an intricate interference pattern between thrust-related folds and strike-slip brittle shear zones, suggesting that the latter caused a strong reorientation of previously formed folds. The extension of the traspressional zone, which can be followed for some 20 km across the study area, indicates that important left-lateral movements, roughly parallel to the orientation of the convergence zone, were active during the last stages of the Late Triassic Cimmerian event, in contrast to what indicated by previous authors in the Mashhad area.

  8. Sedimentary response to halfgraben dipslope faults evolution -Billefjorden Trough, Svalbard.

    NASA Astrophysics Data System (ADS)

    Smyrak-Sikora, Aleksandra; Kristensen, Jakob B.; Braathen, Alvar; Johannessen, Erik P.; Olaussen, Snorre; Sandal, Geir; Stemmerik, Lars

    2017-04-01

    Fault growth and linkage into larger segments has profound effect on the sedimentary architecture of rift basins. The uplifted Billefjorden Through located in central Spitsbergen is an excellent example of half-graben basin development. Detailed sedimentological and structural investigations supported by helicopter and ground base lidar scans along with photogrammetry analysis have been used to improve our understanding of the sedimentary response to faulting and along strike variations in footwall uplift and hanging wall subsidence. The early syn-rift basin fill, the Serpukhovian to Bashkirian Hultberget Formation and the Bashkirian Ebbaelven Member consists of fluvial to deltaic sandstones with minor marine incursions. During this early stage tens to hundred- meters-scale syn-tectonic faults disrupted the dipslope, and created local hanging wall depocentres where sediments were arrested. Changes in fluvial drainage pattern, development of small lacustrine basins along the faults, and the sharp based boundaries of some facies associations are interpreted as response to activity along these, mostly antithetic faults. The basin fill of the late syn-rift stage is composed of shallow marine to tidal mixed evaporite -carbonate facies in the hanging wall i.e. the Bashkirian Trikolorfjellet Member and the Moscovian Minkenfjellet Formation. These sediments interfinger with thick alluvial fan deposits outpouring from relay ramps on the master fault i.e. drainage from the footwall. The carbonate-evaporite cycles deposited on the hanging wall responded to both the eustatic sea level variations and tectonic movements in the rift basin. Intra-basinal footwall uplift of the dipslope controlled development of an internal unconformity and resulted in dissolution of the gypsum to produce stratiform breccia. In contrast thick gypsum-rich subbasins are preserved locally in hanging wall positions where they were protected from the erosion. The syn rift basin fill is capped by post rift carbonate ramp deposit of the Kasimovian to Asselian Wordiekammen Formation. This unit marks the final fill (and drowning) of the rift basin and covers both the hanging wall and footwall. In this presentation our focus will be on details of the sedimentary architecture related to internal and local dipslope activity within the rift basin, particularly thickness and facies variations, and transport directions.

  9. Utility of aeromagnetic studies for mapping of potentially active faults in two forearc basins: Puget Sound, Washington, and Cook Inlet, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Blakely, R.J.; Haeussler, Peter J.; Wells, R.E.

    2005-01-01

    High-resolution aeromagnetic surveys over forearc basins can detect faults and folds in weakly magnetized sediments, thus providing geologic constraints on tectonic evolution and improved understanding of seismic hazards in convergent-margin settings. Puget Sound, Washington, and Cook Inlet, Alaska, provide two case histories. In each lowland region, shallow-source magnetic anomalies are related to active folds and/or faults. Mapping these structures is critical for understanding seismic hazards that face the urban regions of Seattle, Washington, and Anchorage, Alaska. Similarities in aeromagnetic anomaly patterns and magnetic stratigraphy between the two regions suggest that we can expect the aeromagnetic method to yield useful structural information that may contribute to earth-hazard and energy resource investigations in other forearc basins.

  10. Evolution Of Quaternary Stream Fan Deposits At The Confluences Of Turung Khola And Bembung Khola Of Middle Teesta Basin In Sikkim-Darjeeling Himalaya,India: A Tectonic - Climate Response

    NASA Astrophysics Data System (ADS)

    Lukram, I. M.

    2007-12-01

    Tributary fan deposits are well preserved on either side of the Teesta river in the non-glaciated middle part of the Himalayan valley lying in a tectonic region bounded by the MCT and MBT. The lithofacies characteristics and assemblage patterns of these deposits bear testimony to the effects of tectonic and climatic activities on the sedimentation process in the basin. Two tributary streams, with small catchments namely Turung Khola and Bembung Khola are important in this context. Three major fan lobes (F2, F1, and F0) are preserved at Turung Khola. In contrast, two fan lobes (F1,F0) are preserved at the confluence of the Bembung Khola. Terraces, floodplains, channel bars, chute bars are associated geomorphic features in this part of the Teesta basin. Landslides cover an area of 7% and 15% in the catchment of Turung Khola and Bembung Khola, respectively. Dense forest covers 24% and 12%; open forest covers 30% and 29 %; and scrubby vegetation covers 39% and 49% of the Turung Khola and Bembung Khola, respectively. The landslides mainly occur along the margins of the dense forest where they are active in every rainy season. Tributary longitudinal profiles and Hack profiles indicate a relationship between the knick points and high SL-Index values, where fault /thrust intersections are present. Active landslides and scarps are close to the major fault/thrust planes. Sediment characteristics of these fan deposits suggest that four types of depositional flows viz. debris flows, hyperconcentrated flows, sheet flows and channel flows laid down these sequences. The channel flow deposits are dominant (32%-54 %) in the fan sequence of the Turung Khola followed by sheet flow deposits (28.5%), hyperconcentrated flow deposits (26%) and debris flow deposits (12%), respectively. Hyperconcentrated flow deposits are dominant (44%) in the F1 sequence, whereas the active channel fanlobe is dominant (80%) in the channel flow deposits. The rest of the active channel sequence is composed of sheet flow deposits (20%). On the other hand, the major part (52%) of the F1 fanlobe of Bembung Khola is built up of debris flow deposits and F0 fanlobe is composed of channel flow deposits and flood sediment. From the above analysis, an evolutionary model of the deposition and incision at the tributary stream fan confluence is proposed. The insetting of the younger fan lobes into older fan lobe surfaces is an evidence of tectonic uplift in the region. The landform and their depositional pattern are a responds to link tectonic- climatic process systems; some depositional lithofacies assemblages are responses to climatic events.

  11. Chapter 44: Geology and petroleum potential of the Lincoln Sea Basin, offshore North Greenland

    USGS Publications Warehouse

    Sorensen, K.; Gautier, D.; Pitman, Janet K.; Ruth, Jackson H.; Dahl-Jensen, T.

    2011-01-01

    A seismic refraction line crossing the Lincoln Sea was acquired in 2006. It proves the existence of a deep sedimentary basin underlying the Lincoln Sea. This basin appears to be comparable in width and depth to the Sverdrup Basin of the Canadian Arctic Islands. The stratigraphy of the Lincoln Sea Basin is modelled in analogy to the Sverdrup Basin and the Central Spitsbergen Basin, two basins between which the Lincoln Sea intervened before the onset of seafloor spreading in the Eurasian Basin. The refraction data indicates that the Lincoln Sea Basin is capped by a kilometre-thick, low-velocity layer, which is taken to indicate an uplift history similar to, or even more favourable than, the fairway part of the Sverdrup Basin. Tectonic activity in the Palaeogene is likely to constitute the major basin scale risk. We conclude that the Lincoln Sea Basin is likely to be petroliferous and contains risked resources on the order of 1 ?? 109 barrels of oil, to which comes an equivalent amount of (associated and nonassociated) gas. ?? 2011 The Geological Society of London.

  12. Midplate seismicity exterior to former rift-basins

    USGS Publications Warehouse

    Dewey, J.W.

    1988-01-01

    Midplate seismicity associated with some former rift-zones is distributed diffusely near, but exterior to, the rift basins. This "basin-exterior' seismicity cannot be attributed to reactivation of major basin-border faults on which uppercrustal extension was concentrated at the time of rifting, because the border faults dip beneath the basins. The seismicity may nonetheless represent reactivation of minor faults that were active at the time of rifting but that were located outside of the principal zones of upper-crustal extension; the occurrence of basin-exterior seismicity in some present-day rift-zones supports the existence of such minor basin-exterior faults. Other hypotheses for seismicity exterior to former rift-basins are that the seismicity reflects lobes of high stress due to lithospheric-bending that is centered on the axis of the rift, that the seismicity is localized on the exteriors of rift-basins by basin-interiors that are less deformable in the current epoch than the basin exteriors, and that seismicity is localized on the basin-exteriors by the concentration of tectonic stress in the highly elastic basin-exterior upper-crust. -from Author

  13. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    NASA Astrophysics Data System (ADS)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward propagation of the main faults. The evolution of the sedimentary provenance can be explained by overall forward propagation of deformation in the Himalayan fold-thrust belt. In both the eastern and western syntaxes, it also shows stability of the major drainage systems of the Yarlung-Brahmaputra and Indus, respectively, suggesting that hinterland river incision kept pace with uplift of the syntaxes during the Neogene. Drainage reorganization may take place in the foreland basin because of thin-skinned tectonics but did not significantly affect sediment routing and the contribution of different sources of the upper catchment to the overall sediment budget. In contrast, major rivers in the Central Himalaya (such as the Kali Gandaki or the Karnali) could have been affected by changes in their upper catchment.

  14. Tectonic evolution of Honey Lake basin, northeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.

    New geologic mapping in northeastern California provides additional data on the age and tectonic evolution of the Honey Lake Basin. Rhylitic ash flow tuffs of latest Oligocene to early Miocene age (30 to 22 Ma) occur in the Fort Sage Mountains and in the Sierra Nevada but are not apparent in wells drilled in the Honey Lake basin. Though other interpretations can be made, the authors take this as evidence that the basin did not exist at that time. Volcanic rocks as old as 12 Ma do occur in the basin indicating initiation in mid-Miocene time probably as a grabenmore » due to block faulting. Syntectonic andesitic and basaltic volcanism occurred along faults bounding the Sierra Nevada block at 9 to 10 Ma. Lava issuing from these fractures flowed westward along Tertiary drainages indicating that the Sierran block had been uplifted and tilted westward. Andesites erupted during this time north and east of the basin are lithologically distinct from Sierran andesites. Strike-slip faulting began to dominate the tectonic setting of the region during late Pliocene and Quaternary time with the development of the Honey Lake Fault Zone. Holocene strike-slip displacement is indicated by offsets of the 12,000 year old Lake Lahontan shoreline and deposits containing a 7,000 year old ash.« less

  15. Pacing of deep marine sedimentation in the middle Eocene synorogenic Ainsa Basin, Spanish Pyrenees: deconvolving a 6myr record of tectonic and climate controls

    NASA Astrophysics Data System (ADS)

    Mac Niocaill, C.; Cantalejo, B.; Pickering, K. T.; Grant, M.; Johansen, K.

    2016-12-01

    The Middle Eocene thrust-top Ainsa Basin of Northern Spain preserves world-class exposures of deep-marine submarine fan and related deposits. Detailed paleomagnetic, micropaleontologic, and time-series analysis enable us to deconvolve, for the first time in any ancient deep-marine basin worldwide, both the pacing on deposition of the fine-grained interfan sediments and the main sandbodies (submarine fans) through the history of the deep-marine basin. Our magnetostratigraphy and faunal constraints provide a chronological framework for sedimentation in the basin. We use time-series analysis of a range of geochemical and sedimentologic data to identify likely climatic signals in the sedimentary archive. This has enabled us to test the likely importance of climate versus tectonics in controlling deposition. We show that the fine-grained interfan sedimentation preserves a dominant Milankovitch-like cyclicity, whereas the sandbodies (fans) reflect a complex interplay of controls such as tectonics and climate in the sediment source area, including shallow-marine staging areas for sediment redeposition into deeper water. These results not only provide critical information about the timing of substantial coarse clastic delivery into the Ainsa Basin but also give constraints on sediment flux over a 6 Myr window.

  16. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  17. The East Falcon Basin: Its Caribbean roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.; Boesi, T.

    1996-08-01

    The East Falcon Basin has been described persistently in the context of the Maracaibo Basin tectonic framework. It is the objective of the present study to demonstrate that the Falcon Basin is, in effect, a Caribbean basin juxtaposed on South America and affected by Caribbean tectonics. The oldest rocks outcropping in the region are Late Paleozoic metamorphic and igneous rocks rafted from northcentral Colombia, Middle Jurassic ophiolite complexes, sediments and metasediments and Cretaceous ophiolites transported by a melange of late Cretaceous to early Tertiary sediments. The south vergence of the Caribbean Nappe province has been documented and extends to themore » present limit of the Andean uplift and to the southern limit of the Coastal Range. The migrating foredeep that developed during the Paleocene-Eocene deposited dominantly basinal shales and thin sandstones. During the Oligocene the Caribbean faults of the Oca system and conjugates began with a dominantly transtensional regime becoming progressively transpressional by Miocene time. The facies development of the Oligocene-Miocene documents the tectonic history. Unique blocks remained as resistant blocks creating ramparts and modifying the basin configuration. During transpression northward-verging thrusting progressively migrated towards the present coastline. The most evident structures of the region are Caribbean in affinity and combined with the sedimentary history of the region can serve to unravel the complex Caribbean-South American plate interaction.« less

  18. Plate tectonic history of the Arctic

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  19. Southern Mozambique basin: most promising hydrocarbon province offshore eat Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Buyl, M.; Flores, G.

    1984-09-01

    Recent offshore acquisition of 12,800 km (8,000 mi) of seismic reflection data, with gravity and magnetic profiles encompassing the southern half of the Mozambique basin, reveals new facets of the subsurface geology. Integrated interpretation of these new geophysical data with old well information results in the development of depositional and tectonic models that positively establish the hydrocarbon potential of the basin. The recent comprehensive interpretation affords the following conclusions. (1) Significant oil shows accompany wet gas discoveries suggest that the South Mozambique basin is a mature province, as the hydrocarbon associations imply thermogenic processes. (2) Super-Karoo marine Jurassic sequences havemore » been encountered in Nhamura-1 well onshore from the application of seismic stratigraphy and well correlation. (3) Steeply dipping reflectors truncated by the pre-Cretaceous unconformity testify to significant tectonic activity preceding the breakup of Gondwanaland. Hence, preconceived ideas about the depth of the economic basement and the absence of mature source rocks of pre-Cretaceous age should be revised. (4) Wildcats in the vicinity of ample structural closures have not been, in retrospect, optimally positioned nor drilled to sufficient depth to test the viability of prospects mapped along a major offshore extension of the East African rift system delineated by this new survey.« less

  20. Carboniferous Proto-type Basin Evolution of Junggar Basin in Northwest China: Implications for the Growth Models of Central Asia Orogenic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2016-12-01

    The Junggar Basin locates in the central part of Paleo-Asian Ocean tectonic domain, and records the dynamic processes of the Central Asian Orogenic Belt from subduction-accretion-collision to later intracontinental deformations. Carboniferous is the key period from subduction to closure in the tectonic evolution of Paleo-Asian Ocean. Based on the borehole, outcrop, seismic and gravity and magnetic anomaly data, the paper made analysis of the Carboniferous basin evolution.Geo-chronological results for the borehole volcanic rocks suggest that the Junggar Basin and adjacent area had five periods of volcanic activities, including two periods in the Early Carboniferous (359-347Ma 347-331Ma and 331-324Ma) and three periods in the Late Carboniferous (323-307Ma and 307-300Ma). Regional unconformities divided the Carboniferous into two tectono-stratigraphic sequences: Lower Carboniferous and Upper Carboniferous. The former is characterized by compressional structures and involves massive calc-alkaline basalts, andesites, dacites and rhyolites, whereas the later is mainly controlled by extensional faults and dominated by intermediate-mafic volcanic rocks, with bimodal volcanic rocks in parts. The paper determined four Carboniferous arc-basin belts in the Junggar Basin and adjacent area from north to south: the Saur-Fuhai-Dulate, Heshituoluogai-Wulungu-Yemaquan, Darbut-Luliang-Karamaili, and Zhongguai-Mosuowan-Baijiahai-Qitai, and identified multi-type basins, such as fore-arc basin, retro-arc basin, intra-arc rift basin, foreland basin and passive continental margin basin,etc.. The Carboniferous proto-type basin evolution of the Junggar Basin can be divided into three phases such as, the early to middle Early Carboniferous subduction-related compressional phase, the late Early Carboniferous to middle Late Carboniferous subduction-related extensional phase and the late Late Carboniferous intra-continental fault-sag phase. The study discloses that the Junggar Basin is likely underlain by juvenile continental crust rather than unified Precambrian basement, and also implies that the Junggar Basin and adjacent area, even the entire CAOB, were built by successively northward amalgamation of multiple linear arc-basin systems characterized by southward accretion.

  1. Intraplate extensional tectonics of the eastern Basin-Range Inferencess on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Bruhn, R. L.

    1984-01-01

    Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.

  2. Tectonics and petroleum prospects in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, A.N.

    1995-07-10

    Bangladesh is a part of the Bengal basin, bordered to the west and northwest by Jurassic-early Cretaceous volcanic trap rocks of the Rajmahal Hills, underlain by Precambrian shield and Gondwana sediments. The Bengal basin is the largest delta basin (approximately 23,000 sq miles) in the world, at the confluence of the Ganges and Brahmaputra rivers. The deep sea fan complex that is being built outward into the Bay of Bengal has in excess of 12 km of sediments. Rate of sediment transportation within the basin, from the Himalayas and the mountains and hills to the north, east, and west, exceedsmore » 1 billion tons/year. The tectonic and sedimentary history of Bangladesh is favorable for hydrocarbon accumulation. The basin is an underexplored region of 207,000 sq km where only 52 exploratory wells have been drilled with a success rate of more than 30%. In addition to the folded belt in the east, where gas and some oil have been found, the Garo-Rajmahal gap to the north and the deep sea fan to the south merit detailed exploration using state of the art technology. The paper describes the tectonics, sedimentation, petroleum prospects, and seismic surveys.« less

  3. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence based on stratigraphic correlation that show thinning of strata in the northeastern part of the basin. The Isachsen Formation (Valanginian or Hauterivian to late Aptian) is a sandstone unit with interbeds of mudstone, coal, volcanic, and volcaniclastic/tuffaceous rocks attributed to HALIP. Isachsen Formation has a fairly consistent thickness over most of the Sverdrup Basin, ranging from ~120 m at basin margins to 1370 m on western Axel Heiberg Island but is generally > 400 m thick, even over the large salt domes that rose almost to the surface immediately prior to its deposition. The thickness of the formation decreases from over 400 m thick at Ellef Ringnes Island and southern Axel Heiberg Island to less than 120 m across a broad area of central Ellesmere Island. We interpret NE thinning of these strata to be the result of topographic uplift associated with initial mantle plume activity of HALIP. However, the rejuvenation of Sverdrup Basin formation (nearer the plume centre) in the Hauterivian-Aptian reflects complexities in the uplift pattern. References: 1-Griffiths, R.W. and Campbell, I.H. 1991 JGR 96: 18295-18310. 2-Campbell, I.H. 2007. Chem. Geol., 241: 153-176. 3-Ernst, 2014. LIPs. Cambridge U. Press, 653 p.

  4. Morphotectonic analysis and 10Be dating of the Kyngarga river terraces (southwestern flank of the Baikal rift system, South Siberia)

    NASA Astrophysics Data System (ADS)

    Arzhannikova, A.; Arzhannikov, S.; Braucher, R.; Jolivet, M.; Aumaître, G.; Bourlès, D.; Keddadouche, K.

    2018-02-01

    The formation of the Baikal rift system basins is controlled by active faults separating each basin from the adjacent horsts. The kinematics of these faults is mainly explored through investigation of complex sequences of the fault-intersecting river terraces that record both tectonic and climatic events. This study focuses on the northern margin of the major Tunka basin that develops south-west of Lake Baikal. The development of the basin is controlled by the segmented Tunka fault. We performed a detailed mapping of the Kyngarga river terraces, the best preserved terraces staircase in Baikal rift system, at their intersection with the Tunka fault. In order to decipher the chronology of seismic events and the slip rates along that segment of the fault, key terraces were dated using in situ produced cosmogenic 10Be. We demonstrate that the formation of the terrace staircase occurred entirely during MIS1-MIS2. The obtained data allowed us to estimate the rate of incision at different stages of the terrace staircase formation and the relationship between the vertical and horizontal slip rates along this sub-latitudinal segment of the Tunka fault making respectively 0.8 and 1.12 mm yr- 1 over the past 12.5 ka. Analysis of the paleoseismology and paleoclimate data together with terrace dating provided the possibility to estimate the influence of tectonic and climatic factors on the terrace formation. Our proposed model of the Kyngarga river terrace development shows that the incisions into terraces T3 and T6 were induced by the abrupt climatic warming episodes GI-1 and GI-2, respectively, whereas terraces T5, T4 and T2 were abandoned due to the vertical tectonic displacement along the Tunka fault caused by coseismic ruptures.

  5. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  6. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    NASA Astrophysics Data System (ADS)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results, the Agost Basin can be considered a key case of the interference between salt tectonics and the evolution of strike-slip fault zones. The reconstructed model has been compared with several scaled sandbox analogical models and with some natural pull-apart basins.

  7. Gas hydrate saturation and distribution in the Kumano Forearc Basin of the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-02-01

    The Kumano Forearc Basin is located to the south-east of the Kii Peninsula, Japan, overlying the accretionary prism in the Nankai Trough. The presence of gas hydrate in submarine sediments of the forearc basin has resulted in the widespread occurrence of bottom simulating reflectors (BSRs) on seismic profiles, and has caused distinct anomalies in logging data in the region. We estimated the in situ gas hydrate saturation from logging data by using three methods: effective rock physics models, Archie's equation, and empirical relationships between acoustic impedance (AI) and water-filled porosity. The results derived from rock physics models demonstrate that gas hydrates are attached to the grain surfaces of the rock matrix and are not floating in pore space. By applying the empirical relationships to the AI distribution derived from model-based AI inversion of the three-dimensional (3D) seismic data, we mapped the spatial distribution of hydrate saturation within the Kumano Basin and characterised locally concentrated gas hydrates. Based on the results, we propose two different mechanisms of free gas supply to explain the process of gas hydrate formation in the basin: (1) migration along inclined strata that dip landwards, and (2) migration through the faults or cracks generated by intensive tectonic movements of the accretionary prism. The dipping strata with relatively low AI in the forearc basin could indicate the presence of hydrate formation due to gas migration along the dipping strata. However, high hydrate concentration is observed at fault zones with high pore pressures, thus the second mechanism likely plays an important role in the genesis of gas hydrates in the Kumano Basin. Therefore, the tectonic activities in the accretionary wedge significantly influence the hydrate saturation and distribution in the Kumano Forearc Basin.

  8. DEM Simulated Results And Seismic Interpretation of the Red River Fault Displacements in Vietnam

    NASA Astrophysics Data System (ADS)

    Bui, H. T.; Yamada, Y.; Matsuoka, T.

    2005-12-01

    The Song Hong basin is the largest Tertiary sedimentary basin in Viet Nam. Its onset is approximately 32 Ma ago since the left-lateral displacement of the Red River Fault commenced. Many researches on structures, formation and tectonic evolution of the Song Hong basin have been carried out for a long time but there are still remained some problems that needed to put into continuous discussion such as: magnitude of the displacements, magnitude of movement along the faults, the time of tectonic inversion and right lateral displacement. Especially the mechanism of the Song Hong basin formation is still in controversy with many different hypotheses due to the activation of the Red River fault. In this paper PFC2D based on the Distinct Element Method (DEM) was used to simulate the development of the Red River fault system that controlled the development of the Song Hong basin from the onshore to the elongated portion offshore area. The numerical results show the different parts of the stress field such as compress field, non-stress field, pull-apart field of the dynamic mechanism along the Red River fault in the onshore area. This propagation to the offshore area is partitioned into two main branch faults that are corresponding to the Song Chay and Song Lo fault systems and said to restrain the east and west flanks of the Song Hong basin. The simulation of the Red River motion also showed well the left lateral displacement since its onset. Though it is the first time the DEM method was applied to study the deformation and geodynamic evolution of the Song Hong basin, the results showed reliably applied into the structural configuration evaluation of the Song Hong basin.

  9. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer period of observations.

  10. Deep conductivity characteristics and preliminary acquaintance of the Lushan earthquake, east edge of Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wang, X.; Wang, Y.; Min, G.

    2013-12-01

    1. Introduction The Longmenshan foreland basin developed as a flexural foredeep at western Yangtze Platfrom during the Late Triassic Indosinian orogeny with strong tectonic activity. 2008 Wenchuan earthquake (Mw7.9) happened along the middle segment of the Longmenshan overthrusting belt. 2013 Lushan earthquake (Mw6.6) occurred along the south segment of Longmenshan tectonic zone which belongs to seismic gap during the Wenchuan earthquake. The recent researches ( Yan Zhan etc., 2013; Zhuqi Zhang etc., 2013; Xiwei Xu etc., 2013) indicate that the Lushan earthquake may closely related to the activity of Longmenshan ';s piedmont fault zone while the seismogenic fault and other issues are still controversial. In order to provide an electromagnetic basis in deep earthquake area structure, we detect magnetotelluric(MT) sounding in Lushan earthquake zone to obtain the electrical structure characteristics of Longmenshan's south segment. 2. Data acquisition and processing To research the deep electrical structure of earthquake zone assigning a MT profile through the epicenter which transects the Sichuan platform concave, Longmenshan tectonic belt and Songpan-Ganzi fold system. To analysis the MT data, we carried out the impedance tensor decompositionincluding the swift rotation and bahr method which based on the phase deviation. Ultimately, NLCG method was adopted to inverse MT data. 3. Conclusion The result of MT data discloses deep electrical structure feature of the southern section of Longmenshan overthrusting belt: the burial depth of conductive layer in the upper crust of Songpan-Ganzi plot is larger than that of middle-northern part; there is no conductive zone in Longmenshan high resistance body which connect with the high conductivity layer in the crust of the western section of Songpan-Ganzi plot; there exists a relatively large range of conductive zone in the basin to Longmenshan tectonic belt, which is mostly related to the piedmont of concealed fault zone and resistive intermediate belt at the edge of western basin. Be different form Wenchuan earthquake, Lushan earthquake located in the south of Longmenshan tectonic zone which have a strong connection with the piedmont fault. MT research reveals the difference of the deep electrical structure between the south of Longmenshan tectonic belt and the middle-north belt, from which we can infer that the seismogenic environment are not the same. The epicenter of Lushan earthquake occurred in the east edge of Longmenshan tectonic belt which close to Longmenshan ';s piedmont fault combine with the MT inversion infer that Lushan earthquake has a stronger relationship with Longmenshan ';s piedmont fault. Because of the short term of our work, now further work is ongoing.

  11. Overview of geology and tectonic evolution of the Baikal-Tuva area.

    PubMed

    Gladkochub, Dmitry; Donskaya, Tatiana

    2009-01-01

    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.

  12. Tectonosedimentary framework of Upper Cretaceous -Neogene series in the Gulf of Tunis inferred from subsurface data: implications for petroleum exploration

    NASA Astrophysics Data System (ADS)

    Dhraief, Wissem; Dhahri, Ferid; Chalwati, Imen; Boukadi, Noureddine

    2017-04-01

    The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.

  13. Permissive tracts for sediment-hosted lead-zinc-silver deposits in the Islamic Republic of Mauritania (phase V, deliverable 73): Chapter J in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Mauk, Jeffrey L.

    2015-01-01

    Permissive tracts for SEDEX (sedimentary exhalative) deposits coincide with those for MVT deposits. However, the geodynamic setting of the Taoudeni Basin is unlike that of SEDEX ores elsewhere on Earth, and therefore the potential for this class of deposits must be rather low. SEDEX deposits occur along tectonically active, shale dominated passive margins or in intracontinental rift basins.

  14. Plate tectonic model for the oligo-miocene evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Cohen, Curtis R.

    1980-10-01

    This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.

  15. Différenciation paléogéographique à l'Ordovicien supérieur dans le Tafilalt (Anti-Atlas oriental, Maroc) sous l'interaction de la glaciation et de la tectonique

    NASA Astrophysics Data System (ADS)

    El Maazouz, Brahim; Hamoumi, Naima

    2007-07-01

    The Tafilalt domain, which corresponded, during the Lower and Middle Ordovician, to a storm and/or tide-dominated epeiric shelf with east-west- to ENE-WSW-trending isopachs, such as the whole 'Anti-Atlasic basin', recorded major palaeogeographical changes during the Upper Ordovician. An extensional tectonic event resulted in the individualization of two sub-basins: the 'Khabt-El-Hejar sub-basin' and the 'western Tafilalt sub-basin', where new environments developed under the interplay between tectonics and glaciation. In the northeastern Tafilalt sub-basin took place an isolated carbonate platform, where Bryozoan mounds nucleated, and a mixed siliciclastic carbonate high-energy peritidal littoral. In the 'western Tafilalt sub-basin', the siliciclastic shelf was structured in half-graben, where sediments from the Saharan glacier and the carbonate platform of the Khabt-El-Hejar sub-basin accumulated in fan deltas.

  16. Volcanism and Tectonics of the Central Deep Basin, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Lelikov, E. P.; Emelyanova, T. A.; Pugachev, A. A.

    2018-01-01

    The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500-600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene-Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.

  17. Constraining the fault slip rate using morphology of normal fault footwalls: insights from analog and numerical models (Invited)

    NASA Astrophysics Data System (ADS)

    Strak, V.; Dominguez, S.; Petit, C.; Meyer, B.; Loget, N.

    2013-12-01

    Relief evolution in active tectonic areas is controlled by the interactions between tectonics and surface processes (erosion, transport and sedimentation). These interactions lead to the formation of geomorphologic markers that remain stable during the equilibrium reached in the long-term between tectonics and erosion. In regions experiencing active extension, drainage basins and faceted spurs (triangular facets) are such long-lived morphologic markers and they can help in quantifying the competing effects between tectonics, erosion and sedimentation. We performed analog and numerical models simulating the morphologic evolution of a mountain range bounded by a normal fault. In each approach we imposed identical initial conditions. We carried out several models by varying the fault slip rate (V) and keeping a constant rainfall rate allowing us to study the effect of V on morphology. Both approaches highlight the main control of V on the topographic evolution of the footwall. The experimental approach shows that V controls erosion rates (incision rate, erosion rate of slopes and regressive erosion rate) and possibly the height of triangular facets. This approach indicates likewise that the parameter K of the stream power law depends on V even for non-equilibrium topography. The numerical approach corroborates the control of V on erosion rates and facet height. It also shows a correlation between the shape of drainage basins and V (slope-area relationship) and it suggests the same for the parameters of the stream power law. Therefore both approaches suggest the possibility of using the height of triangular facets and the slope-area relationship to infer the fault slip rate of normal faults situated in a given climatic context.

  18. Quantifying the role of mantle forcing, crustal shortening and exogenic forcing on exhumation of the North Alpine Foreland Basin

    NASA Astrophysics Data System (ADS)

    von Hagke, C.; Luijendijk, E.; Hindle, D.

    2017-12-01

    In contrast to the internal zones of orogens, where the stacking of thrust sheets can overwhelm more subtle signals, foreland basins can record long-wavelength subsidence or uplift signals caused by mantle processes. We use a new and extensive compilation of geological and thermochronology data from the North Alpine Foreland Basin to understand the dynamics of foreland basins and their interaction with surface and geodynamic processes. We quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model, pybasin. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. Uncertainty analysis shows that thermochronometers can be explained by cooling starting as early as the Miocene or as late as the Pleistocene. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. We suggest that new (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.

  19. Structural analysis and Miocene-to-Present tectonic evolution of a lithospheric-scale, transcurrent lineament: The Sciacca Fault (Sicilian Channel, Central Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Fedorik, Jakub; Toscani, Giovanni; Lodolo, Emanuele; Civile, Dario; Bonini, Lorenzo; Seno, Silvio

    2018-01-01

    Seismo-stratigraphic and structural analysis of a large number of multichannel seismic reflection profiles acquired in the northern part of the Sicilian Channel allowed a 3-D reconstruction of a regional NS-trending transfer zone which displays a transcurrent tectonic regime, and that is of broad relevance for its seismotectonic and geodynamic implications. It is constituted of two major transcurrent faults delimiting a 30-km-wide, mostly undeformed basin. The western fault (Capo Granitola) does not show clear evidence of present-day tectonic activity, and toward the south it is connected with the volcanic area of the Graham Bank. The eastern fault (Sciacca) is structurally more complex, showing active deformation at the sea-floor, particularly evident along the Nerita Bank. The Sciacca Fault is constituted of a master and splay faults compatible with a right-lateral kinematics. Sciacca Fault is superimposed on an inherited weakness zone (a Mesozoic carbonate ramp), which borders to the east a 2.5-km-thick Plio-Quaternary basin, and that was reactivated during the Pliocene. A set of scaled claybox analogue models was carried out in order to better understand the tectonic processes that led to the structural setting displayed by seismic data. Tectonic structures and uplift/subsidence patterns generated by the models are compatible with the 3-D model obtained from seismic reflection profiles. The best fit between the tectonic setting deriving from the interpretation of seismic profiles and the analogue models was obtained considering a right-lateral movement for the Sciacca Fault. Nevertheless, the stress field in the study area derived from GPS measurements does not support the present-day modelled right-lateral kinematics along the Sciacca Fault. Moreover, seismic events along this fault show focal mechanisms with a left-lateral component. We ascribe the slip change along the Sciacca Fault, from a right-lateral transcurrent regime to the present-day left-lateral kinematics to a change of principal horizontal stress direction starting from Late Pliocene.

  20. Lower and lower Middle Pennsylvanian fluvial to estuarine deposition, central Appalachian basin: Effects of eustasy, tectonics, and climate

    USGS Publications Warehouse

    Greb, S.F.; Chesnut, D.R.

    1996-01-01

    Interpretations of Pennsylvanian sedimentation and peat accumulation commonly use examples from the Appalachian basin because of the excellent outcrops and large reserve of coal (>100 billion metric tons) in the region. Particularly controversial is the origin of Lower and lower Middle Pennsylvanian quartzose sandstones; beach-barrier, marine-bar, tidalstrait, and fluvial models all have been applied to a series of sand bodies along the western outcrop margin of the basin. Inter-pretations of these sandstones and their inferred lateral relationships are critical for understanding the relative degree of eustatic, tectonic, and climatic controls on Early Pennsylvanian sedimentation. Cross sections utilizing >1000 subsurface records and detailed sedimentological analysis of the Livingston Conglomerate, Rockcastle Sandstone, Corbin Sandstone, and Pine Creek sandstone (an informal member) of the Breathitt Group were used to show that each of the principal quartzose sandstones on the margin of the central Appalachian basin contains both fluvial and marginal marine facies. The four sandstones are fluvially dominated and are inferred to represent successive bed-load trunk systems of the Appalachian foreland. Base-level rise and an associated decrease in extra-basinal sediment at the end of each fluvial episode led to the development of local estuaries and marine reworking of the tops of the sand belts. Each of the sand belts is capped locally by a coal, regardless of whether the upper surfaces of the sand belts are of fluvial or estuarine origin, suggesting allocyclic controls on deposition. Peats were controlled by a tropical ever-wet climate, which also influenced sandstone composition through weathering of stored sands in slowly aggrading braidplains. Recurrent stacking of thick, coarse-grained, fluvial deposits with extra-basinal quartz pebbles; dominance of bed-load fluvial-lowstand deposits over mixed-load, estuarine-transgressive deposits; thinning of sand belts around tectonic highs and along faults; cratonward shift and amalgamation of successive sand belts on the margin of the basin; and truncation of successive sand belts toward the fault-bound margin of the basin are interpreted as regional responses to Alleghenian tectonism, inferred to have been the dominant control on accommodation space and sediment flux in the Early Pennsylvanian basin.

  1. Coeval gravity-driven and thick-skinned extensional tectonics in the mid-Cretaceous of the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Bodego, Arantxa; Agirrezabala, Luis M.

    2010-05-01

    The Mesozoic Basque-Cantabrian Basin in the western Pyrenees constitutes a peri-cratonic basin originated by rifting related to the Cretaceous opening of the Bay of Biscay. During the mid-Cretaceous the basin experienced important extensional/transtensional tectonics, which controlled the deposition of thick sedimentary successions. Many extensional structures have been documented in the basin but their thin-skinned/thick-skinned character is an unresolved question. In this field-based study, we characterize contemporaneous thin-skinned and thick-skinned deformations that took place during the filling of the mid-Cretaceous Lasarte sub-basin, located in the northeastern margin of the Basque-Cantabrian Basin (western Pyrenees). Most of these extensional structures and associated growth strata are preserved and allow us to characterize and date different deformation phases. Moreover, verticalization and overturning of the successions during Tertiary compression allow mapping the geometry of the extensional structures at depth. The Lasarte sub-basin constitutes a triangular sag bordered by three major basement-involved faults, which trend N, E and NE, respectively. These trends, common in the Variscan fault pattern of Pyrenees, suggest that they are old faults reactivated during the mid-Cretaceous extension. Stratigraphy of the area shows very thin to absent Aptian-Albian (and older) deposits above the upward border blocks, whereas on the downward blocks (sub-basin interior) contemporaneous thick successions were deposited (up to 1500 m). The sub-basin fill is composed of different sedimentary systems (from alluvial to siliciclastic and carbonate platforms) affected by syndepositional extensional faults (and related folds). These faults die out in a southwestward dipping (~4°) detachment layer composed of Triassic evaporites and clays. A NE-SW cross-section of the sub-basin shows NW- to N-trending six planar and two listric extensional faults and associated folds, which define a horst and graben system. Rollovers (unfaulted and faulted), hangingwall synclines and central domes are present in the hangingwalls of both listric and planar faults. Also, a fault-propagation fold, a forced fold and a roller have been interpreted. Synkinematic depositional systems and sediment-filled fissures are parallel to the NW- to N-trending tectonic structures. Based on the trend of tectonic structures, the orientation of sediment-filled fissures and the paleocurrent pattern of growth strata, a thin-skinned NE-SW to E-W extension has been deduced for the interior of the Lasarte sub-basin. Both the coincidence between the directions of extension and dip of the detachment layer and the characteristics of the deformation suggest a thin-skinned gravity-driven extensional tectonics caused by the dip of the detachment layer. Recorded extensional deformation event in the Lasarte sub-basin is contemporaneous with and would have been triggered by the extreme crustal thinning and mantle exhumation processes documented recently in both the Basque-Cantabrian Basin and the Pyrenees.

  2. Genèse des séquences sédimentaires du Crétacé supérieur des Aurès (Algérie). Rôle de l'eustatisme, de la tectonique, de la subsidence: une mise au pointSedimentary sequences in the Upper Cretaceous of Aures Mountains (Algerie). Eustatsy, tectonics and subsidence: a development.

    NASA Astrophysics Data System (ADS)

    Herkat, Missoum; Delfaud, Jean

    2000-06-01

    The Upper Cretaceous of Aurès has been studied using a sedimentological approach to characterize the sequential organisation and deposits distribution in the basin. The sequential chain which was observed has been correlated to eustatic cycles defined on a global scale. Palaeogeographic reconstruction shows a basin with its south margin corresponding to a proximal platform domain with essentially carbonate deposits and toward the northeast, marly sedimentation of pelagic nature. The influence of NW-SE to WNW-ESE accidents on sedimentation control has been found preponderant. Therefore a system of tilted blocks toward the south characterizes a large part of the basin. The subsidence evolution through Upper Cretaceous is marked by a recovery of a tectonic distension during some phases (Late Albian and Lower Turonian) and an essentially thermic subsidence during the other periods. Finally some precocious tectonic phases appeared as early as the Santonian-Campanian transition. The evolution of the basin was thus controlled by the drift of the African plate during the expansion of the Atlantic ocean and also the tectonic influence which began to appear in north Alpine domain.

  3. Neogene ongoing tectonics in the Southern Ecuadorian Andes: analysis of the evolution of the stress field

    NASA Astrophysics Data System (ADS)

    Lavenu, A.; Noblet, C.; Winter, T. H.

    1995-01-01

    Microtectonic analysis of infilling deposits in South Ecuadorian Neogene basins brings to light a compressive stress field with σ1 along a NNE-SSW to NE-SW direction in the early Miocene, changing to an E-W direction in the Middle and Late Miocene. The syn-sedimentary deformations which affect the deposits of the basins suggest similar stress regimes due to a compressive ongoing tectonic system in the Miocene, for at least 15 Ma. There is a good correlation between rapid convergence in the Neogene and the time period during which the continental South Ecuadorian basins were deformed by compression (Quechua period).

  4. Late Quaternary stratigraphy of the La Janda Basin (SW Spain) - first results and palaeoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Höbig, Nicole; Santisteban, Juan; Mediavilla, Rosa; May, Simon Matthias; Klasen, Nicole; Brückner, Helmut; van't Hoff, Jasmijn; Reicherter, Klaus

    2017-04-01

    The La Janda basin in southern Spain is a near-shore geo-bio-archive comprising a variable Quaternary depositional history, with shallow marine, lacustrine, palustrine, and terrestrial strata. In the 1930s the lake was drained and is serving now as a huge agricultural area. The 33 m-core recovered in fall 2016 along with several shallower drill cores up to c. 15 m, reveals insights into a unique mixed terrestrial palaeo-environmental archive in Andalucia influenced by the Atlantic Ocean and hence the North Atlantic Oscillation (NAO) within the Gulf of Cádiz. The basin's evolution was influenced both by the postglacial marine transgression and by an active tectonic fault controlling most of the accommodation space by causing subsidence. Our long core was accompanied by further corings along an E-W striking transect in order to reveal also the relation of the influence of tectonic activity with sedimentary sequences. Multi-Sensor Core Logging has been completed. Results of sedimentological, geochemical and micropalaeontological analyses will be presented in the frame of the climate variations during the Late Pleistocene and the Holocene, along with a preliminary age-depth model based on radiocarbon (AMS-14C) and optical stimulated luminescence (OSL) dating techniques. Our investigations ultimately aim at providing valuable information on major Late Pleistocene to Holocene climatic and palaeo-environmental fluctuations in the southernmost part of the Iberian Peninsula.

