Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.
Egholm, David L; Knudsen, Mads F; Sandiford, Mike
2013-06-27
An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.
Data on morphotectonic indices of Dashtekhak district, Iran.
Fadaie Kermani, Ali; Derakhshani, Reza; Shafiei Bafti, Shahram
2017-10-01
Morphotectonic indices by representing the longer period of time than recorded earthquake data, are useful in evaluating the tectonic activity of a region. Dashtkhak area is located in Kerman province of Iran, where one of the most active faults, Kouhbanan strike slip fault, passes through. This data article provides a precise level data on mountain fronts and valleys of Dashtkhak region that is fundamental for morphotectonic investigations of the relationship among geomorphology and tectonic activity. This data is valuable in the field of geology and geography. Mountain fronts and valleys data is more relevant in the field of tectonics and geomorphology. It helps to evaluate a region from the viewpoint of tectonic activity. The data which are presented for 31 mountain fronts and 61 valleys, is taken by processing of remotely sensed Landsat satellite data, photogeology of areal photographs, measuring on topographic maps and controlled by field checking. This data is useful for calculating of some morphotectonic indices such as sinuosity of mountain fronts ( s mf ), mountain front faceting percentage (Facet%), the ratio of valley floor width to valley height ( V f ) and the valley ratio ( V ).
Tectonics of the central Andes
NASA Technical Reports Server (NTRS)
Bloom, Arthur L.; Isacks, Bryan L.; Fielding, Eric J.; Fox, Andrew N.; Gubbels, Timothy L.
1989-01-01
Acquisition of nearly complete coverage of Thematic Mapper data for the central Andes between about 15 to 34 degrees S has stimulated a comprehensive and unprecedented study of the interaction of tectonics and climate in a young and actively developing major continental mountain belt. The current state of the synoptic mapping of key physiographic, tectonic, and climatic indicators of the dynamics of the mountain/climate system are briefly reviewed.
NASA Astrophysics Data System (ADS)
Cataldo, K.; Douglas, B. J.; Yanites, B.
2017-12-01
Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (< 5cm) river profile data is obtained from five of the main tributaries of Bull Mountain. Comprehensive geologic mapping along the main tributaries and topographic highs of the region allowed for the identification and measurement of knickpoints, composition of detailed lithologic descriptions, and analysis of key structural features. The absence of knickpoints within the four tributaries mapped on east Bull Mountain are consistent with a lack of tectonic activity. In contrast, Dearborn Creek, on western Bull Mountain, is located along an active normal fault and presents several knickpoints. Geologic mapping confirms that the primary lithologies of the region belong to the Elkhorn Mountain Volcanics. At lower elevations, there are massive plutonic intrusions of Quartz Monzonite and Diorite, both constituents of the Boulder batholith. These lithologies contain minerals suited for low-temperature thermochronology (U-Th/He) to constrain the timing of tectonic activity (i.e. uplift and exhumation) and erosion rates in the region. High-resolution stream profiles and a 10m DEM are used to delineate watersheds and produce steepness and concavity maps of major tributaries to investigate changes in slope or topography. The effects of extensional tectonic events can reshape drainage patterns of streams and their distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.
O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.
2007-01-01
The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.
Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.
2007-01-01
Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.
Whitney, John W.; O'Leary, Dennis W.
1993-01-01
Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.
Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.
2001-01-01
Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.
NASA Astrophysics Data System (ADS)
Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro
2017-04-01
Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the mountain front along the Sesseri, Siluk, Siku, Siang, Mingo, Sileng, Dikari, and Simen rivers. At some such junctions, landforms associated with the active right-lateral strike-slip faults are superposed over the earlier landforms formed by transverse normal faults. In addition to linear transverse features, we see evidence that the fold-thrust belt of the frontal part of the Arunachal Himalaya has also been affected by the neotectonically active NW-SE trending major fold known as the Siang antiform that again is aligned transverse to the mountain front. The folding of the HFT and MBT along this antiform has reshaped the landscape developed between its two western and eastern limbs running N-S and NW-SE, respectively. The transverse faults are parallel to the already reported deep-seated transverse seismogenic strike-slip fault. Therefore, a single take home message is that any true manifestation of the neotectonics and seismic hazard assessment in the Himalayan region must take into account the role of transverse tectonics.
Active Tectonics Around Almaty and along the Zailisky Alatau Rangefront
NASA Astrophysics Data System (ADS)
Grützner, C.; Walker, R. T.; Abdrakhmatov, K. E.; Mukambaev, A.; Elliott, A. J.; Elliott, J. R.
2017-10-01
The Zailisky Alatau is a >250 km long mountain range in Southern Kazakhstan. Its northern rangefront around the major city of Almaty has more than 4 km topographic relief, yet in contrast to other large mountain fronts in the Tien Shan, little is known about its Late Quaternary tectonic activity despite several destructive earthquakes in the historical record. We analyze the tectonic geomorphology of the rangefront fault using field observations, differential GPS measurements of fault scarps, historical and recent satellite imagery, meter-scale topography derived from stereo satellite images, and decimeter-scale elevation models from unmanned aerial vehicle surveys. Fault scarps ranging in height from 2 m to >20 m in alluvial fans indicate that surface rupturing earthquakes occurred along the rangefront fault since the Last Glacial Maximum. Minimum estimated magnitudes for those earthquakes are M6.8-7. Radiocarbon dating results from charcoal layers in uplifted river terraces indicate a Holocene slip rate of 1.2-2.2 mm/a. We find additional evidence for active tectonic deformation all along the Almaty rangefront, basinward in the Kazakh platform, and in the interior of the Zailisky mountain range. Our data indicate that the seismic hazard faced by Almaty comes from a variety of sources, and we emphasize the problems related to urban growth into the loess-covered foothills and secondary earthquake effects. With our structural and geochronologic framework, we present a schematic evolution of the Almaty rangefront that may be applicable to similar settings of tectonic shortening in the mountain ranges of Central Asia.
Tectonic models for Yucca Mountain, Nevada
O'Leary, Dennis W.
2006-01-01
Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaberi, Maryam; Ghassemi, Mohammad R.; Shayan, Siavosh; Yamani, Mojtaba; Zamanzadeh, Seyed Mohammad
2018-01-01
The Alborz mountain chain is a region of active deformation within the Arabia-Eurasia continental collision zone. The southern part of central Alborz Mountains, in the north of Iran, represents complex tectonics because it is located at the border of two developing continental sedimentary basins between southern central Alborz and Central Iran. An arid and semi-arid climate, a large extent of Quaternary sediments, rugged topography, salt domes and faults with historical seismicity influence the Habble-Rud River catchment. In the present research, a number of tectonic geomorphologic indices were extracted from satellite imagery and 10 m DEM (digital elevation model) data in order to identify relative tectonic activity within the basin. The indices include: stream length-gradient index (Sl), drainage basin asymmetry (Af), index of mountain front sinuosity (Smf), hypsometric integral (Hi), index of drainage basin shape (Bs), ratio of valley-floor width to valley height (Vf), and fault density (Fd). Due to the presence of heterogeneous indices for all sections of the catchment causing large extension of Habble-Rud (3260 km2), all of the variables such as extremely erodible formations, faults and folds and salt tectonics on the Southern part; were put into a matrix table. As a new approach, the variables were put into the SAW (simple additive model) model as one of MADM (multi-attribute decision-making models) techniques. The study area was divided into four regions according to the values of SAW. These classes include very high (%11), high (48.3%), moderate (34.7%), and low activity (3.4%). The result of the model suggests that the study area is located on a changing tectonic trend in central Alborz from NW-SE to NE-SW. The regions with high relative tectonic activity in HR catchment correspond to the active Garmsar and Sorkhe-Kalout faults and diapirs.
Io: Mountains and crustal extension
NASA Technical Reports Server (NTRS)
Heath, M. J.
1985-01-01
It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.
Paleomagnetism and tectonics of the Jura arcuate mountain belt in France and Switzerland
NASA Astrophysics Data System (ADS)
Gehring, Andreas U.; Keller, Peter; Heller, Friedrich
1991-02-01
Goethite and hematite in ferriferous oolitic beds of Callovian age from the Jura mountains (Switzerland, France) carry either pre- and/or post-tectonic magnetization. The frequent pre-tectonic origin of goethite magnetization indicates a temperature range during formation of the arcuate Jura mountain belt below the goethite Néel temperature of about 100°C. The scatter of the pre-tectonic paleomagnetic directions ( D = 11.5° E, I = 55.5°; α95 = 4.7) which reside both in goethite and hematite, provides strong evidence that the arcuate mountain belt was shaped without significant rotation. The paleomagnetic results support tectonic thin-skinned models for the formation of the Jura mountain belt.
Daniel, Christopher G.; Jones, James V.; Andronicos, Christopher L.; Gray, Mary Beth; Abbott, Lon D.; Hancock, Gregory S.
2013-01-01
The early Mesoproterozoic (ca. 1400 Ma) is an enigmatic time in the tectonic evolution of southern Laurentia. Circa 1400 Ma granites within Laurentia and multiple other continents have distinctive geochemistry consistent with crustal extension or mantle upwelling. In the southwestern United States, these granites are commonly foliated and are often spatially associated with km-scale ductile shear zones. Deformation is attributed to intracontinental tectonism driven by active convergence along the distal southern margin of Laurentia. The recent discovery of deformed and metamorphosed, ca. 1450 Ma sedimentary rocks in northern New Mexico has strengthened the case for regional deformation and orogenesis. However, important questions remain about the tectonic significance of these events and how to reconcile tectonic models with granite petrology at the regional to global scale. This trip focuses on the protolith age of Proterozoic metasedimentary rocks and the kinematics, timing, and tectonic significance of deformation, magmatism, and metamorphism for the Mesoproterozoic across different crustal levels in the southern Rocky Mountains to highlight the ongoing questions and controversies regarding the Mesoproterozoic tectonic setting of Laurentia.This field trip will examine some of the diverse and most recently discovered evidence for ca. 1400 Ma orogenesis in the southern Rocky Mountains. We hope this trip will promote new interest and discussion about the Mesoproterozoic tectonic evolution of Laurentia. We will visit multiple outcrops in the Wet Mountains of southern Colorado and the Picuris Mountains of northern New Mexico. Stops in the Wet Mountains are arranged from north to south to examine contrasting styles of ca. 1400 Ma deformation with increasing paleodepth across the tilted Proterozoic crustal section. In the Picuris Mountains, we focus on detrital zircon geochronology and revisions to the lithostratigraphy of Paleoproterozoic and recently documented Mesoproterozoic metasedimentary rocks, the nature of regional metamorphism, and the style of deformation, ca. 1450–1400 Ma.
Continental tectonics in the aftermath of plate tectonics
NASA Technical Reports Server (NTRS)
Molnar, Peter
1988-01-01
It is shown that the basic tenet of plate tectonics, rigid-body movements of large plates of lithosphere, fails to apply to continental interiors. There, buoyant continental crust can detach from the underlying mantle to form mountain ranges and broad zones of diffuse tectonic activity. The role of crustal blocks and of the detachment of crustal fragments in this process is discussed. Future areas of investigation are addressed.
An exhumed Late Paleozoic canyon in the rocky mountains
Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.
2007-01-01
Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.
Whitney, J.W.; Keefer, W.R.
2000-01-01
In recognition of a critical national need for permanent radioactive-waste storage, Yucca Mountain in southwestern Nevada has been investigated by Federal agencies since the 1970's, as a potential geologic disposal site. In 1987, Congress selected Yucca Mountain for an expanded and more detailed site characterization effort. As an integral part of this program, the U.S. Geological Survey began a series of detailed geologic, geophysical, and related investigations designed to characterize the tectonic setting, fault behavior, and seismicity of the Yucca Mountain area. This document presents the results of 13 studies of the tectonic environment of Yucca Mountain, in support of a broad goal to assess the effects of future seismic and fault activity in the area on design, long-term performance, and safe operation of the potential surface and subsurface repository facilities.
NASA Astrophysics Data System (ADS)
Singh, Vimal; Tandon, S. K.
2008-12-01
The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.
Glacial reorganization of topography in a tectonically active mountain range
NASA Astrophysics Data System (ADS)
Adams, Byron; Ehlers, Todd
2016-04-01
Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.
Topography of Venus and earth - A test for the presence of plate tectonics
NASA Technical Reports Server (NTRS)
Head, J. W.; Yuter, S. E.; Solomon, S. C.
1981-01-01
Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.
Climate dominated topography in a tectonically active mountain range
NASA Astrophysics Data System (ADS)
Adams, B. A.; Ehlers, T. A.
2015-12-01
Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.
NASA Astrophysics Data System (ADS)
Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto
2017-04-01
The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the sediment input occurred since mid-Pleistocene time respect to Pliocene-Gelasian times. Even if the absolute amount of sediment arriving in the two basins is quite different, reflecting the different extension of their source regions, this increase occurred concomitantly with both the strong decrease of tectonic activity in the surrounding belts and the onset of major glaciations in the Alpine range. Therefore we argue that a cool, highly oscillating climate, causing glacial-interglacial cycles is approximately 4 times more efficient than tectonics in promoting the erosion of mountain belts and the related detrital input in the surrounding sedimentary basins.
Geomorphological approach in karstic domain: importance of underground water in the Jura mountains.
NASA Astrophysics Data System (ADS)
Rabin, Mickael; Sue, Christian; Champagnac, Jean Daniel; Bichet, Vincent; Carry, Nicolas; Eichenberger, Urs; Mudry, Jacques; Valla, Pierre
2014-05-01
The Jura mountain belt is the north-westernmost and one of the most recent expressions of the Alpine orogeny (i.e. Mio-Pliocene times). The Jura has been well studied from a structural framework, but still remains the source of scientific debates, especially regarding its current and recent tectonic activity [Laubscher, 1992; Burkhard and Sommaruga, 1998]. It is deemed to be always in a shortening state, according to leveling data [Jouanne et al., 1998] and neotectonic observations [Madritsch et al., 2010]. However, the few GPS data available on the Jura do not show evidence of shortening, but rather a low-magnitude extension parallel to the arc [Walpersdorf et al., 2006]. Moreover, the traditionally accepted assumption of a collisional activity of the Jura raises the question of its geodynamic origin. The Western Alps are themselves in a post-collisional regime and characterized by a noticeable isostatic-related extension, due to the interaction between buoyancy forces and external dynamics [Sue et al., 2007]. Quantitative morphotectonic approaches have been increasingly used in active mountain belts to infer relationship between climates and tectonics in landscape evolution [Whipple, 2009]. In this study, we propose to apply morphometric tools to calcareous bedrock, in a slowly deformed mountain belt. In particular, we have used watersheds metrics determination and associated river profiles analysis to allow quantifying the degree and nature of the equilibrium between the tectonic forcing and the fluvial erosional agent [Kirby and Whipple, 2001]. Indeed, long-term river profiles evolution is controlled by climatic and tectonic forcing through the following expression [Whipple and Tucker, 1999]: S = (U / K) 1/n Am/n (with U: uplift rate, K: empirical erodibility factor, function of hydrological and geological settings; A: drained area, m, n: empirical parameters). We present here a systematic analysis of river profiles applied to the main drainage system of the Jura. The objective is to assess to what extent this powerful landscape analysis tool will be applicable to limestone bedrock settings where groundwater flow might be an important component of the hydrological system. First results show that river slopes and knickpoints are poorly controlled by lithological variation within the Jura mountains. Quantitative analyses reveal abnormal longitudinal profiles, which are controlled by either tectonic and/or karstic processes. Evaluating the contribution of both tectonics and karst influence in the destabilization of river profiles is challenging and appears still unresolved. However these morphometrics signals seem to be in accordance with the presence of active N-S to NW-SE strike-slip faults, controlling both surface runoff and groundwater flow.
Tectonic and neotectonic framework of the Yucca Mountain Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweickert, R.A.
1992-09-30
Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.
The tectonics of Titan: Global structural mapping from Cassini RADAR
Liu, Zac Yung-Chun; Radebaugh, Jani; Harris, Ron A.; Christiansen, Eric H.; Neish, Catherine D.; Kirk, Randolph L.; Lorenz, Ralph D.; ,
2016-01-01
The Cassini RADAR mapper has imaged elevated mountain ridge belts on Titan with a linear-to-arcuate morphology indicative of a tectonic origin. Systematic geomorphologic mapping of the ridges in Synthetic Aperture RADAR (SAR) images reveals that the orientation of ridges is globally E–W and the ridges are more common near the equator than the poles. Comparison with a global topographic map reveals the equatorial ridges are found to lie preferentially at higher-than-average elevations. We conclude the most reasonable formation scenario for Titan’s ridges is that contractional tectonism built the ridges and thickened the icy lithosphere near the equator, causing regional uplift. The combination of global and regional tectonic events, likely contractional in nature, followed by erosion, aeolian activity, and enhanced sedimentation at mid-to-high latitudes, would have led to regional infilling and perhaps covering of some mountain features, thus shaping Titan’s tectonic landforms and surface morphology into what we see today.
NASA Technical Reports Server (NTRS)
Bloom, A. L.; Strecker, M. R.; Fielding, E. J.
1984-01-01
A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.
NASA Astrophysics Data System (ADS)
Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan
2016-04-01
On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.
NASA Astrophysics Data System (ADS)
Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin
2016-03-01
The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level, while 43% of the drainage basins without occurred debris flow valleys are at a high risk level. A comparison with results from past studies demonstrated that the accuracy of these findings is greater than 85%, indicating that the basin topography created by rapid tectonic deformations is more favorable for debris flows.
Measurement of tectonic surface uplift rate in a young collisional mountain belt
Abbott, L.D.; Silver, E.A.; Anderson, R. Scott; Smith, R.; Ingle, J.C.; Kling, S.A.; Haig, D.; Small, E.; Galewsky, J.; Sliter, W.
1997-01-01
Measurement of the rate of tectonically driven surface uplift is crucial to a complete understanding of mountain building dynamics. The lack of a suitable rock record typically prevents determination of this quantity, but the unusual geology of Papua New Guinea's Finisterre mountains makes measurement of this rate possible. The tectonic surface uplift rate at the Finisterre range is 0.8-2.1 mm yr-1, approximately that expected to arise from crustal thickening.
NASA Astrophysics Data System (ADS)
von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik
2015-04-01
Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold glacial periods with intensive sediment supply and strong vertical sedimentation of tributaries originating from a westerly direction. Thus, the middle course of the Kura River shows a dynamic equilibrium between competing tectonic and climatic processes.
NASA Astrophysics Data System (ADS)
Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.
2017-12-01
We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (<20 Ωm) in the midcrust to lower crust that is centered beneath the highest elevations of the southern Rocky Mountains and (2) hydrated lithospheric mantle beneath the Great Plains with water content in excess of 100 ppm. We interpret the high conductivity region of the lower crust as a zone of partially molten basalt and associated deep-crustal fluids that is the result of recent (less than 10 Ma) tectonic activity in the region. The recent supply of volatiles and/or heat to the base of the crust in the late Cenozoic implies that modern-day tectonic activity in the western United States extends to at least the western margin of the Great Plains. The transition from conductive to resistive upper mantle is caused by a gradient in lithospheric modification, likely including hydration of nominally anhydrous minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.
Stallard, R.F.; Koehnken, L.; Johnsson, M.J.
1991-01-01
The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos to the main stem of the Orinoco. After mixing into the main stem, there seems to be little subsequent alteration of sediment. ?? 1991.
NASA Astrophysics Data System (ADS)
Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo
2018-02-01
A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.
ERIC Educational Resources Information Center
Naturescope, 1987
1987-01-01
Provides background information on various agents that change the landscape. Includes teaching activities on weathering, water, wind and ice erosion, plate tectonics, sedimentation, deposition, mountain building, and determining contour lines. Contains reproducible handouts and worksheets for two of the activities. (TW)
Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity
NASA Technical Reports Server (NTRS)
Sauber, Jeanne; Stewart, Iain S.; Rose, James
2000-01-01
The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.
A climate signal in exhumation patterns revealed by porphyry copper deposits
NASA Astrophysics Data System (ADS)
Yanites, Brian J.; Kesler, Stephen E.
2015-06-01
The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.
Active rollback in the Gibraltar Arc: Evidences from CGPS data in the western Betic Cordillera
NASA Astrophysics Data System (ADS)
Gonzalez-Castillo, L.; Galindo-Zaldivar, J.; de Lacy, M. C.; Borque, M. J.; Martinez-Moreno, F. J.; García-Armenteros, J. A.; Gil, A. J.
2015-11-01
The Gibraltar Arc, located in the western Mediterranean Sea, is an arcuate Alpine orogen formed by the Betic and Rif Cordilleras, separated by the Alboran Sea. New continuous GPS data (2008-2013) obtained in the Topo-Iberia stations of the western Betic Cordillera allow us to improve the present-day deformation pattern related to active tectonics in this collision area between the Eurasian and African plates. These data indicate a very consistent westward motion of the Betic Cordillera with respect to the relatively stable Iberian Massif foreland. The displacement in the Betics increases toward the south and west, reaching maximum values in the Gibraltar Strait area (4.27 mm/yr in Ceuta, CEU1, and 4.06 mm/yr in San Fernando, SFER), then progressively decreasing toward the northwestern mountain front. The recent geological structures and seismicity evidence moderate deformation in a roughly NW-SE to WNW-ESE compressional stress setting in the mountain frontal areas, and moderate extension toward the internal part of the cordillera. The mountain front undergoes progressive development of folds affecting at least up to Pliocene deposits, with similar recent geological and geodetical rates. This folded strip helps to accommodate the active deformation with scarce associated seismicity. The displacement pattern is in agreement with the present-day clockwise rotation of the tectonic units in the northern branch of the Gibraltar Arc. Our data support that the westward emplacement of the Betic Cordillera continues to be active in a rollback tectonic scenario.
Seismicity of the Earth 1900–2010 Middle East and vicinity
Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.
2013-01-01
No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.
Irwin, William P.; Mankinen, Edward A.
1998-01-01
The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.
Fracture density and grain size controls on the relief structure of threshold landscapes
NASA Astrophysics Data System (ADS)
DiBiase, R.; Rossi, M. W.; Neely, A.
2015-12-01
A central goal in geomorphology is to untangle the competing controls of climate, tectonics, and rock strength on the topography and relief structure of mountain ranges. This is important for deciphering the history of climate and tectonics encoded in landscapes, predicting natural hazards, and quantifying critical zone processes. Incorporating rock strength into landscape evolution models has been a particularly challenging problem, because the factors that determine rock strength vary in importance depending on process. Here we propose a mechanism of hillslope-channel coupling by which tectonically-induced fracturing influences the relief structure of steep, rocky "threshold" landscapes by leading to A) increased fracture density in exposed bedrock outcrops, thereby limiting hillslope relief, and B) decreased grain size of channel bed material, thereby reducing the magnitude of fluvial incision thresholds and increasing the erosional efficiency of bedrock rivers. To test this hypothesis, we compare two contrasting landscapes in southern California—the eastern San Gabriel Mountains and the northern San Jacinto Mountains. The eastern San Gabriel Mountains rise 2 km in relief and exhibit high uplift and erosion rates due to active faulting along the Cucamonga thrust fault. Although bedrock on hillslopes is common, the exposed granitic and metamorphic basement rock is highly fractured at the decimeter or finer scale, and river channels are mantled with a thin layer of gravel-cobble alluvium. The northern San Jacinto Mountains, 80 km to the southeast, experience similar mean runoff and daily runoff variability, and are underlain by similar bedrock. Yet, despite an absence of active faulting, and erosion rates slower than the eastern San Gabriel Mountains by a factor of 5, the northern San Jacinto Mountains preserve one of the steepest escarpments in the contiguous US (2-3 km high), characterized by massive bedrock outcrops on hillslopes with meter-scale or larger fracture spacing, and a resulting channel network mantled with large boulders. Preliminary analyses suggest that fracture spacing and bed material grain size in threshold landscapes are tightly coupled, and influence the steepness of hillslopes and channels that control the relief structure of mountain ranges in a predictable manner.
NASA Astrophysics Data System (ADS)
Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.
2010-05-01
In northeast Iran, the Binalud Mountains accommodate part of active convergence between the Arabian and Eurasian plates. This fault-bounded mountain range has been considered a key region to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision. But, the lack of knowledge on active faulting hampered evaluating the geological reliability of tectonic models describing the kinematics of deformation in northeast Iran. Morphotectonic investigations along both sides of the Binalud Mountains allowed us to characterize the structural and active faulting patterns along the Neyshabur and Mashhad fault systems on the southwest and northeast sides of the mountain range, respectively. We applied combined approaches of morphotectonic analyses based on satellite imageries (SPOT5 and Landsat ETM+), STRM and site-scale digital topographic data, and field surveys complemented with in situ-produced 10Be exposure dating to determine the kinematics and rate of active faulting. Three regional episodes of alluvial surface abandonments were dated at 5.3±1.1 kyr (Q1), 94±5 kyr (Q3), and 200±14 kyr (S3). The geomorphic reconstruction of both vertical and right-lateral fault offsets postdating these surface abandonment episodes yielded Quaternary fault slip rates on both sides of the Binalud Mountains. On the Neyshabur Fault System, thanks to geomorphic reconstructions of cumulative offsets recorded by Q3 fan surfaces, slip rates of 2.7±0.8 mm/yr and 2.4±0.2 mm/yr are estimated for right-lateral and reverse components of active faulting, respectively. Those indicate a total slip rate of 3.6±1.2 mm/yr for the late Quaternary deformation on the southwest flank of the Binalud Mountains. Reconstructing the cumulative right-lateral offset recorded by S3 surfaces, a middle-late Quaternary slip rate of 1.6±0.1 mm/yr is determined for the Mashhad Fault System. Altogether, our geomorphic observations reveal that, on both sides of the Binalud Mountains, the relative motion between central Iran and Eurasia is partly taken-up by dextral-reverse oblique-slip faulting along the Neyshabur and Mashhad fault systems. This faulting mechanism implies a long-term rate of ~4 mm/yr for the range-parallel strike-slip faulting, and an uplift rate of ~2.4 mm/yr due to the range-normal shortening during late Quaternary. Our data provide the first geological constraints on the rate of active faulting on both sides of the Binalud Mountains, and allow us to examine the geological reliability of preexisting tectonic models proposed to describe the kinematics of active deformation at the northeastern boundary of the Arabia-Eurasia collision. Our results favor the northward translation of central Iran with respect to Eurasia through strike-slip faulting localized along distinct crustal scale fault systems rather than systematic block rotations around vertical axes.
Progress report. Task 1 - quaternary tectonics, 1 October 1991--30 September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-09-30
Progress is reported on a study concerned with the quaternary tectonics of Yucca Mountain, the proposed site for an underground disposal facility for high-level radioactive wastes. Refinement and revision of crater Flat Quaternary stratigraphy continued and consisted of several activities: revision of rock varnish cation leaching curve; sample comparison of RV manganese;,iron microlaminations;and correlation of Crater Flat allostratigraphic units with regional chronologies.
NASA Astrophysics Data System (ADS)
Sharma, Gopal; Champati ray, P. K.; Mohanty, S.
2018-01-01
Alaknanda basin in the Garhwal Himalaya, India, is a tectonically active region owing to ongoing crustal deformation, erosion, and depositional processes active in the region. Active tectonics in this region have greatly affected the drainage system and geomorphic expression of topography and provide an ideal natural set up to investigate the influence of tectonic activity resulting from the India-Eurasia collision. We evaluated active tectonics by using high resolution digital elevation model (DEM) based on eight geomorphic indices (stream length gradient index, valley floor width-to-height ratio, hypsometric integral, drainage basin asymmetry, transverse topography symmetry factor, mountain front sinousity index, bifurcation ratio, and basin shape index) and seismicity in eight subbasins of Alaknanda basin. The integrated product, relative tectonic activity index (TAI) map, was classified into three classes such as: 'highly active' with values ranging up to 2.0; 'moderately active' with values ranging from 2.0 to 2.25; and 'less active' with values > 2.25. Further, the results were compared with relatively high crustal movement rate of 41.10 mm/y computed through high precession Global Navigation Satellite System (GNSS) based continuous operating reference station (CORS) data. Thus, we concluded that this new quantitative approach can be used for better characterization and assessment of active seismotectonic regions of the Himalaya and elsewhere.
NASA Astrophysics Data System (ADS)
Pronin, A. A.
The structures of the Lakshmi Planum and its surrounding mountains are described. Special attention is given to the origin of the Lakshmi structure. The compressional deformations on its periphery are explained by seeing the Lakshimi strucutre as a locus of convergence, and the volcanic activity of the central part of the structure is explained by the melting of the bottom of the crust at the place of its convergency thickening. It is noted that the characteristics of the Lakshmi Planum and it bounding mountains suggest that this ensemble is a giant hot-spot structure with the intensive volcanism and radial tectonic spreading, leading to the piling up of the crust material at the structure periphery. A tectonic scheme of the Lakshmi structure formation is presented.
Rapid biological speciation driven by tectonic evolution in New Zealand
NASA Astrophysics Data System (ADS)
Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.
2016-02-01
Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.
Seismic anisotropy and mantle creep in young orogens
Meissner, R.; Mooney, W.D.; Artemieva, I.
2002-01-01
Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.
What's Under Your Feet? Activity Book. Earth Science for Everyone.
ERIC Educational Resources Information Center
Rubin, Penni; Robbins, Eleanora I.
This profusely illustrated activity book helps students understand systems and cycles, how years change the look of the Earth, and how students can protect resources. The sections (and activities) in this book are: (1) The Earth (Introduction--View, Soil & Dirt); (2) Forces (Plate Tectonics, Earthquakes, Mountain Building, Erosion, Volcanoes,…
Regional geology and geophysics of the Jemez Mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, F.G.
1973-08-01
The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)
Strong feedbacks between hillslope sediment production and channel incision by saltation-abrasion
NASA Astrophysics Data System (ADS)
Lundbek Egholm, David; Faurschou Knudsen, Mads; Sandiford, Mike
2013-04-01
While it is well understood that rivers erode mountain ranges by incising the bedrock and by transporting sediments away from the ranges, the basic physical mechanisms that drive long-term bedrock erosion and control the lifespan of mountain ranges remain uncertain. A particularly challenging paradox is reconciling the dichotomy associated with the high incision rates observed in active mountain belts, and the long-term (108 years) preservation of significant topographic reliefs in inactive orogenic belts (e.g. von Blankenburg, 2005). We have performed three-dimensional computational experiments with a landscape evolution model that couples bedrock landslides and sediment flux-dependent river erosion by saltation-abrasion (Sklar & Dietrich, 2004). The coupled model experiments show strong feedbacks between the channel erosion and the hillslope delivery of sediments. The feedbacks point to hillslope sediment production rate as the main control on channel erosion rates where saltation-abrasion dominates over other fluvial erosion processes. Our models results thus highlight the importance of hillslope sediment production controlled by climate and tectonic activity for scaling erosion rates in fluvial systems. Because of variations in landslide frequency, the feedbacks make tectonic activity a primary driver of fluvial erosion and help clarifying the long-standing paradox associated with the persistence of significant relief in old orogenic belts, up to several hundred-million-years after tectonic activity has effectively ceased. References F. von Blankenburg. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462-479 (2005). L. S. Sklar, W. E. Dietrich. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 40, W06301 (2004).
Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.
1990-01-01
The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors
Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana
Du Bray, E.A.; Harlan, Stephen S.
1998-01-01
The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.
Current Seismicity in the Vicinity of Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Smith, K.; von Seggern, D.; dePolo, D.
2001-12-01
The 1992 to 2000 earthquakes in the Southern Great Basin have been relocated in order to better recognize the active tectonic processes in the vicinity of Yucca Mountain. During this time period seismic monitoring in the Southern Great Basin transitioned from a primarily single-component analog network to a 3-component digital network. Through the transition analog and digital networks were run in tandem. The station density over this period is as great as any prior recording period. The analog and digital networks were administered separately during the transition, and we have merged the phase data from the two operations. We performed relocations starting in October 1992, thus creating a hypocentral list for FY1993-FY2000. Aftershocks of the June 1992 M 5.6 Little Skull Mountain earthquake, located approximately 20 km southeast of Yucca Mountain, dominate the seismicity in the Southern Great Basin from 1992-2000. After the Little Skull Mountain earthquake, there was a general increase in earthquake activity in southern NTS, principally associated with the Rock Valley fault zone. There was no corresponding increase in seismicity west of Little Skull Mountain near the potential repository site. The distribution of high-quality earthquake locations generally reflects trends in Miocene tectonism. In particular, a general north-south trending gravity low, interpreted by Carr (1984) as the Kawich-Greenwater Rift, is highlighted by the microseismicity in many areas. Locally small magnitude earthquakes tend to outline the 8-10 Ma Timber Mountain caldera in northern and central NTS. Although these structures do not generally correlate with Quaternary faults, the micro-earthquake activity may reflect zones of weakness within these older structures. A 100 km long, conspicuous, north-south trending seismic zone, which shows no correlation with know Quaternary features, aligns along the steep gravity gradient bordering the western side of the Kawich-Greenwater gravity structure. This apparently is an indication that at least some of the seismicity near Yucca Mountain is driven by density contrasts in the lower crust or upper mantle as well as by low regional tectonic strain rates. Overall, the seismicity near Yucca Mountain is low compared to other areas of the southern Great Basin and to the west in the Eastern California Shear Zone. We have calculated the Coulomb stress changes on Yucca Mountain area faults due to large (M > 7) faulting events on the Furnace Creek Fault Zone and interpreted this result in terms of the implications for understanding the distribution of the current seismicity. Because of the significant difference in the Quaternary geologic slip rates between the Furnace Creek and Yucca Mountain area faults (a factor of 250-500) and the stress modeling results, we investigate the hypothesis that the Furnace Creek and Death Valley faults act to decrease the long-term recurrence rate for normal faulting events in the Yucca Mountain block.
NASA Technical Reports Server (NTRS)
Nielsen, K. C.; Stern, R. J.
1985-01-01
The Anadarko Basin of western Oklahoma is a WNW-ESE elongated trough filled with of Paleozoic sediments. Most models call for tectonic activity to end in Pennsylvanian times. NASA Shuttle Imaging Radar revealed a distinctive and very straight lineament set extending virtually the entire length of the Anadarko Basin. The lineaments cut across the relatively flat-lying Permian units exposed at the surface. The character of these lineaments is seen most obviously as a tonal variation. Major streams, including the Washita and Little Washita rivers, appear to be controlled by the location of the lineaments. Subsurface data indicate the lineaments may be the updip expression of a buried major fault system, the Mountain View fault. Two principal conclusions arise from this analysis: (1) the complex Mountain View Fault system appears to extend southeast to join the Reagan, Sulphur, and/or Mill Creek faults of the Arbuckle Mountains, and (2) this fault system has been reactivated in Permian or younger times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, S.I.; Noble, D.C.; Larson, L.T.
1992-09-30
This report summarizes the result of Task 3 work initially discussed in our monthly reports for the period October 1, 1991 through September 30, 1992, and contained in our various papers and abstracts, both published and currently in press or review. Our work during this period has involved (a) the continuation of studies begun prior to October, 1991, focussed mainly on aspects of the caldera geology, volcanic stratigraphy, magmatic activity, hydrothermal mineralization and extensional tectonics of the western and northwestern parts of the southwestern Nevada volcanic field (SWNVF), and (b) new studies of the alteration and trace-metal geochemistry of subsurfacemore » rocks at Yucca Mountain utilizing drill hole samples obtained in late 1991 and early 1992.« less
Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, D.M.; Snyder, W.S.; Spinosa, C.
1991-02-01
Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain bymore » basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.« less
Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, W.S.; Spinosa, C.; Gallegos, D.M.
1991-02-01
Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sedimentmore » by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.« less
Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran
NASA Astrophysics Data System (ADS)
Jones, Stuart J.; Arzani, Nasser; Allen, Mark B.
2014-04-01
Late Pleistocene to Holocene fans of the Kohrud mountain belt (Central Iran) illustrate the problems of differentiating tectonic and climatic drivers for the sedimentary signatures of alluvial fan successions. It is widely recognised that tectonic processes create the topography that causes fan development. The existence and position of fans along the Kohrud mountain belt, NE of Esfahan, are controlled by faulting along the Qom-Zefreh fault system and associated fault zones. These faults display moderate amounts of historical and instrumental seismicity, and so may be considered to be tectonically active. However, fluvial systems on the fans are currently incising in response to low Gavkhoni playa lake levels since the mid-Holocene, producing incised gullies on the fans up to 30 m deep. These gullies expose an interdigitation of lake deposits (dominated by fine-grained silts and clays with evaporites) and coarse gravels that characterise the alluvial fan sediments. The boundaries of each facies are mostly sharp, with fan sediments superimposed on lake sediments with little to no evidence of reworking. In turn, anhydrite-glauberite, mirabilite and halite crusts drape over the gravels, recording a rapid return to still water, shallow ephemeral saline lake sedimentation. Neither transition can be explained by adjustment of the hinterland drainage system after tectonic uplift. The potential influence in Central Iran of enhanced monsoons, the northward drift of the Intertopical Convergence Zone (ITCZ) and Mediterranean climates for the early Holocene (~ 6-10 ka) point to episodic rainfall (during winter months) associated with discrete high magnitude floods on the fan surfaces. The fan sediments were deposited under the general influence of a highstand playa lake whose level was fluctuating in response to climate. This study demonstrates that although tectonism can induce fan development, it is the sensitive balance between aridity and humidity resulting from changes in the climate regime of Central Iran that influences the nature of fan sequences and how they interrelate to associated facies.
Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran
NASA Astrophysics Data System (ADS)
Heydari, Ezat
2008-04-01
At least 12 km of strata ranging in age from the latest Precambrian to the Recent are exposed in the Zagros Mountains of Iran. This sedimentary cover is characterized by distinct stratal packages separated by major unconformities forming twelve supersequences. They are informally named as: (1) Late Precambrian - Cambrian Hakhamanesh Supersequence, (2) Ordovician Kourosh Supersequence, (3) Silurian Camboojiyeh Supersequence, (4) Devonian Darioush Supersequence, (5) Mississippian - Pennsylvanian Khashayar Supersequence, (6) Permian - Triassic Ashk Supersequence, (7) Jurassic Farhad Supersequence, (8) Early Cretaceous Mehrdad Supersequence, (9) Late Cretaceous Ardavan Supersequence, (10) Paleocene - Oligocene Sassan Supersequence, (11) Oligocene - Miocene Ardeshir Supersequence, and (12) Miocene - Pleistocene Shapour Supersequence. These supersequences and their correlatives in neighboring areas have been used to infer tectonic events. The dominant interpretation has been that local or regional epeirogenic movements were responsible for the formation of these supersequences. Unconformities are considered as indications that epeirogenic movements associated with tectonic events affected the area. The present investigation provides an alternative to the established view of the Phanerozoic supersequences of the Zagros Mountains. A good correlation exists between the lithofacies of supersequences in the Zagros Mountains and the second-order eustatic sea-level changes. Deposition of deep-water, marine shales occurred during periods of eustatic sea-level rise. Platform-wide unconformities coincided with eustatic sea-level lows. In fact, supersequences of the Zagros Mountains are nearly identical to those described from the North American Craton and the Russian Platform suggesting that these stratal packages are global. These observations suggest that supersequences of the Zagros Mountains formed by second order eustatic sea-level changes and not by local or regional epeirogenic movements. Although tectonic events did not produce supersequences of the Zagros Mountains, they influenced regional lithofacies patterns through the formation of intrashelf depressions such as the Hormoz Salt Basin during the Precambrian and the Dezful Embayment and the Lorestan Basin during the Mesozoic. Tectonic events also affected sedimentation during the Tertiary collision of Arabia and the Central Iran microplate through uplift, erosion, and the formation of the Zagros Foreland Basin. The results of this investigation necessitate a re-evaluation of the role and the significance of pre-Tertiary tectonic events commonly used to interpret the geological evolution of the Zagros Mountains.
NASA Technical Reports Server (NTRS)
Douglas, I.
1985-01-01
Any global view of landforms must include an evaluation of the link between plate tectonics and geomorphology. To explain the broad features of the continents and ocean floors, a basic distinction between the tectogene and cratogene part of the Earth's surface must be made. The tectogene areas are those that are dominated by crustal movements, earthquakes and volcanicity at the present time and are essentially those of the great mountain belts and mid ocean ridges. Cratogene areas comprise the plate interiors, especially the old lands of Gondwanaland and Laurasia. Fundamental as this division between plate margin areas and plate interiors is, it cannot be said to be a simple case of a distinction between tectonically active and stable areas. Indeed, in terms of megageomorphology, former plate margins and tectonic activity up to 600 million years ago have to be considered.
ERIC Educational Resources Information Center
Bull, William B.
1984-01-01
Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…
Uplift of Zagros Mountains slows plate convergence
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2013-05-01
Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)
NASA Astrophysics Data System (ADS)
Bernard, Thomas; Sinclair, Hugh; Ford, Mary; Naylor, Mark
2017-04-01
Mountain topography, including surrounding foreland basins, results from the long-term competition between tectonic and surface processes linked to climate. Numerous studies on young active mountain ranges such as the Southern Alps, New Zealand and Taiwan, have investigated the interaction between tectonics, climate and erosion on the topographic landscape. However most of the mountain ranges in the world are in various stages of post-orogenic decay, such as the European Alps, Urals, Caledonides, Appalachians and Pyrenees. The landscape evolution of these decaying mountains, which involve relatively inactive tectonics, should appear simple with progressive and relatively uniform erosion resulting in a general lowering of both elevation and topographic relief. However, in a number of examples, post-orogenic systems suggest a complex dynamism and interactions with their associated foreland basins in term of spatio-temporal variations in erosion and sedimentary flux. The complexity and transition to post-orogenesis is a function of multiple processes. Underpinning the transition to a post-orogenic state is the competition between erosion and crustal thickening; the balance of these processes determines the timing and magnitude of isostatic rebound and hence subsidence versus uplift of the foreland basin. It is expected that any change in the parameters controlling the balance of erosion versus crustal thickening will impact the topographic evolution and sediment flux from the mountain range and foreland basin to the surrounding continental margin. This study will focus on the causes and origins of the processes that define post-orogenesis. This will involve analyses of low-temperature thermochronological and topographic data, geodynamical modelling and sedimentological analyses (grainsize distribution). The Pyrenees and its associated northern retro-foreland basin, the Aquitaine basin, will form the natural laboratory for the project as it is one of the best documented mountain range/foreland basin systems in the world. Initial results of a review of the low-temperature thermochronological data using inverse modelling, illustrates the asymmetric exhumation of the mountain range, and the diachronous timing of decelerated exhumation linked to the transition to post-orogenesis. This study is part of the Orogen project, an academic-industrial collaboration (CNRS-BRGM-TOTAL).
Tectonic sequence stratigraphy, Early Permian Dry Mountain trough, east-central Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, W.S.; Gallegos, D.M.; Spinosa, C.
1991-06-01
The Early Permian Dry Mountain trough (DMT) of east-central Nevada is one of several tectonic basins and associated uplifts that developed along the continenetal margin during the latest Pennsylvanian-Early Permian Dry Mountain tectonic phase. The sequence stratigraphy reflects a combination of eustatic sea level changes and tectonic uplift or subsidence. Fewer than one to only a few million years separate the development of sequence boundaries within the DMT. At this scale, differences among published eustasy curves preclude their use as definitive tools to identify eustatically controlled sequence boundaries. Nevertheless, available data indicate several pulses of tectonism affected sedimentation within themore » DMT. The authors are attempting to develop criteria to distinguish tectonic from eustatic sequence boundaries. Detailed biostratigraphic data are required to provide an independent check on the correlation of sequence boundaries between measured sections. For example, the same age boundary may reflect tectonic uplift in one part of the basin and subsidence in another. The uplift may or may not result in subaerial exposure and erosion. For those boundaries that do not result from subaerial exposure, lithofacies and biofacies analyses are required to infer relative uplift (water depth decrease) or subsidence (water depth increase). There are inherent resolution limitations in both the paleontologic and sedimentologic methodologies. These limitations, combined with those of eustasy curves, dictate the preliminary nature of their results.« less
NASA Technical Reports Server (NTRS)
Rubin, Charles
1997-01-01
This report summarizes one year of funding for NASA contract NAGW-3691, Application of High Resolution Topography and Remote Sensing: Imagery to the Kinematics of Fold-and-Thrust Belts. I never received year three from NASA. The funds were to support on going tectonic and topographic studies along the front of the central Transverse Ranges and expand the topographic studies to the north. Below are results from the first two years of actual funds that I received from NASA (see attached Federal Cash Transaction Reports). The main focus of this contract was to define and understand the major tectonic processes affecting the formation and evolution of the topography in convergent tectonic settings. The results will be used to test ongoing space-based geodetic measurements and will be compared with present-day seismicity in the central Transverse Ranges and adjacent basins. Two major factors that controls topography in active regions are (1) tectonic uplift due to fault-normal compression and (2) subsequent erosion. The central Transverse and Temblor Ranges are excellent regions for these focused topographic studies. The tectonic processes leading to the mountain building are relatively straightforward and thus are easy to model. Available evidence suggests that the topography in this region is relatively young, - 3.5 Ma or less. In addition,, erosional processes may be relatively easier to model compared to larger and more ancient mountain belts. For example, in larger mountain belts, topographic relief may cause significant orographic effects and high elevation may result in part of the topography located above snowline. Both factors complicate interpretation of erosional processes that may be controlled by elevation. Mountain ranges that are significantly older may have experienced a much wider variety of erosional or climatic conditions over their lifetime. While erosion rates have certainly not been consistent in the Transverse or Temblor ranges over its 3.5 Ma lifetime, we are sure that the region was spared the Pleistocene glaciation that affected parts of the Sierra Nevada Range.
1985-07-01
ptical properties 5pley. I(-,8). Table 5. Chart 4-Percentage of one-degree squares. 13 f plankton aleae . 0 Table 6. Global coverage-Percentage of one...optical properties result from (e.g., Colorado River), typical in mountainous (tectonic) regions, 9. Hunghlo (Red)110 Mekong and/or organic sediments...typical in mountainous (tectonic) regions, 9. Hungho (Red) 160 Inadequate 10. Mekong 160 Sufficient larger-sized particles in suspension. The
NASA Astrophysics Data System (ADS)
Ballato, Paolo; Landgraf, Angela; Schildgen, Taylor F.; Stockli, Daniel F.; Fox, Matthew; Ghassemi, Mohammad R.; Kirby, Eric; Strecker, Manfred R.
2015-09-01
The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from ∼36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from ∼6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a ∼3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last ∼5 Ma.
Chasing the Garlock: A study of tectonic response to vertical axis rotation
NASA Astrophysics Data System (ADS)
Guest, Bernard; Pavlis, Terry L.; Golding, Heather; Serpa, Laura
2003-06-01
Vertical-axis, clockwise block rotations in the Northeast Mojave block are well documented by numerous authors. However, the effects of these rotations on the crust to the north of the Northeast Mojave block have remained unexplored. In this paper we present a model that results from mapping and geochronology conducted in the north and central Owlshead Mountains. The model suggests that some or all of the transtension and rotation observed in the Owlshead Mountains results from tectonic response to a combination of clockwise block rotation in the Northeast Mojave block and Basin and Range extension. The Owlshead Mountains are effectively an accommodation zone that buffers differential extension between the Northeast Mojave block and the Basin and Range. In addition, our model explores the complex interactions that occur between faults and fault blocks at the junction of the Garlock, Brown Mountain, and Owl Lake faults. We hypothesize that the bending of the Garlock fault by rotation of the Northeast Mojave block resulted in a misorientation of the Garlock that forced the Owl Lake fault to break in order to accommodate slip on the western Garlock fault. Subsequent sinistral slip on the Owl Lake fault offset the Garlock, creating the now possibly inactive Mule Springs strand of the Garlock fault. Dextral slip on the Brown Mountain fault then locked the Owl Lake fault, forcing the active Leach Lake strand of the Garlock fault to break.