  5. Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution

    NASA Astrophysics Data System (ADS)

    Poisson, André; Vrielynck, Bruno; Wernli, Roland; Negri, Alessandra; Bassetti, Maria-Angela; Büyükmeriç, Yesim; Özer, Sacit; Guillou, Hervé; Kavak, Kaan S.; Temiz, Haluk; Orszag-Sperber, Fabienne

    2016-01-01

    We present here a reappraisal of the tectonic setting, stratigraphy and palaeogeography of the central part of the Sivas Basin from Palaeocene to late Miocene. The Sivas Basin is located in the collision zone between the Pontides (southern Eurasia) and Anatolia (a continental block rifted from Gondwana). The basin overlies ophiolites that were obducted onto Anatolia from Tethys to the north. The Central Anatolian Crystalline Complex (CACC) experienced similar ophiolite obduction during Campanian time, followed by exhumation and thrusting onto previously emplaced units during Maastrichtian time. To the east, crustal extension related to exhumation of the CACC created grabens during the early Tertiary, including the Sivas Basin. The Sivas Basin underwent several tectonic events during Paleogene-Neogene. The basin fill varies, with several sub-basins, each being characterised by a distinctive sequence, especially during Oligocene and Miocene. Evaporite deposition in the central part of the basin during early Oligocene was followed by mid-late Oligocene fluvio-lacustrine deposition. The weight of overlying fluvial sediments triggered salt tectonics and salt diapir formation. Lacustrine layers that are interbedded within the fluviatile sediments have locally yielded charophytes of late Oligocene age. Emergent areas including the pre-existing Sivas Basin and neighbouring areas were then flooded from the east by a shallow sea, giving rise to a range of open-marine sub-basins, coralgal reef barriers and subsiding, restricted-marine sub-basins. Utilising new data from foraminifera, molluscs, corals and nannoplankton, the age of the marine transgression is reassessed as Aquitanian. Specifically, age-diagnostic nannoplankton assemblages of classical type occur at the base of the transgressive sequence. However, classical stratigraphic markers have not been found within the planktic foraminiferal assemblages, even in the open-marine settings. In the restricted-marine sediments, there are rich planktic foraminiferal assemblages of classical type but these are of little use in stratigraphy. In contrast, the gastropod fauna indicate a Burdigalian age. Sediment reworking in the restricted-marine environments precludes stratigraphic determination. In such environments, micro- and nano-organisms experienced atypical developmental conditions. The small benthic foraminifera and associated ostracod assemblages are good indicators of salinity which varied considerably within the restricted-marine sub-basins. Some of the corals within the coralgal reefs barriers are also dated as Aquitanian. A combination of the salt tectonics and the late Miocene north-westward-verging thrusting created the present basin complexity.

  6. DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin

    NASA Astrophysics Data System (ADS)

    Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).

  7. Active transtensional intracontinental basins: Walker Lane in the western Great Basin

    USGS Publications Warehouse

    Jayko, Angela S.; Bursik, Marcus

    2012-01-01

    The geometry and dimensions of sedimentary basins within the Walker Lane are a result of Plio-Pleistocene transtensive deformation and partial detachment of the Sierra Nevada crustal block from the North American plate. Distinct morpho-tectonic domains lie within this active transtensive zone. The northeast end of the Walker Lane is partly buried by active volcanism of the southern Cascades, and adjacent basins are filled or poorly developed. To the south, the basin sizes are moderate, 25–45km × 15–10 km, with narrow 8-12km wide mountain ranges mainly oriented N-S to NNE. These basins form subparallel arrays in discrete zones trending about 300° and have documented clockwise rotation. This is succeeded to the south by a releasing stepover domain ∼85-100km wide, where the basins are elongated E-W to ENE, small (∼15-30km long, 5-15km wide), and locally occupied by active volcanic centers. The southernmost part of the Walker Lane is structurally integrated, with high to extreme relief. Adjacent basins are elongate, 50-200km long and ∼5 -20km wide. Variations in transtensive basin orientations in the Walker Lane are largely attributable to variations in strain partitioning. Large basins in the Walker Lane have 2-6km displacement across basin bounding faults with up to 3 km of clastic accumulation based on gravity and drill hole data. The sedimentary deposits of the basins may include interbedded volcanic deposits with bimodal basaltic and rhyolitic associations. The basins may include lacustrine deposits that record a wide range of water chemistry from cold fresh water conditions to saline-evaporative

  8. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the seismological history of an area, as well as the characteristics of the parent geothermal fluids, adding an effective tool for geothermal exploration tasks.

  9. Transient river response, captured by channel steepness and its concavity

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.

    2015-01-01

    Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.

  10. The Nahuel Niyeu basin: A Cambrian forearc basin in the eastern North Patagonian Massif

    NASA Astrophysics Data System (ADS)

    Greco, Gerson A.; González, Santiago N.; Sato, Ana M.; González, Pablo D.; Basei, Miguel A. S.; Llambías, Eduardo J.; Varela, Ricardo

    2017-11-01

    Early Paleozoic basement of the eastern North Patagonian Massif includes low- and high grade metamorphic units, which consist mainly of alternating paraderived metamorphic rocks (mostly derived from siliciclastic protoliths) with minor intercalations of orthoderived metamorphic rocks. In this contribution we provide a better understanding of the tectonic setting in which the protoliths of these units were formed, which adds to an earlier suggested idea. With this purpose, we studied the metasedimentary rocks of the low-grade Nahuel Niyeu Formation from the Aguada Cecilio area combining mapping and petrographic analysis with U-Pb geochronology and characterization of detrital zircon grains. The results and interpretations of this unit, together with published geological, geochronological and geochemical information, allow us to interpret the sedimentary and igneous protoliths of all metamorphic units from the massif as formed in a forearc basin at ∼520-510 Ma (Nahuel Niyeu basin). It probably was elongated in the ∼NW-SE direction, and would have received detritus from a proximal source area situated toward its northeastern side (present coordinates). The basin might be related to an extensional tectonic regime. Most likely source rocks were: (1) 520-510 Ma, acidic volcanic rocks (an active magmatic arc), (2) ∼555->520 Ma, acidic plutonic and volcanic rocks (earlier stages of the same arc), and (3) latest Ediacaran-Terreneuvian, paraderived metamorphic rocks (country rocks of the arc). We evaluate the Nahuel Niyeu basin considering the eastern North Patagonian Massif as an autochthonous part of South America, adding to the discussion of the origin of Patagonia.

  11. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  12. Nature and tectonic implications of uneven sedimentary filling of the South China Sea oceanic basin

    NASA Astrophysics Data System (ADS)

    Yin, Shaoru; Li, Jiabiao; Ding, Weiwei; Fang, Yinxia

    2017-04-01

    The IODP Expedition 349 in 2014, for the first time, illustrated significant differences of sediment rate and lithology in the central South China Sea (SCS) oceanic basin. Based on seismic reflection profiles tied to IODP349 drilling data, we investigated characteristics of sedimentary filling of the whole SCS oceanic basin, and examined their implications for tectonics. Results show that sediments fill the SCS oceanic basin mainly in three depositional patterns. Firstly, during the Oligocene to middle Miocene, sediments amassed almost solely and then connected like a band parallel to the continent in a low average sediment rate (<10 m/Myr) in the northern oceanic basin. These sediments were deposited mainly in the form of submarine fans and mass transport deposits. Sediments were predominately supplied by the Red and Pearl Rivers and the Dongsha Islands. The sedimentary characteristics likely reflect the latest early Miocene end of seafloor spreading of the SCS and the first-phase rapid uplift of the Tibetan Plateau. Secondly, during the late Miocene, deposition mainly occurred in the Northwest Sub-basin and extended southeastward with a middle average sediment rate ( 30 m/Myr). Sediments were mostly transported by the Red River and Xisha Trough and deposited in the form of submarine fans. The abnormal increase of sediment rate in the Northwest Sub-basin reflects late Miocene slip reversal of the Red River Fault. Finally, since the Pliocene, sediments gradually propagated northeastward in the Southwestern Sub-basin, and accumulated rapidly in the southeastern and northeastern basin, especially in the northern Manila Trench during the Quaternary, in an average sediment rate about 60-80 m/Myr. These sediments were transported mainly by submarine canyons and settled in the form of submarine fans and canyon-overbank deposition. Sediments came from four major sources, including Taiwan, Dongsha Islands, Mekong River, and northern Palawan. The Pliocene to Quaternary explosion of uneven sedimentary filling in the SCS oceanic basin points to the combined action of local and regional tectonics, including the two-phase rapid uplift of the Tibetan Plateau, the Pliocene to Quaternary increased northwestward movement of the Philippine Sea plate and Dongsha event. This study exhibits hitherto most completed observation of sedimentary filling of the SCS oceanic basin and provides new geophysical evidences for the local and regional important tectonics.

  13. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    NASA Astrophysics Data System (ADS)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help the geoscientific community to contribute further to our quantitative understanding of source-to-sink systems and its allogenic and autogenic controls, geomorphological characteristics, terrestrial sediment transit times and the anthropogenic impact on those systems.

  14. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations

    NASA Astrophysics Data System (ADS)

    Sardar Abadi, Mehrdad; Kulagina, Elena I.; Voeten, Dennis F. A. E.; Boulvain, Frédéric; Da Silva, Anne-Christine

    2017-03-01

    The Lower Carboniferous Mobarak Formation records the development of a storm-sensitive pervasive carbonate factory on the southern Paleo-Tethyan passive margin following the opening of the Paleo-Tethys Ocean into the Alborz Basin along the northern margin of Gondwana. Its depositional facies encompass inner ramp peritidal environments, peloidal to crinoidal shoals, storm to fair-weather influenced mid-ramps, proximal to distal shell beds and low energy outer ramps. Sedimentological analyses and foraminiferal biostratigraphy reveal four events affecting carbonate platform evolution in the Alborz Basin during the Lower Carboniferous: (1) A transgression following global temperature rise in the Early Tournaisian (middle Hastarian) caused the formation of thick-bedded argillaceous limestones. This interval correlates with Early Tournaisian nodular to argillaceous limestones in the Moravia Basin (Lisen Formation, Czech Republic), the Dinant Basin (Pont d'Arcole Formation, Belgium), and at the Rhenish Slate Mountains (Lower Alum shale, Germany). (2) Late Hastarian-early Ivorian glaciations previously identified in Southern Gondwana but had not yet recognized in Northern Gondwana were recorded through a sequence boundary. (3) During the Late Tournaisian-Early Visean?, a differential block faulting regime along the basin's margin caused uplift of the westernmost parts of the Alborz Basin and resulted in subsidence in the eastern part of the central basin. This tectonically controlled shift in depositional regime caused vast sub-aerial exposure and brecciation preserved in the top of the Mobarak Formation in the western portion of the Central Alborz Basin. (4) Tectonic activity coinciding with a progressive, multiphase sea level drop caused indirectly by the Viséan and Serpukhovian glaciations phases ultimately led to the stagnation of the carbonate factory. Paleothermometry proxies, the presence of foraminiferal taxa with a northern Paleo-Tethyan affinity and evidence for arid conditions in the terrestrial hinterland place the Alborz Basin at lower latitudes than the approximately 45ο-50ο southern paleolatitude reported thus far.

  15. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi

    2018-01-01

    The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.

  16. Extensional vs contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back-arc setting

    NASA Astrophysics Data System (ADS)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Martos, Raquel; Roca, Eduard; Blanpied, Christian

    2016-07-01

    Based on field work and seismic reflection data, we investigate the Cenozoic tectono-sedimentary evolution offshore and onshore Ibiza allowing the proposal of a new tectonic agenda for the region and its integration in the geodynamic history of the West Mediterranean. The late Oligocene-early Miocene rifting event, which characterizes the Valencia Trough and the Algerian Basin, located north and south of the study area respectively, is also present in Ibiza and particularly well-expressed in the northern part of the island. Among these two rifted basins initiated in the frame of the European Cenozoic Rift System, the Valencia Trough failed rapidly while the Algerian Basin evolved after as a back-arc basin related to the subduction of the Alpine-Maghrebian Tethys. The subsequent middle Miocene compressional deformation was localized by the previous extensional faults, which were either inverted or passively translated depending on their initial orientation. Despite the lateral continuity between the External Betics and the Balearic Promontory, it appears from restored maps that this tectonic event cannot be directly related to the Betic orogen, but results from compressive stresses transmitted through the Algerian Basin. A still active back-arc asthenospheric rise likely explains the stiff behavior of this basin, which has remained poorly deformed up to recent time. During the late Miocene a new extensional episode reworked the southern part of the Balearic Promontory. It is suggested that this extensional deformation developed in a trans-tensional context related to the westward translation of the Alboran Domain and the coeval right-lateral strike-slip movement along the Emile Baudot Escarpment bounding the Algerian Basin to the north.

  17. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the unconformity during a phase of tectonic quiescence, and show a fining-upward depositional trend. This trend was generated by a progressive decrease in sediment supply stemming out from upstream migration of the knickpoints developed during the embanking of the axial system.

  18. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys,more » alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  19. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys,more » alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  20. The Global Geometry of River Drainage Basins and the Signature of Tectonic and Autogenic Processes

    NASA Astrophysics Data System (ADS)

    Giachetta, E.; Willett, S.

    2015-12-01

    The plan-form structure of the world's river basins contains extensive information regarding tectonic, paleo-geographic and paleo-climate conditions, but interpretation of this structure is complicated by the need to disentangle these processes from the autogenic behavior of fluvial processes. One method of interpreting this structure is by utilizing the well-established scaling between drainage area and channel slope. Integration of this scaling relationship predicts a relationship between channel length and downstream integrated drainage area, referred to in recent studies as χ (Willett et al., 2014). In this paper, we apply this methodology at a continental scale by calculating χ for the world's river networks using hydrological information from the HydroSHED (Hydrological data and maps based on SHuttleElevation Derivatives at multiple Scales) suite of geo-referenced data sets (drainage directions and flow accumulations). River pixels were identified using a minimum drainage area of 5 km2. A constant value of m/n of 0.45 was assumed. We applied a new method to correct χ within closed basins where base level is different from sea level. Mapping of χ illustrates the geometric stability of a river network, thus highlighting where tectonic or climatic forcing has perturbed the shape and geometry. Each continent shows characteristic features. Continental rift margins on all continents show clear asymmetric escarpments indicating inland migration. Active orogenic belts break up older river basins, but are difficult to interpret because of spatially variable uplift rates. Regions of recent tilting are evident even in cratonic areas by lateral reorganizations of basins. Past and pending river captures are identified on all continents. Very few regions on Earth appear to be in near-equilibrium, though some are identified; for example the Urals appears to provide a stable continental divide for Eurasia. Our analysis of maps of χ at the global scale quantifies a dynamic view of Earth's river networks and helps to identify past and ongoing evolution of Earth's landscapes. References Willett, S.D., McCoy, S.W., Perron, J.T., Goren, L., Chen C.Y. (2014): Dynamic reorganization of river basins, Science 343, 1248765. DOI: 10.1126/science.1248765.

  1. Geodynamical Evolution of the En echelon Basins in the Hexi Corridor: Implications From 3-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Shi, Y.; Zhang, H.; Cheng, H.

    2017-12-01

    The Hexi Corridor, located between the Alax block and the Caledon fold belt in the North Qilian Mountains, is the forefront area of northward thrust of the Tibet Plateau. Most notably, this active tectonic region consists of a series of faults and western-northwest trending Cenozoic basins. Therefore, it's a pivotal part in terms of recording tectonic pattern of the Tibet Plateau and also demonstrating the northward growth of Tibetan Plateau. In order to explain the mechanism of formation and evolution of the paired basins in the Hexi Corridor and based on the visco-elasticity-plasticity constitutive relation, we construct a 3-D finite element numerical model, including the Altun Tagh fault zone, the northern Qilian Shan-Hexi corridor faults system and the Haiyuan fault zone in northeast of the Tibet Plateau.The boundary conditions are constrained by GPS observations and fault slip rate provided by field geology, with steady rate of deformation of north-south compression and lateral shear along the approximately east-west strike fault zones.In our numerical model, different blocks are given different mechanical features and major fault zones are assumed mechanical weak zones. The long-term (5Ma) accumulation of lithospheric stress, displacement and fault dislocation of the Hexi Corridor and its adjacent regions are calculated in different models for comparison. Meanwhile, we analyze analyzed how the crustal heterogeneity affecting the tectonic deformations in this region. Comparisons between the numerical results and the geological observations indicate that under compression-shear boundary conditions, heterogeneous blocks of various scales may lead to the development of en echelon faults and basins in the Hexi corridor. And the ectonic deformation of Alax and the North Qilian Mountains are almost simultaneous, which may be earlier than the initiation of en echelon basins in the Hexi Corridor and the faults between the en echelon basins. Calculated horizontal and vertical deformation rate are in agreement with geological data. The calculation of deformation process is helpful for understanding the geological evolution history of the northeastwards growth of the Tibetan Plateau.

  2. The Inskip Formation, the Harmony Formation, and the Havallah Sequence of Northwestern Nevada - An Interrelated Paleozoic Assemblage in the Home of the Sonoma Orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2008-01-01

    An area between the towns of Winnemucca and Battle Mountain in northwestern Nevada, termed the arkosic triangle, includes the type areas of the middle to upper Paleozoic Inskip Formation and Havallah sequence, the Upper Devonian to Mississippian Harmony Formation, the Sonoma orogeny, and the Golconda thrust. According to an extensive body of scientific literature, the Havallah sequence, a diverse assemblage of oceanic rocks, was obducted onto the continent during the latest Permian or earliest Triassic Sonoma orogeny by way of the Golconda thrust. This has been the most commonly accepted theory for half a century, often cited but rarely challenged. The tectonic roles of the Inskip and Harmony Formations have remained uncertain, and they have never been fully integrated into the accepted theory. New, and newly interpreted, data are incompatible with the accepted theory and force comprehensive stratigraphic and tectonic concepts that include the Inskip and Harmony Formations as follows: middle to upper Paleozoic strata, including the Inskip, Harmony, and Havallah, form an interrelated assemblage that was deposited in a single basin on an autochthonous sequence of Cambrian, Ordovician, and lowest Silurian strata of the outer miogeocline. Sediments composing the Upper Devonian to Permian sequence entered the basin from both sides, arkosic sands, gravel, limestone olistoliths, and other detrital components entered from the west, and quartz, quartzite, chert, and other clasts from the east. Tectonic activity was expressed as: (1) Devonian uplift and erosion of part of the outer miogeocline; (2) Late Devonian depression of the same area, forming a trough, probably fault-bounded, in which the Inskip, Harmony, and Havallah were deposited; (3) production of intraformational and extrabasinal conglomerates derived from the basinal rocks; and (4) folding or tilting of the east side of the depositional basin in the Pennsylvanian. These middle to upper Paleozoic deposits were compressed in the Jurassic, causing east-verging thrusts in the eastern part of the depositional basin (Golconda thrust) and west-verging thrusts and folds in the western part. Hypotheses involving a far-traveled allochthon that was obducted from an ocean or back-arc basin are incompatible with modern observations and concepts.

  3. Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, K.J.; Do Van Luu; Lee, E.K.

    1996-12-31

    An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less

  4. Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, K.J.; Do Van Luu; Lee, E.K.

    1996-01-01

    An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less

  5. Detrital zircon U-Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin

    2015-12-01

    The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.

  6. Late Alpine to recent thick-skinned tectonics of the central Swiss Molasse Basin, Canton of Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Mock, Samuel; Allenbach, Robin; Wehrens, Philip; Reynolds, Lance; Kurmann-Matzenauer, Eva; Michael, Salomè; Herwegh, Marco

    2017-04-01

    The Swiss Molasse Basin (SMB) forms part of the North Alpine Foreland Basin. It is a typical peripheral foreland basin, which developed in Paleogene and Neogene times in response to flexural bending of the European lithosphere induced by the orogenic loading of the advancing Alpine thrust wedge. The tectonics of the SMB and the role of Paleozoic and Mesozoic structures are still poorly understood. It is widely accepted that during the main deformation phase of the Jura fold-and-thrust belt, the SMB was riding piggy-back above a major detachment horizon situated within Triassic evaporites. In recent years it has been observed that the Jura fold-and-thrust belt is today deforming in a thick-skinned tectonic style. As for the western and central SMB, most authors still argue in favor of a classical foreland type, thin-skinned style of deformation. Based on the geological 3D modeling of seismic interpretations, we present new insights into the structural configuration of the central SMB. Revised and new interpretations of 2D reflection seismic data from the 1960s to the 1980s reveal a major strike-slip fault zone affecting not only the Mesozoic and Cenozoic cover, but also the crystalline basement beneath. The fault zone reactivated late Paleozoic synsedimentary normal faults bounding a Permo-Carboniferous trough. Basement-involved thrusting observed in the southern part of the SMB seems to be controlled by the presence of slightly inverted Permo-Carboniferous troughs as well. These observations, combined with a compiled structural map and the distribution of recent earthquake hypocenters suggest a late stage, NNW-SSE directed, compressional thick-skinned and strike-slip dominated tectonic activity of the central SMB, post-dating the main deformation phase of the Jura fold-and-thrust belt. This still ongoing deformation might be related to the slab rollback of the European plate and the associated lower crustal delamination as recently suggested by Singer et al. (2014). References: Singer, J., Diehl, T., Husen, S., Kissling, E., Duretz, T., 2014. Alpine lithosphere slab rollback causing lower crustal seismicity in northern foreland. Earth Planet. Sci. Lett. 397, 42-56. doi:10.1016/j.epsl.2014.04.002

  7. Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming)

    NASA Astrophysics Data System (ADS)

    Törő, Balázs; Pratt, Brian R.

    2016-10-01

    Outcrops and cores from the top of the lacustrine Tipton Member and the base of the Wilkins Peak Member ( 51.5 Ma) of the Eocene Green River Formation, Bridger Basin in southwestern Wyoming yield a wide variety of sedimentary deformation features many of which are laterally extensive for more than 50 km. They include various types of folds, load structures, pinch-and-swell structures, microfaults, breccias and sedimentary dikes. In most cases deformation is represented by hybrid brittle-ductile structures exhibiting lateral variation in deformation style. These occur in low-energy, profundal organic-rich carbonate mudstones (oil shales), trona beds, tuffs, and profundal to sublittoral silty carbonate deposited in paleolake Gosiute. The deformation is not specific to the depositional environment because sedimentary units stratigraphically higher with similar facies show no deformation. The studied interval lacks any evidence for possible trigger mechanisms intrinsic to the depositional environment, such as strong wave action, rapid sediment loading, evaporite dissolution and collapse, or desiccation, so 'endogenic' causes are ruled out. Thus, the deformation features are interpreted as seismites, and change in deformation style and inferred increase in intensity towards the south suggest that the earthquakes were sourced from the nearby Uinta Fault System. The 22 levels exhibiting seismites recognized in cores indicate earthquakes with minimum magnitudes between 6 and 7, minimum epicentral intensity (MCS) of 9, and varying recurrence intervals in the seismic history of the Uinta Fault System, with a mean apparent recurrence period of 8.1 k.y. using average sedimentation rates and dated tuffs; in detail, however, there are two noticeably active periods followed by relative quiescence. The stratigraphic position of these deformed intervals also marks the transition between two distinct stages in lake evolution, from the balanced-filled Tipton Member to the overlying, underfilled Wilkins Peak Member. Thus, these seismites are evidence for regional-scale changes in lacustrine sedimentation of Eocene Lake Gosiute in response to syndepositional tectonic activity. Analysis of synsedimentary deformation features is, therefore, a promising yet under-utilized tool to trace the tectonic evolution of lacustrine deposits of the Green River Formation and other tectonically active marine and non-marine basins.

  8. Evolution of a Miocene sag basin in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Do Couto, D.; Gorini, C.; Jolivet, L.; Letouzey, J.; Smit, J.; d'Acremont, E.; Auxietre, J. L.; Le Pourhiet, L.; Estrada, F.; Elabassi, M.; Ammar, A.; Jabour, H.; Vendeville, B.

    2012-04-01

    The Alboran domain represents the westernmost termination of the peri-Mediterranean Alpine orogen. Its arcuate shape, delimited to the North by the Betic range and to the South by the Rif range, is the result of subduction, collision and slab migration processes. During the Neogene, several sedimentary basins formed on the Betics metamorphic basement, mainly due to the extensional collapse of the previously thickened crust of the Betic-Rif belt. The major sedimentary depocentre, the Western Alboran Basin (WAB), is surrounded by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge, and is partly affected by shale tectonics and associated mud volcanism. High-quality 2-D seismic profiles acquired along the Moroccan margin during the last decade reveal a complete history of the basin. Our study deals with the analysis of seismic profiles oriented parallel and orthogonal to the Mediterranean Moroccan margin. The stratigraphy was calibrated using well data from offshore Spain and Morocco. Our study focuses particularly on the tectono-stratigraphic reconstruction of the basin. The formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). A massive unit of Early Miocene to Lower Langhian shales and olistostromes forms a thick mobile décollement layer that controls and accommodates deformation of the basin fill. From the Upper Langhian to the Upper Tortonian, the basin is filled by a thick sequence of siliciclastic deposits. Stratigraphic geometries identified on seismic data clearly indicate that deformation of the basin fill started during deposition of Upper Langhian to the Upper Tortonian clastics. Shale tectonic deformation was re-activated recently, during the Messinian desiccation of the Mediterranean Sea (and the following catastrophic Pliocene reflooding) or during the Quaternary contourite deposition The sedimentary layers gently dip towards the basin centre and "onlaps" onto the basin margin, especially onto the basement high that bounds the basin toward the East. The contacts observed between the sediment and the basement reflectors are purely stratigraphic. These observations confirm that the geometry is essentially that of a sag basin. We discuss all these stratigraphic observations in the scope of the geodynamic evolution of the eastern and western Alboran basin and the extension recorded onshore during the basin development time interval.

  9. Evoluton of the Tharsis Region of Mars

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Dohm, J. M.; Maruyama, S.

    2015-12-01

    The evolution of the Tharsis region includes at least five major stages of Tharsis-related activity, which includes the formation of igneous plateaus, canyon and fault systems, volcanoes, and centers of magmatic-driven tectonism. This activity drove major environmental changes that were recorded in the walls of Valles Marineris, the circum-Chryse outflow channel system, the northern plains, and impact basins such as Argyre, among many other Martian features and landscapes. Environmental change included flooding and associated formation of lakes and oceans in basins such as the prominent northern plains and impact basins such as Argyre. This Tharsis-driven activity also included the formation of glaciers in the southern hemisphere and other landscape features (e.g., alluvial fans, periglacial landforms, gelifluction features including mass wasting, fluvial channels) indicative of an active landscape. At this conference, we will present the details of the evolution of Tharsis, as well as discuss contributing factors to its origin, estimated beginning development, and explanations for its longevity.

  10. Tectonic evolution of the Troodos Ophiolite within the Tethyan Framework

    NASA Astrophysics Data System (ADS)

    Dilek, Yildirim; Thy, Peter; Moores, Eldridge M.; Ramsden, Todd W.

    1990-08-01

    A new tectonic model reconciles conflicting structural and geochemical evidence for the origin of the Troodos ophiolite, a well-preserved remnant of Neotethyan oceanic crust. Grabens and normal faults within the sheeted dike complex and the extrusive sequence of the Troodos ophiolite resemble those of oceanic spreading centers. Diverse intrusive and tectonic contact relationships between the sheeted dike complex and the underlying plutonic sequence indicate multiple and episodic intrusion of magma and along- and across-strike variation in volcanic and tectonic activity during development of oceanic crust. Coupled with the existence of the Arakapas transform fault to the south, these structural and intrusive relationships suggest origin at an intersection between a spreading center and a transform fault. The arclike chemistry of sheeted dikes and related extrusive rocks and the inferred highly depleted and hydrous nature of the mantle source of the late stage intrusive and extrusive rocks argue, however, for generation of part of the ophiolite within a subduction zone environment. Regional reconstructions suggest that the Mesozoic Neotethys may have evolved as a marginal basin both to the Afro-Arabian continent and the Paleotethyan ocean over an active or recently active south dipping subduction zone. The Troodos ophiolite and other eastern Mediterranean ophiolites, whose magma compositions were affected by the subducted Paleotethyan slab, may have formed along east-west trending spreading centers separated by north-south trending transform faults within this marginal basin. A rapid change in relative plate motion in late Cretaceous time between Eurasia and Afro-Arabia created a regional compressive regime that may have resulted in plate boundary reorganizations within the Neotethyan realm and in initiation of north dipping subduction zone(s) beneath the Troodos and other ophiolites in the region. The apparent forearc setting of the Troodos ophiolite is a consequence of this intraoceanic displacement after its formation and thus is unrelated to its generation.

  11. A tectonic model for the Tertiary evolution of strike slip faults and rift basins in SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2002-04-01

    Models for the Tertiary evolution of SE Asia fall into two main types: a pure escape tectonics model with no proto-South China Sea, and subduction of proto-South China Sea oceanic crust beneath Borneo. A related problem is which, if any, of the main strike-slip faults (Mae Ping, Three Pagodas and Aliao Shan-Red River (ASRR)) cross Sundaland to the NW Borneo margin to facilitate continental extrusion? Recent results investigating strike-slip faults, rift basins, and metamorphic core complexes are reviewed and a revised tectonic model for SE Asia proposed. Key points of the new model include: (1) The ASRR shear zone was mainly active in the Eocene-Oligocene in order to link with extension in the South China Sea. The ASRR was less active during the Miocene (tens of kilometres of sinistral displacement), with minor amounts of South China Sea spreading centre extension transferred to the ASRR shear zone. (2) At least three important regions of metamorphic core complex development affected Indochina from the Oligocene-Miocene (Mogok gneiss belt; Doi Inthanon and Doi Suthep; around the ASRR shear zone). Hence, Paleogene crustal thickening, buoyancy-driven crustal collapse, and lower crustal flow are important elements of the Tertiary evolution of Indochina. (3) Subduction of a proto-South China Sea oceanic crust during the Eocene-Early Miocene is necessary to explain the geological evolution of NW Borneo and must be built into any model for the region. (4) The Eocene-Oligocene collision of NE India with Burma activated extrusion tectonics along the Three Pagodas, Mae Ping, Ranong and Klong Marui faults and right lateral motion along the Sumatran subduction zone. (5) The only strike-slip fault link to the NW Borneo margin occurred along the trend of the ASRR fault system, which passes along strike into a right lateral transform system including the Baram line.

  12. Similar Ring Structures on Mars and Tibetan Plateau confirm recent tectonism on Martian Northern polar region

    NASA Astrophysics Data System (ADS)

    Anglés, A.; Li, Y. L.

    2017-10-01

    The polar regions of Mars feature layered deposits, some of which exist as enclosed zoning structures. These deposits raised strong interest since their discovery and still remain one of the most controversial features on Mars. Zoning structures that are enclosed only appear in the Northern polar region, where the disappearance of water bodies may have left behind huge deposits of evaporate salts. The origin of the layered deposits has been widely debated. Here we propose that the enclosed nature of the zoning structures indicates the result of recent tectonism. We compared similar structures at an analogue site located in the western Qaidam Basin of Tibetan Plateau, a unique tectonic setting with abundant saline deposits. The enclosed structures, which we term Ring Structures, in both the analogue site and in the Northern polar region of Mars, were formed by uplift induced pressurization and buoyancy of salts as the result of recent tectonic activity.

  13. The southern Tyrrhenian basin: is something changing in its kinematics?

    NASA Astrophysics Data System (ADS)

    Pondrelli, S.; Piromallo, C.

    2003-04-01

    The Tyrrhenian Sea is unanimously considered an extensional basin opened through trench retreat and back-arc extension during subduction of the Calabrian slab. This subduction is presently active only beneath the southeasternmost part the Tyrrhenian Sea, as testified by seismicity, occuring from crustal depths down to 400 km, along a well defined Wadati-Benioff zone. If we analyze seismicity distribution and earthquakes focal mechanisms available for the southern part of the basin, the present-day situation looks however quite different from the one inferred from the reconstructions of the most recent evolution of the Tyrrhenian domain. Shallow seismicity with magnitude M_w >= 4.5 (for which computation of the moment tensor is certainly feasible), exhibits a clear compressional deformation, active at least since the last 25 years, and is located immediately off-shore all along the northern coast of Sicily --- also the last northern Sicily sequence, started on September 6, 2002, with a M_L=5.6 event, belongs to this activity. Thrust shallow events are clearly confined to the west of the Aeolian Archipelago, while to the east shallow seismicity is more sparse and rare, and concentrated onland. On the contrary, deep and intermediate seismicity is substantially distributed east of the Aeolian Islands, while almost absent west of them. Moreover, historical seismicity reports strong earthquakes related to extensional faults all along the Calabrian Arc, as in the rest of the Apenninic chain. As a sharp boundary to this transition in seismicity characteristics we therefore identify the location of Aeolian volcanic islands. It is well known that this subduction-related island arc grew over pre-existing tectonic features, coeval and related to the opening of the Tyrrhenian basin itself, through which magmatic material found a way to rise and build up the archipelago. The most relevant of these structures is certainly the Tindari-Giardini fault system which, moving southward from the Aeolian Islands, cross-cuts the Patti Gulf, the Etna volcano and joins with the Malta Escarpment. We discuss here seismological data for the region surrounding this important tectonic feature, together with volcanological and tectonic evidences and new results from seismic tomography, to obtain a sketch of the present-day kinematics and to face an interpretation of dynamics. We propose that, after a long period of extension dominating the evolution of the Tyrrhenian basin, at present something is changing, starting from its southwestern boundary. Slab retreat is likely still occurring, confined to the east of the major tectonic discontinuity, the transcurrent Tindari-Giardini-Etna-Malta Escarpment lineament, where a narrow stripe of oceanic lithosphere is still present in the foreland. Contrarily, to the west of this structure, where oceanic lithosphere is totally consumed and the thick, buoyant African shelf prevents further subduction of continental lithosphere, the retreat process has come to an end and large-scale Africa-Europe plate convergence has probably regained over the internal dynamics of the system.

  14. Coking-coal deposits of the western United States

    USGS Publications Warehouse

    Berryhill, Louise R.; Averitt, Paul

    1951-01-01

    Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)

  15. The tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.

  16. Sedimentary structure and tectonic setting of the abyssal basins adjoining the southeast part of the Ontong Java Plateau, western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Shimizu, S.; Masato, N.; Miura, S.; Suetsugu, D.

    2017-12-01

    Ontong Java Plateau(OJP) in the western Pacific Ocean is one of the largest oceanic plateau in the world. Radioactive ages of drilling samples indicate that the most part of the OJP was emplaced about 122 Ma (Mahoney et al., 1993). Taylor (2006) proposed that the OJP formed as a single large volcanic province together with the Manihiki and Hikurangi plateaus. OJP is surrounding by East Mariana, Pigafetta, Nauru, Ellice, Stewart, and Lyra basins. The East Mariana and Pigafetta basins were formed at the Pacific-Izanagi ridge and the Nauru basin was formed at Pacific-Phoenix ridges (Nakanishi et al., 1992). The tectonic history of the Ellice, Stewart, and Lyra basins is still unknown because of lack of magnetic anomaly lineations. Tectonic setting during the OJP formation is thus a matter of controversy. To expose the tectonic setting of the Ellice, Stewart, and Lyra basins, we conducted the Multi-Channel Seismic (MCS) survey in the basins during the research cruise by R/V Mirai of JAMSTEC in 2014. We present our preliminary results of the MCS survey in the Stewart basin(SB) and Ellice Basin(EB). After the regular data processing, we compared the seismic facies of MCS profile with DSDP Site 288 and ODP Site 1184 to assign ages to seismic reflectors. Our processing exposed several remarkable structures in the basins. The graben structures deformed only the igneous basement in the northwestern and northeastern and southwestern margins of the SB. This suggests the graben structures were formed before sedimentary layer deposited. Taylor (2006) proposed that the basin was formed by the NW-SE rifting during the separation of OJP and Manihiki Plateau around 120 Ma. Neal (1997) proposed that the NE-SW rifting formed the basin around 80 Ma. Our study supports the rifting model proposed by Neal et al. (1997) because the displacement of graben in northeastern and southwestern margins of the SB is larger than that in northwestern of the SB. We found several igneous diapirs in the SB and EB. Several diapirs intrude into Oligocene sediments, implying that the volcanism occurred after the formation of the basins. On the southern edge of SB is the outer rise called Stewart Arch (Phinney et al., 1999). We identified normal faults near the Stewart Arch. Those faults caused by the plate bending owing to the subduction of the Pacific plate.

  17. Stratigraphy, sedimentology and tectonic evolution of the Upper Cretaceous/Paleogene succession in north Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El Ayyat, Abdalla M.; Obaidalla, Nageh A.

    2013-05-01

    The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K-P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian-Maastrichtian); Dakhla Formation (Danian-Selandian); Tarawan Formation (Selandian-Thanetian) and Esna Formation (Thanetian-Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian-Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene-Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.

  18. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.

  19. Incision and Landsliding Lead to Coupled Increase in Sediment Flux and Grain Size Export

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, D. C.; Brooke, S.; D'Arcy, M. K.; Whittaker, A. C.; Armitage, J. J.

    2017-12-01

    The rates and grain sizes of sediment fluxes modulate the dynamics and timing of landscape response to tectonics, and dictate the depositional patterns of sediment in basins. Over the last decades, we have gained a good quantitative understanding on how sediment flux and grain size may affect incision and basin stratigraphy. However, we comparably still have limited knowledge on how these variables change with varying tectonic rates. To address this question, we have studied 152 catchments along 8 normal fault-bounded ranges in southern Italy, which are affected by varying fault slip rates and experiencing a transient response to tectonics. Using a data set of 38 new and published 10Be erosion rates, we calibrate a sediment flux predictive equation (BQART), in order to estimate catchment sediment fluxes. We demonstrate that long-term sediment flux is governed by fault slip rates and the tectonically-controlled transient incision, and that sediment flux estimates from the BQART, steady-state assumptions, and incised volumes are highly correlated. This is supported by our 10Be erosion rates, which are controlled by fault slip and incision rates, and the associated landsliding. Based on a new landslide inventory, we show that erosion rate differences are likely due to differences in incision-related landslide activity across these catchments, and that landslides are a major component of sediment fluxes. From a data set of >13000 grain size counts on hillslope grain size supply and fluvial sediment at catchment outlets, we observe that landslides deliver material 20-200% coarser than other sediment sources, and that this coarse supply has an impact on the grain size distributions being exported from the catchments. Combining our sediment flux and grain size data sets, we are able to show that for our catchments, and potentially also for any areas that respond to changes in climate or tectonics via enhanced landsliding, sediment flux and grain size export increase concomitantly and scale non-linearly. Finally, we explore the consequences that this coupled sediment flux and grain size increase may have on basin stratigraphy, and we show that it has a significant effect on amplifying gravel front progradation.

  20. Some fundamental questions about the evolution of the Sea of Japan back-arc

    NASA Astrophysics Data System (ADS)

    Van Horne, A.; Sato, H.; Ishiyama, T.

    2016-12-01

    The Japanese island arc separated from Asia through the rifting of an active continental margin, and the opening of the Sea of Japan back-arc, in the middle Miocene. Due to its complex tectonic setting, the Sea of Japan back-arc was affected by multiple external events contemporary with its opening, including a plate reorganization, the opening of at least two other nearby back-arcs (Shikoku Basin and Okhotsk Sea/Kuril Basin), and two separate arc-arc collisions, involving encroachment upon Japan of the Izu-Bonin and Kuril arcs. Recent tectonic inversion has exposed entire sequences of back-arc structure on land, which remain virtually intact because of the short duration of inversion. Japan experiences a high level of seismic activity due to its position on the overriding plate of an active subduction margin. Continuous geophysical monitoring via a dense nationwide seismic/geodetic network, and a program of controlled-source refraction/wide-angle reflection profiling, directed towards earthquake hazard mitigation, have made it the repository of a rich geophysical data set through which to understand the processes that have shaped back-arc development. Timing, structural evolution, and patterns of magmatic activity during back-arc opening in the Sea of Japan were established by earlier investigations, but fundamental questions regarding back-arc development remain outstanding. These include (1) timing of the arrival of the Philippine Sea plate in southwest Japan, (2) the nature of the plate boundary prior to its arrival, (3) the pre-rift location of the Japanese island arc when it was attached to Asia, (4) the mechanism of back-arc opening (pull-apart or trench retreat), (5) the speed of opening, (6) simultaneous or sequential development of the multi-rift system, (7) the origin of the anomalously thick Yamato Basin ocean crust, and (8) the pattern of concentrated deformation in the failed-rift system of the eastern Sea of Japan since tectonic inversion. Resolving uncertainties like those posed here will be necessary for a more complete understanding of the nature of and processes involved in back-arc development in the Sea of Japan.