Volcanism on Io: Insights from Global Geologic Mapping
NASA Technical Reports Server (NTRS)
Williams, D. A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.
2009-01-01
We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation.
EMI Array for Cued UXO Discrimination
2010-09-16
that comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic ...interaction of the North American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains
EMI Array for Cued UXO Discrimination
2010-09-01
that comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic ...interaction of the North American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains
Lineations and structural mapping of Io's paterae and mountains: Implications for internal stresses
NASA Astrophysics Data System (ADS)
Ahern, Alexandra A.; Radebaugh, Jani; Christiansen, Eric H.; Harris, Ronald A.; Tass, E. Shannon
2017-11-01
The mountains of Jupiter's volcanic moon Io are tall, steep, and tectonic in origin, yet their precise modes of formation and their associations with volcanic paterae are not fully understood. Global spatial statistics of paterae and mountains and their associated lineations reveal that both types of features are more common at low latitudes and tectonic lineations have preferred orientations, whereas straight patera margins are randomly oriented. Additionally, structurally controlled lineations tend to cluster with each other, and in areas of high concentrations these tectonic lineations are shorter in length than their global average. These results indicate that global-scale (rather than local or regional) processes are involved in forming Io's tectonic structures, but that the diversity of mountain characteristics and the collapse of paterae adjacent to mountain complexes are more locally controlled. Regional structural mapping of the Hi'iaka, Shamshu, Tohil, and Zal regions reveals Io's mountains reside in large, fault-bounded crustal blocks that have undergone modification through local responses of subsurface structures to variable stresses. Strike-slip motion along reactivated faults led to the formation of transpressional and transtensional features, creating tall peaks and low basins, some of which are now occupied by paterae. We propose Io's mountains result from a combination of crustal stresses involving global and local-scale processes, dominantly volcanic loading and tidal flexing. These stresses sometimes are oriented at oblique angles to pre-existing faults, reactivating them as reverse, normal, or strike-slip faults, modifying the large, cohesive crustal blocks that many of Io's mountains reside in. Further degradation of mountains and burial of faults has occurred from extensive volcanism, mass wasting, gravitational collapse, and erosion by sublimation and sapping of sulfur-rich layers. This model of fault-bounded blocks being modified by global stresses and local structural response accounts for the variation and patterns of mountain sizes, shapes, and orientations, along with their isolation and interactions with other features. It also provides a context for the operation and extent of global and regional stresses in shaping Io's surface.
Deformation of the Roberts Mountains Allochthon in north-central Nevada
Evans, James George; Theodore, Ted G.
1978-01-01
During the Antler orogeny in Late Devonian and Early Mississippian time, early and middle Paleozoic siliceous rocks, largely chert and sha1e, were thrust eastward for 90 to 160 km over coexisting carbonate rocks. Minor and major structures of two small areas of the allochthon at Battle Mountain and in the southern Tuscarora Mountains were studied in order to characterize the deformation and test the consistency of the movement plan with respect to the large eastward displacement. In the Battle Mountain area, the lower Paleozoic Scott Canyon and Valmy Formations were deformed in the Antler orogeny but were unaffected by later tectonism during late Paleozoic or early Mesozoic. In the southern Tuscarora Mountains area, the Ordovician and Silurian siliceous rocks deformed in the Antler Orogeny were deformed by later, possibly Mesozoic, folding and thrusting. Most of the minor folding visible in the allochthon is in the cheret, but proportionally more of the strain was taken up in the shale and argillite, both poorly exposed but predominant rock types. Most minor folds, concentric in form, plunge at small angles to the north-northeast and south-southwest with steeply dipping or vertical axial planes. The b-fabric axis, parallel to these folds, is identical apparently to the B-kinematic axis. The horizontal component of tectonic shortening of the allochthon, N. 70?-75? W. both in the Battle Mountain area and in the southern Tuscarora Mountains area, is therefore consistent with an eastward direction of movement of the allochthon. Folds with west- northwest trends locally present in the allochthon, may have formed in the direction of tectonic transport. In the southern Tuscarora Mountains, local strain in and below the allochthon was different from the prevailing strain in the allochthon, and tectonic shortening was locally at large angles to the accepted direction of movement of the allochthon.
NASA Astrophysics Data System (ADS)
Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng
2018-03-01
The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a relatively strong tectonic reactivation took place along the Late Palaeozoic Bogda rift belt accompanied by relatively large-scale magmatism. The distinct basement structure between the eastern and western Bogda rift could be the structure basis of difference uplift in the Bogda area during the Mesozoic Era. The Early to Middle Jurassic episodic uplift of Eastern Bogda Mountains perhaps was related to the post-collisional convergence of the Qiangtang Block from late Badaowan to early Sangonghe, the closure of the western Mongol-Okhotsk Ocean at the Early-Middle Jurassic boundary and the tectonic accretion at the south Asian margin of Pamir Block during late Middle Jurassic times.
NASA Astrophysics Data System (ADS)
Wu, C.; Zhang, P.; Zheng, W.; Wang, H.; Zhang, Z.; Ren, Z.; Zheng, D.; Yu, J.; Wu, G.
2017-12-01
The deformation pattern and strain distribution of the Tian Shan is a hot issue.Previous studies mainly focus on the thrust-fold systems on both sides of Tian Shan, the strike-slip faults within the mountains are rarely reported. The understanding about the deformation characteristics of Tian Shan is not complete for lacking information of these strike-slip faults.Our studies show the NEE trending structures of Maidan fault and Nalati fault in the southwestern Tian Shan are all active during the Holence. These faults are characterized by sinistral strike-slip and thrust movement. The minimum average sinistral strike-slip rate of the Maidan fault is 1.07 ± 0.13 mm/yr. During the late Quaternary, the average shortening rate and sinistral strike-slip rate of the Nalati fault are 2.1 ±0.4 mm/yr and 2.56 ±0.25 mm/yr, respectively . In the interior of the Tian Shan area, two groups of strike-slip faults were developed. The NEE trending faults with sinistral strike-slipmovement, and the NWW trending faults with dextral strike-slip movement show the shape of "X"in geometrical structure. The piedmont thrust faults and the thrust strike-slip faults in the interior mountain constitute the tectonic framework of Tian Shan. Threegroups of active fault systems are the main seismogenic and geological structures, which control the current tectonic deformation pattern of Tian Shan (Figure 1). GPS observation data also showthe similar deformation characteristics with the geological results (Figures 2, 3). In addition to the crustal shortening, there is a certain strike-slip shear movement in the interior of the Tian Shan.The strike-slip rate defined by the geological and GPS data is approximately consistent with each other near the same longitude. We suggest the two groups of strike-slip faults in the interior of mountains is a set of conjugate structures. The whole Tian Shan forms a large flower-structure in a profile view. The complete tectonic deformation of the Tian Shan mountains consists ofthe shortening deformationof the N-S direction and the lateral extrusion of the E-W direction (Figure 2). The late Cenozoic deformation of the Tian Shan mountains is due to the northward subduction of Tarim Block. Although the activedeformation of the Tian Shan decrease eastward, the geological sturcutrein eastern Tian Shan is similar.
NASA Astrophysics Data System (ADS)
Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.
2018-04-01
The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.
Model of formation of Ishtar Terra, Venus
NASA Astrophysics Data System (ADS)
Ansan, V.; Vergely, P.; Masson, Ph.
1996-08-01
For more than a decade, the radar mapping of Venus' surface has revealed that it results from a complex volcanic and tectonic history, especially in the northern latitudes. Ishtar Terra (0°E-62°E) consists of a high plateau, Lakshmi Planum, surrounded by highlands, Freyja Montes to the north and Maxwell Montes to the east. The latter is the highest relief of Venus, standing more than 10 km in elevation. The high resolution of Magellan radar images (120-300 m) allows us to interpret them in terms of tectonics and propose a model of formation for the central part of Ishtar Terra. The detailed tectonic interpretations are based on detailed structural and geologic cartography. The geologic history of Ishtar Terra resulted from two distinct, opposite tectonic stages with an important, transitional volcanic activity. First, Lakshmi Planum, the oldest part of Ishtar Terra is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. Then the plateau is partially covered by fluid lava flows that may be similar to Deccan traps, in India. Second, after the extensional deformation of Lakshmi Planum and its volcanic activity, Freyja and Maxwell Montes formed by WSW-ENE horizontal crustal shortening. The latter produced a series of NNW-SSE parallel, sinuous, folds and imbricated structures that overlapped Lakshmi Planum westward. So these mountain belts have the same structural characteristics as terrestrial fold-and-thrust belts. These mountain belts also display evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trend, especially in Maxwell Montes.
Multidisciplinary hydrologic investigations at Yucca Mountain, Nevada
Dudley, William W.
1990-01-01
Future climatic conditions and tectonic processes have the potential to cause significant changes of the hydrologic system in the southern Great Basin, where a nuclear-waste repository is proposed for construction above the water table at Yucca Mountain, Nevada. Geothermal anomalies in the vicinity of Yucca Mountain probably result from the local and regional transport of heat by ground-water flow. Regionally and locally irregular patterns of hydraulic potential, local marsh and pond deposits, and calcite veins in faults and fractures probably are related principally to climatically imposed hydrologic conditions within the geologic and topographic framework. However, tectonic effects on the hydrologic system have also been proposed as the causes of these features, and existing data limitations preclude a full evaluation of these competing hypotheses. A broad program that integrates many disciplines of earth science is required in order to understand the relation of hydrology to past, present and future climates and tectonism.
Tectonic isolation from regional sediment sourcing of the Paradox Basin
NASA Astrophysics Data System (ADS)
Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.
2017-12-01
The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common feature among other intraplate, tectonically active basins.
Identification and interpretation of tectonic features from Skylab imagery. [California to Arizona
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator)
1974-01-01
The author has identified the following significant results. S190-B imagery confirmed previous conclusions from S190-A that the Garlock fault does not extend eastward beyond its known termination near the southern end of Death Valley. In the Avawatz Mountains, California, two faults related to the Garlock fault zone (Mule Spring fault and Leach Spring fault) show evidence of recent activity. There is evidence that faulting related to Death Valley fault zone extends southeastward across the Old Dad Mountains. There, the Old Dad fault shows evidence of recent activity. A significant fault lineament has been identified from McCullough Range, California southeastward to Eagle Tail Mountains in southwestern Arizona. The lineament appears to control tertiary and possible cretaceous intrusives. Considerable right lateral shear is suspected to have taken place along parts of this lineament.
Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography
NASA Astrophysics Data System (ADS)
Stevens, J. L.; O'Brien, M.
2017-12-01
We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.
Mountains on Titan observed by Cassini Radar
Radebaugh, J.; Lorenz, R.D.; Kirk, R.L.; Lunine, J.I.; Stofan, E.R.; Lopes, R.M.C.; Wall, S.D.
2007-01-01
The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term "mountains." Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37?? and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years. ?? 2007 Elsevier Inc. All rights reserved.
Global Patterns of Tectonism on Titan from Mountain Chains and Virgae
NASA Technical Reports Server (NTRS)
Cook, C.; Barnes, J. W.; Radebaugh, J.; Hurford, T.; Ktatenhorn, S. A.
2012-01-01
This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display patterns of surface tectonic features that imply global stress fields driven or modified by global forces. Patterns such as these are seen in Europa's tidally induced fracture patterns, Enceladus's tiger stripes, and Ganymede's global expansion induced normal fault bands. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays possible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored dark linear streaks termed virgae by the IAU. Imaged by Cassini with the RADAR instrument, mountain chains near the equator are observed with a predominante east-west orientation (Liu et al. 2012, Mitri et al. 2010). Orientations such as these can be explained by modifications in the global tidal stress field induced by global contraction followed by rotational spin-up. Also, due to Titan's eccentric orbit, its current rotation rate may be in an equilibrium between tidal spin-up near periapsis and spin-down near apoapsis (Barnes and Fortney 2003). Additional stress from rotational spin-up provides an asymmetry to the stress field. This, combined with an isotropic stress from radial contraction, favors the formation of equatorial mountain chains in an east-west direction. The virgae, which have been imaged by Cassini with both the Visual and Infrared Mapping Spectrometer (VIMS) and Imaging Science Subsystem (ISS) instruments, are located predominately near 30 degrees latitude in either hemisphere. Oriented with a pronounced elongation in the east-west direction, all observed virgae display similar characteristics: similar relative albedos as the surrounding terrain however darkened with an apparent neutral absorber, broken-linear or rounded sharp edges, and connected, angular elements with distinct, linear edges. Virgae imaged during northern latitude passes are oriented with their long dimensions toward Titan's antiSaturn point. If the virgae are of tectonic origin, for instance if the turn out to be i.e. grabens, they could serve as markers to Titan's global stress field. Using them in this way allows for a mapping of global tectonic patterns. These patterns will be tested for consistency against the various sources of global stress and orientations of mountain chains. By determining what drives Titan's tectonics globally, we will be able to place Titan within the context of the other outer planet icy satellites.
Rapid post-seismic landslide evacuation boosted by dynamic river width
NASA Astrophysics Data System (ADS)
Croissant, Thomas; Lague, Dimitri; Steer, Philippe; Davy, Philippe
2017-09-01
Mass wasting caused by large-magnitude earthquakes chokes mountain rivers with several cubic kilometres of sediment. The timescale and mechanisms by which rivers evacuate small to gigantic landslide deposits are poorly known, but are critical for predicting post-seismic geomorphic hazards, interpreting the signature of earthquakes in sedimentary archives and deciphering the coupling between erosion and tectonics. Here, we use a new 2D hydro-sedimentary evolution model to demonstrate that river self-organization into a narrower alluvial channel overlying the bedrock valley dramatically increases sediment transport capacity and reduces export time of gigantic landslides by orders of magnitude compared with existing theory. Predicted export times obey a universal non-linear relationship of landslide volume and pre-landslide valley transport capacity. Upscaling these results to realistic populations of landslides shows that removing half of the total coarse sediment volume introduced by large earthquakes in the fluvial network would typically take 5 to 25 years in various tectonically active mountain belts, with little impact of earthquake magnitude and climate. Dynamic alluvial channel narrowing is therefore a key, previously unrecognized mechanism by which mountain rivers rapidly digest extreme events and maintain their capacity to incise uplifted rocks.
Seismicity of the Earth 1900-2010 Mexico and vicinity
Rhea, Susan; Dart, Richard L.; Villaseñor, Antonio; Hayes, Gavin P.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.
2011-01-01
Mexico, located in one of the world's most seismically active regions, lies on three large tectonic plates: the North American plate, Pacific plate, and Cocos plate. The relative motion of these tectonic plates causes frequent earthquakes and active volcanism and mountain building. Mexico's most seismically active region is in southern Mexico where the Cocos plate is subducting northwestward beneath Mexico creating the deep Middle America trench. The Gulf of California, which extends from approximately the northern terminus of the Middle America trench to the U.S.-Mexico border, overlies the plate boundary between the Pacific and North American plates where the Pacific plate is moving northwestward relative to the North American plate. This region of transform faulting is the southern extension of the well-known San Andreas Fault system.
Tosdal, R.M.; Stone, P.
1994-01-01
A previously unrecognized angular unconformity divides the Jurassic and Cretaceous McCoy Mountains Formation into a lower and an upper unit in the Dome Rock Mountains and Livingston Hills of western Arizona. The intraformation unconformity in the McCoy Mountains Formation developed where rocks of the lower unit were deformed adjacent to the southern margin of the Maria fold and thrust belt. The upper unit of the formation is interpreted as a foreland-basin deposit that was shed southward from the actively rising and deforming fold and thrust belt. The apparent absence of an equivalent unconformity in the McCoy Mountains Formation in adjacent California is presumably a consequence of the observed westward divergence of the outcrop belt from the fold and thrust belt. Tectonic burial beneath the north-vergent Mule Mountains thrust system in the latest Late Cretaceous (~70 Ma) marked the end of Mesozoic contractile deformation in the area. -from Authors
Evidence of Vertical and Horizontal Motions on Venus: Maxwell Montes
NASA Astrophysics Data System (ADS)
Ansan, V.; Vergely, P.
1995-01-01
Based on full-resolution Magellan radar images, the detailed structural analysis of central Ishtar Terra (Venus) provides new insight to the understanding of the Venusian tectonics. Ishtar Terra, centered on 65° N latitude and 0° E longitude includes a high plateau. Lakshmi Planum, surrounded by highlands, the most important being Maxwell Montes to the East. Structural analysis has been performed with classical remote-sensing methods. Folds and faults identified on radar images were reported on structural map. Their type and distribution allowed to define the style of the crustal deformation and the context in which these structures formed. This analysis shows that Lakshmi Planum formed under a crustal stretching associated with a volcanic activity. This area then became a relatively steady platform, throughout the formation of Maxwell Montes mountain belt. Maxwell Montes is characterized by a series of NNW-SSE trending thrust faults dipping to the East, formed during a WSW-ESE horizontal shortening. In its NW quarter, the mountain belt shows a disturbed deformation controlled by pre-existing grabens and old vertical crustal fault zone. The deformation of this area is characterized by a shortening of cover above a flat detachment zone, with a progressive accommodation to the southwest. All these tectonic structures show evidence of horizontal and vertical crustal movements on Venus, with subsidence, mountain belt raise, West regional overthrusting of this mountain belt, and regional shear zone.
Tectonic Control of the Acid and Alkalinity Budgets of Chemical Weathering
NASA Astrophysics Data System (ADS)
Torres, M. A.; Dellinger, M.; Clark, K. E.; West, A. J.; Paris, G.; Bouchez, J.; Ponton, C.; Feakins, S. J.; Galy, V.; Hilton, R. G.; Adkins, J. F.
2016-12-01
The exchange of carbon between the rock reservoir and the ocean/atmosphere system modulates Earth's climate over geologic timescales. Central to our current conceptualization of this geologic C cycle is a mechanistic link between input and output fluxes that limits imbalances and prevents extreme variations in atmospheric pCO2. However, a quantitative understanding of how C cycle balance is maintained remains elusive due to the competition and co-variation between many distinct biogeochemical reactions. Here, we turn to river systems draining Andes/Amazon and other modern mountain ranges to inform our understanding of how major orogenies affect key C cycle fluxes.Globally, rivers draining active mountain ranges transport massive quantities of sulfate, alkalinity, and particulate organic carbon. Consequently, defining the exact effect of tectonic uplift on both atmospheric pCO2 and pO2 requires the careful partitioning of these fluxes between competing C and O cycle reactions. Using a suite of isotopic and trace element proxies, we find that the large mass fluxes exported by mountain rivers do not necessarily translate into a large C sink due to the oxidative weathering of trace reactive phases (e.g., pyrite). Our results also imply that mountain weathering may be an important O2 sink. The applicability and implications of these results are explored using reactive-transport modeling and a new carbonate-system framework for the links between C cycle reactions and atmospheric pCO2.
2010-06-01
comprise a chain of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic North...American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains with three categories of
MTAD Demonstration Data Report Former Camp San Luis Obispo Magnetometer and EM61 MkII Surveys
2010-05-01
of former volcanoes extending from the southwest portion of the site to the coast. Due to its proximity to the tectonic interaction of the North...American and Pacific crustal plates, the area is seismically active. A large portion of the site consists of hills and mountains with three categories of
NASA Astrophysics Data System (ADS)
Korjenkov, A. M.; Povolotskaya, I. E.; Mamyrov, E.
2007-03-01
The Tien Shan is one of the most active intracontinental mountain belts exhibiting numerous examples of Quaternary fault-related folding. To provide insight into the deformation of the Quaternary intermontane basins, the territory of the northwestern Ysyk-Köl region, where the growing Ak-Teke Anticline divided the piedmont apron of alluvial fans, is studied. It is shown that the Ak-Teke Hills are a sharply asymmetric anticline, which formed as a result of tectonic uplift and erosion related to motions along the South Ak-Teke Thrust Fault. The tectonic uplift gave rise to the local deviation of the drainage network in front of the northern limb of the fold. Optical (luminescent) dating suggests that the tectonic uplifting of the young anticline and the antecedent downcutting started 157 ka ago. The last upthrow of the high floodplain of the Toru-Aygyr River took place 1300 years ago. The structure of the South Ak-Teke Fault is examined by means of seismologic trenching and shallow seismic profiling across the fault. A laser tachymeter is applied to determine the vertical deformation of alluvial terraces in the Toru-Aygyr River valley at its intersection with the South Ak-Teke Fault. The rates of vertical deformation and an inferred number of strong earthquakes, which resulted in the upthrow of Quaternary river terraces of different ages, are calculated. The study territory is an example of changes in fluvial systems on growing folds in piedmont regions. As a result of shortening of the Earth’s crust in the mountainous belt owing to thrusting, new territories of previous sedimentation are involved in emergence. The tectonic activity migrates with time from the framing ridges toward the axial parts of intramontane basins.
NASA Astrophysics Data System (ADS)
Grobe, Arne; Virgo, Simon; von Hagke, Christoph; Ralf, Littke; Urai, Janos L.
2017-04-01
Ophiolite obduction is an integral part of mountain building in many orogens. However, because the obduction stage is usually overprinted by later tectonic events, obduction geodynamics and its influence on orogenesis are often elusive. The best-preserved ophiolite on Earth is the Semail Ophiolite, Oman Mountains. 350 km of ophiolite and the entire overthrusted margin sequence are exposed perpendicular to the direction of obduction along the northeastern coast of the Sultanate of Oman. Despite excellent exposure, it has been debated whether early stages of obduction included formation of a micro-plate, or if the Oman Mountains result from collision of two macro-plates (e.g. Breton et al., 2004). Furthermore, different tectonic models for the Oman Mountains exist, and it is unclear how structural and tectonic phases relate to geodynamic context. Here we present a multidisciplinary approach to constrain orogenesis of the Oman Mountains. To this end, we first restore the structural evolution of the carbonate platform in the footwall of the Semail ophiolite. Relative ages of nine structural generations can be distinguished, based on more than 1,500 vein and fault overprintings. Top-to-S overthrusting of the Semail ophiolite is witnessed by three different generations of bedding confined veins in an anticlockwise rotating stress field. Rapid burial induced the formation of overpressure cells, and generation and migration of hydrocarbons (Fink et al., 2015; Grobe et al., 2016). Subsequent tectonic thinning of the ophiolite took place above a top-to-NNE crustal scale, ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers. Ongoing extension formed normal- to oblique-slip faults and horst-graben structures. This was followed by NE-SW oriented ductile shortening, the formation of the Jebel Akhdar anticline, potentially controlled by the positions of the horst-graben structures. Exhumation in the Cenozoic was associated with low angle normal faults on the northern flank of the anticline. We link these results with the geodynamic framework of the area, constrained by plate tectonic reconstructions. Furthermore, we constrain the exhumation history of the mountain belt using zircon (U-Th-Sm)/He dating. Geodynamic and exhumation events can be linked to structural generations. This results in a new tectonic model of the Oman Mountains. We find a remarkable along-strike consistency of mountain building phases and argue involvement of a micro-plate is not required. Breton, J.P., Béchennec, F., Le Métour, J., Moen-Maurel, L., Razin, P., 2004. Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: Insights from a structural field study in Jabal Akhdar (Oman Mountains). GeoArabia 9, 41-58. Fink, R., Virgo, S., Arndt, M., Visser, W., Littke, R., Urai, J.L.L., 2015. Solid bitumen in calcite veins from the Natih Formation in the Oman Mountains: Multiple phases of petroleum migration in a changing stress field. Int. J. Coal Geol. 157, 39-51. doi:10.1016/j.coal.2015.07.012 Grobe, A., Urai, J.L.L., Littke, R., Lünsdorf, N.K.K., 2016. Hydrocarbon generation and migration under a large overthrust: The carbonate platform under the Semail Ophiolite, Jebel Akhdar, Oman. Int. J. Coal Geol. 1-17. doi:10.1016/j.coal.2016.02.007
The Pan-African nappe tectonics in the Shackleton Range
Buggisch, W.; Kleinschmidt, G.
2007-01-01
In memory of Campbell Craddock: When J. Campbell Craddock (1972) published his famous 1:5 000 000 map of the Geology of Antarctica, he established major units such as the East Antarctic Craton, the early Palaeozoic Ross, the Mesozoic Ellsworth, and the Cenozoic Andean orogens. It is already evident from this map, that the strike of the Ellsworth Mountains and the Shackleton Range is perpendicular to palaeo-Pacific and modern Pacific margins. While the Ellsworth-Whitmore block is classified as a rotated terrane, the Ross-aged orogen of the Shackleton Range requires another interpretation. The discovery of extended tectonic nappes with south directed transport in the southern Shackleton Range and west transport in the north established a plate tectonic scenery with a subduction dominated Ross Orogen in the Transantarctic Mountains and a transpressive tectonic regime in the Shackleton Range during the final closing of the Mozambique Ocean.
Aeromagnetic search for Cenozoic magmatism over the Admiralty Mountains Block (East Antarctica)
,; ,; Ferraccioli, F.; Zunino, A.; Bozzo, E.; Rocchi, S.; Armienti, P.
2007-01-01
Cenozoic magmatic rocks of the Transantarctic Mountains provide an important window on the tectonic and magmatic processes of the West Antarctic Rift System. Previous aeromagnetic investigations in northern Victoria Land have delineated Cenozoic volcanic and intrusive complexes assigned to the McMurdo Volcanic Group and Meander Intrusives over the Transantarctic Mountains. We present a new aeromagnetic anomaly map for the region north of the Mariner Glacier to study the extent and spatial distribution of these Cenozoic rocks over the previously unexplored Admiralty Mountains. The new map shows that the Meander Intrusives are restricted to the coastal region between the Malta Plateau and the Daniell Peninsula. However, the McMurdo Volcanic Group rocks extend further inland, and may delineate a hitherto unrecognised volcano-tectonic rift zone, extending as far north as the Trafalgar Glacier.
The relief formed by the descent phenomenon in the north-east part of Kosova.
Bulliqi, Shpejtim; Isufi, Florim; Ramadani, Ibrahim; Gashi, Gani
2012-04-01
In the diverse relief of north-east part of Kosova a relatively wide range occupies the relief modelled by the descent phenomenon, which is conditioned by morph-structural and climatic factors quite suitable for their development. The morphogenesis activity of descent phenomenon is conditioned by the types of rocks, tectonic process of this region and climatic conditions. These factors condition horizontal and vertical relief fragmentation, slope, especially in Gollaku mountains and in SE part of Kopaonik mountain. Along the tectonic descents, the steepness is detaching and the detaching lines consisting of magmatic rocks show overthrows, demolitions and stony torrents, but the Teri gene composition formations are modelled by sliding and muddy torrents, depending upon the presence of clayey and alevrolite belts on these Teri gene ones. The impact of factors and conditions on the relief of this part, the phenomena like demolitions, overthrows, sliding, muddy torrents, stony torrents, etc, operate here, which play an important morphological role in the modelling of relief.
Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.
2010-12-01
Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.
Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran
NASA Astrophysics Data System (ADS)
Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.
2007-12-01
The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.
Tectonics of the Jemez Lineament in the Jemez Mountains and Rio Grande Rift
NASA Astrophysics Data System (ADS)
Aldrich, M. J., Jr.
1986-02-01
The Jemez lineament is a NE trending crustal flaw that controlled volcanism and tectonism in the Jemez Mountains and the Rio Grande rift zone. The fault system associated with the lineament in the rift zone includes, from west to east, the Jemez fault zone southwest of the Valles-Toledo caldera complex, a series of NE trending faults on the resurgent dome in the Valles caldera, a structural discontinuity with a high fracture intensity in the NE Jemez Mountains, and the Embudo fault zone in the Española Basin. The active western boundary faulting of the Española Basin may have been restricted to the south side of the lineament since the mid-Miocene. The faulting apparently began on the Sierrita fault on the east side of the Nacimiento Mountains in the late Oligocene and stepped eastward in the early Miocene to the Canada de Cochiti fault zone. At the end of the Miocene (about 5 Ma) the active boundary faulting again stepped eastward to the Pajarito fault zone on the east side of the Jemez Mountains. The north end of the Pajarito fault terminates against the Jemez lineament at a point where it changes from a structural discontinuity (zone of high fracture intensity) on the west to the Embudo fault zone on the east. Major transcurrent movement occurred on the Embudo fault zone during the Pliocene and has continued at a much slower rate since then. The relative sense of displacement changes from right slip on the western part of the fault zone to left slip on the east. The kinematics of this faulting probably reflect the combined effects of faster spreading in the Española Basin than the area north of the lineament (Abiquiu embayment and San Luis Basin), the right step in the rift that juxtaposes the San Luis Basin against the Picuris Mountains, and counterclockwise rotation of various crustal blocks within the rift zone. No strike-slip displacements have occurred on the lineament in the central and eastern Jemez Mountains since at least the mid-Miocene, although movements on the still active Jemez fault zone, in the western Jemez Mountains, may have a significant strike-slip component. Basaltic volcanism was occurring in the Jemez Mountains at four discrete vent areas on the lineament between about 15 Ma and 10 Ma and possibly as late as 7 Ma, indicating that it was being extended during that time.
NASA Astrophysics Data System (ADS)
Kent-Corson, Malinda L.; Ritts, Bradley D.; Zhuang, Guangsheng; Bovet, Paul M.; Graham, Stephan A.; Page Chamberlain, C.
2009-05-01
This study presents oxygen and carbon isotopic records from lacustrine, paleosol, alluvial, and fluvial carbonate sampled in thirteen Cenozoic sedimentary sections that span the northern margin of the Tibetan Plateau. Isotopic analyses of 1475 carbonate samples yield δ18O values that range from 13.1 to 38.9‰ (SMOW), and δ13C values range from - 11.5 to 3.7‰ (PDB). Based on these analyses, we see two isotopic trends regionally. We interpret a Paleogene decrease in average oxygen isotope values to result from an increase in the mean elevation of the study region's drainages as they tapped waters from a growing Tibetan Plateau to the south of the study area. We interpret a Neogene increase in both carbon and oxygen isotope values to result from the initiation of local mountain building in the study area and the withdrawal of marine waters, which increased basin isolation, aridity, and temperatures. The timing of inferred initiation of uplift in this region is consistent with structural, thermochronological, and sedimentological evidence for a tectonic transition in the early and middle Miocene from accommodation of India-Eurasia convergence through extrusion along the Altyn Tagh fault to accommodation of convergence through active shortening and mountain building in this region. This study also supports tectonic models for the differential uplift of the Tibetan Plateau, in that mountain building in this study region significantly postdates estimates for the attainment of high elevation from isotopic studies of the central Tibetan Plateau.
Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.
2013-01-01
The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.
Geochronologic evidence for Late Cretaceous and Miocene tectonism in northern New England
NASA Astrophysics Data System (ADS)
Amidon, W. H.; Barr, M.; Walcott, C.; Kylander-Clark, A. R.
2017-12-01
The persistence of mountainous relief in the northeastern U.S. suggests post-rift tectonic rejuvenation has occurred, although specific mechanisms and timing have been difficult to identify. Here we present direct evidence for significant tectonism in New Hampshire and Vermont during the Late-Cretaceous ( 85-65 Ma) and Miocene periods ( 20-5 Ma). Low temperature thermochronology from a drill core in the White Mountains of New Hampshire suggests 2-3 km of accelerated exhumation during the Late Cretaceous. This exhumation is synchronous with compressional thrusting and rapid exhumation on many other Atlantic margins and also with a change in spreading direction in the Atlantic from 85-65 Ma. Recently obtained U-Pb ages of vein calcite from faults and fractures in the Champlain Valley of New York and Vermont suggest significant brittle fracturing occurred during the Late Cretaceous and also during the Miocene. Although many questions remain, this evidence points to tectonic rejuvenation by lateral tectonic stresses in the latest Cretaceous and possibly in the Miocene. The Late Cretaceous seems to have been a particularly significant tectonic episode in northern New England and elsewhere in the circum-Atlantic region.
NASA Astrophysics Data System (ADS)
Calvet, Marc; Gunnell, Yanni; Farines, Bernard
2015-07-01
Extensive tracts of low-gradient topography in steep mountain ranges, either forming rangetop plateaus or terraced pediments on range flanks, are widely distributed in mountain belts around the world. Before the advent of plate tectonics, such populations of planar landforms were interpreted as vestiges of a post-orogenic raised peneplain, i.e., a low-gradient land surface resulting from the decay, during long intervals of base-level stability, of a previous mountain range that was subsequently raised once again to great elevations-thus forming a new mountain range. This two-stage model has been challenged by theories that advocate continuity in tectonic processes and more gradual changes in base level, and thus expect a more immediate and proportionate response of geomorphic systems. Here we present a global survey of erosion surfaces in mountain ranges and put existing theories and empirical evidence into a broad perspective calling for further research into the rates and regimes of long-term mountain evolution. The resulting library of case studies provides opportunities for comparative analysis and helps to classify the landform mosaics that are likely to arise from the interplay between (i) crustal regimes, which at convergent plate margins need be neither uniform nor steady at all times; (ii) radiation-driven and gravity-driven geomorphic regimes, which are mainly determined by crustal boundary conditions and climate; and (iii) paleogeography, through which clues about base-level changes can be obtained. We examine intracratonic and plate-margin settings, with examples from thin-skinned fold belts, thick-skinned fold belts, island-arc and other subduction-related settings, and bivergent collisional orogens. Results reveal that the existence of erosion surfaces is not a simple function of geodynamic setting. Although some erosion surfaces are pre-orogenic, evidence about their predominantly post-orogenic age is supported by apatite fission-track and helium rock-cooling signatures, stratigraphic age-bracketing, stream channel gradient patterns, and other direct or indirect dating criteria. It follows that many portions of mountain belts undergo unsteady, nonuniform post-orogenic landscape evolution trajectories, with intermittent opportunities for relief reduction. The resulting erosion surfaces remain preserved as signatures of transient landscape evolution regimes. We find that (i) occurrences of planar topography form populations of discrete, insular landscape units, only some of which could be interpreted as fragments of a fluvially dissected, and/or tectonically fragmented, regional peneplain. (ii) The post-orogenic time required for achieving advanced stages of relief reduction is variable, ranging from 3 to 70 Ma. (iii) Partly depending on whether the adjacent sedimentary basins were over- or underfilled, some erosion surfaces may have been controlled by raised base levels and may thus have formed at high elevations; however, in many cases they were disconnected from marine base levels by rapid surface uplift, thus acquiring their elevated positions in recent time. In some cases, subcrustal processes such as asthenospheric anomalies, and/or lithospheric slab tear or breakoff, explain extremely rapid, regional post-orogenic uplift. (iv) Overall, the conditions for achieving surface preservation in steep and tectonically active terrain are predictable but also quite varied and contingent on context.
Active tectonics and earthquake potential of the Myanmar region
NASA Astrophysics Data System (ADS)
Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than
2014-04-01
This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.
Age and tectonic setting of the Mesozoic McCoy Mountains Formation in western Arizona, USA
Spencer, J.E.; Richard, S.M.; Gehrels, G.E.; Gleason, J.D.; Dickinson, W.R.
2011-01-01
The McCoy Mountains Formation consists of Upper Jurassic to Upper Cretaceous siltstone, sandstone, and conglomerate exposed in an east-west-trending belt in southwestern Arizona and southeastern California. At least three different tectonic settings have been proposed for McCoy deposition, and multiple tectonic settings are likely over the ~80 m.y. age range of deposition. U-Pb isotopic analysis of 396 zircon sand grains from at or near the top of McCoy sections in the southern Little Harquahala, Granite Wash, New Water, and southern Plomosa Mountains, all in western Arizona, identifi ed only Jurassic or older zircons. A basaltic lava fl ow near the top of the section in the New Water Mountains yielded a U-Pb zircon date of 154.4 ?? 2.1 Ma. Geochemically similar lava fl ows and sills in the Granite Wash and southern Plomosa Mountains are inferred to be approximately the same age. We interpret these new analyses to indicate that Mesozoic clastic strata in these areas are Upper Jurassic and are broadly correlative with the lowermost McCoy Mountains Formation in the Dome Rock, McCoy, and Palen Mountains farther west. Six samples of numerous Upper Jurassic basaltic sills and lava fl ows in the McCoy Mountains Formation in the Granite Wash, New Water, and southern Plomosa Mountains yielded initial ??Nd values (at t = 150 Ma) of between +4 and +6. The geochemistry and geochronology of this igneous suite, and detrital-zircon geochronology of the sandstones, support the interpretation that the lower McCoy Mountains Formation was deposited during rifting within the western extension of the Sabinas-Chihuahua-Bisbee rift belt. Abundant 190-240 Ma zircon sand grains were derived from nearby, unidentifi ed Triassic magmatic-arc rocks in areas that were unaffected by younger Jurassic magmatism. A sandstone from the upper McCoy Mountains Formation in the Dome Rock Mountains (Arizona) yielded numerous 80-108 Ma zircon grains and almost no 190-240 Ma grains, revealing a major reorganization in sediment-dispersal pathways and/or modifi cation of source rocks that had occurred by ca. 80 Ma. ?? 2011 Geological Society of America.
NASA Astrophysics Data System (ADS)
Cunningham, D.
2017-12-01
This talk will review the Permian-Recent tectonic history of the Gobi Corridor region which includes the actively deforming Gobi Altai-Altai, Eastern Tien Shan, Beishan and North Tibetan foreland. Since terrane amalgamation in the Permian, Gobi Corridor crust has been repeatedly reactivated by Triassic-Jurassic contraction/transpression, Late Cretaceous extension and Late Cenozoic transpression. The tectonic history of the region suggests the following basic principle for intraplate continental regions: non-cratonized continental interior terrane collages are susceptible to repeated intraplate reactivation events, driven by either post-orogenic collapse and/or compressional stresses derived from distant plate boundary convergence. Thus, important related questions are: 1) what lithospheric pre-conditions favor intraplate crustal reactivation in the Gobi Corridor (simple answer: crustal thinning, thermal weakening, strong buttressing cratons), 2) what are the controls on the kinematics of deformation and style of mountain building in the Gobi-Altai-Altai, Beishan and North Tibetan margin (simple answer: many factors, but especially angular relationship between SHmax and `crustal grain'), 3) how does knowledge of the array of Quaternary faults and the historical earthquake record influence our understanding of modern earthquake hazards in continental intraplate regions (answer: extrapolation of derived fault slip rates and recurrence interval determinations are problematic), 4) what important lessons can we learn from the Mesozoic-Cenozoic tectonic history of Central Asia that is applicable to the tectonic evolution of all intraplate continental regions (simple answer: ancient intraplate deformation events may be subtly expressed in the rock record and only revealed by low-temperature thermochronometers, preserved orogen-derived sedimentary sequences, fault zone evidence for younger brittle reactivation, and recognition of a younger class of cross-cutting tectonic structures).
NASA Astrophysics Data System (ADS)
Küçük, H. M.; Dondurur, D.; ćifçi, G.; Gürçay, S.; Hall, J.; Yaltırak, C.; Aksu, A. E.
2012-04-01
The junction between the Hellenic and Cyprus Arcs is one of the tectonically most active regions of the eastern Mediterranean. This junction developed in association with convergence between the African and Eurasian Plates, and the re-organization of the smaller Aegean-Anatolian and Arabian Microplates. Recent studies have shown that the predominant Miocene deformation process in the eastern Mediterranean is compressional tectonism. However, many studies have also shown that the strain is partitioned in the Pliocene-Quaternary and the area displays regions dominated by compression, strike slip and extensional tectonism. The junction between the Hellenic and Cyprus Arcs exhibits complex morphological features including submarine mountains, rises, ridges and trenches. Approximately 600 km of high resolution 72-channel seismic profiles were collected from the junction of Cyprus and Hellenic Arcs using a 450 m long 6.25 m hydrophone spacing streamer and a seven gun array with a 200 cubic inch total volume. This project was part of the joint scientific venture between Dokuz Eylül University (Turkey) and Memorial University of Newfoundland (Canada), and was funded by TÜBITAK and NSERC. The study area includes the southwestern Antalya Basin and the Anaxagoras Mountain of the larger Anaximander Mountains. The multichannel data were processed both at Dokuz Eylül and Memorial University of Newfoundland, using the Landmark Graphics ProMAX software, with automatic gain control, short-gap deconvolution, velocity analysis, normal move-out correction, stack, filter (typically 50-200 Hz bandpass), f-k time migration, and adjacent trace sum. Despite the fact that the source volume was modest, reflections are imaged to 2-3 s two-way time below seabed, even in 2 km water depth. The processed seismic reflection profiles show that there are three distinct sedimentary units, separated by two prominent markers: the M-reflector separates the Pliocene-Quaternary from the underlying Messinian evaporite successions, and the N-reflector separates the Messinian evaporite successions from the pre-Messinian Miocene sediments. Interpretation of the data clearly shows that the Miocene and Pliocene-Quaternary tectonic frameworks of the Anaxagoras Mountain are dominated by thrust faults. These major faults in turn, control all of the sedimentary structures observed over the submarine mountain. These thrusts display E-W trending map traces and show southerly vergence. The seismic profiles across the southwestern margin of the Antalya Basin, immediately north of the Anaxagoras Mountain show the presence of numerous upright anticlines and their intervening synclines. These structures are interpreted as salt-cored anticlines. Although mud volcanoes and diapiric structures have also been observed in the area, the normal-move-out velocities suggest that these structures are indeed cored by evaporites. The western margin of the Anaxagoras Mountain is delineated by a profound lineation which separates it from the Anaximander Mountains in the west. In the seismic reflection profiles, this lineation appears to be controlled by NE-SW-trending and mainly west-verging thrusts. The tip points of these thrusts lie at the depositional surface, and their trajectories can be traced well below 4-5 seconds. It is speculated that this prominent and somewhat arcuate boundary defines a crustal scale structure that links the Anaximander Mountains to the Antalya Basin. If so, it might have a sinistral strike slip component, possibly associated with the clockwise rotation of the Anaxagoras Mountain. The acoustic basement is located at approximately 5-6 s in the seismic reflection profiles from the Antalya Basin, and is interpreted to include Miocene-Oligocene sediments. A short seismic profile from the eastern side of Finike basin shows that Pliocene-Quaternary thickness of Finike Basin is more than in the Antalya Basin. The fact that no unequivocal evaporite successions are observed in the Finike Basin is puzzling and requires that the Finike Basin either remained above the depositional surface during the Messinian or was isolated from the eastern Mediterranean Sea.
Unsteady Landscapes: Climatic and Tectonic Controls on Fluvial Terrace Formation
NASA Astrophysics Data System (ADS)
Clubb, F. J.; Mudd, S. M.
2017-12-01
Fluvial terraces are common landforms throughout mountainous regions which represent abandoned remnants of active river systems and their floodplains. The formation of these landforms points to a fundamental unsteadiness in the incision rate of the fluvial network, providing important information on channel response to climatic, tectonic, and base-level forcing, sediment storage and dynamics within mountainous systems, and the relative importance of lateral and vertical incision rates. In his 1877 Report on the Geology of the Henry Mountains, G.K. Gilbert suggested that strath terraces may form due to climatically-driven increase in sediment supply, causing armouring of the channel bed and hindering vertical incision. An alternative hypothesis suggests that strath terraces may be preserved through progressive tectonic uplift or base-level fall. These different formation mechanisms should result in varying distribution of terrace elevations along channels: if terraces are formed through climate-driven variations in sediment supply, we might expect that terrace elevations would be random, whereas progressive fluvial incision should result in a series of terraces with a systematic elevation pattern. Here we test alternative hypotheses for strath terrace formation using a new method for objectively and rapidly identifying terrace surfaces from digital elevation models (DEMs) over large spatial scales. Our new method identifies fluvial terraces using their gradient and elevation compared to the modern channel, thresholds of which are statistically calculated from the DEM and do not need to be set manually by the user. We use this method to extract fluvial terraces for every major river along the coast of California, and quantify their distribution and elevation along the fluvial long profile. Our results show that there is no systematic pattern in terrace elevations despite a well-constrained spatial variation in uplift rates, suggesting that terraces in this region do not reflect the influence of regional tectonics, and may instead be the formed through climatic variations or autogenic fluvial processes.
NASA Astrophysics Data System (ADS)
Ahern, A.; Radebaugh, J.; Christiansen, E. H.; Harris, R. A.
2015-12-01
Paterae and mountains are some of the most distinguishing and well-distributed surface features on Io, and they reveal the role of tectonism in Io's crust. Paterae, similar to calderas, are volcano-tectonic collapse features that often have straight margins. Io's mountains are some of the highest in the solar system and contain linear features that reveal crustal stresses. Paterae and mountains are often found adjacent to one another, suggesting possible genetic relationships. We have produced twelve detailed regional structural maps from high-resolution images of relevant features, where available, as well as a global structural map from the Io Global Color Mosaic. The regional structural maps identify features such as fractures, lineations, folds, faults, and mass wasting scarps, which are then interpreted in the context of global and regional stress regimes. A total of 1048 structural lineations have been identified globally. Preliminary analyses of major thrust and normal fault orientations are dominantly 90° offset from each other, suggesting the maximum contractional stresses leading to large mountain formation are not a direct result of tidal extension. Rather, these results corroborate the model of volcanic loading of the crust and global shortening, leading to thrust faulting and uplift of coherent crustal blocks. Several paterae, such as Hi'iaka and Tohil, are found adjacent to mountains inside extensional basins where lava has migrated up normal faults to erupt onto patera floors. Over time, mass wasting and volcanic resurfacing can change mountains from young, steep, and angular peaks to older, gentler, and more rounded hills. Mass wasting scarps make up 53% of all features identified. The structural maps highlight the significant effect of mass wasting on Io's surface, the evolution of mountains through time, the role of tectonics in the formation of paterae, and the formation of mountains through global contraction due to volcanism.
NASA Astrophysics Data System (ADS)
Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi
2018-01-01
The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.
NASA Astrophysics Data System (ADS)
Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal
2017-10-01
Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are possible along the northern segments of the Chaman Fault zone. Geomorphic data suggest that the Chaman Fault along southern part is not very active now but may have gone through high tectonic activity in the past.
Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.
2015-01-01
The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that shortening and deformation were diachronous, progressing from north to south. We envision that Late Jurassic deformation may have collapsed a Gulf of California–style oceanic extensional basin that extended from the Klamath Mountains (e.g., Josephine ophiolite) to the central Blue Mountains Province, and possibly as far north as the North Cascades (i.e., the coeval Ingalls ophiolite).