  1. Geomorphology, tectonics, and exploration

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  2. Structural evolution and petroleum productivity of the Baltic basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmishek, G.F.

    The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of amore » thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.« less

  3. Overview of geology, hydrology, geomorphology, and sediment budget of the Deschutes River Basin, Oregon.

    Treesearch

    Jim E. O' Connor; Gordon E. Grant; Tana L. Haluska

    2003-01-01

    Within the Deschutes River basin of central Oregon, the geology, hydrology, and physiography influence geomorphic and ecologic processes at a variety of temporal and spatial scales. Hydrologic and physiographic characteristics of the basin are related to underlying geologic materials. In the southwestern part of the basin, Quaternary volcanism and tectonism has created...

  4. Patterns of landscape form in the upper Rhône basin, Central Swiss Alps, predominantly show lithologic controls despite multiple glaciations and variations in rock uplift rates

    NASA Astrophysics Data System (ADS)

    Stutenbecker, L. A.; Costa, A.; Schlunegger, F.

    2015-10-01

    The development of topography is mainly dependent on the interplay of uplift and erosion, which are in term controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables such as anthropogenic impact. While most studies have focused on the role of tectonics and climate on the landscape form and underlying processes, less attention has been paid on exploring the controls of lithology on erosion. The Central European Alps are characterized by a large spatial variability in exposed lithologies and as such offer an ideal laboratory to investigate the lithological controls on erosion and landscape form. Here, we focus on the ca. 5400 km2-large upper Rhône basin situated in the Central Swiss Alps to explore how the lithological architecture of the bedrock conditions the Alpine landscape. To this extent, we extract geomorphological parameters along the channels of ca. 50 tributary basins, whose catchments are located in either granitic basement rocks (External massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles show that all tributary rivers within the Rhône basin are in topographic transient state as testified by mainly convex or concave-convex longitudinal stream channel profiles with several knickpoints of either tectonic or glacial origin. In addition, although the entire Rhône basin shows a strong glacial inheritance (and is still partly glaciated) and some of the highest uplift rates recently measured in the Alps, the river network has responded differently to those perturbations as revealed by the morphometric data. In particular, tributary basins in the Helvetic nappes are the most equilibrated (concave river profiles, overall lower elevations, less steep slope gradients and lowest hypsometric integrals), while the tributaries located in the External massifs are least equilibrated, where streams yield strong convex long profiles, and where the tributary basins have the highest hypsometric integral and reveal the steepest hillslopes. We interpret this pattern to reflect differences in response times of the fluvial erosion in tributary streams towards glacial and tectonic perturbations, where the corresponding lengths strongly depend on the lithology and therefore on the bedrock erodibility.

  5. Inhomogeneous Crustal Structure of the Rifting in the Okinawa Trough, a Backarc Basin West of Kyushu, Japan, Deduced from Seismic Reflection and Refraction Data

    NASA Astrophysics Data System (ADS)

    Nishizawa, A.; Kaneda, K.; Oikawa, M.; Horiuchi, D.; Fujioka, Y.; Okada, C.

    2017-12-01

    Several depressions found under the thick sediments in the East China Sea shelf have been considered as failed rift basins. Their formation age becomes progressively younger from NW to SE and the youngest rift basin is the Okinawa Trough, an active backarc basin of the Ryukyu (Nansei-Shoto) arc-trench system, to the southwest of Kyusyu, Japan. Its rifting is in progress and related hydrothermal activity is present in the trough. The knowledge of the crustal structure of the trough is fundamental to understand the current active tectonics and predict the future of the trough. We, Japan Coast Guard, have conducted extensive seismic reflection and refraction surveys in the Ryukyu region since 2008 and compiled the seismic structures of the Okinawa Trough. We will show the crustal structures along seven along-trough and ten across-trough seismic survey lines. The P-wave velocity models beneath the Okinawa Trough generally show a thinned continental/island arc crust consisting of upper, middle, and lower crusts. Moho depths below the trough were estimated mainly from Moho reflection (PmP) travel times. The crustal thickness of the trough is thinner than those of the East China Sea shelf and of the Ryukyu Islands. The depth of the Moho below the trough decreases from over 30 km in the north to about 13 km in the south, indicating a difference in degree of the rifting process. The position of the shallowest Moho along the across-trough lines in the northern trough does not necessarily correspond to the center of the trough defined as the deepest water depth, but it corresponds to the transition area between the East China Sea shelf and the Okinawa Trough. An M7.1 earthquake occurred at the transition area on Nov. 14, 2015 (JST) and many aftershocks were observed along the transition. This seismic activity demonstrated that the area is under rifting tectonics in the present.

  6. Angola seismicity

    NASA Astrophysics Data System (ADS)

    Neto, Francisco António Pereira; França, George Sand; Condori, Cristobal; Sant'Anna Marotta, Giuliano; Chimpliganond, Cristiano Naibert

    2018-05-01

    This work describes the development of the Angolan earthquake catalog and seismicity distribution in the Southwestern African Plate, in Angola. This region is one of the least seismically active, even for stable continental regions (SCRs) in the world. The maximum known earthquake had a magnitude of 6.0 Ms, while events with magnitudes of 4.5 have return period of about 10 years. Events with magnitude 5 and above occur with return period of about 20 years. Five seismic zones can be confirmed in Angola, within and along craton edges and in the sedimentary basins including offshore. Overall, the exposed cratonic regions tend to have more earthquakes compared to other regions such as sedimentary basins. Earthquakes tend to occur in Archaic rocks, especially inside preexisting weakness zones and in tectonic-magmatic reactivation zones of Mesozoic and Meso-Cenozoic, associated with the installation of a wide variety of intrusive rocks, strongly marked by intense tectonism. This fact can be explained by the models of preexisting weakness zones and stress concentration near intersecting structures. The Angolan passive margin is also a new region where seismic activity occurs. Although clear differences are found between different areas along the passive margin, in the middle near Porto Amboim city, seismic activity is more frequent compared with northwestern and southwestern regions.

  7. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-10-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  8. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  9. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study area lasted until recently. Those young tectonic activities are too young to be explained by mascon loading hypothesis. Tectonism induced by global cooling or orbital evolution are possible origins for the young horizontal compression. However, they cannot explain the recent extension. Our study area is located in PKT region where the heat-producing elements are more abundant than surrounding areas. Therefore, regional cooling would be a reasonable explanation for the young extensional tectonics. References Ono, T., A. Kumamoto, H. Nakagawa, Y. Yamaguchi, S. Oshigami, A. Yamaji, T. Kobayashi, Y. Kasahara, and H. Oya, 2009, Science, 323, 909--912. Solomon, S.C. and Head, J.W., 1980, Rev. Geophys., 18, 107--141. Trask, N.J., 1971, Geological Survey Research, U.S. Geol. Surv. Prof. Pap. 750-D, D138--D144. Watters, T.R., M.S. Robinson, M.E. Banks, T. Tran, and B.W. Denevi, 2012, Nature Geosci., 5, 181--185.

  10. Evaluating controls on fluvial sand-body clustering in the Ferris Formation (Cretaceous/Paleogene, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Heller, P.

    2009-12-01

    A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.

  11. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    The East Siberian Sea basin (ESSB) is the largest part of the Siberian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. Nowadays East Siberian Sea margin is considered as a region with probable high petroleum potential. This part of Russian Arctic shelf is the least studied. The major problems in geological investigation of East Siberian Sea shelf are absence of deep wells in area and low seismic exploration maturity. Only general conclusions on its geology and hydrocarbon systems can be drawn based on limited seismic, gravity and magnetic data, supported by projection of onshore geological data to offshore. So, that's why now only complex geological and seismic stratigraphy interpretations are provided. Today we have several concepts and can summarize the tectonic history of the basin. The basin is filled with siliclastic sediments. In the deepest depocentres sediments thickness exceed 8 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Stratigraphic interpretation was possible to achieve because seismic reflections follow chronostratigraphic correlations. Finally, main seismic horizons were indicated. Each indicated horizon follows regional stratigraphic unconformity. In case of absence of deep wells in ESSB, we can only prove possible source rocks by projection of data about New Siberian Islands archipelago source rocks on offshore. The petroleum potential of these rocks was investigated by several authors [1, 2, 3]. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other Russian and foreign onshore and offshore basins. The majority of structures could be connected with stratigraphic and fault traps. New data on possible petroleum plays was analyzed, large massif of data on geology and tectonic history of the region was collected, so now we can use method of basin modelling to evaluate hydrocarbon saturation in most perspective prospects. Factors of tectonic history, high thickness of sediments in basin, founded possible oil and gas source rocks promise success in future exploration, but in ESSB we also recommend further geophysical investigations (seismic, gravy and magnetic) and well testing of some most perspective prospects, despite of high cost of these activities. We suppose, that investigations of ESSB should be continued to receive positive effects for Russian national economy in the nearest future. References [1] Kirillova (eds) [2013] Geological setting and petroleum potential of sedimentary basins of East Siberian Sea continental margin, v. 1, (in Russian) 249. [2] Sobolev (eds) [2012] Investigation of main sequences of Paleozoic and Meso-Cenozoic sedimentary and magmatic complexes of New Siberian Islands Archipelago, (in Russian), 143. [3] Suprunenko (eds) [2005] Petroleum zoning of Russian East Arctic shelf, Comparative analysis of petroleum potential of this aquatories with definition of perspective prospects and choise of most perspective objects for future projects, v. 1, (in Russian), 264.

  12. Usbnd Pb detrital zircon ages from some Neoproterozoic successions of Uruguay: Provenance, stratigraphy and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Pecoits, Ernesto; Aubet, Natalie R.; Heaman, Larry M.; Philippot, Pascal; Rosière, Carlos A.; Veroslavsky, Gerardo; Konhauser, Kurt O.

    2016-11-01

    The Neoproterozoic volcano-sedimentary successions of Uruguay have been the subject of several sedimentologic, chrono-stratigraphic and tectonic interpretation studies. Recent studies have shown, however, that the stratigraphy, age and tectonic evolution of these units remain uncertain. Here we use new Usbnd Pb detrital zircon ages, combined with previously published geochronologic and stratigraphic data in order to provide more precise temporal constraints on their depositional age and to establish a more solid framework for the stratigraphic and tectonic evolution of these units. The sequence of events begins with a period of tectonic quiescence and deposition of extensive mixed siliciclastic-carbonate sedimentary successions. This is followed by the development of small fault-bounded siliciclastic and volcaniclastic basins and the emplacement of voluminous granites associated with episodic terrane accretion. According to our model, the Arroyo del Soldado Group and the Piedras de Afilar Formation were deposited sometime between ∼1000 and 650 Ma, and represent passive continental margin deposits of the Nico Pérez and Piedra Alta terranes, respectively. In contrast, the Ediacaran San Carlos (<552 ± 3 Ma) and Barriga Negra (<581 ± 6 Ma) formations, and the Maldonado Group (<580-566 Ma) were deposited in tectonically active basins developed on the Nico Pérez and Cuchilla Dionisio terranes, and the herein defined Edén Terrane. The Edén and the Nico Pérez terranes likely accreted at ∼650-620 Ma (Edén Accretionary Event), followed by their accretion to the Piedra Alta Terrane at ∼620-600 Ma (Piedra Alta Accretionary Event), and culminating with the accretion of the Cuchilla Dionisio Terrane at ∼600-560 Ma (Cuchilla Dionisio Accretionary Event). Although existing models consider all the Ediacaran granites as a result of a single orogenic event, recently published age constraints point to the existence of at least two distinct stages of granite generation, which are spatially and temporally associated with the Edén and Cuchilla Dionisio accretionary events.

  13. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.

  14. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    NASA Technical Reports Server (NTRS)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  15. Setting the baseline before geothermal exploration begins: the search of microseismic activity in the Geneva Basin, Western Switzerland

    NASA Astrophysics Data System (ADS)

    Antunes, Verónica; Lupi, Matteo; Carrier, Aurore; Planès, Thomas; Martin, François

    2017-04-01

    Switzerland is moving towards the development of renewable energies. Following this trend, SIG (Services Industriels de Genève) and the Canton of Geneva is investing in the exploration of geothermal energy. Before the exploration takes place it is crucial to understand the rate of seismic activity in the region and its relationship with the existing faults. Historical and instrumental times suggest the presence of active faults in the region but to date little is known about the seismic activity in the Geneva Basin. Tectonic maps show the presence of major faults crossing the basin and recent seismic events indicate that such systems are still active on a regional scale. However, available data indicate infrequent and dispersed activity. This can be partially due to the small number of permanent stations in the area. To understand where micro-seismic activity may be located around and within the Geneva Basin we have deployed a temporary network composed of 20 broadband stations. With the densification of the network it could be possible to capture and localise small magnitude seismic events (i.e. M less than 1). Here we present the preliminary results obtained during the first months of the temporary network deployment.

  16. Tectonic and Sedimentation Interactions in the East Caribbean Subduction Zone: AN Overview from the Orinoco Delta to the Barbados Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Deville, E.

    2011-12-01

    Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region. Piston-core surveys have demonstrated that turbidite sediments above the accretionary prism and in the abyssal plain are mostly coarse sandy deposits covered by recent pelagic planktonic-rich sediments, which indicate that sand deposition has slow down during the post-glacial sea level rise. Numerical stratigraphic modeling suggests that during the last glacial event, the main depocenters were located above the tectonic prism and in the abyssal plain, at the front of the prism and that, during the Holocene eustatic rise, a large accommodation space formed on the shelf confining sedimentation mostly on the Orinoco deltaic platform and producing a starvation downstream in the turbidite system. This is in good agreement with the piston coring results which show low deep turbidite sedimentation rates during recent times.

  17. Active faults newly identified in Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    The Bellingham Basin, which lies north of Seattle and south of Vancouver around the border between the United States and Canada in the northern part of the Cascadia subduction zone, is important for understanding the regional tectonic setting and current high rates of crustal deformation in the Pacific Northwest. Using a variety of new data, Kelsey et al. identified several active faults in the Bellingham Basin that had not been previously known. These faults lie more than 60 kilometers farther north of the previously recognized northern limit of active faulting in the area. The authors note that the newly recognized faults could produce earthquakes with magnitudes between 6 and 6.5 and thus should be considered in hazard assessments for the region. (Journal of Geophysical Reserch-Solid Earth, doi:10.1029/2011JB008816, 2012)

  18. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  19. Post-Paleogene (post-Middle Eocene-pre-Miocene) Geodynamic evolution of the Upper Cretaceous-Paleogene Basins in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Rojay, Bora

    2017-04-01

    Central Anatolia is one of the key areas on the evolution of Cretaceous-Paleogene Tethys where stratigraphy of the region is well studied. However not well linked with tectonics. The so-called "Ankara Mélange" belt (AOM) and the basins on top are important elements in the understanding of the İzmir-Ankara-Erzincan suture belt (İAES) evolution in Anatolia (Turkey) and in the evolution of Tethys in minor Asia (Turkey). Some of the basins are directly situated on top of the tectonic slices of the accretionary prism (IAES). However, some are not tectonically well explained as in the case of Haymana basin. The southern continental fragments (eg. Kütahya-Bolkardaǧ and Kırşehir blocks from Gondwana) are approaching to northern continents (Pontides of Lauriasia) where basins like Haymana, Alçı, Kırıkkale and Orhaniye extensional basins are evolved in between the closing margins of two continents. Haymana basin is an extensional basin developed under contractional regime on top of both northward subducting oceanic fragments and an approaching fragments of southern continents. Paleogene (end of Eocene) is the time where the Seas were retreated to S-SE Anatolia leaving a continental setting in Anatolia during Oligocene-Miocene. The slip data gathered from the faults cross-cutting the Paleogene Units and the fabric from Cretaceous mélanges depicts a NNW-SSE to NNE-SSW compressional stress regime operated during post-Eocene-pre-Miocene period. Lately the slip surfaces were overprinted by post-Pliocene normal faulting. Key words: fault slip data, Paleogene, NNW-SSE compression, Anatolia.

  20. Active tectonics in the Mygdonia basin (northern Greece): a combined seismological and remote-sensed geomorphology approach

    NASA Astrophysics Data System (ADS)

    Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria

    2014-05-01

    In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion along the southern flank of the Mygdonia graben. Observed differences may be related to a diachronic evolution. River profiles crossing the Thessaloniki-Gerakarou fault system (TGFS) south of the Mygdonia basin display anomalies such as knickpoints or convex segments. These anomalies reflect significant changes in river base-levels possibly triggered by uplift/subsidence processes. We also computed the normalized steepness index (ksn) for concave segments in rivers. We observe an increase of ksn values towards the south while the lithology remains almost constant. These changes in ksn values may be thus related to an increase in deformation rates along the southern TGFS. Our geomorphic analysis also highlighted several flat paleo-surfaces located on top of main ranges at elevations comprised between 300 and 450m above the basin infill. Finally, we produced thematic maps combining present-day seismicity, historical earthquakes and geomorphic features derived from DEM. The combined use of both seismology and remote-sensed geomorphology allowed us to better understand the at-depth and surface expressions of active structures within the Mygdonia basin. It also provided further insights into the tectonic evolution of the study area. This project is funded by the German Academic Exchange Service (DAAD) and the Greek State Scholarschips Foundation (IKY) under the IKYDA initiative.

  1. Lunar Tectonic Triad Joining Both Hemispheres and Its Terrestrial Analogue

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2018-06-01

    "Orbits make structures" — This three word notion explains similarities of fundamental tectonic features of the small satellite and much larger massive Earth. Very impressive are geoids of two bodies — similarity of SPA Basin and Indian depressions.

  2. The Crotone Megalandslide, southern Italy: Architecture, timing and tectonic control.

    PubMed

    Zecchin, Massimo; Accaino, Flavio; Ceramicola, Silvia; Civile, Dario; Critelli, Salvatore; Da Lio, Cristina; Mangano, Giacomo; Prosser, Giacomo; Teatini, Pietro; Tosi, Luigi

    2018-05-17

    Large-scale submarine gravitational land movements involving even more than 1,000 m thick sedimentary successions are known as megalandslides. We prove the existence of large-scale gravitational phenomena off the Crotone Basin, a forearc basin located on the Ionian side of Calabria (southern Italy), by seismic, morpho-bathymetric and well data. Our study reveals that the Crotone Megalandslide started moving between Late Zanclean and Early Piacenzian and was triggered by a contractional tectonic event leading to the basin inversion. Seaward gliding of the megalandslide continued until roughly Late Gelasian, and then resumed since Middle Pleistocene with a modest rate. Interestingly, the onshore part of the basin does not show a gravity-driven deformation comparable to that observed in the marine area, and this peculiar evidence allows some speculations on the origin of the megalandslide.

  3. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron

    2016-01-01

    Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.

  4. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng

    2016-04-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows, and oil and gas fields have also been discovered in the Zaysan Basin in adjacent Kazakhstan and in adjacent Junggar, Tuha and Santanghu Basins. Drilling data, geochemical analysis of outcrop data, and the disection of ancient Bulongguoer oil reservoir at the south margin of the Hefeng Basin show there developed two sets of good transitional source rocks, the lower Hujierste Formation in the Middle Devonian (D2h1) and the Hebukehe Formation in the Upper Devonian and Lower Carboniferous (D3-C1h) in this area, which, 10 to 300 m thick, mainly distribute in the shoal water zone along Tacheng-Ertai Late Paleozoic island arc belt. Reservoirs were mainly formed in the Jurassic and then adjusted in two periods, one from the end of the Jurassic to middle Cretaceous and the other in early Paleogene. Those early oil reservoirs might be destroyed in areas such as Bulongguoer with poor preservation conditions, but in an area with good geologic and preserving conditions, oil and gas might accumulate again to form new reservoirs. Therefore, a potential Middle Devonian-Lower Carboniferous petroleum system may exist in Tacheng-Ertai island arc belt, which may become a new domain for exploration, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  5. Tectono-thermal History of the Southern Nenana Basin, Interior Alaska: Implications for Conventional and Unconventional Hydrocarbon Exploration

    NASA Astrophysics Data System (ADS)

    Dixit, N. C.; Hanks, C. L.

    2014-12-01

    The Tertiary Nenana basin of Interior Alaska is currently the focus of both new oil exploration and coalbed methane exploitation and is being evaluated as a potential CO2sequestration site. The basin first formed as a Late Paleocene extensional rift with the deposition of oil and gas-prone, coal-bearing non-marine sediments with excellent source potential. Basin inversion during the Early Eocene-Early Oligocene times resulted in folding and erosion of higher stratigraphic levels, forming excellent structural and stratigraphic traps. Initiation of active faulting on its eastern margin in the middle Oligocene caused slow tectonic subsidence that resulted in the deposition of reservoir and seal rocks of the Usibelli Group. Onset of rapid tectonic subsidence in Pliocene that continues to the present-day has provided significant pressure and temperature gradient for the source rocks. Apatite fission-track and vitrinite reflectance data reveals two major paleo-thermal episodes: Late Paleocene to Early Eocene (60 Ma to 54.8 Ma) and Late Miocene to present-day (7 Ma to present). These episodes of maximum paleotemperatures have implications for the evolution of source rock maturity within the basin. In this study, we are also investigating the potential for coalbed methane production from the Late Paleocene coals via injection of CO2. Our preliminary analyses demonstrate that 150 MMSCF of methane could be produced while 33000 tonnes of CO2 per injection well (base case of ~9 years) can be sequestered in the vicinity of existing infrastructure. However, these volumes of sequestered CO2and coal bed methane recovery are estimates and are sensitive to the reservoir's geomechanical and flow properties. Keywords: extensional rift, seismic, subsidence, thermal history, fission track, vitrinite reflectance, coal bed methane, Nenana basin, CO2 sequestration

  6. Tectonic fabric of northern North Fiji and Lau basins from GLORIA sidescan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiffin, D.L.; Clarke, J.E.H.; Johnson, D.

    1990-06-01

    GLORIA mosaics, Seabeam, and seismic data over parts of the backarc New Hebrides arc, northwest and central North Fiji basin, Fiji Fracture Zone north of Fiji, Peggy Ridge, northeast Lau basin, northern Tonga arc, northwestern Tonga Trench, and Western Samoa reveal a complex tectonic framework for the region. Two triple junctions and several rifts are clearly delineated by outcrops and ridges of neovolcanic rocks. Backarc troughs in the New Hebrides Arc are commonly floored by volcanic rocks with little sediment cover. The locus of major faults are well defined in places by volcanic ridges and scarps. On the Fiji Fracturemore » Zone north of Fiji, scarps indicate the trace, but west of Fiji it disappears for about 100 km, becoming well pronounced again near the central North Fiji basin triple junction. At Peggy Ridge a very extensive area of sheet-like volcanics indicates activity extends northeast from Peggy Ridge toward the western extension of the Tonga Trench passing west of Niuafo'ou Island, possibly marking a fault-to-trench transition. East of Niuafo'ou Island, backarc spreading close to the Tofua Arc is seen at a nascent triple junction, its northern arm approaching close to the western Tonga Trench. Long linear fault scarps in the trench result from bending of the crust. Only a few areas, including the seafloor north of Samoa, are mainly sediment covered. Two known hydrothermal deposits near the two triple junctions have been imaged, but other mapped areas of extensive neo-volcanics in the vicinity of propagators and pull-apart basins suggest sites for further investigation. The prevalence of ridge propagators and extensional basins suggests their significant role in the development of the region.« less

  7. The distribution and tectonic framework of Late Paleozoic volcanoes in the Junggar basin and its adjacent area, NW China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, J. H.

    2012-04-01

    We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.

  8. Impact and implications of the Afro-Eurasian collision south of Cyprus from reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Ehrhardt, Axel

    2014-06-01

    The Cyprus Arc in the Eastern Mediterranean represents the active collision front between the African and Eurasian (Anatolian) Plates. Along the Cyprus Arc, the Eratosthenes Seamount is believed to have been blocking the northward motion of the African Plate since the Late Pliocene-Early Pleistocene. Based on a dense grid of 2D reflection seismic profiles covering the Eratosthenes Seamount and western Levant Basin offshore Cyprus, new observations regarding the Cyprus Arc collision front at the triple transition zone Eratosthenes Seamount-Levant Basin-Hecataeus Rise are presented. The data show that the Levant Basin is filled with ~ 10 km of sediments of Early Mesozoic (probably Jurassic) to Plio-Quaternary age with only a localized deformation affecting the Miocene-Oligocene rock units. The sediments onlap directly against the steep eastern flank of the Eratosthenes Seamount to the west and the southern flank of the Hecataeus Rise to the north. The sediments show no deformation that could be associated with collision and are undeformed even very close to the two prominent structures. Pinching out of the Base Miocene reflector in the Levant Basin due to onlapping of the Middle Miocene reflector indicates uplift of the Eratosthenes Seamount and the Hecataeus Rise. In contrast to the Messinian Evaporites north of the Eratosthenes Seamount, the salt in the Levant Basin, even close to the Hecataeus Rise, is tectonically undeformed. It is proposed that the Eratosthenes Seamount, the western Levant Basin and the Hecataeus Rise act as one tectonic unit. This implies that the collision front is located north of this unit and that the Hecataeus Rise shields the sediments south of it from deformation associated with collision of the African and Anatolian Plates.

  9. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  10. Episodic Rifting Events Within the Tjörnes Fracture Zone, an Onshore-Offshore Ridge-Transform in N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.

    2015-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within Iceland.

  11. Tectonic history in the Fort Worth Basin, north Texas, derived from well-log integration with multiple 3D seismic reflection surveys: implications for paleo and present-day seismicity in the basin

    NASA Astrophysics Data System (ADS)

    Magnani, M. B.; Hornbach, M. J.

    2016-12-01

    Oil and gas exploration and production in the Fort Worth Basin (FWB) in north Texas have accelerated in the last 10 years due to the success of unconventional gas production. Here, hydraulic fracturing wastewater is disposed via re-injection into deep wells that penetrate Ordovician carbonate formations. The rise in wastewater injection has coincided with a marked rise in earthquake rates, suggesting a causal relationship between industry practices and seismicity. Most studies addressing this relationship in intraplate regions like the FWB focus on current seismicity, which provides an a-posteriori assessment of the processes involved. 3D seismic reflection data contribute complementary information on the existence, distribution, orientation and long-term deformation history of faults that can potentially become reactivated by the injection process. Here we present new insights into the tectonic evolution of faults in the FWB using multiple 3D seismic reflection surveys in the basin, west of the Dallas Fort-Worth Metroplex, where high-volume wastewater injection wells have increased most significantly in number in the past few years. The datasets image with remarkable clarity the 3,300 m-thick sedimentary rocks of the basin, from the crystalline basement to the Cretaceous cover, with particular detail of the Paleozoic section. The data, interpreted using coincident and nearby wells to correlate seismic reflections with stratigraphic markers, allow us to identify faults, extract their orientation, length and displacements at several geologic time intervals, and therefore, reconstruct the long-term deformation history. Throughout the basin, the data show that all seismically detectable faults were active during the Mississippian and Pennsylvanian, but that displacement amounts drop below data resolution ( 7 m) in the post-Pennsylvanian deposits. These results indicate that faults have been inactive for at least the past 300 Ma, until the recent 2008 surge in seismicity. The results are consistent with previous studies, and inconsistent with a suggested sustained, significant Mesozoic and Cenozoic activity in the basin. Rather, the results strongly suggest that the recent seismicity in the FWB is highly anomalous, and therefore, more likely induced than natural.

  12. Impact of Neotectonic activities on coral reef Red Sea Egypt; Case study Jubal Island

    NASA Astrophysics Data System (ADS)

    Hamouda, A.

    2016-12-01

    Abstract:The Red Sea considered the youngest oceanic basin of the world. It separates the Arabian sub-plate from the African plate. Neotectonic activity is a fundamental issue at the northern Red Sea for our understanding of the tectonic hazards at this region. The tectonic activity research will thus be geared to understand how a single tectonic process works and how a group of processes work together as a part of larger system ultimately leading to the formation of mountain systems and evolution of the solid earth. The recent seismic activity in the northern Red Sea has been impact on surface geology and coral reef. The most major earthquake swarm sequence around Jubal Island is the migration of epicenters northward in diameter circle about 50 km with focal depths less than 2 to 15 km. This swarm may release energy that can be accumulated to cause larger events in the future. This affects the accumulation of oil and gas reservoir causing natural seepage on the seafloor. The main aim of this study represents the impact of this seepage which is related to tectonic activity on the coral reef states at the northern part of Red Sea. The greatest impact of crude oil on marine organisms are categorized as: direct lethal toxicity, sub-lethal disruption of physiological behavioral activities, effects of direct coating, incorporation of hydrocarbons and alteration of habitat, especially substrate character. Adult marine organisms may exhibit lethal toxic and Sub-lethal effects from exposures to soluble aromatic derivative hydrocarbons. Keywords: Neotectonic activity, earthquakes, hydrocarbon seepage, coral reef, Red Sea.

  13. Geodynamics and synchronous filling of rift-type basin evolved through compression tectonics

    NASA Astrophysics Data System (ADS)

    Papdimitriou, Nikolas; Nader, Fadi; Gorini, Christian; Deschamps, Remy

    2016-04-01

    The Levant Basin falls in the category of frontier basins, and is bounded by the Eratosthenes seamount to the West, the Nile cone delta to the south, Cyprus to the north and Lebanon to the east. The Levant Basin was initially a rift type basin, which is located at a major plate boundary since the Late Triassic. It evolved later on through compression tectonics. The post-rift phase prevailed since the Late Jurassic and is expressed by the gradual initiation of a passive margin. A thick infill, mostly of deep water sediments (about 12 km thick) is accounted for the Levant Basin. The post-rift sediments are pinching-out along the slope of the well preserved (and imaged) eastern margin of the Eratosthenes seamount, which is essentially made up of Mesozoic platform carbonates (about 5 km). Thus, the Eratosthenes carbonate platform was adjacent to the deep marine facies of the Levant Basin until the late Cretaceous/Cenozoic. At that time, both the Eratosthenes seamount and the Levant Basin became part of a foreland basin along the Cyprus Arc zone as a result of the collision of the African and Eurasian plates. The objective of this contribution is to investigate the timing and the mechanisms of flexural subsidence as well as the sedimentary filling of Levant Basin (through a source-to-sink approach) in a well-deformed tectonic region. The interpretation of twenty-four 2D seismic profiles coupled with the available ODP wells, offshore Cyprus, aims to define the primary reflectors and seismic packages. Then, concepts of seismic stratigraphy and sequence stratigraphy are applied to achieve a better understanding of the tectonostratigraphy and sedimentary architecture of the Eratosthenes seamount (as an isolated carbonate platform) and its surroundings. Recent offshore discoveries south of the Eratosthenes seamount (e.g., Zhor) have confirmed the presence of gas accumulations exceeding 30Tcf in subsalt Lower Miocene carbonate buildups, making out the understanding of the evolution of this new frontier hydrocarbon province of great importance.

  14. Growth faults and salt tectonics in Houston diapir province: relative timing and exploration significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, T.E.

    1983-09-01

    Oil and gas accumulation in Gulf Coast Tertiary strata is contolled mainly by regional growth faults and by salt-related structures. Salt forms the most prominent set of structures in the Houston diapir province of southeast Texas. Recent work in three study areas shows that the Tertiary growth-fault trends, so well displayed along strike to the south-west, continue through this salt basin as well, but they have been deformed by later salt movement. In the Katy area, seismic data disclose early (pre-Wilcox) salt pillows downdip of the Cretaceous reef trend. Salt stocks were injected upward from the pillows during Clayborne deposition,more » and were flanked by deep withdrawal basins and turtle structures. In Brazoria County, a major lower Frio growth-fault trend affecting the Houston delta system, was deformed by later salt domes, by a salt-withdrawal basin, and by a possible turtle structure at Chocolate Bayou. A productive geopressured aquifer exists in the salt-withdrawal basin bounded by the previously formed growth faults. In Jefferson County, in contrast, salt-tectonic activity and growth faulting appear to have been coeval. Early salt-cored ridges continued to rise throughout Frio deposition; growth faults occur both updip and downdip. Hydrocarbons accumulated over the salt domes in growth-fault anticlines and in stratigraphic traps. Recognition that shelf-margin growth faulting preceded the development of the present pattern of domes and basins has important implications for hydrocarbon exploration. Growth faults may be migration paths for hydrocarbons; furthermore, early formed traps, distorted by salt movement, may still be found to contain hydrocarbons.« less

  15. Permian-Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Philipp, Ruy Paulo; Jelinek, Andrea Ritter; Ketzer, João Marcelo Medina; dos Santos Scherer, Claiton Marlon; Jamal, Daúd Liace; dos Reis, Adriano Domingos

    2017-06-01

    The Gondwana continent was the base of great basin inception, sedimentation and magmatism throughout the Cambrian to Middle Jurassic periods. The northwestern Mozambique igneous and metamorphic basement assemblages host the NW-trending Moatize Minjova Basin, which has great economic potential for coal and gas mining. This rift basin was activated by an S-SW stress field during the Early Permian period, as constrained by regional and field scale structural data. Tectonically induced subsidence in the basin, from the reactivation of NW-SE and NNE-SSW regional structures is well recorded by faults, folds and synsedimentary fractures within the Early Late Permian Moatize Formation. NW-SE, N-S and NE-SW field structures consist of post-Karoo reactivation patterns related to a NNE-SSW extension produced by the Pangea breakup and early inception stages of the Great East African Rift System. The Early Late Permian sequences of the Moatize-Minjova Basin are composed of fluvial meandering, coal-bearing beds of the Moatize Formation, which comprises mostly floodplain, crevasse splay and fluvial channel lithofacies associations, deposited in a cyclic pattern. This sequence was overlapped by a multiple-story, braided fluvial plain sequence of the Matinde Formation (Late Permian - Early Triassic). Lithofacies associations in the Matinde Formation and its internal relationships suggest deposition of poorly channelized braided alluvial plain in which downstream and probably lateral accretion macroforms alternate with gravity flow deposits. NW paleoflow measurements suggest that Permian fluvial headwaters were located somewhere southeast of the study area, possibly between the African and Antarctic Precambrian highlands.

  16. Geologic framework and petroleum systems of Cook Inlet basin, south-central Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.; Shellenbaum, D.P.; Stone, D.M.; Hite, D.M.

    2013-01-01

    This report provides a comprehensive overview of the stratigraphy, structure, tectonics, and petroleum systems of the Cook Inlet basin, an important oil- and gas-producing region in south-central Alaska.

  17. Detrital Zircon Provenance Record of Pre-Andean to Modern Tectonics in the Northern Andes: Examples from Peru, Ecuador, and Colombia

    NASA Astrophysics Data System (ADS)

    George, S. W. M.; Jackson, L. J.; Horton, B. K.

    2015-12-01

    Detrital zircon U-Pb age distributions from modern rivers and Mesozoic-Cenozoic basin fill in the northern Andes provide insights into pre-Andean, Andean, and active uplift and exhumation of distinctive sediment source regions. Diagnostic age signatures enable straightforward discrimination of competing sediment sources within the Andean magmatic arc (Western Cordillera-Central Cordillera), retroarc fold-thrust belt (Eastern Cordillera-Subandean Zone), and Amazonian craton (composed of several basement provinces). More complex, however, are the mid/late Cenozoic provenance records generated by recycling of basin fill originally deposited during early/mid Mesozoic extension, late Mesozoic thermal subsidence, and early Cenozoic shortening. Although subject to time-transgressive trends, regionally significant provenance patterns in Peru, Ecuador, and Colombia reveal: (1) Triassic-Jurassic growth of extensional subbasins fed by local block uplifts (with commonly unimodal 300­-150 Ma age peaks); (2) Cretaceous deposition in an extensive postrift setting fed by principally cratonic sources (with common 1800-900 Ma ages); and (3) Cenozoic growth of a broad flexural basin fed initially fed by magmatic-arc rocks (100-0 Ma), then later dominance by thrust-belt sedimentary rocks with progressively greater degrees of basin recycling (yielding diverse and variable age populations from the aforementioned source regions). U-Pb results from modern rivers and smaller subbasins prove useful in evaluating source-to-sink relationships, downstream mixing relationships, hinterland-foreland basin connectivity, paleodrainage integration, and tectonic/paleotopographic reconstructions. Most but not all of the elevated intermontane basins in the modern hinterland of the northern Andes contain provenance records consistent with genesis in a broader foreland basin developed at low elevation. Downstream variations within modern axial rivers and Cenozoic axial basins inform predictive models of Andean contributions from the >1500 km Marañon river to the broader Amazon drainage system, and help pinpoint the late Miocene birth of the >1500 km Magdalena river and associated submarine fan along the southern Caribbean margin.

  18. Tectonic evolution of the Paranoá basin: New evidence from gravimetric and stratigraphic data

    NASA Astrophysics Data System (ADS)

    Martins-Ferreira, Marco Antonio Caçador; Campos, José Eloi Guimarães; Von Huelsen, Monica Giannoccaro

    2018-06-01

    Field gravimetric and stratigraphic surveys were conducted with the aim to constraint the mechanisms responsible for the initiation of the Stenian-Tonian Paranoá basin, central Brazil, a subject not yet studied in detail. The Paranoá Group crops out in the external zone of the Brasília Belt, a Neoproterozoic orogen in the western margin of the São Francisco Craton. Detailed geological mapping confirmed the existence of a regional scale fault that controlled sedimentation of the Paranoá Group during the deposition of its basal formations, revealing important details about basin initiation and early evolution. Gravimetric modeling indicates the existence of paleorift structures beneath the Paranoá sequence in the study area. Results from both stratigraphic and gravimetric surveys show strong evidence of mechanical subsidence by faulting during basin initiation. Unsorted, angular, clasts cut by quartz veins and brecciated boulders present in the basal conglomerate, support this hypothesis. Basin initiation faults coincide with deeper paleorift faults and are thus interpreted as reactivations of the older Statherian Araí Rift. The reactivations favored an initial regime of mechanical subsidence, dominated by the development of epirogenic arches subsiding at different rates. Apart from faulting activity, the post-basal sequence presents no evidence of rift environment in the strict sense. Besides, the great lateral continuity and relatively constant thickness of facies, indicate that an initial mechanic subsidence rapidly gave way to flexural subsidence during subsequent stages of basin evolution. The Paranoá Group do not present reliable characteristics that would allow its strict classification as a passive margin. Its main stratigraphic characteristics, tectonic location and basement architecture, indicate that the Paranoá Group was deposited in a cratonic margin basin, and may have been either connected to a passive margin basin at times of sea level rise, or evolved to a passive margin later in time.

  19. Fluvial landscapes evolution in the Gangkou River basin of southern Taiwan: Evidence from the sediment cores

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung

    2017-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.

  20. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less

  1. Tectonic sequence stratigraphy, Early Permian Dry Mountain trough, east-central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, W.S.; Gallegos, D.M.; Spinosa, C.

    1991-06-01

    The Early Permian Dry Mountain trough (DMT) of east-central Nevada is one of several tectonic basins and associated uplifts that developed along the continenetal margin during the latest Pennsylvanian-Early Permian Dry Mountain tectonic phase. The sequence stratigraphy reflects a combination of eustatic sea level changes and tectonic uplift or subsidence. Fewer than one to only a few million years separate the development of sequence boundaries within the DMT. At this scale, differences among published eustasy curves preclude their use as definitive tools to identify eustatically controlled sequence boundaries. Nevertheless, available data indicate several pulses of tectonism affected sedimentation within themore » DMT. The authors are attempting to develop criteria to distinguish tectonic from eustatic sequence boundaries. Detailed biostratigraphic data are required to provide an independent check on the correlation of sequence boundaries between measured sections. For example, the same age boundary may reflect tectonic uplift in one part of the basin and subsidence in another. The uplift may or may not result in subaerial exposure and erosion. For those boundaries that do not result from subaerial exposure, lithofacies and biofacies analyses are required to infer relative uplift (water depth decrease) or subsidence (water depth increase). There are inherent resolution limitations in both the paleontologic and sedimentologic methodologies. These limitations, combined with those of eustasy curves, dictate the preliminary nature of their results.« less

  2. Seismic sequence stratigraphy of Miocene deposits related to eustatic, tectonic and climatic events, Cap Bon Peninsula, northeastern Tunisia

    NASA Astrophysics Data System (ADS)

    Gharsalli, Ramzi; Zouaghi, Taher; Soussi, Mohamed; Chebbi, Riadh; Khomsi, Sami; Bédir, Mourad

    2013-09-01

    The Cap Bon Peninsula, belonging to northeastern Tunisia, is located in the Maghrebian Alpine foreland and in the North of the Pelagian block. By its paleoposition, during the Cenozoic, in the edge of the southern Tethyan margin, this peninsula constitutes a geological entity that fossilized the eustatic, tectonic and climatic interactions. Surface and subsurface study carried out in the Cap Bon onshore area and surrounding offshore of Hammamet interests the Miocene deposits from the Langhian-to-Messinian interval time. Related to the basin and the platform positions, sequence and seismic stratigraphy studies have been conducted to identify seven third-order seismic sequences in subsurface (SM1-SM7), six depositional sequences on the Zinnia-1 petroleum well (SDM1-SDM6), and five depositional sequences on the El Oudiane section of the Jebel Abderrahmane (SDM1-SDM5). Each sequence shows a succession of high-frequency systems tract and parasequences. These sequences are separated by remarkable sequence boundaries and maximum flooding surfaces (SB and MFS) that have been correlated to the eustatic cycles and supercycles of the Global Sea Level Chart of Haq et al. (1987). The sequences have been also correlated with Sequence Chronostratigraphic Chart of Hardenbol et al. (1998), related to European basins, allows us to arise some major differences in number and in size. The major discontinuities, which limit the sequences resulted from the interplay between tectonic and climatic phenomena. It thus appears very judicious to bring back these chronological surfaces to eustatic and/or local tectonic activity and global eustatic and climatic controls.