Growth and erosion of mountain ranges at the northeastern margin of Tibet
NASA Astrophysics Data System (ADS)
Hetzel, Ralf; Palumbo, Luigi; Giese, Jörg; Guo, Jianming
2010-05-01
The hypothesis that mountain belts may reach a steady state, in which rock uplift is balanced by erosion, has been supported by numerous field studies and numerical models. The early evolution of mountain ranges, however, and especially the relation between fault growth and topographic response has received little attention. By using a space-for-time substitution we illustrate how active thrust faults and small, fault-bounded mountain ranges evolve into mature mountain chains that will ultimately be incorporated into the laterally growing Tibetan Plateau. At an early stage of development, when faults propagate laterally, slip rates are constant along strike [1-3]. As long as no significant topographic relief has developed, tectonic uplift is at least an order of magnitude faster than the rate of erosion [2,4]. During progressive relief growth and the establishment of drainage basins, erosion of the rising mountain ranges becomes more important, but the studied ranges are still in a pre-steady state and continue to grow both vertically and laterally [5]. During this stage the rate of erosion is linearly correlated to the mean hillslope gradient and the mean local relief, if differences in lithology or rock strength are negligible [6]. The rate of relief growth may be inferred from the difference between local erosion rates on ridge crests and catchment-wide denudation rates [7] - the latter may be taken as a surrogate for the rate of river incision. As hillslopes approach a threshold value, landsliding becomes the dominant process of mass transport and erosion rates increase non-linearly with slope. Once a steady state has been reached, the erosion rate is equal to the rate of rock uplift. A key problem is how the rate of rock uplift can be quantified in such regions, because the stochastic distribution of landslides causes the denudation rates inferred from 10Be in river sediment to be highly variable [8]. References [1] Hetzel et al. (2004). Implications of the fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet. Terra Nova 16, 157-162. [2] Hetzel et al. (2002). Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 417, 428-432. [3] Hetzel et al. (2004). Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau, Tectonics 23, TC6006, doi:10.1029/2004TC001653. [4] Goethals et al. (2009). Determining the impact of faulting on the rate of erosion in a low-relief landscape: A case study using in situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology 103, 401-413. [5] Palumbo et al. (2009). Deciphering the rate of mountain growth during topographic presteady state: an example from the NE margin of the Tibetan Plateau. Tectonics 28, TC4017, doi:10.1029/2009TC002455. [6] Palumbo et al. (in press). Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet. Geomorphology, doi:10.1016/j.geomorph.2009.11.019. [7] Meyer et al. (in press). Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany. Earth and Planetary Science Letters. [8] Densmore et al. (2009). Spatial variations in catchment-averaged denudation rates from normal fault footwalls. Geology 37, 1139-1142.
Galileo at Io: results from high-resolution imaging.
McEwen, A S; Belton, M J; Breneman, H H; Fagents, S A; Geissler, P; Greeley, R; Head, J W; Hoppa, G; Jaeger, W L; Johnson, T V; Keszthelyi, L; Klaasen, K P; Lopes-Gautier, R; Magee, K P; Milazzo, M P; Moore, J M; Pappalardo, R T; Phillips, C B; Radebaugh, J; Schubert, G; Schuster, P; Simonelli, D P; Sullivan, R; Thomas, P C; Turtle, E P; Williams, D A
2000-05-19
During late 1999/early 2000, the solid state imaging experiment on the Galileo spacecraft returned more than 100 high-resolution (5 to 500 meters per pixel) images of volcanically active Io. We observed an active lava lake, an active curtain of lava, active lava flows, calderas, mountains, plateaus, and plains. Several of the sulfur dioxide-rich plumes are erupting from distal flows, rather than from the source of silicate lava (caldera or fissure, often with red pyroclastic deposits). Most of the active flows in equatorial regions are being emplaced slowly beneath insulated crust, but rapidly emplaced channelized flows are also found at all latitudes. There is no evidence for high-viscosity lava, but some bright flows may consist of sulfur rather than mafic silicates. The mountains, plateaus, and calderas are strongly influenced by tectonics and gravitational collapse. Sapping channels and scarps suggest that many portions of the upper approximately 1 kilometer are rich in volatiles.
Impact of GRM: New evidence from the Soviet Union
NASA Technical Reports Server (NTRS)
Mcnutt, M.
1985-01-01
Gravity information released by the Soviet Union allows the quantitative assessment of how the geopotential research mission (GRM) mission might effect the ability to use global gravity data for continental tectonic interpretation. The information is of an isostatic response spectra for eight individual tectonic units in the USSR. The regions examined include the Caroathians, Caucasus, Urals, Pamirs, Tien-Shan, Altal, Chersky Ridge, and East Siberian Platform. The 1 deg x 1 deg gravity data are used to calculate the admittances are used in two different sorts of tectonic studies of mountain belts in the USSR: (1) interpretation of isostatic responses in terms of plate models of compensation for mountainous terrain. Using geologic information concerning time of the orogeny, lithospheric plates involved, and polarity of subduction in collision zones, they convert the best-fitting flexural rigidity to an elastic plate thickness for the lithospheric plate inferred to underlie the mountains; the isostatic admittance functions is an attempt to directly model gravity and topography data for a few select regions in the Soviet Union. By knowing the value of the expected correlation between topography and gravity from the admittances, the Artemjev's map in mountainous areas can be calibrated, and the maps are converted back to Bouguer gravity. This procedure is applied to the Caucasus and southern Urals.
Morphotectonic study of the Brahmaputra basin using geoinformatics
NASA Astrophysics Data System (ADS)
Nath Sarma, Jogendra; Acharjee, Shukla; murgante, Beniamino
2013-04-01
The Brahmaputra River basin occupies an area of 580,000 km2 lying in Tibet (China), Bhutan, India and Bangladesh. It is bounded on the north by the Nyen-Chen-Tanghla mountains, on the east by the Salween River basin and Patkari range of hills, on the south by Nepal Himalayas and the Naga Hills and on the west by the Ganga sub-basin. Brahmaputra river originates at an elevation of about 5150 m in south-west Tibet and flows for about 2900 km through Tibet (China), India and Bangladesh to join the Ganga.. The Brahmaputra River basin is investigated to examine the influence of active structures by applying an integrated study on geomorphology, morphotectonics, Digital Elevation Model (DEM) using topographic map, satellite data, SRTM, and seismic data. The indices for morphotectonic analysis, viz. basin elongation ratio (Re) indicated tectonically active, transverse topographic symmetry (T = 0.018-0.664) indicated asymmetric nature, asymmetric factor (AF=33) suggested tilt, valley floor width to valley height ratio (Vf = 0.0013-2.945) indicated active incision and mountain-front sinuosity (Smf = 1.11-1.68) values indicated active tectonics in the area. A great or major earthquake in the modern times, in this region may create havoc with huge loss of life and property due to high population density and rapidly developing infrastructure. Keywords: .Morphotectonic, Brahmaputra river, earthquake
Crustal structure, and topographic relief in the high southern Scandes, Norway
NASA Astrophysics Data System (ADS)
Stratford, W.; Thybo, H.; Frassetto, A.
2010-05-01
Resolving the uplift history of southern Norway is hindered by the lack of constraint available from the geologic record. Sediments that often contain information of burial and uplift history have long since been stripped from the onshore regions in southern Norway, and geophysical, dating methods and geomorphological studies are the remaining means of unraveling uplift history. New constraints on topographic evolution and uplift in southern Norway have been added by a recent crustal scale refraction project. Magnus-Rex (Mantle investigation of Norwegian uplift Structure, refraction experiment) recorded three ~400 km long active source seismic profiles across the high southern Scandes Mountains. The goal of the project is to determine crustal thickness and establish whether these mountains are supported at depth by a crustal root or by other processes. The southern Scandes Mountains were formed during the Caledonian Orogeny around 440 Ma. These mountains, which reach elevations of up to ~2.5 km, are comprised of one or more palaeic (denudation) surfaces of rolling relief that are incised by fluvial and glacial erosion. Extreme vertical glacial incision of up to 1000 m cuts into the surfaces in the western fjords, while the valleys of eastern Norway are more fluvial in character. Climatic controls on topography here are the Neogene - Recent effects of rebound due to removal of the Fennoscandian ice sheet and isostatic rebound due to incisional erosion. However, unknown tectonic uplift mechanisms may also be in effect, and separating the tectonic and climate-based vertical motions is often difficult. Sediment and rock has been removed by the formation of the palaeic surfaces and uplift measurements cannot be directly related to present elevations. Estimates so far have indicated that rebound due to incisional erosion has a small effect of ~500 m on surface elevation. Results from Magnus-Rex indicate the crust beneath the high mountains is up to 40 km thick. This thickness implies that the high elevations of the southern Scandes Mountains are not entirely compensated by an Airy type of isostatic model, and other mechanisms for uplift and sustained topographic relief must be in effect. Moreover, there is an observed lateral offset between the highest mountains and the thickest crust beneath the southern Scandes indicating that the Moho topography is modulated by the flexural strength of the lithosphere. We relate new crustal thickness measurements to observed topography to quantify how much of the present elevation of the southern Scandes Mountains can be accounted for by crustal thickness alone. This new understanding of crustal structure can be used to help separate the climatic and tectonic effects on landscape evolution of the southern Scandes Mountains.
Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane
2014-10-01
Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center.
NASA Astrophysics Data System (ADS)
France-Lanord, C.; Lave, J.; Morin, G. P.; Gajurel, A.; Galy, A.; Bosia, C.; Sinha, R.
2016-12-01
Evolution of the erosion of continental surfaces through geologic times provides key evidences to assess the interplay of controls exerted by tectonic, topography, climate, and lately, human activities. Mountains belts, and particularly the Himalaya, present intense tectonic activity, contrasted seasonality marked by the monsoon, steep topography and recent socio-economic development, which makes it a laboratory to assess main issues on these complex interactions.Taking advantage of the large Sr and Nd isotopic contrasts of the main geological and physiographic Himalayan units, this study explores the time variations of the spatial distribution of erosion in Central Nepal Himalaya. Compiling Sr and Nd isotopic compositions of rivers sediments from many tributaries within the Narayani Basin in central Nepal, we first define the mean Sr and Nd isotopic compositions of the three main Himalayan geological units in this region. Then, we present isotopic chronicles of river sediments sampled at the outlet of the Narayani Basin during 21 years, and 50-kyr-long sedimentary archives drilled in the foreland basin.Using Sr and Nd isotopic compositions to trace relative geological provenances and contributions, we show that erosion distribution in the Narayani Basin remained stable for 50 kyr until the end of the 20th century. Sediment fluxes were primarily derived from erosion of the High Himalayan regions (Tethys H. and HHC) ( 80 %), i.e. from the areas presenting high reliefs and steep slopes. Erosion distribution stability during the Pleistocene-Holocene climatic transition provides new evidence for a primary control of erosion by tectonic forcing rather than climatic forcing in the Himalayas. Since 2000s, a shift of the sediment isotopic compositions reveals an intensification of erosion in the Lesser Himalaya (from 15-25% to 30-45% of the sediment budget) despite unchanged tectonic or climatic conditions. We propose that this strong increase by 2-3 fold of erosion of the Lesser Himalayan region is a consequence of recent human activities, and likely roads constructions in the Middle Hills of Nepal, highlighting the role of anthropic activities as erosion agents on sensitive environments such as can be mountain ranges.
NASA Technical Reports Server (NTRS)
Hoppin, R. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. S-190A color transparencies from SL-2 of the Big Horn basin region provide the best format to date for geologic study of that region; red beds are quite mappable and resistant key beds sharply outlined. An S-190B color frame from SL-3 of the Pryor-Bighorn mountains provides no indication that the Nye-Bowler lineament extends east of East Pryor Mountain. This has important implications regarding the role of this and other lineaments (which also appear to be of restricted length) in the tectonics of the region. Extensions of these lineaments for great distances does not seem warranted on the basis of surface evidence.
Découverte d'un chevauchement d'âge quaternaire au sud de la Grande Kabylie (Algérie)
NASA Astrophysics Data System (ADS)
Boudiaf, Azzedine; Philip, Hervé; Coutelle, Alain; Ritz, Jean-François
1999-03-01
In the Maghreb, the southern border of the Kabylie (Algeria) mountains is considered as an aseismic region. The detailed study of the historical seismicity of this region shows moderate seismic activity (M 1 = 5.0) which is not coherent with the observed tectonic deformations. However, an analysis of the morphology on Landsat image, aerial photos and the topography shows Quaternary deformations in the southern side of the "Kabylie massifs" (Algeria). These deformations are interpreted as reactivation of Miocene thrust faults. The tectonic Quaternary scarps are more spectacular in the Bouira and Tazmalt region and might be associated with successive strong earthquakes (M = 7.0). Therefore, this major active thrust fault observed in this region, as in many intraplate regions, poses the problem of the long return period of seismic activity in this zone. Elsevier, Paris
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
1991-05-01
The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.
Deciphering the Tectonic History of the Northern Transantarctic Mountains
NASA Astrophysics Data System (ADS)
Hansen, Samantha; Graw, Jordan; Brenn, Gregory; Kenyon, Lindsey; Park, Yongcheol; DuBay, Brian
2016-04-01
The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range in the world, and their structure plays a key role in the climatic and tectonic development of Antarctica. While numerous uplift mechanisms for the TAMs have been proposed, there is little consensus on their origin. Over the past three years, we have operated a network of 15 broadband seismic stations within a previously unexplored portion of the northern TAMs. Using data collected by this array, we have undertaken numerous studies to further assess the crustal and lithospheric structure beneath the mountain range and to differentiate between competing origin models. Receiver functions indicate crustal thickening inland from the Ross Sea coast but comparable crustal thickness beneath the TAMs and the East Antarctic plateau, indicating little evidence for a substantial crustal root beneath the mountain range. Body and surface wave analyses show a pronounced low-velocity anomaly beneath Terror Rift, adjacent to the TAMs, and extending beneath Victoria Land in the upper mantle. Together, these findings support a thermally-buoyant source of uplift for the northern TAMs and broad flexure of the East Antarctic lithosphere.
Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica
NASA Astrophysics Data System (ADS)
Paxman, G. J. G.; Watts, A. B.; Ferraccioli, F.; Jordan, T. A.; Bell, R. E.; Jamieson, S. S. R.; Finn, C. A.
2016-10-01
The relative roles of climate and tectonics in mountain building have been widely debated. Central to this debate is the process of flexural uplift in response to valley incision. Here we quantify this process in the Gamburtsev Subglacial Mountains, a paradoxical tectonic feature in cratonic East Antarctica. Previous studies indicate that rifting and strike-slip tectonics may have provided a key trigger for the initial uplift of the Gamburtsevs, but the contribution of more recent valley incision remains to be quantified. Inverse spectral (free-air admittance and Bouguer coherence) methods indicate that, unusually for continents, the coherence between free-air gravity anomalies and bedrock topography is high (>0.5) and that the elastic thickness of the lithosphere is anomalously low (<15 km), in contrast to previously reported values of up to ∼70 km. The isostatic effects of two different styles of erosion are quantified: dendritic fluvial incision overprinted by Alpine-style glacial erosion in the Gamburtsevs and outlet glacier-type selective linear erosion in the Lambert Rift, part of the East Antarctic Rift System. 3D flexural models indicate that valley incision has contributed ca. 500 m of peak uplift in the Gamburtsevs and up to 1.2 km in the Lambert Rift, which is consistent with the present-day elevation of Oligocene-Miocene glaciomarine sediments. Overall, we find that 17-25% of Gamburtsev peak uplift can be explained by erosional unloading. These relatively low values are typical of temperate mountain ranges, suggesting that most of the valley incision in the Gamburtsevs occurred prior to widespread glaciation at 34 Ma. The pre-incision topography of the Gamburtsevs lies at 2-2.5 km above sea-level, confirming that they were a key inception point for the development of the East Antarctic Ice Sheet. Tectonic and/or dynamic processes were therefore responsible for ca. 80% of the elevation of the modern Gamburtsev Subglacial Mountains.
The seismicity of Ethiopia; active plate tectonics
Mohr, P.
1981-01-01
Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system.
NASA Astrophysics Data System (ADS)
Willenbring, J. K.; Jerolmack, D. J.
2015-12-01
At the largest time and space scales, the pace of erosion and chemical weathering is determined by tectonic uplift rates. Deviations from this equilibrium condition arise from the transient response of landscape denudation to climatic and tectonic perturbations, and may be long lived. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the global scale over millions of years, as has been proposed for late Cenozoic erosion. To support this contention, we synthesize existing data for weathering fluxes, global sedimentation rates, sediment yields and tectonic motions. The records show a remarkable constancy in the pace of Earth-surface evolution over the last 10 million years. These findings provide strong support for the null hypothesis; that global rates of landscape change have remained constant over the last ten million years, despite global climate change and massive mountain building events. Two important implications are: (1) global climate change may not change global denudation rates, because the nature and sign of landscape responses are varied; and (2) tectonic and climatic perturbations are accommodated in the long term by changes in landscape form. This work undermines the hypothesis that increased weathering due to late Cenozoic mountain building or climate change was the primary agent for a decrease in global temperatures.
NASA Astrophysics Data System (ADS)
Chen, Y.; Gu, Y. J.; Dokht, R.; Wang, R.
2017-12-01
The crustal and lithospheric structures beneath the Western Canada Sedimentary Basin (WCSB) and northern Montana contain vital records of the Precambrian tectonic development of Laurentia. In this study, we analyze the broadband seismic data recorded by the USArray and the most complete set of regional seismic networks to date near the WCSB. We adopt an integrated approach to investigate crustal structure and history, based primarily on P-to-S receiver functions but incorporate results from noise correlation functions, finite-frequency tomography and potential field measurements. In comparison with existing regional and global models, our stacked receiver functions show considerable improvements in the resolution of both Moho depth and Vp/Vs ratio. We identify major variations in Moho depth from the WCSB to the adjacent Cordillera. The Moho deepens steeply from 40 km in the Alberta basin to 50 km beneath the foothills, following Airy isostasy, but thermal buoyancy may be responsible for a flat, shallow ( 35 km) Moho to the west of the Rocky Mountain Trench. The Moho depth also increases sharply near the Snowbird Tectonic Zone (STZ), which is consistent with earlier findings from active-source data. Multiple lower crustal phases, a high velocity shallow mantle and elevated Vp/Vs ratios along the westernmost STZ jointly suggest major Proterozoic subduction and magmatism along this collisional boundary. In northern Montana, the Moho deepens along the Great Falls Tectonic Zone (GFTZ), a proposed Proterozoic suture between the Medicine Hat Block and Wyoming craton. This transition occurs near the Little Belt Mountain, which is located south of the Great Falls Shear Zone, an extensive northeast striking fault system characterized by strong potential field gradients. Similar to the STZ, our receiver functions offer new evidence for Proterozoic underplating in the vicinity of the GFTZ. In view of similar rock ages near the collisional boundaries in all parts of northern Montana and the WCSB basement, we conjecture that the Rae, Hearn, Medicine Hat and Wyoming cratons were all active during the Paleoproterozoic era and their interactions, particularly coeval subductions and collisions, are largely responsible for the basement geology beneath western Laurentia.
Impact of Neotectonic activities on coral reef Red Sea Egypt; Case study Jubal Island
NASA Astrophysics Data System (ADS)
Hamouda, A.
2016-12-01
Abstract:The Red Sea considered the youngest oceanic basin of the world. It separates the Arabian sub-plate from the African plate. Neotectonic activity is a fundamental issue at the northern Red Sea for our understanding of the tectonic hazards at this region. The tectonic activity research will thus be geared to understand how a single tectonic process works and how a group of processes work together as a part of larger system ultimately leading to the formation of mountain systems and evolution of the solid earth. The recent seismic activity in the northern Red Sea has been impact on surface geology and coral reef. The most major earthquake swarm sequence around Jubal Island is the migration of epicenters northward in diameter circle about 50 km with focal depths less than 2 to 15 km. This swarm may release energy that can be accumulated to cause larger events in the future. This affects the accumulation of oil and gas reservoir causing natural seepage on the seafloor. The main aim of this study represents the impact of this seepage which is related to tectonic activity on the coral reef states at the northern part of Red Sea. The greatest impact of crude oil on marine organisms are categorized as: direct lethal toxicity, sub-lethal disruption of physiological behavioral activities, effects of direct coating, incorporation of hydrocarbons and alteration of habitat, especially substrate character. Adult marine organisms may exhibit lethal toxic and Sub-lethal effects from exposures to soluble aromatic derivative hydrocarbons. Keywords: Neotectonic activity, earthquakes, hydrocarbon seepage, coral reef, Red Sea.
NASA Technical Reports Server (NTRS)
Mogk, D. W.; Kain, L.
1985-01-01
The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.
Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau
Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.
2017-11-20
Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, M.A.
1993-04-01
Detailed mapping, stratigraphic structural analysis in the Mountain Pass area has resulted in a reinterpretation of Mesozoic and Cenozoic tectonic events in the area. Mesozoic events are characterized by north vergent folds and thrust faults followed by east vergent thrusting. Folding created two synclines and an anticline which were than cut at different stratigraphic levels by subsequent thrust faults. Thrusting created composite tectono-stratigraphic sections containing autochthonous, para-autothonous, and allochthonous sections. Normal faults cutting these composite sections including North, Kokoweef, White Line, and Piute fault must be post-thrusting, not pre-thrusting as in previous interpretations. Detailed study of these faults results inmore » differentiation of at least three orders of faults and suggest they represent Cenozoic extension correlated with regional extensional events between 11 and 19 my. Mesozoic stratigraphy reflects regional orogenic uplift, magmatic activity, and thrusting. Inclusion of Kaibab clasts in the Chinle, Kaibab and Chinle clasts in the Aztec, and Chinle, Aztec, and previously deposited Delfonte Volcanics clasts in the younger members of the Delfonte Volcanics suggest regional uplift prior to the thrusting of Cambrian Bonanza King over Delfonte Volcanics by the Mescal Thrust fault. The absence of clasts younger than Kaibab argues against pre-thrusting activity for the Kokoweef fault.« less
NASA Astrophysics Data System (ADS)
Eppes, M. C.; McFadden, L. D.; Matti, J.; Powell, R.
2002-03-01
Soil development can significantly influence the topographic evolution of a tectonically deforming mountain piedmont. Faults and folds associated with the North Frontal thrust system deform piedmont sediments of variable compositions along the north flank of the San Bernardino Mountains. The topographic expressions of folds with similar structural characteristics diverge appreciably, primarily as a function of differences in sediment composition and associated soil development. Soils with petrocalcic horizons in limestone- rich deposits are resistant to erosion, and anticlinal folds form prominent ridges. Folds forming in granite-derived deposits with argillic soil horizons are eroded and/or buried and are therefore topographically less pronounced. We propose that these landform contrasts can be explained by differences in soil-controlled hydrologic and erosion characteristics of deposits without calling upon changes in tectonic style along the mountain front.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.
1990-11-10
The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less
ERIC Educational Resources Information Center
Chew, Berkeley
1993-01-01
Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocharova, N.Yu.; Scotese, C.R.; Pristavakina, E.I.
A digital geographic database for the former USSR was compiled using published geologic and geodynamic maps and the unpublished suture map of Lev Zonenshain (1991). The database includes more than 900 tectonic features: strike-slip faults, sutures, thrusts, fossil and active rifts, fossil and active subduction zones, boundaries of the major and minor Precambrian blocks, ophiolites, and various volcanic complexes. The attributes of each structural unit include type of structure, name, age, tectonic setting and geographical coordinates. Paleozoic and Early Mesozoic reconstructions of the former USSR and adjacent regions were constructed using this tectonic database together with paleomagnetic data and themore » motions of continent over fixed hot spots. Global apparent polar wander paths in European and Siberian coordinates were calculated back to Cambrian time, using the paleomagnetic pole summaries of Van der Voo (1992) and Khramov (1992) and the global plate tectonic model of the Paleomap Project (Scotese and Becker, 1992). Trajectories of intraplate volcanics in South Siberia, Mongolia, Scandinavia and data on the White Mountain plutons and Karoo flood basalts were also taken into account. Using new data, the authors recalculated the stage and finite poles for the rotation of the Siberia and Europe with respect to the hot spot reference frame for the time interval 160 to 450 Ma.« less
NASA Astrophysics Data System (ADS)
Llana-Fúnez, Sergio; Rodríguez-Rodríguez, Laura; Ballesteros, Daniel; María Díaz-Díaz, Luis; Valenzuela, Pablo; López-Fernández, Carlos; José Domínguez-Cuesta, María; Meléndez, Mónica; Jiménez-Sánchez, Montserrat; Fernández-Viejo, Gabriela
2017-04-01
The Cantabrian Mountains show a linear E-W trend parallel to the northern coast of Iberia peninsula, from the Pyrenees to Galicia, where it looses its trend and linearity. The western end of the linear segment of the orogen coincides with a change in the style of structures, accommodating the N-S shortening during the convergence between Europe and Iberia plates. We study the relief of the 230 km-long segment of the linear range between the Cantabria and Galicia re- gions, up to 2,650 m altitude. The bulk trend of the orogeny is controlled by the orientation of alpine thrusts that accommodate the shortening in relation to plate convergence. The Alpine Orogeny produced crustal thickening and the present day topography. Crustal thickness varies from 30 km in Eastern Cantabrian Mountains to 45-55 km at the Middle part of these mountains. The collision between European and African plates localized in northern Iberia from the Eocene to Oligocene and later migrated to southern Iberia during the Miocene. No major tectonic convergence was accommodated in the Cantabrians Mountains since the Oligocene, entering the orogen an erosional phase since then. The GIS-analysis present here, using 5 and 25 m-resolution DEMs by the Spanish National Geographical Institute, aims to identify the major features and to characterize the overall relief of the Cantabrians Mountains. In our preliminary approach, we present swath profiles, major river basins, watershed, longitudinal profiles of major rivers and hypsometric curves from selected areas that cover the studied orogen segment. Major tectonic structures control the location and orientation of the main watershed of the mountain range, but also the orientation of some local watersheds, e.g. associated to the Llanera thrust or the Ventaniella (strike-slip) fault. An unexpected result is that the average altitude along the water divide is 1,500 m, regardless of the large differences in crustal thickness along the study area. Most longitudinal river profiles running south to north lack knick points in relation to relief forming tectonic structures, indicative of the predominance of fluvial erosional system postdating tectonics. An emerged coastal wave-cut platform dipping gently towards the West, a slight increase in maximum mountain altitude to the east and slight increase in river incision also towards the East may indicate that a gradient in erosion and in up-lifting exists increasing from West to East. This is consistent with an overall increase of crustal thickness along this direction.
Gulick, Sean P S; Jaeger, John M; Mix, Alan C; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L; Berbel, Glaucia B B; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Kioka, Arata; Konno, Susumu; LeVay, Leah J; März, Christian; Matsuzaki, Kenji M; McClymont, Erin L; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R; Ridgway, Kenneth D; Romero, Oscar E; Slagle, Angela L; Stoner, Joseph S; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D; Worthington, Lindsay L; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M
2015-12-08
Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.
Jaeger, John M.; Mix, Alan C.; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L.; Berbel, Glaucia B. B.; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Konno, Susumu; LeVay, Leah J.; März, Christian; McClymont, Erin L.; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R.; Ridgway, Kenneth D.; Romero, Oscar E.; Slagle, Angela L.; Stoner, Joseph S.; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D.; Worthington, Lindsay L.; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M.
2015-01-01
Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale. PMID:26598689
Tectonic escape in the evolution of the continental crust
NASA Technical Reports Server (NTRS)
Burke, K.; Sengor, C.
1986-01-01
The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.
Extrusional Tectonics over Plate Corner: an Example in Northern Taiwan
NASA Astrophysics Data System (ADS)
Lu, Chia-Yu; Lee, Jian-Cheng; Li, Zhinuo; Lee, Ching-An; Yeh, Chia-Hung
2016-04-01
In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough.
Extrusional Tectonics at Plate Corner: an Example in Northern Taiwan
NASA Astrophysics Data System (ADS)
Lu, C. Y.; Lee, J. C.; Li, Z.; Yeh, C. H.; Lee, C. A.
2015-12-01
In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter and opening of the Okinawa trough at plate corner.
The Role of Geophysics in the New Global Tectonics
ERIC Educational Resources Information Center
Rudman, Albert J.
1969-01-01
Summarizes the developments in geophysics that have led to the concept of the new global tectonics, which attempts to explain such worldwide features as oceanic ridges and trenches, island arcs and young mountain chains, while it develops processes that cause earthquakes, volcanoes and major faulting. Evidence for the hypotheses of continental…
Southern California landslides-an overview
,
2005-01-01
Southern California lies astride a major tectonic plate boundary defined by the San Andreas Fault and numerous related faults that are spread across a broad region. This dynamic tectonic environment has created a spectacular landscape of rugged mountains and steep-walled valleys that compose much of the region’s scenic beauty. Unfortunately, this extraordinary landscape also presents serious geologic hazards. Just as tectonic forces are steadily pushing the landscape upward, gravity is relentlessly tugging it downward. When gravity prevails, landslides can occur.
NASA Astrophysics Data System (ADS)
Lielke, Kevin John
The Renova Formation of southwestern Montana contains an important record of Paleogene floral, faunal, climate and tectonic change in the northern Rocky Mountains. The period between the end of the early Eocene and the early Oligocene (˜49--32 Ma) was a time of rapid and far-reaching climate change. This period saw the end of global greenhouse climate and the establishment of icehouse conditions across the Earth. These changes led to profound alterations in both marine and terrestrial ecosystems. This study examines the late Eocene/early Oligocene history of the northern Rocky Mountains by means of an integrated study of the sedimentology, tectonics and fossil content of the Renova Formation. The first part of this study examines plant fossils found in the Renova Formation in order to examine changes in the composition of the vegetation across the late Eocene/ early Oligocene (E/O) boundary. Plant remains are an effective proxy for climate and are used to estimate multiple climatic parameters across the E/O boundary. The second part of this study examines the paleotopography and paleodrainage patterns of the basins which accumulated the Renova sediments. This is accomplished by a combination of sedimentary facies and detrital zircon analysis. The third part of this study examines the tectonic underpinnings of Paleogene southwestern Montana through a combination of geologic field work and geodynamic modeling. The results of this study indicate that a seasonal summer dry climate became established in the northern Rocky Mountains by early Oligocene time. This is indicated by the elimination of subtropical plant species, the establishment of dry-adapted species and by paleoclimate parameters calculated from leaf physiognomy. Geodynamic calculations and field data indicate that the Renova Formation was deposited in a series of sub-basins separated by relict paleotopography and inverted topography formed by contemporary lava flows. Normal faulting was not active until the middle Miocene initiation of regional extension. Accommodation space for the deposition of Renova sediments was formed primarily by differential erosion of pre-middle Eocene rocks. Climate change and influx rates of volcaniclastic sediment were also important controls on the evolution of the intermontane basins of southwestern Montana.
Mountain building on Io driven by deep faulting
Bland, Michael T.; McKinnon, William B
2016-01-01
Jupiter’s volcanic moon Io possesses some of the highest relief in the Solar System: massive, isolated mountain blocks that tower up to 17 km above the surrounding plains. These mountains are likely to result from pervasive compressive stresses induced by subsidence of the surface beneath the near-continual emplacement of volcanic material. The stress state that results from subsidence and warming of Io’s lithosphere has been investigated in detail1, 2, 3, 4; however, the mechanism of orogenesis itself and its effect on regional tectonism and volcanism has not been firmly established. Here we present viscoelastic–plastic finite element simulations demonstrating that Io’s mountains form along deep-seated thrust faults that initiate at the base of the lithosphere and propagate upward. We show that faulting fundamentally alters the stress state of Io’s lithosphere by relieving the large volcanism-induced subsidence stresses. Notably, in the upper portion of the lithosphere, stresses become tensile (near-zero differential stress). A number of processes are therefore altered post-faulting, including magma transport through the lithosphere, interactions with tidal stresses and potentially the localization of mountain formation by thermoelastic stresses. We conclude that Io’s mountains form by a unique orogenic mechanism, compared with tectonic processes operating elsewhere in the Solar System.
Fridrich, Christopher J.; Thompson, Ren A.
2011-01-01
The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly stepped westward during three successive tectonic reorganizations that intervened between four stages of basin-range tectonism, the youngest of which is ongoing. These three tectonic reorganizations also intervened between four stages of volcanic activity, each of which has been distinct in the compositions of magmas erupted, in eruption rates, and in the locus of volcanic activity—which has stepped progressively westward, in close coordination with the step-wise migrations in the locus of basin-range extension. The timing of the Cenozoic tectonic reorganizations in the Death Valley region correlates closely with the documented timing of episodic reorganizations of the boundary between the Pacific and North American plates, to the west and southwest. This supports models that explain the widely distributed transtensional tectonism in southwestern North America since approximately 40 million years ago as resulting from traction imposed by the adjacent, divergent Pacific plate.
Final report. [Mesozoic tectonic history of the northeastern Great Basin (Nevada)
NASA Technical Reports Server (NTRS)
Zamudio, Joe
1993-01-01
In eastern Nevada and western Utah is an extensive terrane that has experienced a complex tectonic history of Mesozoic deformation and superposed Tertiary extension. The Mesozoic tectonic history of this area has been the subject of controversy for the past twenty or more years. The debate has centered on whether major Mesozoic geologic structures were due to compressional or extensional tectonic regimes. The goal of our research was to decipher the deformational history of the area by combining detailed geologic mapping, remote sensing data analysis, and U-Pb and K-Ar geochronology. This study area includes the Dolly Varden Mountains and adjacent Currie Hills, located in the semi-arid environment of the northeastern Great Basin in Nevada. Vegetation cover in the Dolly Varden Mountains typically ranges from about 10 percent to 50 percent, with some places along drainages and on high, north-facing slopes where vegetation cover approaches 100 percent. Sagebrush is found at less vegetated lower elevations, whereas pinon pine and juniper are prevalent above 2,000 meters. A variety of geologic materials is exposed in the study area. A sequence of Late Paleozoic and Triassic sedimentary rocks includes limestone, dolomite, chert, sandstone, siltstone and shale. A two-phase granitic stock, called the Melrose, intruded these rocks, resulting in metamorphism along the intrusive contact. Tertiary volcanic rocks cover most of the eastern part of the Dolly Varden Mountains and low-lying areas in the Currie Hills.
NASA Astrophysics Data System (ADS)
Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad
2016-07-01
Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.
NASA Astrophysics Data System (ADS)
Peng, Tsung-Ren; Zhan, Wen-Jun; Tong, Lun-Tao; Chen, Chi-Tsun; Liu, Tsang-Sen; Lu, Wan-Chung
2018-03-01
A study in eastern Taiwan evaluated the importance of montane water contribution (MC) to adjacent valley-plain groundwater (VPG) in a tectonic suture zone. The evaluation used a ternary natural-tracer-based end-member mixing analysis (EMMA). With this purpose, VPG and three end-member water samples of plain precipitation (PP), mountain-front recharge (MFR), and mountain-block recharge (MBR) were collected and analyzed for stable isotopic compositions (δ 2H and δ 18O) and chemical concentrations (electrical conductivity (EC) and Cl-). After evaluation, Cl- is deemed unsuitable for EMMA in this study, and the contribution fractions of respective end members derived by the δ 18O-EC pair are similar to those derived by the δ 2H-EC pair. EMMA results indicate that the MC, including MFR and MBR, contributes at least 70% (679 × 106 m3 water volume) of the VPG, significantly greater than the approximately 30% of PP contribution, and greater than the 20-50% in equivalent humid regions worldwide. The large MC is attributable to highly fractured strata and the steep topography of studied catchments caused by active tectonism. Furthermore, the contribution fractions derived by EMMA reflect the unique hydrogeological conditions in the respective study sub-regions. A region with a large MBR fraction is indicative of active lateral groundwater flow as a result of highly fractured strata in montane catchments. On the other hand, a region characterized by a large MFR fraction may possess high-permeability stream beds or high stream gradients. Those hydrogeological implications are helpful for water resource management and protection authorities of the studied regions.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Gulick, S. P. S.; Montelli, A.; Jaeger, J. M.; Zellers, S.; Walczak, M. H.; Mix, A. C.
2015-12-01
Ongoing collision of the Yakutat (YAK) microplate with North America (NA) in southern Alaska has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), much of which is younger than 0.3 Ma. Age models within the trough indicated that initiation of active deformation away from the Bering Trough depocenter likely occurred since 0.3 Ma, suggesting that possible tectonic reorganization due to mass redistribution by glacial processes can occur at time scales on the order of 100kyr-1Myr.
NASA Astrophysics Data System (ADS)
Fitzgerald, P. G.; Studinger, M.; Bialas, R. W.; Buck, W.
2007-12-01
The Transantarctic Mountains (TAM), the world's longest and highest non-contractional intracontinental mountain belt, define the western boundary of the West Antarctic rift system (WARS). The WARS is a broad region of extended continental lithosphere, ca. 750-1000 km wide, lying dominantly below sea-level. A new model (Bialas et al., 2007), proposes that a region of thickened continental crust and high-standing topography, the "West Antarctic Plateau", underwent extensional collapse to leave a remnant edge representing the proto-TAM. Tectonic and paleogeographic reconstructions indicate the plateau formed inboard of a continental arc along the paleo- Pacific margin of Antarctica, active throughout the Paleozoic until the late Mesozoic. This high-standing region was responsible for confining sediments (Beacon Supergroup) to elongate basins along the length of the TAM. Much of the present region of the WARS has been correlated with the Lachlan Fold belt of southeastern Australia. This belt formed from the Ordovician to Carboniferous during back-arc basin formation associated with slab roll- back with short periods of compression. Convergence along the paleo-Pacific margin, perhaps enhanced by subduction of more buoyant oceanic lithosphere as the Phoenix-Pacific ridge was obliquely subducted, resulted in crustal thickening and formation of high-standing terrain (the plateau). Extensional collapse of the plateau most likely began in the Jurassic during initial rifting between East and West Antarctica, but was mainly accomplished during distributed rifting in the Cretaceous (ca. 105-85) following subduction of the Phoenix-Pacific ridge and prior to the separation of New Zealand from Marie Byrd Land. Continued formation of the TAM continued in the Cenozoic concomitant with extension in the WARS that was localized along its western margin adjacent to the TAM. Glacial erosion in the Oligocene and early-Miocene enhanced peak height in the TAM. In this presentation we discuss the diverse geological, geophysical, thermochronological and tectonic evidence for the West Antarctic Plateau and the implications for the formation of the Transantarctic Mountains.
New evidence for global tectonic zones on Venus
NASA Technical Reports Server (NTRS)
Kozak, Richard C.; Schaber, Gerald G.
1989-01-01
Venera 15 and 16 spacecraft images show clear evidence of major crustal disruptions on Venus which have been interpreted to indicate crustal divergence. Complementary to the divergent zones are mountain belts that border the continent-like high terrains. The requisite transcurrent motions appear to be manifested as diffuse shear zones. The rift zones form an interconnected transpolar system which ties in with previously recognized equatorial disruption zones, suggesting a global tectonic network. Several independent lines of evidence suggest that the tectonism may be geologically young.
Seismotectonic zoning of Azerbaijan territory
NASA Astrophysics Data System (ADS)
Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad
2017-04-01
Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.
YUCCA MOUNTAIN SITE DESCRIPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Simmons
The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work donemore » at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.« less
Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range
Binnie, S.A.; Phillips, W.M.; Summerfield, M.A.; Fifield, L.K.
2007-01-01
Studies across a broad range of drainage basins have established a positive correlation between mean slope gradient and denudation rates. It has been suggested, however, that this relationship breaks down for catchments where slopes are at their threshold angle of stability because, in such cases, denudation is controlled by the rate of tectonic uplift through the rate of channel incision and frequency of slope failure. This mechanism is evaluated for the San Bernardino Mountains, California, a nascent range that incorporates both threshold hill-slopes and remnants of pre-uplift topography. Concentrations of in situ-produced cosmogenic 10Be in alluvial sediments are used to quantify catchment-wide denudation rates and show a broadly linear relationship with mean slope gradient up to ???30??: above this value denudation rates vary substantially for similar mean slope gradients. We propose that this decoupling in the slope gradient-denudation rate relationship marks the emergence of threshold topography and coincides with the transition from transport-limited to detachment-limited denudation. The survival in the San Bernardino Mountains of surfaces formed prior to uplift provides information on the topographic evolution of the range, in particular the transition from slope-gradient-dependent rates of denudation to a regime where denudation rates are controlled by rates of tectonic uplift. This type of transition may represent a general model for the denudational response to orogenic uplift and topographic evolution during the early stages of mountain building. ?? 2007 The Geological Society of America.
Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran
NASA Astrophysics Data System (ADS)
Zamani, Ahmad; Hashemi, Naser
2004-08-01
Conventional methods of tectonic zoning are frequently characterized by two deficiencies. The first one is the large uncertainty involved in tectonic zoning based on non-quantitative and subjective analysis. Failure to interpret accurately a large amount of data "by eye" is the second. In order to alleviate each of these deficiencies, the multivariate statistical method of cluster analysis has been utilized to seek and separate zones with similar tectonic pattern and construct automated self-organized multivariate tectonic zoning maps. This analytical method of tectonic regionalization is particularly useful for showing trends in tectonic evolution of a region that could not be discovered by any other means. To illustrate, this method has been applied for producing a general-purpose numerical tectonic zoning map of Iran. While there are some similarities between the self-organized multivariate numerical maps and the conventional maps, the cluster solution maps reveal some remarkable features that cannot be observed on the current tectonic maps. The following specific examples need to be noted: (1) The much disputed extent and rigidity of the Lut Rigid Block, described as the microplate of east Iran, is clearly revealed on the self-organized numerical maps. (2) The cluster solution maps reveal a striking similarity between this microplate and the northern Central Iran—including the Great Kavir region. (3) Contrary to the conventional map, the cluster solution maps make a clear distinction between the East Iranian Ranges and the Makran Mountains. (4) Moreover, an interesting similarity between the Azarbaijan region in the northwest and the Makran Mountains in the southeast and between the Kopet Dagh Ranges in the northeast and the Zagros Folded Belt in the southwest of Iran are revealed in the clustering process. This new approach to tectonic zoning is a starting point and is expected to be improved and refined by collection of new data. The method is also a useful tool in studying neotectonics, seismotectonics, seismic zoning, and hazard estimation of the seismogenic regions.
NASA Astrophysics Data System (ADS)
Reiser, Martin; Fügenschuh, Bernhard; Schuster, Ralf
2010-05-01
The Apuseni mountains in Romania take a central position in the Alpine Carpathian Dinaride system and separate the Pannonian basin in the west from the Transsylvanian basin in the east. The Cretaceous age nappe stack involves from bottom to top Tisza- (Bihor and Codru) and Dacia-derived units (Biharia, according to Schmid et al., 2008) overlain by the South Apuseni and Transylvanian ophiolite belt. This study tries to provide new and additional information on the structural and metamorphic evolution of these units from the Jurassic obduction to neotectonic activity. This also comprises information on their interaction with the neighbouring basins. The objective is to show the impact of large scale (plate) tectonics (f.i. in terms of its thermal configuration and strengths profile) and the impact of early-formed tectonic features for the further evolution, specifically the formation of the surrounding basins together with its feedback with topography. This approach includes investigation of kinematics along first order contacts during distinct events together with the thermotectonic characterization of the involved units. While the early "high-grade" evolution will be geochronologically addressed by Sm/Nd, Rb/Sr and Ar/Ar dating, fission track analysis on zircon and apatite will be used to constrain the low-temperature part of the story. Already available data by Sanders (1998), Schuller (2004), Merten (in preparation) and Kounov (in preparation) together with new own data will be used to provide a 4D model for the late-stage thermal evolution of the Apuseni mountains. Thermal modelling will be compared and integrated with numerical modelling of the landscape evolution. The hereby generated data and information on erosion and exhumation will be further used in associated partner projects of the Source to Sink research network which addresses the evolution of the Danube system from the hinterland to the Black Sea. References: Sanders, C. A. E. (1998), Tectonics and erosion - Competitive forces in a compressive orogen: A fission track study of the Romanian Carpathians, PhD-thesis, Vrije Universiteit, Amsterdam, pp. 204. Schuller, V. (2004), Evolution and geodynamic significance of the Upper Cretaceous Gosau basin in the Apuseni Mountains (Romania), PhD Thesis, Tubinger Geowiss. Arb. Reihe A70, 112 pp. Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schaefer, R. Schuster, M. Tischler and K. Ustaszewski (2008), The Alps-Carpathians-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss Journal of Geosciences, 2008.
NASA Astrophysics Data System (ADS)
Peters, Stephen C.
2008-07-01
Naturally occurring arsenic in the bedrock of the Northern Appalachian Mountain belt was first recognized in the late 19th century. The knowledge of the behavior of arsenic in groundwater in this region has lagged behind nearly a century, with the popular press reporting on local studies in the early 1980s, and most peer-reviewed research articles on regional patterns conducted and written in the late 1990s and early 2000s. Research reports have shown that within this high arsenic region, between 6% and 22% of households using private drinking water wells contain arsenic in excess of 10 µg/L, the United States Environmental Protection Agency's maximum contaminant level. In nearly all reports, arsenic in drinking water was derived from naturally occurring geologic sources, typically arsenopyrite, substituted sulfides such as arsenian pyrite, and nanoscale minerals such as westerveldite. In most studies, arsenic concentrations in groundwater were controlled by pH dependent adsorption to mineral surfaces, most commonly iron oxide minerals. In some cases, reductive dissolution of iron minerals has been shown to increase arsenic concentrations in groundwater, more commonly associated with anthropogenic activities such as landfills. Evidence of nitrate reduction promoting the presence of arsenic(V) and iron(III) minerals in anoxic environments has been shown to occur in surface waters, and in this manuscript we show this process perhaps applies to groundwater. The geologic explanation for the high arsenic region in the Northern Appalachian Mountain belt is most likely the crustal recycling of arsenic as an incompatible element during tectonic activity. Accretion of multiple terranes, in particular Avalonia and the Central Maine Terrane of New England appear to be connected to the presence of high concentrations of arsenic. Continued tectonic activity and recycling of these older terranes may also be responsible for the high arsenic observed in the Triassic rift basins, e.g. the Newark Basin. There are only two well-known cases of anthropogenic contamination of the environment in the northern Appalachian Mountain belt, both of which are industrial sites with surface contamination at that infiltrated the local groundwater.
Riley, P.; Tikoff, B.; Hildreth, Wes
2012-01-01
The Long Valley region of eastern California (United States) is the site of abundant late Tertiary–present magmatism, including three geochemically distinct stages of magmatism since ca. 3 Ma: Mammoth Mountain, the Mono-Inyo volcanic chain, and Long Valley Caldera. We propose two tectonic models, one explaining the Mammoth Mountain–Mono-Inyo magmatism and the other explaining the presence of Long Valley Caldera. First, the ongoing Mammoth Mountain–Mono-Inyo volcanic chain magmatism is explained by a ridge-transform-ridge system, with the Mono-Inyo volcanic chain acting as one ridge segment and the South Moat fault acting as a transform fault. Implicit in this first model is that this region of eastern California is beginning to act as an incipient plate boundary. Second, the older Long Valley Caldera system is hypothesized to occur in a region of enhanced extension resulting from regional fault block rotation, specifically involving activation of the sinistral faults of the Mina deflection. The tectonic models are consistent with observed spatial and temporal differences in the geochemistry of the regional magmas, and the westward progression of magmatism since ca. 12 Ma.
Venus tectonics: initial analysis from magellan.
Solomon, S C; Head, J W; Kaula, W M; McKenzie, D; Parsons, B; Phillips, R J; Schubert, G; Talwani, M
1991-04-12
Radar imaging and altimetry data from the Magellan mission have revealed a diversity of deformational features at a variety of spatial scales on the Venus surface. The plains record a superposition of different episodes of deformation and volcanism; strain is both areally distributed and concentrated into zones of extension and shortening. The common coherence of strain patterns over hundreds of kilometers implies that many features in the plains reflect a crustal response to mantle dynamic processes. Ridge belts and mountain belts represent successive degrees of lithospheric shortening and crustal thickening; the mountain belts also show widespread evidence for extension and collapse both during and following crustal compression. Venus displays two geometrical patterns of concentrated lithospheric extension: quasi-circular coronae and broad rises with linear rift zones; both are sites of significant volcanism. No long, large-offset strike-slip faults have been observed, although limited local horizontal shear is accommodated across many zones of crustal shortening. In general, tectonic features on Venus are unlike those in Earth's oceanic regions in that strain typically is distributed across broad zones that are one to a few hundred kilometers wide, and separated by stronger and less deformed blocks hundreds of kilometers in width, as in actively deforming continental regions on Earth.