  3. Morphodynamics of the Kulsi River Basin in the northern front of Shillong Plateau: Exhibiting episodic inundation and channel migration

    NASA Astrophysics Data System (ADS)

    Imsong, Watinaro; Choudhury, Swapnamita; Phukan, Sarat; Duarah, Bhagawat Pran

    2018-02-01

    The present study is undertaken in the Kulsi River valley, a tributary of the Brahmaputra River that drains through the tectonically active Shillong Plateau in northeast India. Based on the fluvial geomorphic parameters and Landsat satellite images, it has been observed that the Kulsi River migrated 0.7-2 km westward in its middle course in the past 30 years. Geomorphic parameters such as longitudinal profile analysis, stream length gradient index ( SL), ratio of valley floor width to valley height ( Vf), steepness index (ks) indicate that the upstream segment of the Kulsi River is tectonically more active than the downstream segment which is ascribed to the tectonic activities along the Guwahati Fault. ^{14}C ages obtained from the submerged tree trunks of the Chandubi Lake, which is located in the central part of the Kulsi River catchment suggests inundation (high lake levels) during 160 ± 50 AD, 970 ± 50 AD, 1190 ± 80 AD and 1520 ± 30 AD, respectively. These periods broadly coincide with the late Holocene strengthened Indian Summer Monsoon (ISM), Medieval Warm Period (MWP) and the early part of the Little Ice Age (LIA). The debris which clogged the course of the river in the vicinity of the Chandubi Lake is attributed to tectonically induced increase in sediment supply during high magnitude flooding events.

  4. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D magnetotelluric data (Yang et al., 2012) and micro seismic wave field information recognition technology in the eastern Tarim Basin. Combining the information of the deep faults, tectonic evolution characteristics of the study area and the physical changes from geological data, we analyze the relationship between the change of the physical structure and the oil and gas, and predict the favorable oil and gas area and the exploration target area by information extraction, processing and interpretation analysis based on integrated geophysical technology. References 1. Hou, Z. Z., W. C. Yang, 2011, multi scale gravity field inversion and density structure in Tarim Basin: Chinese science, 41, 29-39. 2. Yang W. C., J. L. Wang, H. Z. Zhong, 2012, The main port of the Tarim Basin Analysis of magnetic field and magnetic source structure: Chinese Journal of Geophysics, 55, 1278-1287.

  5. Plate tectonics of the northern part of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Verzhbitsky, E. V.; Kononov, M. V.; Kotelkin, V. D.

    2007-10-01

    Geophysical data on the northern part of the Pacific Ocean were systematized to compile a map of geomagnetic and geothermal studies of the Bering Sea. The absence of reliable data about the formation time of the Bering Sea structures of oceanic and continental origins is noted; this hampered the assessment of the geodynamical processes in the North Pacific. Based on the geophysical data, we estimated the age of the structures of the Bering Sea floor such as the Commander Basin (21 My), the Shirshov Ridge (95 and 33 My in the northern and southern parts, respectively), the Aleutian Basin (70 My), the Vitus Arch (44 My), the Bowers Ridge (30 My), and the Bowers Basin (40 My). These values are confirmed by the geological, geophysical, and kinematic data. A numerical modeling of the formation of extensive regional structures (Emperor Fracture Zone, Chinook Trough, and others) in the Northern Pacific is carried out. A conclusion was made on the basis of the geological and geothermal analysis that the northern and southern parts of the Shirshov Ridge have different geological ages and different tectonic structures. The northern part of the ridge is characterized by an upthrust-nappe terrain origin, while the southern part has originated from a torn-away island arc similar to the origin of the Bowers Ridge. The sea floor of the Aleutian Basin represents a detached part of the Upper Cretaceous Kula plate, on which spreading processes took place in the Vitus Arch area in the Eocene. The final activity phase in the Bering Sea began 21 My B.P. by spreading of the ancient oceanic floor of the Commander Basin. Based on the age estimations of the structures of the Bering Sea floor, the results of the modeling of the process of formation of regional fracture zones and of the geomagnetic, geothermal, tectonic, geological, and structural data, we calculated and compiled a kinematic model (with respect to a hot spot reference system) of the northern part of the Pacific Ocean for 21 My B.P.

  6. Crestal graben associated with lobate scarps on Mercury

    NASA Astrophysics Data System (ADS)

    Vaughan, Rubio; Foing, Bernard; van Westrenen, Wim

    2014-05-01

    Mercury is host to various tectonic landforms which can be broadly divided into localized, basin-related features on the one hand, and regional or global features on the other. The globally distributed tectonic landforms are dominantly contractional in nature and consist of lobate scarps, wrinkle ridges and high-relief ridges [1]. Until now, extensional features have only been found within the Caloris basin, several smaller impact basins, such as Raditladi, Rachmaninoff & Rembrandt [2], and within volcanic deposits in the northern smooth plains [3,4]. New imagery obtained from the MESSENGER spacecraft, shows localized, along-strike troughs associated with several lobate scarps on Mercury. These troughs occur at or near the crest of the lobate scarps and are interpreted to be graben. While previously discovered graben on Mercury are thought to be related to thermal contraction of localized volcanic fill, these crestal graben are the first extensional tectonic features which have been discovered outside of such settings and have not been reported in literature previously. Of the 49 lobate scarps investigated in this study, 7 exhibit graben along their crest. The graben are usually only present along small sections of the scarp, but in some cases extend up to 180 km along the scarp crest. The persistent along-strike orientation of the graben with respect to the scarps, combined with several observed cross-cutting relations, suggests that the graben developed coeval with the formation of the lobate scarps. Numerical mechanical modeling using the Discrete Element Method (DEM) is currently being employed in order to better understand the mechanisms which control the formation of crestal graben associated with lobate scarps on Mercury. References: [1] Watters, Thomas R., and F. Nimmo. "The tectonics of Mercury." Planetary Tectonics 11 (2010): 15. [2] Blair, David M., et al. "The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury." Journal of Geophysical Research: Planets (2013). [3] Klimczak, Christian, et al. "Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution." Journal of Geophysical Research: Planets (1991-2012) 117.E9 (2012). [4] Watters, Thomas R., et al. "Extension and contraction within volcanically buried impact craters and basins on Mercury." Geology 40.12 (2012): 1123-1126.

  7. Geology of photo linear elements, Great Divide Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  8. Magmatism and underplating, a broadband seismic perspective on the Proterozoic tectonics of the Great Falls and Snowbird Tectonic Zones

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Gu, Y. J.; Dokht, R.; Wang, R.

    2017-12-01

    The crustal and lithospheric structures beneath the Western Canada Sedimentary Basin (WCSB) and northern Montana contain vital records of the Precambrian tectonic development of Laurentia. In this study, we analyze the broadband seismic data recorded by the USArray and the most complete set of regional seismic networks to date near the WCSB. We adopt an integrated approach to investigate crustal structure and history, based primarily on P-to-S receiver functions but incorporate results from noise correlation functions, finite-frequency tomography and potential field measurements. In comparison with existing regional and global models, our stacked receiver functions show considerable improvements in the resolution of both Moho depth and Vp/Vs ratio. We identify major variations in Moho depth from the WCSB to the adjacent Cordillera. The Moho deepens steeply from 40 km in the Alberta basin to 50 km beneath the foothills, following Airy isostasy, but thermal buoyancy may be responsible for a flat, shallow ( 35 km) Moho to the west of the Rocky Mountain Trench. The Moho depth also increases sharply near the Snowbird Tectonic Zone (STZ), which is consistent with earlier findings from active-source data. Multiple lower crustal phases, a high velocity shallow mantle and elevated Vp/Vs ratios along the westernmost STZ jointly suggest major Proterozoic subduction and magmatism along this collisional boundary. In northern Montana, the Moho deepens along the Great Falls Tectonic Zone (GFTZ), a proposed Proterozoic suture between the Medicine Hat Block and Wyoming craton. This transition occurs near the Little Belt Mountain, which is located south of the Great Falls Shear Zone, an extensive northeast striking fault system characterized by strong potential field gradients. Similar to the STZ, our receiver functions offer new evidence for Proterozoic underplating in the vicinity of the GFTZ. In view of similar rock ages near the collisional boundaries in all parts of northern Montana and the WCSB basement, we conjecture that the Rae, Hearn, Medicine Hat and Wyoming cratons were all active during the Paleoproterozoic era and their interactions, particularly coeval subductions and collisions, are largely responsible for the basement geology beneath western Laurentia.

  9. Joint Interpretation of Magnetotelluric and Gravimetric Data from the South American Paraná Basin

    NASA Astrophysics Data System (ADS)

    Santos, E. B.; Santos, H. B.; Vitorello, I.; Pádua, M. B.

    2013-05-01

    The Paraná Basin is a large sedimentary basin in central-eastern South America that extends through Brazil, Paraguay, Uruguay and Argentina. Evolved completely over the South American continental crust, this Paleozoic basin is filled with sedimentary and volcanic rocks deposited from the Silurian to the Cretaceous, when a significant basaltic effusion covered almost the entire area of the basin. A series of superposed sedimentary and volcanic rock layers were laid down under the influence of different tectonic settings, probably originated from distant collisional dynamics of continental boards that led to the amalgamation of Gondwanaland. The current boundaries of the basin can be the result of issuing erosional or of tectonic origin, such as the building up of large arches and faults. To evaluate the deep structural architecture of the lithosphere under a sedimentary basin is a great challenge, requiring the integration of different geophysical and geological studies. In this paper, we present the resulting Paraná Basin lithospheric model, obtained from processing and inversion of broadband and long-period magnetotelluric soundings along an E-W profile across the central part of the basin, complemented by a qualitative joint interpretation of gravimetric data, in order to obtain a more precise geoelectric model of the deep structure of the region.

  10. The role of the memory inherited by the system from the Cretaceous-Tertiary evolution of convergent margins into the build-up of the Source area (Apuseni Mountains, Romania).

    NASA Astrophysics Data System (ADS)

    Reiser, Martin; Fügenschuh, Bernhard; Schuster, Ralf

    2010-05-01

    The Apuseni mountains in Romania take a central position in the Alpine Carpathian Dinaride system and separate the Pannonian basin in the west from the Transsylvanian basin in the east. The Cretaceous age nappe stack involves from bottom to top Tisza- (Bihor and Codru) and Dacia-derived units (Biharia, according to Schmid et al., 2008) overlain by the South Apuseni and Transylvanian ophiolite belt. This study tries to provide new and additional information on the structural and metamorphic evolution of these units from the Jurassic obduction to neotectonic activity. This also comprises information on their interaction with the neighbouring basins. The objective is to show the impact of large scale (plate) tectonics (f.i. in terms of its thermal configuration and strengths profile) and the impact of early-formed tectonic features for the further evolution, specifically the formation of the surrounding basins together with its feedback with topography. This approach includes investigation of kinematics along first order contacts during distinct events together with the thermotectonic characterization of the involved units. While the early "high-grade" evolution will be geochronologically addressed by Sm/Nd, Rb/Sr and Ar/Ar dating, fission track analysis on zircon and apatite will be used to constrain the low-temperature part of the story. Already available data by Sanders (1998), Schuller (2004), Merten (in preparation) and Kounov (in preparation) together with new own data will be used to provide a 4D model for the late-stage thermal evolution of the Apuseni mountains. Thermal modelling will be compared and integrated with numerical modelling of the landscape evolution. The hereby generated data and information on erosion and exhumation will be further used in associated partner projects of the Source to Sink research network which addresses the evolution of the Danube system from the hinterland to the Black Sea. References: Sanders, C. A. E. (1998), Tectonics and erosion - Competitive forces in a compressive orogen: A fission track study of the Romanian Carpathians, PhD-thesis, Vrije Universiteit, Amsterdam, pp. 204. Schuller, V. (2004), Evolution and geodynamic significance of the Upper Cretaceous Gosau basin in the Apuseni Mountains (Romania), PhD Thesis, Tubinger Geowiss. Arb. Reihe A70, 112 pp. Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schaefer, R. Schuster, M. Tischler and K. Ustaszewski (2008), The Alps-Carpathians-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss Journal of Geosciences, 2008.

  11. The Valencia trough and the origin of the western Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Vegas, R.

    1992-03-01

    Evolutionary models for the Valencia trough must be necessarily related to the Neogene-Present geodynamics of the western Mediterranean basins. All these basins occupy new space created in the wake of the westward translation of the Alboran block and the counter-clockwise rotation of the Corso-Sardinian block. This escape-tectonics, microplate dispersal, model can account for the co-existence and progressive migration of compressional and extensional strain fields within the Africa-Europe broad zone of convergence. In this escape-tectonics model, the Valencia trough has resulted in a complex evolution which includes: (1) latest Oligocene-Early Miocene rifting along the Catalan-Valencian margin due to the opening of the Gulf of Lions; (2) almost simultaneous, Early Miocene, transpressive thrusting in the Balearic margin related to the initiation of displacement of the Alboran block; and (3) Late Miocene generalized extension as a consequence of the opening of the South Balearic basin.

  12. Seismic Structure of the Half-Graben of Santiaguillo, Durango, Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Gonzalez, J. M.; Nieto-Samaniego, A. F.; Barajas-Gea, I.; Alaniz-Alvarez, S. A.; Diaz-Baez, I.

    2007-05-01

    The Santiaguillo half-graben is part of the San Luis-Tepehuanes fault system, which is a major structure separating two physiographic provinces, the Mesa Central and the Sierra Madre Occidental. The younger movement of the faults is Quaternary, which is affecting the rocks of the Durango volcanic field. In this work, we study the faults and grabens forming the complex structure of the Santiaguillo half-graben. These structures result from active extensional tectonics since the Oligocene. The contemporary tectonic deformations have been manifested in the last 50 years by a number of earthquakes occurred in the region (1.2 < M < 4.5, epicenter depths < 10 km). The most recent event occurred on July 29, 2003, is a small-sized earthquake M4.5 reported by the Servicio Sismologico Nacional (SSN) that struck the middle of the basin. Some other small-sized earthquakes, microseismicity and swarms occurred around the basin. However, the lack of permanent seismic stations has prevented a recorded history of this activity. We report the preliminary results from the Durango network, which consists of an 8-station passive short-period array deployed around the Laguna de Santiaguillo. This temporal and portable network has been installed for a period of roughly 12 months starting in April 2006, over an area of about 80 km length and 40 km width. The overall aim of our experiment is to understand the driven forces controlling the tectonics of the western side of the Mesa Central in western Mexico. We combine structural observations and recorded seismicity to locate the potential seismogenic structures. Another objective is characterizing some of the crustal properties in the region. Results show a sparsed and scattered seismic activity. We recorded about 50 microearthquakes, half of them were located out side of the array. Bulk of this activity does not coincide with previously reported activity, which implies a more difficult definition of the seismogenic zones.

  13. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Christiansen, Robert L.

    2001-01-01

    This region of Yellowstone National Park has been the active focus of one of the Earth's largest magmatic systems for more than 2 million years. The resulting volcanism has been characterized by the eruption of voluminous rhyolites and subordinate basalts but virtually no lavas of intermediate composition. The magmatic system at depth remains active and drives the massive hydrothermal circulation for which the park is widely known. Studies of the volcanic field using geologic mapping and petrology have defined three major cycles of rhyolitic volcanism, each climaxed by the eruption of a rhyolitic ash-flow sheet having a volume of hundreds of thousands of cubic kilometers. The field also has been analyzed in terms of its magmatic and tectonic evolution, including its regional relation to the Snake River plain and to basin-range tectonic extension.

  14. Archean foreland basin tectonics in the Witwatersrand, South Africa

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1986-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this phase of Witwatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  15. On the initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Wortel, Rinus; Vlaar, N. J.

    1989-03-01

    Analysis of the relation between intraplate stress fields and lithospheric rheology leads to greater insight into the role that initiation of subduction plays in the tectonic evolution of the lithosphere. Numerical model studies show that if after a short evolution of a passive margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favorable for transformation into an active margin. Although much geological evidence is available in supporting the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept. In general, initiation of subduction at passive margins requires the action of external plate-tectonic forces, which will be most effective for young passive margins prestressed by thick sedimentary loads. It is not clear how major subduction zones (such as those presently ringing the Pacific Basin) form but it is unlikely they form merely by aging of oceanic lithosphere. Conditions likely to exist in very young oceanic regions are quite favorable for the development of subduction zones, which might explain the lack of preservation of back-arc basins and marginal seas. Plate reorganizations probably occur predominantly by the formation of new spreading ridges, because stress relaxation in the lithosphere takes place much more efficiently through this process than through the formation of new subduction zones.

  16. Lg wave attenuation in southeastern margin of Tibetan Plateau and the Indochina Peninsula and its implications of potential crustal flow

    NASA Astrophysics Data System (ADS)

    He, X.; Zhao, L. F.; Xie, X. B.; Yao, Z. X.

    2017-12-01

    Mechanisms that accommodate tectonic deformation in southeastern Tibetan Plateau and the Indochina Peninsula have been under heated debate between two popular end-number models, rigid block extrusion and viscous crustal flow channel, while recent studies suggest that they are not irreconcilable (e.g., Liu et al., 2014). To provide new insights into regional tectonic evolution, we collect 22,242 vertical seismograms and perform the Lg wave attenuation tomography at 58 individual frequencies between 0.05-10.0 Hz to investigate Lg wave attenuation in this region. The resultant broadband Lg wave attenuation model exhibits strong lateral variation that correlates with regional tectonics. A significant low Q belt, originating in the southeast Tibet, striking southeast and connecting to northern South China Sea, is the most conspicuous feature in our Lg Q maps, indicating intense crustal deformation and tectonic activities. For the northwestern part of this belt, two low Q channels joint beneath Songpan-Ganzi block but separate beneath Chuan-Dian block (eastern channel) and northern Sibumasu block (western channel) encountering Chuxiong basin in the central Chuan-Dian. This acute Lg attenuation may be resulted from viscous lower crust, thermal activities, shear heating along strike-slip fault and fractured brittle upper crust. The two channels are also consistent with zones of low seismic velocity and high conductivity between depth of 20 and 40 km (Bai et al., 2010; Bao et al., 2015), indicating possible partial-molten mid and lower crust. Together with evidences from paleo-elevation reconstruction and seismic anisotropy (Li et al., 2015; Wei et al., 2013), gravity-driven flow of viscous partial-molten mid-lower crust, which underlies brittle upper crust, is suggested and the mechanism that ductile flow of thickened lower crust uplifts topography and drags brittle upper crust to move with respect to each other may accommodate regional tectonics. We attribute distinct low Q zones beneath Yinggehai basin to ultra-thick sediment and sever thermal activities, and another obvious low Q zone beneath Sumatra Islands to dozens of volcanos. This work is supported by the Earthquake Experimental Field, CEA (grants 2016 CESE 0203) and the National Natural Science Foundation of China (grants 41374065, 41630210).

  17. Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, S.C.

    1979-04-10

    The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement ofmore » the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers.« less

  18. Chukchi Borderland | Crustal Complex of the Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ilhan, I.; Coakley, B.; Houseknecht, D. W.

    2017-12-01

    In the Arctic Ocean, Chukchi Borderland separates the North Chukchi shelf and Toll deep basins to the west and Canada deep basin to the east. Existing plate reconstructions have attempted to restore this north-striking, fragments of the continental crust to all margins of the Amerasia Basin based on sparse geologic and geophysical measurements. Regional multi-channel seismic reflection and potential field geophysics, and geologic data indicate it is a high standing continental block, requiring special accommodation to create a restorable model of the formation of the Amerasia Basin. The Borderland is composed of the Chukchi Plateau, Northwind Basin, and Northwind Ridge divided by mostly north striking normal faults. These offset the basement and bound a sequence of syn-tectonic sediments. Equivalent strata are, locally, uplifted, deformed and eroded. Seaward dipping reflectors (SDRs) are observed in the juncture between the North Chukchi, Toll basins, and southern Chukchi Plateau underlying a regional angular unconformity. This reveals that this rifted margin was associated with volcanism. An inferred condensed section, which is believed to be Hauterivian-Aptian in age, synchronous with the composite pebble shale and gamma-ray zone of the Alaska North Slope forms the basal sediments in the North Chukchi Basin. Approximately 15 km of post-rift strata onlap the condensed section, SDRs and, in part, the wedge sequence on the Chukchi Plateau from west to east, thinning to the north. These post-Aptian sediments imply that the rifted margin subsided no later than the earliest Cretaceous, providing a plausible time constraint for the inferred pre-Cretaceous rifting in this region. The recognition of SDRs and Hauterivian—Aptian condensed section, and continuity of the Early—Late Cretaceous post-rift strata along the margins of the Borderland, strike variations of the normal faults, absence of observable deformation along the Northwind Escarpment substantially constrain tectonic models proposed for tectonic development of the Amerasia Basin. Models that require significant relative motion between the Chukchi Shelf and Borderland since the Early Cretaceous are precluded by these observations.

  19. Unraveling the hydrocarbon charge potential of the Nordkapp Basin, Barents Sea: An integrated approach to reduce exploration risk in complex salt basins

    NASA Astrophysics Data System (ADS)

    Schenk, Oliver; Shtukert, Olga; Bishop, Andrew; Kornpihl, Kristijan; Milne, Graham

    2014-05-01

    The Nordkapp Basin, Barents Sea, is an intra-continental syn-rift basin containing many complex salt structures. The salt is late-Carboniferous to Early Permian in age, with regional extension in the Triassic initiating the salt movement resulting in formation of sub- and mini-basins with significant subsidence (especially in the northeastern part of the basin). Subsequent tectonic phases allowed growth and distortion of salt diapirs that were later affected by uplift and erosion during Tertiary resulting in the formation of salt-related traps in Triassic and Lower Jurassic strata. During Plio-Pleistocene, glacial erosion removed additional Mesozoic and Cenozoic strata. This basin is regarded as a frontier salt province. A small hydrocarbon discovery (Pandora well) in the southwestern part of the basin points to the presence several functioning petroleum systems. The primary play type is related to salt traps below overhangs. Such structures are however, very difficult to image with conventional seismic techniques due to i) generation of multiples from sea floor and top of shallow salt bodies and ii) seismic shadow zones within the salt (possibly resulting from shale and carbonate stringers) which cause severe diffractions so that prospective areas adjacent to the salt remain elusive. Arctic exploration is expensive and the ability to focus on the highest potential targets is essential. A unique solution to this challenging subsurface Arctic environment was developed by integrating petroleum system modeling with full azimuth broadband seismic acquisition and processing. This integrated approach allows intelligent location of seismic surveys over structures which have the maximum chance of success of hydrocarbon charge. Petroleum system modeling was conducted for four seismic sections. Salt was reconstructed according to the diapiric evolution presented in Nilsen et al. (1995) and Koyi et al. (1995). Episodes of major erosion were assigned to Tertiary (tectonic) and Pleistocene (glacial). The models have been thermally calibrated. Consideration of Pleistocene glacial/interglacial cycles was required for thermal calibration as well as to better understand and predict the hydrocarbon phase behavior. References: Koyi, H., Talbot, C.J., Tørudbakken, B.O., 1993, Salt diapirs of the southwest Nordkapp Basin: analogue modelling, Tectonophysics, Volume 228, Issues 3-4, Pages 167-187. Nilsen, K.T., Vendeville, B.C., Johansen, J.-T., 1995, Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea. In: Jackson, M.P.A., Roberts, D.G., Snelson, S. (eds), Salt tectonics, a global perspective, AAPG Memoir 65, 413-436.

  20. A Brief Summary of the Geomorphic Evidence for an Active Surface Hydrologic Cycle in Mars' Past

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    2000-01-01

    Because Mars is just over half the Earth's diameter (about 6800 km), it does not exhibit global tectonism on a scale comparable to Earth and Venus. But because it is still a large body compared to Mercury and the moon, it has had an atmosphere and climate over the history of the solar system. This is why Mars has been able to retain surfaces produced both through volcanic and climatic processes that are intermediate in age between volcanic surfaces on the moon and Mercury and both types of surfaces on Venus and Earth. For the purposes of this discussion, this has important implications about the origins and evolution of topographic depressions that potentially may have contained lakes. Tectonism is probably the most important process on Earth for producing closed depressions on the continents, and is clearly responsible for maintenance of the ocean basins through geologic time. This is probably also true for depressions in the highland terrains and lowland plains of Venus. On Mars, however, tectonism appears limited to relatively small amounts of regional extension, compression, and vertical motion largely due to crustal loading of the two major volcanic provinces - Tharsis and Elysium Impact craters and large impact basins (including all or parts of the northern plains) are clearly more important sites for potential lake basins on Mars, though they were likely more important on Earth, and Venus as well, during the period of heavy meteorite bombardment throughout the solar system prior to 3.5 Ga. Comparisons of the relative importance of other formative processes on Mars with those on Earth are less obvious, and some may be quite speculative, since our understanding of the early Martian environment is still rather limited. Additional information is contained in the original extended abstract.

  1. Tectonic movements along the Anegada Passage derived from GPS Observations (2008-2017)

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, G.

    2017-12-01

    The Anegada Passage system, mainly includes the Virgin Islands Basin (VIB), Anegada Gap, and the Sombrero Basin, are located within the tectonically complex plate boundary zone between the North America and Caribbean plates. It separated the Puerto Rico and Northern Virgin Islands (PRNVI) block from St. Croix and Anguilla. Long-term seismic observations indicated that this region still faces high risk from earthquakes. This study used current GPS geodesy infrastructure in the Northeastern Caribbean region, which includes high densely GPS stations on PRNVI block and northern Lesser Antilles and a stable PRNVI reference frame (SPRNVIRF). Current GPS geodesy infrastructure in the PRVI region makes it possible to precisely delineate minor tectonic motions (1 to 2 mm/year) within the northeastern Caribbean region. The carrier phase Double-Difference (DD) and Precise Point Positioning (PPP) post-processing methods are both used to processing GPS data. Over ten years of GPS observations indicate that the St. Croix Island is moving away from the PRVI block toward southeast with a velocity of 1.8 ± 0.2 mm/year; there is not considerable relative motions between the Saint Martin Island and the PRVI block. The Saint Martin Island is located at the south side of the Anegada Gap. The GPS and seismic observations along the two sides of the Anegada passage suggest that the west segment (VIB) of the passage retains active, while the east segment is presently inactive. The Virgin Islands basin presently experiences left-lateral motion in a nearly east-west direction with a velocity of about 1.2 mm/year and an extension in a nearly north-south direction with a velocity of about 1.3 mm/year. The quantitative measurements derived from GPS observations would improve seismic hazard assessment in the Anegada Passage region.

  2. A contribution to regional stratigraphic correlations of the Afro-Brazilian depression - The Dom João Stage (Brotas Group and equivalent units - Late Jurassic) in Northeastern Brazilian sedimentary basins

    NASA Astrophysics Data System (ADS)

    Kuchle, Juliano; Scherer, Claiton Marlon dos Santos; Born, Christian Correa; Alvarenga, Renata dos Santos; Adegas, Felipe

    2011-04-01

    The Dom João Stage comprises an interval with variable thickness between 100 and 1200 m, composed of fluvial, eolian and lacustrine deposits of Late Jurassic age, based mainly on the lacustrine ostracod fauna (although the top deposits may extend into the Early Cretaceous). These deposits comprise the so-called Afro-Brazilian Depression, initially characterized as containing the Brotas Group of the Recôncavo Basin (which includes the Aliança and the Sergi Formations) and subsequently extended into the Tucano, Jatobá, Camamu, Almada, Sergipe, Alagoas and Araripe Basins in northeastern Brazil, encompassing the study area of this paper. The large occurrence area of the Dom João Stage gives rise to discussions about the depositional connectivity between the basins, and the real extension of sedimentation. In the first studies of this stratigraphic interval, the Dom João Stage was strictly associated with the rift phase, as an initial stage (decades of 1960-70), but subsequent analyses considered the Dom João as an intracratonic basin or pre-rift phase - without any relation to the active mechanics of a tectonic syn-rift phase (decades of 1980-2000). The present work developed an evolutionary stratigraphic and tectonic model, based on the characterization of depositional sequences, internal flooding surfaces, depositional systems arrangement and paleoflow directions. Several outcrops on the onshore basins were used to build composite sections of each basin, comprising facies, architectural elements, depositional systems, stratigraphic and lithostratigraphic frameworks, and paleocurrents. In addition to that, over a hundred onshore and offshore exploration wells were used (only 21 of which are showed) to map the depositional sequences and generate correlation sections. These show the characteristics and relations of the Dom João Stage in each studied basin, and they were also extended to the Gabon Basin. The results indicate that there were two main phases during the Dom João Stage, in which distinctive sedimentary environments were developed, reflecting depositional system arrangements, paleoflow directions were diverse, and continuous or compartmented basins were developed.

  3. Thermochronological evidence for polyphase post-rift reactivation in SE Brazil

    NASA Astrophysics Data System (ADS)

    Cogné, N.; Gallagher, K.; Cobbold, P. R.; Riccomini, C.

    2012-04-01

    The continental margin of SE Brazil shows good evidence for tectonic activity well after the break-up of Western Gondwana (see Cobbold et al., 2001 for a review). Additionally, SE Brazil ranks as an HEPM (high elevation passive margin), summits reaching 2800 m. To constrain the onshore evolution of the margin, especially during the Tertiary, we did a new thermochronological and structural study. After an initial regional study, during which we found additional evidence for a major phase of exhumation during the Late Cretaceous to Early Tertiary (Cogné et al., 2011), we focussed on a region that was clearly subject to Tertiary tectonics. This region includes the Tertiary Taubaté basin and the adjacent Serra do Mar and Serra da Mantiqueira. We used two thermochronolgical methods on the same samples, apatite fission tracks (AFT) and U-Th/He on apatite (AHe). AFT ages range from 129.3±4.3 Ma to 60.7±1.9 Ma with mean track lengths (MTL) from 14.31±0.24 μm to 11.41±0.23 μm, whereas AHe ages range from 519.6±16.6 to 10.1±0.1 Ma. A subset of AHe ages, selected on the basis of data consistency and geological arguments, has a smaller range (122.4±2.5 to 45.1±1.5 Ma). We have combined inverse and forward modelling to assess the range of acceptable thermal histories. Results of inverse modelling confirm our earlier study by showing a Late Cretaceous phase of cooling. Around the onshore Taubaté Basin, for a limited number of samples, another period of cooling occurred during the Early Tertiary, around the time when the basin formed. The inferred thermal histories for most of the samples also imply a later reheating, followed by a Neogene cooling. According to forward modelling, the evidence for reheating seems to be robust around the margins of the Taubaté Basin, but elsewhere the data cannot really discriminate between this and a less complex thermal history. However forward modelling and geologically independent information support the conclusion that the whole area cooled and uplifted during the Neogene. The synchronicity of the cooling phases with tectonic pulses in the Andes and in NE Brazil, as well as the tectonic setting of the Tertiary basins (Cogné et al., submitted) lead us to attribute these phases to a plate-wide compressive stress, which reactivated inherited structures during the Late Cretaceous and Tertiary. The relief of the margin is therefore due, more to polyphase post-rift reactivation and uplift, than to rifting itself. - Cobbold, P.R., Meisling, K.E., Mount, V.S., 2001. Reactivation of an obliquely rifted margin, Campos and Santos Basins, Southeastern Brazil. AAPG Bulletin 85, 1925-1944. - Cogné, N., Gallagher, K., Cobbold, P.R., 2011. Post-rift reactivation of the onshore margin of southeast Brazil: Evidence from apatite (U-Th)/He and fission-track data. Earth and Planetary Science Letters 309, 118-130. - Cogné, N., Cobbold, P.R., Riccomini, C., Gallagher, K. Tectonic setting of the Taubaté basin (southeastern Brazil): insights from regional seismic profiles and outcrop data. Submitted to Journal of South American Earth Sciences.

  4. Hydrologic activity during late Noachian and Early Hesperian downwarping of Borealis Basin, Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.

    1991-01-01

    Pronounced global volcanism as well as fracturing and erosion along the highland/lowland boundary (HLB) during the Late Noachian (LN) and Early Hesperian (EH) led McGill and Dimitriou to conclude that the Borealis basin formed tectonically during this period. This scenario provides a basis for interpretation of the initiation and mode of formation of erosional and collapse features along the HLB. The interpretation, in turn, is integral to hypotheses regarding the development of ancient lakes (or an ocean) and their impact on the climate history of Mars. Hydrologic features of Mars are discussed along with their implications for paleolakes and climate history.

  5. Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA

    USGS Publications Warehouse

    Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.

    2009-01-01

    Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.

  6. Fluid-Enhanced Annealing in the Subcontinental Lithospheric Mantle Beneath the Westernmost Margin of the Carpathian-Pannonian Extensional Basin System

    NASA Astrophysics Data System (ADS)

    Aradi, L. E.; Hidas, K.; Kovács, I. J.; Tommasi, A.; Klébesz, R.; Garrido, C. J.; Szabó, C.

    2017-12-01

    Mantle xenoliths from the Styrian Basin Volcanic Field (Western Pannonian Basin, Austria) are mostly coarse granular amphibole-bearing spinel lherzolites with microstructures attesting for extensive annealing. Olivine and pyroxene CPO (crystal-preferred orientation) preserve nevertheless the record of coeval deformation during a preannealing tectonic event. Olivine shows transitional CPO symmetry from [010]-fiber to orthogonal type. In most samples with [010]-fiber olivine CPO symmetry, the [001] axes of the pyroxenes are also dispersed in the foliation plane. This CPO patterns are consistent with lithospheric deformation accommodated by dislocation creep in a transpressional tectonic regime. The lithospheric mantle deformed most probably during the transpressional phase after the Penninic slab breakoff in the Eastern Alps. The calculated seismic properties of the xenoliths indicate that a significant portion of shear wave splitting delay times in the Styrian Basin (0.5 s out of approximately 1.3 s) may originate in a highly annealed subcontinental lithospheric mantle. Hydroxyl content in olivine is correlated to the degree of annealing, with higher concentrations in the more annealed textures. Based on the correlation between microstructures and hydroxyl content in olivine, we propose that annealing was triggered by percolation of hydrous fluids/melts in the shallow subcontinental lithospheric mantle. A possible source of these fluids/melts is the dehydration of the subducted Penninic slab beneath the Styrian Basin. The studied xenoliths did not record the latest large-scale geodynamic events in the region—the Miocene extension then tectonic inversion of the Pannonian Basin.

  7. Tectonic history of northern New Caledonia Basin from deep offshore seismic reflection: Relation to late Eocene obduction in New Caledonia, southwest Pacific

    NASA Astrophysics Data System (ADS)

    Collot, Julien; Geli, Louis; Lafoy, Yves; Vially, Roland; Cluzel, Dominique; Klingelhoefer, Frauke; Nouzé, Hervé

    2008-12-01

    New, high-quality multichannel seismic reflection data from the western New Caledonia offshore domain allow for the first time the direct, continuous connection of seismic reflectors between the Deep Sea Drilling Project 208 drill hole on the Lord Howe Rise and the New Caledonia Basin. A novel seismic interpretation is hence proposed for the northern New Caledonia Basin stratigraphy, which places the Eocene/Oligocene unconformity deeper than previously thought and revisits the actual thickness of the pre-Oligocene sequences. A causal link is proposed between the obduction of the South Loyalty Basin over New Caledonia (NC) and the tectonic history of the northern New Caledonia Basin. Here it is suggested that as the South Loyalty Basin was being obducted during early Oligocene times, the NC Basin subsided under the effect of the overloading and underthrusted to accommodate the compressional deformation, which resulted in (1) the uplift of the northern Fairway Ridge and (2) the sinking of the western flank of New Caledonia. This event also had repercussions farther west with the incipient subsidence of the Lord Howe Rise.

  8. Climate and Tectonics Need Not Apply: Transient Erosion Driven by Drainage Integration, Aravaipa Creek, AZ

    NASA Astrophysics Data System (ADS)

    Jungers, M.; Heimsath, A. M.

    2013-12-01

    Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of late stage sedimentary basin fill that preserve the slope of the pre-incision piedmonts of the Galiuro Mountains and Santa Teresa Mountains; and (4) the paleo-drainage divide between Aravaipa Creek and Sulphur Springs Valley, approximately 6 km northwest of the modern divide. The pre-incision basin surface sloped from the Sulphur Springs divide (1370 m) to its intersection with the point of integration (1100 m) between Aravaipa Creek and the San Pedro River, 50 km to the northwest. Maximum incision of 450 m occurred in the vicinity of Aravaipa Canyon, and more than 50 cubic kilometers of material have been eroded from Aravaipa Creek basin. Finally, cosmogenic nuclide burial dates for latest stage sedimentary basin fill enable us to constrain the timing of drainage integration and place first-order constraints on paleo-erosion rates.

  9. Origin and time-space distribution of hydrothermal systems in east-central Australian sedimentary basins: Constraints from illite geochronology and isotope geochemistry.

    NASA Astrophysics Data System (ADS)

    Uysal, I. Tonguç

    2016-04-01

    Some well-known precious mineral deposits and hydrocarbon resources occur extensively in east-central Australian sedimentary Basins. The metal occurrences are abundant in northwestern and eastern part of Queensland, whereas no significant deposits are known in large areas further south, which may, however, be hidden beneath the Jurassic-Cretaceous sedimentary basins. Important hydrocarbon resources exist within the Jurassic-Cretaceous sedimentary rocks at relatively shallow depths, of which the distribution represent zones of high paleo-geothermal gradients. This study examines the time-space distribution in relation to the regional tectonic history of concealed metal deposits and areas of high paleo-geothermal gradient leading to hydrocarbon maturation. To this end, authigenic illitic clay minerals representing various locations and stratigraphic depths in east-central Australia were investigated, of which the Rb-Sr and Ar-Ar geochronology and stable isotope geochemistry assist in delineating zones of hydrothermal systems responsible for hydro-carbon maturation/migration and potentially ore deposition. The Late Carboniferous - Early Permian crustal extension that affected large areas of eastern Australia and led to the epithermal mineralisations (e.g., the Drummond Basin) is also recorded in northern South Australia and southwest Queensland. A Late Triassic - Early Jurassic tectonic event being responsible for coal maturation and gas generation in the Bowen Basin and the epithermal mineralisation in the North Arm goldfield in SE Queensland likewise affected the areas much further west in Queensland. Some illites from the basement in outback Queensland and fault gouges from the Demon Fault in NE New South Wales yield younger Rb-Sr and Ar-Ar ages indicating the effect of hydrothermal processes as a result of a Middle-Upper Jurassic tectonic event. The majority of illite samples from the crystalline basement rocks, Permian Cooper Basin, and Jurassic-Cretaceous Eromanga Basin from all over east-central Australia give Cretaceous ages (~130 to ~60 Ma) reflecting episodic hydrothermal events restricted to certain tectonic zones. The Cretaceous events were responsible for the hydro-carbon generation/maturation in the Cooper, Eromanga, and Gunnedah Basins and deposition of some Au and basemetal resources in the eastern part of Queensland. The stable isotope composition of the Late Triassic - Early Jurassic illites in eastern Queensland and all mid-late Cretaceous illites from outback and eastern Australia is distinctively different with low 18O and D values indicating meteoric-hydrothermal systems due to extensional tectonics. Results of this study suggest that illite geochronology and geochemistry is a powerful tool in delineation of concealed hydrothermal systems that were responsible for ore generation and hydrocarbon/maturation and migration.

  10. Global prediction of continuous hydrocarbon accumulations in self-sourced reservoirs

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2012-01-01

    This report was first presented as an abstract in poster format at the American Association of Petroleum Geologists (AAPG) 2012 Annual Convention and Exhibition, April 22-25, Long Beach, Calif., as Search and Discovery Article no. 90142. Shale resource plays occur in predictable tectonic settings within similar orders of magnitude of eustatic events. A conceptual model for predicting the presence of resource-quality shales is essential for evaluating components of continuous petroleum systems. Basin geometry often distinguishes self-sourced resource plays from conventional plays. Intracratonic or intrashelf foreland basins at active margins are the predominant depositional settings among those explored for the development of self-sourced continuous accumulations, whereas source rocks associated with conventional accumulations typically were deposited in rifted passive margin settings (or other cratonic environments). Generally, the former are associated with the assembly of supercontinents, and the latter often resulted during or subsequent to the breakup of landmasses. Spreading rates, climate, and eustasy are influenced by these global tectonic events, such that deposition of self-sourced reservoirs occurred during periods characterized by rapid plate reconfiguration, predominantly greenhouse climate conditions, and in areas adjacent to extensive carbonate sedimentation. Combined tectonic histories, eustatic curves, and paleogeographic reconstructions may be useful in global predictions of organic-rich shale accumulations suitable for continuous resource development. Accumulation of marine organic material is attributed to upwellings that enhance productivity and oxygen-minimum bottom waters that prevent destruction of organic matter. The accumulation of potential self-sourced resources can be attributed to slow sedimentation rates in rapidly subsiding (incipient, flexural) foreland basins, while flooding of adjacent carbonate platforms and other cratonic highs occurred. In contrast, deposition of this resource type on rifted passive margins was likely the result of reactivation of long-lived cratonic features or salt tectonic regimes that created semi-confined basins. Commonly, loading by thick sections of clastic material, following thermal relaxation after plate collision or rift phases, advances kerogen maturation. With few exceptions, North American self-sourced reservoirs appear to be associated with calcitic seas and predominantly greenhouse or transitional ("warm" to "cool") global climatic conditions. Significant changes to the global carbon budget may also be a contributing factor in the stratigraphic distribution of continuous resource plays, requiring additional evaluation.

  11. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  12. Potential seismic hazards and tectonics of the upper Cook Inlet basin, Alaska, based on analysis of Pliocene and younger deformation

    USGS Publications Warehouse

    Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.

    2000-01-01

    The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.

  13. Seismic stratigraphy of the Mianwali and Bannu depressions, north-western Indus foreland basin

    NASA Astrophysics Data System (ADS)

    Farid, Asam; Khalid, Perveiz; Ali, Muhammad Y.; Iqbal, Muhammad Asim; Jadoon, Khan Zaib

    2017-11-01

    Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the Mianwali and Bannu depressions, north-western Indus foreland basin. Synthetic seismograms have been used to identify and tie the seismic horizons to the well data. Nine mappable seismic sequences are identified within the passive and active margin sediments. In general, the Mianwali and Bannu depressions deepens towards north due to the flexure generated by the loading and southward shifting of the thrust sheets of the North-western Himalayan Fold and Thrust Belt. The seismic profiles show a classic wedge shaped foreland basin with a prominent angular unconformity which clearly differentiates the active and passive margin sediments. The onlap patterns in the Late Cretaceous sediments suggest the initial onset of foreland basin formation when the Indian Plate collided with Eurasian Plate. As the collision progressed, the lithospheric flexure caused an uplift along the flexural bulge which resulted in onlaps within the Paleocene and Eocene sequences. The tectonic activity reached to its maximum during Oligocene with the formation of a prominent unconformity, which caused extensive erosion that increases towards the flexural bulge.

  14. Structural development of the Dieppe-Hampshire Basin (Eastern English Channel): Contribution of new seismic data

    NASA Astrophysics Data System (ADS)

    Jollivet-Castelot, Martin; Gaullier, Virginie; Paquet, Fabien; Chanier, Frank; Thinon, Isabelle; Lasseur, Eric; Averbuch, Olivier

    2017-04-01

    The Dieppe-Hampshire Basin is a Cenozoic basin crossing the eastern English Channel, between SE of England and the French coast. This basin and its borders developed during the Cenozoic, a period of overall tectonic inversion, in response to the opening of the North Atlantic Ocean and Pyrenean-alpine deformation episodes. Both extensional and subsequent compressional deformations within this area involve the reactivation of older major regional structures, inherited from the Variscan Orogeny. However, the detailed structural development of the Dieppe-Hampshire Basin still remains poorly constrained, as well as the detailed stratigraphic framework of Cenozoic series, notably in terms of seismic stratigraphy and sequence stratigraphy. New very high resolution seismic data, acquired during the oceanographic cruise "TREMOR" (R/V "Côtes de la Manche", 2014, 1800 kilometers of Sparker profiles), and bathymetric data from SHOM and UKHO, have allowed to image the sedimentary filling and tectonic structures of the Dieppe-Hampshire Basin and adjacent areas. The interpretation was first focused on a seismic facies analysis that led to evidence numerous unconformities and seismic units ranging from the Upper Cretaceous to the Bartonian (Late Eocene). The interpretation of the seismic profiles also allowed to map precisely many tectonic features, as faults, folds and monoclinal flexures. Thanks to the new data, we especially imaged the complexity of the deformation within the highest tectonized zones of the region, along the Nord-Baie de Seine Basin and offshore the Boulonnais coast with an unprecedented resolution. The expression of the deformation appears to be very different between the Mesozoic and the Cenozoic series, with prevailing folding affecting the Cenozoic strata whereas the Mesozoic series are predominantly faulted. This deformation pattern illustrates two major structural trends, respectively E-W and NW-SE directed, both syn- to post-Bartonian in age. The first one is consistent in age and orientation with a late Pyrenean or early Alpine deformation phase, while the second one appears to have a different origin, in regards to the overall geodynamic framework. We suggest that the major heterogeneities of crustal blocks underlying the basin played an important role on the development and orientations of these deformations. These preliminary results will be improved soon thanks to a new cruise, "TREMOR 2" (2017), which will be focused on the acquisition of new VHR seismic lines, bathymetric data and coring.

  15. Deformation bands, early markers of tectonic activity in front of a fold-and-thrust belt: Example from the Tremp-Graus basin, southern Pyrenees, Spain

    NASA Astrophysics Data System (ADS)

    Robert, Romain; Robion, Philippe; Souloumiac, Pauline; David, Christian; Saillet, Elodie

    2018-05-01

    Strain localization in a porous calcarenite facies of the Aren formation in the Tremp basin was studied. This Maastrichtian syn-tectonic formation exposed in front of the Boixols thrust, in the Central South Pyrenean Zone, hosts bedding perpendicular deformation bands. These bands are organized in two major band sets, striking East-West and N-020 respectively. Both populations formed during early deformation stages linked to the growth of the fold and thrust. A magnetic fabric study (Anisotropy of Magnetic Susceptibility, AMS) was carried out to constrain the shortening direction responsible for the deformation bands development during the upper Cretaceous-Paleocene N-S contraction in the region, which allowed us to define populations of Pure Compaction Bands (PCB) and Shear Enhanced Compaction Bands (SECB) regarding their orientations compared to the shortening direction. Both sets are formed by cataclastic deformation, but more intense in the case of SECBs, which are also thinner than PCBs. The initial pore space is both mechanically reduced and chemically filled by several cementation phases. We propose a geomechanical model based on the regional context of layer parallel shortening, thrusting and strike-slip tectonics considering the burial history of the formation, in order to explain the development of both types of bands at remarkably shallow depths.

  16. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia

    NASA Astrophysics Data System (ADS)

    Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry

    2005-04-01

    Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.

  17. Regional Tectonic Control of Tertiary Mineralization and Recent Faulting in the Southern Basin-Range Province, an Application of ERTS-1 Data

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C.; Liggett, M. A.; Childs, J. F.

    1973-01-01

    Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.

  18. Geological setting of the Concordia Trench-Lake system in East Antarctica

    NASA Astrophysics Data System (ADS)

    Cianfarra, P.; Forieri, A.; Salvini, F.; Tabacco, I. E.; Zirizotti, A.

    2009-06-01

    This study presents the interpretation of radio echo-sounding (RES) data collected during the 2003 geophysical campaign of PNRA (Italian National Research Project in Antarctica), which focused on the exploration of the Concordia Trench-Lake system in East Antarctica. The data allow us to identify a new lake (ITL-28) at the southern edge of the Concordia Trench and a series of N-S trending subglacial troughs cutting through the Belgica Highlands. We have mapped the bedrock morphology at 3 km resolution, which led to an improved geographical and geomorphological characterization of the Concordia Trench, Concordia Ridge, Concordia Lake and South Hills. Improved knowledge of the Concordia Trench allowed us to model the 3-D geometry of the Concordia fault, suggesting that it played a role in governing the morpho-tectonic evolution of the bedrock in the Dome C region, and to propose a Cenozoic age for its activity. We recognize the importance of catchment basin morphology in hosting subglacial lakes, and discuss the role played by tectonics, glacial scouring and volcanism in the origin of the trench lakes, basin lakes and relief lakes, respectively.

  19. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem

    2015-04-01

    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .

  20. Sediment Flux from Source to Sink in the Brazos-Trinity Depositional System

    NASA Astrophysics Data System (ADS)

    Pirmez, C.; Prather, B. E.; Droxler, A.; Ohayer, W.

    2007-12-01

    During the Late Pleistocene a series of intra-slope basins offshore Texas in the Western Gulf of Mexico, received a high influx of clastic sediments derived primarily from the Brazos, Trinity, and Mississippi rivers. Sediment failures initiated at shelf edge deltas resulted in mass flows that negotiate a complex slope and basin topography caused by salt tectonics. Sediment locally fill ponded basins eventually spilling into subsequent basins downstream. Interaction between these flows and slope topography leads to a complex partitioning of sediment over time and space that can only be unraveled with high-resolution data. The availability of system-wide coverage with conventional 3d seismic surveys, a dense grid of high-resolution 2d seismic lines and cored wells from two of the four linked intraslope basins, makes this locale an ideal area to investigate the transfer of sediment across the continental margin, from river sources to the ultimate sink within an enclosed intraslope basin. Data from IODP Expedition 308 and industry wells, combined with data from previous studies on the shelf constrain an integrated seismic stratigraphic framework for the depositional system. Numerous radiocarbon age dates coupled with multiple stratigraphic tools (seismic-, bio-, and tephra correlations and oxygen isotope measurements) provide an unprecedented high-resolution chronology that allow for detailed estimation of sedimentation rates in this turbidite system and calculation of sediment volumes in each of the basins over time intervals of a few millennia during the late Pleistocene. We find that rates of sedimentation exceed 10 m/kyr during some periods of ultra-fast turbidite accumulation. Rates of channel incision and tectonic subsidence can also be calculated and are comparable to the rapid accumulation rates measured in the basin fill. Our observations indicate that while sealevel changes exert a first order control on delivery of sediment to the basins, the sedimentary record suggests that delta dynamics, basin tectonics and the interaction between gravity flows and basin topography are equally important in determining the distribution of sediments in time and space along this depositional system.

  1. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The progressive change in lithofacies from marine intra-arc basin to continental molasses foreland basin and from compression to extension setting respectively, imply that the source area became peneplained, where the Kid basin became stabilized as sedimentation progressed following uplift. The scenario proposed of the study area supports the role of volcanic and tectonic events in architecting the facies and stratigraphic development.

  2. 3D Architecture and evolution of the Po Plain-Northern Adriatic Foreland basin during Plio-Pleistocene time

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Toscani, Giovanni; Ghielmi, Manlio; Maesano, Francesco Emanuele; D'Ambrogi, Chiara; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Di Giulio, Andrea

    2017-04-01

    The Pliocene-Pleistocene tectonic and sedimentary evolution of the eastern Po Plain and northern Adriatic Foreland Basin (PPAF) (extended ca. 35,000 km2) was the consequence of severe Northern Apennine compressional activity and climate-driven eustatic changes. According with the 2D seismic interpretation, facies analysis and sequence stratigraphy approach by Ghielmi et al. (2013 and references therein), these tectono-eustatic phases generated six basin-scale unconformities referred as Base Pliocene (PL1), Intra-Zanclean (PL2), Intra-Piacenzian (PL3), Gelasian (PL4), Base Calabrian (PS1) and Late Calabrian (PS2). We present a basin-wide detailed 3D model of the PPAF region, derived from the interpretation of these unconformities in a dense network of seismic lines (ca. 6,000 km) correlated with more than 200 well stratigraphies (courtesy of ENI E&P). The initial 3D time-model has been time-to-depth converted using the 3D velocity model created with Vel-IO 3D, a tool for 3D depth conversions and then validated and integrated with depth domain dataset from bibliography and well log. Resultant isobath and isopach maps are produced to inspect step-by-step the basin paleogeographic evolution; it occurred through alternating stages of simple and fragmented foredeeps. Changes in the basin geometry through time, from the inner sector located in the Emilia-Romagna Apennines to the outermost region (Veneto and northern Adriatic Sea), were marked by repeated phases of outward migration of two large deep depocenters located in front of Emilia arcs on the west, and in front of Ferrara-Romagna thrusts on the east. During late Pliocene-early Pleistocene, the inner side of the Emilia-Romagna arcs evolved into an elongated deep thrust-top basin due to a strong foredeep fragmentation then, an overall tectono-stratigraphic analysis shows also a decreasing trend of tectonic intensity of the Northern Apennine since Pleistocene until present.

  3. Neogene Tectonics of Part of the Junction of Cyprus and Hellenic Arcs in the Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Küçük, H. M.; Dondurur, D.; ćifçi, G.; Gürçay, S.; Hall, J.; Yaltırak, C.; Aksu, A. E.

    2012-04-01

    The junction between the Hellenic and Cyprus Arcs is one of the tectonically most active regions of the eastern Mediterranean. This junction developed in association with convergence between the African and Eurasian Plates, and the re-organization of the smaller Aegean-Anatolian and Arabian Microplates. Recent studies have shown that the predominant Miocene deformation process in the eastern Mediterranean is compressional tectonism. However, many studies have also shown that the strain is partitioned in the Pliocene-Quaternary and the area displays regions dominated by compression, strike slip and extensional tectonism. The junction between the Hellenic and Cyprus Arcs exhibits complex morphological features including submarine mountains, rises, ridges and trenches. Approximately 600 km of high resolution 72-channel seismic profiles were collected from the junction of Cyprus and Hellenic Arcs using a 450 m long 6.25 m hydrophone spacing streamer and a seven gun array with a 200 cubic inch total volume. This project was part of the joint scientific venture between Dokuz Eylül University (Turkey) and Memorial University of Newfoundland (Canada), and was funded by TÜBITAK and NSERC. The study area includes the southwestern Antalya Basin and the Anaxagoras Mountain of the larger Anaximander Mountains. The multichannel data were processed both at Dokuz Eylül and Memorial University of Newfoundland, using the Landmark Graphics ProMAX software, with automatic gain control, short-gap deconvolution, velocity analysis, normal move-out correction, stack, filter (typically 50-200 Hz bandpass), f-k time migration, and adjacent trace sum. Despite the fact that the source volume was modest, reflections are imaged to 2-3 s two-way time below seabed, even in 2 km water depth. The processed seismic reflection profiles show that there are three distinct sedimentary units, separated by two prominent markers: the M-reflector separates the Pliocene-Quaternary from the underlying Messinian evaporite successions, and the N-reflector separates the Messinian evaporite successions from the pre-Messinian Miocene sediments. Interpretation of the data clearly shows that the Miocene and Pliocene-Quaternary tectonic frameworks of the Anaxagoras Mountain are dominated by thrust faults. These major faults in turn, control all of the sedimentary structures observed over the submarine mountain. These thrusts display E-W trending map traces and show southerly vergence. The seismic profiles across the southwestern margin of the Antalya Basin, immediately north of the Anaxagoras Mountain show the presence of numerous upright anticlines and their intervening synclines. These structures are interpreted as salt-cored anticlines. Although mud volcanoes and diapiric structures have also been observed in the area, the normal-move-out velocities suggest that these structures are indeed cored by evaporites. The western margin of the Anaxagoras Mountain is delineated by a profound lineation which separates it from the Anaximander Mountains in the west. In the seismic reflection profiles, this lineation appears to be controlled by NE-SW-trending and mainly west-verging thrusts. The tip points of these thrusts lie at the depositional surface, and their trajectories can be traced well below 4-5 seconds. It is speculated that this prominent and somewhat arcuate boundary defines a crustal scale structure that links the Anaximander Mountains to the Antalya Basin. If so, it might have a sinistral strike slip component, possibly associated with the clockwise rotation of the Anaxagoras Mountain. The acoustic basement is located at approximately 5-6 s in the seismic reflection profiles from the Antalya Basin, and is interpreted to include Miocene-Oligocene sediments. A short seismic profile from the eastern side of Finike basin shows that Pliocene-Quaternary thickness of Finike Basin is more than in the Antalya Basin. The fact that no unequivocal evaporite successions are observed in the Finike Basin is puzzling and requires that the Finike Basin either remained above the depositional surface during the Messinian or was isolated from the eastern Mediterranean Sea.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cregg, A.K.

    Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustaticmore » sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.« less

  5. Plate tectonics of the Mediterranean region.

    PubMed

    McKenzie, D P

    1970-04-18

    The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.

  6. Steeply-dipping extension fractures in the Newark basin, New Jersey

    USGS Publications Warehouse

    Herman, G.C.

    2009-01-01

    Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east-central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en ??chelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50- 60?? of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E-W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime. ?? 2008 Elsevier Ltd. All rights reserved.

  7. Provenance, tectonic setting and source-area weathering of the lower Cambrian sediments of the Parahio valley in the Spiti basin, India

    NASA Astrophysics Data System (ADS)

    Pandey, Shivani; Parcha, Suraj K.

    2017-03-01

    The geochemical study of siliciclastic rocks from the Lower Cambrian of Parahio Valley has been studied to describe the provenance, chemical weathering and tectonic setting. The K2O/Al2O3 ratio and positive correlation of Co ( r=0.85), Ni ( r=0.86), Zn ( r=0.82), Rb ( r=0.98) with K2O reflects that the presence of clay minerals control the abundances of these elements and suggests a warm and humid climate for this region. The chondrite normalized REE pattern of the samples is equivalent to upper continental crust, which reflects enriched LREE and flat HREE with negative Eu anomaly. The tectonic setting discriminant diagram log[K2O/Na2O] vs. SiO2; [SiO2/Al2O3] vs. log[K2O/Na2O]; [SiO2/20] - [K2O+Na2O] - [TiO2+Fe2O3+MgO] indicates transitional tectonic setting from an active continental margin to a passive margin. The discriminant function plot indicates quartzose sedimentary provenance, and to some extent, the felsic igneous provenance, derived from weathered granite, gneissic terrain and/or from pre-existing sedimentary terrain. The CIA value indicates low to moderate degree of chemical weathering and the average ICV values suggests immature sediments deposited in tectonically active settings. The A-CN-K diagram indicates that these sediments were generated from source rocks of the upper continental crust.

  8. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhu, Deyu; Luo, Qun; Liu, Luofu; Liu, Dongdong; Yan, Lin; Zhang, Yunzhao

    2017-09-01

    Natural fractures in seven wells from the Middle Permian Lucaogou Formation in the Junggar Basin were evaluated in light of regional structural evolution, tight reservoir geochemistry (including TOC and mineral composition), carbon and oxygen isotopes of calcite-filled fractures, and acoustic emission (AE). Factors controlling the development of natural fractures were analyzed using qualitative and/or semi-quantitative techniques, with results showing that tectonic factors are the primary control on fracture development in the Middle Permian Lucaogou Formation of the Junggar Basin. Analyses of calcite, dolomite, and TOC show positive correlations with the number of fractures, while deltaic lithofacies appear to be the most favorable for fracture development. Mineral content was found to be a major control on tectonic fracture development, while TOC content and sedimentary facies mainly control bedding fractures. Carbon and oxygen isotopes vary greatly in calcite-filled fractures (δ13C ranges from 0.87‰ to 7.98‰, while δ18O ranges from -12.63‰ to -5.65‰), indicating that fracture development increases with intensified tectonic activity or enhanced diagenetic alteration. By analyzing the cross-cutting relationships of fractures in core, as well as four Kaiser Effect points in the acoustic emission curve, we observed four stages of tectonic fracture development. First-stage fractures are extensional, and were generated in the late Triassic, with calcite fracture fills formed between 36.51 °C and 56.89 °C. Second-stage fractures are shear fractures caused by extrusion stress from the southwest to the northeast, generated by the rapid uplift of the Tianshan in the Middle and Late Jurassic; calcite fracture fills formed between 62.91 °C and 69.88 °C. Third-stage fractures are NNW-trending shear fractures that resulted from north-south extrusion and thrusting in a foreland depression along the front of the Early Cretaceous Bogda Mountains. Calcite fracture fills formed between 81.74 °C and 85.43 °C. Fourth-stage fractures inherited the tectonic framework of the third stage, resulting in fractures with the same orientation, but without calcite filling. By differentiating the various stages of fracture development, we were able to better understand the origin of fractures in tight oil reservoirs and their significance for exploration and development.

  9. Evidence for subduction-related magmatism during the Cretaceous and Cenozoic in Myanmar

    NASA Astrophysics Data System (ADS)

    Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare

    2017-04-01

    Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional evidence would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf isotope data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the Wuntho-Popa Arc and in the sedimentary basins onshore Myanmar (including the onshore Rakhine Basin and the Myanmar Central Basin), providing evidence for ongoing, although non-continuous, subduction in the region.

  10. A systematic overview of the coincidences of river sinuosity changes and tectonically active structures in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit; Székely, Balázs; Timár, Gábor

    2012-12-01

    As tectonic movements change the valley slope (low-gradient reaches of valleys, in sedimentary basins), the alluvial rivers, as sensitive indicators, respond to these changes, by varying their courses to accommodate this forcing. In our study sinuosity values, a commonly used characteristic parameter to detect river pattern changes, were studied for the major rivers in the Pannonian Basin in order to reveal neotectonic influence on their planform shape. Our study area comprises the entire Pannonian Basin (330,000 km2) located in eastern Central-Europe, bounded by the Alps, Carpathians and Dinarides. The studied rivers were mostly in their natural meandering state before the main river regulations of the 19th century. The last quasi-natural, non-regulated river planforms were surveyed somewhat earlier, during the Second Military Survey of the Habsburg Empire. Using the digitized river sections of that survey, the sinuosities of the rivers were calculated with different sample section sizes ranging from 5 km to 80 km. Depending on the bank-full discharge, also a 'most representative' section size is given, which can be connected to the neotectonic activity. In total, the meandering reaches of 28 rivers were studied; their combined length is 7406 km. The places where the river sinuosity changed were compared to the structural lines of the "Atlas of the present-day geodynamics of the Pannonian Basin" (Horváth et al., 2006). 36 junctions along 26 structural lines were identified where the fault lines of this neotectonic map crossed the rivers. Across these points the mean sinuosity changed. Depending on the direction of the relative vertical movements, the sinuosity values increased or decreased. There were some points, where the sinuosity changed in an opposite way. Along these sections, the rivers belong to the range of unorganized meandering or there are lithological margins. Assuming that the rivers indicate on-going faulting accurately, some places were found, where positioning of the faults of the neotectonic map could be improved according to the sinuosity jumps. However, some significant sinuosity changes cannot be correlated to known faults. In these cases other factors may play a role (e.g., hydrological changes, increase of sediment discharge also can modify sinuosity). In order to clarify the origin of these changes seismic sections and other geodynamical information should be analyzed to prove or disprove tectonic relationship if hydrological reasons can be excluded.

  11. Reply to comments by Ahmad et al. on: Shah, A. A., 2013. Earthquake geology of Kashmir Basin and its implications for future large earthquakes International Journal of Earth Sciences DOI:10.1007/s00531-013-0874-8 and on Shah, A. A., 2015. Kashmir Basin Fault and its tectonic significance in NW Himalaya, Jammu and Kashmir, India, International Journal of Earth Sciences DOI:10.1007/s00531-015-1183-1

    NASA Astrophysics Data System (ADS)

    Shah, A. A.

    2016-03-01

    Shah (Int J Earth Sci 102:1957-1966, 2013) mapped major unknown faults and fault segments in Kashmir basin using geomorphological techniques. The major trace of out-of-sequence thrust fault was named as Kashmir basin fault (KBF) because it runs through the middle of Kashmir basin, and the active movement on it has backtilted and uplifted most of the basin. Ahmad et al. (Int J Earth Sci, 2015) have disputed the existence of KBF and maintained that faults identified by Shah (Int J Earth Sci 102:1957-1966, 2013) were already mapped as inferred faults by earlier workers. The early works, however, show a major normal fault, or a minor out-of-sequence reverse fault, and none have shown a major thrust fault.

  12. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  13. BOLIVAR: the Caribbean-South America plate boundary between 60W and 71W as imaged by seismic reflection data

    NASA Astrophysics Data System (ADS)

    Magnani, M.; Mann, P.; Clark, S. A.; Escalona, A.; Zelt, C. A.; Christeson, G. L.; Levander, A.

    2007-12-01

    We present the results of ~6000km of marine multi-channel seismic (MCS) reflection data collected offshore Venezuela as part of the Broadband Ocean Land Investigation of Venezuela and the Antilles arc Region project (BOLIVAR). The imaged area spans almost 12 degrees of longitude and 5 degrees of latitude and encompasses the diffuse plate boundary between South America (SA) and the SE Caribbean plate (CAR). This plate boundary has been evolving for at least the past 55My when the volcanic island arc that borders the CAR plate started colliding obliquely with the SA continent: the collision front has migrated from west to east. BOLIVAR MCS data show that the crustal architecture of the present plate boundary is dominated by the eastward motion of the Caribbean plate with respect to SA and is characterized by a complex combination of convergent and strike-slip tectonics. To the north, the reflection data image the South Caribbean Deformed Belt (SCDB) and the structures related to the thrusting of the CAR plate under the Leeward Antilles volcanic arc region. The data show that the CAR underthrusting continues as far east as the southern edge of the Aves ridge and detailed stratigraphic dating of the Venezuela basin and trench deposits suggests that the collision began in the Paleogene. The amount of shortening along the SCDB decreases toward the east, in part due to the geometry of plate motion vectors and in part as a result of the NNE escape of the Maracaibo block in western Venezuela. South of the SCDB the MCS profiles cross the Leeward Antilles island arc and Cenozoic sedimentary basins, revealing a complex history of Paleogene-Neogene multiphase extension, compression, and tectonic inversion, as well as the influence of the tectonic activity along the right-lateral El Pilar - San Sebastian fault system. East of the Bonaire basin the MCS data image the southern end of the Aves Ridge abandoned volcanic island arc and the southwestern termination of the Grenada basin, characterized here by middle Miocene inverted structures, likely related to the WNW-ESE transpression between CAR and SA. The easternmost MCS profile crosses the ongoing arc-continent collision of the Lesser Antilles arc with SA and the backarc (Grenada Basin) and forearc (Tobago Basin) basins as well as the suture between the Caribbean arc and the passive margin of the continental SA plate near eastern Trinidad.

  14. Quaternary shortening in the central Puna Plateau of NW Argentina: Preliminary results from the Salar de Pocitos, Salta province (24.5° S, 67° W)

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Strecker, Manfred R.; Bookhagen, Bodo; Bekeschus, Benjamin; Eckelmann, Felix; Alonso, Ricardo

    2013-04-01

    Active tectonism in Cenozoic orogenic plateaus is often characterized by a combination of active extensional and strike-slip faulting subsequent to protracted phases of shortening and the build-up of high topography. In the Puna Plateau of NW Argentina, the southern part of the world's second largest orogenic plateau, the changeover from shortening to extensional tectonics is thought to have occured between 7 and 5 Ma along the southeastern plateau margin, while the central and northern plateau areas apparently changed into an extensional regime between 9 and 6 Ma (Cladouhos et al., 1994). Despite these observations of extensional structures we report on new data from the Salar de Pocitos that show sustained shortening in the south-central part of the plateau. The south-central Puna Plateau is characterized by an average elevation of about 3700 m with low relief and internally drained basins, which are bordered by reverse-fault bounded ranges. The N-S oriented Salar de Pocitos is an integral part of these contractional structures and covers an area of ~435 km². The western border of the basin constitutes the eastern flank of an anticline involving Tertiary and Quaternary sediments, while the eastern border is delimited by a N-S striking reverse fault, bounding the range front of the Sierra Qda. Honda. In the north of the Salar de Pocitos the three Miocene volcanoes Tultul, Delmedio and Pocitos form a barrier with the Salar del Rincón, and the south of the basin is bordered by fault blocks involving Ordovician lithologies that have left only a narrow valley that may have provided an outlet of the basin in the past. Multiple terraces generated during Late Pleistocene and Holocene lake highstands straddle the Pocitos Basin and serve as excellent strain markers to assess neotectonic deformation. We surveyed the terraces along N-S and E-W transects using a differential GPS. The E-W surveys are perpendicular to the structures that bound the basin and record differential basin-wide deformation. Although it is not possible yet to develop a reliable terrace chronology, taken together, the western terraces are higher than possibly equivalent terraces in the east, suggesting ongoing tilting related to protracted folding of the anticline in the west. In addition, orientations of faults, joints and tilted deposits were measured and analyzed. We show (preliminary) results and interpretations of these measurements. Tilted volcanic ash and sediment deposits have different dips and it appears that a distinct deformation stage is related to the regional anticline west of the Salar. A tectonic joint system and various small reverse faults also indicate active shortening in the area of the Salar de Pocitos from the Tertiary to the present-day. Reference: Cladouhos, T.T.; Allmendinger, R.W.; Coira, B. and Farrar, E. (1994): Late Cenozoic deformation in the Central Andes: fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia (Journal of South American Earth Sciences, Vol. 7, No. 2., pp. 209-228)

  15. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  16. Partitioning of deformation along a reactivated rifted margin: example of the northern Ligurian margin.

    NASA Astrophysics Data System (ADS)

    Sage, Françoise; Beslier, Marie-Odile; Gaullier, Virginie; Larroque, Christophe; Dessa, Jean-Xavier; Mercier de Lepinay, Bernard; Corradi, Nicola; Migeon, Sébastien; Katz, Hélène; Ruiz Constan, Ana

    2013-04-01

    The northern Ligurian margin, of Oligo-Miocene age, is currently undergoing compression related to microplate motions and/or to gravity spreading of the Alpine chain located immediately north of it. Active thrust faults and folds have previously been identified below the margin, together with a global uplift of the continental edge, since at least the Messinian. The seismicity that goes with the present-day margin contraction (e.g. Mw 6.9, 1887/02/23) extends to the axis of the adjacent oceanic basin (e.g. ML 6.0, 1963/07/19; ML 5.4, 2011/07/07). However, we do not know of any recent or active crustal contractional structure within this oceanic domain. In this study, we use new 12-channel high-resolution seismic data (FABLES seismic cruise, 2012, R/V Tethys II) in order to image the sedimentary cover of the Ligurian oceanic basin, up to ~3km below the seabed, including the Plio-Quaternary and the Messinian sediment down to the bottom of the Messinian salt layer. Because the Messinian event is well dated (5.96-5.32 Ma) and well identified in the seismic data, it forms a clear marker that we use to characterize the recent deformation related to both mobile salt motion and crustal tectonics. About 50 km south of the margin offshore of Italy, we identify huge and complex salt walls that elongate SW-NE. Such salt walls, which cannot be explained by salt tectonics only, are interpreted as evidence of deep-seated crustal deformation. They form en echelon structures that are well expressed in the seabed morphology, and do not correspond to any significant vertical throw at the base of the salt layer. This suggests that within the deep basin, mainly strike-slip faulting accommodates long-term crustal deformation. It thus offers a contrast with the margin where deformation is mainly marked by shortening and reverse faulting, with vertical throws of several hundred meters. This discrepancy in the tectonic styles between the margin and the adjacent oceanic basin suggests some partitioning of the deformation. It may result from the difference in the topographic gradient of the main crustal interfaces between the steep margin and the adjacent oceanic domain, and/or to different mechanical behaviours of the adjacent lithospheric domains.

  17. Summary of tectonic and structural evidence for stress orientation at the Nevada Test Site

    USGS Publications Warehouse

    Carr, Wilfred James

    1974-01-01

    A tectonic synthesis of the NTS (Nevada Test Site) region, when combined with seismic data and a few stress and strain measurements, suggests a tentative model for stress orientation. This model proposes that the NTS is undergoing extension in a N. 50 ? W.-S. 50 ? E. direction coincident with the minimum principal stress direction. The model is supported by (1) a tectonic similarity between a belt of NTS Quaternary faulting and part of the Nevada-California seismic belt, for which northwest-southeast extension has been suggested; (2) historic northeast- trending natural- and explosion-produced fractures in the NTS; (3) the virtual absence in the NTS of northwest-trending Quaternary faults; (4) the character of north-trending faults and basin configuration in the Yucca Flat area, which suggest a component of right-lateral displacement and post-10 m.y. (million year) oblique separation of the sides of the north-trending depression; (5) seismic evidence suggesting a north- to northwest-trending tension axis; (6) strain measurements, which indicate episodes of northwest-southeast extension within a net northeast-southwest compression; (7) a stress estimate based on tectonic cracking that indicates near-surface northwest-southeast-directed tension, and two stress measurements indicating an excess (tectonic) maximum principal compressive stress in a northeast-southwest direction at depths of about 1,000 feet (305 m); and (8) enlargement of some drill holes in Yucca Flat in a northwest-southeast direction. It is inferred that the stress episode resulting in the formation of deep alluvium-filled trenches began somewhere between 10 and possibly less than 4 m.y. ago in the NTS and is currently active. In the Walker Lane of western Nevada, crystallization of plutons associated with Miocene volcanism may have increased the competency and thickness of the crust and its ability to propagate stress, thereby modulating the frequency (spacing) of basin-range faults.

  18. Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming

    USGS Publications Warehouse

    Pierce, B.S.

    1996-01-01

    Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.

  19. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru

    NASA Astrophysics Data System (ADS)

    Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane

    2017-12-01

    Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.

  20. The early cretaceous evolution of carbonate platforms from northern Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masse, J.P.; Borgomano, J.; Maskiry, S.Al.

    1993-09-01

    In northern Oman (Jebel Akhdar and foothills) Hauterivian to early Aptian shallow carbonate platforms are widely extending and pass laterally to slope and basin environments in the Nakhl zone. Progradational geometries are identified in that zone where significant correlation between thickness and sediment types supports a prominent tectonic control. The platform records four main sedimentary breaks (drowning events). Early Barremian (lower Lekhwair Formation), Late Barremian (basal Kharaib Formation), lowermost early Aptian (upper Kharaib Formation) and middle Aptian (Shuaiba-Al Hassanat formations boundary). The late Aptian-early Albian hiatus (pre-Nahr Umr unconformity) is regarded as an early Albian tectonically driven erosion. In themore » Nakhl zone, coral-rudist limestones of late Aptian-early Albian (lower Al Hassanat Formation) document an east-west ribbon platform, the southward extension of which was obscured by the middle Albian erosions and rudist limestones of middle to late Albian (upper Al Hassanat Formation), a lateral equivalent of the Nahr Umr circa littoral shaly sediments, document an east-west-trending linear platform. The foregoing points out a northward progradation coeval with a southward transgressive major trend for the Hauterivian-early Aptian interval, a faulted margin corresponding with the Nakhl zone active during the Aptian-Albian, a late Aptian ribbon platform coeval with the Bab basin initiation southward, a regional uplifting and truncation during the early-Albian (Austrian phase), whereas shallow-water carbonates are still forming at the edge of the former platform, and an active linear platform at the northern edge of the Nahr Umr basin, the corresponding drowning contemporaneous with the onset of the Cenomanian platform eastward.« less

  1. Tertiary fission-track ages from the Bagua syncline (northern Peru): Stratigraphic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Naeser, C. W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sigé, B.

    The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times.

  2. Tertiary fission-track ages from the Bagua syncline (northern Peru): Stratigraphic and tectonic implications

    USGS Publications Warehouse

    Naeser, C.W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sige, B.

    1991-01-01

    The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times. ?? 1991.

  3. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: Implications for neotectonics and Lateglacial fault-bound basin formation

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Steffen, Holger; Sandersen, Peter B. E.; Wu, Patrick; Winsemann, Jutta

    2018-06-01

    The Sorgenfrei-Tornquist Zone (STZ) is the northwestern segment of the Tornquist Zone and extends from Bornholm across the Baltic Sea and northern Denmark into the North Sea. It represents a major lithospheric structure with a significant increase in lithosphere thickness from south to north. A series of meter-scale normal faults and soft-sediment deformation structures (SSDS) are developed in Lateglacial marine and lacustrine sediments, which are exposed along the Lønstrup Klint cliff at the North Sea coast of northern Denmark. These deformed deposits occur in the local Nørre Lyngby basin that forms part of the STZ. Most of the SSDS are postdepositional, implying major tectonic activity between the Allerød and Younger Dryas (∼14 ka to 12 ka). The occurrence of some syn- and metadepositional SSDS point to an onset of tectonic activity at around 14.5 ka. The formation of normal faults is probably the effect of neotectonic movements along the Børglum fault, which represents the northern boundary fault of the STZ in the study area. The narrow and elongated Nørre Lyngby basin can be interpreted as a strike-slip basin that developed due to right-lateral movements at the Børglum fault. As indicated by the SSDS, these movements were most likely accompanied by earthquake(s). Based on the association of SSDS these earthquake(s) had magnitudes of at least Ms ≥ 4.2 or even up to magnitude ∼ 7 as indicated by a fault with 3 m displacement. The outcrop data are supported by a topographic analysis of the terrain that points to a strong impact from the fault activity on the topography, characterized by a highly regular erosional pattern, the evolution of fault-parallel sag ponds and a potential fault scarp with a height of 1-2 m. With finite-element simulations, we test the impact of Late Pleistocene (Weichselian) glaciation-induced Coulomb stress change on the reactivation potential of the Børglum fault. The numerical simulations of deglaciation-related lithospheric stress build-up additionally support that this neotectonic activity occurred between ∼14.5 and 12 ka and was controlled by stress changes that were induced by the decay of the Scandinavian ice sheet. In the Holocene, the stress field in the study area thus changed from GIA-controlled to a stress field that is determined by plate tectonic forces. Comparable observations were described from the central STZ in the Kattegat area and the southeastern end of the STZ near Bornholm. We therefore interpret the entire STZ as a structure where glacially induced faulting very likely occurred in Lateglacial times. The fault reactivation was associated with the formation of small fault-bound basins that provided accommodation space for Lateglacial to Holocene marine and freshwater sediments.

  4. Electrical and well log study of the Plio-Quaternary deposits of the southern part of the Rharb Basin, northern Morocco

    NASA Astrophysics Data System (ADS)

    El Bouhaddioui, Mohamed; Mridekh, Abdelaziz; Kili, Malika; El Mansouri, Bouabid; El Gasmi, El Houssine; Magrane, Bouchaib

    2016-11-01

    The Rharb Basin is located in the NW of Morocco. It is the onshore extension of a lager offshore basin between Kenitra and Moulay Bousselham. The Rharb plain (properly called) extends over an area of 4200 Km2 between two very different structural entities: the unstable Rif domain in the NE and the East and the ''relatively stable'' Meseta domain in the south. The distribution of Pliocene-Quaternary deposits under this plain is complex and was controlled by both tectonics and climatic factors. The main objective of the present work is to define the spatiotemporal evolution of these deposits in the onshore part of the basin and to make a comparison with a sequence analysis defined, for equivalent deposits in the offshore basin, by a previous work. The proposed model allows thus to characterize the geometry of these deposits in the extension of continental shelf under the present day onshore basin, and to explain there is genesis in terms of interactions between eustatic sea level fluctuations, tectonics and sedimentary rates at the mouths of paleo-rivers that had drained the Rharb plain during Pliocene to Quaternary Times.

  5. Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong

    1994-07-01

    A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block continental crust. (2) The Nansha Block Uplift Zone. Due to the development of reefs and shoals, there are many channels and valleys. Our long-distance multichannel seismic profiles indicated that there are thick Paleogene sediments and thin Neogene sediments all over the central part of the block. (3) The Nansha Trough, a nappe structure formed by the southeastward drifting of Nansha Block and northwestward overthrusting of Palawan-northwest Borneo. (4) Zengmu Shoal Basin, southwest of the Nansha Block; the maximum thickness of Cenozoic strata is over 9 km in this important petroliferous basin.

  6. The Interior Lowland Plains Unit of Mars: Evidence for a Possible Mud Ocean and Induced Tectonic Deformation

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Banerdt, W. B.

    2000-01-01

    We conclude from MOC and MOLA data that the northern plains of Mars were infilled by a sediment-rich, mud ocean. Evidence for subsidence within the north polar basin and reversed channel-floor gradients are consistent with tectonic deformation due to the sediment load.

  7. The climatic, biotic and tectonic evolution of the Paleogene Renova formation of southwestern Montana

    NASA Astrophysics Data System (ADS)

    Lielke, Kevin John

    The Renova Formation of southwestern Montana contains an important record of Paleogene floral, faunal, climate and tectonic change in the northern Rocky Mountains. The period between the end of the early Eocene and the early Oligocene (˜49--32 Ma) was a time of rapid and far-reaching climate change. This period saw the end of global greenhouse climate and the establishment of icehouse conditions across the Earth. These changes led to profound alterations in both marine and terrestrial ecosystems. This study examines the late Eocene/early Oligocene history of the northern Rocky Mountains by means of an integrated study of the sedimentology, tectonics and fossil content of the Renova Formation. The first part of this study examines plant fossils found in the Renova Formation in order to examine changes in the composition of the vegetation across the late Eocene/ early Oligocene (E/O) boundary. Plant remains are an effective proxy for climate and are used to estimate multiple climatic parameters across the E/O boundary. The second part of this study examines the paleotopography and paleodrainage patterns of the basins which accumulated the Renova sediments. This is accomplished by a combination of sedimentary facies and detrital zircon analysis. The third part of this study examines the tectonic underpinnings of Paleogene southwestern Montana through a combination of geologic field work and geodynamic modeling. The results of this study indicate that a seasonal summer dry climate became established in the northern Rocky Mountains by early Oligocene time. This is indicated by the elimination of subtropical plant species, the establishment of dry-adapted species and by paleoclimate parameters calculated from leaf physiognomy. Geodynamic calculations and field data indicate that the Renova Formation was deposited in a series of sub-basins separated by relict paleotopography and inverted topography formed by contemporary lava flows. Normal faulting was not active until the middle Miocene initiation of regional extension. Accommodation space for the deposition of Renova sediments was formed primarily by differential erosion of pre-middle Eocene rocks. Climate change and influx rates of volcaniclastic sediment were also important controls on the evolution of the intermontane basins of southwestern Montana.