Relief Evolution in Tectonically Active Mountain Ranges
NASA Technical Reports Server (NTRS)
Whipple, Kelin X.
2004-01-01
The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.
du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.
2004-01-01
Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In contrast, compositions of the ash-flow tuffs, including the Rhyolite Canyon Tuff, vary significantly owing to eruption from compositionally zoned reservoirs. Reservoir zonation is consistent with fractional crystallization of observed phenocryst phases and resulting residual liquid compositional evolution. Rhyolite lavas preserved in the moat of the Turkey Creek caldera depict compositional zonation that is the reverse of that expected of magma extraction from progressively deeper parts of a normally zoned reservoir. Presuming that the source reservoir was sequentially tapped from its top downward, development of reverse zonation in the rhyolite lava sequence may indicate that later erupted, more evolved magma contains systematically less wallrock contamination derived from the geochemically primitive margins of its incompletely mixed reservoir. New 40Ar/39Ar geochronology data indicate that the principal middle Tertiary volcanic rocks in the central Chiricahua Mountains were erupted between about 34.2 and 26.2 Ma, and that the 5.2 m.y. period between 33.3 and 28.1 Ma was amagmatic. The initial phase of eruptive activity in the central Chiricahua Mountains, between 34.2 and 33.3 Ma, was associated with a regional tectonic regime dominated by subduction along the west edge of North America. We infer that the magmatic hiatus, nearly simultaneous with a hiatus of similar duration in parts of the Boot Heel volcanic field east of the central Chiricahua Mountains, is related to a period of more rapid convergence and therefore shallower subduction that may have displaced subduction-related magmatic activity to a position east of the present-day Boot Heel volcanic field. The hiatus also coincides with a major plate tectonic reorganization along the west edge of North America that resulted in cessation of subduction and initiation of transform faulting along the San Andreas fault. The final period of magmatism in the central Chiricahua Mountains, between 28.1 and 23.2 Ma, ap
Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China
NASA Astrophysics Data System (ADS)
Zheng, Min; Wu, Xiaozhi
2014-05-01
The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.
NASA Technical Reports Server (NTRS)
Kidd, W. S. F.; Kusky, T. M.; Bradley, D. C.
1988-01-01
How late Archean tectonics could be seen to have operated in the Slave Province is illustrated. Lithospheric thinning and stretching, with the formation of rifted margins (to continental or island arc fragments), and lithospheric flexural loading of the kind familiar in arcs and mountain belts could be discerned.
Indentation tectonics in northern Taiwan: insights from field observations and analog models
NASA Astrophysics Data System (ADS)
Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques
2017-04-01
In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin
2017-04-01
Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.
NASA Astrophysics Data System (ADS)
Burks, T. W.; Springer, G. S.
2004-12-01
Evolution of mountain drainage basins across a broad spectrum of geologic, tectonic, and climatic conditions is an active area of investigation in the field of fluvial geomorphology. Mountain streams are typified by steep channel gradients (>0.002), high channel roughness, rapid changes in drainage area, and high spatial and low temporal variability in channel morphology, leading to complexities in landscape modeling relative to their lowland counterparts. Factors driving this recent investigative trend are the refinement and generation of digital topographic data and terrain analysis software, and more importantly, the demand for a multidiscipline approach to the assessment, restoration, and management of entire watersheds. A significant volume of research has been conducted in mountain drainage basins of the western United States, with particular attention paid to tectonically active regions of the Pacific Northwest, which also contain federally listed threatened and endangered salmonid populations. Brook trout (Salvelinus fontinalis), native to the highlands of the eastern margin of the Appalachian Plateau are impacted by acid rain deposition; however, geomorphic research into landscape modeling, applicable to restoration and management of lotic ecosystems of the eastern United States, is comparatively lacking. This current research explores the potential for modeling channel morphology in mountain streams; specifically, how downstream trends in channel substrate resistance and unit stream power effect the partitioning of mountain stream morphology along and downstream of the fluvial/colluvial transition. In order to address this issue, two mountain drainage basins in the headwaters of the Gauley River watershed on the Appalachian Plateau of southeastern West Virginia were chosen. The westerly flowing Cranberry (250 sqkm) and Cherry (429 sqkm) rivers incise gently northwestward dipping Carboniferous-aged strata (shale, minor coal, siltstone, sandstone, and conglomerate), with a large percentage of both drainages managed as the Monongahela National Forest. A total of 68 reach-scale (10-20 channel widths) channel surveys were completed in which reach gradient, average bankfull channel widths, and bed surface grain size data were determined. This information was synthesized with data extracted from 10-meter digital elevation models using both RiverTools v. 2.4 and ArcGIS Desktop 8.3 terrain analysis software packages. Surveyed channel reach gradients range from (0.002-0.150 m/m) and are characterized by pool-riffle to cascade and step-pool morphologies, though observed morphology succession is atypical of an equilibrated system. Partitioning in channel morphology succession correlates with both changes in lithology (e.g. siltstone to conglomerate) and the extent of headwater debris flow activity, which reflects a shift in the balance between driving and resisting forces as stream size increases.
Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history
NASA Astrophysics Data System (ADS)
Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi
2018-02-01
Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.
NASA Astrophysics Data System (ADS)
Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao
2018-06-01
The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of the Yili-Central Tianshan Block were suggested to be the causes for extensive emplacements of the igneous products, which may be in an association with synchronous subduction of the South Tianshan and the North Tianshan oceanic plates, respectively. In this tectonic context, the Carboniferous magmatic rocks of the Wusun Mountain may be a tectonic response to the change in magma sources due to back-arc propagation in the western Chinese Tianshan.
Tectonic evolution of Western Ishtar Terra, Venus
NASA Astrophysics Data System (ADS)
Marinangeli, Lucia
1997-03-01
A detailed geological mapping based on Magellan data has been done in Western Ishtar Terra from 300-330 deg W to 65-75 deg N. The area studied comprises three main phisiografic provinces, Atropos Tessera, Akna Montes and North-Western Lakshmi Planum. The purposes of this study are (1) to recognize the tectonism of this area and investigate its type, direction, intensity, distribution and age relationships, (2) to define the link between the formation of the Akna mountain belt and the tectonic deformation in adjacent Tessera and Lakshmi Planum.
NASA Astrophysics Data System (ADS)
Mieth, Matthias; Steinhage, Daniel; Ruppel, Antonia; Damaske, Detlef; Jokat, Wilfried
2013-04-01
We are presenting new magnetic and gravity data of a high-resolution aerogephysical survey over the area of the Sør Rondane Mountains in the eastern Dronning Maud Land (DML). The aircraft survey is part of the joint geological and geophysical GEA campaign (Geodynamic Evolution of East Antarctica) of the Federal Agency for Geosciences and Natural Resources (BGR) and Alfred-Wegener-Institute for Polar and Marine Research (AWI), in cooperation with the Universities of Ghent, Bremen and Bergen. It was completed during the Antarctic summer season 2012/13, covering an area of more than 100000 square kilometer with a line spacing of 5 km. The data will be correlated with geological structures exposed in the mountain range as well as matched and merged with the data sets of the eastern and southern DML (acquired by AWI during the last decade) for comparison and discussion in the greater context of the tectonic evolution of East Antarctica. Preliminary results show that the magnetic anomaly pattern over the Sør Rondane Mountains differs from the pattern found over the central DML mountains as well as from the low amplitude pattern in between both regions, indicating a significant difference in the evolution of this region, which is in accordance with latest geological findings in this region.
Influence of orographic precipitation on the incision within a mountain-piedmont system
NASA Astrophysics Data System (ADS)
Zavala, Valeria; Carretier, Sébastien; Bonnet, Stephane
2017-04-01
The geomorphological evolution of a mountain-piedmont system depends both on tectonics and climate, as well as on couplings between the mountain and its piedmont. Although the interactions between climate and tectonics are a fundamental point for understanding the landscape evolution, the erosion of a mountain range and the sediment deposition at the mountain front, or piedmont, have been poorly studied as a coupled system. Here we focus on the conditions driving an incision within such a system. Classically, it is thought that incision results from a change in climate or uplift rates. However, it is not clear which are the specific conditions that favor the occurrence of river incision in the piedmont. In particular, studies have shown that the presence of a piedmont can modify the incision patterns, and even drive autogenic incision, without any change in external forcings. This is a crucial issue in order to interpret natural incisions in terms of uplift or climatic modifications. Such a problem is further complicated by the modification of local precipitations and temperatures during uplift, because the progressive effect of climate change may superimpose to uplift. In this work we explore the hypothesis that a mountain-piedmont coupled system may develop incision in its piedmont as a result of enhanced orographic precipitations during surface uplift. We use a landscape evolution model, Cidre, in order to explore the response of a mountain-piemont system in which the mountain is continuously uplifted but in which precipitation rates depend on elevations. Thus precipitation amounts change during the mountain uplift. We test different peaks and amplitudes of the orographic precipitation pattern, maintaining the other conditions constant. Preliminary results show that elevation-dependent precipitations drive temporary but pronounced incisions of the main rivers within the piedmont, contrary to experiments without orographic precipitations.
NASA Astrophysics Data System (ADS)
Siame, Lionel L.; Lee, Jian-Cheng
2016-12-01
In Taiwan, tectonic and climatic processes are exacerbated, involving deformation and erosion rates that are among the highest ones in the world. The combination of these internal and external forcing factors results in frequent and severe natural hazards in many aspects, including earthquake, landslide, mud/debris flows, floods, tsunamis, etc., which became a real concern not only for in the Taiwanese society but also applying for many countries or areas in the world. Within this general context, Taiwan orogen is thus a quite exceptional natural laboratory to study the coupling relationships between internal and external processes, and thus better cope with implications on society and economics. From a fundamental science point of view, Taiwan orogen has long been recognized as one of the best places in the world to study mountain building processes including lithosphere and crustal deformation, mechanisms of mountain building, seismic cycle and seismic behaviour of active faults. In fact, Taiwan orogen is probably one of the rare mountain belts where processes of mountain building can be apprehended from oceanic to continental subduction and post-orogenic extension.
Drew, L.J.
2003-01-01
A tectonic model useful in estimating the occurrence of undiscovered porphyry copper and polymetallic vein systems has been developed. This model is based on the manner in which magmatic and hydrothermal fluids flow and are trapped in fault systems as far-field stress is released in tectonic strain features above subducting plates (e.g. strike-slip fault systems). The structural traps include preferred locations for stock emplacement and tensional-shear fault meshes within the step-overs that localize porphyry- and vein-style deposits. The application of the model is illustrated for the porphyry copper and polymetallic vein deposits in the Central Slovakian Volcanic Field, Slovakia; the Ma??tra Mountains, Hungary; and the Apuseni Mountains, Romania.
Ouachitas need more exploratory drilling
Suneson, Neil H.; Campbell, Jock A.
1990-01-01
The Ouachita Mountains in southeastern Oklahoma and western Arkansas are part of a mostly buried late Paleozoic fold and thrust belt that extends from Alabama to northern Mexico. The principal hydrocarbon reservoirs in the Ouachita tectonic province can be subdivided into those that produce natural gas from shallow-water units and those that produce oil and/or natural gas from deep-water units. They can also be divided into those that are fractured and those that produce from primary pore spaces or vugs. The first successful oil well in the Ouachita Mountains was drilled in 1913 or 1914. Since the discovery of the Redden field, over 800 oil and gas wells have been drilled in the Ouachita tectonic province in Oklahoma. Yet, most of the region remains little explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, A.V.; Coney, P.J.
1987-11-01
Late Devonian sandstone beds are exposed as allochthonous sequences that extend for over 1000 km along the east-west strike of the Brooks Range in northern Alaska. These horizons, at least in part, record Late Devonian tectonism and deposition along the southern margin of the Arctic Alaska block. This study identifies clastic petrofacies in the western Philip Smith Mountains and southern Arctic quadrangles and infers the composition of the source terrane. The paleogeography is not known and the original distribution of lithofacies is uncertain, owing to the extensive post-depositional tectonism. In the study area the sandstones are exposed along rugged mountainmore » tops and high ridges. Although exposures are excellent, access is often difficult. Samples were collected from exposures near the western end of the Chandalar Shelf, Atigun Pass, and the Atigun River valley in the Philip Smith Mountains quadrangle and from the Crow Nest Creek and Ottertail Creek areas in the Arctic quadrangle. 34 refs., 17 figs.« less
Peculiarity of the Relationship between the Seismicity and Tectonic Structure of the Pyrenees
NASA Astrophysics Data System (ADS)
Lukk, A. A.; Shevchenko, V. I.
2018-05-01
The geotectonic position of the Pyrenees mountain massif in the Alpine-Indonesian mobile belt is considered. The geological data testify to the formation of the structure of the Pyrenees in the setting of a subhorizontal compression perpendicular to the ridge. The commonly accepted interpretation considers this compression in the context of plate tectonic notions related to the collision between the Iberian and Eurasian lithospheric plates resulting from the convergence of the Eurasian and African plates. However, this interpretation is challenged by the the geodetic and seismological measurements. The GPS measurements suggest a certain cross-strike spreading rather than shortening of the Earth's crust; the focal mechanisms of the earthquakes indicate the predominance of a subhorizontal extension perpendicular to the strike of the Pyrenees mountain range. The processes of the gravitational collapse of the mountain chain during the isostatic upwelling of the orogenic crust are considered as the most probable cause of this spreading by a number of the authors.
Timing and rates of long-term landscape evolution in Southern Argentina
NASA Astrophysics Data System (ADS)
Kollenz, S.; Glasmacher, P. A.
2013-12-01
The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. North of the Sierras Septentrionales the Salado basin is located. The Sierras Septentrionales and the Sierras Australes are also divided by a smaller intracratonic basin. Further in the South the Colorado basin is located. The Sierras Australes is a variscian fold belt originated by strong phases of metamorphosis, but till now it is unclear by how many tectonic phases the area was influenced (Tomezzoli & Vilas, 1999). It consists of Proterozoic to Paleozoic rocks. The Sierras Septentrionales consists mainly of Precambrian crystalline rocks. The Precambrian sequences are overlain by younger Sediments (Cingolani, 2010). The aim is to understand the long-term landscape evolution of the area by quantifiying erosion- and exhumation-rates and by dating ancient rock-uplift-events. Another goal is to find out how the opening of the south atlantic took effect on this region. To fulfill this goal, thermochronological techniques, such as fission-track dating and (U-Th-Sm)/He dating has been applied to samples from the region. Because there was no low- temperature thermochronology done in this area, both techniques were applied on apatites and zircons. Furthermore, numerical modeling of the cooling history has provided the data base for the quantification of the exhumation rates. The data-set shows clusters of different ages which can be linked to tectonic activities during late Paleozoic times. Also the thermokinematic modeling is leading to new insights of the evolution of both mountain ranges and shows patterns of ongoing tectonic processes in this region. Caltculated exhumation rates show also varying cooling historys and the influence of tectonics throughout the research area. References: Renata Nela Tomezzoli and Juan Francisco Vilas (1999): Palaeomagnetic constraints on the age of deformation of the Sierras Australes thrust and fold belt, Argentina. Geophys. J. Int. (1999) 138, 857-870 Carlos A. Cingolani (2010): The Tandilia System of Argentina as a southern extension of the Rio de la Plata craton: an overview, Int. J. Earth. Sci. (Geol. Rundsch.) (2011) 100, 221-242
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Shouyeh; Humphrey, J.D.
1991-03-01
Pennsylvania cyclothems are well documented on stable continental shelves and the cyclicity has generally been attributed to glacio-eustasy. As a contrast, Atokan-Desmoinesian cyclic carbonates of the southern Sangre de Cristo Mountains developed in a tectonically active foreland basin, formed by thrusting along the Picuris-Pecos fault during early Pennsylvanian time. Strata exposed in two sections (Dalton Bluff, 260 m; Johnson Mesa, 340 m) are characterized by (1) shallowing-upward cycles, (2) cycles of variable thickness (5-20 m), (3) incomplete cycles, (4) cycles interrupted by terrigenous clastic input, and (5) noncyclic intervals. Allocyclic mechanisms alone cannot fully explain these observations; the authors hereinmore » propose that a complex interplay among eustasy, tectonism, and clastic sediment supply were responsible for the observed cycles. Lithofacies analysis indicates that location within the foreland basin played a significant role in cycle attributes. In the deeper portions of the basin (e.g., Dalton Bluff), an idealized cycle, from base to top consists of (1) shale/marl facies, (2) brachiopod wackestone facies, (3) phylloid algal facies, and (4) marine clastic facies. No evidence for subaerial exposure of cycle caps is noted. In contrast, in shallow portions of the basin near the forebulge (e.g., Johnson Mesa) the marine clastic facies is substituted by crinoidal grainstone/packstone facies that is capped by subaerial exposure surface. Each of the two cycles displays an overall grand (lower order) shallowing-upward cycle. This grand cycle developed as sediments infilled the initially starved foreland basin.« less
NASA Astrophysics Data System (ADS)
Thompson, T. B.; Meade, B. J.
2015-12-01
The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.
Development of the Earth's early crust: Implications from the Beartooth Mountains
NASA Technical Reports Server (NTRS)
Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.
1983-01-01
The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, G.M.; Boudette, E.L.
1985-01-01
The Hurricane Mountain Formation (HMF) melange and associated ophiolitic and volcanogenic formations of Cambrian and lowermost Ordovician age bound the SE margin of the Precambrian Y (Helikian) Chain Lakes Massif in western Maine. HMF melange matrix, though weakly metamorphosed, contains a wide variety of exotic greenschist to amphibolite facies blocks as components of its polymictic assemblage, but blocks of high-grade cratonal rocks such as those of Chain Lakes or Grenville affinity are lacking. Formations of melange exposed in structural culminations of Cambrian and Ordovician rocks NE of the HMF in Maine and in the Fournier Group in New Brunswick aremore » lithologically similar and probably tectonically correlative with the HMF; taken together, they may delineate a common pre-Middle Ordovician tectonic boundary. The authors infer that the Hurricane Mountain and St. Daniel melange belts define the SE and NW margins of the Boundary Mountains accreted terrane (BMT), which may consist of cratonal basement of Chain Lakes affinity extending from eastern Gaspe (deBroucker and St. Julien, 1985) to north-central New Hampshire. The Laurentian continental margin, underlain by Grenville basement, underplated the NW margin of this terrane, marked by the SDF suture zone, in late Cambrian to early Ordovician time, while terranes marked by Cambrian to Tremadocian (.) lithologies dissimilar to the Boundary Mountains terrane were accreted to its outboard margin penecontemporaneously. The docking of the Boundary Mountains terrane and the initiation of its peripheral melanges are equated to the Penobscottian disturbance.« less
Menegon, M; Loader, S P; Marsden, S J; Branch, W R; Davenport, T R B; Ursenbacher, S
2014-10-01
Past climatic and tectonic events are believed to have strongly influenced species diversity in the Eastern Afromontane Biodiversity Hotspot. We investigated the phylogenetic relationships and historical biogeography of the East African genus Atheris (Serpentes: Viperidae), and explored temporal and spatial relationships between Atheris species across Africa, and the impact of palaeoclimatic fluctuations and tectonic movements on cladogenesis of the genus. Using mitochondrial sequence data, the phylogeny of East African species of Atheris shows congruent temporal patterns that link diversification to major tectonic and aridification events within East Africa over the last 15million years (my). Our results are consistent with a scenario of a delayed direct west-east colonisation of the Eastern Arc Mountains of Atheris by the formation of the western rift. Based on the phylogenetic patterns, this terrestrial, forest-associated genus has dispersed into East Africa across a divided route, on both west-southeasterly and west-northeasterly directions (a C-shaped route). Cladogenesis in the Eastern Arc Mountains and Southern Highlands of Tanzania corresponds to late Miocene and Plio-Pleistocene climatic shifts. Taxonomically, our data confirmed the monophyly of Atheris as currently defined, and reveal four major East African clades, three of which occur in discrete mountain ranges. Possible cryptic taxa are identified in the Atheris rungweensis and A. ceratophora clades. Copyright © 2014 Elsevier Inc. All rights reserved.
How fast is the denudation of the Taiwan Mountains? (Invited)
NASA Astrophysics Data System (ADS)
Siame, L. L.; Derrieux, F.; KANG, C.; Bourles, D. L.; Braucher, R.; Léanni, L.; Chen, R.; Lee, J.; Chu, H.; Chang, C.; Byrne, T. B.
2013-12-01
Orogenic settings are particularly well suited to study and quantify the coupling relations between tectonics, topography, climate and erosion since they record tectonic evolution along convergent margins and the connection between deep and surface processes. However, the interaction of deep and shallow processes is still poorly understood and the role they play in the exhumation of rocks, the structural and kinematic evolution of orogenic wedges, and the relation between tectonics and climate-dependent surface processes are still debated. Therefore, quantification of denudation rates in a wide range of climatic and tectonic settings, as well as at various time and space scales, is a critical step in calibrating and validating landscape evolution models. In this study, we focus on the mountains of the arc-continent collision in Taiwan, which serve as one of the best examples in the world to understand and study mountain building processes. We investigate the pattern and magnitude of denudation rates at the scale of the orogenic system, deriving denudation rates from in situ-produced cosmogenic nuclide 10Be concentrations measured in (1) river-borne quartz minerals sampled at major watersheds outlets, and (2) bedrock outcrops along ridge crests and at summits located along the major drainage divide of the belt. We determined a denudation pattern showing a clear discrepancy between the western (1.7×0.2 mm/yr) and eastern (4.1×0.5 mm/yr) sides of the range. Conversely, bedrock denudation determined along ridge crests, summits and flat surfaces preserved at high elevations are characterized by significantly lower denudation rates on the order of 0.24×0.03 mm/yr. Altogether, the cosmogenic-derived denudation pattern at the orogen-scale reflects fundamental mountain building processes from frontal accretion in the Western Foothills to basal accretion and fast exhumation in the Central Range. Applied to the whole orogen, such field-based approach thus provides important input data to validate and calibrate the parameters to be supplied to landscape evolution models. Moreover, the comparison between cosmogenic bedrock-derived and basin-derived denudation rates allows discussing how the topographic relief of Taiwan has evolved through the last thousands of years, and thus documenting whether or not the Taiwan Mountains are in a topographic steady state.
Deep Landslides in flysch formations
NASA Astrophysics Data System (ADS)
Marinos, Vassilis
2017-04-01
Flysch, linked with the tectonic development of an area, has suffered from compressional forces being highly deformed by thrust faults and folds, containing thus often tectonically pre-sheared zones of various size. These geological characteristics may produce weak to very weak rock masses which may present instability and landslides in both mountain and local slope scale. The paper mainly discusses the "mountain" scale phenomena. The size of these masses can reach hundreds of meters in both depth and width on the valley sides. A brief presentation of the flysch formation is presented. A typology is presented with 11 types of flysch, depending on the persistence and participation or not of the strong members (as sandstones) against the weak ones (as siltstones, shales) and the degree and scale of tectonic disturbance. These rock mass types are connected with the landslide mechanism. In all cases the tectonic conditions of a broader area are responsible and the establishment of the tectonic-paleogeographic model is necessary before the conceptual study and design of any major infrastructure work and the choice of its alignment or location. Given the size of such instability areas remedial measures are in most cases not feasible and the realignment or relocation from the initial plans are often the only solution. Cases from highways and pipelines in Greek and Albanian territory are presented. A large number of information from lab tests, geotechnical classifications and back analyses collected from a wide variety of flysch formations is presented and discussed.
Drifting--Continents on the Move.
ERIC Educational Resources Information Center
Glenn, William H.
1983-01-01
Plate tectonics is the current framework for understanding earth history and processes. Recent progress in this field is discussed, focusing on continental growth, mountain building, hot spots, and mineral depositions. (JN)
Tectonic development of West Antarctica and its relation to East Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalziel, I.W.D.
1987-09-01
Over several years, the author has compiled data and conducted field research to gain an understanding of the relationship between East and West Antarctica through geologic time. The investigations have focused on the Scotia Arc and the region at the base of the Antarctic Peninsula extending to the Ellsworth, Thiel, and Whitmore mountains. During the 1983-1984 austral summer, US and British geologists began an intensive investigation in the Ellsworth Mountains and Martin Hills, at Mount Smart, and near Siple Station. Field work includes geology, paleomagnetism, geochronology, and geophysics, with radio-echo sounding and aeromagnetic surveys conducted by British geophysicists. This investigationmore » attempts to define the limits of the crustal blocks and determine the tectonic nature of the ice-covered area between them.« less
Erosion and sediment yields in the Transverse Ranges, Southern California
Scott, Kevin M.; Williams, Rhea P.
1978-01-01
Major-storm and long-term erosion rates in mountain watersheds of the western Transverse Ranges of Ventura County, Calif., are estimated to range from low values that would not require the construction of catchments or channel-stabilization structures to values as high as those recorded anywhere for comparable bedrock erodibilities. A major reason for this extreme variability is the high degree of tectonic activity in the area--watersheds are locally being uplifted by at least as much as 25 feet per 1,000 years, yet the maximum extrapolated rate of denudation measured over the longest available period of record is 7.5 feet per 1,000 years adjusted to a drainage area of 0.5 square mile. Evidence of large amounts of uplift continuing into historic time includes structurally overturned strata of Pleistocene age, active thrust faulting, demonstrable stream antecedence, uplifted and deformed terraces, and other results of base-level change seen in stream channels. Such evidence is widespread in the Transverse Ranges, and aspects of the landscape are locally more a function of tectonic activity than of the denudational process. (Woodard-USGS)
Thin-skinned tectonics of upper Ojai Valley and Sulfur Mountain vicinity, Ventura basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huftile, G.J.
1988-03-01
The Upper Ojai Valley is a tectonic depression between opposing reverse faults. The active, north-dipping San Cayetano fault forms its northern border and has 5.8 km of dip-slip displacement at the Silverthread oil field and 2.6 km of displacement west of Sisar Creek. The fault dies out farther west in Ojai Valley. The southern border is formed by the late Quaternary Sisar-Big-Canyon-Lion fault set, which dips south and merges into a decollement within the south-dipping, ductile Rincon Formation. Folds with north-dipping fold axes, including the Lion Mountain anticline and Reeves syncline, are probably Pliocene. During the late Quaternary, the Sulfurmore » Mountain anticlinorium began forming as a fault-propagation fold, followed closely by the ramping of the south-dipping faults to the surface. One, the Lion fault, cuts the Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the south-dipping faults. Cross-section balancing shows that the Miocene and younger rocks above the decollement are shortened 6.1 km more than the more competent rocks below. A solution to this bed-length problem is that the decollement becomes a ramp and merges at depth with the steeply south-dipping Oak Ridge fault. This implies that the Sisar, Big Canyon, and Lion faults are frontal thrusts to the Oak Ridge fault. Oil is produced primarily from Mohnian sands and shales north of the Big Canyon fault and from fractured Mohnian shale beneath the Sisar fault.« less
Earthquakes, geodesy, and the structure of mountain belts
NASA Astrophysics Data System (ADS)
Allen, Mark; Walters, Richard; Nissen, Ed
2015-04-01
Most terrestrial mountain belts are the topographic expression of thrust faulting and folding, which are how the continents deform in compression. Fold-and-thrust belts are therefore a global phenomenon, in existence since at least the onset of plate tectonics. They are typically described as wedge-shaped zones of deformation, overlying a basal low-angle thrust fault (≤10o dip). Here we use earthquake focal mechanisms and geodetic data from active continental fold-and-thrust belts worldwide, to test these concepts. We find that widespread, seismogenic, low-angle thrusting at the base of a wedge occurs only in the Himalayas, New Guinea, Talesh and far-eastern Zagros, which are plausibly underthrust by strong plates. In other ranges there is no focal mechanism evidence for a basal low-angle thrust, and well-constrained hypocentre depths are typically <20 km. Available geodetic data show that active deformation is focussed on a single, low-angle thrust in the Himalayas and New Guinea, but distributed in other ranges for which there are sufficient observations. We suggest that the more common style of deformation approximates to pure shear, with a brittle lid overlying the rest of the plate, where ductile or plastic deformation predominates. Interpretations of both active and ancient mountain belts will need re-evaluation in the light of these results.
Precambrrian crustal evolution in the great falls tectonic zone
NASA Astrophysics Data System (ADS)
Gifford, Jennifer N.
The Great Falls Tectonic Zone (GFTZ) is a zone of northeast trending geological structures in central Montana that parallel structures in the underlying basement. U-Pb zircon and Nd isotopic data from the Little Belt Mountains (LBM) suggest that the GFTZ formed at ~1.86 to 1.80 Ga due to ocean subduction followed by collision between the Archean Wyoming Province (WP) and Medicine Hat Block (MHB). This study characterizes the GFTZ basement by geochronological and geochemical analysis of crustal xenoliths collected from Montana Alkali Province volcanics and exposed basement rock in the Little Rocky Mountains (LRM). Xenoliths collected from the Grassrange and Missouri Breaks diatremes and volcanics in the Bearpaw and Highwood Mountains have igneous crystallization ages from ~1.7 Ga to 1.9 Ga and 2.4 Ga to 2.7 Ga, and metamorphic ages from ~1.65 Ga to 1.84 Ga. Zircon Lu-Hf and whole-rock Sm-Nd data indicate that the xenoliths originated from reworked older continental crust mixed with mantle-derived components in all cases. Trace element patterns show fluid mobile element enrichments and fluid immobile element depletions suggestive of a subduction origin. Igneous ages in the LRM range older, from ~2.4 Ga to 3.2 Ga. Geochemical evidence suggests that the LRM meta-igneous units also formed in a subduction setting. Detrital zircon ages span the early Paleoproterozoic to Mesoarchean, with abundant 2.8 Ga ages. Zircon U-Pb igneous crystallization age data from xenoliths and the LRM are consistent with U-Pb zircon igneous crystallization ages from the MHB, suggesting that this segment of the GFTZ shares an affinity with concealed MHB crust. Published detrital zircon ages from the northern Wyoming Province reveal more abundant >3.0 Ga ages than the MHB or GFTZ samples. These geochronologic and geochemical data from the xenoliths and LRM samples allow for a refined model for crustal evolution in the GFTZ. Subduction under the Neoarchean to Paleoproterozoic crust of the MHB formed an igneous arc followed by metamorphism during the MHB-WP collision. Later Paleoproterozoic tectonothermal activity represents post-orogenic collapse after the terminal collision. Tectonic activity in the Cenozoic led to basement uplift and the formation of xenolith bearing volcanic units sampled for this study.
NASA Astrophysics Data System (ADS)
Steer, Philippe; Croissant, Thomas; Lague, Dimitri; Davy, Philippe
2017-04-01
Mass wasting caused by large magnitude earthquakes choke mountain rivers with several cubic kilometers of sediment. The timescale and mechanisms by which rivers evacuate the coarse fraction of small to gigantic landslide deposits are poorly known, but are critical to predict post-seismic hydro-sedimentary hazards, interpret the signature of earthquakes in sedimentary archives and decipher the coupling between erosion and tectonics. Here, we use a new 2D hydro-sedimentary evolution model to demonstrate that river self-organization into a narrower alluvial channel overlying the bedrock valley dramatically increases sediment transport capacity of coarse sediments and reduces export time of gigantic landslides by orders of magnitude compared to existing theory. Predicted export times obey a universal non-linear relationship function of landslide volume and pre-landslide valley transport capacity. Dynamic alluvial channel narrowing is therefore a key, previously unrecognized, mechanism by which mountain rivers rapidly digest extreme events and maintain their capacity to incise uplifted rocks. Upscaling these results to realistic populations of landslides show that removing half of the total sediment volume introduced by large earthquakes in the fluvial network would typically last 5 to 25 years in various tectonically active mountain belts, with little impact of topography and climate. If several studies indicate a strong dependency of total landslide volume to earthquake magnitude, our study show that the sediment export time of a landslide population is not strongly impacted by earthquake magnitude or by the total volume of the landslide population. Building on these new findings, we then investigate the dynamics of mountainous landscapes submitted to a series of earthquakes, following either a Gutenberg-Richter distribution or a single large magnitude event. We infer the temporal and spatial evolution of the number of active landslide deposits, of the sediment load along the fluvial network and of the exported sediment flux throughout several seismic cycles. These results highlight how landscapes and sediment fluxes respond on longer time scales to a succession of earthquakes able to trigger landslides.
NASA Astrophysics Data System (ADS)
Grobe, A.; Virgo, S.; von Hagke, C.; Urai, J. L.; Littke, R.
2018-03-01
The structural evolution of the carbonate platform in the footwall of the Semail ophiolite emplaced onto the passive continental margin of Arabia helps to better understand the early stages of obduction-related orogens. These early stages are rarely observable in other orogens as they are mostly overprinted by later mountain building phases. We present an extensive structural analysis of the Jebel Akhdar anticline, the largest tectonic window of the Oman Mountains, and integrate it on different scales. Outcrop observations can be linked to plate motion data, providing an absolute timeframe for structural generations consistent with radiometric dating of veins. Top-to-S overthrusting of the Semail ophiolite and Hawasina nappes onto the carbonate platform during high plate convergence rates between Arabia and Eurasia caused rapid burial and overpressure, generation and migration of hydrocarbons, and bedding-confined veins, but no major deformation in the carbonate platform. At reduced convergence rates, subsequent tectonic thinning of the ophiolite took place above a top-to-NNE, crustal-scale ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers in early Campanian times. Ongoing extension occurred along normal- to oblique-slip faults, forming horst-graben structures and a precursor of the Jebel Akhdar dome (Campanian to Maastrichtian). This was followed by NE-SW oriented ductile shortening and the formation of the Jebel Akhdar dome, deforming the earlier structures. Thereafter, exhumation was associated with low-angle normal faults on the northern flank of the anticline. We correlate the top-to-NNE crustal-scale shear zone with a similar structure in the Saih Hatat window to develop a unified model of the tectonic evolution of the Oman Mountains.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry
2017-12-01
The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.
Prototypical Concepts and Misconceptions of Plate Tectonic Boundaries
NASA Astrophysics Data System (ADS)
Sibley, D. F.; Patino, L. C.
2003-12-01
Students of geology encounter many prototypical/exemplar concepts* that include representative, but not necessarily defining, features and characteristics. This study of students' prototypical representations of plate tectonic boundaries indicates that their representations are rich sources of information about their misconceptions about plate tectonics. After lectures in plate tectonics and mountain building, 353 students in a general education geology class were asked to draw a continent-continent convergent boundary. For this study, a correct answer is defined as having the major features in correct proportions as depicted in the plate boundary diagrams on the USGS web. Fifty-two percent of the drawings were either incorrect or incomplete such that they could not be interpreted. Only 48% were readily interpretable, and of these 22% drew the boundary correctly, showing a thickening of crust where two continents collide. Thirty-three percent drew the boundary showing concave slabs of continental crust as one might imagine two pieces of firm rubber pushed together on a rigid surface and 45% depicted mountains as one might imagine inverted ice cream cones on a rigid plank. Twenty-one senior class geology majors and graduate students were given the same assignment. Forty-eight percent rendered a correct drawing, whereas 38% drew the same ice cream cone on a plank type picture that 45% of the general education students drew. In a second class of 12 geology majors, only 1 student drew a cross section of a continent-ocean boundary similar to standard representation. Four of 12 drew mountains on the top of continental crust over a subduction zone but did not draw a compensating mass within the crust or lithosphere. Prototypical drawings provide more information about students' concepts than do most multiple-choice questions. For example, sixty-two percent of theses students who drew mountains similar to foam rubber pads pushed together on a desk or ice cream cones on a plank correctly answered a multiple-choice question that would appear to indicate a better understanding than the drawings reveal. Furthermore, 12 interviewed students made statements that could be interpreted to indicate that they understood the concept of mountain building at plate tectonic boundaries better than their drawings suggest. Incoherence of multiple-choice responses, verbal statements and drawings may be common in novice learners. If cognitive scientists are correct in their model of multiple types of mental representations for the same term, then the fact that novices may hold inconsistent representations is not surprising. The fact that students at various academic levels draw very similar prototypes that are incorrect is evidence that students have distinct and persistent prototype misconceptions. * Cognitive scientists define a prototypical/exemplar concept as a mental representation of the best examples or central tendencies of a term.
Late Neogene and Active Tectonics along the Northern Margin of the Central Anatolian Plateau,TURKEY
NASA Astrophysics Data System (ADS)
Yildirim, C.; Schildgen, T. F.; Melnick, D.; Echtler, H. P.; Strecker, M. R.
2009-12-01
Margins of orogenic plateaus are conspicuous geomorphic provinces that archive tectonic and climatic variations related to surface uplift. Their growth is associated with spatial and temporal variations of mode and rate of tectonics and surface processes. Those processes can be strongly linked to the evolution of margins and plateaus thorough time. As one of the major morpho-tectonic provinces of Turkey, the Central Pontides (coinciding with the northern margin of the Central Anatolian Plateau (CAP)) display a remarkable topography and present valuable geologic and geomorphic indicators to identify active tectonics. Morpho-tectonic analysis, geological cross-sections, seismic profiles, and geodetic analysis reveal continuous deformation characterized by brittle faults from Late Miocene to recent across the northern margin of the CAP. In the Sinop Peninsula and offshore in the southern Black Sea, pervasive faulting and folding and uplift of Late Miocene to Quaternary marine deposits is related to active margin tectonics of the offshore southern Black Sea thrust and the onshore Balifaki and Erikli faults. In the Kastamonu-Boyabat sedimentary basin, the Late Miocene to Quaternary continental equivalents are strongly deformed by the Ekinveren Fault. This vergent inverse and thrust fault with overstepping en echelon segments deforms not only Quaternary travertines and conglomerates, but also patterns of the Pleistocene to Holocene drainage systems. In the southern Kastamonu-Boyabat basin, an antithetic thrust fault of the Ekinveren Fault system deformed also Quaternary fluviatile terrace deposits. Farther south, a dextral transpressive splay of the North Anatolian Fault (NAF) deforms pediment surfaces and forms the northern flank of the Ilgaz active mountain range. The Ilgaz Range rises up to 2587 m.a.s.l and is delimited by active segments of the NAF.The Central Pontides are located at the apex of northward convex arc of the NAF. Geodetic analysis indicate a deviation of the slip vectors and strain partitioning in the Central Pontides due to the large restraining bend geometry of the NAF. DEM analysis and field observations reveal that the Central Pontides integrate an active bivergent wedge, indicating out-of sequence thrusting and topographical asymmetry, with a gentle pro-wedge northern slope and a steep retro-wedge southern slopes, and regional surface tilting from south to north. Uplifted presumably Late Pleistocene to Holocene marine terraces 4 to 40 m.a.s.l. along the coast and well developed pediment and fill and strath terrace surfaces ranging from 10 to 300 m above along the Gokirmak and Kizilirmak rivers will provide chronological constraints on the uplift and incision rates of the study area.
Geologic map of the Lead Mountain 15’ quadrangle, San Bernardino County, California
Howard, Keith A.; Jagiello, Keith J.; Fitzgibbon, Todd T.; John, Barbara E.
2013-01-01
The Lead Mountain 15’ quadrangle in the Mojave Desert contains a record of Jurassic, Cretaceous, Tertiary, and Quaternary magmatism. Small amounts of Mesoproterozoic(?) augen gneiss and Paleozoic and Mesozoic(?) metasedimentary rocks are preserved in small patches; they are intruded by voluminous Jurassic plutons of quartz diorite to granite composition and by Late Cretaceous granite of the Cadiz Valley batholith. Jurassic intrusive rocks include part of the Bullion Mountain Intrusive Suite and also younger dikes inferred to be part of the Jurassic Independence dike swarm. A contact-metamorphosed aureole 2 km wide in the Jurassic plutonic rocks fringes the Cadiz Valley batholith. Early Miocene dacitic magmatism produced a dense swarm of dikes in the eastern Bullion Mountains and the volcanic-intrusive remnant of a volcano at Lead Mountain. Tilting of the dike swarm from inferred vertical orientations may have resulted from Miocene tectonic extension. Conglomerate of Pliocene and (or) Miocene age is also tilted. Younger volcanism is recorded by Pliocene basalt of the Deadman Lake volcanic field, basalt of Lead Mountain (approximately 0.36 Ma), and the even younger basalt of Amboy. Quaternary sedimentation built alluvial fans and filled playas in the map area. Faulting in the dextral eastern California shear zone produced several northwest-striking faults in the quadrangle, some of them active into the Pleistocene and some that may have many kilometers of right-lateral offset.
Ground Deformation near active faults in the Kinki district, southwest Japan, detected by InSAR
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Ozawa, T.
2016-12-01
The Kinki district, southwest Japan, consists of ranges and plains between which active faults reside. The Osaka plain is in the middle of this district and is surrounded by the Rokko, Arima-Takatsuki, Ikoma, Kongo and Median Tectonic Line fault zones in the clockwise order. These faults are considered to be capable to generate earthquakes of larger magnitude than 7. The 1995 Kobe earthquake is the most recent activity of the Rokko fault (NE-SW trending dextral fault). Therefore the monitoring of ground deformation with high spatial resolution is essential to evaluate seismic hazards in this area. We collected and analyzed available SAR images such as ERS-1/2, Envisat, JERS-1, TerraSAR-X, ALOS/PALSAR and ALOS-2/PALSAR-2 to reveal ground deformation during these 20 years. We made DInSAR and PSInSAR analyses of these images using ASTER-GDEM ver.2. We detected three spots of subsidence along the Arima-Takatsuki fault (ENE-WSW trending dextral fault, east neighbor of the Rokko fault) after the Kobe earthquake, which continued up to 2010. Two of them started right after the Kobe earthquake, while the easternmost one was observed after 2000. However, we did not find them in the interferograms of ALOS-2/PALSAR-2 acquired during 2014 - 2016. Marginal uplift was recognized along the eastern part of the Rokko fault. PS-InSAR results of ALOS/PALSAR also revealed slight uplift north of the Rokko Mountain that uplift by 20 cm coseismically. These observations suggest that the Rokko Mountain might have uplifted during the postseismic period. We found subsidence on the eastern frank of the Kongo Mountain, where the Kongo fault (N-S trending reverse fault) exits. In the southern neighbor of the Median Tectonic Line (ENE-WSW trending dextral fault), uplift of > 5 mm/yr was found by Envisat and ALOS/PALSAR images. This area is shifted westward by 4 mm/yr as well. Since this area is located east of a seismically active area in the northwestern Wakayama prefecture, this deformation may generate E-W compressive stress, which is dominant in focal mechanism of most earthquakes, in the epicentral area.
Gravity and magnetic anomalies of the Cyprus arc and tectonic implications
NASA Astrophysics Data System (ADS)
Ergün, M.; Okay, S.; Sari, C.; Oral, E. Z.
2003-04-01
In present day, eastern Mediterranean is controlled by the collision of the African and Eurasian plates and displacements of Arabian, Anatolian and Aegean micro-plates. The boundary between African and Eurasian plates is delineated by the Hellenic arc and Pliny-Strabo trench in the west and the Cyprus arc and a diffuse fault system of the Eastern Anatolian Fault zone in the east. The available gravity and magnetic data from the easternmost Mediterranean allow to subdivide this basin into three provinces: the northeastern Mediterranean north of the Cyprus Arc; the Levant Basin south of the Cyprus Arc and east of the line that roughly continues the Suez rift trend toward the Gulf of Antalya, between Cyprus and Anaximander Mountains; and the Mediterranean Ridge, Herodotus Basin west of this line. High anomalies observed in Cyprus and the sea region at the south is prominent in the gravity data. The Bouguer gravity anomaly reaches its maximum values over Cyprus, where it is most probably caused by high dense Troodos ophiolites. The uplifted oceanic crust causes high Bouguer anomaly also seen in the vicinity of Eratosthenes Seamount. Another result obtained from gravity data is that the crust under Herodotos and Rhodes basins is somehow oceanic and Anaximander, Eratosthenes and Cyprus are continental fragments. There are no linear magnetic anomalies in the Mediterranean. But there are magnetic anomalies over the Eratosthenes seamount and as well as from Cyprus to the Antalya basin due to the ophiolitic bodies. In Cyprus, the last compressional deformations were defined near the Miocene/Pliocene boundary. The extensional deformation associated with the Antalya basin appears to be separated by a zone of the Florence rise and Anaximander Mountains affected by differential tectonic movements. Eratosthenes Seamount is a positive crustal feature in the process of collision with Cyprus along an active margin; there is clearly a potential tectonic relationship to the onland geology of Cyprus. Eratosthenes is in the process of actively being underthrust both northwards and southwards under opposing margins.
Climatic vs. tectonic control on glacial relief
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Herman, Frederic; Robl, Jörg
2017-04-01
The limiting effect of a climatically-induced glacial buzz-saw on the height of mountain ranges has been extensively discussed in the geosciences. The buzz-saw concept assumes that solely climate controls the amount of topography present above the equilibrium line altitude (ELA), while the rock uplift rate plays no relevant role. This view is supported by analyses of hypsometric patterns in orogens worldwide. Furthermore, numerical landscape evolution models show that glacial erosion modifies the hypsometry and reduces the overall relief of mountain landscapes. However, such models often do not incorporate tectonic uplift and can only simulate glacial erosion over a limited amount of time, typically one or several glacial cycles. Constraints on glacial end-member landscapes from analytical, time-independent models are widely lacking. Here we present a steady-state solution for a glacier equilibrium profile in an active orogen modified from the mathematical conception presented by Headley et al. (2012). Our approach combines a glacial erosion law with the shallow ice approximation, specifically the formulations of ice sliding and deformation velocities and ice flux, to calculate ice surface and bed topography from prescribed specific mass balance and rock uplift rate. This solution allows the application of both linear and non-linear erosion laws and can be iteratively fitted to a predefined gradient of specific mass balance with elevation. We tested the influence of climate (fixed rock uplift rate, different ELAs) and tectonic forcing (fixed ELA, different rock uplift rates) on steady-state relief. Our results show that, similar to fluvial orogens, both climate and rock uplift rate exert a strong influence on glacial relief and that the relation among rock uplift rate and relief is governed by the glacial erosion law. This finding can provide an explanation for the presence of high relief in high latitudes. Headley, R.M., Roe, G., Hallet, B., 2012. Glacier longitudinal profiles in regions of active uplift. Earth and Planetary Science Letters, 317-318, 354-362.
The Roles of Tectonics and Climate in Driving Erosion Rates in the Eastern Himalaya
NASA Astrophysics Data System (ADS)
Larsen, I. J.; Montgomery, D.; Stone, J. O.