  8. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers, some several meters thick, has drastically increased in the upper ca 100 m (the past ca. 230 ka). The highest density of excellent reflectors occurs in this interval. Tectonic activity evidenced by extensional and/or compressional faults across the basin margins may have also affected the lake level fluctuations in Lake Van. This series of reconstructions using seismic stratigraphy from this study enlighten the understanding of tectonically-active lacustrine basins and provide a model for similar basins elsewhere.

  9. Marine geophysics. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.

    PubMed

    Sandwell, David T; Müller, R Dietmar; Smith, Walter H F; Garcia, Emmanuel; Francis, Richard

    2014-10-03

    Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins. Copyright © 2014, American Association for the Advancement of Science.

  10. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  11. Is the Ordos Basin floored by a trapped oceanic plateau?

    NASA Astrophysics Data System (ADS)

    Kusky, Tim; Mooney, Walter

    2015-11-01

    The Ordos Basin in China has about 10 km of Neoarchean to Quaternary sediments covering an enigmatic basement of uncertain origin. The basement is tectonically stable, has a thick mantle root, low heat flow, few earthquakes, and has been slowly subsiding for billions of years. The basement has geophysical signatures that indicate it is dominantly intermediate to mafic in composition, and is similar to some other cratons world-wide, and also to several major oceanic plateaus. It was accreted to the amalgamated Eastern Block and Central Orogenic belt of the North China Craton (NCC) in the Paleoproterozoic, then involved in several Proterozoic tectonic events including being over-thrust by an accretionary orogen, and intruded by Andean arc-related magmas, and then involved in a continent-continent collision during amalgamation with the Columbia Supercontinent. Thus, the basement rocks are deformed, metamorphosed to granulite facies, and determining their initial origin is difficult. We suggest that the data is consistent with an origin as an oceanic plateau that accreted to the NCC and, later experienced different episodes of differentiation associated with later subduction and collisions. Formation of cratonic lithosphere by accretion of oceanic plateaus may be one mechanism to create stable cratons. Other cratons that apparently formed by partial melting of underplated and imbricated oceanic slabs are stable in some cases, but also re-activated and ;de-cratonized; in some cases in Asia, where they have been affected by younger subduction, hydration, slab roll-back, and melt-peridotite reactions. This suggests that the initial mode of craton formation may be a factor in the preservation of stable cratons, and de-cratonization is not only influenced by younger tectonic activity.

  12. Middle Tertiary stratigraphic sequences of the San Joaquin Basin, California: Chapter 6 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Johnson, Cari L.; Graham, Stephan A.

    2007-01-01

    An integrated database of outcrop studies, borehole logs, and seismic-reflection profiles is used to divide Eocene through Miocene strata of the central and southern San Joaquin Basin, California, into a framework of nine stratigraphic sequences. These third- and higher-order sequences (<3 m.y. duration) comprise the principal intervals for petroleum assessment for the basin, including key reservoir and source rock intervals. Important characteristics of each sequence are discussed, including distribution and stratigraphic relationships, sedimentary facies, regional correlation, and age relations. This higher-order stratigraphic packaging represents relatively short-term fluctuations in various forcing factors including climatic effects, changes in sediment supply, local and regional tectonism, and fluctuations in global eustatic sea level. These stratigraphic packages occur within the context of second-order stratigraphic megasequences, which mainly reflect long-term tectonic basin evolution. Despite more than a century of petroleum exploration in the San Joaquin Basin, many uncertainties remain regarding the age, correlation, and origin of the third- and higher-order sequences. Nevertheless, a sequence stratigraphic approach allows definition of key intervals based on genetic affinity rather than purely lithostratigraphic relationships, and thus is useful for reconstructing the multiphase history of this basin, as well as understanding its petroleum systems.

  13. Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada

    USGS Publications Warehouse

    Horton, T.W.; Sjostrom, D.J.; Abruzzese, M.J.; Poage, M.A.; Waldbauer, J.R.; Hren, M.; Wooden, J.; Chamberlain, C.P.

    2004-01-01

    The surface uplift of mountain belts caused by tectonism plays an important role in determining the long-term climate evolution of the Earth. However, the general lack of information on the paleotopography of mountain belts limits our ability to identify the links and feedbacks between topography, tectonics, and climate change on geologic time-scales. Here, we present a ??18O and ??D record of authigenic minerals for the northern Great Basin that captures the timing and magnitude of regional surface uplift and subsidence events in the western United States during the Cenozoic. Authigenic calcite, smectite, and chert ??18O values suggest the northern Great Basin region experienced ???2km of surface uplift between the middle Eocene and early Oligocene followed by ???1 to 2km of surface subsidence in the southern Great Basin and/or Sierra Nevada since the middle Miocene. These data when combined with previously published work show that the surface uplift history varied in both space and time. Surface uplift migrated from north to south with high elevations in southern British Columbia and northeastern Washington in the middle Eocene and development of surface uplift in north and central Nevada in the Oligocene. This pattern of north to south surface uplift is similar to the timing of magmatism in the western Cordillera, a result that supports tectonic models linking magamtism with removal of mantle lithosphere and/or a subducting slab.

  14. Dynamique sédimentaire comparative dans les bassins stéphano-permiens des Ida Ou Zal et Ida Ou Ziki, haut Atlas Occidental, MarocDynamic sedimentology of two Upper Stephano-Lower Permian basins: Ida Ou Zal and Ida Ou Ziki, western High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Saber, H.; El-Wartiti, M.; Broutin, J.

    2001-05-01

    The intra-mountainous Ida Ou Zal Basin developed as a graben during the Stephanian (Carboniferous) and Lower Permian. Along its borders from east to west are the remnants of basal conglomerates. Passing laterally towards the centre of the basin are fine-grained fluvial-lacustrine sediments or flood-plain deposits. The important accumulation (1800 m) of sediments, associated with climatic and tectonic changes, caused substantial subsidence in a late orogenic setting. The remnants of sporadic volcanic products (shards) found in the Ida Ou Zal and the Ida Ou Zika Basins suggest nearby simultaneous magmatic activity. A comparison between the basins of Ida Ou Zal and Ida Ou Ziki suggest that the two basins formed a single unit, called the Souss Basin, ultimately terminated between the Lower Permian and Upper Permian times by a sinistral movement of the N70-80° Agadir Ou Anzizen Fault (west branch of the Tizi N'Test Fault) at the very end of the Hercynian Orogeny in Morocco.

  15. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the juxtaposing salt rock to the hydrological system was overlooked. Recent study reported an anomaly in groundwater chemistry at the western shore, indicating a possible contribution of halite dissolution into the ascending brine (Möller et al., 2011). This correlates to the results of the salt tectonic model and the suspected salt diapir above mentioned. Moreover, Arbel-1 borehole (drilled at 2003 at the same area) showed rapid salinity increase during pumping. Today the well is shut off. Based on the above findings, a numerical model is built. The studied profile crosses the rift from the Galilee at the west to the Golan and Ajlun at the east reaching a depth of 6 kilometers. The model indicates the possible brine flow paths across the rift and their interaction with fresh water aquifers and lake springs. References Inbar, N. (2012), The Evaporatic Subsurface Body in Kinnarot Basin: Stratigraphy, Structure, Geohydrology, 131 pp, Tel Aviv University. Möller, P., Siebert, C., Geyer, S., Inbar, N., Rosenthal, E., Flexer, A., and Zilberbrand, M. (2011), Relationships of Brines in the Kinnarot Basin, Jordan-Dead Sea Rift Valley, Geofluids (doi: 10.1111/j.1468-8123.2011.00353.x). Reznikov, M., Ben-Avraham, Z., Garfunkel, Z., Gvirtzman, H. and Rotstein, Y., 2004. Structural and stratigraphic framework of Lake Kinneret: Isr. J. Earth Sci., v. 53, p. 131-149.

  16. Morphologic studies of the Moon and planets

    NASA Technical Reports Server (NTRS)

    El-Baz, F.; Maxwell, T. A.

    1984-01-01

    The impact, volcanic, and tectonic history of the Moon and planets were investigated over an eight year period. Research on the following topics is discussed: lunar craters, lunar basins, lunar volcanoes, correlation of Apollo geochemical data, lunar geology, Mars desert landforms, and Mars impact basins.

  17. A reassessment of the Archean-Mesoproterozoic tectonic development of the southeastern Chhattisgarh Basin, Central India through detailed aeromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Sridhar, M.; Ramesh Babu, V.; Markandeyulu, A.; Raju, B. V. S. N.; Chaturvedi, A. K.; Roy, M. K.

    2017-08-01

    We constrained the geological framework over polydeformed Paleoproterozoic Sonakhan Greenstone Belt and addressed the tectonic evolution of Singhora basin in the fringes of Bastar Craton, central India by utilizing aeromagnetic data interpretation, 2.5D forward modelling and 3D magnetic susceptibility inversions. The Sonakhan Greenstone Belt exposes volcano-sedimentary sequences of the Sonakhan Group within NNW-SSE to NW-SE trending linear belts surrounded by granite gneisses, which are unconformably overlain by sedimentary rocks of Chhattisgarh Basin. The orientations of aeromagnetic anomalies are coincident with geological trends and appear to correlate with lithology and geologic structure. Regional magnetic anomalies and lineaments reveal both NNW-SSE and NE-SW trends. Prominent E-W trending linear, high amplitude magnetic anomalies are interpreted as the Trans-Chhattisgarh Aeromagnetic Lineament (TCAL). NW-SE trending aeromagnetic signatures related to Sonakhan Greenstone Belt extends below the Singhora sedimentary rocks and forms the basement in the west. The analysis suggests that TCAL is a block fault with northern block down-thrown and affected the basement rocks comprising the Sonakhan Greenstone Belt and Samblapur Granitoids. The episode of faulting represented by the TCAL is pre-Singhora sedimentation and played a vital role in basin evolution. The basement configuration image generated by estimates of depth to magnetic basement suggests a complex pattern of NNE-SSW to NE-SW trending depressions separated by a linear N-S trending basement ridge. It is inferred from the 3D magnetic susceptibility inversion that the thickness of sediments is more towards the eastern basin margin and the N-S ridge is a manifestation of post sedimentary faulting. Results of 2.5D modelling of a WNW-ESE profile across the Singhora Basin combined with results from 3D inversion suggest suggests the basin subsidence was controlled by NE-SW trending regional faults in an active system. The basin geometry evolved by E-W block faulting overprinted by NE-SW trending pre- to syn-depositional normal faults generating NE-SW depression, which are affected by N-S trend post-sedimentary faulting. Though the present work relates the basin evolution with the initiation of rift basin, it warrants further work to establish the deformation within the basin pertaining to the proximal thrust and uplift along the craton fringe.

  18. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics

    NASA Astrophysics Data System (ADS)

    Reilinger, Robert; McClusky, Simon

    2011-09-01

    We use geodetic and plate tectonic observations to constrain the tectonic evolution of the Nubia-Arabia-Eurasia plate system. Two phases of slowing of Nubia-Eurasia convergence, each of which resulted in an ˜50 per cent decrease in the rate of convergence, coincided with the initiation of Nubia-Arabia continental rifting along the Red Sea and Somalia-Arabia rifting along the Gulf of Aden at 24 ± 4 Ma, and the initiation of oceanic rifting along the full extent of the Gulf of Aden at 11 ± 2 Ma. In addition, both the northern and southern Red Sea (Nubia-Arabia plate boundary) underwent changes in the configuration of extension at 11 ± 2 Ma, including the transfer of extension from the Suez Rift to the Gulf of Aqaba/Dead Sea fault system in the north, and from the central Red Sea Basin (Bab al Mandab) to the Afar volcanic zone in the south. While Nubia-Eurasia convergence slowed, the rate of Arabia-Eurasia convergence remained constant within the resolution of our observations, and is indistinguishable from the present-day global positioning system rate. The timing of the initial slowing of Nubia-Eurasia convergence (24 ± 4 Ma) corresponds to the initiation of extensional tectonics in the Mediterranean Basin, and the second phase of slowing to changes in the character of Mediterranean extension reported at ˜11 Ma. These observations are consistent with the hypothesis that changes in Nubia-Eurasia convergence, and associated Nubia-Arabia divergence, are the fundamental cause of both Mediterranean and Middle East post-Late Oligocene tectonics. We speculate about the implications of these kinematic relationships for the dynamics of Nubia-Arabia-Eurasia plate interactions, and favour the interpretation that slowing of Nubia-Eurasia convergence, and the resulting tectonic changes in the Mediterranean Basin and Middle East, resulted from a decrease in slab pull from the Arabia-subducted lithosphere across the Nubia-Arabia, evolving plate boundary.

  19. A Cenozoic tectonic model for Southeast Asia - microplates and basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, K.A.

    1995-04-01

    A computer-assisted Cenozoic tectonic model was built for Southeast Asia and used to construct 23 base maps, 2 to 6 million years apart. This close temporal spacing was necessary to constrain all the local geometric shifts in a consistent and geologically feasible fashion. More than a hundred individual blocks were required to adequately treat Cenozoic microplate processes at a basic level. The reconstructions show tectonic evolution to be characterized by long periods of gradual evolution, interrupted by brief, widespread episodes of reorganization in fundamental plate geometries and kinematics. These episodes are triggered by major collisions, or by accumulation of smallermore » changes. The model takes into account difficulties inherent in the region. The Pacific and Indo-Australian plates and their predecessors have driven westward and northward since the late Paleozoic, towards each other and the relatively stationary backstop of Asia. Southeast Asia is therefore the result of a long-lived, complex process of convergent tectonics, making it difficult to reconstruct tectonic evolution as much of the continental margin and sea floor spreading record was erased. In addition, the region has been dominated by small-scale microplate processes with short time scales and internal deformation, taking place in rapidly evolving and more ductile buffer zones between the major rigid plate systems. These plate interaction zones have taken up much of the relative motion between the major plates. Relatively ephemeral crustal blocks appear and die within the buffer zones, or accrete to and disperse from the margins of the major plate systems. However, such microplate evolution is the dominant factor in Cenozoic basin evolution. This detailed testonic model aids in comprehension and prediction of basin development, regional hydrocarbon habitat, and petroleum systems.« less

  20. The initiation and tectonic regimes of the Cenozoic extension in the Bohai Bay Basin, North China revealed by numerical modelling

    NASA Astrophysics Data System (ADS)

    Li, Lu; Qiu, Nansheng

    2017-06-01

    In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.

  1. Miocene exhumation of the Indus-Yarlung Suture Zone in NW India: An insight into the controls of tectonics and climate

    NASA Astrophysics Data System (ADS)

    Bhattacharya, G.; Robinson, D. M.; Orme, D. A.; Olree, E.; Bosu, S.

    2016-12-01

    Detritus from the India-Asia collision and subsequent Cenozoic tectonic events is preserved in sedimentary basins along the 2500 km long Indus-Yarlung Suture Zone (IYSZ) in India and Tibet. In northwest India, these Eocene-Miocene synorogenic sedimentary rocks are preserved in the Tar and Indus Groups. We use (U-Th)/He dating of detrital zircons from units within these sedimentary basins, including the Temesgam Formation at Temesgam, the Lower Nimu Formation and the Sumdo Formation in the Zanskar Gorge, and the Artsa Formation and the Miru Formation in the Upshi-Lato region. These analyses indicate a phase of rapid exhumation from 19-8 Ma. Possible explanations for these data include a combination of tectonic events and the influence of climate. Regional back-thrusting initiated at 20 Ma along the Great Counter Thrust, which buried the IYSZ footwall with the Lamayuru slope deposits of the Indian passive margin. In south Tibet, previous studies identify underthrusting of the Indian plate as a key factor for basin exhumation in the IYSZ, which may also be a driver in northwest India. The flow of the paleo-Indus river through the IYSZ in Early Miocene time might have been triggered by the onset of Asian monsoon at 24 Ma and its intensification between 18-10 Ma. Our data demonstrate a phase of rapid exhumation in northwest India from 19-8 Ma, which may be linked to all of these tectonic and climate influences. Data in this study are similar to the data of Carrapa et al. (2014) from south Tibet that show peak exhumation at 17 Ma, and suggest that a regional cooling episode, driven by tectonics and climate, might have prevailed in the Miocene along the IYSZ.

  2. 3D geological modeling of the transboundary Berzdorf-Radomierzyce basin in Upper Lusatia (Germany/Poland)

    NASA Astrophysics Data System (ADS)

    Woloszyn, Iwona; Merkel, Broder; Stanek, Klaus

    2017-07-01

    The management of natural resources has to follow the principles of sustainable development. Therefore, before starting new mining activities, it should be checked, whether existing deposits have been completely exploited. In this study, a three-dimensional (3D) cross-border geologic model was created to generalize the existing data of the Neogene Berzdorf-Radomierzyce basin, located in Upper Lusatia on the Polish-German border south of the city of Görlitz-Zgorzelec. The model based on boreholes and cross sections of abandoned and planned lignite fields was extended to the Bernstadt and Neisse-Ręczyn Graben, an important tectonic structure at the southern rim of the basin. The partly detailed stratigraphy of Neogene sequences was combined to five stratigraphic units, considering the lithological variations and the main tectonic structures. The model was used to check the ability of a further utilization of the Bernstadt and Neisse-Ręczyn Graben, containing lignite deposits. Moreover, it will serve as a basis for the construction of a 3D cross-border groundwater model, to investigate the groundwater flow and transport in the Miocene and Quaternary aquifer systems. The large amount of data and compatibility with other software favored the application of the 3D geo-modeling software Paradigm GOCAD. The results demonstrate a very good fit between model and real geological boundaries. This is particularly evident by matching the modeled surfaces to the implemented geological cross sections. The created model can be used for planning of full-scale mining operations in the eastern part of the basin (Radomierzyce).

  3. A modern regional geological analysis of Venezuela - lessons from a major new world oil province on exploration in mature areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, M.; Audemard, F.; Valdes, G.

    1993-09-01

    Venezuela has produced some 44 billion bbl of oil since the early part of the century. As such, it represents one of the world's major oil producers and a mature petroleum province. However, major tracts of Venezuela's sedimentary basins remain underexplored and large discoveries are still being made in new and old reservoir systems. A regional geological analysis of Venezuela, focusing on basin evolution and sequence stratigraphy and incorporating data from the three national oil companies, is presented. The analysis presents a regionally consistent tectonostratigraphic model capable of explaining the evolution of the Mesozoic and Cenozoic basins of Venezuela andmore » placing the major reservoir facies in their regional tectonic and sequence stratigraphic context. Four regional cross sections describe the stratigraphic and structural model. The model recognizes a Jurassic rifting event and inversion, succeeded by an Early Cretaceous passive margin. In western Venezuela, the Early Cretaceous passive subsidence is enhanced locally by extension related to the Colombian active margin. Venezuela experienced a major change in the Campanian with the initial collision of the Caribbean arc, recorded by foreland structuring and widespread stratigraphic changes. From the Campanian onward, the tectonostratigraphic evolution can be modeled in terms of a progressive southeast-directed arc-continent collision and the migration of the associated foredeep and rift basins. Within the tectonic framework, the major sequence stratigraphic units are identified and the reservoir distribution interpreted. This model provides a strong predictive tool to extrapolate reservoir systems into Venezuela's underexplored areas and to readdress its traditional areas.« less

  4. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate

    NASA Astrophysics Data System (ADS)

    Ye, Chengcheng; Yang, Yibo; Fang, Xiaomin; Zhang, Weilin

    2016-12-01

    The Qaidam Basin, located on the northeastern Tibetan Plateau and containing Cenozoic sediments with a maximum thickness of 12,000 m, is an ideal place to study the phased uplift of the NE Tibetan Plateau and regional climate change. The estimation of the paleosalinity of sedimentary environments not only helps to evaluate the evolution of lakes in this region but offers insights into contemporaneous climate change. We present detailed geochemical and mineralogical investigations from the lacustrine interval of the Hongliugou section in the northern Qaidam Basin to reconstruct salinity fluctuations in the paleolake during the late Eocene era ( 42.0-35.5 Ma). The clay mineral assemblages mainly contain smectite, illite, chlorite, kaolinite and irregular illite/smectite mixed layers. Clay boron-derived paleosalinity estimates (equivalent boron content, Couch's paleosalimeter and B/Ga ratios) along with other proxies sensitive to salinity changes (e.g., Rb/K ratios and ostracod assemblages) collectively indicate an overall brackish sedimentary environment with a higher-salinity period at approximately 40.0-39.2 Ma. This higher-salinity period indicates a more arid environment and is probably related to global cooling. However, the global cooling in late Eocene cannot explain the overall stable long-term salinity pattern, implying that other factors exist. We propose that the migration of the Yiliping depression depocenter in the northern Qaidam and increased orographic rainfall induced by late Eocene tectonic activity at the northern margin of the basin might have partly offset the increase in salinity driven by global cooling.

  5. Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy

    USGS Publications Warehouse

    Moore, T.C.; Klitgord, Kim D.; Golmshtok, A.J.; Weber, E.

    1997-01-01

    Comparison of sedimentation patterns, basement subsidence, and faulting histories in the north and central basins of Lake Baikal aids in developing an interbasinal seismic stratigraphy that reveals the early synrift evolution of the central portion of the Baikal rift, a major continental rift system. Although there is evidence that the central and northern rift basins evolved at approximately the same time, their sedimentation histories are markedly different. Primary sediment sources for the initial rift phase were from the east flank of the rift; two major deltas developed adjacent to the central basin: the Selenga delta at the south end and the Barguzin delta at the north end. The Barguzin River system, located at the accommodation zone between the central and north basins, also fed into the southern part of the north basin and facilitated the stratigraphic linkage of the two basins. A shift in the regional tectonic environment in the mid Pliocene(?) created a second rift phase distinguished by more rapid subsidence and sediment accumulation in the north basin and by increased subsidence and extensive faulting in the central basin. The Barguzin delta ceased formation and parts of the old delta system were isolated within the north basin and on Academic Ridge. These isolated deltaic deposits provide a model for the development of hydrocarbon plays within ancient rift systems. In this second tectonic phase, the dominant sediment fill in the deeper and more rapidly subsiding north basin shifted from the flexural (eastern) margin to axial transport from the Upper Angara River at the north end of the basin.

  6. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Sun, Zhen; Xu, Ziying; Sun, Longtao; Pang, Xiong; Yan, Chengzhi; Li, Yuanping; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei

    2014-08-01

    Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.

  7. Phanerozoic geological evolution of Northern and Central Africa: An overview

    NASA Astrophysics Data System (ADS)

    Guiraud, R.; Bosworth, W.; Thierry, J.; Delplanque, A.

    2005-10-01

    The principal paleogeographic characteristics of North and Central Africa during the Paleozoic were the permanency of large exposed lands over central Africa, surrounded by northerly and northwesterly dipping pediplanes episodically flooded by epicontinental seas related to the Paleotethys Ocean. The intra-continental Congo-Zaire Basin was also a long-lived feature, as well as the Somali Basin from Late Carboniferous times, in conjunction with the development of the Karoo basins of southern Africa. This configuration, in combination with eustatic sea-level fluctuations, had a strong influence on facies distributions. Significant transgressions occurred during the Early Cambrian, Tremadocian, Llandovery, Middle to Late Devonian, Early Carboniferous, and Moscovian. The Paleozoic tectonic history shows an alternation of long periods of predominantly gentle basin subsidence and short periods of gentle folding and occasionally basin inversion. Some local rift basins developed episodically, located mainly along the northern African-Arabian plate margin and near the West African Craton/Pan-African Belt suture. Several arches or spurs, mainly N-S to NE-SW trending and inherited from late Pan-African fault swarms, played an important role. The Nubia Province was the site of numerous alkaline anorogenic intrusions, starting in Ordovician times, and subsequently formed a large swell. Paleozoic compressional events occurred in the latest Early Cambrian ("Iskelian"), Medial Ordovician to earliest Silurian ("pre-Caradoc" and "Taconian"), the end Silurian ("Early Acadian" or "Ardennian"), mid-Devonian ("Mid-Acadian"), the end Devonian ("Late Acadian" or "Bretonnian"), the earliest Serpukhovian ("Sudetic"), and the latest Carboniferous-earliest Permian ("Alleghanian" or "Asturian"). The strongest deformations, including folding, thrusting, and active strike-slip faulting, were registered in Northwestern Africa during the last stage of the Pan-African Belt development around the West African Craton (end Early Cambrian) and during the polyphased Hercynian-Variscan Orogeny that extended the final closure of the Paleotethys Ocean and resulted in the formation of the Maghrebian and Mauritanides belts. Only gentle deformation affected central and northeastern African during the Paleozoic, the latter remaining a passive margin of the Paleotethys Ocean up to the Early Permian when the development of the Neotethys initiated along the Eastern Mediterranean Basins. The Mesozoic-Cenozoic sedimentary sequence similarly consists of a succession of eustatically and tectonically controlled depositional cycles. Through time, progressive southwards shift of the basin margins occurred, related to the opening of the Neotethys Ocean and to the transgressions resulting from warming of the global climate and associated rise of the global sea level. The Guinean-Nigerian Shield, the Hoggar, Tibesti-Central Cyrenaica, Nubia, western Saudi Arabia, Central African Republic, and other long-lived arches delimited the principal basins. The main tectonic events were the polyphased extension, inversion, and folding of the northern African-Arabian shelf margin resulting in the development of the Alpine Maghrebian and Syrian Arc belts, rifting and drifting along the Central Atlantic, Somali Basins, and Gulf of Aden-Red Sea domains, inversion of the Murzuq-Djado Basin, and rifting and partial inversion along the Central African Rift System. Two major compressional events occurred in the Late Santonian and early Late Eocene. The former entailed folding and strike-slip faulting along the northeastern African-northern Arabian margin (Syrian Arc) and the Central African Fold Belt System (from Benue to Ogaden), and thrusting in Oman. The latter ("Pyrenean-Atlasic") resulted in folding, thrusting, and local metamorphism of the northern African-Arabian plate margin, and rejuvenation of intra-plate fault zones. Minor or more localized compressional deformations took place in the end Cretaceous, the Burdigalian, the Tortonian and Early Quaternary. Recent tectonic activity is mainly concentrated along the Maghrebian Alpine Belt, the offshore Nile Delta, the Red Sea-East African Rifts Province, the Aqaba-Dead Sea-Bekaa sinistral strike-slip fault zone, and some major intra-plate fault zones including the Guinean-Nubian, Aswa, and central Sinai lineaments. Large, long-lived magmatic provinces developed in the Egypt-Sudan confines (Nubia), in the Hoggar-Air massifs, along the Cameroon Line and Nigerian Jos Plateau, and along the Levant margin, resulting in uplifts that influenced the paleogeography. Extensive tholeiitic basaltic magmatism at ˜200 Ma preceded continental break-up in the Central Atlantic domain, while extensive alkaline to transitional basaltic magmatism accompanied the Oligocene to Recent rifting along the Red Sea-Gulf of Aden-East African rift province.

  8. Comments on the paper of Bodin et al. (2010). Journal of African Earth Sciences, 58, pp. 489-506

    NASA Astrophysics Data System (ADS)

    Tlig, Saïd

    2016-06-01

    Bodin et al. (2010) produced an important paper in the Journal of African Earth Sciences. The main goals of this paper were: (1) the petrological and sedimentological treatment of the upper Jurassic and Cretaceous series in southern Tunisia and northern Ghadames Basin including the Hamada El Hamra area and Nafussah Mountain of Libya; (2) the reconstruction of tectonic controls on deposition and basin-fill; (3) the correlation of poorly dated lithostratigraphic columns, poor in diagnostic fauna, from northwestern Libya to southern Tunisia; and (4) the comparison between the authors' findings and assignments of global eustatic and plate tectonic events.

  9. Tectonic wedging in the forearc basin - Accretionary prism transition, Lesser Antilles forearc

    NASA Technical Reports Server (NTRS)

    Torrini, Rudolph, Jr.; Speed, Robert C.

    1989-01-01

    This paper describes regional structure of the inner forearc of the southern Lesser Antilles, which contains an extensive 50-70 km wide inner forearc deformation belt (IFDB) developed above crystalline basement of the undeformed forearc basin (FAB), close to and perhaps above its probable subduction trace with Atlantic lithosphere. The IFDB is analyzed, with emphasis placed on five transects across the belt, using mainly migrated seismic sections and balanced model cross sections. The IFDB features and its evolution are discussed, with special attention given to the major structures divided by early and late stages of development, paleobathymetric history, event timing, displacement and strain, and alternative tectonic explanations.

  10. Climatic and Tectonic Controls on Topography in the Northern Basin and Range

    NASA Astrophysics Data System (ADS)

    Foster, D.; Brocklehurst, S. H.; Gawthorpe, R. L.

    2006-12-01

    This study takes advantage of the relatively simple tectonics of the normal fault-bounded Lost River and Lemhi Ranges and the Beaverhead Mountains, eastern Idaho, USA, to assess the roles of climate, erosion, and tectonics in topographic evolution through a combination of digital topographic analyses and field observations. These ranges transect the southern limit of Quaternary glaciation, and drainage basins record a range of glacial extents and histories, allowing for comparisons between climatic and tectonic controls. At a catchment scale, topography is controlled by both the degree of glaciation, and the response of the drainage system to range-front faulting. The range-bounding normal faults are segmented along-strike, and fault uplift rates vary systematically, being greatest at the fault centres. Here catchments predominantly drain normal to the range-front fault, although the trend of some catchments is influenced by pre-existing tectonic fabrics related to Cretaceous (northeast-southwest trending) and early Miocene (northwest-southeast trending) extension. For catchments that drain through fault segment boundaries, one of two general morphologies occurs. Either large drainage basins form, capturing drainage area from neighbouring basins, or, when fault segment boundaries are en echelon, a series of small drainage basins may form as catchments as the inboard- and outboard- footwalls interact and respond to fault linkage. Quaternary glaciation affected all but the southern portions of each of the ranges, most extensively at the north-eastern range flank. Increased extent of glaciation within a catchment results in wider valley floors, steeper valley walls, and greater relief at elevations close to the ELA. Cirque formation occurs preferentially on the north-eastern range flank, where glaciers are sheltered from both solar radiation and snow re-distribution by the prevailing winds. Snow accumulation is promoted in this setting by the increased influx of wind-blown snow from the western side of the range crest, and large moraines extend beyond the eastern range front. For portions of the ranges affected by glaciation, range mean heights decrease along-strike by 1-2m per km to the north-west, similar to the rate of decrease in ELA and in the trend of cirque floor elevations. This suggests that a glacial "buzzsaw" effect controls the range mean heights.

  11. Update of the tectonic model for the Pannonian basin: a contribution to the seismic hazard reassessment of the Paks NPP (Hungary)

    NASA Astrophysics Data System (ADS)

    Horváth, Ferenc; Tóth, Tamás; Wórum, Géza; Koroknai, Balázs; Kádi, Zoltán; Kovács, Gábor; Balázs, Attila; Visnovitz, Ferenc

    2015-04-01

    The planned construction of two new units at the site of the Paks NPP requires a comprehensive site investigation including complete reassessment of the seismic hazard according to the Hungarian as well as international standards. Following the regulations of the Specific Safety Guide no. 9 (IAEA 2010), the approved Hungarian Geological Investigation Program (HGIP) includes integrated geological-geophysical studies at different scales. The regional study aims at to elaborate a new synthesis of all published data for the whole Pannonian basin. This task is nearly completed and the main outcomes have already been published (Horváth et al. 2015). The near regional study is in progress and addresses the construction of a new tectonic model for the circular area with 50 km radius around the NPP using a wealth of unpublished oil company seismic and borehole data. The site vicinity study has also been started with a core activity of 300 km² 3D seismic data acquisition, processing and interpretation assisted by a series of additional geophysical surveys, new drillings and geological mapping. This lecture will present a few important results of the near regional study, which sheds new light on the intricate tectonic evolution of the Mid-Hungarian Fault Zone (MHFZ), which is a strongly deformed belt between the Alcapa and Tisza-Dacia megatectonic units. The nuclear power plant is located at the margin of the Tisza unit near to the southern edge of the MHFZ. Reassessment of seismic hazard at the site of the NPP requires better understanding of the Miocene to Recent tectonic evolution of this region in the central part of the Pannonian basin. Early to Middle Miocene was a period of rifting with formation of 1 to 3 km deep half-grabens filled with terrestrial to marine deposits and large amount of rift-related volcanic material. Graben fill became strongly deformed as a consequence of juxtaposition of the two megatectonic units leading to strong compression and development of large scale transfer faults due to differential movements. The beginning of Late Miocene saw an event of basin inversion resulting in uplift and remarkable erosion of the synrift strata. Pliocene through Quaternary has been a period of gradual change in the regional stress field and formation of a series of basin-scale sinistral strike-slip faults usually by reactivation of half-graben bounding normal faults. A most important subject of the HGIP for seismic hazard assessment of the Paks NPP is to determine the timing and amount of displacement of this fault system, as well as its potential capability in the vicinity of the site. References: IAEA (2010): Seismic hazard in site evaluation for nuclear installations. International Atomic Energy Agency Safety Standards, SSG-9, Vienna, p. 60. Horváth, F. et al (2015): Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328-352.

  12. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous. During Cenozoic, MFTB is moderately modified by the northeastward compression due to the NE propagation of Qinghai-Tibet Plateau, and distinctly superimposed by the Yingchuan half-graben. North-South Tectonic Belt underwent a full cycle from extension during Middle Proterozoic to Paleozoic to compression since late Triassic.

  13. Tectonics and metallogenesis of Proterozoic rocks of the Reading Prong

    USGS Publications Warehouse

    Gundersen, L.C.S.

    2004-01-01

    Detailed geologic mapping, petrography, and major and trace-element analyses of Proterozoic rocks from the Greenwood Lake Quadrangle, New York are compared with chemical analyses and stratigraphic information compiled for the entire Reading Prong. A persistent regional stratigraphy is evident in the mapped area whose geochemistry indicates protoliths consistent with a back-arc marginal basin sequence. The proposed marginal basin may have been floored by an older sialic basement and overlain by a basin-fill sequence consisting of a basal tholeiitic basalt, basic to intermediate volcanic or volcaniclastic rocks and carbonate sediments, a bimodal calc-alkaline volcanic sequence, and finally volcaniclastic, marine, and continental sediments. The presence of high-chlorine biotite and scapolite may indicate circulation of brine fluids or the presence of evaporite layers in the sequence. Abundant, stratabound magnetite deposits with a geologic setting very unlike that of cratonic, Proterozoic banded-iron formations are found throughout the proposed basin sequence. Associated with many of the magnetite deposits is unusual uranium and rare-earth element mineralization. It is proposed here that these deposits formed in an exhalative, volcanogenic, depositional environment within an extensional back-arc marginal basin. Such a tectonic setting is consistent with interpretations of protoliths in other portions of the Reading Prong, the Central Metasedimentary Belt of the Canadian Grenville Province, and recent interpretation of the origin of the Franklin lead-zinc deposits, suggesting a more cohesive evolving arc/back-arc tectonic model for the entire Proterozoic margin of the north-eastern portion of the North American craton. Published by Elsevier Ltd.

  14. Tectonics of Chukchi Sea Shelf sedimentary basins and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Agasheva, Mariia; Antonina, Stoupakova; Anna, Suslova; Yury, Karpov

    2016-04-01

    The Chukchi Sea Shelf placed in the East Arctic offshore of Russia between East Siberian Sea Shelf and North Slope Alaska. The Chukchi margin is considered as high petroleum potential play. The major problem is absence of core material from drilling wells in Russian part of Chukchi Shelf, hence strong complex geological and geophysical analyses such as seismic stratigraphy interpretation should be provided. In addition, similarity to North Slope and Beaufort Basins (North Chukchi) and Hope Basin (South Chukchi) allow to infer the resembling sedimentary succession and petroleum systems. The Chukchi Sea Shelf include North and South Chukchi Basins, which are separated by Wrangel-Herald Arch and characterized by different opening time. The North Chukchi basin is formed as a general part of Canada Basin opened in Early Cretaceous. The South Chukchi Basin is characterized by a transtensional origin of the basin, this deformation related to motion on the Kobuk Fault [1]. Because seismic reflections follow chronostratigraphic correlations, it is possible to achieve stratigraphic interpretation. The main seismic horizons were indicated as: PU, JU, LCU, BU, mBU marking each regional unconformities. Reconstruction of main tectonic events of basin is important for building correct geological model. Since there are no drilling wells in the North and South Chukchi basins, source rocks could not be proven. Referring to the North Chukchi basin, source rocks equivalents of Lower Cretaceous Pebble Shale Formation, Lower Jurassic Kingdak shales and Upper Triassic Shublik Formation (North Slope) is possible exhibited [2]. In the South Chukchi, it is possible that Cretaceous source rocks could be mature for hydrocarbon generation. Erosions and uplifts that could effect on hydrocarbon preservation was substantially in Lower Jurassic and Early Cretaceous periods. Most of the structures may be connected with fault and stratigraphy traps. The structure formed at Wrangel-Herald Arch to North-Chukchi through similar to well-known structure in Norwegian part of Barents Sea - Loppa High. In South Chukchi basin, the seismic wave shows interesting structures akin to diaper fold. Inversion-related anticlines and stratigraphic pinch-outs traps could presence in Cretaceous-Cenozoic cross section. As a result, we gathered and analyzed source rocks and reservoir analogs and gained improved sedimentary models in Eastern Russian Shelfs (Laptev, East Siberian and Chukchi Seas). Appropriate tectonic conditions, proven by well testing source rocks in North Slope and high thickness of basins suggest a success of hydrocarbon exploration in Russian part of Chukchi Sea Shelf. [1] Verzhbitsky V. E., S. D. Sokolov, E. M. Frantzen, A. Little, M. I. Tuchkova, and L.I. Lobkovsky, 2012, The South Chukchi Sedimentary Basin (Chukchi Sea, Russian Arctic): Age, structural pattern,and hydrocarbon potential, in D. Gao, ed., Tectonics and sedimentation: Implications for petroleum systems: AAPG Memoir 100, p.267-290. [2] Peters K. E., Magoon L. B., Bird K. J., Valin Z. C., Keller M. A. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge AAPG Bulletin, V. 90, No. 2 (February 2006), 2006, P. 261-292.

  15. Imaging the structure of the Northern Lesser Antilles (Guadeloupe - Virgin Island) to assess the tectonic and thermo-mechanical behavior of an arcuate subduction zone that undergoes increasing convergence obliquity

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Marcaillou, B.; Klingelhoefer, F.; Jean-Frederic, L.; Graindorge, D.; Bouquerel, H.; Conin, M.; Crozon, J.; De Min, L.; De Voogd, B.; Evain, M.; Heuret, A.; Laigle, M.; Lallemand, S.; Lucazeau, F.; Pichot, T.; Prunier, C.; Rolandone, F.; Rousset, D.; Vitard, C.

    2015-12-01

    Paradoxically, the Northern Lesser Antilles is the less-investigated and the most tectonically and seismically complex segment of the Lesser Antilles subduction zone: - The convergence obliquity between the North American and Caribbean plates increases northward from Guadeloupe to Virgin Islands raising questions about the fore-arc tectonic partitioning. - The margin has undergone the subduction of the rough sediment-starved Atlantic Ocean floor spiked with ridges as well as banks docking, but the resulting tectonic deformation remains hypothetical in the absence of a complete bathymetry and of any seismic line. - Recent geodetic data and low historical seismic activity suggest a low interplate coupling between Saint-Martin and Anegada, but the sparse onshore seismometers located far from source zone cast doubt on this seismic gap. To shed new light on these questions, the ANTITHESIS project, 5 Marine Geophysical legs totaling 72 days, aims at recording a complete bathymetric map, deep and shallow seismic reflexion lines, wide-angle seismic data, heat-flow measurements and the seismic activity with a web of sea-bottom seismometers. Our preliminary results suggest that: - A frontal sliver of accretionary prism is stretched and expulsed northward by 50km along the left-lateral Bunce fault that limits the prism from the margin basement as far southward as 18.5°N. So far, this structure is the only interpreted sign of tectonic partitioning in the fore-arc. - The Anegada Passage extends eastward to the accretionary prism through strike-slip faults and pull-apart basins that possibly form a lef-lateral poorly-active system inherited from a past tectonic phase, consistently with geodetic and seismologic data. - The anomalously cold interplate contact, consistent with a low interseismic coupling, is possibly due to fluid circulation within the shallow crustal aquifer or a depressed thermal structure of the oceanic crust related to the slow-spreading at the medio-Atlantic ridge.

  16. Alluvial fan facies of the Yongchong Basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China

    NASA Astrophysics Data System (ADS)

    Chen, Liuqin; Steel, Ronald J.; Guo, Fusheng; Olariu, Cornel; Gong, Chenglin

    2017-02-01

    Late Cretaceous continental redbeds, the Guifeng Group of the Yongchong Basin in SE China have been investigated to conduct detailed fan facies description and interpretation. Tectonic activities determined the alluvial fan development along the basin margin, but the alluvial facies was linked with paleoclimate changes. The Guifeng Group is divided into the Hekou, Tangbian and Lianhe formations in ascending order. The Hekou conglomerates are typically polymict, moderately sorted with erosional bases, cut-and-fill features, normal grading and sieve deposits, representing dominant stream-flows on alluvial fans during the initial opening stage of the basin infill. The Tangbian Formation, however, is characterized by structureless fine-grained sediments with dispersed coarse clasts, and couplets of conglomerate and sandstone or siltstone and mudstone, recording a change to a playa and ephemeral lake environments with occasional stream flooding, thus indicating a basin expanding stage. The hallmark of the Lianhe Formation is disorganized, poorly sorted conglomerates lack of erosional bases, and a wide particle-size range from clay to boulders together reflect mud-rich debris-flows accumulating on fans, likely related to reactivation of faulting along the northwestern mountain fronts during a post-rift stage. The depositional system changes from stream-flows up through playa with ephemeral streams to debris-flows during the accumulation of the three formations are thus attributed to different source rocks and climatic conditions. Therefore, the fluvial-dominated fans of the Hekou Formation recorded a subhumid paleoclimate (Coniacian-Santonian Age). The dominant semiarid climate during the Campanian Age produced abundant fine-grained sediments in the playa and ephemeral lake environments of the Tangbian Formation. A climatic change towards more humidity during the late stage of the Guifeng Group (Maastrichtian Age) probably yielded high deposition rate of coarse clasts in debris-flow dominated fans of the Lianhe Formation. Thus the Late Cretaceous climate changes are inferred to have influenced and preserved signals in the alluvial stratigraphy of the Yongchong Basin.

  17. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary

    USGS Publications Warehouse

    Emsbo, P.; Groves, D.I.; Hofstra, A.H.; Bierlein, F.P.

    2006-01-01

    Northern Nevada hosts the only province that contains multiple world-class Carlin-type gold deposits. The first-order control on the uniqueness of this province is its anomalous far back-arc tectonic setting over the rifted North American paleocontinental margin that separates Precambrian from Phanerozoic subcontinental lithospheric mantle. Globally, most other significant gold provinces form in volcanic arcs and accreted terranes proximal to convergent margins. In northern Nevada, periodic reactivation of basement faults along this margin focused and amplified subsequent geological events. Early basement faults localized Devonian synsedimentary extension and normal faulting. These controlled the geometry of the Devonian sedimentary basin architecture and focused the discharge of basinal brines that deposited syngenetic gold along the basin margins. Inversion of these basins and faults during subsequent contraction produced the complex elongate structural culminations that characterize the anomalous mineral deposit "trends." Subsequently, these features localized repeated episodes of shallow magmatic and hydrothermal activity that also deposited some gold. During a pulse of Eocene extension, these faults focused advection of Carlin-type fluids, which had the opportunity to leach gold from gold-enriched sequences and deposit it in reactive miogeoclinal host rocks below the hydrologic seal at the Roberts Mountain thrust contact. Hence, the vast endowment of the Carlin province resulted from the conjunction of spatially superposed events localized by long-lived basement structures in a highly anomalous tectonic setting, rather than by the sole operation of special magmatic or fluid-related processes. An important indicator of the longevity of this basement control is the superposition of different gold deposit types (e.g., Sedex, porphyry, Carlin-type, epithermal, and hot spring deposits) that formed repeatedly between the Devonian and Miocene time along the trends. Interestingly, the large Cretaceous Alaska-Yukon intrusion-related gold deposits (e.g., Fort Knox) are associated with the northern extension of the same lithospheric margin in the Selwyn basin, which experienced an analogous series of geologic events. ?? Springer-Verlag 2006.

  18. Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes

    USGS Publications Warehouse

    Wegmann, S.F.G.; Franke, K.L.; Hughes, S.; Lewis, R.Q.; Lyons, N.; Paris, P.; Ross, K.; Bauer, J.B.; Witt, A.C.

    2011-01-01

    The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post-orogenic landscape remain enigmatic. The non-glaciated Cullasaja River basin of south-western North Carolina, with uniform lithology, frequent debris flows, and the availability of high-resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post-orogenic landscape through the lens of hillslope-channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris-flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint-driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area-elevation and slope distributions is presented that may be representative of post-orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel- hillslope coupling is an important factor in tectonically-inactive (i.e. post-orogenic) orogens for the maintenance of significant relief, steep slopes, and weathering-limited hillslopes. ?? 2011 John Wiley & Sons, Ltd.

  19. Final « pop-up » structural reactivation of the internal part of an orogenic wedge: west-central Pyrenees

    NASA Astrophysics Data System (ADS)

    Meresse, F.; Jolivet, M.; Labaume, P.; Teixell, A.

    2009-04-01

    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France florian.meresse@gm.univ-montp2.fr Tectonics-sedimentation relationships are often used to describe the tectonic evolution of orogenic wedges. However, does the sedimentary record associated to the build-up of the wedge recall the entire tectonic history? Numerous studies based on tectono-stratigraphic and thermochronological data, as well as numerical modeling, have demonstrated that on the large scale the growth of the Pyrenees is characterized by a southward propagation of the deformation (e.g., Muñoz, 1992; Morris et al., 1998; Fitzgerald et al., 1999; Beaumont et al., 2000). However, in the west-central Pyrenees, recent thermochronological data have suggested that the in-sequence propagation of the basement thrust system was followed by out-of-sequence (re)activation of hinterland structures after the South-Pyrenean Frontal Thrust had been sealed (Jolivet et al., 2007). To better describe the structural evolution of the Pyrenean prism, we focused our work on a NNE-SSW transect from the northern piedmont (Bagnères-de-Bigorre), through the Axial Zone and down to the Jaca basin where tectonics-sedimentation relationships have been extensively described (e.g., Teixell, 1996). A crustal scale cross-section combined with detailed apatite fission track analysis are used as a case study to unravel in detail the deformation history. Apatite fission track data from the Bagnères-de-Bigorre Paleozoic massif (central ages: 41-42 Ma) and the Lesponne Hercynian granite (central age: 31 Ma) located in the North-Pyrenean Zone and in the north of the Axial Zone, respectively, reveal Middle Eocene-Early Oligocene denudation ages of the northern part of the wedge. Immediately to the south, central ages around 24-20 Ma attest to a Latest Oligocene-Early Miocene denudation ages of the Chiroulet granite. According to the structural context, these results suggest a late exhumation stage associated with the tectonic (re)activation of north-vergent thrusts in the northern part of the Axial Zone. Similarly, results from the southern flank of the Axial Zone and the northern part of the Jaca basin suggest a denudation age around 18 Ma (Meresse et al., this volume), which may be linked to out-of-sequence tectonic movements on a south-vergent basement thrust (Bielsa thrust, Jolivet et al., 2007). In conclusion, thermochronological data reveal an Early Miocene "pop-up" exhumation of the internal parts of the Pyrenean wedge, which also shows that the Pyrenean compressional deformation ended later than the generally accepted Aquitanian age deduced from tectonics-sedimentation relationships. This late exhumation was achieved through out-of-sequence (re)activation of hinterland structures linked to a final internal thickening stage in the orogenic prism.

  20. Chapter 32: Geology and petroleum potential of the Arctic Alaska petroleum province

    USGS Publications Warehouse

    Bird, K.J.; Houseknecht, D.W.

    2011-01-01

    The Arctic Alaska petroleum province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald Arch orogenic belt and south of the northern (outboard) margin of the Beaufort Rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America with total known resources (cumulative production plus proved reserves) of c. 28 BBOE. The province constitutes a significant part of a displaced continental fragment, the Arctic Alaska microplate, that was probably rifted from the Canadian Arctic margin during formation of the Canada Basin. Petroleum prospective rocks in the province, mostly Mississippian and younger, record a sequential geological evolution through passive margin, rift and foreland basin tectonic stages. Significant petroleum source and reservoir rocks were formed during each tectonic stage but it was the foreland basin stage that provided the necessary burial heating to generate petroleum from the source rocks. The lion's share of known petroleum resources in the province occur in combination structural-stratigraphic traps formed as a consequence of rifting and located along the rift shoulder. Since the discovery of the super-giant Prudhoe Bay accumulation in one of these traps in the late 1960s, exploration activity preferentially focused on these types of traps. More recent activity, however, has emphasized the potential for stratigraphic traps and the prospect of a natural gas pipeline in this region has spurred renewed interest in structural traps. For assessment purposes, the province is divided into a Platform assessment unit (AU), comprising the Beaufort Rift shoulder and its relatively undeformed flanks, and a Fold-and-Thrust Belt AU, comprising the deformed area north of the Brooks Range and Herald Arch tectonic belt. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil (BBO) and 122 trillion cubic feet (TCF) of nonassociated gas in the Platform AU and 2 BBO and 59 TCF of nonassociated gas in the Fold-and-Thrust Belt AU. ?? 2011 The Geological Society of London.

  1. The global relevance of the Scotia Arc: An introduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Andrés; Dalziel, Ian W. D.; Leat, Philip T.

    2015-02-01

    The Scotia Arc, situated between South America and Antarctica, is one of the Earth's most important ocean gateways and former land bridges. Understanding its structure and development is critical for the knowledge of tectonic, paleoenvironmental and biological processes in the southern oceans and Antarctica. It extends from the Drake Passage in the west, where the Shackleton Fracture Zone forms a prominent, but discontinuous, bathymetric ridge between the southern South American continent and the northern tip of the Antarctic Peninsula to the active intra-oceanic volcanic arc forming the South Sandwich Island in the east. The tectonic arc comprises the NSR to the north and to the south the South Scotia Ridge, both transcurrent plate margins that respectively include the South Georgia and South Orkney microcontinents. The Scotia and Sandwich tectonic plates form the major basin within these margins. As the basins opened, formation of first shallow sea ways and then deep ocean connections controlled the initiation and development of the Antarctic Circumpolar Current, which is widely thought to have been important in providing the climatic conditions for formation of the polar ice-sheets. The evolution of the Scotia Arc is therefore of global palaeoclimatic significance. The Scotia Arc has been the focus of increasing international research interest. Many recent studies have stressed the links and interactions between the solid Earth, oceanographic, paleoenvironmental and biological processes in the area. This special issue presents new works that summarize significant recent research results and synthesize the current state of knowledge for the Scotia Arc.

  2. Kinematics of the mosquito terrane, Coldfoot Area, Alaska: Keys to Brooks Range tectonics: Final report, Project No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, T.A.; Coney, P.J.

    1988-04-01

    Within the large-scale geometry of the Brooks Range, the Angayucham terrane occurs as a vast overthrust sheet. From the north flank of the Ruby terrane it underlies the Koyukuk basin and stretches north as the roof thrust to the various nappe terranes of the Brooks Range. The tectonic relationship of the Ruby terrane to the south flank of the Brooks Range lies largely obscured beneath the Angayucham in the eastern apex of the Koyukuk basin. The Mosquito terrane occurs as a window through the Angayucham at this juncture. The composition and structures of the Mosquito terrane reveal that is themore » result of shear along a sub-horizontal step or flange within the prominent, through-going dextral strike-slip fault system which cuts across the eastern Koyukuk basin and southeastern Brooks Range. Units of the Mosquito were derived from both the Angayucham and Ruby terranes. A consistent tectonic fabric imposed upon them is kinematically linked to the strike-slip system and indicates a northeasterly direction of transport across the terrane. The presence of Ruby-correlative units within the Mosquito suggests the Ruby underlies the Angayucham and that it is in contact with terrances of the southern Brooks Range at that structural level along high-angle strike-slip faults. These relationships demonstrate that an episode of dextral transpression is the latest in the history of terrane accretion and tectonic evolution of the Brooks Range. 35 refs.« less

  3. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    PubMed

    Gates, Terry A; Prieto-Márquez, Albert; Zanno, Lindsay E

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  4. Mountain Building Triggered Late Cretaceous North American Megaherbivore Dinosaur Radiation

    PubMed Central

    Gates, Terry A.; Prieto-Márquez, Albert; Zanno, Lindsay E.

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone. PMID:22876302

  5. Sequential filling of a late paleozoic foreland basin

    USGS Publications Warehouse

    Mars', J. C.; Thomas, W.A.

    1999-01-01

    Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession that reflects no tectonic subsidence, a very minor or null sediment supply, and basinwide transgression. The temporal resolution at parasequence scale significantly improves the resolution of the tectonic history of the thrust belt-foreland basin system. Copyright ?? 1999, SEPM (Society for Sedimentary Geology).

  6. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review

    NASA Astrophysics Data System (ADS)

    Cemen, I.

    2017-12-01

    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.

  7. The Role of Rift Obliquity in Formation of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly-constrained ˜50-100 kilometer-wide transtensional belt of focused strike-slip faulting, basin formation, and rotating crustal blocks. This proto-Gulf of California shear zone, embedded within the wider Mexican Basin and Range extensional province and connected to the San Andreas fault in southern California, hosted subsequent localization of the plate boundary and rupture of the continental lithosphere.

  8. Present and past denudation rates in the central Tianshan (Central Asia): impact of the Quaternary glaciations?

    NASA Astrophysics Data System (ADS)

    Charreau, J.; Puchol, N.; Blard, P.; Braucher, R.; Leanni, L.; Bourles, D. L.; Graveleau, F.; Dominguez, S.

    2012-12-01

    Denudation controls the mass transfer from the uplifting highlands to the lowlands basin. It impacts the isostatic compensation and hence tectonics, the rheology and may drives the Earth climate through its potential impact on atmospheric CO2. Denudation is therefore a key factor governing the evolution of the Earth's surface. Quantitative records of past denudation rates over geological time scales are thus of major importance to untangle the complex interactions between tectonics, climate and surface processes. This is particularly true at the Plio-pleistocene transition where the onset of Quaternary glaciations may have enhanced worldwide denudation rates. The Tianshan stands out as a key area to better address these problems. This range owes its impressive present high topography to the recent deformation due to the India-Asia collision and is moreover sandwiched between two large intracontinental endorheic basins where the total material eroded from the uplifting range may be deciphered from the sedimentary archive. Moreover, here, potential changes in the sediment volume are insensitive to global sea-level variations. Accurate reconstruction of past denudation rate require well-dated sedimentary archives. Over past decades, several magnetostratigraphic studies were carried out in the piedmonts, where remarkable sedimentary sections are exposed in deep rivers entrenchment which expose the thick conglomeratic Xiyu formation, initially assigned to be Plio-pleistocene in age. This led several authors to conclude that, in this region, the sediment fluxes rapidly increaseed at the onset of glaciations. However, absolute magnetostratigraphic dating unambiguously show that this formation is highly diachronous and, therefore, can't owe its origin to a climate change. Given the strong lateral facies variations, reconstruction of past denudation rates from the sedimentary archive require detailed chronostratigraphy and a knowledge of the basin geometry, both almost impossible to achieve. To reconstruct the denudation rates from the sedimentary archives, we have developed an approach based on the analyses of in situ produced cosmogenic isotope (10Be) in sediment. A pioneer study was carried out in the magnetostratigraphically dated Kuitun section. This work showed a possible transient increase in denudation rate in the drainage basin from 4 to 2Ma. Because our study was limited to one single basin and suffered from large uncertainties, it is unclear yet if this change can be related to the onset of glaciations or local tectonic activity. A critical step is to understand how the material is transferred to the basin and what are the main factors controlling the spatial distribution of present-day denudation. Therefore, we have analyzed the 10Be concentrations of 35 samples from modern river sediments located in the Northern and Southern Tianshan piedmonts. Those results will be discussed in the light of a comprehensive morphologic analyses of all the drainage basins, taking into account the influence of tectonics and climate. Finally, the derivation of paleo-denudation rate from cosmogenic isotopes must rely on independent constrained of the watershed paleotopography. Therefore, we will also presents high-resolution oxygen and carbon isotopic records of paleosol carbonates, sampled from the Kuitun section. From these records we conclude that the Kuitun He drainage basin have remained at relatively unchanged elevations for the past 10 Ma.

  9. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational collapse and by shear in the Walker Lane belt resulting from Pacific - Northern America relative plate motion.

  10. Lacustrine fan delta deposition alongside intrabasinal structural highs in rift basins: an example from the Early Cretaceous Jiuquan Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun

    2018-01-01

    Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling sediment deposition, and imply a potential change to regional-scale processes affecting fan delta deposition during later synrift stages. Climate change is favored here as the region-scale control on the uniform retrogradational fan delta stacking patterns. This assertion is supported by pollen assemblages, isotope signatures, and organic geochemical analyses, which collectively suggest a change from a humid to semi-arid environment during later synrift stages. We suggest that variations in stacking patterns between different fan delta systems can provide insights into the basin- and regional-scale processes that control rift basin deposition.

  11. Geomorphology and Tectonics at the Intersection of Silurian and Death Valleys, Southern California - 2005 Guidebook Pacific Cell Friends of the Pleistocene

    USGS Publications Warehouse

    Miller, David M.; Valin, Zenon C.

    2007-01-01

    This publication describes results from new regional and detailed surficial geologic mapping, combined with geomorphologic, geochronologic, and tectonic studies, in Silurian Valley and Death Valley, California. The studies address a long-standing problem, the tectonic and geomorphic evolution of the intersection between three regional tectonic provinces: the eastern California shear zone, the Basin and Range region of southern Nevada and adjacent California, and the eastern Mojave Desert region. The chapters represent work presented on the 2005 Friends of the Pleistocene field trip and meeting as well as the field trip road log.

  12. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  13. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  14. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record

    NASA Astrophysics Data System (ADS)

    Bouaziz, Samir; Barrier, Eric; Soussi, Mohamed; Turki, Mohamed M.; Zouari, Hédi

    2002-11-01

    A reconstruction of the tectonic evolution of the northern African margin in Tunisia since the Late Permian combining paleostress, tectonic stratigraphic and sedimentary approaches allows the characterization of several major periods corresponding to consistent stress patterns. The extension lasting from the Late Permian to the Middle Triassic is contemporaneous of the rifting related to the break up of Pangea. During Liassic times, regional extensional tectonics originated the dislocation of the initial continental platform. In northern Tunisia, the evolution of the Liassic NE-SW rifting led during Dogger times to the North African passive continental margin, whereas in southern Tunisia, a N-S extension, associated with E-W trending subsiding basins, lasted from the Jurassic until the Early Cretaceous. After an Upper Aptian-Early Albian transpressional event, NE-SW to ENE-WSW trending extensions prevailed during Late Cretaceous in relationship with the general tectonic evolution of the northeastern African plate. The inversions started in the Late Maastrichtian-Paleocene in northern Tunisia, probably as a consequence of the Africa-Eurasia convergence. Two major NW-SE trending compressions occurred in the Late Eocene and in the Middle-Late Miocene alternating with extensional periods in the Eocene, Oligocene, Early-Middle Miocene and Pliocene. The latter compressional event led to the complete inversion of the basins of the northwestern African plate, originating the Maghrebide chain. Such a study, supported by a high density of paleostress data and including complementary structural and stratigraphic approaches, provides a reliable way of determining the regional tectonic evolution.

  15. Sedimentary record and structural analysis of the opening of the European Cenozoic Rift System: The case of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Briais, Justine; Lasseur, Eric; Homberg, Catherine; Beccaletto, Laurent; Couëffé, Renaud; Bellahsen, Nicolas; Chateauneuf, Jean-Jacques

    2017-04-01

    The European Cenozoic Rift System (ECRIS) attests to an intracontinental rifting period attributed to the late Eocene-Oligocene period of time. The opening mechanisms of ECRIS still remain discussed, mainly because they took place during the regional compressive period related to the Africa-Eurasia convergence. Several geodynamic-related mechanisms are proposed, such as (1) a mantle activity, (2) an extension of the European plate related to the Alpine subduction (slab pull or slab roll-back), (3) a transtension related to strike slips induced by the Iberia-Eurasia and Apulia-Eurasia convergences. Our study discusses the mechanism for opening the Upper Rhine Graben (URG), located in the middle part of the ECRIS. Using reprocessed seismic lines and well data, we carried out a detailed sedimentary infilling analysis coupled with a structural study of the graben and its borders. As a result, three steps are identified for its tectonic evolution: (1) Lutetian-Bartonian: the first step of the opening is recorded by small lacustrine basins bounded by N060- and N010-020-trending inherited normal faults. These basins open either by transtension in a NS compressive context, or by NW-SE extension. (2) Priabonian-Rupelian: the subsidence occurs at a wider scale; the geographic extension of the basin is larger than the current borders of the URG. The structure is controlled essentially by N010-20-trending normal faults and by N060-trending transfer faults. Three structural blocks, bounded by N060-trending transfer faults, are identified from north to south. Each structural block displays an E-W sedimentary filling asymmetry. This period records an NW-SE extension. (3) Chattian-Miocene: the tectonic activity increases and a large-scale strike slip (sinistral) system takes place. This sinistral strike slip is contemporaneous with an uplift of the southern part of the URG and a rapid subsidence of its northern part. These events are related to compressive alpine constraints. During the syn-rift period, the tectonic activity and the amplitude of the vertical movements are low compared to those of the post-rift period. Finally, the NW-SE extension is in the same axis as the NW-SE compressive alpine constraints, likely indicating a direct relation with the alpine dynamic.

  16. Provenance and sequence architecture of the Middle-Late Eocene Gehannam and Birket Qarun formations at Wadi Al Hitan, Fayum Province, Egypt

    NASA Astrophysics Data System (ADS)

    Anan, Tarek; El Shahat, Adam

    2014-12-01

    The Middle-Upper Eocene Gehannam and Birket Qarun formations at Wadi Al Hitan (Valley of Whales) in Fayum Province of Egypt are dominated by marine siliciclastic sediments. Sedimentation took place in synclinal basins that were inherited from the Late Cretaceous tectonism. The siliciclastic sediments accumulated in low energy open shallow marine shelf. Most of the siliciclastics are heavily bioturbated by Thalassinoides. The abundance of unstable and moderately stable heavy minerals suggests that the Middle-Upper Eocene clastics were largely derived from the weathered regolith of the exhumed basement rocks of the Red Sea mountains. The ultrastable heavies were mainly recycled from positive landmass that bound the Eocene basins. Two sequence boundaries were observed in the studied succession. The first boundary lies within a rhizolith bearing-sandstone unit that occurs at the boundary between the Gehannam and Birket Qarun formations. The second sequence boundary occurs within the upper part of the Birket Qarun Formation, in a shale horizon bioturbated by Thalassinoides. Three 3rd order depositional sequences were recognized. These sequences may be formed due to tectonic activity that started in the Late Cretaceous and may be rejuvenated again during the Eocene time. Also emergence activities that were active during the Eocene led to the formation of the picked sequences by changing relative sea level. The recorded systems tracts are transgressive systems tract (TST), highstand systems tract (HST), and falling-stage systems tract (FSST).

  17. Recognition and dynamics of syntectonic sediment routing systems, southern Pyrenees

    NASA Astrophysics Data System (ADS)

    Allen, P. A.; Duller, R.; Fordyce, S.; Smithells, R.; Springett, J.; Whitchurch, A.; Whittaker, A.; Carter, A.; Fedele, J.-J.

    2009-04-01

    The erosional, transportational and depositional aspects of the biogeochemical cycles involving particulate sediment and solutes are integrated in sediment routing systems. The component parts of these tectonic-geomorphic systems communicate with each other, especially in response to changes in external forcing mechanisms such as tectonic perturbations and climate change; that is, sediment routing systems are characterized by important teleconnections. We are only just beginning to understand how these teleconnections work, and what it means for the spatial and temporal scales of system behaviour. One strategy for investigating the dynamics of sediment routing systems is to link information on the denudation of upstream source regions with downstream patterns of deposition. This is most likely to be fruitful where upstream catchments are tectonically active. Sediment is released into basins whose long-term subsidence is also controlled by tectonic activity. The spatial distribution of subsidence and the magnitude of the sediment discharge from the catchment are critical factors in the dispersal of sediment of different grain size and composition away from a mountain front. We investigate the coarse clastic sediment routing systems of mid-late Eocene age (40-34 Ma) that were deposited in basins located at the boundary of the Axial Zone and the thrust belt of the South-Central Unit on the southern flank of the Pyrenees, Spain. Most of the fan deposits of interest are found in the Pobla Basin, situated north of Tremp, which benefits from outstanding exposure conditions and rigorous previous work on biostratigraphy, magnetostratigraphy and sedimentology (Mellere 1993; Beamud et al. 2003). Distinct fan depositional systems can be identified and mapped on the basis of their sediment composition, detrital thermochronology, facies and architectures, which can be related to correspondingly distinct catchment properties (size, location, exhumational history, lithologies). Downstream fining of clasts of variable composition in streamflood fanglomerates is interpreted in terms of abrasion, which is minor, and selective deposition, which dominates. The observed downstream trends in different fan systems are used as a test for the selective deposition model of Fedele & Paola (2007). Beamud, E., Garcés, M., Cabrera, L., Munoz, J.A. & Almar, Y., 2003, A new middle to late Eocene continental chronostratigraphy from NE Spain. Earth & Planetary Science Letters, 216, 501-514. Fedele, J.J., & Paola, C., 2007, Similarity solutions for fluvial sediment fining by selective deposition. Journal Geophysical Research-Earth Surface, 112, F02038, doi:10.1029/2005JF000409. Mellere, D., 1993, Thurst-generated, back-fill stacking of alluvial fan sequences, south-central Pyrenees, Spain (la Pobla de Segur Conglomerates). Special Publication International Association Sedimentologists, 20, 259-276.

  18. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  19. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    NASA Astrophysics Data System (ADS)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  20. Evidence for an upper mantle low velocity zone beneath the southern Basin and Range-Colorado Plateau transition zone

    USGS Publications Warehouse

    Benz, H.M.; McCarthy, J.

    1994-01-01

    A 370-km-long seismic refraction/wide-angle reflection profile recorded during the Pacific to Arizona Crustal Experiment (PACE) detected an upper mantle P-wave low-velocity zone (LVZ) in the depth range 40 to 55 km beneath the Basin and Range in southern Arizona. Interpretation of seismic data places constraints on the sub-crustal lithosphere of the southern Basin and Range Province, which is important in light of the active tectonics of the region and the unknown role of the sub-crustal lithosphere in the development of the western United States. Forward travel time and synthetic seismogram techniques are used to model this shallow upper mantle LVZ. Modeling results show that the LVZ is defined by a 5% velocity decrease relative to a Pn velocity of 7.95 km s−1, suggesting either a ∼3–5% mafic partial melt or high-temperature, sub-solidus peridotite.

  1. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trehu, Anne; Kannberg, Peter

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismicmore » observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of global observations from forearc basins, possibly because of unusually high regional sedimentation rates and a high rate of tectonic deformation. In addition to providing an opportunity to follow up on preliminary results from NGHP-01, which was partially funded by DOE to increase understanding of submarine gas hydrates, a primary objective of this project was to provide training for a graduate student who had participated in the data acquisition as a technician. Our approach was to start with very simple analytic models to develop intuition about the relative importance of different parameters both as a learning exercise and to evaluate whether a more complex modeling effort could be constrained by the existing data.« less

  2. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne Trehu; Peter Kannberg

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismicmore » observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of global observations from forearc basins, possibly because of unusually high regional sedimentation rates and a high rate of tectonic deformation. In addition to providing an opportunity to follow up on preliminary results from NGHP-01, which was partially funded by DOE to increase understanding of submarine gas hydrates, a primary objective of this project was to provide training for a graduate student who had participated in the data acquisition as a technician. Our approach was to start with very simple analytic models to develop intuition about the relative importance of different parameters both as a learning exercise and to evaluate whether a more complex modeling effort could be constrained by the existing data.« less

  3. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    USGS Publications Warehouse

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  4. Density-dependent groundwater flow and dissolution potential along a salt diapir in the Transylvanian Basin, Romania

    NASA Astrophysics Data System (ADS)

    Zechner, Eric; Danchiv, Alex; Dresmann, Horst; Mocuţa, Marius; Huggenberger, Peter; Scheidler, Stefan; Wiesmeier, Stefan; Popa, Iulian; Zlibut, Alexandru; Zamfirescu, Florian

    2016-04-01

    Salt diapirs and the surrounding sediments are often involved in a variety of human activities, such as salt mining, exploration and storage of hydrocarbons, and also storage of radioactive waste material. The presence of highly soluble evaporitic rocks, a complex tectonic setting related to salt diapirsm, and human activities can lead to significant environmental problems, e.g. land subsidence, sinkhole development, salt cavern collapse, and contamination of water resources with brines. In the Transylvanian town of Ocna Mures. rock salt of a near-surface diapir has been explored since the Roman ages in open excavations, and up to the 20th century in galleries and with solution mining. Most recently, in 2010 a sudden collapse in the adjacent Quaternary unconsolidated sediments led to the formation of a 70-90m wide salt lake with a max. depth of 23m. Over the last 3 years a Romanian-Swiss research project has led to the development of 3D geological and hydrogeological information systems in order to improve knowledge on possible hazards related to uncontrolled salt dissolution. One aspect which has been investigated is the possibility of density-driven flow along permeable subvertical zones next to the salt dome, and the potential for subsaturated groundwater to dissolve the upper sides of the diapir. Structural 3D models of the salt diapir, the adjacent basin sediments, and the mining galleries, led to the development of 2D numerical vertical density-dependent models of flow and transport along the diapir. Results show that (1) increased rock permeability due to diapirsm, regional tectonic thrusting and previous dissolution, and (2) more permeable sandstone layers within the adjacent basin sediments may lead to freshwater intrusion towards the top of the diapir, and, therefore, to increased potential for salt dissolution.

  5. Evolution of the continental margin of southern Spain and the Alboran Sea

    USGS Publications Warehouse

    Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos

    1980-01-01

    Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.

  6. Formation and inversion of transtensional basins in the western part of the Lachlan Fold Belt, Australia, with emphasis on the Cobar Basin

    NASA Astrophysics Data System (ADS)

    Glen, R. A.

    The Palaeozoic history of the western part of the Lachlan Fold Belt in New South Wales was dominated by strike-slip tectonics. In the latest Silurian to late Early Devonian, an area of crust >25,000 km 2 lying west of the Gilmore Suture underwent regional sinistral transtension, leading to the development of intracratonic successor basins, troughs and flanking shelves. The volcaniclastic deep-water Mount Hope Trough and Rast Trough, the siliciclastic Cobar Basin and the volcanic-rich Canbelego-Mineral Hill Belt of the Kopyje Shelf all were initiated around the Siluro-Devonian boundary. They all show clear evidence of having evolved by both active syn-rift processes and passive later post-rift (sag-phase) processes. Active syn-rift faulting is best documented for the Cobar Basin and Mount Hope Trough. In the former case, the synchronous activity on several fault sets suggests that the basin formed by sinistral transtension in response to a direction of maximum extension oriented NE-SW. Structures formed during inversion of the Cobar Basin and Canbelego-Mineral Hill Belt indicate closure under a dextral transpressive strain regime, with a far-field direction of maximum shortening oriented NE-SW. In the Cobar Basin, shortening was partitioned into two structural zones. A high-strain zone in the east was developed into a positive half-flower structure by re-activation of early faults and by formation of short-cut thrusts, some with strike-slip movement, above an inferred steep strike-slip fault. Intense subvertical cleavage, a steep extension lineation and variably plunging folds are also present. A lower-strain zone to the west developed by syn-depositional faults being activated as thrusts soling into a gently dipping detachment. A subvertical cleavage and steep extension lineation are locally present, and variably plunging folds are common. Whereas Siluro-Devonian basin-opening appeared to be synchronous in the western part of the fold belt, the different period of basin inversion in the Cobar region (late Early Devonian and Carboniferous) may reflect different movement histories on the master strike-slip faults in this part of the fold belt, the Gilmore Suture and Kiewa Fault.

  7. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  8. The effect of tectonic evolution on lacustrine syn-rift sediment patters in Qikou Sag, Bohaiwan Basin, eastern China

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Wang, H.; Xu, W.

    2013-12-01

    Normal fault arrays and associated relay ramps between two overlapping en-echelon normal faults are well known to control the deposition and distribution of sediments in alluvial, fluvial and deltaic systems in rift settings. The influence of transfer zones or relay ramps on sediment routes and dispersal patterns in subaqueous (deeper marine/lacustrine), however, is barely studied and hence less clear. Previous experimental studies indicate that subaqueous relay ramps may act as sediment transportation pathways if certain conditions are available. In this study, we integrate detailed structural and stratigraphic analysis with three-dimensional seismic data and limited well log data from the Qikou Sag to examine the tectonic evolution and the syn-rift sediment patterns response to fault growth and linkage in an active rift setting. Qikou Sag is located at the center of Huanghua Depression, Bohaiwan Basin of eastern China. Structurally, it is a typical continental rift basin characterized by a linked system of two NEE-SWW-striking half-grabens and one E-W-striking graben. Qikou sag is filled with Eocene-Oligocene syn-rift sediments and Miocene to Quaternary post-rift sediments. The Eocene-Oligocene rifting stage can be divided into early rifting period (43-36.5 Ma, the third member and second member of Shahejie Formation, Es3 and Es2), stable rifting period (36.5-29Ma, the first member of Shaehejie Formation, Es1) and fault-depressed diversionary period (29-24.6Ma, the Dongying Formation, Ed). This study focus on the early syn-rift, the third and second member of Shehejie Formation, which is mostly dark-grey mudstone interbedded with fine to coarse-grained sandstone deposited by large-scale turbidity currents in deep-lake. In particular, we use a combination of thickness variability and facies distributions, onlap patterns within a high-resolution sequence stratigraphic framework, integrated with structural geometry, fault activity and subsidence history analysis to investigate the degree of tectonic control on subaqueous sediment transportation and dispersal. Specific attention is paid to deposits close to boundary faults-Gangxi fault, Gangdong fault and Binhai fault and associated relay ramp. Our studies show that significant amount of sediments were deposited on the basin floor close to boundary faults hanging-wall, which were derived from Cangxian uplift and might have originated from channel overspill or flow shedding across the faults. However, minor deposits occurred adjacent to and at the foot of relay ramp, suggesting an influence of these topography features on sediment routing, with the intrabasinal structural high-Beidagang buried hill acting as an additional sediment source. Therefore, the substantial differences between subaerial and subaqueous systems may influence the role of relay ramps in controlling the sediment routes and deposition in Qikou Sag. The attempt to depict subaqueous syn-rift sediment dispersal and relate them with relay ramps is needed to consider the interplay of various factors such as sediment provenience, tectonic activity, ramp geometry, and base level fluctuations in the future investigation.

  9. Shallow moonquakes - Depth, distribution and implications as to the present state of the lunar interior

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Latham, G. V.; Dorman, H. J.; Ibrahim, A.-B. K.; Koyama, J.; Horvath, P.

    1979-01-01

    The observed seismic amplitudes of HFT (high-frequency teleseismic) events do not vary with distance as expected for surface sources, but are consistent with sources in the upper mantle of the moon. Thus, the upper mantle of the moon is the only zone where tectonic stresses deriving from differential thermal contraction and expansion of the lunar interior are presently high enough to cause moonquakes. The distribution of shallow moonquake epicenters suggests a possible correlation with impact basins, implying a lasting tectonic influence of impact basins long after their formation. The finite depths now assigned to these shallow moonquakes necessitate further revision to the seismic structural model of the lunar interior.

  10. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif, and the Kivu-Ruzizi accommodation zone connected the northern half of the former Kivu rift basin to the northern extremity of the Tanganyika basin. This process was influenced by the highly heterogeneous basement, formed during a long geological history with a dominantly brittle structuration during the Pan-African. The local stress field revealed by earthquake focal mechanisms appears strongly influenced by this heterogeneous structure but also by the transition towards the Congo basin on the western side of the rift and towards the Tanzanian carton on its eastern side. Delvaux, D. et al., 2016. Journal of African Earth Sciences. doi: 10.1016/j.jafrearsci.2016.10.004

  11. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    USGS Publications Warehouse

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

    2001-01-01

    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  12. Geochemical compositions of Neoproterozoic to Lower Palaeozoic (?) shales and siltstones in the Volta Basin (Ghana): Constraints on provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Amedjoe, Chiri G.; Gawu, S. K. Y.; Ali, B.; Aseidu, D. K.; Nude, P. M.

    2018-06-01

    Many researchers have investigated the provenance and tectonic setting of the Voltaian sediments using the geochemistry of sandstones in the basin. The shales and siltstones in the basin have not been used much in the provenance studies. In this paper, the geochemistry of shales and siltstones in the Kwahu Group and Oti Group of the Voltaian Supergroup from Agogo and environs in the southeastern section of the basin has constrained the provenance and tectonic setting. Trace element ratios La/Sc, Th/Sc and Cr/Th and REEs sensitive to average source compositions revealed sediments in the shales and siltstones may mainly be from felsic rocks, though contributions from old recycled sediments and some andesitic rock sediments were identified. The felsic rocks may be granites and/or granodiorites. Some intermediate rocks of andesitic composition are also identified, while the recycled sediments were probably derived from the basement metasedimentary rocks. The enrichment of light REE (LaN/YbN c. 7.47), negative Eu anomalies (Eu/Eu* c. 0.59), and flat heavy REE chondrite-normalized patterns, denote an upper-continental-crustal granitic source materials for the sediments. Trace-element ternary discriminant diagrams reveal passive margin settings for sediments, though some continental island arc settings sediments were also depicted. Mixing calculations based on REE concentrations and modeled chondrite-normalized REE patterns suggest that the Birimian basement complex may be the source of detritus in the Voltaian Basin. REEs are more associated with shales than siltstones. On this basis chondrite-normalized REE patterns show that shale lithostratigraphic units may be distinguished from siltstone lithostratigraphic units. The significant variability in shales elemental ratios can therefore be used to distinguish between shales of the Oti Group from that of the Kwahu Group.

  13. The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model

    NASA Astrophysics Data System (ADS)

    Gibbons, Ana D.; Whittaker, Joanne M.; Müller, R. Dietmar

    2013-03-01

    models for the Cretaceous seafloor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 ( 126.7-120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at 136 Ma northwest of Australia, and reached the southern tip of India at 126 Ma. Seafloor spreading in the Enderby Basin was abandoned at 115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that seafloor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic flow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from 100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate flanks of a "leaky" transform fault following the 100 Ma spreading reorganization. Our model also identifies the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.

  14. The influence of pre-existing basement structures on salt tectonics in the Upper Silurian Salina Group, Appalachian Basin, NE Pennsylvania: results from 3D seismic analysis and analogue modelling

    NASA Astrophysics Data System (ADS)

    Harding, M. R.; Rowan, C. J.

    2013-12-01

    The Upper Silurian Salina Group in Pennsylvania's Appalachian basin consists of several hundred feet of highly deformable and mobile salt that was a significant influence on the tectonic and structural development of the Appalachian Mountains during the late Paleozoic. Understanding how halokinesis and décollement thrusting of the Salina Group has contributed to the present-day structure of the Appalachian Basin is of intense current interest due to the energy resource potential of the overlying Marcellus Shale and underlying Utica Shale. Seismic data suggest that halokinesis of the Salina Group in the Appalachian Basin might be strongly influenced by the presence of preexisting faults in the underlying Neoproterozoic basement, which suggests that these structures may have interacted with the Salina Group or its interior during deformation. We examine these apparent interactions in more detail using high-resolution 3D seismic data from the Appalachian Basin of NE Pennsylvania to identify and characterize salt tectonic-related structures developed above and within the Salina Group during orogenesis, verify their geographic association with major basement faults, and document how reactivation of these preexisting faults might have influenced later deformation within and above the salt units. We also present the results of sandbox modelling of thin-skinned thrusting in a salt-analogue décollement. Multiple runs in the presence and absence of preexisting basement structures provide insight into how the modern structures observed in the seismic data initiated and evolved during progressively more intense orogenesis, and better constrain the physical processes that control the structural linkage through the Salina décollement.

  15. Miocene unconformities in the Central Apennines: geodynamic significance and sedimentary basin evolution

    NASA Astrophysics Data System (ADS)

    Cipollari, Paola; Cosentino, Domenico

    1995-12-01

    This paper shows the results obtained from an integrated study (geology, biostratigraphy and geochemistry) carried out on the Miocene edimentary deposits in Central Italy in order to define the timing of the sedimentary basin evolution. This paper deals also with the causes of the unconformities recorded in these basins. In the Miocene deposits of the Latina Valley and the Ernici-Simbruini Mts. several unconformities which distinguish different stratigraphic sequences have been recognized (D 0, D 1, D 2 D 3 and D 4). For each unconformity a general description together with a geodynamical significance is provided. In particular, D 0 unconformity appears to be related to a regional tectonic event (Adria-Europe collision). As a consequence, the Adria lithosphere folded and the area underwent a regional erosive event. D 1, D 2 and D 3 unconformities have had a more local tectonic control since they represent the stratigraphic record of the migration of the Apennines thrust belt/foredeep system. D 1 and D 2 unconformities are related to the late Tortonian foredeep stage, whereas D 3 is linked to the early Messinian piggy-back stage. Moreover, the D 4 unconformity, which took place during the Messinian piggy-back stage, is strictly linked to the sea-level drop of the Messinian salinity crisis. In this paper the genesis and evolution of a late Tortonian foreland basin is also stressed (Latina Valley foredeep basin). Finally, taking into account sequence boundaries, nannofossil biostratigraphy and geochemistry isotopic data, a comparison with the curve of the 3rd order of the relative coastal onlap (Haq et al., 1988) has been attempted in order to distinguish the unconformities controlled either by tectonic or eustatic processes.

  16. Major variation of paleo-maximum temperature and consolidation state within post Miocene forearc basin, central Japan

    NASA Astrophysics Data System (ADS)

    Kamiya, N.; Yamamoto, Y.; Takemura, T.