2016-12-01
Landslide erosion governs the flux of sediment from non-glaciated mountains. Hence patterns in landslide erosion rates have the potential to reveal how such landscapes respond to spatially-varying climatic and tectonic forcing. Across strong spatial gradients in precipitation and exhumation rates in the eastern Himalaya, we mapped 27,611 landslides and measured 10Be in river sediment in a swath spanning from the Himalayan mountain front northward to the Yarlung Tsangpo Gorge. For the entire landscape, landslide erosion and 10Be-based denudation rates are not correlated with mean annual precipitation. However, erosion and denudation rates increase non-linearly as a function of mean hillslope angles, which is diagnostic of tectonic-driven landslide erosion on threshold hillslopes. Dividing the landscape into distinct geologic-tectonic terranes reveals that erosion rates scale positively with both mean hillslope angles and exhumation rates, but also that threshold topography has not developed throughout the region. Mean annual precipitation rates range from 0.5 to 3 m across the terranes, and erosion rates are highest in the relatively dry Yarlung Tsangpo Gorge, which receives 1.5 m of precipitation annually. However, for areas south of the Gorge, where moisture sources from the south first interact with the orographic barrier of the Himalaya, there is a modest linear increase in erosion rate with increasing mean annual rainfall. These results indicate that tectonics is the main control on spatial patterns of erosion in the eastern Himalaya, but that climate may play a modulating role. Hence the relative roles tectonics and climate play in driving erosion rates likely vary at the sub-orogen scale.
NASA Astrophysics Data System (ADS)
Martinez, S.
2016-12-01
The island of Puerto Rico in the northern Caribbean covers an area of about 14,000 km2 and is 180 km long and 65 km wide and is densely populated by 3.4 million persons. The island is mountainous with an east-west-trending, central mountain range with its highest point of 1338 m in the geographic center of the island. Previous workers have suggested that the origin of this east-west, Central Cordillera is active uplift and folding of a large, east-west-trending anticline whose fold axis is coincident with the topographic crest of the Cordillera Central. The folding mechanism has been attributed by previous workers to obliquely-subducting slabs of the North American and Caribbean plates beneath the island. To test the hypothesis that this topographic and structural axis is also the axis of active topographic uplift, I created a knickpoint density map for the island based on over 50 different river systems to reveal areas of active uplift. The knickpoint map shows an excellent correlation with the proposed arch both in width and trend of the axis and supports the conclusion that the arch is the main axis of active uplift on the Island. I also calculated geomorphic indices for 21 different watersheds of the island that include the Hypsometric Integral and a Stream Length Gradient Index that both assess tectonic activity based on stream and watershed behaviors. The Hack index and Hypsometric Integral show that the most active area of uplift is located in the central and north-central parts of the island that include about one half of the length of the proposed, east-west-trending arch. The two topographically-elevated ends of the arch in the western and eastern parts of the island are less active, according to the indices. Lower values in these areas may be influenced by higher amounts of precipitations in these areas.
Seismotectonic features of the African plate: the possible dislocation of a continent
NASA Astrophysics Data System (ADS)
Meghraoui, Mustapha
2014-05-01
The African continent is made of seismically active structures with active deformation in between main substratum shields considered as stable continental interiors. Seismically active regions are primarily located along rift zones, thrust and fold mountain belts, transform faults and volcanic fields. The active tectonic structures generated large and destructive earthquakes in the past with significant damage and economic losses in Africa. Although some regions of the continent show a low-level of seismic activity, several large earthquakes (with M > 7) have occurred in the past. The presence of major active faults that generate destructive earthquakes is among the most important geological and geophysical hazards for the continent. National and International scientific projects dealing with the seismic hazards assessment are increasing in seismically active regions in Africa. The UNESCO-SIDA/IGCP (Project 601 http://eost.u-strasbg.fr/~igcp601/) support the preparation and implementation of the "Seismotectonic Map of Africa". Therefore, new seismotectonic data with the regional analysis of earthquake hazards became necessary as a basis for a mitigation of the earthquake damage. A database in historical and instrumental seismicity, active tectonics, stress tensor distribution, earthquake geology and paleoseismology, active deformation, earthquake geodesy (GPS) and gravity, crustal structure studies, magnetic and structural segmentation, volcanic fields, collision tectonics and rifting processes is prepared to constrain the geodynamic evolution of the continent. Taking into account the geological, tectonic and geophysical characteristics, we define six seismotectonic provinces that characterize the crustal deformation. With the previously identified Somalia tectonic block, the seismotectonic and geophysical framework of the continent reveal the existence of the Cameroon volcanic line, the South African tectonic block with transform faulting and Cape folding system, the Libyan rifting and Maghreb thrusting. Although bearing a relatively slow deformation with regards to the East Africa Rift System, the Nubia plate previously considered as a homogeneous tectonic block appears to be dislocating progressively also forming a system of microplates. A synthesis of earthquake studies and regional deformation exposed in a seismotectonic map hitherto serves as a basis for the seismic hazard evaluations and the reduction of seismic risks. * IGCP/SIDA: International Geoscience Program/Swedish International Cooperation Authority http://www.unesco.org/science/IGCP IGCP-601 Working Group: Paulina Amponsah (Ghana Atomic Energy Commission), Atalay Ayele (Addis Ababa University, Ethiopia), Bekoa Ateba (Inst. of Geol. and Min. Res., Buea, Cameroon), Abdelhakim Ayadi (CRAAG, Algeria), Abdunnur Bensuleman (University of Tripoli, Libya), Damien Delvaux (Royal Museum for Central Africa, Tervuren, Belgium), Mohamed El Gabry (National Research Institute of Geophysics, Cairo, Egypt), Rui-Manuel Fernandes (Universidade da Beira Interior, Portugal), Mustapha Meghraoui (IPG Strasbourg, France), Vunganai Midzi & Magda Roos (Council for Geoscience, Pretoria, South Africa), and Youssef Timoulali (CNRST, Rabat, Morocco).
NASA Astrophysics Data System (ADS)
Fort, Monique
2016-04-01
Hillslope geomorphology results from a large range of denudational processes mainly controlled by relief, structure, lithology, climate, land-cover and land use. In most areas of the world, the "critical zone" concept is a good integrator of denudation that operates on a long-term scale. However, in large and high mountain areas, short-time scale factors often play a significant role in the denudational pattern, accelerating and/or delaying the transfer of denudation products and fluxes, and creating specific, spatially limited disturbances. We focus on the Nepal Himalayas, where the wide altitudinal range of bio-climatic zones and the intense geodynamic activity create a complex mosaic of landforms, as expressed by the present geomorphology of mountain slopes. On the basis of examples selected in the different Himalayan mountain belts (Siwaliks hills, middle mountains, High Himalaya), we illustrate different types of slopes and disturbances induced by active tectonics, climate extremes, and climate warming trends. Special attention is paid to recent events, such as landslide damming, triggered by either intense rainfalls (Kali Gandaki and Sun Kosi valleys) or the last April-May 2015 Gorkha seismic sequence (southern Khumbu). Lastly, references to older, larger events show that despite the highly dynamic environment, landforms caused by large magnitude disturbances may persist in the landscape in the long term.
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.
2017-12-01
The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.
Shifting material source of Chinese Loess since ~2.7 Ma reflected by Sr isotopic composition.
Zhang, Wenfang; Chen, Jun; Li, Gaojun
2015-05-21
Deciphering the sources of eolian dust on the Chinese Loess Plateau (CLP) is fundamental to reconstruct paleo-wind patterns and paleo-environmental changes. Existing datasets show contradictory source evolutions of eolian dust on the CLP, both on orbital and tectonic timescales. Here, the silicate Sr and Nd isotopic compositions of a restricted grain size fraction (28-45 μm) were measured to trace the source evolution of the CLP since ~2.7 Ma. Our results revealed an unchanged source on orbital timescales but a gradual source shift from the Qilian Mountains to the Gobi Altay Mountains during the past 2.7 Ma. Both tectonic uplift and climate change may have played important roles for this shift. The later uplift of the Gobi Altay Mountains relative to the Qilian Mountains since 5 ± 3 Ma might be responsible for the increasing contribution of Gobi materials to the source deserts in Alxa arid lands. Enhanced winter monsoon may also facilitate transportation of Gobi materials from the Alxa arid lands to the CLP. The shifting source of Asian dust was also reflected in north Pacific sediments. The finding of this shifting source calls for caution when interpreting the long-term climate changes based on the source-sensitive proxies of the eolian deposits.
Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.
Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric
2018-05-01
Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.
Fictitious Supercontinent Cycles
NASA Astrophysics Data System (ADS)
Marvin Herndon, J.
2014-05-01
"Supercontinent cycles" or "Wilson cycles" is the idea that before Pangaea there were a series of supercontinents that each formed and then broke apart and separated before colliding again, re-aggregating, and suturing into a new supercontinent in a continuing sequence. I suggest that "supercontinent cycles" are artificial constructs, like planetary orbit epicycles, attempts to describe geological phenomena within the framework of problematic paradigms, namely, planetesimal Earth formation and plate tectonics' mantle convection. The so-called 'standard model of solar system formation' is problematic as it would lead to insufficiently massive planetary cores and necessitates additional ad hoc hypotheses such as the 'frost line' between Mars and Jupiter to explain planetary differences and whole-planet melting to explain core formation from essentially undifferentiated matter. The assumption of mantle convection is crucial for plate tectonics, not only for seafloor spreading, but also for continental movement; continent masses are assumed to ride atop convection cells. In plate tectonics, plate collisions are thought to be the sole mechanism for fold-mountain formation. Indeed, the occurrence of mountain chains characterized by folding which significantly predate the breakup of Pangaea is the primary basis for assuming the existence of supercontinent cycles with their respective periods of ancient mountain-forming plate collisions. Mantle convection is physically impossible. Rayleigh Number justification has been misapplied. The mantle bottom is too dense to float to the surface by thermal expansion. Sometimes attempts are made to obviate the 'bottom heavy' prohibition by adopting the tacit assumption that the mantle behaves as an ideal gas with no viscous losses, i.e., 'adiabatic'. But the mantle is a solid that does not behave as an ideal gas as evidenced by earthquakes occurring at depths as great as 660 km. Absent mantle convection, plate tectonics is not valid and there is no motive force for driving supercontinent cycles. The reasonable conclusion one must draw, as in the case of epicycles, is there must exist a new and fundamentally different geoscience paradigm which obviates the problems inherent in plate tectonics and in planetesimal Earth formation and yet better explains geological features. I have disclosed a new indivisible geoscience paradigm, called Whole-Earth Decompression Dynamics (WEDD), that begins with and is the consequence of our planet's early formation as a Jupiter-like gas giant and which permits deduction of: (1) Earth's internal composition and highly-reduced oxidation state; (2) Core formation without whole-planet melting; (3) Powerful new internal energy sources, protoplanetary energy of compression and georeactor nuclear fission energy; (4) Mechanism for heat emplacement at the base of the crust; (5) Georeactor geomagnetic field generation; (6) Decompression-driven geodynamics that accounts for the myriad of observations attributed to plate tectonics without requiring physically-impossible mantle convection, and; (7) A mechanism for fold-mountain formation that does not necessarily require plate collision. The latter obviates the necessity to assume supercontinent cycles. The fundamental basis of geodynamics is this: In response to decompression-driven Earth volume increases, cracks form to increase surface area and mountain ranges characterized by folding form to accommodate changes in curvature. Resources at NuclearPlanet.com .
Geology of the Yucca Mountain region
Stuckless, J.S.; O'Leary, Dennis W.
2006-01-01
Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.
The Hei River Basin in northwestern China - tectonics, sedimentary processes and pathways
NASA Astrophysics Data System (ADS)
Rudersdorf, Andreas; Nottebaum, Veit; Schimpf, Stefan; Yu, Kaifeng; Hartmann, Kai; Stauch, Georg; Wünnemann, Bernd; Reicherter, Klaus; Diekmann, Bernhard; Lehmkuhl, Frank
2014-05-01
The Hei River Basin (catchment area of c. 130,000 km²) is situated at the transition between the northern margin of the Tibetan Plateau and the southern slopes of Gobi-Tien-Shan. As part of the northwestern Chinese deserts, the Ejina Basin (Gaxun Nur Basin) constitutes the endorheic erosion base of the drainage system. The basin - hosting the second largest continental alluvial fans in the world, is tectonically strongly shaped by the Gobi belt of left-lateral transpression. The tectonic setting in combination with competing climatic driving forces (Westerlies and summer/winter monsoon currents) has supported the formation of a valuable long-time sediment archive comprises at least the last 250,000 yrs. of deposition. It is composed by the interplay of eolian, fluvial and lacustrine sedimentation cycles and today is dominated by widespread (gravel) gobi surfaces, insular dune fields and shallow evaporitic playa areas. Thus, it provides excellent conditions to investigate tectonic evolution and Quaternary environmental changes. Recently, geomorphological, geophysical, neotectonic and mineralogical studies have enhanced the understanding of the environmental history and the modern depositional environment. Moreover, the role of the Hei River Basin as an important source area of silt particles which were later deposited on the Chinese Loess Plateau is evaluated. Therefore, a 230 m long drill core, sediment sections and ca. 700 surface samples throughout the whole catchment and basin were analyzed. Instrumental and historical seismicity are very low, but the proximity to active fault zones and dating irregularities in earlier publications indicate evidence for deformation in the study area. Despite flat topography, indications of active tectonics such as fault-related large-scale lineations can be observed. Seismically deformed unconsolidated lacustrine deposits (seismites), presumably of Holocene age, are evident and must be related to the nearby faults. The upper catchment is represented by the Qilian Shan mountain range and its immediate foreland. Here, a tripartite altitudinal distribution of terrestrial sediment archives is evident, which is representative of catchment-wide sedimentological processes. Insights into their formation mechanisms, therefore, add valuable perspective regarding the reconstruction of sedimentological and paleoenvironmental conditions in the depositional area of the Hei River Basin. For the characterization of provenance and dispersal of Quaternary sediments in relation to the modern depositional environment, over 200 surface samples from the whole catchment were analyzed using XRD and XRF measurements on the clay fractions, heavy minerals and bulk sediments. The clay mineral results in-particular show that it is possible to discriminate between the chlorite rich metamorphic sediments originating from greenschist bearing rocks in the Qilian Shan Mountain Range in the south, and the more intrusive rocks from the Bei Shan Mountain Range west of the Hei River Basin. Additionally, these two main sources reflect different transportation processes; the Qilian Shan sediments are mainly transported by the rivers Heihe and Beida He, and the deposition of the Bei Shan sediments is mainly driven by wind or local runoff. Grain size results of primary loess deposits indicate different eolian transport pathways, i.e., far-travelled dust input (medium silty) vs. local deflation from active fluvial channels (fine sandy). Along the altitudinal transect, the varying geomorphological settings exert a significant influence on the grain size composition showing an increased contribution of far-travelled dust at higher altitudes.
NASA Technical Reports Server (NTRS)
Smith, R. B.; Bruhn, R. L.
1984-01-01
Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.
Dynamics and the Wilson Cycle: An EarthScope vision
NASA Astrophysics Data System (ADS)
Ebinger, Cynthia; Humphreys, Eugene; Williams, Michael; van der Lee, Suzan; Levin, Vadim; Webb, Laura; Becker, Thorsten
2017-04-01
Wilson's model has two major components, each with distinctive observables. Initial subduction of ocean lithosphere collides continents across a closing ocean basin, creating a mountain range; rifting then initiates within the collisional orogeny and progresses to create oceanic spreading and creation of a new ocean basin. Subduction eventually initiates near the old, cold, and heavily sedimented continental margin, leading to subduction, and repeating the cycle. This model is largely kinematic in nature, and predictive in application. We re-evaluate the Wilson Cycle in light of process-oriented perspectives afforded by the surface to mantle Earthscope results. Repeating episodes of mountain building by means of continental collisions remains clear, but new observations augment or diverge from Wilson's concepts. A 'new' component stems from observations from both the East and West coasts: translational fault systems played critical roles in continental accretion, collision, and rifting. Earthscope data sets also have enabled imaging of the structure of western U.S. lithosphere with unprecedented detail. From new and existing data sets, we conclude that collision occurs in 'ribbons' in large part linked to the shapes of the landmasses colliding landmasses, and deformation includes a major component of transform tectonics. Post-orogenic gravitational collapse may occur far inboard of the site of collision. A third 'new' feature is that plate coupling with the mantle leads to deformation outside the classic Wilson Cycle. For example, the passive margin of eastern N. America shows tectonic activity, uplift, and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of lithosphere-asthenosphere coupling. A 'fourth' observation is that lateral density contrasts and volatile migration during subduction and collision effectively refertilize mantle lithosphere, and pre-condition later tectonic cycles.
Status of volcanism studies for the Yucca Mountain Site Characterization Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.; Perry, F.; Murrell, M.
1995-02-01
Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detailmore » because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.« less
Linking Quaternary Climate Changes to Mountain Building in Southeastern Alaska
NASA Astrophysics Data System (ADS)
Dunn, C. A.; Enkelmann, E.; Allen, W. K.; Ridgway, K.
2015-12-01
The Chugach-St. Elias Mountains in southeastern Alaska exhibit extreme topography as a result of the subduction and collision of the Yakutat microplate with the North American plate. Extensive glaciation in the area, coupled with the active tectonics, makes the Chugach-St. Elias Mountains the ideal site to investigate the resulting spatial and temporal variations in exhumation. The St. Elias Mountains have experienced three major climate changes including the start of regional glaciation at ~5.5 Ma, the onset of glaciation in the Northern Hemisphere during the Plio-Pleistocene Transition to colder temperatures at 2.5 Ma, and a change in global climate cyclicity during the mid-Pleistocene Transition from 1.2-0.7 Ma. Our goal is to determine whether these climate changes result in shifts in the rates and patterns of regional exhumation due to the intensification of glacial erosion. We investigate the late Cenozoic sediments from five boreholes that were drilled by IODP Expedition 341 along a transect crossing the Yakutat shelf (offshore Bering glacier) and into the deep-sea Surveyor Fan in the Gulf of Alaska. Magnetostratigraphy and biostratigraphy on these sediments establish an up to 10 Ma depositional history in the boreholes. To study rock exhumation of the sediment source over time, 17 detrital samples from various depths in the cores were dated using zircon fission track thermochronology. Single grain cooling ages range from 302.8 Ma to 0.2 Ma, and contain composite age populations with peaks coinciding with major regional tectonic events providing information on sediment provenance and exhumation. All single grains were also double dated using U-Pb dating to identify and eliminate volcanic grains from the sample. Common U-Pb age populations are 53, 62, 70, and 98 Ma with minor populations of 117, 154, and 170 Ma. These ages are being used to better constrain sediment provenance and reconstruct past glacial catchments.
Distribution and interplay of geologic processes on Titan from Cassini radar data
Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.
2010-01-01
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. ?? 2009 Elsevier Inc.
Disribution and interplay of geologic processes on Titan from Cassini radar data
Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.
2010-01-01
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.
Tectonics of Lakshmi Planum, Venus - Tests for Magellan
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Phillips, Roger J.
1990-01-01
The origin of Lakshmi Planum and its surrounding mountain belts remains an important unresolved element in the global tectonic framework of Venus. From the perspective of gravity signature and potential driving forces, the mantle upwelling model is the simplest, and its principal failure, that it cannot produce radial shortening on the uplift periphery, may be resolved if the lithosphere is laterally heterogeneous. The preferred model consists of a hot mantle plume rising beneath a preexisting block of tessera. The lithosphere is weakened at this hotter and presumably thicker crust, and the outward near-surface flow is attenuated at the peripheral discontinuity in lithospheric strength. Crustal thickening and mountain belt formation occur there. Several criteria are proposed to test this 'tessera-plume' model together with its competitors at the higher resolution in both imaging and gravity afforded by the Magellan mission.
Tectonics of Lakshmi Planum, Venus - Tests for Magellan
NASA Astrophysics Data System (ADS)
Grimm, Robert E.; Phillips, Roger J.
1990-08-01
The origin of Lakshmi Planum and its surrounding mountain belts remains an important unresolved element in the global tectonic framework of Venus. From the perspective of gravity signature and potential driving forces, the mantle upwelling model is the simplest, and its principal failure, that it cannot produce radial shortening on the uplift periphery, may be resolved if the lithosphere is laterally heterogeneous. The preferred model consists of a hot mantle plume rising beneath a preexisting block of tessera. The lithosphere is weakened at this hotter and presumably thicker crust, and the outward near-surface flow is attenuated at the peripheral discontinuity in lithospheric strength. Crustal thickening and mountain belt formation occur there. Several criteria are proposed to test this 'tessera-plume' model together with its competitors at the higher resolution in both imaging and gravity afforded by the Magellan mission.
Tectonic Summaries for Web-served Earthquake Responses, Southeastern North America
Wheeler, Russell L.
2003-01-01
This report documents the rationale and strategy used to write short summaries of the seismicity and tectonic settings of domains in southeastern North America. The summaries are used in automated responses to notable earthquakes that occur anywhere east of the Rocky Mountains in the United States or Canada. Specifically, the report describes the geologic and tectonic information, data sources, criteria, and reasoning used to determine the content and format of the summaries, for the benefit of geologists or seismologists who may someday need to revise the summaries or write others. These tectonic summaries are designed to be automatically posted on the World Wide Web as soon as an earthquake?s epicenter is determined. The summaries are part of a larger collection of summaries that is planned to cover the world.
Howard, Keith A.
2002-01-01
This data set describes and maps the geology of the Sheep Hole Mountains 30' x 60' quadrangle in southern California. The quadrangle covers an area of the Mojave Desert characterized by desert ranges separated by broad basins. Ranges include parts of the Old Woman, Ship, Iron, Coxcomb, Pinto, Bullion, and Calumet mountains as well as Lead Mountain and the Kilbeck Hills. Basins include part of Ward Valley, part of Cadiz Valley including Cadiz Lake playa, and broad valleys occupied by the Bristol Lake and Dale Lake playas. Bedrock geologic units in the ranges range in age from Proterozoic to Quaternary. The valleys expose Neogene and Quaternary deposits. Proterozoic granitoids in the quadrangle include the Early Proterozoic Fenner Gneiss, Kilbeck Gneiss, Dog Wash Gneiss, granite of Joshua Tree, the (highly peraluminous granite) gneiss of Dry Lakes valley, and a Middle Proterozoic granite. Proterozoic supracrustal rocks include the Pinto Gneiss of Miller (1938) and the quartzite of Pinto Mountain. Early Proterozoic orogeny left an imprint of metamorphic mineral assemblages and fabrics in the older rocks. A Cambrian to Triassic sequence deposited on the continental shelf lies above a profound nonconformity developed on the Proterozoic rocks. Small metamorphosed remnants of this sequence in the quadrangle include rocks correlated to the Tapeats, Bright Angel, Bonanza King, Redwall, Bird Spring, Hermit, Coconino, Kaibab, and Moenkopi formations. The Dale Lake Volcanics (Jurassic), and the McCoy Mountains Formation of Miller (1944)(Cretaceous and Jurassic?) are younger Mesozoic synorogenic supracrustal rocks in the quadrangle. Mesozoic intrusions form much of the bedrock in the quadrangle, and represent a succession of magmatic arcs. The oldest rock is the Early Triassic quartz monzonite of Twentynine Palms. Extensive Jurassic magmatism is represented by large expanses of granitoids that range in composition from gabbro to syenogranite. They include the Virginia May Quartz Monzonite and other members of the Bullion Intrusive Suite, the Chubbock Porphyry, and rocks that form the Goat Basin pluton, Music Valley pluton, and Ship Mountains pluton. The Jurassic plutons range in emplacement depths from mid-crustal to hypabysasal. Mafic and felsic dikes that probably are part of the Late Jurassic Independence dike swarm intrude the Jurassic batholithic rocks. A Mesozoic ductile fault (tectonic slide), the Scanlon thrust, places an inverted sequence of lower Paleozoic rocks and their Proterozoic basement over a lower plate of younger Paleozoic and Triassic rocks. The lower- plate rocks are internally sliced and folded. They in turn are superposed along an attenuation tectonic slide, the Kilbeck fault, over highly strained tectonic schist. The major tectonic slides and associated fabrics are cut by Late Cretaceous batholithic rocks. Widespread Late Cretaceous granitoids assigned to the Cadiz Valley batholith and the Old-Woman Piute Range batholith together form a contiguous super-unit of granite and granodiorite compositions. The Old- Woman Piute Range batholith includes the granite of Sweetwater Wash in the Painted Rock pluton and the Old Woman Mountains Granodiorite forming the Old Woman pluton. The large Cadiz Valley batholith is divided into the Iron Mountains Intrusive Suite and the Coxcomb Intrusive Suite. The Iron Mountains Intrusive Suite includes the Granite Pass Granite (which forms the Granite Pass pluton), the Danby Lake Granite Gneiss, and the Iron Granodiorite Gneiss. The Coxcomb Intrusive Suite consists of many units including the Clarks Pass Granodiorite, the Sheep Hole Mountains Granodiorite (forms the Sheep Hole Mountains pluton), and the Sheep Hole Pass Granite (forms the Sheep Hole Pass pluton). The Cretaceous rocks were emplaced at a range of deep to shallow depths, and their intrusion resulted in an aureole 2-3 km wide in older rocks. Mylonitic fabrics developed through a thickness of >1.3 km, together
Subduction Related Crustal and Mantle Deformations and Their Implications for Plate Dynamics
NASA Astrophysics Data System (ADS)
Okeler, Ahmet
Ocean-continent convergence and subsequent continental collision are responsible for continental growth, mountain building, and severe tectonic events including volcanic eruptions and earthquake activity. They are also key driving forces behind the extensive thermal and compositional heterogeneities at crustal and mantle depths. Active subduction along the Calabrian Arc in southern Italy and the Hellenic Arc are examples of such collisional tectonics. The first part of this thesis examines the subduction related deformations within the crust beneath the southern Apennines. By modeling regional surface wave recordings of the largest temporary deployment in the southern Apennines, a lower-crustal/upper-mantle low-velocity volume extending down to 50 km beneath the mountain chain is identified. The magnitude (˜ 0.4 km/s slower) and anisotropic nature (˜ 10%) of the anomaly suggest the presence of hot and partially molten emplacement that may extend into the upper-crust towards Mt. Vulture, a once active volcano. Since the Apulian basement units are deformed during the compressional and consequent extensional events, our observations favor the "thick-skin" tectonic growth model for the region. In the deeper mantle, active processes are thermodynamically imprinted on the depth and strength of the phase transitions. This thesis examines more than 15000 SS precursors and provides the present-day reflectivity structure and topography associated with these phase transitions. Through case studies I present ample evidence for both slab penetration into the lower mantle (beneath the Hellenic Arc, Kurile Island and South America) and slab stagnation at the bottom of the Mantle Transition Zone (beneath the Tyrrhenian Sea and eastern China). Key findings include (1) thermal anomalies (˜ 200 K) at the base of the MTZ, which represent the deep source for Cenozoic European Rift Zone, Mount Etna and Mount Cameroon volcanism, (2) significant depressions (by 20-40 km) at the bottom of the Mantle Transition Zone beneath subducting slabs, (3) a strong 520-km reflector near subducting slabs, (4) a weak and elevated (15-25 km) 410-km reflector within active deformation zones, (5) strong lower mantle reflectors (˜ 900 km) while slabs penetrate into the lower mantle, and (6) consistency between the topography of a 300-km reflector and an exothermic phase transformation.
Archean sedimentation and tectonics in southern Africa
NASA Technical Reports Server (NTRS)
Kidd, W. S. F.
1984-01-01
Sequences in the Barberton Mountain Land greenstone belt (southern Africa) were examined to determine the nature of the sedimentary rocks, their tectonic implications, and their bearing on the present large-scale structural condition of the belt. Also assessed was whether there was evidence for a significant component of shallow-water-deposited sedimentary rocks in the parent materials of the Limpopo belt. The nature of a largehigh strain zone on the southern margin of the central Limpopo belt was examined.
NASA Astrophysics Data System (ADS)
Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.
2013-12-01
Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.
Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China
NASA Astrophysics Data System (ADS)
Wu, X.; Qi, X.; Zheng, M.
2015-12-01
Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.
Glaciation as a destructive and constructive control on mountain building.
Thomson, Stuart N; Brandon, Mark T; Tomkin, Jonathan H; Reiners, Peter W; Vásquez, Cristián; Wilson, Nathaniel J
2010-09-16
Theoretical analysis predicts that enhanced erosion related to late Cenozoic global cooling can act as a first-order influence on the internal dynamics of mountain building, leading to a reduction in orogen width and height. The strongest response is predicted in orogens dominated by highly efficient alpine glacial erosion, producing a characteristic pattern of enhanced erosion on the windward flank of the orogen and maximum elevation controlled by glacier equilibrium line altitude, where long-term glacier mass gain equals mass loss. However, acquiring definitive field evidence of an active tectonic response to global climate cooling has been elusive. Here we present an extensive new low-temperature thermochronologic data set from the Patagonian Andes, a high-latitude active orogen with a well-documented late Cenozoic tectonic, climatic and glacial history. Data from 38° S to 49° S record a marked acceleration in erosion 7 to 5 Myr ago coeval with the onset of major Patagonian glaciation and retreat of deformation from the easternmost thrust front. The highest rates and magnitudes of erosion are restricted to the glacial equilibrium line altitude on the windward western flank of the orogen, as predicted in models of glaciated critical taper orogens where erosion rate is a function of ice sliding velocity. In contrast, towards higher latitudes (49° S to 56° S) a transition to older bedrock cooling ages signifies much reduced late Cenozoic erosion despite dominantly glacial conditions here since the latest Miocene. The increased height of the orogenic divide at these latitudes (well above the equilibrium line altitude) leads us to conclude that the southernmost Patagonian Andes represent the first recognized example of regional glacial protection of an active orogen from erosion, leading to constructive growth in orogen height and width.
Barrel organ of plate tectonics - a new tool for outreach and education
NASA Astrophysics Data System (ADS)
Broz, Petr; Machek, Matěj; Šorm, Zdar
2016-04-01
Plate tectonics is the major geological concept to explain dynamics and structure of Earth's outer shell, the lithosphere. In the plate tectonic theory processes in the Earth lithosphere and its dynamics is driven by the relative motion and interaction of lithospheric plates. Geologically most active regions on Earth often correlate with the lithospheric plate boundaries. Thus for explaining the earth surface evolution, mountain building, volcanism and earthquake origin it is important to understand processes at the plate boundaries. However these processes associated with plate tectonics usually require significant period of time to take effects, therefore, their entire cycles cannot be directly observed in the nature by humans. This makes a challenge for scientists studying these processes, but also for teachers and popularizers trying to explain them to students and to the general public. Therefore, to overcome this problem, we developed a mechanical model of plate tectonics enabling demonstration of most important processes associated with plate tectonics in real time. The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box. Operation of the model may be seen on www.geologyinexperiments.com where additional pictures and details about the construction are available. This mechanical model represents a unique outreach tool how to present processes, normally taking eons to occur, to students and to the public in easy and funny way, and how to attract their attention to the most important concept in geology.
Observations on the extended tectonic history of the southern Sierra Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, L.T.
1993-04-01
The crust of the southern Sierra Nevada has been the site of repeated major tectonic dislocations in keeping with its Mesozoic-Cenzoic positions near active plate boundaries. The several Mesozoic magmatic arc which invaded it show evidence of pre- and inter-batholithic juxtapositions of different lithospheres as far back as the Jurassic. This has been noted in mapping strontium, neodymium and lead initial ratios and [delta][sup 18]O variations. The Cretaceous arc carries isotopic zonations consistent with a major lithospheric dislocation extending SE from the Melones-Bear Mountain fault systems through the southern Sierra Nevada into the Mojave desert (restoring the Garlock fault). Thismore » is a candidate site for the postulated late Jurassic Mojave-Sonora megashear. During Cretaceous arc evolution major plate changes have taken place at [approximately]104[+-]2 ma and [approximately]80--85 ma. A broad (100( )km) wedge of accreted deepwater sediments and oceanic crust was partly subducted eastward under the Cretaceous arc, producing the Rand, Pelona, Orocopia and Chocolate Mountain schists of southern California. The southern Sierra Nevada saw the northern part of this event. The underlying subduction zone was not disrupted; arc magmatism was quickly renewed in the northern part of the wedge (Rand Mountains). Eastern underthrusting was accompanied and followed by a succession of major westward-vergent low angle faults in the interval 80--60( ) ma with net displacements well in excess of 150 km, and shallow crustal surface rotations in the southern Sierra Nevada and adjacent regions. The southern Sierra Nevada is now clearly detached from its plutonic roots by several generations of low-angle faulting.« less
NASA Astrophysics Data System (ADS)
Yhokha, A.; Chang, C.; Yen, J.; Goswami, P. K.; Ching, K.
2013-12-01
Persistent Scatterer Interferometry (PSI) is a useful tool in gathering the first basic information about the surface deformation, despite of different natural terrains, forested or mountainous region. This technique has been applied successfully by various worker in different field in extracting surface information in variety of terranes. The advantage of this techniques is that it has the ability of taking into account of only those return radar signal which are the brightest or the strongest in the surrounding background signal. Moreover, PS algorithms operate on a time series of interferograms all formed with respect to a single master SAR image that the noise terms of displacement for each PS pixel are much reduced. Keeping all these points in mind, we applied this technique in the Himalayan mountain, covering the south eastern part of the Uttarakhand state of India. So far lots of different work has been carried out in the Himalayan region, but less work has been done in regards to its surface deformation. The Himalayan mountain are well know for its segmented nature, different region undergoing different tectonic activity. In the similar manner, our PSI result in our study area also reveal two different set of deformation, with its eastern part revealing subsidence and the western part undergoing uplift, these two set of deformation is separated by a right later strike slip fault called, the Garampani-Kathgodam fault (G-KF). Apart from this obvious deformation, the western part also reveal differential deformation. Based on our result we have also tried to create a deformation model, to understand and to get better knowledge of the tectonic deformation setting.
Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huftile, G.J.
1991-08-01
By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less
Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska
Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.
2017-03-03
The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.
Ice thickness and topographic relief in glaciated landscapes of the western USA
NASA Astrophysics Data System (ADS)
Brocklehurst, Simon H.; Whipple, Kelin X.; Foster, David
2008-05-01
The development of relief in glaciated landscapes plays a crucial role in hypotheses relating climate change and tectonic processes. In particular, glaciers can only be responsible for peak uplift if they are capable of generating significant relief in formerly nonglaciated landscapes. Previous work has suggested that relief in glaciated landscapes should scale with the thickness of the ice. Here we summarise a field-based test of this hypothesis in two mountain ranges in the western United States, the Sierra Nevada, California, and the Sangre de Cristo Range, Colorado. These areas exhibit a range of degrees of glacial occupation during the Quaternary, including some drainage basins essentially unoccupied by ice, allowing a detailed exploration of how relief in different parts of a drainage basin evolves in response to glacial modification. We mapped last glacial maximum (LGM) trimlines to estimate the ice thickness at the equilibrium line altitude during the LGM, and determined several metrics of relief for drainage basins across the full spectrum of LGM ice extents. Comparison between measures of relief and ice thickness estimates indicates that relief production in glaciated mountain belts scales with ice thickness and consequently also drainage area. We extended our study to the Bitterroot Range in Idaho/Montana, and the Teton Range in Wyoming, for a more comprehensive understanding of sub-ridgeline relief, or 'missing mass'. This measure of mean relief is surprisingly little affected by either the degree of glacial modification or the total material removed by glaciers, but appears to be influenced by the more active tectonics of the Teton Range. While the effects of glacial modification on the landscape are clear (valley widening, hanging valley formation), the overall change in the relief structure of the mountain ranges studied here is surprisingly modest.
Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon
NASA Astrophysics Data System (ADS)
Harper, Gregory D.; Wright, James E.
1984-12-01
The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.
NASA Astrophysics Data System (ADS)
Meghraoui, Mustapha; Maouche, Said; Timoulali, Youssef; Bouhadad, Youcef; Bouaziz, Samir
2013-04-01
Large earthquakes in the Atlas Mountains of North Africa are often generated on thrust or reverse faults. For inland faults, surface ruptures and long-term active tectonics appear as a thrust escarpment and fold-related faulting visible in the field and using remote sensing images, or measured using space-borne geodesy (GPS or INSAR). For coastal faults, major uplifts of late Quaternary marine terraces and folding with steplike morphology are exposed indicating the incremental development of coastal active deformation. We have investigated the similarities and differences between different active fault-related folding along the Africa - Eurasia convergent plate boundary. These active structures are seismogenic and the striking case studies are the 1960 Agadir (Mw 5.9), the 1954 Orleansville (Mw 6.7), the 1980 El Asnam (Mw 7.3), the 1992 Gafsa (Mw 5.3), the 1999 Ain Temouchent (Mw 6.0), and the 2003 Zemmouri (Mw 6.8) earthquakes. From paleoseismic investigations the El Asnam active fold shows 0.6 to 1.0 mm/yr uplift rate. West of Algiers on the Sahel anticline, the levelling of uplifted successive coastal benches and notches document the incremental folding uplift with ~ 0.84 - 1.2 mm/yr uplift rate in the last 120-140 ka. The relatively fast folding growth during late Pleistocene and Holocene in the Atlas Mountains attests for the significance of earthquake activity and the importance of convergent movements between Africa and Eurasia in the Western Mediterranean. This work is prepared in the framework of the UNESCO (SIDA) - IGCP Project 601 "Seismotectonics and Seismic Hazards in Africa".
Volcanism/tectonics working group summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovach, L.A.
1995-09-01
This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the impacts of earthquakes, fault rupture, and volcanic eruption on the underground repository disposal of high-level radioactive wastes. The tectonics and seismic history of the Yucca Mountain site in Nevada is discussed and geologic analogs to that site are described.
Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India
NASA Astrophysics Data System (ADS)
Ahmad, Shabir; Alam, Akhtar; Ahmad, Bashir; Afzal, Ahsan; Bhat, M. I.; Sultan Bhat, M.; Farooq Ahmad, Hakim; Tectonics; Natural Hazards Research Group
2018-01-01
The present study aims to assess the tectonic activity in the Erin basin (NE Kashmir) on the basis of several relevant geomorphic indices and field observations. We use Digital Elevation Model (SRTM) and Survey of India (SoI) topographic maps in GIS environment to compute the geomorphic indices. The indices i.e., convex hypsometric curve, high hypsometric integral value (Hi > 0.5), low basin elongation ratio (Eb = 0.17), low mountain front sinuosity values (Smf = 1.08 average), low valley floor width ratios (Vf < 1), topographic assymetric character (T < 1), uneven basin asymmetry factor (AF < 50), elongated shape (Bs > 4) suggest that the area is tectonically active. Moreover, prominent irregularities (knickpoints/knickzones) along longitudinal profile of the Erin River even in homogenous resistant lithology (Panjal trap) and anomalous stream gradient index (SL) values reflect that the Erin basin is dissected by two faults (EF-1 and EF-2) with NNW-SSE and SSW-NNE trends respectively. The results of this preliminary study further substantiate the recent GPS studies, which argue that the maximum strain is accumulating in the NE part of the Kashmir Himalaya.
Full-waveform inversion for the Iranian plateau
NASA Astrophysics Data System (ADS)
Masouminia, N.; Fichtner, A.; Rahimi, H.
2017-12-01
We aim to obtain a detailed tomographic model for the Iranian plateau facilitated by full-waveform inversion. By using this method, we intend to better constrain the 3-D structure of the crust and the upper mantle in the region. The Iranian plateau is a complex tectonic area resulting from the collision of the Arabian and Eurasian tectonic plates. This region is subject to complex tectonic processes such as Makran subduction zone, which runs along the southeastern coast of Iran, and the convergence of the Arabian and- Eurasian plates, which itself led to another subduction under Central Iran. This continent-continent collision has also caused shortening and crustal thickening, which can be seen today as Zagros mountain range in the south and Kopeh Dagh mountain range in the northeast. As a result of such a tectonic activity, the crust and the mantle beneath the region are expected to be highly heterogeneous. To further our understanding of the region and its tectonic history, a detailed 3-D velocity model is required.To construct a 3-D model, we propose to use full-waveform inversion, which allows us to incorporate all types of waves recorded in the seismogram, including body waves as well as fundamental- and higher-mode surface waves. Exploiting more information from the observed data using this approach is likely to constrain features which have not been found by classical tomography studies so far. We address the forward problem using Salvus - a numerical wave propagation solver, based on spectral-element method and run on high-performance computers. The solver allows us to simulate wave field propagating in highly heterogeneous, attenuating and anisotropic media, respecting the surface topography. To improve the model, we solve the optimization problem. Solution of this optimization problem is based on an iterative approach which employs adjoint methods to calculate the gradient and uses steepest descent and conjugate-gradient methods to minimize the objective function. Each iteration of such an approach is expected to bring the model closer to the true model.Our model domain extends between 25°N and 40°N in latitude and 42°E and 63°E in longitude. To constrain the 3-D structure of the area we use 83 broadband seismic stations and 146 earthquakes with magnitude Mw>4.5 -that occurred in the region between 2012 and 2017.
Volcano-tectonic evolution of the Castle Mountains: 22 to 14 MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, R.C.
1993-04-01
The alkali-calcic Castle Mountains Volcanic rocks (CMV) are host to major gold mineralization. They are located about 100 km south of Las Vegas, Nevada and are on the boundary between the Basin and Range Province and Colorado River extensional corridor (35[degree]18 minutes 45 seconds N, 115[degree]05 minutes 10 seconds W). New data show the following chronology. 22 Ma. A regional rhyolite ash-flow tuff, the Castle Mountain Tuff member, was deposited on a Proterozoic-Paleozoic basement of low relief. <22 Ma - > 17 Ma. Normal faulting (N30--60[degree]W, 60--65[degree]NE) formed half-grabens. Latite and basalt flows, minor ash-flow tuffs, lahars and sediments (Jacksmore » Well member - JW) were deposited unconformably. JW magmas are enriched in light REE compared to the younger CMV. <17 Ma to 15.5 Ma. Oxidizing upper portions (796 C) of a shallowly emplaced silicic melt erupted to form the high-silica rhyolite dome complexes and intrusives (Linder Peak member - LP) of the NNE-striking Castle Mountains. NW-striking transverse structures caused discontinuities in strike direction of the subvolcanic intrusive and domes and helped form a synvolcanic depression. During a hiatus in volcanism, early Hart Peak member (HP) sediments were deposited marginal to the Castle Mountains. Major gold mineralization and widespread hydrothermal alteration occurred at about 15.5 Ma. 16 Ma to 14 Ma. Early HP volcaniclastic sediments, rhyolite pyroclastic-surge tuff, and basaltic flows, were deposited during late hydrothermal alteration and then fractured and displaced by NNE-striking normal faults, especially in the eastern and northeastern CMV. < 14 Ma. Tectonically significant flat-lying boulder conglomerate and unconformably overlying, largely andesitic flows fill depressions in the Castle Mountains and the Piute Range to the east.« less
NASA Technical Reports Server (NTRS)
Allenby, R. J.
1979-01-01
Very Long Baseline Interferometry experiments over the last 1-3/4 years between Owens Valley, CA and Haystack, MA Radio Observatories suggest an upper limit of east-west crustal deformation between the two sites of about 1 cm/yr. In view of the fact that the baseline between the two sites traverses most of the major geological provinces of the United States, this low rate of crustal deformation has direct relevance to intra-plate crustal tectonics. The most active region traversed by this baseline is the Basin and Range province, which was estimated by various researchers to be expanding in an east-west direction at rates of .3 to 1.5 cm/yr. The Colorado Plateau and Rocky Mountain system also appear to be expanding, but at a somewhat lower rate, while east of the Rocky Mountains, the predominant stress appears to be compressional, nearly horizontal, and east to northeast trending.
Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.
2007-01-01
Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.
Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.
Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu
2013-01-01
Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.
Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite
Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu
2013-01-01
Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636
Tectonic control on the persistence of glacially sculpted topography
Prasicek, Günther; Larsen, Isaac J.; Montgomery, David R.
2015-01-01
One of the most fundamental insights for understanding how landscapes evolve is based on determining the extent to which topography was shaped by glaciers or by rivers. More than 104 years after the last major glaciation the topography of mountain ranges worldwide remains dominated by characteristic glacial landforms such as U-shaped valleys, but an understanding of the persistence of such landforms is lacking. Here we use digital topographic data to analyse valley shapes at sites worldwide to demonstrate that the persistence of U-shaped valleys is controlled by the erosional response to tectonic forcing. Our findings indicate that glacial topography in Earth's most rapidly uplifting mountain ranges is rapidly replaced by fluvial topography and hence valley forms do not reflect the cumulative action of multiple glacial periods, implying that the classic physiographic signature of glaciated landscapes is best expressed in, and indeed limited by, the extent of relatively low-uplift terrain. PMID:26271245
NASA Astrophysics Data System (ADS)
Tian, T.; Zhang, J.; Jiang, W.
2017-12-01
The North South Seismic Belt is located in the middle of China, and this seismic belt can be divided into 12 tectonic zones, including the South West Yunnan (I), the Sichuan Yunnan (II), the Qiang Tang (III), the Bayan Har (IV), the East Kunlun Qaidam (V), the Qi Lian Mountain (VI), the Tarim(VII), the East Alashan (VIII), the East Sichuan (IX), the Ordos(X), the Middle Yangtze River (XI) and the Edge of Qinghai Tibet Block (XII) zone. Based on the Bouguer Gravity data calculated from the EGM2008 model, the Euler deconvolution was used to obtain the edge of tectonic zone to amend the traditional tectonic divisions. In every tectonic zone and the whole research area, the logarithm of the total energy of seismic was calculated. The Time Series Analysis (TSA) for all tectonic zones and the whole area were progressed in R, and 12 equal divisions were made (A1-3, B1-3, C1-3, D1-3) by latitude and longitude as a control group. A simple linear trend fitting of time was used, and the QQ figure was used to show the residual distribution features. Among the zones according to Gravity anomalies, I, II and XII show similar statistical characteristic, with no earthquake free year (on which year there was no earthquake in the zone), and it shows that the more seismic activity area is more similar in statistical characteristic as the large area, no matter how large the zone is or how many earthquakes are in the zone. Zone IV, V, IX, III, VII and VIII show one or several seismic free year during 1970s (IV, V and IX) and 1980s (III, VII and VIII), which may implicate the earthquake activity were low decades ago or the earthquake catalogue were not complete in these zones, or both. Zone VI, X and XI show many earthquake free years even in this decade, which means in these zones the earthquake activity were very low even if the catalogue were not complete. In the control group, the earthquake free year zone appeared random and independent of the seismic density, and in all equal divided zones with seismic free years, the seismic free years all appeared in 1970s, which only related to the incompleteness of the earthquake catalogue in the west area of China. In conclusion, the tectonic divisions based on Gravity anomalies can provide a more efficient way to add space factor in the time series analysis with specific tectonic implications.
Barton, Christopher C.; Page, William R.; Morgan, Terrance L.
1989-01-01
Fractures on outcrops in the vicinity of drill hole USW G-4, Yucca Mountain, Nevada, were studied in order to contribute to characterization of fractures for hydrologjc, geomechanical, and tectonic modeling of the Yucca Mountain block and to characterize fractures prior to the excavation of a proposed exploratory shaft located near USW G-4. Yucca Mountain is a prospective site for the construction of an underground repository for high-level nuclear waste.Measurements were taken and recorded on 5,000 fractures at 50 outcrop stations primarily in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paintbrush Tuff. Fracture orientation and surface roughness were recorded for each fracture. Additionally, notes were taken on fracture abutting, crossing, and offsetting relations, swarming, curvature, brecciation, slickensides, and fracture fillings. Frequency distributions of orientation and roughness were plotted and analyzed. Fractures with low roughness coefficients (0-4) group tightly into two sets based on orientation. We conclude that such fractures are cooling joints and that all other fractures are tectonic. The development of small-scale fractures adjacent, subparallel, and possibly related to the Ghost Dance fault has been addressed in a preliminary way based on data collected in this study. Such sympathetic fractures are abundant in the upper cliff unit but not in the upper lithophysal unit.
SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, F. V.; Crowe, G. A.; Valentine, G. A.
1997-09-23
This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certaintymore » but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies.« less
NASA Astrophysics Data System (ADS)
Mushkin, A.; Javkhlanbold, D.; Bayasgalan, A.; Gillespie, A.
2004-12-01
A sequence of paleo landslides at the Namalzah Hills, ˜70 km south of the town of Altay in southwestern Mongolia (45.8\\deg N, 96.5\\deg E) is associated with tectonic activity along the western part of the Gobi-Altay Fault system (GAFS). Three mobilized blocks of 0.5, 2.5 and 110 km2 suggest multiple events of sliding, and displaced alluvial fans across an adjacent fault trace at the front of the mountain range indicate left-lateral offset. The 110-km2 block has been translated ˜4.5 km down-slope north from the mountain range, with prominent scarps defining both the eastern and western boundaries of the landslide. Neogene deposits unconformably overlain by Quaternary alluvial sediments up to 200 m thick in places comprise this block, which is structurally characterized by a set of internally drained basins trending east-west, and corresponding terminal lake beds. Well-developed desert pavements characterize its surface. The 0.5- and 2.5-km2 blocks, which lie between the 110-km2 block and the source area, appear to be younger and thus suggest sliding events that postdate the mobilization of the large block. Elevated alluvial fans found along the mountain front indicate significant antithetic uplift north of the mountain-front fault trace as well as ˜2 km of cumulative left-lateral offset. Surface-composition mapping of the largest block suggests 1.0-1.5 km of left-lateral offset between it and the mountain range, while westward translation of the smallest mobilized block indicates ˜0.6 km of post-sliding, left-lateral offset. OSL samples were collected from the bottom of a lake bed on the largest block and from the underlying alluvial sediments to provide age constraints for the initiation of these sliding events. The good preservation of carbon recovered from the bottom of the lake bed suggests that the lake is relatively young. Accordingly, slip-rates higher than the 1.2 mm/yr constrained by Ritz et al. (1995) along the eastern part of the GAFS, may be required to accommodate the 1.0-1.5 km of inferred offset between the largest block and the mountain range. While another landslide of similar magnitude has been described by Philip and Ritz (1999) ˜400 km to the east along the GAFS, the well-preserved sequence of mobilized blocks and closely related offset alluvial fans of the Namalzah Hills offers a good opportunity to improve our understanding of Quaternary displacement along this part of the GAFS, as well as study the complex relation between tectonic activity and landsliding in such intra-continental environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubensky, M.J.; Bagby, W.C.
1990-11-10
Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less
Global tectonic studies: Hotspots and anomalous topography
NASA Technical Reports Server (NTRS)
Burke, K.; Kidd, W. S. F.; Delong, S.; Thiessen, R. L.; Carosella, R.; Mcgetchin, T. R.
1979-01-01
Volcanic activity on Earth and its secular variations are compared with that on other terrestrial planets. Activity at divergent, transform, and convergent plate margins is described with particular emphasis on hot spots and flood basalts. The timing and causing of uplifting above 500 meters, which in not associated with either plate boundaries or the normal nonplate margin edges of continents is considered with particular focus on the Guyana Highlands in southern Venezuela and western British Guiana, and the Brazilian Highlands in the central, eastern, and southern parts of the country. The mode and mechanism of plateau uplifting and the re-elevation of old mountain belts and subsidence of intra-continental basins are also discussed.
NASA Astrophysics Data System (ADS)
Wang, M.
2017-12-01
The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.
Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain
NASA Astrophysics Data System (ADS)
Keller, P.; Lowrie, W.; Gehring, A. U.
1994-12-01
The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.
Venus lives!. [evidence for active volcanoes
NASA Technical Reports Server (NTRS)
Wood, Charles A.; Francis, Peter W.
1988-01-01
Observational evidence which supports the contention that Venus is a volcanically and tectonically active planet is discussed. It is argued that, although there are no observations to date that would prove that Venus has been volcanically active during the last decade, planetological studies presented evidence for youthful volcanic mountains on Venus: the surface of the northern quarter of Venus is considered to be younger than 1 Gy, and some units are likely to be much younger. Because of the small sizes of likely volcanic manifestations and the long intervals expected between eruptions, it is unlikely that any direct evidence of eruptions will be detected with existing and planned spacecraft. It is suggested that future studies of the dynamics and the chemical mixing of the Venusian atmosphere might supply an unequivocal evidence for active volcanism on this planet.
Geology of the Venus equatorial region from Pioneer Venus radar imaging
NASA Technical Reports Server (NTRS)
Senske, D. A.; Head, James W.
1989-01-01
The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae.
Tectonic evolution of the terrestrial planets.
Head, J W; Solomon, S C
1981-07-03
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.
NASA Astrophysics Data System (ADS)
Mouchene, M.; van der Beek, P.; Carretier, S.; Mouthereau, F.
2017-12-01
Alluvial megafans are sensitive recorders of landscape evolution, controlled by both autogenic processes and allogenic forcing, and they are influenced by the coupled dynamics of the fan with its mountainous catchment. The Mio-Pliocene Lannemezan megafan in the northern Pyrenean foreland (SW France) was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised. The flight of alluvial terraces abandoned along the stream network may suggest a climatic control on the incision. We use a landscape evolution numerical model (CIDRE) to explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan, and we compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river on time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision on a shorter timescale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound do not appear to have played a role in the abandonment of the megafan.
NASA Astrophysics Data System (ADS)
Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard
2015-04-01
New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites) and the Neotethys subduction during Late Cretaceous times.
Deformation during terrane accretion in the Saint Elias orogen, Alaska
Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.
2004-01-01
The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from the topographic backbone of the Saint Elias Mountains onto the coastal plain. The Malaspina fault-Pamplona structural zone separates the eastern and central parts of the orogen and is marked by reverse faulting and folding. Onshore, most of this boundary is buried beneath the western or "Agassiz" lobe of the Malaspina piedmont glacier. The boundary between the central fold-and-thrust belt and western zone of superimposed folding lies beneath the middle and lower course of the Bering piedmont glacier. ?? 2004 Geological Society of America.
NASA Astrophysics Data System (ADS)
Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef
2016-04-01
Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer period of observations.
NASA Astrophysics Data System (ADS)
Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto
2017-04-01
The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface exposure rates are rather due to gravitational and landsliding movements aided by weathering and slope degradation processes. The so far neglected slope degradation and other (sub)surface processes should thus be carefully taken into consideration before attempting to recover fault slip rates using surface gathered data. The results of the present studies have been recently published (Kastelic et al., 2016) and our research is ongoing, implementing the so-far results with newer measurements and other techniques in order to improve our knowledge on the magnitude of the exposure and its causative process(es). Kastelic, V., P. Burrato, M. M. C. Carafa, and R. Basili (2016), Repeated surveys reveal nontectonic exposure of supposedly active normal faults in the central Apennines, Italy, J. Geophys. Res. Earth Surf., 121, doi:10.1002/2016JF003953.
Geologic Map of the Big Delta B-1 Quadrangle, East-Central Alaska
Day, Warren C.; O'Neill, J. Michael; Aleinikoff, John N.; Green, Gregory N.; Saltus, Richard W.; Gough, Larry P.
2007-01-01
Geologic mapping and U-Pb age dating of rocks from the Big Delta B-1 quadrangle, east-central Alaska, have yielded new insights into the geology and gold mineral resource for the headwater region of the Goodpaster River, northeast of Delta, Alaska. The area lies within the Yukon-Tanana Upland and is underlain by Paleozoic and Cretaceous crystalline bedrock and contains several gold mines and prospects. The Paleozoic units include biotite gneiss, quartzite interlayered with metapelite, and amphibolite gneiss. The Paleozoic units were intruded during the Devonian by tonalitic to granitic plutons, which, as a result of regional Mesozoic metamorphism and tectonism, are now augen gneiss and biotite orthogneiss. The Mesozoic regional metamorphism and ductile deformation of the entire Yukon-Tanana Upland culminated by the Late Cretaceous (about 116 Ma) as a result of northwest-directed regional transpression along the southern margin of the North American craton. This dynamothermal episode was followed by invasion of syn- to post-tectonic granodioritic to granitic batholiths during the Late Cretaceous (about 113-107 Ma), followed by a pulse of 100-95 Ma quartz feldspar porphyry intrusions. Gold mineralization is spatially associated with various post-tectonic Late Cretaceous granitic dikes and batholiths throughout the quadrangle. A northeast-trending structural corridor, described herein as the Black Mountain tectonic zone, both controlled the emplacement of some of the Cretaceous intrusive rocks, gold deposits, and prospects, as well as formed a deep-seated crustal conduit along which a subsequent rhyolite flow-dome complex erupted during the Paleocene. Tertiary uplift and erosion resulted in the development of extensive erosional pediments. Quaternary alpine glaciation carved beautiful, broad valleys in the eastern part of the quadrangle, leaving behind terminal moraines in the headwater region of the Goodpaster river drainage. Continued Holocene to Recent deformation along the Black Mountain tectonic zone has offset Tertiary terraces, as well as Quaternary fluvial and alluvial deposits, indicating that the area has a long, complex, and ongoing tectonic history.
Geophysical investigations of the tectonic boundary between East and West Antarctica
ten Brink, Uri S.; Bannister, S.; Beaudoin, B.C.; Stern, T.A.
1993-01-01
The Transantarctic Mountains (TAM), which separate the West Antarctic rift system from the stable shield of East Antarctica, are the largest mountains developed adjacent to a rift. The cause of uplift of mountains bordering rifts is poorly understood. One notion based on observations of troughs next to many uplifted blocks is that isostatic rebound produces a coeval uplift and subsidence. The results of an over-snow seismic experiment in Antarctica do not show evidence for a trough next to the TAM but indicate the extension of rifted mantle lithosphere under the TAM. Furthermore, stretching preceded the initiation of uplift, which suggests thermal buoyancy as the cause for uplift.
Berger, Byron R.; Bonham, Harold F.
1990-01-01
The western United States has been the locus of considerable subaerial volcanic and plutonic igneous activity since the mid-Mesozoic. After the destruction of the Jurassic-Cretaceous magmatic arc-trench system, subduction was re-established in the Late Mesozoic with low-angle underthrusting of the oceanic plate beneath western North America. This resulted in crustal shortening during the Late Cretaceous to Early Tertiary and removal of the mantle lithosphere west of the Rocky Mountains. Commencing in the Eocene, flat subduction ceased, the volcanic arc began to re-establish itself along the continental margin, and the hingeline along the steepening subducting plate migrated from east to west. The crust east of the migrating hingeline was exposed to hot asthenosphere, and widespread tectonics and volcanic activity resulted. Hydrothermal activity accompanied the volcanism resulting in numerous epithermal gold-silver deposits. The temporal and spatial distributions of epithermal deposits in the region are therefore systematic and can be subdivided into discrete time intervals which are related to widespread changes in magmatic activity. Time intervals selected for discussion are Pre-Cenozoic, 66-55 Ma, 54-43 Ma, 42-34 Ma, 33-24 Ma, 23-17 Ma, and <17 Ma. Many of these intervals contain both sedimentary-rock and two varieties of volcanic-rock hosted deposits (adularia-sericite and alunite-kaolinite ± pyrophyllite). Continental rifting is important to the formation of deposits, and, within any given region, it is at the initiation of deep rifting that alunite-kaolinite ± pyrophyllite type epithermal deposits are formed. Adularia-sericite type deposits are most common, being related to all compositions and styles of volcanic activity. Therefore, the volcano-tectonic context of the western United States provides a unified framework in which to understand and explore for epithermal type deposits.
Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran
NASA Astrophysics Data System (ADS)
Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza
2016-04-01
Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or arc magmatism. During the Jurassic to Eocene rifting, this belt acted as the southern boundary of the Amu Darya Basin with normal faulting, which is also widespread in the South Caspian Sea and the Black Sea. Moreover, such an extended area became a relatively weak zone within the Eurasian Plate, and could be easily reworked. Because of the collision in the Zagros Belt, the intracontinental compression commenced as early as Late Eocene to Early Oligocene, which is interpreted as tectonic inversion along this weak zone. The western zone of the Kopeh Dagh Belt was also affected by southerly indentation/extrusion of the South Caspian block since middle Miocene, possibly resulting in the different deformation patterns between the western and eastern zones.
NASA Astrophysics Data System (ADS)
Strak, V.; Dominguez, S.; Petit, C.; Meyer, B.; Loget, N.
2013-12-01
Relief evolution in active tectonic areas is controlled by the interactions between tectonics and surface processes (erosion, transport and sedimentation). These interactions lead to the formation of geomorphologic markers that remain stable during the equilibrium reached in the long-term between tectonics and erosion. In regions experiencing active extension, drainage basins and faceted spurs (triangular facets) are such long-lived morphologic markers and they can help in quantifying the competing effects between tectonics, erosion and sedimentation. We performed analog and numerical models simulating the morphologic evolution of a mountain range bounded by a normal fault. In each approach we imposed identical initial conditions. We carried out several models by varying the fault slip rate (V) and keeping a constant rainfall rate allowing us to study the effect of V on morphology. Both approaches highlight the main control of V on the topographic evolution of the footwall. The experimental approach shows that V controls erosion rates (incision rate, erosion rate of slopes and regressive erosion rate) and possibly the height of triangular facets. This approach indicates likewise that the parameter K of the stream power law depends on V even for non-equilibrium topography. The numerical approach corroborates the control of V on erosion rates and facet height. It also shows a correlation between the shape of drainage basins and V (slope-area relationship) and it suggests the same for the parameters of the stream power law. Therefore both approaches suggest the possibility of using the height of triangular facets and the slope-area relationship to infer the fault slip rate of normal faults situated in a given climatic context.
Wright, David F.; Stigall, Alycia L.
2013-01-01
Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode—from a vicariance to dispersal dominated macroevolutionary regime—across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive) species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior. PMID:23869215
Wright, David F; Stigall, Alycia L
2013-01-01
Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive) species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.
NASA Astrophysics Data System (ADS)
Worthington, Lindsay L.; Daigle, Hugh; Clary, Wesley A.; Gulick, Sean P. S.; Montelli, Aleksandr
2018-02-01
The southern Alaskan margin offshore the St. Elias Mountains has experienced the highest recorded offshore sediment accumulation rates globally. Combined with high uplift rates, active convergence and extensive temperate glaciation, the margin provides a superb setting for evaluating competing influences of tectonic and surface processes on orogen development. We correlate results from Integrated Ocean Drilling Program (IODP) Expedition 341 Sites U1420 and U1421 with regional seismic data to determine the spatial and temporal evolution of the Pamplona Zone fold-thrust belt that forms the offshore St. Elias deformation front on the continental shelf. Our mapping shows that the pattern of active faulting changed from distributed across the shelf to localized away from the primary glacial depocenter over ∼300-780 kyrs, following an order-of-magnitude increase in sediment accumulation rates. Simple Coulomb stress calculations show that the suppression of faulting is partially controlled by the change in sediment accumulation rates which created a differential pore pressure regime between the underlying, faulted strata and the overlying, undeformed sediments.
Appalachian Piedmont landscapes from the Permian to the Holocene
Cleaves, E.T.
1989-01-01
Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast past Baltimore. The Late Triassic landscape was influenced by rift basin development. Streams drained into a hydrologically closed basin: no through-flowing rivers seem to have been present. A limestone escarpment along the Blue Ridge may have existed as a consequence of a semi-arid climate. The Permian may have been a time of Himalayan-like mountains and mountain glaciers. Streams (and glaciers) generally flowed southwest and west. ?? 1989.
Miocene shale tectonics in the Moroccan margin (Alboran Sea)
NASA Astrophysics Data System (ADS)
Do Couto, D.; El Abbassi, M.; Ammar, A.; Gorini, C.; Estrada, F.; Letouzey, J.; Smit, J.; Jolivet, L.; Jabour, H.
2011-12-01
The Betic (Southern Spain) and Rif (Morocco) mountains form an arcuate belt that represents the westernmost termination of the peri-mediterranean Alpine mountain chain. The Miocene Alboran Basin and its subbasins is located in the hinterland of the Betic-Rif belt. It is considered to be a back-arc basin that developed during the coeval westward motion of the Alboran domain and the extensional collapse of previously thickened crust of the Betic-Rif belt. The Western Alboran Basin (WAB) is the major sedimentary depocenter with a sediment thickness in excess of 10 km, it is bordered by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge. Part of the WAB is affected by shale tectonics and associated mud volcanism. High-quality 2D seismic profiles acquired on the Moroccan margin of the Alboran Basin during the last decade reveal the multiple history of the basin. This study deals with the analysis of a number of these seismic profiles that are located along and orthogonal to the Moroccan margin. Seismic stratigraphy is calibrated from industrial wells. We focus on the interactions between the gravity-driven tectonic processes and the sedimentation in the basin. Our seismic interpretation confirms that the formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). The fast subsidence of the basin floor coeval to massive sedimentation induced the undercompaction of early miocene shales during their deposition. Downslope migration of these fine-grained sediments initiated during the deposition of the Langhian siliciclastics. This gravity-driven system was accompanied by continuous basement subsidence and induced disharmonic deformation in Mid Miocene units (i.e. not related to basement deformation). The development of shale-cored anticlines and thrusts in the deep basin is the result of compressive deformation at the front of the gravity-driven system and lasted for ca. 15 Ma. The compressive front has been re-activated by strong siliciclastic deposition, such as in the Serravalian-Tortonian period or more recently during the Quaternary contourites deposition. The Messinian dessication of the Mediterranean Sea and the following catastrophic Pliocene reflooding caused or enhanced re-activation of the deformation.
Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains
Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Caffee, M.
2003-01-01
We measured 10Be in fluvial sediment samples (n = 27) from eight Great Smoky Mountain drainages (1-330 km2). Results suggest spatially homogeneous sediment generation (on the 104-105 yr time scale and > 100 km2 spatial scale) at 73 ?? 11 t km-2 yr-1, equivalent to 27 ?? 4 m/m.y. of bedrock erosion. This rate is consistent with rates derived from fission-track, long-term sediment budget, and sediment yield data, all of which indicate that the Great Smoky Mountains and the southern Appalachians eroded during the Mesozoic and Cenozoic at ???30 m/m.y. In contrast, unroofing rates during the Paleozoic orogenic events that formed the Appalachian Mountains were higher (???102 m/m.y.). Erosion rates decreased after termination of tectonically driven uplift, enabling the survival of this ancient mountain belt with its deep crustal root as an isostatically maintained feature in the contemporary landscape.
Relations between extensional tectonics and magmatism within the Southern Oklahoma aulacogen
NASA Technical Reports Server (NTRS)
Mcconnell, D. A.; Gilbert, M. C.
1985-01-01
Variations in the geometry, distribution and thickness of Cambrian igneous and sedimentary units within southwest Oklahoma are related to a late Proterozoic - early Paleozoic rifting event which formed the Southern Oklahoma aulacogen. These rock units are exposed in the Wichita Mountains, southwest Olkahoma, located on the northern margin of a Proterozoic basin, identified in the subsurface by COCORP reflection data. Overprinting of the Cambrian extensional event by Pennyslvanian tectonism obsured the influence of pre-existing basement structures and contrasting basement lithologies upon the initial development of the aulacogen.
The tectonic and volcanic evolution of Venus: Catastrophic or gradual?
NASA Technical Reports Server (NTRS)
Solomon, Sean C.
1993-01-01
Radar imaging and altimetry data from the Magellan mission have yielded important new constraints on the tectonic and volcanic history of Venus and on its internal dynamics. The planet lacks global plate tectonics, but a number of chasm systems and corona moat structures have arcuate planforms, asymmetric topogrpahic profiles, and relief analogous to deep-sea trenches on Earth and may be products of limited lithospheric underthrusting or subduction. Several lines of evidence point to a crust and upper mantle stronger than would be predicted by simple extrapolation from Earth and the 450 K greater surface temperature; these include the unrelaxed depths of impact craters, apparently large values of elastic lithosphere thickness, and large ratios of gravity to topography. The density of impact craters indicates an averate crater retention age of about 500 My, but not more than 5% of the recognized craters have been volcanically embayed. This last observation has led to the proposal that Venus has been subjected to one or more global resurfacing events, the latest about 500 My ago, and that the volcanic flux during intervals between such events has been low. That more recent tectonic activity has been widespread, however, is indicated by the high relief and slopes of mountains, chasm walls, and plateau margins; the significant fraction (0.3) of impact craters deformed by younger faults; and the postformational vertical deformation of long channels. Interior dynamical scenarios advanced to account for episodic volcanic resurfacing include catastrophic overturn of a global lithosphere thickened by cooling or compositional buoyancy and strongly time-dependent mantle convective heat flux. Outgassing considerations and analogy with Earth and other terrestrial planets, however, suggests that such catastrophic models are unlikely. If the mantle of Venus cooled more efficiently than that of Earth because of, say, different boundary conditions, a different flow law, or a different degree of layering, then the planet may in the last 500 My have attained lesser mantle temperatures, lower mantle heat flux, and a significantly lesser rate of magma production than Earth yet still display evidence for ongoing convection and active tectonics. Such a 'cold Venus' scenario would be broadly consistent with observations yet be characterized by a gradual volcanic and tectonic evolution.
Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.
2005-01-01
The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.
Making a report of a short trip in an ophiolitic complex with Google Earth
NASA Astrophysics Data System (ADS)
Aubret, Marianne
2017-04-01
Plate tectonics is taught in French secondary school (lower and upper-sixth). According to the curriculum, the comprehension of plate-tectonic processes and concepts should be based on field data. For example, the Alpine's ocean history is studied to understand how mountain ranges are formed. In this context, Corsica is a great open-air laboratory, but unfortunately, the traffic conditions are very difficult in the island and despite the short distances, it's almost impossible for teachers to take their students to the remarkable geologic spots. The «défilé de l'Inzecca» is one of them: there you can see a part of the alpine's ophiolitic complex. The aim of this activity is to elaborate a « KMZ folder » in Google Earth as a report of a short trip thanks to the students' data field; it is also the occasion to enrich the Google Earth KMZ folder already available for our teaching.
NASA Astrophysics Data System (ADS)
Picha, Frank; Gibson, Richard I.
1985-07-01
The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074
Venus tectonics - Initial analysis from Magellan
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Head, James W.; Kaula, William M.; Schubert, Gerald; Mckenzie, Dan
1991-01-01
The styles of lithospheric deformation, the inferred mechanical properties of the lithosphere, and their implications for the tectonic history of Venus are discussed on the basis of radar imaging and altimetry data from Magellan. Observations of the planet plains reveal a superposition of different episodes of deformation and volcanism, strain both distributed and concentrated into zones of extension and shortening, and features reflecting a crustal response to mantle dynamic processes. Lithospheric shortening and crustal thickening are represented by ridge belts and mountain belts. The latter show the evidence for extension and collapse both during and following crustal compression. Venus displays quasi-circular coronae and broad rises with linear rift zones, associated with significant volcanism. Large-offset strike-slip faults have not been observed, although horizontal shear is accommodated across broad zones of crustal shortening. On Venus strain is distributed across zones that are one to a few hundred kilometers wide, and separated by stronger and less deformed blocks hundreds of kilometers in width, as in actively deforming continental regions on earth.
Schmidt, J.M.; Rogers, R.K.
2007-01-01
Recent geologic mapping has identified areas of extrusive basalts of the Middle to Late Triassic Nikolai Greenstone within the Wrangellia terrane that extend at least 80 km southwest of their previously known extent. Abundant dolerite sills of similar composition intrude Paleozoic and Mesozoic stratigraphy below the Nikolai throughout the central Talkeetna Mountains. The Talkeetna Mountains, therefore, have newly identified potential for copper, nickel, and platinum-group elements (PGEs) as disseminated, net-textured, or massive magmatic sulfide deposits hosted in mafic and ultramafic sill-form complexes related to emplacement of the Nikolai. Because of their potential high grades, similar magmatic sulfide targets have been the focus of increasing mineral exploration activity over the last decade in the Amphitheater Mountains and central Alaska Range, 100-200 km to the northeast. The Nikolai Greenstone, associated intrusions, and their metamorphosed equivalents also have potential to host stratabound disseminated "basaltic copper" deposits. Sedimentary and metasedimentary rocks overlying the Nikolai have the potential to host stratabound, disseminated, or massive "reduced-facies" type Cu-Ag deposits. Ultramafic rocks have been identified only in the extreme northeastern Talkeetna Mountains to date. However, coincident gravity and magnetic highs along the leading (northwestern) edge of and within Wrangellia in the Talkeetna and Clearwater Mountains suggest several areas that are highly prospective for ultramafic rocks related to extrusion of Nikolai lavas. In particular, the distribution, geometry, and composition of sills within the pre-Nikolai stratigraphy and the structural and tectonic controls on intrusive versus extrusive rock distribution deserve serious examination. Copyright ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.
2017-02-01
The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj-Tanakpur faults cause the neotectonic activities as observed. The role of transverse fault tectonics in the formation of the curvature cannot be ruled out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, S.E.
1988-08-01
The geology of northern Morocco is dominated by the mountainous areas of the Rif and the Prerif. These mountains form the southern half of the Rif-Betic arc. The surface geology of the Prerif area is characterized by the allochthonous mass of the Prerif nappe, which is variously described as a tectonic melange, an olistostrome, or a combination of the two. It is structurally extremely complex and this fact has, in the past, deterred international companies from exploring for oil in the area. Recently acquired seismic data shed some light on the structure within the Prerif nappe; it tends to supportmore » a tectonic origin rather than one based on gravity drive. In this framework, a model is proposed for the tectonic development of the Rif/Prerif in particular and the Rif/Betic arc in general, based upon the interaction of the Iberian, Moroccan, and Alboran plates from the Triassic to the Neogene. The seismic data also show, however, that a sizeable Mesozoic trough exists beneath the mass of the Prerif nappe. In addition, several piggyback basins are developed above the nappe. Therefore, considerable potential for oil and gas discoveries exists both above and below the nappe.« less
Earth Observations taken by Expedition 30 crewmember
2011-12-31
ISS030-E-030265 (31 Dec. 2011) --- The Payun Matru Volcanic Field in Argentina is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Payun Matru (3,680 meters above sea level) and Payun Liso (3,715 meters above sea level) stratovolcanoes are the highest points of the Payun Matru Volcanic Field located in west-central Argentina, approximately 140 kilometers to the east of the Andes mountain chain. This photograph illustrates some of the striking geological features of the field visible from space. The summit of Payun Matru is dominated by a roughly 15 kilometer-in-diameter caldera (center), formed by an explosive eruption sometime after approximately 168,000 years ago. Several dark lava flows, erupted from smaller vents and fissures, are visible in the northwestern part of the volcanic field. One distinct flow, erupted from Volcan Santa Maria located to the northwest of Payun Matru, is approximately 15 kilometers long. A number of small cinder cones, appearing as brown dots due to the short lens used, are built on older lava flows (grey) to the northeast of Payun Matru. While there is no recorded historical observation of the most recent volcanic activity in the field, oral histories suggest that activity was witnessed by indigenous peoples. Most Andean volcanoes—and earthquakes—follow the trend of the greater Andes chain of mountains, and are aligned roughly N-S above the tectonic boundary between the subducting (descending) Nazca Plate and the overriding South American Plate as is predicted from plate tectonic theory. Other major volcanic centers located some distance away from the major trend typically result from more complex geological processes associated with the subduction zone, and can provide additional insight into the subduction process.
Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.
1995-01-01
Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors
The ambient noise and earthquake surface wave tomography of the North China Craton
NASA Astrophysics Data System (ADS)
Pan, J.; Obrebski, M. J.; Wu, Q.; Li, Y.
2010-12-01
The North China Craton (NCC) is unique for its unusual Phanerozoic tectonic activity. The NCC was internally tectonically stable until Jurassic when its southern margin collided with the Yangzte Craton. Subsequently, the eastern and central part of the NCC underwent distinctive evolutions during the Late Mesozoic and Cenozoic. In contrast to the Erdos block located in the western part of NCC and that seems to have preserved the typical features of a stable craton, the eastern NCC has experienced significant lithospheric thinning as evidenced by widespread magmatism activity and normal faulting, among other manifestations. The eastern part of the NCC is also one of the most seismically active intracontinental regions in the world. Here we focus on the region that comprises the North China Basin and the Yanshan-Taihang Mountains, two major tectonic units located to the east and in the center of the NCC, respectively. We combine ambient noise data and ballistic surface wave data recorded by the dense temporary seismic array deployed in the North China to obtain phase velocity maps at periods ranging from 5s to 60s. 1587 and 3667 ray paths were obtained from earthquake surface waves and ambient noise correlations, respectively. The phase velocity distribution was reconstructed with grid size 0.25x0.25 degrees and 0.5x0.5 degrees from ambient noise tomography and earthquake surface wave tomography. For periods shorter than 15s, the phase velocity variations are well correlated with the principal geological units in the NCC, with low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20s to 30s, the phase velocity variations seem to be related to the local variations of the crustal thickness. For the periods above 30s, the strength of the phase velocity variations decreases with increasing periods, which may imply that the uppermost mantle is much more homogeneous than the crust. In contrast with typical phase velocities documented worldwide in continental cratons, the phase velocities we measured within the NCC are low. Their range is actually similar to that of the typical phase velocities observed in rift regions around the globe (eg, Rio Grande rift), indicating that the lithosphere of the central and eastern NCC has apparently been eroded and modified.
NASA Astrophysics Data System (ADS)
Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan
2017-04-01
The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (<50 to 80 km). The Central Taurus Mountains, which have experienced 2 km of uplift in the past 6 Ma, are underlain by the fastest shear velocities in the region (>4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (<4.2 km/s) beneath the Central Anatolian Volcanic Province. These slow velocities are interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian Volcanic Province. Finally, we present a model for the evolution of central Anatolia that brings together the volcanism, extension in the Kirsehir Block, uplift of the southern margin of central Anatolia, and our seismic images.
Gettings, Mark E.
2002-01-01
High resolution aeromagnetic survey data flown at 250 m above the terrain and 250 m line spacing over the Santa Cruz Valley and the surrounding Tumacacori, Patagonia, and Santa Rita Mountains has been interpreted by correlation of the magnetic anomaly field and various derivative maps with geologic maps. Measurements of in-situ magnetic properties of several of the map units determined whether or not mapped lithologies were responsible for observed anomalies. Correlation of the magnetic anomaly field with mapped geology shows that numerous map units of volcanic and intrusive rocks from Jurassic Middle Tertiary in age are reversely polarized, some of which have not been previously reported. Trends derived from the magnetic anomaly data correlate closely with structures from major tectonic events in the geologic history of the area including Triassic-Jurassic crustal accretion and magmatism, Laramide magmatism and tectonism, northeast-southwest Mid-Tertiary extension, and east-west Basin and Range extension. Application of two textural measures to the magnetic anomaly data, number of peaks and troughs per km (a measure of roughness) and Euclidean length per km (a measure of amplitude), delineated areas of consistent magnetic anomaly texture. These measures were successful at the delineation of areas of consistent magnetic lithology both on the surface and in the subsurface beneath basin fill. Several areas of basement prospective for mineral resources beneath basin fill were identified.
Middle to late cenozoic geology, hydrography, and fish evolution in the American Southwest
Spencer, J.E.; Smith, G.R.; Dowling, T.E.
2008-01-01
An evaluation of the poorly understood Cenozoic hydrologic history of the American Southwest using combined geological and biological data yields new insights with implications for tectonic evolution. The Mesozoic Cordilleran orogen next to the continental margin of southwestern North America probably formed the continental divide. Mountain building migrated eastward to cause uplift of the Rocky Mountains during the Late Cretaceous to early Tertiary Laramide orogeny. Closed drainage basins that developed between the two mountain belts trapped lake waters containing fish of Atlantic affinity. Oligocene-Miocene tectonic extension fragmented the western mountain belt and created abundant closed basins that gradually filled with sediments and became conduits for dispersal of fishes of both Pacific and Atlantic affinity. Abrupt arrival of the modern Colorado River to the Mojave-Sonora Desert region at ca. 5 Ma provided a new conduit for fish dispersal. Great dissimilarities in modern fish fauna, including differences in their mitochondrial deoxyribonucleic acid (DNA), indicate that late Miocene runoff from the Colorado Plateau did not flow down the Platte or Rio Grande, or through the Lake Bonneville Basin. Fossil fishes from the upper Miocene part of the Bidahochi Formation on the Colorado Plateau have characteristics that reflect a habitat of large, swift-moving waters, and they are closely related to fossil fishes associated with the Snake and Sacramento Rivers. This evidence suggests that influx of fishes from the ancestral Snake River involved a major drainage, not merely small headwater transfers. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Hakimi Asiabar, Saeid; Bagheriyan, Siyamak
2018-03-01
The Alborz range in northern Iran stretches along the southern coast of the Caspian Sea and finally runs northeast and merges into the Pamir mountains in Afghanistan. Alborz mountain belt is a doubly vergent orogen formed along the northern edge of the Iranian plateau in response to the closure of the Neo-Tethys ocean and continental collision between Arabia and Eurasia. The south Caspian depression—the Alborz basin of Mesozoic age (with W-E trend) in northern Iran—inverted in response to the Arabia-Eurasia collision. Pre-existing extensional faults of the south Caspian-Alborz system preferentially reactivated as contractional faults because of tectonic inversion. These contractional structures tend to run parallel to the trends of pre-existing extensional faults and acquire W and WNW-ESE orientations across the previous accommodation zones that were imposed by the reactivation of adjacent extensional faults with different directions. The NNE to N dipping faults show evidences of reactivation. The Deylaman fault is one of the important faults of western Alborz in Iran and is an example of inversion tectonic style of deformation in the western Alborz mountain range. The Deylaman fault, with an E-W trend, contains three discontinuous fault segments in the area under investigation. These fault segments have evidence of oblique right-lateral reverse motion and links eastward to the dextral Kandavan thrust. The importance of this fault is due to its effect on sedimentation of several rock units from the Jurassic to Neogene in western Alborz; the rock facies on each side of this fault are very different and illustrate different parts of tectonic history.
NASA Technical Reports Server (NTRS)
Lowery, Anthony R.; Smith, Robert B.
1994-01-01
Stochastic inversion for flexural loads and flexural rigidity of the continental elastic layer can be accomplished most effectively by using the coherence of gravity and topography. However, the spatial resolution of coherence analysis has been limited by use of two-dimensional periodogram spectra from very large (greater than 10(exp 5)sq km) windows that generally include multiple tectonic features. Using a two-dimensional spectral estimator based on the maximum entropy method, the spatial resolution of flexural proerties can be enhanced by a factor of 4 or more, enabling more detailed analysis at the scale of individual tectonic features. This new approach is used to map the spatial variation of flexural rigidity along the Basin and Range transition to the Colorado Plateau and Middle Rocky Mountains physiographic provinces. Large variations in flexural isostatic responses are found, with rigidities ranging from as low as 8.7 x 10(exp 20) N m (elastic thickness (T(sub e) = 4.6 km) in the Basin and Range to as high as 4.1 x 10(exp 24) N m T(sub e) = 77 km) in the Middle Rocky Mountains. These results compare favorably woith independent determinations of flexural rigidity in the region. Areas of low flexural rigidity correlate strongly with areas of high surface heat flow, as is expected from the contingence of flexural rigidity on a temperature-dependent flow law. Also, late Cenozoic normal faults with large displacements are found primarily in area of low flexural rigidity region. The highest flexural rigidity is found within the Archean Wyoming craton, where evidence suggests that deeply rooted cratonic lithosphere may play a role in determining the distribution of tectonism at the surface.
Seismic behaviour of mountain belts controlled by plate convergence rate
NASA Astrophysics Data System (ADS)
Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.
2018-01-01
The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.
Geologic Map of the Eastern Three-Quarters of the Cuyama 30' x 60' Quadrangle, California
Kellogg, Karl S.; Minor, Scott A.; Cossette, Pamela M.
2008-01-01
The map area encompasses a large part of the western Transverse Ranges and southern Coast Ranges of southern California. The San Andreas fault (SAF) cuts the northern part of the map. The area south of the SAF, about 80 percent of the map area, encompasses several distinct tectonic blocks bounded by major thrust or reverse faults, including the Santa Ynez fault, Big Pine fault (and structurally continuous Pine Mountain fault), Tule Creek fault, Nacimiento fault, Ozena fault, Munson Creek fault, Morales fault, and Frazier Mountain Thrust System. Movement on these faults is as old as Miocene and some faults may still be active. In addition, the Paleocene Sawmill Mountain Thrust south of the SAF and the Pastoria Thrust north of the SAF place Cretaceous and older crystalline rocks above Pelona Schist (south of the SAF) and Rand Schist (north of the SAF). South of the SAF, each tectonic block contains a unique stratigraphy, reflecting either large-scale movement on bounding faults or different depositional environments within each block. On Mount Pinos and Frazier Mountain, intrusive and metamorphic rocks as old as Mesoproterozoic, but including voluminous Cretaceous granitoid rocks, underlie or are thrust above non-marine sedimentary rocks as old as Miocene. Elsewhere, marine and non-marine sedimentary rocks are as old as Cretaceous, dominated by thick sequences of both Eocene and Cretaceous marine shales and sandstones. Middle Miocene to early Oligocene volcanic rocks crop out in the Caliente Hills (part of Caliente Formation) and south of Mount Pinos (part of the Plush Ranch Formation). Fault-bounded windows of Jurassic Franciscan Complex ophiolitic rocks are evident in the southwest corner of the area. North of the SAF, marine and non-marine sedimentary rocks as old as Eocene and Miocene volcanic rocks overlie a crystalline basement complex. Basement rocks include Cretaceous intrusive rocks that range from monzogranite to diorite, and Jurassic to late Paleozoic intrusive and metamorphic rocks. The Jurassic to late Paleozoic intrusive rocks include diorite, gabbro, and ultramafic rocks, and the metasedimentary rocks include marble, quartzite, schist, and gneiss.
Collision processes at the northern margin of the Black Sea
NASA Astrophysics Data System (ADS)
Gobarenko, V. S.; Murovskaya, A. V.; Yegorova, T. P.; Sheremet, E. E.
2016-07-01
Extended along the Crimea-Caucasus coast of the Black Sea, the Crimean Seismic Zone (CSZ) is an evidence of active tectonic processes at the junction of the Scythian Plate and Black Sea Microplate. A relocation procedure applied to weak earthquakes (mb ≤ 3) recorded by ten local stations during 1970-2013 helped to determine more accurately the parameters of hypocenters in the CSZ. The Kerch-Taman, Sudak, Yuzhnoberezhnaya (South Coast), and Sevastopol subzones have also been recognized. Generalization of the focal mechanisms of 31 strong earthquakes during 1927-2013 has demonstrated the predominance of reverse and reverse-normal-faulting deformation regimes. This ongoing tectonic process occurs under the settings of compression and transpression. The earthquake foci with strike-slip component mechanisms concentrate in the west of the CSZ. Comparison of deformation modes in the western and eastern Crimean Mountains according to tectonophysical data has demonstrated that the western part is dominated by strike-slip and normal- faulting, while in the eastern part, reverse-fault and strike-slip deformation regimes prevail. Comparison of the seismicity and gravity field and modes of deformation suggests underthusting of the East Black Sea Microplate with thin suboceanic crust under the Scythian Plate. In the Yuzhnoberezhnaya Subzone, this process is complicated by the East Black Sea Microplate frontal part wedging into the marginal part of the Scythian Plate crust. The indentation mechanism explains the strong gravity anomaly in the Crimean Mountains and their uplift.
Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona
Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.
2003-01-01
Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.
Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste
Levich, R.A.; Stuckless, J.S.
2006-01-01
Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.
New Energy Villages in Taiwan and China
NASA Astrophysics Data System (ADS)
Lee, C. S.; Wang, S. C.
2015-12-01
Taiwan locates in the active tectonic subdution and collision belts, therefore, the geothermal gradient is very high and have found 128 sites of high geothermal areas; 20% of them have the temperature between 75 - 200 degree C in which they can be directly used for the electricity generation; 50% of them are in 50 - 74 degree C and the rest 30% are below 50 degree C. These areas need the deep drillings to get into higher temperature for power energy. The first 20% high temperature areas are mostly located in the coastal or mountain regions. The government is interesting to develop these areas as the "New Energy Villages" so that they can not only become self-energy sufficient sites, but also to protect themself from being the loss of electricity and water during the typhoon and earthquake hazards. The multiple usages of hot water (such as the first power generation and then the hot spring utilization) have its merits. China, in the other hand, is not within the present-day active tectonic zone. However, the recent Sino Probe Experiments (Deep Exploration in China) have mapped the Cetaceous plate boundaries in the coast of China. The heat is still possibly migrating to near the surface through the existing structures. For example, the Feng Shun Geothermal Power Station in north of Guangzhou, Guangdong Province, used the 96 degree C hot water from a well of 800 m producing a small amount of 300 KW power since 1984. The Guangdong Province is located in the edge of Mesozoic South China Plate. Further in land, the Huang Mountain, one of the world heritage sites, is located at the boundary of another Mesozoic Yangtze River Plate. There is not a geothermal power plant; however, a number of hot springs are in a booming tour business at the foot hill of the mountain. The electricity has to come from a long way of net working. If China develops the local, small, but sufficient power plants by using the modern geothermal exploration and drilling techniques. The "New Energy Villages" will be benefit to the energy and environment need.
NASA Astrophysics Data System (ADS)
Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.
2017-04-01
Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).
NASA Astrophysics Data System (ADS)
Van Bui, Thom; Huy Nguyen, Thinh; Duc Nguyen, Tung
2018-03-01
Ma Pi Leng area is the core part of Dong Van karst plateau geopark, and is a region of high diversity of geology and tectonics in Vietnam. This region has experienced strong uplift motions that have created three grades of regional relief: 1400-1600 m; 1100-1200 m and 500-600 m. This geomorphology is in turn strongly eroded by the stream systems and divided into different structural blocks controlled by the faults. During the neotectonic stage, several modes of faulting have occurred in Ma Pi Leng such as strikeslip, normal, extension, riverse faults. The NW-SE fault system had a decisive role in determining the structural pattern of the region. The tectonic fractures, at the largest scale, are hundreds of meters high and up to a kilometer long. Tectonic activities, together with exogenic processes, have made regional relief strongly diverse with strips of horsts and grabens as well as laddersteps-shaped escarpments, inverse topography, high cliffs and deep canyons. Besides that there are also the caves at varying levels of height, chains of sinkholes, and pyramidal mountainous peaks. Ma Pi Leng area is truly majestic and worthy of tourist attractions both in terms of scientific value and natural landscape.
Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.
2011-01-01
Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.
Sand petrology and focused erosion in collision orogens: the Brahmaputra case
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; France-Lanord, Christian; Singh, Sunil K.; Foster, Gavin
2004-03-01
The high-relief and tectonically active Himalayan range, characterized by markedly varying climate but relatively homogeneous geology along strike, is a unique natural laboratory in which to investigate several of the factors controlling the composition of orogenic sediments. Coupling of surface and tectonic processes is most evident in the eastern Namche Barwa syntaxis, where the Tsangpo-Siang-Brahmaputra River, draining a large elevated area in south Tibet, plunges down the deepest gorge on Earth. Here composition of river sands changes drastically from lithic to quartzofeldspathic. After confluence with the Lohit River, draining the Transhimalayan-equivalent Mishmi arc batholiths, sediment composition remains remarkably constant across Assam, indicating subordinate contributions from Himalayan tributaries. Independent calculations based on petrographical, mineralogical, and geochemical data indicate that the syntaxis, representing only ∼4% of total basin area, contributes 35±6% to the total Brahmaputra sediment flux, and ∼20% of total detritus reaching the Bay of Bengal. Such huge anomalies in erosion patterns have major effects on composition of orogenic sediments, which are recorded as far as the Bengal Fan. In the Brahmaputra basin, in spite of very fast erosion and detrital evacuation, chemical weathering is not negligible. Sand-sized carbonate grains are dissolved partially in mountain reaches and completely in monsoon-drenched Assam plains, where clinopyroxenes are selectively altered. Plagioclase, instead, is preferentially weathered only in detritus from the Shillong Plateau, which is markedly enriched in microcline. Most difficult to assess is the effect of hydraulic sorting in Bangladesh, where quartz, garnet and epidote tend to be sequestered in the bedload and trapped on the coastal plain, whereas cleavable feldspars and amphiboles are concentrated in the suspended load and eventually deposited in the deep sea. High-resolution petrographic and dense-mineral studies of fluvial sands provide a basis for calculating sediment budgets, for tracing patterns of erosion in mountain belts, and for better understanding the complex dynamic feedback between surface processes and crustal-scale tectonics.
ERIC Educational Resources Information Center
Fink, Kristi R.
2017-01-01
Earth's easily seen surface features (mountains, volcanoes, and islands)--and the movement of the tectonic plates that lie below--offer hints about the processes that produced them. Inquiries in seismology, the study of earthquakes and other ground movements, can help students learn about Earth's geologic processes. This article describes an…
Tosdal, R.M.
1990-01-01
The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in this Blythe-Quartzsite region. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust N-NE (015??-035??) over a lower plate metamorphic terrane. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79??2 Ma and 70??4 Ma. Results suggest that the thrust system forms the southern boundary of the narow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling. -from Author
Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon
Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.
1983-01-01
Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.
NASA Astrophysics Data System (ADS)
Wu, Yu; Chen, Chih-Tung; Lee, Jian-Cheng; Shyu, J. Bruce H.
2017-04-01
The fate of passive continental margin in collisional orogens is crucial in understanding tectonic evolution of mountain belts. The active arc-continent collision of Taiwan is considered as a model case in studying mountain building processes, and largely consists of deformed margin basement and cover series. Among the whole orogeny belt, the slate belt of the Hsuehshan Range (HR) is a prominent large-scale pop-up structural on the prowedge part of the orogen, and is composed of metamorphosed Eocene to Miocene sediments which experienced only the Neogene Taiwan orogeny after diagenesis in margin graben. Characterizing the metamorphic history of the HR is essential for reconstructing its geological evolution during the mountain building processes. However, previous studies were mostly focused on northern and central HR, structural investigation coupled with metamorphic documentation in the southern part of HR, which is the most active part of the orogeny belt, is therefore targeted in this work. Since carbonaceous material is common in pelitic protolith of HR slates, the Raman spectrum of carbonaceous material (RSCM) measuring the rock peak temperature is chosen for quantitative thermal metamorphic documentation. In this study, we reconstruct a geological structural profile in western central Taiwan across the prowedge part of the mountain belt containing the southern HR by combining the surface geological data, well log records and published seismic reflection profiles. Although most of the existing data are concentrated in the fold-and-thrust belt, they are now reinforced by new field structural measurements and RSCM samples in the southern HR. In total 27 RSCM samples were collected along 2 transects perpendicular to the average strike with a dense interval about 2 km. The results allow us to map peak temperature distribution across southern HR, and provide new constraints for structural profile reconstruction and reappraisal of the structural evolution of the HR and neighboring fold-and-thrust belt. As shown in the previous thermal metamorphic investigation, we expected that southern HR strata acquired highest temperature during its burial stage than the orogenic stage like their central HR counterparts, thus experiencing mostly retrograde metamorphism in the entire mountain building processes.