    2015-12-01

    Since forearc-basin evolve associated with development of the accretionary prisms, their geologic structures have clues to understanding the tectonic processes associated with plate subduction. We found a major difference in paleo-geothermal structure and consolidation states between the unconformity in the forearc basin in the Boso Peninsula, central Japan. The geology of the Boso Peninsula, central Japan is divided into three parts; Early Miocene and Late Miocene accretionary prisms in the southern part, the Hayama-Mineoka tectonic belt mainly composed of ophiolite in the middle part, and post-Middle Miocene forearc basin in the northern part. Sediments in the forearc basin are composed of 15-3Ma Miura Group and 3-0.6Ma Kazusa Group. Boundary of the two groups is the Kurotaki Unconformity formed about 3Ma, when convergent direction of the Philippine Sea Plate has been changed (Takahashi, 2006). Vitrinite reflectance (Ro) analyses were conducted and revealed that major variation of paleo-maximum temperature between the Miura and Kazusa groups. The maximum paleo-temperature in the Miura Group is estimated as 70-95˚C, whereas in the lower part of the Kazusa Group is less than 10-35˚C. Given 20˚C/km (Sakai et al, 2011) paleo-geothermal gradient, approximately 2000 m uplifting/erosion of the Miura Group is expected when the unconformity formed. To verify the amount of this uplifting/erosion, we are performing consolidation test of mudstone. [Reference] Takahashi, M., 2006, Tectonic Development of the Japanese Islands Controlled by Philippine Sea Plate Motion, Journal of Geography, 115, 116-123. Sakai R., Munakata M., Kimura H., Ichikawa Y., and Nakamura M., 2011, Study on Validation Method of Regional Groundwater Flow Model : Case Study for Boso Peninsula, JAEA-research 2010(66), 1-20, 1-2.

  17. The Geomorphometrics of the Rio Grande Rift: The role of tectonics, climate, and erosional processes in forming the Rio Grande river

    NASA Astrophysics Data System (ADS)

    Berry, M. A.; van Wijk, J.; Emry, E.; Axen, G. J.; Coblentz, D. D.

    2016-12-01

    Geomorphometrics provides a powerful tool for quantifying the topographic fabric of a landscape and can help with correlating surface features with underlying dynamic processes. Here we use a suite of geomorphometric metrics (including the topographic power spectra, fabric orientation/organization) to compare and contrast the geomorphology of two of the world's major rifts, the Rio Grande Rift (RGR) in western US and the East Africa Rift (EAR). The motivation for this study is the observation of fundamental differences between the characteristics of the intra-rift river drainage for the two rifts. The RGR consists of a series of NS trending rift basins, connected by accommodation or transfer zones. The Rio Grande river developed in the late Neogene, and follows these rift segments from the San Luis basin in Colorado to the Gulf of Mexico. Before the river system formed, basins are thought to have formed internally draining systems, characterized by shallow playa lakes. This is in contrast with lakes in the Tanganyika and Malawi rifts of the East African Rift that are deep and have existed for >5 My. We investigate the role of climate, tectonics and erosional processes in the formation of the through-going Rio Grande river. This occurred around the time of a slowing down of rift opening ( 10 Ma), but also climatic changes in the southwestern U.S. have been described for the late Neogene. To model our hypothesis, a tectonics and surface transport code TISC (Transport, Isostasy, Surface Transport, Climate) was used to evaluate the dynamics of a series of proto-rift basins and their connecting accommodation zones. Basin infill and drainage system development are studied as a result of varying sediment budgets, climate variables, and rift opening rate.

  18. Kinematics of a former oceanic plate of the Neotethys revealed by deformation in the Ulukışla basin (Turkey)

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; van Hinsbergen, Douwe J. J.; Matenco, Liviu; Corfu, Fernando; Cascella, Antonio

    2016-10-01

    Kinematic reconstruction of modern ocean basins shows that since Pangea breakup a vast area in the Neotethyan realm was lost to subduction. Here we develop a first-order methodology to reconstruct the kinematic history of the lost plates of the Neotethys, using records of subducted plates accreted to (former) overriding plates, combined with the kinematic analysis of overriding plate extension and shortening. In Cretaceous-Paleogene times, most of Anatolia formed a separate tectonic plate—here termed "Anadolu Plate"—that floored part of the Neotethyan oceanic realm, separated from Eurasia and Africa by subduction zones. We study the sedimentary and structural history of the Ulukışla basin (Turkey); overlying relics of this plate to reconstruct the tectonic history of the oceanic plate and its surrounding trenches, relative to Africa and Eurasia. Our results show that Upper Cretaceous-Oligocene sediments were deposited on the newly dated suprasubduction zone ophiolites ( 92 Ma), which are underlain by mélanges, metamorphosed and nonmetamorphosed oceanic and continental rocks derived from the African Plate. The Ulukışla basin underwent latest Cretaceous-Paleocene N-S and E-W extension until 56 Ma. Following a short period of tectonic quiescence, Eo-Oligocene N-S contraction formed the folded structure of the Bolkar Mountains, as well as subordinate contractional structures within the basin. We conceptually explain the transition from extension, to quiescence, to shortening as slowdown of the Anadolu Plate relative to the northward advancing Africa-Anadolu trench resulting from collision of continental rocks accreted to Anadolu with Eurasia, until the gradual demise of the Anadolu-Eurasia subduction zone.

  19. Geophysical reassessment of the role of ancient crustal structures on the development of western Laurentia and Selwyn Basin, Yukon and Northwest Territories, Canada.

    NASA Astrophysics Data System (ADS)

    Hayward, N.

    2017-12-01

    The structure of the western margin of the North American craton (Laurentia) in the northern Canadian Cordillera and its role in the development of the Neoproterozoic-Early Paleozoic Selwyn Basin are reassessed through 3D inversion of a new compilation of aeromagnetic data and archival Bouguer gravity data. The region's tectonic history is obscured by partial burial beneath Selwyn Basin, and a tectonic overprint that includes terrane accretion, regional plutonism, and strike-slip faults with displacements of 100s and perhaps 1000s of kilometers. Despite the implied complexity, preliminary geological and geophysical based interpretations of the structure of the western margin of Laurentia, have been adopted with few refinements in over two decades. Regionally continuous, NE-trending, crustal lineaments, including the Fort Norman line and Leith Ridge fault, were interpreted as having had long-standing influence on the craton development, its western margin, and overlapping sedimentary basin. New results reveal limited evidence for the regional continuity of the NE-trending lineaments. Instead, models suggest that the structure of the Laurentian margin is characterised by segmentation on numerous shorter structures of varied strike. The western margin of the craton and its structures are bound by a NW-trending structure that connects with the Richardson Trough to the north and may have been active during rifting of the Misty Creek embayment. This boundary also marks the easternmost limit of both granitic intrusions in Selwyn Basin, which gravity models suggest are of greater extent than reflected on geological maps, and SEDEX occurrences. An ENE-trending structure beneath northern Selwyn Basin is interpreted as marking the southern edge of a previously unidentified cratonic promontory, akin to the Liard line that marks a transfer fault that bounds the promontory of the Macdonald Platform, south of Selwyn Basin. The ENE-trending structure is traced from the Tintina fault in the west to near to the Great Bear magmatic zone. The structure's regional continuity also limits the interpretation of a post-Cretaceous structure, inboard of the Tintina fault that could be responsible for 1000's km of dextral strike-slip ascribed to the Baja-BC terrane translation model.

  20. Ground subsidence and associated ground fracturing in urban areas: InSAR monitoring of active tectonic structures (Ciudad Guzman, Colima Graben - Mexico)

    NASA Astrophysics Data System (ADS)

    Bignami, C.; Brunori, C.; Zucca, F.; Groppelli, G.; Norini, G.; Hernandez, N. D.; Stramondo, S.

    2013-12-01

    This study focuses on the observation of a creeping phenomenon that produces subsidence of the Zapotlan basin and ground fracturing in correspondence of the Ciudad Guzmàn (Jalisco - Mexico). The September 21, 2012, the Ciudad Guzmàn has been struck by a phenomenon of ground fracturing of about 1.5 km of length. This event caused the deformation of the roads and the damage of 30 houses, of which eight have been declared uninhabitable. The alignment of fractures is coincident with the escarpments produced in September 19, 1985, in the Ciudad Guzman urban area, when a strong earthquake, magnitude 8.1, struck the Mexican area, causing the deaths of at least 10,000 people and serious damage in Mexico City. In Ciudad Guzmán, about 60% of the buildings were destroyed, with about 50 loss of life. The city is located in the Zapotlan basin (northern Colima graben), a wide tectonic depression where the depth of the infilling sediments is about 1 km. This subsidence cannot be measured outside the urbanized area, but it can be considered as a deformation mechanism of the central part of the basin. In order to detect and mapping the spatio-temporal features of the processes that led to this event, we applied InSAR multi-temporal techniques to analyze a dataset of ENVISAT satellite SAR images, acquired in a time span between 2003-2010. InSAR techniques detect a subsidence of the north-western part of Ciudad Guzmàn of about 15 mm/yr in the time interval 2003-2010. The displacement occurred in September 21, 2012, was detected using two RadarSAT2 acquisitions (2012-03-22 and 2013-03-17). The explanation of surface movements based on interferometric results, ground data and geological field observations, allowed confirming surface effect due to the overexploitation of the aquifers and highlights a subsidence due to anthropogenic causes coupled to buried tectonic structures.

  1. High-resolution seismic profiling reveals faulting associated with the 1934 Ms 6.6 Hansel Valley earthquake (Utah, USA)

    USGS Publications Warehouse

    Bruno, Pier Paolo G.; Duross, Christopher; Kokkalas, Sotirios

    2017-01-01

    The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-km-wide zone of north-south−trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous east- and west-dipping normal faults that dip 40°−70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ∼1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ∼3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes.

  2. Pennsylvanian history of the Chautauqua Arch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennison, A.P.

    1993-03-01

    Westward extension of the Ozark Uplift known as the Chautauqua Arch is concealed by a Pennsylvanian cover. This cover provides an insight into its later tectonic history subsequent to its major Late Devonian uplift and truncation. Part of this arch was episodically uplifted during Pennsylvanian time in an area extending west from southwestern Missouri along the Kansas-Oklahoma border to western Montgomery County. Recent stratigraphic mapping in that county indicates moderate Late Desmoinesian to Missourian tectonism. Some strata present on both flanks of the arch are either comparatively thin or missing owing to unconformity truncation or non-deposition. Stratal loss involves themore » Lenapah Limestone, the Hepler and Lost Branch formations, the Cherryvale Shale and the Hertha, Drum, Dewey, Stanton and Wyandotte Limestones. Earlier movements also account for the truncation of Morrowan, Atokan and possibly some Early Desmoinesian beds over the arch. Between tectonic episodes along the arch there were periods of relative tectonic quiescence accompanied by shelf-edge carbonate banks, condensed sequences and siliciclastic sedimentation. West of Montgomery County in Chautauqua County, the widespread Late Pennsylvanian Virgilian outcrops show practically no tectonism. Therefore, the name Chautauqua Arch seems inappropriate for this Pennsylvanian arch, and the name Tri-State Arch is proposed. This arch is bounded on the north by the Cherokee Basin and on the south by the northern rise of the Arkoma Basin. Although this arch is commonly omitted on many tectonic maps, it is a stronger gravity feature than the Bourbon Arch about 50 miles northward. Both tectonic and sedimentary structures have produced much oil and gas entrapment along this arch. For example, an east-west fault south of Independence, aligned with buried Proterozoic hills, has been specially productive.« less

  3. Changes in tectonic stress field in the northern Sunda Shelf Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjia, H.D.; Liew, K.K.

    1994-07-01

    The Tertiary hydrocarbon basins of the northern Sunda Shelf are underlain by continental and attenuated continental crust characterized by moderate to high average geothermic gradients in excess of 5[degrees]C/100 m. In the Malay basin, Oligocene and younger sediments are more than 12 km thick. The smaller basins (which are commonly half grabens) and probably also the main Malay basin were developed as pull-apart depressions associated with regional north-to-northwest-striking wrench faults. Initial basin subsidence took place during the Oligocene, but at least one small basin may have developed as early as the Jurassic. Sense of movement of the regional wrench faultsmore » was reversed during middle to late Miocene and in some of these faults, evidence was found for yet a younger phase of lateral displacement. These offsets range up to 45 km right-laterally along north-trending fault zones. During most of the Cenozoic, succeeding wrench faulting with sense of movement in the opposite direction caused structural inversion of the basin-filling sediments, which became folded. The regional wrench faults act as domain boundaries, each tectonic domain being characterized by different stress fields. The evolving stress system can be attributed to varying degrees of interference of plate motions coupled with changes in movement directions and/or rates of the Pacific plate Indian Ocean-Australian plate and possible expulsion of southeast Asian crustal slabs following the collision of the Indian subplate with the Eurasian plate.« less

  4. Evolution of the Neogene Andean foreland basins of the Southern Pampas and Northern Patagonia (34°-41°S), Argentina

    NASA Astrophysics Data System (ADS)

    Folguera, Alicia; Zárate, Marcelo; Tedesco, Ana; Dávila, Federico; Ramos, Victor A.

    2015-12-01

    The Pampas plain (30°-41°S) has historically been considered as a sector that evolved independently from the adjacent Andean ranges. Nevertheless, the study of the Pampas showed that it is reasonable to expect an important influence from the Andes into the extraandean area. The Pampas plain can be divided into two sectors: the northern portion, adjacent to the Pampean Ranges, has been studied by Davila (2005, 2007, 2010). The southern sector (34°-41°S) is the objective of the present work. The study of this area allowed to characterize two separate foreland basins: the Southern Pampa basin and the Northern Patagonian basin. The infill is composed of Late Miocene and Pliocene units, interpreted as distal synorogenic sequences associated with the late Cenozoic Andean uplift at this latitudinal range. These foreland basins have been defined based on facies changes, distinct depositional styles, along with the analysis of sedimentary and isopach maps. The basins geometries are proposed following De Celles and Gilles (1996) taking into account the infill geometry, distribution and grain size. In both cases, these depocenters are located remarkably far away from the Andean tectonics loads. Therefore they cannot be explained with short-wave subsidence patterns. Elastic models explain the tectonic subsidence in the proximal depocenters but fail to replicate the complete distal basins. These characteristics show that dynamic subsidence is controlling the subsidence in the Southern Pampas and Northern Patagonian basins.

  5. Transition from marine deep slope deposits to evaporitic facies of an isolated foreland basin: case study of the Sivas Basin (Turkey)

    NASA Astrophysics Data System (ADS)

    Pichat, Alexandre; Hoareau, Guilhem; Legeay, Etienne; Lopez, Michel; Bonnel, Cédric; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2017-04-01

    The Sivas Basin, located in the central part of the Anatolian Plateau in Turkey, formed after the closure of the northern Neotethys from Paleocene to Pliocene times. It developed over an ophiolitic basement obducted from the north during the Late Cretaceous. During Paleocene to Eocene times, the onset of the Tauride compression led to the development of a foreland basin affected by north-directed thrusts. The associate general deepening of the basin favored the accumulation of a thick marine turbiditic succession in the foredeep area, followed by a fast shallowing of the basin and thick evaporitic sequence deposition during the late Eocene. We present here the detailed sedimentological architecture of this flysch to evaporite transition. In the northern part of the basin, volcanoclastic turbidites gradually evolved into basinal to prodelta deposits regularly fed by siliciclastic material during flood events. Locally (to the NE), thick-channelized sandstones are attributed to the progradation of delta front distributary channels. The basin became increasingly sediment-starved and evolved toward azoic carbonates and shaly facies, interlayered with organic-rich shales before the first evaporitic deposits. In the southern part of the basin, in the central foredeep, the basinal turbidites become increasingly gypsum-rich and record a massive mega-slump enclosing olistoliths of gypsum and of ophiolitic rocks. Such reworked evaporites were fed by the gravitational collapsing of shallow water evaporites that had previously precipitated in silled piggy-back basins along the southern fold-and-thrust-belt of the Sivas Basin. Tectonic activity that led to the dismantlement of such evaporites probably also contributed to the closure of the basin from the marine domain. From the north to the south, subsequent deposits consist in about 70 meters of secondary massive to fine-grained gypsiferous beds interpreted as recording high to low density gypsum turbidites. Such facies were probably fed from shallow water evaporitic platforms developing contemporaneously along the borders of the halite-? and gypsum-saturated basin. Finally, the reworked evaporites are sealed by a thick (> 100 m) chaotic and coarse crystalline gypsum mass, carrying folded rafts and boudins of carbonate and gypsum beds. Such unit is interpreted as a gypsiferous caprock resulting from the leaching of significant amount of halite deposits. Gypsum crystals are secondary and grew from the hydration of anhydrite grains left as a residual phase after the leaching of halite. The halite probably formed in a perennial shallow hypersaline basin fed in solute by marine seepages. This former halite sequence is interpreted to have triggered mini-basin salt tectonics during the Oligo-Miocene. The described facies and proposed scenario of the Tuzhisar Formation in the central part of the Sivas Basin may find analogies with other Central Anatolian Basins (e.g. the Ulukisla Basin) or with other basin-wide salt accumulations in the world (e.g. in the Carpathian Foredeep).

  6. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

    NASA Astrophysics Data System (ADS)

    Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei

    2016-03-01

    Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

  7. Morphological expression of active tectonics in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Hergarten, Stefan

    2015-04-01

    Evolving drainage pattern and corresponding metrics of the channels (e.g. normalized steepness index) are sensitive indicators for tectonic or climatic events punctuating the evolution of mountain belts and their associated foreland basins. The analysis of drainage systems and their characteristic properties represents a well-established approach to constrain the impact of tectonic and climatic drivers on mountainous landscapes in the recent past. The Southern Alps (SA) are one of the seismically most active zones in the periphery of northern Adria. Recent deformation is caused by the ongoing convergence of the Adriatic and European plate and is recorded by numerous earthquakes in the domain of the SA. Deformation in the SA is characterized by back-thrusting causing crustal thickening and should therefore result in uplift and topography formation. The vertical velocity field determined by GPS-data clearly indicates a belt of significant uplift in the south South alpine indenter between Lake Garda in the west and the Triglav in the east and strong subsidence of the foreland basin surrounding the Mediterranean Sea near Venice, although subsidence is often related to ongoing subduction of the Adriatic microplate underneath Appennines. Despite of these short term time series, timing, rates and drivers of alpine landscape evolution are not well constrained and the linkage between crustal deformation and topographic evolution of this highly active alpine segment remains unclear for the following reasons: (1) The eastern Southern Alps were heavily overprinted by the Pleistocene glaciations and tectonic signals in the alpine landscape are blurred. Only the transition zone to the southern foreland basin remained unaffected and allows an analysis of a glacially undisturbed topography. (2) The major part of this domain is covered by lithology (carbonatic rocks) which is unsuitable for low temperature geochronology and cosmogenic isotope dating so that exhumation and erosion rates are not well constrained for the entire domain. Despite of that, extensive karstification in some areas limits the validity of a morphometric analysis in particular of the upper reaches of the drainage system and leads to a long term persistence of landforms (e.g. plateaus). In this study we focus on the drainage pattern of the eastern Southern Alps and the adjacent southern foreland basin. We use a high-resolution digital elevation model and a novel numerical approach to extract characteristic parameters of the morphology for the entire eastern Southern Alps with a high spatial resolution. We explore deviations in the steepness of channels from an equilibrium state and knick-points in longitudinal channel profiles and interpret these features in terms of (a) active tectonics, and variable uplift rates, (b) lithological effects like erodibility contrasts and karstification, and (c) base level lowering caused by glacial erosion and Messinian preconditioning. The drainage system of the Adige shows the most significant deviations from a fluvial equilibrium. This is documented in the normalized steepness index of the main channel and all tributaries as well as in the longitudinal channel profile. The main channel shows several sections of downstream steepening and extremely low channel gradients in the lower reach. Similar deviations are also observed in the Brenta catchment situated east of the Adige drainage system. In contrast to the two large western catchments of the study region, the Piave and particularly the Tagliamento catchment show well graded channel profiles and uniform normalized steepness indices despite of the glacial history. This clear west to east trend from highly disturbed to overall well graded channels has never been documented before and may be explained in the light of increased uplift rates in the east and differences in onset and timing of topography formation between the western and eastern sector of the study region.

  8. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along active, compressional plate margins recording a protracted and complex phase of supercontinent assembly between 800 and 550 Ma. Local cordilleran glaciations of volcanic peaks is indicated. Many deposits are preserved within mobile belts that record the subduction of interior oceans now preserved as "welds" between different cratons. Discrimination between glacially-influenced and non-glacial, volcaniclastic mass flow successions continues to be problematic. The second tectonostratigraphic category of Late Proterozoic glacial strata includes successions of glacially-influenced, mostly marine strata deposited along rifted, extensional plate margins. The oldest (Sturtian) glaciclastic sediments result from the break-out of Laurentia from the Late Proterozoic supercontinent starting around 750 Ma along its "palaeo-Pacific" margin with a later (Marinoan) phase of rifting at about 650 Ma. "Passive margin" uplifts and the generation of "adiabatic" ice covers on uplifted crustal blocks triggered widespread glaciation along the "palaeo-Pacific" margin of North America and in Australia. A major phase of rifting along the opposite ("palaeo-Atlantic") margin of Laurentia occurred after 650 Ma and is similarly recorded by glaciclastic strata in basins preserved around the margins of the present day North Atlantic Ocean. Glaciation of the west African platform after 650 Ma is closely related to collision of the West African and Guyanan cratons and uplift of the orogenic belt; the same process, involving uplift around the northern and western margins of the Afro-Arabian platform subsequently triggered Late Ordovician glaciation at about 440 Ma when the south polar region lay over North Africa. Early Silurian glaciation in Bolivia and Brazil was followed by a non-glacial episode and renewed Late Devonian glaciation of northern Brazil and Bolivia. The latter event may have resulted from rotation of Gondwana under the South Pole combined with active orogenesis along the western margin of the supercontinent. Hercynian uplift along the western margin of South America caused by the collision and docking of "Chilinia" at about 350 Ma (Late Tournasian—Early Visean) was the starting point of a long Late Palaeozoic glacial record that terminated at about 255 Ma (Kungurian-Kazanian) in western Australia. The arrival of large landmasses at high latitude may have been an important precondition for ice growth. Strong Namurian uplift around virtually the entire palaeo-Pacific rim of Gondwana culminated in glaciation of the interior of the supercontinent during the latest Westphalian (c. 300 Ma). There is a clear picture of plate margin compression and propagation of "far field" stresses to the plate interior allowing preservation of glacially-influenced strata in newly-rifted intracratonic basins. Many basins show a "steer's head" style of infill architecture recording successive phases of subsidence and overstepping of younger strata during basin subsidence and expansion. Exploration for oil and gas in Gondwanan glaciated basins is currently a major stimulus to understanding the relationship between tectonics and sedimentation. Warm Mesozoic palaeoclimates do not rule out the existence of restricted ice covers in the interiors of continental landmasses at high palaeolatitudes (e.g. Siberia, Antarctica) but there is as yet, no direct geological record of their existence. The most likely record of glaciers is contained in Late Jurassic and early Cretaceous strata. In any event, these ice masses are unlikely to have had any marked effect on global sea levels and alternative explanations should perhaps be sought for 4th order, so-called "glacio-eustatic" changes in sea level, inferred from Triassic, Jurassic and Cretaceous strata. The growth of extensive Northern Hemisphere ice sheets in Plio-Pleistocene time (c. 2.5 Ma) was the culmination of a long global climatic deterioration that began sometime after 60 Ma during the late Tertiary. Tectonic uplift of areas such as the Tibetan Plateau and plate tectonic reorganizations have been identified as first-order controls. Initiation of the East Antarctic ice sheet, at about 36 Ma, is the result of the progressive thermal isolation of the continent combined with uplift along the Transantarctic Mountains. In the Northern Hemisphere, the upwarping of extensive passive margin plateaux around the margins of the newly-rifted North Atlantic may have amplified global climatic changes and set the scene for the growth of continental ice sheets after 2.5 Ma. Ice sheet growth and decay was driven by complexly interrelated changes in ocean circulation, Milankovitch orbital forcing and global geochemical cycles. It is arguable whether continental glaciations of the Northern Hemisphere, and the evolution of hominids, would have occurred without the necessary precondition of tectonic uplift.

  9. Structural-tectonic zoning of the Arctic

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Sobolev, Nikolay; Morozov, Andrey; Shokalsky, Sergey; Kashubin, Sergey; Grikurov, Garrik; Tolmacheva, Tatiana; Rekant, Pavel; Petrov, Evgeny

    2017-04-01

    Structural-tectonic zoning of the Arctic is based on the processing of geological and geophysical data and bottom sampling materials produced within the project "Atlas of Geological Maps of the Circumpolar Arctic." Zoning of the Arctic territories has been conducted taking into account the Earth's crust types, age of consolidated basement, and features of geological structure of the sedimentary cover. Developed legend for the zoning scheme incorporates five main groups of elements: continental and oceanic crust, folded platform covers, accretion-collision systems, and provinces of continental cover basalts. An important feature of the structural-tectonic zoning scheme is designation of continental crust in the central regions of the Arctic Ocean, the existence of which is assumed on the basis of numerous geological data. It has been found that most of the Arctic region has continental crust with the exception of the Eurasian Basin and the central part of the Canada Basin, which are characterized by oceanic crust type. Thickness of continental crust from seismic data varies widely: from 30-32 km on the Mendeleev Rise to 18-20 km on the Lomonosov Ridge, decreasing to 8-10 km in rift structures of the Podvodnikov-Makarov Basin at the expense of reduction of the upper granite layer. New data confirm similar basement structure on the western and eastern continental margins of the Eurasian oceanic basin. South to north, areas of Neoproterozoic (Baikalian) and Paleozoic (Ellesmerian) folding are successively distinguished. Neoproterozoic foldbelt is observed in Central Taimyr (Byrranga Mountains). Continuation of this belt in the eastern part of the Arctic is Novosibirsk-Chukchi fold system. Ellesmerian orogen incorporates the northernmost areas of Taimyr and Severnaya Zemlya, wherefrom it can be traced to the Geofizikov Spur of the Lomonosov Ridge and further across the De Long Archipelago and North Chukchi Basin to the north of Alaska Peninsula and in the Beaufort Sea. From the north, Ellesmerides are limited by the Precambrian continental blocks - North Kara and Mendeleev Rise, the sedimentary cover within which is represented by undisturbed Paleozoic and Mesozoic deposits. Analysis of the geological and tectonic maps and the map of the Arctic basement structure indicates that the heterogeneous crustal structure of the Arctic Ocean and its continental framing were formed as a result of simultaneous development and interaction of three large paleo-oceans in the Neoproterozoic and Phanerozoic - Paleo-Asian, Proto-Atlantic and Paleo-Pacific oceans. A conceptual model that represents our understanding of structural relationships and crustal types of the main Arctic Basin structures is quite simple. The Arctic Basin is bounded by continental margins with continental crust: relatively elevated Barents-Kara - in the west, and generally submerged Amerasia margin - in the east. The latter represents a continental "bridge" formed by thinned and stretched continental crust. It connects two opposite continents - Laurentia and Eurasia, and is essentially a fragmented, tectonically mobile structure.

  10. New tectonic concept of the Arctic region evolution

    NASA Astrophysics Data System (ADS)

    Petrov, O. V.; Morozov, A.; Grikurov, G.; Shokalsky, S.; Kashubin, S.; Sobolev, N. V.; Petrov, E.

    2012-12-01

    The international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 million scale" was launched in 2003. It was initiated by geological surveys of Circum-Arctic states with active support from the UNESCO Commission for the Geological Map of the World (CGMW). This work engages a number of scientists from national academies of sciences and universities. As of today, international working groups have accomplished the compilation of geological, magnetic and gravity maps at 1:5 million scale. Upon completion of those basic maps, it became possible to undertake the compilation of the Tectonic Map of the Arctic - TeMAr. The final draft of this map is being demonstrated at GeoExpo here in Brisbane. Analysis of the new tectonic map clearly shows the Neoproterozoic - Paleozoic - late Mesozoic Paleoasian oceanic structures. Among those structures are the Neoproterozoic Timan Orogen, the Baikalian fold basement in the Pre-Yenisey zone and the collisional systems of Uralides and Kimmerides whose age becomes successively younger northward from Late Carboniferous - Early Permian to Triassic - Jurassic. Seismic and isotope-geochemistry data recently obtained on Lomonosov Ridge and Mendeleev Rise suggest the possibility that Neoproterozoic-Mesozoic orogenic structures of the High Arctic may incorporate isolated blocks of Early Precambrian continental crust. The north-directed decrease of age refers not only to orogenies caused by gradual closing of the Asian paleo-ocean but also to post-orogenic rift-related processes superposed on continental crust and reflected in the first place in the formation of LIPs. This is well exemplified by transition from the Early Triassic Siberian trap province to Triassic West Siberian province and then to Late Jurassic - Cretaceous, locally Cenozoic basaltic province of the High Arctic. The center of the Canadian Basin so far remains enigmatic: it was probably formed by seafloor spreading that could follow intensive Jurassic-Early Cretaceous continental rifting and volcanic activity. Reactivation of rifting in the Central Arctic at the beginning of Cenozoic led to the onset of spreading 56 million years ago along the emerging Gakkel Ridge and to the subsequent formation of the Eurasian Basin. Approximately 33 million years ago, the newly formed Eurasian oceanic basin connected with the Norwegian-Greenland Basin of the North Atlantic. Combined interpretation of seismostratigraphic data and drilling results suggests that during the Paleogene shallow-water sedimentation in the Central Arctic occurred, which indicates the high-standing sea level. Only in the Early Miocene (about 20 million years ago) the sea bottom sank sharply reaching its present-day depth and causing transition to deep-water deposition. This essential tectonic event is recorded throughout the Central Arctic elevations by a regional unconformity in seismostratigraphic sections. The Cenozoic expansion of the North Atlantic into the Central Arctic occurred across the structural assemblages whose formation was controlled by the preceding evolution of the Asian paleo-ocean.

  11. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2016-04-01

    The distribution of unconformities and end of Cenozoic rifting events in the South China Seas (SCS) reflects both the modes of rift development, and the effects of driving mechanisms. Continental rifting began in the eastern basins during the Paleocene, and propagated westwards to the Vietnam basin margin in the Late Eocene. Continental breakup around 32-28 Ma caused a regional reduction or cessation in extensional activity, particularly affecting basins furthest from the spreading centre. Basins in the slope and deepwater area north of the spreading centre exhibit reduced fault activity until 21-20 Ma. Propagation of oceanic crust westwards between ∼25 and 23 Ma, and termination of seafloor spreading sometime between 20.5 and 16 Ma affected fault activity in the Qiongdongnan, and Nam Con Song basins. In the Phu Khanh Basin and South, in the Dangerous Grounds area, extension continued until about 16 Ma, ending at the Red Unconformity. The end of seafloor spreading around 20.5 Ma reflects loss of extensional driving force as thinned continental crust entered the NW Borneo subduction zone. Controversially, a key component of the driving force maybe attributed to slab-pull. A transitional period of about 5-7 my between the onset of subduction of continental crust, and final jamming of the subduction zone (Deep Regional Unconformity, DRU) is inferred. The last pulse of extension was focussed in the western SCS, and terminated around 10.5 Ma. Detailed understanding of proto South China Seas development remains uncertain and controversial.

  12. Holocene compression in the Acequión valley (Andes Precordillera, San Juan province, Argentina): Geomorphic, tectonic, and paleoseismic evidence

    NASA Astrophysics Data System (ADS)

    Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart

    2016-04-01

    The Matagusanos-Maradona-Acequión Valley sits within the Andes Precordillera fold-thrust belt of western Argentina. It is an elongated topographic depression bounded by the roughly N-S trending Precordillera Central and Oriental in the San Juan Province. Moreover, it is not a piggy-back basin as we could have expected between two ranges belonging to a fold-thrust belt, but a very active tectonic corridor coinciding with a thick-skinned triangular zone, squeezed between two different tectonic domains. The two domains converge, where the Precordillera Oriental has been incorporated to the Sierras Pampeanas province, becoming the western leading edge of the west-verging broken foreland Sierras Pampeanas domain. This latter province has been in turn incorporated into the active deformation framework of the Andes back-arc at these latitudes as a result of enhanced coupling between the converging plates due to the subduction of the Juan Fernández ridge that flattens the Nazca slab under the South American continent. This study focuses on the neotectonics of the southern tip of this N-S elongated depression, known as Acequión (from the homonym river that crosses the area), between the Del Agua and Los Pozos rivers. This depression dies out against the transversely oriented Precordillera Sur, which exhibits a similar tectonic style as Precordillera Occidental and Central (east-verging fold-thrust belt). This contribution brings supporting evidence of the ongoing deformation during the Late Pleistocene and Holocene of the triangular zone bounded between the two leading and converging edges of Precordillera Central and Oriental thrust fronts, recorded in a multi-episodic lake sequence of the Acequión and Nikes rivers. The herein gathered evidence comprise Late Pleistocene-Holocene landforms of active thrusting, fault kinematics (micro-tectonic) data and outcrop-scale (meso-tectonic) faulting and folding of recent lake and alluvial sequences. In addition, seismically-induced effects already reported in the literature by this working team further support the tectonic activity of neighboring faults in the Holocene. As a concluding remark we could state that the ongoing deformation in the region under study is driven by a compressional regime whose maximum horizontal stress in the late Pleistocene-Holocene is roughly east-west oriented. This is further supported by focal mechanism solutions.

  13. Soft sediment deformation structures in the Maastrichtian Ajali Formation Western Flank of Anambra Basin, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, Solomon Ojo

    2014-01-01

    Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.

  14. High resolution evolution of post-rift terrigenous sediment yields in the Provence Basin (Western Mediterranean): relation with climate and tectonics

    NASA Astrophysics Data System (ADS)

    Leroux, Estelle; Rabineau, Marina; Aslanian, Daniel; Gorini, Christian; Molliex, Stéphane; Bache, François; Robin, Cécile; Droz, Laurence; Moulin, Maryline; Poort, Jeffrey; Rubino, Jean-Loup; Suc, Jean-Pierre

    2017-04-01

    The correlation of stratigraphic markers between the shelf, the slope and the deep basin have enabled us to provide a complete and quantitative view of sediments fluxes for the last 6 Ma on the entire Gulf of Lions margin. Messinian units and Pliocene and Pleistocene chronostratigraphic markers have been correlated from the shelf to the deep basin and the total sediment thickness from the basement (20 Ma) to the present-day seafloor has also been mapped. After Time/Depth conversion and decompaction of each stratigraphic interval, sedimentary volumes were calculated. Sediment flux evolution shows that a dramatic terrigenous peak occurred during the Messinian Salinity Crisis. The Pliocene-Pleistocene average flux appears to have been three times higher than that of the Miocene, which seems in agreement with published measurements from the World's ocean. This study also highlights the Mid-Pleistocene Revolution around 0.9 Ma, which resulted in an almost doubling of sedimentary detrital fluxes in the Provencal Basin. These results are discussed in relation with world-wide climate and alpine tectonics.

  15. Transient deformation induced by groundwater change in Taipei metropolitan area revealed by high resolution X-band SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tung, Hsin; Chen, Horng-Yue; Hu, Jyr-Ching; Ching, Kuo-En; Chen, Hongey; Yang, Kuo-Hsin

    2016-12-01

    We present precise deformation velocity maps for the two year period from September 2011 to July 2013 of the northern Taiwan area, Taipei, by using persistent scatterer interferometry (PSI) technique for processing 18 high resolution X-band synthetic aperture radar (SAR) images archived from COSMO-SkyMed (CSK) constellation. According to the result, the highest subsidence rates are found in Luzou and Wuku area in which the rate is about 15 mm/yr and 10 mm/yr respectively in the whole dataset. However, dramatic change from serve subsidence to uplift in surface deformation was revealed in the Taipei Basin in two different time spans: 2011/09-2012/09 and 2012/09-2013/07. This result shows good agreement with robust continuous GPS measurement and precise leveling survey data across the central Taipei Basin. Moreover, it also represents high correlation with groundwater table. From 8 well data in the Taipei basin, the storativity is roughly constant across most of the aquifer with values between 0.5 × 10- 4 and 1.6 × 10- 3 in Jingmei Formation and 0.8 × 10- 4 and 1.4 × 10- 3 in Wuku Formation. This high correlation indicated that one meter groundwater level change could induce about 9 and 16 mm surface deformation change in Luzou and Wuku area respectively, which is about eight times faster the long-term tectonic deformation rate in this area. Thus, to access the activity of the Shanchiao Fault, it is important to discriminate tectonic movement from anthropogenic or seasonal effect in the Taipei Basin to better understand the geohazards and mitigation in the Taipei metropolitan area.

  16. New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology

    USGS Publications Warehouse

    Miller, E.L.; Toro, J.; Gehrels, G.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, Thomas E.; Cecile, M.P.

    2006-01-01

    To test existing models for the formation of the Amerasian Basin, detrital zircon suites from 12 samples of Triassic sandstone from the circum-Arctic region were dated by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS). The northern Verkhoyansk (NE Russia) has Permo-Carboniferous (265-320 Ma) and Cambro-Silurian (410-505 Ma) zircon populations derived via river systems from the active Baikal Mountain region along the southern Siberian craton. Chukotka, Wrangel Island (Russia), and the Lisburne Hills (western Alaska) also have Permo-Carboniferous (280-330 Ma) and late Precambrian-Silurian (420-580 Ma) zircons in addition to Permo-Triassic (235-265 Ma), Devonian (340-390 Ma), and late Precambrian (1000-1300 Ma) zircons. These ages suggest at least partial derivation from the Taimyr, Siberian Trap, and/ or east Urals regions of Arctic Russia. The northerly derived Ivishak Formation (Sadlerochit Mountains, Alaska) and Pat Bay Formation (Sverdrup Basin, Canada) are dominated by Cambrian-latest Precambrian (500-600 Ma) and 445-490 Ma zircons. Permo-Carboniferous and Permo-Triassic zircons are absent. The Bjorne Formation (Sverdrup Basin), derived from the south, differs from other samples studied with mostly 1130-1240 Ma and older Precambrian zircons in addition to 430-470 Ma zircons. The most popular tectonic model for the origin of the Amerasian Basin involves counterclockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic margin. The detrital zircon data suggest that the Chukotka part of the microplate originated closer to the Taimyr and Verkhoyansk, east of the Polar Urals of Russia, and not from the Canadian Arctic. Copyright 2006 by the American Geophysical Union.

  17. Stretching of Hot Lithosphe: A Significant Mode of Crustal Stretching in Southeast Asia

    NASA Astrophysics Data System (ADS)

    de Montserrat Navarro, A.; Morgan, J. P.; Hall, R.; White, L. T.

    2017-12-01

    SE Asia roughly covers roughly 15% of the Earth's surface and represents one of the most tectonically active regions in the world, yet its tectonic evolution remains relatively poorly studied and constrained in comparison with other regions. Recent episodes of extension have been associated with sedimentary basin growth and phases of crustal melting, uplift and extremely rapid exhumation of young (<7Ma) metamorphic core complexes. This is recorded by seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provides some control on the rates of processes. We use two-dimensional numerical models to investigate the evolution of the distinctive extensional basins in SE Asia. Our models suggest that, at the onset of stretching, the lithosphere was considerably hotter than in more typically studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). High Moho temperatures are key in shaping the architecture of the stretched lithosphere: A) hot and week lower crust fails to transmit the stress and brittle deformation, thus resulting in a strong decoupling between crust and lithospheric mantle; B) the mode of deformation is dominated by the ductile flow and boudinage of lower crust, yielding the exhumation of one-to-several partially molten lower crustal bodies, including metamorphic core complexes; C) continental break-up is often inhibited by the ductile behaviour of the crust, and it is only achieved after considerable cooling of the lithosphere. To better constrain the extension rates in which these basins formed, we compare P-T and cooling paths of lower crustal material in a suite of models with newly available data from the Palu and Malino metamorphic core complexes in Sulawesi, Indonesia.

  18. Early Triassic development of a foreland basin in the Canadian high Arctic: Implications for a Pangean Rim of Fire

    NASA Astrophysics Data System (ADS)

    Hadlari, Thomas; Dewing, Keith; Matthews, William A.; Alonso-Torres, Daniel; Midwinter, Derrick

    2018-06-01

    Following the amalgamation of Laurasia and Gondwana to form Pangea, some Triassic tectonic models show an encircling arc system called the "Pangean Rim of Fire". Here we show that the stratigraphy and Early Triassic detrital zircon provenance of the Sverdrup Basin in the Canadian Arctic is most consistent with deposition in a retro-arc foreland basin. Late Permian and Early Triassic volcanism was accompanied by relatively high rates of subsidence leading to a starved basin with volcanic input from a magmatic arc to the northwest. The mostly starved basin persisted through the Middle and Late Triassic with nearly continuous input of volcanic ash recorded as bentonites on the northwestern edge of the basin. In the latest Triassic it is interpreted that decreasing subsidence and a significant influx of sand-grade sediment when the arc was exhumed led to filling of the basin at the end of an orogenic cycle. Combined with other hints of Early Triassic arc activity along the western margin of Laurentia we propose that the Pangean Rim of Fire configuration spanned the entire Triassic. This proposed configuration represents the ring of external subduction zones that some models suggest are necessary for the breakup of supercontinents such as Pangea.

  19. Formation and tectonic evolution of the Pattani Basin, Gulf of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustin, R.M.; Chonchawalit, A.

    The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and postrift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Olikgocene alluvial-fan,more » braided-river, and floodplain deposits; (2) Upper oligocene to Lowe Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) and Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase. The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor ({beta}) varies form 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor ({delta}) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. 31 refs., 13 figs., 4 tabs.« less

  20. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

Top