Regional geomorphology and history of Titan's Xanadu province
Radebaugh, J.; Lorenz, R.D.; Wall, S.D.; Kirk, R.L.; Wood, C.A.; Lunine, J.I.; Stofan, E.R.; Lopes, R M.C.; Valora, P.; Farr, T.G.; Hayes, A.; Stiles, B.; Mitri, Giuseppe; Zebker, H.; Janssen, M.; Wye, L.; LeGall, A.; Mitchell, K.L.; Paganelli, F.; West, R.D.; Schaller, E.L.; ,
2011-01-01
Titan's enigmatic Xanadu province has been seen in some detail with instruments from the Cassini spacecraft. The region contains some of the most rugged, mountainous terrain on Titan, with relief over 2000 m. Xanadu contains evolved and integrated river channels, impact craters, and dry basins filled with smooth, radar-dark material, perhaps sediments from past lake beds. Arcuate and aligned mountain chains give evidence of compressional tectonism, yet the overall elevation of Xanadu is puzzlingly low compared to surrounding sand seas. Lineations associated with mountain fronts and valley floors give evidence of extension that probably contributed to this regional lowering. Several locations on Xanadu's western and southern margins contain flow-like features that may be cryovolcanic in origin, perhaps ascended from lithospheric faults related to regional downdropping late in its history. Radiometry and scatterometry observations are consistent with a water–ice or water–ammonia–ice composition to its exposed, eroded, fractured bedrock; both microwave and visible to near-infrared (v-nIR) data indicate a thin overcoating of organics, likely derived from the atmosphere. We suggest Xanadu is one of the oldest terrains on Titan and that its origin and evolution have been controlled and shaped by compressional and then extensional tectonism in the icy crust and ongoing erosion by methane rainfall.
Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering
NASA Astrophysics Data System (ADS)
Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent
2017-04-01
The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.
NASA Astrophysics Data System (ADS)
Geissman, John W.; Faccenna, Claudio; Niemi, Nathan A.
2014-10-01
In February 1982, the first issue of Tectonics was published. In the editorial policy statement for the journal, founding editors John Dewey, Paul Tapponier, and Clark Burchfiel wrote, "The central theme of Tectonics is the mechanical and thermal evolution of the lithospheric crust and mantle and the way that this is reflected in cratons, basins and mountains from the broad regional scale to the fine scale." The editors further stated, "We expect that papers on these and related topics would emanate from a wide variety of earth science disciplines ranging from physical modeling to geological field observation." Finally, with the confidence from this incredible team of editors, they noted, "We are aiming for a very rapid review process, allowing a maximum of about 1 month between submission and notification to the author of acceptance or rejection."
Strength and Elastic thickness of the lithosphere and implication on ductile crustal flow in Europe
NASA Astrophysics Data System (ADS)
Tesauro, M.; Kaban, M. K.; Cloetingh, S. A. P. L.
2012-04-01
The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. We present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. We estimated the lithospheric temperature from inversion of a tomography model and we extrapolated the results to the surface using crustal isotherms for different tectonic provinces based on characteristic values of radiogenic heat production. We assumed different rheologies of the upper and lower crust for continental areas, on the base of the geological features distribution. The results obtained allow us to compare for the first time the lithospheric characteristics of the different tectonic areas. The Te estimated from the strength is compared with the Te obtained by flexural loading and spectral studies. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~25 km), high topography (>1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (<1000 m) and very low seismicity. Using high resolution crustal thickness and density data provided by the EuCRUST-07 model we compute for the European continent the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
ERIC Educational Resources Information Center
Simmons, Henry
1983-01-01
In determining how the Appalachian Mountains were formed, various workings of tectonic processes at continental margins are also being illuminated. The research has important implications for understanding specific processes which shaped the earth and for unraveling the record of plate movements now preserved only in present and former continental…
NASA Astrophysics Data System (ADS)
Shelly, D. R.; Ellsworth, W. L.; Prejean, S. G.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.
2015-12-01
Earthquake swarms, sequences of sustained seismicity, convey active subsurface processes that sometimes precede larger tectonic or volcanic episodes. Their extended activity and spatiotemporal migration can often be attributed to fluid pressure transients as migrating crustal fluids (typically water and CO2) interact with subsurface structures. Although the swarms analyzed here are interpreted to be natural in origin, the mechanisms of seismic activation likely mirror those observed for earthquakes induced by industrial fluid injection. Here, we use massive-scale waveform correlation to detect and precisely locate 3-10 times as many earthquakes as included in routine catalogs for recent (2014-2015) swarms beneath Mammoth Mountain, Long Valley Caldera, Lassen Volcanic Center, and Fillmore areas of California, USA. These enhanced catalogs, with location precision as good as a few meters, reveal signatures of fluid-faulting interactions, such as systematic migration, fault-valve behavior, and fracture mesh structures, not resolved in routine catalogs. We extend this analysis to characterize source mechanism similarity even for very small newly detected events using relative P and S polarity estimates. This information complements precise locations to define fault complexities that would otherwise be invisible. In particular, although swarms often consist of groups of highly similar events, some swarms contain a population of outliers with different slip and/or fault orientations. These events highlight the complexity of fluid-faulting interactions. Despite their different settings, the four swarms analyzed here share many similarities, including pronounced hypocenter migration suggestive of a fluid pressure trigger. This includes the July 2015 Fillmore swarm, which, unlike the others, occurred outside of an obvious volcanic zone. Nevertheless, it exhibited systematic westward and downdip migration on a ~1x1.5 km low-angle, NW-dipping reverse fault at midcrustal depth.
NASA Astrophysics Data System (ADS)
Scott, D.; Wohl, E.
2017-12-01
The terrestrial organic carbon (OC) pool plays a major role in impacting global climate through the storage and potential release of carbon. In particular, areas of high net primary productivity, such as mountainous regions, and high spatial complexity, such as mountain river floodplains, show potential to act as both strong OC reservoirs and potential OC emitters in a changing climate. We focus on mountain rivers as potential hot swaths of OC storage and, accordingly, as places where land management to retain OC on the landscape may be especially impactful. Mountain river OC storage magnitude and age is a function of the soil and geomorphologic conditions at a reach scale, which are in turn determined by broader characteristics, such as climate, ecology, and tectonics. We present field data on OC storage in soil and wood from three mountain ranges across the western U.S.: the Wind River Range in Wyoming and the Olympic and Central Cascade Ranges in Washington. While the Big Sandy River basin in the Wind River Range exhibits relatively low relief, a semi-arid climate, and a fire-mediated disturbance regime, the Middle Fork Snoqualmie basin in the Cascades and the Sitkum and South Fork Calawah basins in the Olympics exhibit high relief and a humid climate. In contrast to the Olympics, the study basin in the Cascades exhibits strong longitudinal disconnectivity in the form of glaciogenic lakes, whereas the study basins in the Olympics lack large depositional zones that can store sediment for long periods of time. With our expansive dataset of OC storage magnitude and age in downed wood and soil from these three disparate regions, covering a wide range of tectonic, geomorphic, climatic, and ecologic variability, we are able to evaluate both the magnitude and age of the mountain river carbon pool as well as the factors that control that magnitude and age. We present a statistical model that illuminates the dominant controls on the magnitude and age of OC storage in mountain rivers. Using this, we broadly examine mountain river carbon storage dynamics with the goal of allowing land managers to prioritize and focus management efforts to retain OC on the landscape.
NASA Astrophysics Data System (ADS)
Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.
2016-12-01
The San Luis Basin is the largest of extensional basins in the northern Rio Grande rift (>11,400 km2). The modern basin configuration is the result of Neogene deformation that has been the focus of numerous studies. In contrast, Paleogene extensional deformation is relatively little studied owing to a fragmentary or poorly exposed stratigraphic record in most areas. However, volcanic and volcaniclastic deposits exposed along the western margin of the basin provide the spatial and temporal framework for interpretation of paleodrainage patterns that changed in direct response to Oligocene basin subsidence and the migration of centers of Tertiary volcanism. The early Oligocene (34 to 30 Ma) drainage pattern that originated in the volcanic highlands of the San Juan Mountains flowed south into the northern Tusas Mountains. A structural and topographic high composed of Proterozoic rocks in the Tusas Mountains directed flow to the southeast at least as late as 29 Ma, as ash-flow tuffs sourced in the southeast San Juan Mountains are restricted to the north side of the paleohigh. Construction of volcanic highlands in the San Luis Hills between 30 and 28.5 Ma provided an abundant source of volcanic debris that combined with volcanic detritus sourced in the southeast San Juan Mountains and was deposited (Los Pinos Formation) throughout the northern Tusas Mountains progressively onlapping the paleotopographic high. By 29 Ma, subsidence of the Las Mesitas graben, a structural sub-basin, between the San Luis Hills and the southeast San Juan and northern Tusas Mountains is reflected by thick deposits of Los Pinos Formation beneath 26.5 Ma basalts. Regional tectonism responsible for the formation of the graben may have also lowered the topographic and structural high in the Tusas Mountains, which allowed development of a southwest-flowing paleodrainage that likely flowed onto the Colorado Plateau. Tholeiitic basalt flows erupted in the San Luis Hills at 25.8 Ma, that presently cap dip-slope surfaces 600 m above the basin floor, flowed southwest at least 50 km utilizing the paleodrainage. After emplacement of 20.5 Ma basalts along the margin of the southeast San Juan Mountains, uplift along the western margin of the basin reversed paleodrainage directions eastward into the incipient San Luis Basin.
Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.
NASA Astrophysics Data System (ADS)
Malatesta, L. C.; Lamb, M. P.
2014-12-01
Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Jaeger, J. M.; Willems, B.; Powell, R. D.; Lowe, L. A.
2006-12-01
The interplay of tectonic and climatic processes is fundamental to the development of mountain belts and the ensuing patterns of deformation and erosion. Of equal significance is the interaction of tectonic and climatic processes in the development of orogenic sedimentary basins, or in the case of a coastal mountain belt, in the growth of a continental margin. The Chugach-St. Elias Orogeny, which is driven by the collision of the Yakutat microplate with North America in southeast Alaska, has generated the highest coastal relief in the world. The combined forces of tectonic uplift and glacial erosion have resulted in the accumulation of over 5 km of sediment to form the continental shelf and the creation of the Surveyor Fan that is over 2 km thick proximally. High-resolution GI-gun seismic data allow for detailed examination of the margin architecture off the Bering Glacier within the leading edge of the Yakutat block. The deformation and growth of the margin appears to have first undergone a tectonically dominated phase followed more recently by a glacially dominated phase. During the tectonically dominated period a broad anticline-syncline system helped create accommodation space and the margin both shallowed and widened to its current 50 km width. Based on ties with industry well cuttings, the dominance switched sometime between 0.75 and 1.25 Ma to being completely controlled by glacial advance-retreat patterns. The mappable glacial sequences are undeformed by the underlying anticlines and display several notable features: 1) erosional bases that can often be mapped across the entire shelf, terminating at the shelf edge, 2) little evidence for terminal or retreat moraines on the shelf suggesting very rapid and single phase retreat of the glacier, 3) incomplete glacial sequences due to erosion by later advances, and 4) minimal creation of accommodation space. We investigate the cause of the switch to glacial dominance, the mechanisms and causes of the potentially extremely rapid glacial retreats, and the geodynamics of these glacial advances with respect to the development of margin architecture.
Chelyabinsk fireball and Dyatlov pass tragedy
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2013-09-01
The Chelyabinsk bolide as well as the Kunashak meteorite in 1949 (Fig. 3, black square) hit ground in ectonically peculiar place in the Ural Mountains. The main explosion was followed by a series of weaker bangs. The long Uralian fold belt (Pz) separates two subsectors (1 & 2, Fig. 1) of the Eurasian sector (1+2) of the Eastern hemisphere sectoral structure (Fig. 1). At the Pamirs-Hindukush massif (the "Pamirs' cross") meet four tectonic sectors of this structure: two opposite differently uplifted (Africa-Mediterranean ++ and Asian +) and separating them two opposite differently subsided (Eurasian - and Indooceanic - -). Tectonic bisectors divide the sectors into two differently tectonically elevated subsectors. The Ural Mountains is one of these bisectors dividing the somewhat risen East-European subsector and the relatively fallen West-Siberian one. Even more important is the sharp tectonic boundary between subsided Eurasian sector and uplifted Asian one (between 2 and 3, Fig. 1). Fig. 3 shows distribution of electrophonic bolides over USSR [1]. Observations numbers are in circles. The total of 343 observations is distributed at relevant districts; accompanied meteorites were found only in 23-24 cases; in the chart are excluded background values of 1-2 observations per district. Two areas are obviously anomalous. These of the Urals, and the Eurasia-Asia sectoral contact (Novosibirsk - Yenisei R. - Tunguska). A location in the long Uralian belt is determined by its intersection with the Timan fold belt coming from the northwest (Fig. 3). The catastrophic Dyatlov pass where nine people mysteriously died at once occurs there (triangle in Fig. 3). Mancy aborigines know this place as deadly where killing white shining spheres appear. Moreover this belt intersection is well known among hunters for UFO as the Permian triangle (Fig. 2). They meet there to observe unusual atmospheric shining and other anomalous phenomena. In the Yenisei-Tunguska-Baikal region lightning balls appear regularly causing broken trees [2]. In conclusion, these two tectonically distinctive regions are famous by anomalously often appearance of bolides part of which is accompanied by meteorite falls. Out of 343 observations meteorites accompanied less than 10 %. Unclear remains a strange attraction of bolides by very pronounced tectonic features.
Quaternary tectonic faulting in the Eastern United States
Wheeler, R.L.
2006-01-01
Paleoseismological study of geologic features thought to result from Quaternary tectonic faulting can characterize the frequencies and sizes of large prehistoric and historical earthquakes, thereby improving the accuracy and precision of seismic-hazard assessments. Greater accuracy and precision can reduce the likelihood of both underprotection and unnecessary design and construction costs. Published studies proposed Quaternary tectonic faulting at 31 faults, folds, seismic zones, and fields of earthquake-induced liquefaction phenomena in the Appalachian Mountains and Coastal Plain. Of the 31 features, seven are of known origin. Four of the seven have nontectonic origins and the other three features are liquefaction fields caused by moderate to large historical and Holocene earthquakes in coastal South Carolina, including Charleston; the Central Virginia Seismic Zone; and the Newbury, Massachusetts, area. However, the causal faults of the three liquefaction fields remain unclear. Charleston has the highest hazard because of large Holocene earthquakes in that area, but the hazard is highly uncertain because the earthquakes are uncertainly located. Of the 31 features, the remaining 24 are of uncertain origin. They require additional work before they can be clearly attributed either to Quaternary tectonic faulting or to nontectonic causes. Of these 24, 14 features, most of them faults, have little or no published geologic evidence of Quaternary tectonic faulting that could indicate the likely occurrence of earthquakes larger than those observed historically. Three more features of the 24 were suggested to have had Quaternary tectonic faulting, but paleoseismological and other studies of them found no evidence of large prehistoric earthquakes. The final seven features of uncertain origin require further examination because all seven are in or near urban areas. They are the Moodus Seismic Zone (Hartford, Connecticut), Dobbs Ferry fault zone and Mosholu fault (New York City), Lancaster Seismic Zone and the epicenter of the shallow Cacoosing Valley earthquake (Lancaster and Reading, Pennsylvania), Kingston fault (central New Jersey between New York and Philadelphia), and Everona fault-Mountain Run fault zone (Washington, D.C., and Arlington and Alexandria, Virginia). ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Goodge, John W.
1997-08-01
Structural and age relationships in Beardmore Group rocks in the central Transantarctic Mountains of Antarctica indicate that they experienced a single deformation in latest Neoproterozoic to early Paleozoic time. New structural data contrast with earlier suggestions that Beardmore rocks record two orogenic deformations, one of the early Paleozoic Ross orogeny and a distinct earlier tectonic event of presumed Neoproterozoic age referred to as the Beardmore orogeny. In the Nimrod Glacier area, Beardmore metasedimentary rocks contain only a single set of geometrically related regional structures associated with the development of upright, large- and small-scale flexural-slip folds. Deformation of Beardmore strata involved west directed contraction of modest regional strain at relatively high crustal levels. Existing ages of detrital zircons from the Cobham and Goldie formations constrain Beardmore Group deposition to be younger than ˜600 Ma. This is significantly younger than previous age estimates and suggests that Beardmore deposition may be closely linked to a latest Neoproterozoic East Antarctic rift margin. The lack of structural evidence for polyphase deformation and the relatively young depositional age for the Beardmore Group thus raises the question of a temporally and/or technically unique Beardmore orogeny. Here I suggest that Beardmore shortening may be related to tectonic inversion of East Antarctic marginal-basin strata because of localized compression during proto-Pacific seafloor spreading. Basin inversion is but one stage in a protracted Ross tectonic cycle of rifting, tectonic inversion, subduction initiation, and development of a mature convergent continental margin during latest Neoproterozoic and early Paleozoic time. The term "Beardmore orogeny" has little meaning as an event of orogenic status, and it should be abandoned. Recognition of this latest Neoproterozoic history reinforces the view that the broader Ross orogeny was not a single event but rather was a long-lived postrifting tectonic process along the East Antarctic margin of Gondwanaland.
NASA Astrophysics Data System (ADS)
Kumar, S.; Biswal, S.; Parija, M. P.
2016-12-01
The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.
Stone, Paul; Barth, Andrew P.; Wooden, Joseph L.; Fohey-Breting, Nicole K.; Vazquez, Jorge A.; Priest, Susan S.
2013-01-01
We present geochronologic and geochemical data for Mesozoic rocks in the Black Mountain area northeast of Victorville, California, to supplement previous geologic mapping. These data, together with previously published results, limit the depositional age of the sedimentary Fairview Valley Formation to Early Jurassic, refine the ages and chemical compositions of selected units in the overlying Jurassic Sidewinder Volcanics and of related intrusive units, and limit the age of some post-Sidewinder faulting in the Black Mountain area to a brief interval in the Late Jurassic. The new information contributes to a more complete understanding of the Mesozoic magmatic and tectonic evolution of the western Mojave Desert and surrounding regions.
NASA Astrophysics Data System (ADS)
Mohanty, S.
2010-11-01
The Satpura Mountain Belt (also referred as Central Indian Tectonic Zone in recent literature) forms an important morphotectonic unit in the central part of India. Some of the recent workers have reported an orogenic event at ˜1000-900 Ma (termed "Sausar orogeny") which led to amalgamation of the North Indian Block and the South Indian Block and formation of the Satpura Mountain Belt. In this model the stratigraphic relations of two important lithostratigraphic units on either side of the Satpura Mountain Belt (the Sausar Group in the south and the Vindhyan Supergroup on the north) are suggested to be revised from previously held ideas. Critical analyses of available published work in the region to assess the status of the Sausar Group vis a vis the Vindhyan Supergroup was carried out. It is found that the ideas proposed by the recent workers stem from an earlier interpretation that the Sausar Group has monocyclic evolution and the earliest fabric in the Sausar Group is marked by a schistosity with EW strike. Re-mapping of the gneissic rocks and adjacent matasedimentary rocks of Khawasa, Deolapar, and Kandri-Mansar areas revealed presence of gneissic rocks and granulites of two generations, and of four phases of superposed deformations in the metasediments and gneisses. The older gneisses and granulites constitute the basement over which the rocks of the Sausar Group were deposited; and the younger gneisses developed by metamorphism and migmatisation of the rocks of the Sausar Group. The latter types are found in the Khawasa-Ramakona areas. Contrary to the belief of the recent workers that no volcanic activity is present in the Sausar Group, volcanic rocks marked by amygdular basic flows and tuffs have been mapped from different parts of the Sausar Group. Migmatisation and metamorphism of these volcanic rocks (of the Sausar Group) have given rise to amphibolites and granulites in Khawasa and Ramakona areas. Therefore, the use of fabric patterns in these areas to suggest that the granulite facies metamorphism in the Ramakona-Katangi granulite domain was pre-Sausar in age is debatable. Available geochronological data of the Satpura Mountain Belt and its eastward continuation into the Chhotanagpur Gneiss terrain indicate that the basement and cover rocks of these areas were subjected to multiple deformation and metamorphic episodes of similar style and nature. The earliest deformation and metamorphism of the rocks of the Sausar Group and its equivalent rocks to the east took place at ˜2100-1900 Ma. The regional EW trend of the belt developed during the second deformation at ˜1800-1700 Ma and again at ˜1600-1500 Ma. This deformation was accompanied by migmatisation and granulite facies metamorphism in the northern domain of the Sausar Belt and in the Chhotanagpur Gneiss region. Late phase low intensity deformations in the region were associated with thermal events at ˜1100-1000 Ma and ˜900-800 Ma. The ˜EW trending fabric, referred as "Satpura orogenic trend" in Indian literature marks a major compressional tectonic event, developed during the second deformation of the Sausar Group. This has its counter part in Western Australia as the Capricorn orogeny (˜1780-1830 Ma). The development of the Satpura Mountain Belt during the Grenvillian orogeny is ruled out from the synthesis of event stratigraphic data of the region and from its comparison with the Western Australian Craton.
The geohydrologic setting of Yucca Mountain, Nevada
Stuckless, J.S.; Dudley, W.W.
2002-01-01
This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although capillary forces are expected to divert much of the flow around repository openings, some may drip onto waste packages, ultimately causing release of radionuclides, followed by transport down to the water table. ?? 2002 Elsevier Science Ltd. All rights reserved.
The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)
NASA Astrophysics Data System (ADS)
Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.
2009-12-01
Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has the potential to influence ice sheet flow. Crevassing and disrupted internal layers are present in the deep ice found in the inland extent of the Lambert Graben. Preliminary analysis indicates both a more dynamic East Antarctic ice sheet and a more complex tectonic evolution for East Antarctica.
Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada
Horton, T.W.; Sjostrom, D.J.; Abruzzese, M.J.; Poage, M.A.; Waldbauer, J.R.; Hren, M.; Wooden, J.; Chamberlain, C.P.
2004-01-01
The surface uplift of mountain belts caused by tectonism plays an important role in determining the long-term climate evolution of the Earth. However, the general lack of information on the paleotopography of mountain belts limits our ability to identify the links and feedbacks between topography, tectonics, and climate change on geologic time-scales. Here, we present a ??18O and ??D record of authigenic minerals for the northern Great Basin that captures the timing and magnitude of regional surface uplift and subsidence events in the western United States during the Cenozoic. Authigenic calcite, smectite, and chert ??18O values suggest the northern Great Basin region experienced ???2km of surface uplift between the middle Eocene and early Oligocene followed by ???1 to 2km of surface subsidence in the southern Great Basin and/or Sierra Nevada since the middle Miocene. These data when combined with previously published work show that the surface uplift history varied in both space and time. Surface uplift migrated from north to south with high elevations in southern British Columbia and northeastern Washington in the middle Eocene and development of surface uplift in north and central Nevada in the Oligocene. This pattern of north to south surface uplift is similar to the timing of magmatism in the western Cordillera, a result that supports tectonic models linking magamtism with removal of mantle lithosphere and/or a subducting slab.
Sargent, Kenneth A.; Bedinger, M.S.
1985-01-01
The geology and hydrology of the Basin and Range Province of the western conterminous United States are characterized in a series of data sets depicted in maps compiled for evaluation of prospective areas for further study of geohydrologic environments for isolation of high-level radioactive waste. The data sets include: (1) Average precipitation and evaporation; (2) surface distribution of selected rock types; (3) tectonic conditions; and (4) surface- and ground -water hydrology and Pleistocene lakes and marshes.Rocks mapped for consideration as potential host media for the isolation of high-level radioactive waste are widespread and include argillaceous rocks, granitic rocks, tuffaceous rocks, mafic extrusive rocks, evaporites, and laharic breccias. The unsaturated zone, where probably as thick as 150 meters (500 feet), was mapped for consideration as an environment for isolation of high-level waste. Unsaturated rocks of various lithologic types are widespread in the Province.Tectonic stability in the Quaternary Period is considered the key to assessing the probability of future tectonism with regard to high-level radioactive waste disposal. Tectonic conditions are characterized on the basis of the seismic record, heat-flow measurements, the occurrence of Quaternary faults, vertical crustal movement, and volcanic features. Tectonic activity, as indicated by seismicity, is greatest in areas bordering the western margin of the Province in Nevada and southern California, the eastern margin of the Province bordering the Wasatch Mountains in Utah and in parts of the Rio Grande valley. Late Cenozoic volcanic activity is widespread, being greatest bordering the Sierra Nevada in California and Oregon, and bordering the Wasatch Mountains in southern Utah and Idaho.he arid to semiarid climate of the Province results in few perennial streams and lakes. A large part of the surface drainage is interior and the many closed basins commonly are occupied by playas or dry lake beds. The Province is divided into ground-water flow units defined on the basis of ground-water divides, ground-water flow lines, and surface streams that receive ground-water discharge.Ground water contains less than 500 milligrams per liter of dissolved solids throughout most of the Province. Ground water is more mineralized in areas underlain by evaporitic rocks, overlain by playas, and near saline lakes. Ground water is of the calcium, magnesium, or sodium bicarbonate type in the areas where dissolved-solids concentrations are less than 500 milligrams per liter, and of the calcium, magnesium, or sodium sulfate or chloride type where dissolved-solids concentrations are greater than 500 milligrams per liter.Geologic and hydrologic evidence is found for about 100 lakes and marshes that existed during the Pleistocene Epoch. The possibility of a recurrence of pluvial conditions, such as existed in the Pleistocene, is of concern in repository siting because of possible changes in hydrologic conditions. The Pleistocene lakes and marshes provide clues to the hydrology during pluvial climates.
Active tectonics of the northern Mojave Desert: The 2017 Desert Symposium field trip road log
Miller, David; Reynolds, R.E.; Phelps, Geoffrey; Honke, Jeff; Cyr, Andrew J.; Buesch, David C.; Schmidt, Kevin M.; Losson, G.
2017-01-01
The 2017 Desert Symposium field trip will highlight recent work by the U.S. Geological Survey geologists and geophysicists, who have been mapping young sediment and geomorphology associated with active tectonic features in the least well-known part of the eastern California Shear Zone (ECSZ). This area, stretching from Barstow eastward in a giant arc to end near the Granite Mountains on the south and the Avawatz Mountains on the north (Fig. 1-1), encompasses the two major structural components of the ECSZ—east-striking sinistral faults and northwest-striking dextral faults—as well as reverseoblique and normal-oblique faults that are associated with topographic highs and sags, respectively. In addition, folds and stepovers (both restraining stepovers that form pop-up structures and releasing stepovers that create narrow basins) have been identified. The ECSZ is a segment in the ‘soft’ distributed deformation of the North American plate east of the San Andreas fault (Fig. 1-1), where it takes up approximately 20-25% of plate motion in a broad zone of right-lateral shear (Sauber et al., 1994) The ECSZ (sensu strictu) begins in the Joshua Tree area and passes north through the Mojave Desert, past the Owens Valley-to-Death Valley swath and northward, where it is termed the Walker Lane. It has been defined as the locus of active faulting (Dokka and Travis, 1990), but when the full history from about 10 Ma forward is considered, it lies in a broader zone of right shear that passes westward in the Mojave Desert to the San Andreas fault (Mojave strike-slip province of Miller and Yount, 2002) and passes eastward to the Nevada state line or beyond (Miller, this volume).We will visit several accessible highlights for newly studied faults, signs of young deformation, and packages of syntectonic sediments. These pieces of a complex active tectonic puzzle have yielded some answers to longstanding questions such as: How is fault slip transfer in this area accommodated between northwest-striking dextral faults and eaststriking sinistral faults?How is active deformation on the Ludlow fault transferred northward, presumably to connect to the southern Death Valley fault zone?When were faults in this area of the central Mojave Desert initiated?Are faults in this area more or less active than faults in the ECSZ to the west?What is the role of NNW-striking faults and when did they form?How has fault slip changed over time? Locations and fault names are provided in figure 1-2. Important turns and locations are identified with locations in the projection: UTM, zone 11; datum NAD 83: (578530 3917335).
NASA Astrophysics Data System (ADS)
Basilone, Luca; Sulli, Attilio
2018-01-01
In the Mediterranean, the South-Tethys paleomargin experienced polyphased tectonic episodes and paleoenvironmental perturbations during Mesozoic time. The Cretaceous shallow-water carbonate successions of the Panormide platform, outcropping in the northern edge of the Palermo Mountains (NW Sicily), were studied by integrating facies and stratal pattern with backstripping analysis to recognize the tectonics vs. carbonate sedimentation interaction. The features of the Requienid limestone, including geometric configuration, facies sequence, lithological changes and significance of the top-unconformity, highlight that at the end of the Lower Cretaceous the carbonate platform was tectonically dismembered in various rotating fault-blocks. The variable trends of the subsidence curves testify to different responses, both uplift and downthrow, of various platform-blocks impacted by extensional tectonics. Physical stratigraphic and facies analysis of the Rudistid limestone highlight that during the Upper Cretaceous the previously carbonate platform faulted-blocks were subjected to vertical movements in the direction opposite to the displacement produced by the extensional tectonics, indicating a positive tectonic inversion. Comparisons with other sectors of the Southern Tethyan and Adria paleomargins indicate that during the Cretaceous these areas underwent the same extensional and compressional stages occurring in the Panormide carbonate platform, suggesting a regional scale significance, in time and kinematics, for these tectonic events.
A mass-wasting dominated Quaternary mountain range, the Coastal Range in eastern Taiwan
NASA Astrophysics Data System (ADS)
Hsieh, Meng-Long; Hogg, Alan; Song, Sheng-Rong; Kang, Su-Chen; Chou, Chun-Yen
2017-12-01
Fluvial bedrock incision, which creates topographic relief and controls hillslope development, has been considered the key medium linking denudation and tectonic uplift of unglaciated mountains. This article, however, shows a different scenario from the Coastal Range in eastern Taiwan. This range, with the steepness inherited from pre-orogenic volcanoes, has been subject to mass wasting even before its emergence above sea level no earlier than Middle Pleistocene. Numerous terraced alluvial fans/fan deltas record the ancient mass movements of the range, including rock avalanches. Multiple radiocarbon dates <16 ka cal BP reveal the recurrence intervals of these movements of over several thousand years. The largest event is dated ∼15 ka cal BP, and the two second largest, 9-8 ka cal BP. These mass movements were sourced from ridges with minimum heights of 350-400 m, have sequences not clearly related to the known climate-change events, and are believed to have been triggered mainly by severe rainfall events, large earthquakes, or their combinations. The resulting fluctuation of sediment yield has episodically changed river behavior, forming river terraces in catchments >1 km2. Alluvial terraces are typically exhibited close to the source ridges of mass movements, and strath terraces along the downstream parts of rivers. Both were created when enormous sediment supply had exceeded or matched the prevailing river transport capacity. This process, along with the protection by giant boulders from mass movement, disturbed the long-term incision trend of rivers in response to tectonic uplift. As a result, the observed Holocene bedrock incision at most sites has not kept pace with the tectonic uplift. The spatial contrast in mass-wasting histories further accounts for the great diversity of the terrace sequences, even in areas with similar tectonic and base-level conditions.
Hopson, R.F.; Hillhouse, J.W.; Howard, K.A.
2008-01-01
Analysis of the strikes of 3841 dikes in 47 domains in the 500-km-long Late Jurassic Independence dike swarm indicates a distribution that is skewed clockwise from the dominant northwest strike. Independence dike swarm azimuths tend to cluster near 325?? ?? 30??, consistent with initial subparallel intrusion along much of the swarm. Dike azimuths in a quarter of the domains vary widely from the dominant trend. In domains in the essentially unrotated Sierra Nevada block, mean dike azimuths range mostly between 300?? and 320??, with the exception of Mount Goddard (247??). Mean dike azimuths in domains in the Basin and Range Province in the Argus, Inyo, and White Mountains areas range from 291?? to 354?? the mean is 004?? in the El Paso Mountains. In the Mojave Desert, mean dike azimuths range from 318?? to 023??, and in the eastern Transverse Ranges, they range from 316?? to 051??. Restoration for late Cenozoic vertical-axis rotations, suggested by paleodeclinations determined from published studies from nearby Miocene and younger rocks, shifts dike azimuths into better agreement with azimuths measured in the tectonically stable Sierra Nevada. This confirms that vertical-axis tectonic rotations explain some of the dispersion in orientation, especially in the Mojave Desert and eastern Transverse Ranges, and that the dike orientations can be a useful if imperfect guide to tectonic rotations where paleomagnetic data do not exist. Large deviations from the main trend of the swarm may reflect (1) clockwise rotations for which there is no paleomagnetic evidence available, (2) dike intrusions of other ages, (3) crack filling at angles oblique or perpendicular to the main swarm, (4) pre-Miocene rotations, or (5) unrecognized domain boundaries between dike localities and sites with paleomagnetic determinations. ?? 2008 The Geological Society of America.
Yerkes, R.F.
1997-01-01
The city of San Fernando sits atop a structurally complex, sedimentologically diverse, and tectonically evolving late Tertiary-Quaternary basin situated within the Transverse Ranges of southern California. The surrounding San Fernando Valley (SFV) contains the headwaters of the Los Angeles River and its tributaries. Prior to the advent of flood control, the valley floor was composed of active alluvial fans and floodplains. Seasonal streams emanating from Pacoima and Big Tujunga Canyons drain the complex western San Gabriel Mountains and deposit coarse, highly permeable alluvium that contains generally high-quality ground water. The more shallow western part derives mainly from Tertiary and pre-Tertiary sedimentary rocks, and is underlain by less permeable, fine-grained deposits containing persistent shallow ground water and poorer water quality. Home of the 1971 San Fernando and the 1994 Northridge earthquakes, the SFV experienced near-record levels of strong ground motion in 1994 that caused widespread damage from strong shaking and ground failure. A new map of late Quaternary deposits of the San Fernando area shows that the SFV is a structural trough that has been filled from the sides, with the major source of sediment being large drainages in the San Gabriel Mountains. Deposition on the major alluvial fan of Tujunga Wash and Pacoima Wash, which issues from the San Gabriel Mountains, and on smaller fans, has been influenced by ongoing compressional tectonics in the valley. Late Pleistocene deposits have been cut by active faults and warped over growing folds. Holocene alluvial fans are locally ponded behind active uplifts. The resulting complex pattern of deposits has a major effect on liquefaction hazards. Young sandy sediments generally are highly susceptible to liquefaction where they are saturated, but the distribution of young deposits, their grain size characteristics, and the level of ground water all are complexly dependent on the tectonics of the valley. The San Fernando area lies on the southern slopes of the San Gabriel Mountains. The basement rocks here include high-grade metamorphic rocks of Precambrian age. The mountains are largely composed of crystalline basement that includes the Pelona Scist of probable Mesozoic age that has been overthrust by Precambrian gneisses; the gneisses were subsequently intruded by Mesozoic plutons prior to overthrusting along the latest Cretaceous Vincent thrust. Gneisses of somewhat variable composition and possibly varying ages are found in four terranes, but not all are in contact with Pelona Schist. Large tracts of Precambrian (1.2 billion years old) andesine anorthosite are intrusive into 1.7 billion year-old Mendenhall gneiss, and are found in the western part of the San Gabriels. Mixed with these are younger marble, limestone, and schist of possible Paleozoic age found in association with plutons along the southern margin of the range. The older rocks are intruded by diorite, quartz diorite, and granodiorite of Jurassic age. Also present are siliceous sedimentary rocks of Jurassic age. A thick section of Tertiary sedimentary and volcanic rocks overlie these units. The sediments located south of the San Gabriel Fault are totally different in character from those on the northern range flank, and mostly resemble the western Transverse Ranges due to their deposition in the southeastern Ventura basin; approximately 3,000 m of these sediments are exposed north and west of the city of San Fernando in the Tujunga syncline. Some of the Tertiary rocks are Paleocene and Eocene in age, but the bulk of these rocks are Oligocene and Miocene in age. The Vasquez and Sespe Formations of basal basaltic volcanic and sandstone are Oligocene and lower Miocene in age. These are overlain by clastic rocks of Tick Canyon and Mint Canyon Formations of middle to late Miocene age. Above these rocks are the Castaic, Modelo, and Santa Margarita Formations of fossiliferous marine shale, sand
Transient river response, captured by channel steepness and its concavity
NASA Astrophysics Data System (ADS)
Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.
2015-01-01
Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.
Active deformation processes of the Northern Caucasus deduced from the GPS observations
NASA Astrophysics Data System (ADS)
Milyukov, Vadim; Mironov, Alexey; Rogozhin, Eugeny; Steblov, Grigory; Gabsatarov, Yury
2015-04-01
The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of three Northern Caucasian Republics of the Russian Federation: Karachay-Cherkessia, Kabardino-Balkaria, and North Ossetia. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. This result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. The concept of such convergence implies that the Caucasian segment of the Alpine-Himalayan mobile belt is under compression, the layers of sedimentary and volcanic rocks are folded, the basement blocks are subject to shifts in various directions, and the upper crust layers are ruptured by reverse faults and thrusts. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. The deformation tensor deduced from the velocity field also exhibits the sub-meridional direction of the major compressional axes which coincides with the direction of the relative Arabian-Eurasian plate motion. This work is partly supported by the Russian Foundation for Basic Research under Grant No 14-45-01005 and № 14-05-90411.
Mammoth Mountain, California broadband seismic experiment
NASA Astrophysics Data System (ADS)
Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.
2013-12-01
Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have been relocated. Our goal is to derive high-resolution three-dimensional P- and S-wave velocity structure models of Mammoth Mountain. These models will enable more precise locations of the local seismicity, full waveform inversions of long-period seismicity, derivation of moment tensors for the seemingly brittle-failure high-frequency earthquakes, analyses of shear-wave splitting, and high-resolution relative relocation of seismicity using double differences.
Challenges to Progress in Studies of Climate-Tectonic-Erosion Interactions
NASA Astrophysics Data System (ADS)
Burbank, D. W.
2016-12-01
Attempts to unravel the relative importance of climate and tectonics in modulating topography and erosion should compare relevant data sets at comparable temporal and spatial scales. Given that such data are uncommonly available, how can we compare diverse data sets in a robust fashion? Many erosion-rate studies rely on detrital cosmogenic nuclides. What time scales can such data address, and what landscape conditions do they require to provide accurate representations of long-term erosion rates? To what extent do large-scale, but infrequent erosional events impact long-term rates? Commonly, long-term erosion rates are deduced from thermochronologic data. What types of data are needed to test for consistency of rates across a given interval or change in rates through time? Similarly, spatial and temporal variability in precipitation or tectonics requires averaging across appropriate scales. How are such data obtained in deforming mountain belts, and how do we assess their reliability? This study describes the character and temporal duration of key variables that are needed to examine climate-tectonic-erosion interactions, explores the strengths and weaknesses of several study areas, and suggests the types of data requirements that will underpin enlightening "tests" of hypotheses related to the mutual impacts of climate, tectonics, and erosion.
Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.
2004-01-01
Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of sequential formation of tectonic joints, in the context of regional paleostress studies, indicate that north- and northwest-striking joint sets formed coevally with the main faulting episode during regional east-northeast-west-southwest extension and that a prominent northeast-striking joint set formed later, probably after 9 Ma. These structural analyses contribute to the understanding of several important issues at Yucca Mountain, including potential hydrologic pathways, seismic hazards, and fault-displacement hazards. ?? 2004 Geological Society of America.
NASA Astrophysics Data System (ADS)
Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.
2017-12-01
It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active, tropical mountain ranges and identifies glaciation as a trigger of autogenic behavior in flanking fluvial landscapes.
Paleomagnetism and tectonics of the Crescent Formation, northern Olympic Mountains, Washington
NASA Technical Reports Server (NTRS)
Warnock, Andrew C.; Burmester, Russell F.; Engebretson, David C.
1993-01-01
Results are presented of a paleomagnetic analysis of the Crescent Formation basalts of the northern Olympic Mountains, carried out with the purpose of constraining the emplacement and deformation history of the rocks of the northern Coast Range. It was found that (1) the stable remanent magnetization measured within the Crescent Formation appears to be early, predating significant deformation, and probably is primary; (2) a correction for bedding rotations about strike within four different structural domains produces a circular distribution of virtual geomagnetic poles; and (3) the Crescent Formation, where sampled in the north, records no significant net rotation or displacement.
Utilizing ERTS-A imagery for tectonic analysis through study of Big Horn Mountains Region
NASA Technical Reports Server (NTRS)
Hoppin, R. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. NASA-provided color composite (1048-17234) which includes the southeastern portion of the Bighorn Mountains and the western Powder River basin is of excellent quality. The considerable variations in the red hues indicate that vegetational mapping will be enhanced over the black and white. Some additional delineation of rock units can be made, particularly the Chugwater formation. Preliminary look at just received winter scenes indicates that topographic features are enhanced both due to the snow cover and to the lower sun angle.
Global deformation on the surface of Venus
NASA Technical Reports Server (NTRS)
Bilotti, Frank; Connors, Chris; Suppe, John
1992-01-01
Large-scale mapping of tectonic structures on Venus shows that there is an organized global distribution to deformation. The structures we emphasize are linear compressive mountain belts, extensional rafted zones, and the small-scale but widely distributed wrinkle ridges. Ninety percent of the area of the planet's compressive mountain belts are concentrated in the northern hemisphere whereas the southern hemisphere is dominated by extension and small-scale compression. We propose that this striking concentration of fold belts in the northern hemisphere, along with the globe-encircling equatorial rift system, represents a global organization to deformation on Venus.
NASA Technical Reports Server (NTRS)
Smith, R. B.
1986-01-01
The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.
NASA Astrophysics Data System (ADS)
Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik
2016-11-01
The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.
NASA Technical Reports Server (NTRS)
Bodechtel, J. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The geological interpretation on data exhibiting the Italian peninsula led to the recognition of tectonic features which are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to main stress directed north-eastwards. A land use map of the mountainous regions of Italy was produced on a scale of 1:250,000. For the digital treatment of MSS-CCTs an image processing software was written in FORTRAN 4. The software package includes descriptive statistics and also classification algorithms.
Comments on the paper of Bodin et al. (2010). Journal of African Earth Sciences, 58, pp. 489-506
NASA Astrophysics Data System (ADS)
Tlig, Saïd
2016-06-01
Bodin et al. (2010) produced an important paper in the Journal of African Earth Sciences. The main goals of this paper were: (1) the petrological and sedimentological treatment of the upper Jurassic and Cretaceous series in southern Tunisia and northern Ghadames Basin including the Hamada El Hamra area and Nafussah Mountain of Libya; (2) the reconstruction of tectonic controls on deposition and basin-fill; (3) the correlation of poorly dated lithostratigraphic columns, poor in diagnostic fauna, from northwestern Libya to southern Tunisia; and (4) the comparison between the authors' findings and assignments of global eustatic and plate tectonic events.
NASA Astrophysics Data System (ADS)
Nigro, Fabrizio; Renda, Pietro; Favara, Rocco
2010-05-01
In the young mountain chains underwent to emersion, the different crustal blocks which compose the belt may be subjected to differentiate tilting during uplift. The tilting process may be revealed both by the stratal pattern of the syn-uplifting deposits or deduced by the function altitude/area ratio. The prevailing of the uplift rate with respect to the tilting rate (and vice versa) result from the shape of this function. So, in young mountains the hypsometric analysis may results a useful tool for decipher how the crustal blocks are underwent to uplift. An integrate analysis based on stratigraphy, structural and morphometric data represents the correctly approach for characterise the landform evolution in regions underwent to active tectonics. In the aim to evaluate the recent tectonic history from topography in regions underwent to active deformations, by deducing the effect of tectonisms on landforms, the definition of the boundary conditions (regarding the crustal deformation) is fundamental for morphometric analysis. In fact, the morphologic style and the morphometric pattern in tectonically active settings are closely related to the dominance of rock masses exceeding for uplift (or failure for subsidence) with respect to the exogenous erosional processes. Collisional geodynamic processes induce crustal growth for faulting and folding. In this earth's sectors, the uplift of crustal blocks is a very common effect of compressional deformation. It reflects for example fold amplification and thrusting, but it is a very common process also in settings dominated by crustal thinning, where the viscoelastic properties of the lithosphere induce tilting and localised uplift of normal-faulted crustal blocks. The uplift rate is rarely uniform for wide areas within the orogens on the passive margins, but it changes from adjacent crustal blocks as the effect of space-variation of kinematics conditions or density. It also may change within a single block, as the effect of tilting, which induces synchronously mass elevation and subsidence. Not considering sea-level fluctuations and the climatic-lithologic parameters, the 2D distribution of uplift rate influences the landmass evolution in time. The tendency of rock masses to equilibrium resulting from concurrent tectonic building and denudation forces defines the geomorphic cycle. This evolution is checked by different stages, each characterised by a well-recognisable morphometric patterns. The dominance of uplift or erosion and concurrent block tilting induce characteristic a landform evolution tendency, which may be evaluated with the morphometric analysis. A lot of morphometric functions describe the equilibrium stage of landmasses, providing useful tools for deciphering how tectonics acts in typology (e.g. inducing uplift uniformly or with crustal block tilting) and resulting effects on landforms (magnitude of uplift rate vs tilting rate). We aim to contribute in the description of landforms evolution in Sicily (Central Mediterranean) under different morphoevolutive settings, where may prevails uplift, tilting or erosion, each characterised by different morphometric trends. The present-day elevation of Pliocene to upper Pleistocene deposits suggests that Northen Sicily underwent neotectonic uplift. The recent non-uniform uplift of Northern Sicily coastal sector is suggested by the different elevation of the Pliocene-Upper Pleistocene marine deposits. The maximum uplift rate characterise the NE Sicily and the minimum the NW Sicily. The overall westwards decreasing trend of uplift is in places broken in the sectors where are located a lot of morphostructures. Localised uplift rates higher than the adjacent coastal plains are suggested by the present-day elevation of the beachshore deposits of Tyrrhenian age. Northern Sicily may be divided into a lot of crustal blocks, underwent to different tilting and uplift rates. Accentuate tilting and uplift results from transtensional active faulting of the already emplaced chain units, as also suggested by seismicity and the focal plane solutions of recent strong earthquakes.
Geology. Grade 6. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Anchorage School District, AK.
This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…
NASA Technical Reports Server (NTRS)
1985-01-01
Several topics relative to heat and detachment in crustal extension on continents and planets are discussed. Rifting on Venus, heat flow and continental breakup, magnetism, the mountains and tectonic processes of Io, and the ductile extension of planetary lithospheres are among the topics covered.
Simultaneous miocene extension and shortening in the himalayan orogen.
Hodges, K V; Parrish, R R; Housh, T B; Lux, D R; Burchfiel, B C; Royden, L H; Chen, Z
1992-11-27
The South Tibetan detachment system separates the high-grade metamorphic core of the Himalayan orogen from its weakly metamorphosed suprastructure. It is thought to have developed in response to differences in gravitational potential energy produced by crustal thickening across the mountain front. Geochronologic data from the Rongbuk Valley, north of Qomolangma (Mount Everest) in southern Tibet, demonstrate that at least one segment of the detachment system was active between 19 and 22 million years ago, an interval characterized by large-scale crustal thickening at lower structural levels. These data suggest that decoupling between an extending upper crust and a converging lower crust was an important aspect of Himalayan tectonics in Miocene time.
Reduced to pole long-wavelength magnetic anomalies of Africa and Europe
NASA Technical Reports Server (NTRS)
Olivier, R.; Hinze, W. J.; Vonfrese, R. R. B.
1985-01-01
To facilitate analysis of the tectonic framework for Africa, Europe and adjacent marine areas, MAGSAT scalar anomaly data are differentially reduced to the pole and compared to regional geologic information and geophysical data including surface free-air gravity anomaly data upward continued to satellite elevation (350 km) on a spherical Earth. Comparative analysis shows magnetic anomalies correspond with both ancient as well as more recent Cenozoic structural features. Anomalies associated with ancient structures are primarily caused by intra-crustal lithologic variations such as the crustal disturbance associated with the Bangui anomaly in west-central Africa. Anomalies correlative with Cenozoic tectonic elements appear to be related to Curie isotherm perturbations. A possible example of the latter is the well-defined trend of magnetic minima that characterize the Alphine orogenic belt from the Atlas mountains to Eurasia. In contrast, a well-defined magnetic satellite minimum extends across the stable craton from Finland to the Ural mountains. Prominent magnetic maxima characterize the Arabian plate, Iceland, the Kursk region of the central Russian uplift, and generally the Precambrian shields of Africa.
Reduced to Pole Long-wavelength Magnetic Anomalies of Africa and Europe
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.
1984-01-01
To facilitate analysis of the tectonic framework for Africa, Europe and adjacent marine areas, MAGSAT scalar anomaly data are differentially reduced to the pole and compared to regional geologic information and geophysical data including surface free-air gravity anomaly data upward continued to satellite elevation (350 km) on a spherical Earth. Comparative analysis shows magnetic anomalies correspond with both ancient as well as more recent Cenozoic structural features. Anomalies associated with ancient structures are primarily caused by intra-crustal lithologic variations such as the crustal disturbance associated with the Bangui anomaly in west-central Africa. Anomalies correlative with Cenozoic tectonic elements appear to be related to Curie isotherm perturbations. A possible example of the latter is the well-defined trend of magnetic minima that characterize the Alpine orogenic belt from the Atlas mountains to Eurasia. In contrast, a well-defined magnetic satellite minimum extends across the stable craton from Finland to the Ural mountains. Prominent magnetic maxima characterize the Arabian plate, Iceland, the Kursk region of the central Russian uplift, and generally the Precambrian shields of Africa.
Davis, S.J.; Dickinson, W.R.; Gehrels, G.E.; Spencer, J.E.; Lawton, T.F.; Carroll, A.R.
2010-01-01
U-Pb age spectra of detrital zircons in samples from the Paleogene Colton Formation in the Uinta Basin of northeastern Utah and the Late Cretaceous McCoy Mountains Formation of southwestern Arizona (United States) are statistically indistinguishable. This finding refutes previous inferences that arkosic detritus of the Colton was derived from cratonic basement exposed by Laramide tectonism, and instead establishes the Cordilleran magmatic arc (which also provided sediment to the McCoy Mountains Formation) as the primary source. Given the existence of a north-south-trending drainage divide in eastern Nevada and the north-northeast direction of Laramide paleoflow throughout Arizona and southern Utah, we infer that a large river system headed in the arc of the Mojave region flowed northeast ~700 km to the Uinta Basin. Named after its source area, this Paleogene California River would have been equal in scale but opposite in direction to the modern Green River-Colorado River system, and the timing and causes of the subsequent drainage reversal are important constraints on the tectonic evolution of the Cordillera and the Colorado Plateau. ?? 2010 Geological Society of America.
NASA Astrophysics Data System (ADS)
Schutt, D.; Witt, D. R.; Aster, R. C.; Freymueller, J.; Cubley, J. F.
2017-12-01
Shear wave splitting results from the Northern Cordillera and surroundings will be presented. This complex tectonic setting contains a subduction zone responding to the Yakutat Indenter, an oceanic plateau fragment, a slab window under the Yukon Territory, and the actively uplifting Mackenzie Mountains. A particular goal of this project is to understand whether asthenospheric tractions play a significant role in Mackenzie Mountain uplift. Using a new method for calculating station-averaged splitting parameters, we have analyzed stations that span a large part of the region and therefore can see the variation in splitting parameters from the dynamic NA-PA subduction zone to the stable Slave Craton. Like other shear wave splitting studies in the Northern Cordillera, we find abrupt changes in fast axis direction along the continental margin, while the continental interior displays more coherent splitting parameters. This study is also the first to look at data from a recent deployment through center of the Mackenzie Mountains. Northeast of the Tintina Fault, we find average fast axes directions that are very close to the absolute NA plate motion but our large deviations from event to event suggest that there is some crustal anisotropy and/or dipping structure present. This observation appears to support the idea of a lower crustal décollement that has been put forth by Mazzoti and Hyndman [2002]. These results serve as a broad regional overview of mantle anisotropy and may also shed light on frozen lithospheric deformation.
NASA Astrophysics Data System (ADS)
Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene
2013-01-01
The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.
NASA Astrophysics Data System (ADS)
Collett, C.; Duvall, A. R.; Flowers, R. M.; Tucker, G. E.
2015-12-01
The Kaikoura Mountains stand high as topographic anomalies in the oblique Pacific-Australian plate boundary zone known as the Marlborough Fault System (MFS), NE South Island New Zealand. The base of both the Inland and Seaward Kaikoura Ranges are bound on the SE by major, steeply NW-dipping, right lateral, active strike-slips (Clarence and Hope faults of the MFS, respectively). Previous geologic mapping, observations of predominantly horizontal fault slip at the surface from GPS and offset Quaternary deposits, and uplift of marine terraces, provide evidence for shortening and mountain-building via distributed deformation off of the main MFS strike-slip faults. However, quantitative estimates of the magnitude and spatial patterns of exhumation and of the timing of mountain-building in the Kaikouras are needed to understand more fully the nature of oblique deformation in the MFS. We present new apatite and zircon (U-Th)/He ages from opposite sides of the Hope and Clarence faults, spanning over 2 km of relief within the Kaikoura Mountains to identify spatial and temporal changes in exhumation rates in relation to the adjacent faults. Young (~3 Ma) apatite He ages and rapid (potentially > 1 mm/yr) exhumation rates from opposite sides of the faults are consistent with previously mentioned evidence of recent, regional, distributed deformation off of the main MFS faults. Moreover, early Miocene zircon He ages imply that parts of this region experienced an earlier phase of fault-related exhumation. Large changes in zircon He ages across the faults from ~20 Ma to > 100 Ma support hypotheses that portions of the Marlborough Faults may be re-activated, early Miocene thrusts. The zircon data are also consistent with the hypothesis of an early Miocene initiation of the oblique Pacific-Australian plate boundary in this region. Evidence for this comes from a change in sedimentation during this time from fine marine sediments to coarse, terrigenous conglomerates. Observing more than one phase of deformation in this active, oblique tectonic setting provides a new quantitative assessment of the evolution of the Pacific-Australian plate boundary in this region and how the accommodation of deformation may change over time.
Geologic Mapping of the Zal, Hi'iaka, and Shamshu Regions of Io
NASA Technical Reports Server (NTRS)
Bunte, Melissa K.; Williams, D. A.; Greeley, R.
2008-01-01
We have produced regional geologic maps of the Zal, Hi'iaka, and Shamshu regions of Io s antijovian hemisphere based on Galileo mission data. Here we discuss the geologic features, summarize the map units and structures that are present, discuss the nature of volcanic activity, and give an analysis of the volcanic, tectonic, and gradational processes that affect the regions in order to better understand Io s geologic evolution. Zal Region: The Zal region (25-45degN, 65-85degW) consists of Zal Patera (120 km wide x 197 km long), two major mountains (north and south Zal Montes) which border Zal Patera to the west and south [1], and an unnamed patera ("Patera A") west of south Zal Montes. The Zal region includes at least two hotspots detected by Galileo: one along the western scarp of the Zal Patera volcano and one at the "Patera A" volcano. The floor of Zal Patera has been partly resurfaced by dark lava flows since Voyager imaging; portions of the patera floor appear unchanged during the Galileo mission. Mountains exhibit stages of degradation. The western bounding scarp of Zal Patera appears to be a fissure source vent for multiple silicate lava flows. The Zal Montes and Patera complex appears to be an example of volcano-tectonic interactions [1, 2]. Several of the flow units emanate from the fissure at the western scarp [2]. Hi'iaka Region: The Hi'iaka region (approx.12degS-5degN, 75-87degW) consists of Hi'iaka Patera, a large (60 km wide x 95 km long) patera, north and south Hi iaka Montes which border Hi'iaka Patera to the west and south and are L-shaped mirror-images of each other, west Hi'iaka Montes, a small isolated peak, and an unnamed patera ("Patera B") located south of north Hi'iaka Montes. The region includes one hotspot at Hi'iaka Patera. The floor of the patera exhibits flow deposits of differing ages. The eastern scarp of Hi'iaka Patera may be a fissure source vent for the patera floor materials. The Hi iaka Montes and Patera complex appears to be an example of volcano-tectonic interactions [1, 2]. Shamshu Region: The Shamshu region (approx.15degS-5degS, 55-77degW) consists of Shamshu Patera, three mountain units (west, north, and south Shamshu Mons), and a small unnamed patera ("Patera C") southwest of Shamshu Mons.
Role of mass wasting processes in the modification of oceanic rift valley morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, D.J.; Fox, P.J.; Karson, J. A.
1985-01-01
During the last eight years field investigations using the high resolution capabilities of submersibles and deep-towed cameras have been conducted along the rift valley of the Mid-Cayman Rise, the western and eastern intersections of the Kane Transform Fault and the Mid-Atlantic Ridge and the eastern intersection of the Oceanographer Transform Fault. These 3 sites are representative of the range of tectonic environments which are characteristic of slowly accreting plate boundaries. Photographic and observational data collected from within these natural laboratories reveal important geomorphic information concerning the temporal and spatial evolution of volcanic constructional and fault-bounded terrain in response to massmore » wasting processes. The results of this investigation indicate that sedimentary processes significantly influence the development of oceanic lithosphere soon after its creation and continues to do so with increasing geologic age out to approximately 2 m.y. The data indicate that the rift valley floor distal from transform faults is dominated by a hummocky, volcanic morphology that is rapidly degraded by hyaloclastic mass wasting activity. With the evolution of the rift walls into the rift mountains, photographic data indicates that the processes associated with dislodgement and gravitational transport do not cease to operate but work much more infrequently relative to the tectonically active lower slopes.« less
NASA Astrophysics Data System (ADS)
Muller, E.
2006-12-01
When the weather is nice, I like to take my students on a walk to the center of the earth. Earthwalk is a hands-on and feet-on activity that gets students outdoors, having fun, moving and learning about the structures of the earth. Earthwalk is a lesson to help students visualize our planets size and scale. This activity has students calculate the ratio of a scaled 100m cross-sectional earth, mark the boundaries between major planetary layers, walk from the center of the earth to the surface and draw proportional manmade and natural surface features (mountains, building, mine shafts, etc). This lesson effectively integrates content and pedagogy while touching on skills and topics such as math, measurement, science, writing skills (they have to take notes), reading, listening and group dynamics. This activity fits well into the earth science curriculum by introducing basic seismology; tectonic, geochemistry and heat transfer concepts. Besides showcasing this lesson, a limited number of Earth Anatomy posters will be distributed.
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated.
NASA Astrophysics Data System (ADS)
Campbell-Stone, Erin; John, Barbara E.; Foster, David A.; Geissman, John W.; Livaccari, Richard F.
2000-06-01
The Colorado River extensional corridor (CREC) accommodated up to 100% crustal extension between ˜23 and 12 Ma. The southernmost Sacramento Mountains core complex lies within this region of extreme extension and exposes a footwall of Proterozoic, Mesozoic, and Miocene crystalline rocks as well as Miocene volcanic and sedimentary rocks in the hanging wall to the regionally developed Chemehuevi-Sacramento detachment fault (CSDF) system. New structural, U-Pb-zircon, Ar-Ar, and fission track geochronologic and paleomagnetic studies detail the episodic character of both magmatic and tectonic extension in this region. Extension in this part of the CREC was initiated with tectonic slip along a detachment fault system at a depth between 10 and 15 km. Magmatic extension at these crustal levels began at ˜20-19 Ma and directly account for 5-18 km of extension (10-20% of total extension) in the southern Sacramento Mountains. Three discrete magmatic episodes record rotation of the least principal stress direction, in the horizontal plane, from 55° to 15° over the following ˜3 Myr. The three intrusions bear brittle and semibrittle fabrics and show no crystal-plastic fabric development. The final 3-4 Myr of stretching were dominated by amagmatic or tectonic extension along a detachment fault system, with extension directions rotating back toward 75°. The data are consistent with extremely rapid cooling and uplift of Miocene footwall rocks; the ˜19 Ma Sacram suite was emplaced at a mean pressure of ˜3.0 kbars and uplifted rapidly to a level in the crust where brittle deformation was manifested by movement on the detachment fault at ˜16 Ma. By ˜14 Ma the footwall was exposed at the surface, with detritus shed off and deposited in adjacent hanging wall basins.
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan’ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan’ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated. PMID:24376585
Lakshmi Planum: A distinctive highland volcanic province
NASA Astrophysics Data System (ADS)
Roberts, Kari M.; Head, James W.
Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.
Lakshmi Planum: A distinctive highland volcanic province
NASA Technical Reports Server (NTRS)
Roberts, Kari M.; Head, James W.
1989-01-01
Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.
NASA Astrophysics Data System (ADS)
Yang, Fuquan; Geng, Xinxia; Wang, Rui; Zhang, Zhixin; Guo, Xuji
2018-06-01
The Altay Mountains within the Xinjiang region of northwestern China hosts major metallic ore deposits. Here we review the geological characteristics, metallogenic features and tectonic settings of these deposits. The metallic ore deposits in the Altay Mountains occur mainly within four regions: North Altay, Central Altay, South Altay and Erqis. We recognize seven types of metallic ore deposits in the Altay Mountains: VMS, submarine volcanogenic iron, magmatic, skarn, pegmatite, hydrothermal vein (Cu-Zn, Fe) and orogenic gold. Among these types, the VMS, pegmatite, orogenic gold and skarn deposits are the most common. Most of the rare metal pegmatite deposits are distributed in Central Altay, with only a few in South Altay. The VMS, submarine volcanogenic type iron and skarn-type deposits are distributed in South Altay, whereas the orogenic-type gold deposits are distributed in the Erqis Fault belt. The hydrothermal vein-type deposits occur in the Erqis Fault belt and Chonghu'er Basin in South Altay. Magmatic-type deposits are mostly in the Erqis Fault belt and Central Altay. Based on isotopic age data, the VMS, submarine volcanogenic-type Fe and skarn-type Cu, Pb, Zn, Fe mineralization occurred during Early-Middle Devonian (∼410-377 Ma), orogenic-type Au, magmatic-type Cu-Ni, and a small number of skarn-type Fe, hydrothermal vein-type Cu-Zn, pegmatite-type rare-metal deposits in Early-Middle Permian (293-261 Ma), pegmatite-type rare-metal deposits, few skarn-type Fe deposit in Early-Middle Triassic (248-232 Ma), and dominantly represented by pegmatite-type rare-metal deposits in Late Triassic-Early Jurassic (223-180 Ma). The metallic ore deposits in the Altay Mountains formed in various tectonic settings, such as the Early-Middle Devonian continental arc and oceanic island arc, Early-Middle Permian post-collisional extensional setting, and Triassic-Early Jurassic intracontinental setting.
NASA Astrophysics Data System (ADS)
Enkelmann, E.; Dunn, C. A.; Ridgway, K.; Allen, W. K.
2016-12-01
The St. Elias Mountains in southeastern Alaska provide a natural laboratory to study the interacting processes of tectonics and climate. Because of the high-latitude, coastal geography the surface processes in the St. Elias Mountains are dominated by glacial erosion that varied during late Cenozoic climate shifts. Sediment eroded from the St. Elias Mountains are transported into the Gulf of Alaska by large tidewater glaciers and rivers, where they are deposited on the shelf and in large deep-sea submarine fans. Surface uplift and erosion jointly results in exhumation of deep crustal rocks that has been quantified by thermochronology, revealing spatial variations in exhumation rates across the St. Elias Mountains. We present new thermochronology data (apatite and zircon fission-track ages) from offshore strata derived from boreholes drilled by IODP Expedition 341 in the Gulf of Alaska. This offshore record provides an integrated signal of rock exhumation from the St. Elias and southeast Alaska since 10 Ma. Integrating the offshore data with the existing onshore thermochronology reveals that very rapid exhumation (>2 km/Myr) from 8-10 km depths has been occurring in southeastern Alaska since 11-10 Ma and thus prior to the onset of glaciation. The majority of our offshore data record the past 1 Myr of deposition related to the Bagley-Bering Glacier and allows assessing the long-standing question of the western limit of extreme exhumation observed at the St. Elias syntaxis in the Seward and Hubbard glacial drainages. The zircon fission-track ages from the Bering sediment reveal small age populations that peak between 15-9 Ma, suggesting much slower exhumation beneath the Bagley Ice Valley than farther east underneath the Seward and Hubbard glacier. Our results point out the first-order role of tectonics in providing sustained uplift and crustal weakening in the upper plate that than serve as areas for focused exhumation due to secondary erosional/climate processes.
NASA Astrophysics Data System (ADS)
Porter, M.; Speece, M. A.; Rutherford, B. S.; Constenius, K. N.
2014-12-01
In 1983 Techno, Inc. collected five seismic reflection profiles in the region between Whitefish, Montana and the United States-Canada border. The poulter method was used to gather four of these profiles and one profile was collected using a vibroseis source. We are currently reprocessing these data in order to construct a regional geological interpretation. The profiles cover a key position in the hinterland of the Cordillera in the lee of the Lewis thrust salient where the east-northeast verging Lewis thrust fault system translated (horizontal displacement >100 km) and inverted a thick, strong slab of primarily Belt-Purcell rocks out of a deep Precambrian depositional basin onto a cratonic platform. In this event, Belt-Purcell rocks were thrust over complexly imbricated Phanerozoic strata in the foreland. Late Mesozoic compressional deformation was followed by Cenozoic extensional collapse of the over-thickened Cordillera and subsequent basin and range style deformation that produced an array of northwest trending grabens. Three of the seismic profiles cross the Rocky Mountain Trench; the Trench is a linear structure of regional dimension that is an expression of the extensional fragmentation of the Cordillera. Strong reflections, interpreted as sills encased within Lower Belt rocks (encountered in the Arco-Marathon 1 Paul Gibbs borehole), outline the complexly folded and faulted structure of the eastern limb of the Purcell anticlinorium. East of the Rocky Mountain Trench stratified reflections within Belt rocks clearly outline the Wigwam Thrust. Beneath the Whitefish Range, an apparent inflection in the strongly reflective basal Cambrian veneer marks the westerly increase in dip of the Rocky Mountain Basal Detachment. The dip contrast between the foreland and hinterland might be a manifestation of the tectonic loading of the Belt basin margin and the loading might have localized extension across the Rocky Mountain Trench.
40Ar/39Ar geochronology and petrogenesis of the Table Mountain Shoshonite, Golden, Colorado, U.S.A.
Millikin, Alexie E. G.; Morgan, Leah; Noblett, Jeffery
2018-01-01
The Upper Cretaceous and Lower Paleogene Table Mountain Shoshonite lava flows and their proposed source, the Ralston Buttes intrusions, provide insight into the volcanic history of the Colorado Front Range. This study affirms the long-held hypothesis linking the extrusive Table Mountain lava flows and their intrusive equivalents at Ralston Buttes through major- and trace- element geochemistry. Systematic 40Ar/39Ar geochronology from all flows and intrusive units refines the eruptive history, improves precision on previously reported ages, and provides tighter constraints on the position of the K-Pg boundary in this location. Four flows are recognized on North and South Table mountains outside of Golden, Colorado. Flow 1 (66.5 ± 0.3 Ma, all ages reported with 2σ uncertainty) is the oldest, most compositionally distinct flow and is separated from younger flows by approximately 35 m of sedimentary deposits of the Denver Formation. Stratigraphically adjacent flows 2 (65.8 ± 0.2 Ma), 3 (65.5 ± 0.3 Ma), and 4 (65.9 ± 0.3 Ma) are compositionally indistinguishable. Lavas (referred to here as unit 5) that form three cone-shaped structures (shown by this study to be volcanic vents of a new unit 5) on top of North Table Mountain are compositionally similar to other units, but yield an age almost 20 m.y. younger (46.94 ± 0.15 Ma). Geochemistry and geochronology suggest that the rim phase of the Ralston plug (65.4 ± 0.2 Ma) is a reasonable source for flows 2, 3, and 4. All units are shoshonites—potassic basalts containing plagioclase, augite, olivine, and magnetite phenocrysts—and plot in the continental-arc field in tectonic discrimination diagrams. A continental-arc setting coupled with Late Cretaceous to early Paleogene ages suggest the high-K magmatism is associated with Laramide tectonism.
NASA Technical Reports Server (NTRS)
2002-01-01
The Anti-Atlas Mountains of northern Africa and the nearby Atlas mountains were created by the prolonged collision of the African and Eurasian tectonic plates, beginning about 80 million years ago. Massive sandstone and limestone layers have been crumpled and uplifted more than 4,000 meters in the High Atlas and to lower elevations in the Anti-Atlas. Between more continuous major fold structures, such as the Jbel Ouarkziz in the southwestern Anti-Atlas, tighter secondary folds (arrow) have developed. Earlier, the supercontinent of Pangea rifted apart to form precursors to the Mediterranean and the Atlantic Ocean (Beauchamp and others, 1996). In those seas sands, clays, limey sediments, and evaporite layers (gypsum, rock salt) were deposited. Later, during the mountain-building plate collision, the gypsum layers flowed under the pressure and provided a slippery surface on which overlying rigid rocks could glide (Burkhard, 2001). The broad, open style of folds seen in this view is common where evaporites are involved in the deformation. Other examples can be found in the Southern Zagros of Iran and the Sierra Madre Oriental of Mexico. Information Sources: Beauchamp, W., Barazangi, M., Demnati, A., and El Alji, M., 1996, Intracontinental rifting and inversion: Missour Basin and Atlas Mountains, Morocco: Tulsa, American Association of Petroleum Geologists Bulletin, v. 80, No. 9, p. 1459-1482. Burkhard, Martin, 2001, Tectonics of the Anti-Atlas of Morocco -- Thin-skin/thick-skin relationships in an atypical foreland fold belt. University of Neuchatel, Switzerland: http://www-geol.unine.ch/Structural/Antiatlas.html (accessed 1/29/02). STS108-711-25 was taken in December, 2001 by the crew of Space Shuttle mission 108 using a Hasselblad camera with 250-mm lens. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
NASA Astrophysics Data System (ADS)
Pavano, F.; Catalano, S.; Romagnoli, G.; Tortorici, G.
2018-03-01
Tectonic forcing causes the relief-building of mountain chains and enforces the surficial processes in a persistent dismantling of rock volumes, continuously modelling Earth's surface. Actually, we observe transient landscapes that have temporarily recorded tectonic forcing as a codified signal. The Late Quaternary tectonic evolution of northeastern Sicily, located along the Nubia-Eurasia plate boundary at the southern termination of the Calabrian arc, has been dominated by intense Plio-Pleistocene dynamics that severely modified the Late Miocene landscape. The present work aims to investigate geomorphically northeastern Sicily, essentially focusing on the hypsometric and relief analyses of the region in order to define how the topography responds to the post-Pliocene tectonic deformation. We apply different relief morphometric indices (Hypsometric Integral, Topographic Relief and Topographic Dissection) measured for each differently sized moving window, and we use different swath topographic profiles as well. Our analysis evidences differential morphological responses between distinct morphotectonic domains of the studied area, led by the combination of earlier morphological background and Late Quaternary tectonic deformation stages of the region. In addition, in the context of a constant and uniform tectonic uplift, the results define the general space- and time-relating pathways of the landscape geomorphic metrics. This enables us to bring out the controls of the vertical scale of landscape on hypsometry, exploring their mutual relationships. Finally, we reconstruct the Late Quaternary morphotectonic evolution of the region, defining the role played by the main tectonic alignments on the present geomorphic setting.
Preliminary Geologic Map of the White Sulphur Springs 30' x 60' Quadrangle, Montana
Reynolds, Mitchell W.; Brandt, Theodore R.
2006-01-01
The geologic map of the White Sulphur Springs quadrangle, scale 1:100,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of the geologically complex area in west-central Montana. The quadrangle encompasses about 4,235 km2 (1,635 mi2), across part of the Smith River basin, the west end of the Little Belt Mountains, the Castle Mountains, and the upper parts of the basins of the North Forks of the Smith and Musselshell Rivers and the Judith River. Geologically the quadrangle extends across the eastern part of the Helena structural salient in the Rocky Mountain thrust belt, a segment of the Lewis and Clark tectonic zone, west end of the ancestral central Montana uplift, and the southwest edge of the Judith basin. Rocks and sediments in the White Sulphur Springs quadrangle are assigned to 88 map units on the basis of rock or sediment type and age. The oldest rock exposed is Neoarchean diorite that is infolded with Paleoproterozoic metamorphic rocks including gneiss, diorite, granite, amphibolite, schist, and mixed metamorphic rock types. A thick succession of the Mesoproterozoic Belt Supergroup unconformably overlies the metamorphic rocks and, in turn, is overlain unconformably by Phanerozoic sedimentary and volcanic rocks. Across most of the quadrangle, the pre-Tertiary stratigraphic succession is intruded by Eocene dikes, sills, and plutons. The central part of the Little Belt Mountains is generally underlain by laccoliths and sheet-like bodies of quartz monzonite or dacite. Oligocene andesitic basalt flows in the western and southern part of the quadrangle document both the configuration of the late Eocene erosional surfaces and the extent of extensional faulting younger than early Oligocene in the area. Pliocene, Miocene, and Oligocene strata, mapped as 11 units, consist generally of interbedded sand, gravel, and tuffaceous sedimentary rock. Quaternary and Quaternary-Tertiary sediments rest across the older Cenozoic deposits and across all older rocks. The Quaternary and Quaternary-Tertiary deposits generally are gravels that mantle broad erosional surfaces on the flanks of the mountains, gravels in stream channels, and colluvium and landslide deposits on hill sides. Glacial deposits, representing at least two stages of glaciation, are present in the northern part of the Little Belt Mountains. The geologic structure of much of the northwest part of the quadrangle is a broad uplift, in the core of which the Paleoproterozoic and Neoarchean metamorphic rocks are exposed. Down plunge to the east, the succession of Phanerozoic sedimentary rocks define an east-trending arch, cored locally by Mesoproterozoic strata of the Belt Supergroup. The north flank of the arch dips steeply north as a monocline. Stratigraphic relations among Mississippian, Pennsylvanian, and Jurassic strata document the recurrent uplift and erosion on that north flank. The broader arch of the Little Belt Mountains reflects the west plunge of the ancestral Central Montana uplift. The eastern extension of the Lewis and Clark tectonic zone is exposed in the southern half of the quadrangle where the Volcano Valley fault zone curves from west to southeast as a reverse fault along which the latest movement is up on the south side. The fault zone ends in an anticline in the south-central margin of the quadrangle. Stratigraphic overlap of Phanerozoic strata over the truncated edges of Mesoproterozoic units documents that the area of the eastern terminus of the fault zone was tectonically recurrently active. Northeast trending strike-slip faults displace Mesoproterozoic rocks in the northwest and south-central parts of the quadrangle. Several of those faults are overlain unconformably by the Middle Cambrian Flathead Sandstone. Other north-east and west-trending faults across the central part of the quadrangle are intruded by middle Eocene plutons. You
Adams, K.E.; Mull, C.G.; Crowder, R.K.
1997-01-01
Two opposing tectonic models have been offered to explain the regional structural relations in the north central Brooks Range fold-thrust belt of northern Alaska. The first suggests that rocks of the northern Endicott Mountains were thrust from south to north over the area of the present Mount Doonerak high and are therefore highly allochthonous. The second implies that the rocks of the northern Endicott Mountains were deposited in a basin that lay north of the Mount Doonerak high and later were thrust a short distance southward onto the northern flank of the high and are thus parautochthonous. To provide stratigraphic constraints for these models, this study examines Permian facies of the north central Brooks Range. Permian rocks in the north central Brooks Range comprise a thin (40 to 160 m thick), fining-upward succession of clastic, storm-influenced shelf deposits. When the rocks of the northern Endicott Mountains are restored south of the Mount Doonerak area, a minimum distance of 80 km, the Permian deposits grade systematically from distal facies (Siksikpuk Formation) in the southwest to proximal facies (Echooka Formation) in the northeast. Facies trends in the reconstructed Permian basin include, from southwest to northeast, (1) an increase in carbonate content and corresponding decrease in silica content, (2) a general darkening and thickening of shaley intervals, (3) an increase in proximal features of storm beds, including coarser, thicker, more abundant, and more closely spaced beds, and (4) an increase in abundance and diversity of the faunal assemblage with a corresponding decrease in age. These stratigraphic relations imply that rocks of the northern Endicott Mountains are allochthonous and structurally overlie a proximal stratigraphic succession similar to that exposed in the Mount Doonerak area and northeastern Brooks Range. Copyright 1997 by the American Geophysical Union.
Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains
NASA Astrophysics Data System (ADS)
Gallen, Sean F.
2018-07-01
Determining factors that modify Earth's topography is essential for understanding continental mass and nutrient fluxes, and the evolution and diversity of species. Contrary to the paradigm of slow, steady topographic decay after orogenesis ceases, nearly all ancient mountain belts exhibit evidence of unsteady landscape evolution at large spatial scales. External forcing from uplift from dynamic mantle processes or climate change is commonly invoked to explain the unexpected dynamics of dead orogens, yet direct evidence supporting such inferences is generally lacking. Here I use quantitative analysis of fluvial topography in the southern Appalachian Mountains to show that the exhumation of rocks of variable erosional resistance exerts a fundamental, autogenic control on the evolution of post-orogenic landscapes that continually reshapes river networks. I characterize the spatial pattern of erodibility associated with individual rock-types, and use inverse modeling of river profiles to document a ∼150 m base level fall event at 9 ± 3 Ma in the Upper Tennessee drainage basin. This analysis, combined with existing geological and biological data, demonstrates that base level fall was triggered by capture of the Upper Tennessee River basin by the Lower Tennessee River basin in the Late Miocene. I demonstrate that rock-type triggered changes in river network topology gave rise to the modern Tennessee River system and enhanced erosion rates, changed sediment flux and dispersal patterns, and altered bio-evolutionary pathways in the southeastern U.S.A., a biodiversity hotspot. These findings suggest that variability observed in the stratigraphic, geomorphic, and biologic archives of tectonically quiescent regions does not require external drivers, such as geodynamic or climate forcing, as is typically the interpretation. Rather, my findings lead to a new model of inherently unsteady evolution of ancient mountain landscapes due to the geologic legacy of plate tectonics.
Ratcliffe, N.M.; Harris, A.G.; Walsh, G.J.
1999-01-01
Middle Ordovician (late Arenigian - early Caradocian) conodonts were recovered from a dolostone lens in carbonaceous schist 30 m below the base of the Pinney Hollow Formation in the Eastern Cover sequence near West Bridgewater, Vermont. These are the first reported fossils from the metamorphic cover sequence rocks east of the Green Mountain, Berkshire, and Housatonic massifs of western New England. The conodonts are recrystallized, coated with graphitic matter, thermally altered to a color alteration index (CAI) of at least 5, and tectonically deformed. The faunule is nearly monospecific, consisting of abundant Periodon aculeatus Hadding? and rare Protopanderodus. The preponderance of Periodon and the absence of warm, shallow-water species characteristic of the North American Midcontinent Conodont Province suggest a slope or basin depositional setting. The conodont-bearing carbonaceous schist is traceable 3 km southeast to the Plymouth area, where it had been designated the uppermost member of the Plymouth Formation, previously regarded as Early Cambrian in age. The age and structural position of the carbonaceous schist above dolostones of the Plymouth Formation but below the Pinney Hollow Formation (upper Proterozoic and Lower Cambrian?) suggest that this unit may be correlative or time transgressive with the Ira Formation, which underlies the Taconic allochthons in the Vermont Valley. Such a correlation supports the concept of placing the western limit of the root zone of the Taconic allochthons beneath the Pinney Hollow Formation. An approximate absolute age assignment for the conodont-bearing rock is between 470 and 454 Ma. This suggests that dynamothermal metamorphism during the Taconian orogeny on the east flank of the Green Mountains was younger than early Caradocian, which is in accord with the middle Caradocian age of the Ira Formation west of the Green Mountain massif.
Grabens on Io: Evidence for Extensional Tectonics
NASA Astrophysics Data System (ADS)
Hoogenboom, T.; Schenk, P.
2012-12-01
Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture (as also occurs extensively on neighboring Europa). The record can be confused if the features formed at different times or if the stress pattern shifts due to nonsynchronous rotation of the lithosphere (Milazzo et al., 2001). Alternatively, curvilinear or concentric extensional fractures (graben) could be related to local loading of planetary lithospheres. On Io, this could be the result of construction of volcanic edifices or global convection patterns forming localized sites of upwelling and downwelling (e.g., Tackley et al., 2001). However, constructional volcanic edifices are quite rare on Io (Schenk et al., 2004a) and convective stresses on Io are likely to be quite small (Kirchoff and McKinnon, 2009). An obvious caveat to stress analyses is the possibility of resurfacing locally erasing tectonic signatures of graben, in part or entirely. Despite resurfacing, erosional and tectonic scarps, lineaments and grabens are relatively abundant at all latitudes and longitudes on Io, given the limited global mapping. Grabens are typically not found on the younger units, suggesting that tectonic forces on Io were of greater magnitude in the past, that much of the surface is very young and has not yet undergone deformation, or that only with age do the surface materials become strong enough to deform by brittle failure rather than ductile flow (Whitford-Stark et al., 1990).
The effect of flexural isostasy on the response time of orogenic systems
NASA Astrophysics Data System (ADS)
Braun, J.; Margirier, A.; Guerit, L.
2017-12-01
The concept of orogenic steady-state implies that mountain belts can reach a dynamic balance between uplift and erosion in order to maintain a quasi-constant shape. The final morphology of the mountain will be a function of the relative efficiency between uplift and erosion and is therefore likely to be modulated by climate. However, reaching such a steady-state cannot be instantaneous and there must exist a time lag between the onset of convergence and the full development of the mountain topography. Similarly, when an orogenic system is subject to a marked change in convergence rate or in climatic conditions, it takes a certain time for it to adapt to such a change and develop a new steady-state morphology. It is during these transient phases that the nature and efficiency of the interactions between tectonics and climate are most likely to be constrained by observations and understood. The duration of this transient stage remains, however, poorly constrained and understood. As shown by many authors (Whipple and Tucker, 1999, for example) the rate at which tectonic systems evolve to reach steady-state is likely controlled by climate and rock strength, which both determine the efficiency of erosional processes, and the rate of uplift. Here we show that isostasy also plays a very important role in determining the length of the transient phase and that, depending on the level of isostatic adjustment, which in turn depends on the flexural strength of the underlying lithosphere, isostasy can change the time it takes for an orogenic system to reach steady-state by an order of magnitude, i.,e. from a few millions to a few tens of millions of years. This has very important implications. It may explain why many young orogenic systems display an increase in uplift and erosion rate millions of years after the onset of collision and that, in these situations, such an increase does not require a steady change in tectonic and/or climate conditions/forcing. We also show that this "isostatic buffering" of orogenic response to abrupt changes in tectonic or climatic perturbations can not only lengthen the duration of the transient period, but also dampen the amplitude of the resulting erosional flux. This makes it sometimes difficult to extract the signature of these events from the sedimentary record.
Day, Warren C.; Gamble, Bruce M.; Henning, Mitchell W.; Smith, Bruce D.
2000-01-01
The Fortymile River area lies within the Yukon-Tanana lithotectonic terrane of east-central Alaska. This terrane is a mosaic of several lithotectonic assemblages, each with a coherent lithologic, metamorphic, and deformational history. Previous workers have shown that the Fortymile River area is underlain by rocks of the Seventymile, Taylor Mountain, and Nisutlin assemblages. The Taylor Mountain tectonostratigraphic assemblage is the most widespread within study area and is made up of amphibolite-grade Paleozoic(?) metamorphosed supracrustal rocks that have been intruded by plutonic rocks. The protoliths for the supracrustal rocks include mafic volcanic(?) rocks, graywacke, sulfide-rich siliciclastic sediments, quartz-rich sandstone, pelite, and marble, all of which are cut by late sulfide-bearing quartz veins. The mafic metavolcanic(?) rocks are of both tholeiitic and calc-alkalic affinity and have distinctly different rare-earth-element abundances. The supracrustal rocks are interpreted to have been deposited on a continental margin and (or) distal to an island-arc complex in a back-arc basin.The Steele Creek Dome Tonalite is defined herein as a composite body of foliated biotite-hornblende tonalitic orthogneiss containing country-rock rafts of paragneiss. The complex lies within the Taylor Mountain assemblage and has been tectonized and presumably recrystallized during regional Early Jurassic ductile deformation. The tonalite is compositionally similar to other volcanic-arc granites. The entire sequence was intruded by a Early Jurassic(?) hornblende monzodioritediorite-quartz diorite suite.The area has been subjected to at least three phases of deformation. The first (D1) produced a strong regional S1 schistosity and local mineral lineations. The second (D2) deformation generated tight to isoclinal F2 folds, folding the S1 schistosity and L1 mineral lineations, and was accompanied by a weak axial-planar S2 cleavage and both L2 mineral and stretching lineations. The question remains if the D1 and D2 tectonic fabrics either (1) record end members of a continuous, relatively long lived, progressive ductile deformation associated with the peak regional metamorphism and northward-directed thrusting; or (2) were separate and distinct pulses of tectonism. The youngest deformation recognized (D3) folded the ductile fabric elements about south-plunging, east-vergent, open folds and records east-west-directed tectonic shortening.
NASA Technical Reports Server (NTRS)
Young, R. A.; Mckee, E. H.; Hartman, J. H.; Simmons, A. M.
1985-01-01
The overall temporal and spatial relations between middle Tertiary volcanism and tectonism from the Basin and Range province onto the edge of the Colorado Plateaus province suggest that a single magnetic-tectonic episode affected the entire region more or less simultaneously during this period. The episode followed a post-Laramide (late Eocene through Oligocene) period of 25 million years of relative stability. Middle Tertiary volcanism did not migrate gradually eastward in a simple fashion onto the Colorado Plateau. In fact, late Oligocene volcanism appears to be more voluminous near the Aquarius Mountains than throughout the adjacent Basin and Range province westward to the Colorado River. Any model proposed to explain the cause of extension and detachment faulting in the eastern part of the Basin and Range province must consider that the onset of volcanism appears to have been approximately synchronous from the Colorado River region of the Basin and Range across the transition zone and onto the edge of the Colorado Plateaus.
NASA Astrophysics Data System (ADS)
Heinlein, S. N.; Pavlis, T. L.; Bruhn, R. L.; McCalpin, J. P.
2017-12-01
This study evaluates a surface structure using 3D visualization of LiDAR and aerial photography then analyzes these datasets using structure mapping techniques. Results provide new insight into the role of tectonics versus gravitational deformation. The study area is located in southern Alaska in the western edge of the St. Elias Orogen where the Yakutat microplate is colliding into Alaska. Computer applications were used to produce 3D terrain models to create a kinematic assessment of the Ragged Mountain fault which trends along the length of the east flank of Ragged Mountain. The area contains geomorphic and structural features which are utilize to determine the type of displacement on the fault. Previous studies described the Ragged Mountain fault as a very shallow (8°), west-dipping thrust fault that reactivated in the Late Holocene by westward-directed gravity sliding and inferred at least 180 m of normal slip, in a direction opposite to the (relative) eastward thrust transport of the structure inferred from stratigraphic juxtaposition. More recently this gravity sliding hypothesis has been questioned and this study evaluates one of these alternative hypotheses; that uphill facing normal fault-scarps along the Ragged Mountain fault trace represent extension above a buried ramp in a thrust and is evaluated with a fault-parallel flow model of hanging-wall folding and extension. Profiles across the scarp trace were used to illustrate the curvature of the topographic surfaces adjacent to the scarps system and evaluate their origin. This simple kinematic model tests the hypothesis that extensional fault scarps at the surface are produced by flexure above a deeper ramp in a largely blind thrust system. The data in the context of this model implies that the extensional scarp structures previously examined represent a combination of erosionally modified features overprinted by flexural extension above a thrust system. Analyses of scarp heights along the structure are combined with the model to suggest a decrease in Holocene slip from south to north along the Ragged Mountain fault from 11.3 m to 0.2 m, respectively.
NASA Astrophysics Data System (ADS)
Reeder, J.; Metzger, E. P.; Bickford, M. E.; Leech, M. L.
2016-12-01
Sillimanite-rich felsic migmatites exposed at Ledge Mountain in the Central Adirondack Highlands (AH) represent the only location in the AH where kyanite is found. The texturally young kyanite is overprinted on sillimanite in largely undeformed pegmatitic leucosomes, suggesting a late episode of melting taking place deeper than previously thought, and requiring a counter-clockwise P-T path. A final phase of anatexis ca. 1050 Ma in the Eastern AH is consistent with an influx of fluid or decompression from extension in sillimanite-bearing migmatites. Temperatures both from this study and previous work are consistent with granulite-facies metamorphism; however, the presence of kyanite requires higher pressure conditions corresponding to deeper burial of rocks exposed in the central Adirondacks. The Adirondacks are associated with the Grenville Province of eastern North America, that formed during four orogenic events. The most recent (Grenville) orogeny consisted of two stages: crustal thickening and granulite facies metamorphism during the Ottawan phase (ca 1090-1020) then metamorphism and melting in the kyanite field during the much shorter Rigolet pulse (ca 1005-980 Ma). Preliminary U-Pb SHRIMP zircon ages from Ledge Mountain kyanite-bearing migmatites suggest that melting in the Central AH persisted into the Rigolet phase. On the basis of mineral composition and chemistry and the presence of distinctive quartz-sillimanite nodules, the Ledge Mountain migmatites closely resemble the K-rich phase of the Ottawan-age Lyon Mountain granite (LMG) and may represent LMG that was metamorphosed to sillimanite grade and then overprinted by a higher pressure, lower temperature assemblage. Kyanite-bearing felsic anatectites of Rigolet age have previously been observed only in the western portion of the Grenville Province. Documentation of a counterclockwise P-T path and post-Ottawan melting in the Ledge Mountain migmatites requires re-evaluation of current tectonic models for the Grenville Province and its Adirondacks outlier. Further analysis of age, geochemical, and petrographic data will help develop a better-defined P-T-t path and may lead to the development of a new tectonic model to be compared with other collisional orogens such as Himalaya or the Bohemian Massif of the Variscan orogenic belt.
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Bozzo, E.
1999-11-01
Aeromagnetic images covering a sector of the Transantarctic Mountains in Victoria Land as well as the adjacent Ross Sea are used to study possible relationships between tectonic blocks along the Cenozoic and Mesozoic West Antarctic rift shoulder and prerift features inherited mainly from the Paleozoic terranes involved in the Ross Orogen. The segmentation between the Prince Albert Mountains block and the Deep Freeze Range-Terra Nova Bay region is related to an inherited NW to NNW ice-covered boundary, which we name the "central Victoria Land boundary." It is interpreted to be the unexposed, southern continuation of the Ross age back arc Exiles thrust system recognized at the Pacific coast. The regional magnetic high to the west of the central Victoria Land boundary is attributed to Ross age calc-alkaline back arc intrusives forming the in-board Wilson "Terrane," thus shifting the previously interpreted Precambrian "shield" at least 100 km farther to the west. The high-frequency anomalies of the Prince Albert Mountains and beneath the Polar Plateau show that this region was extensively effected by Jurassic tholeiitic magmatism; NE to NNE trending magnetic lineations within this pattern could reflect Cretaceous and/or Cenozoic faulting. The western and eastern edges of the Deep Freeze Range block, which flanks the Mesozoic Rennick Graben, are marked by two NW magnetic lineaments following the Priestley and Campbell Faults. The Campbell Fault is interpreted to be the reactivated Wilson thrust fault zone and is the site of a major isotopic discontinuity in the basement. To the east of the Campbell Fault, much higher amplitude magnetic anomalies reveal mafic-ultramafic intrusives associated with the alkaline Meander Intrusive Group (Eocene-Miocene). These intrusives are likely genetically linked to the highly uplifted Southern Cross Mountains block. The NW-SE trends crossing the previously recognized ENE trending Polar 3 Anomaly offshore of the Southern Cross Mountains are probably linked to Cenozoic reactivation of the Paleozoic Wilson-Bowers suture zone as proposed from recent seismic interpretations. The ENE trend of the anomaly may also be structural, and if so, it could reflect an inherited fault zone of the cratonal margin.
NASA Astrophysics Data System (ADS)
Dalati, M.
The main disaster concern in Syria is the Earthquakes since that Northwest of Syria is part of one of the very active deformation belt on the Earth today This area and the western part of Syria are located along the great rift Afro-Arabian rift System Those areas are tectonically active and cause time to time a lot of seismically events This faulting zone system represent a unique structural feature in the Mediterranean Region The system formed initially as a result of the break up of the Arabian plate from the African plate since the mid-Cenozoic The other disaster concern in Syria is Landslides whom caused significant damaging in Syria during the last decades especially in the Northwestern and Southwestern regions Landslide disasters killed some people and destroyed many mud and cement houses coastal mountains and cut off some roads few years ago It is known that many of the earthquakes and landslides that ever happened on our planet are located in active faults zones So it is of most important to obtain detailed information on regional tectonic structures The main approach of active faults survey at present is to use geological and geophysical methods such as in-situ measuring drilling and analysis of gravity and magnetic fields However because of the magnitude of the work there are still many uncertainties that we cannot figure out by traditional approaches Remote sensing has been brought forward for many years and has applications in many hazard
Demyanick, Elizabeth; Wilson, Terry J.
2007-01-01
Extensional forces within the Antarctic Plate have produced the Transantarctic Mountains rift-flank uplift along the West Antarctic rift margin. Large-scale linear morphologic features within the mountains are controlled by bedrock structure and can be recognized and mapped from satellite imagery and digital elevation models (DEMs). This study employed the Antarctic Digital Database DEM to obtain slope steepness and aspect maps of the Transantarctic Mountains (TAM) between the Royal Society Range and the Churchill Mountains, allowing definition of the position and orientation of the morphological axis of the rift-flank. The TAM axis, interpreted as a fault-controlled escarpment formed by coast-parallel retreat, provides a marker for the orientation of the faulted boundary between the TAM and the rift system. Changes in position and orientation of the TAM axis suggests the rift flank is segmented into tectonic blocks bounded by relay ramps and transverse accommodation zones. The transverse boundaries coincide with major outlet glaciers, supporting interpretation of rift structures between them. The pronounced morphological change across Byrd Glacier points to control by structures inherited from the Ross orogen.
Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.
Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song
2018-01-23
The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.
NASA Astrophysics Data System (ADS)
Wenger, Erik; Büchner, Jörg; Tietz, Olaf; Mrlina, Jan
2017-09-01
The Tertiary Lausitz Volcanic Field covers a broad area encompassing parts of Eastern Saxony (Germany), Lower Silesia (Poland) and North Bohemia (Czech Republic). Volcanism was predominantly controlled by the volcano-tectonic evolution of the Ohře Rift and culminated in the Lower Oligocene. This paper deals with the highest volcano of this area, the Lausche Hill (792.6 m a.s.l.) situated in the Lausitz Mountains. We offer a reconstruction of the volcanic edifice and its eruptive history. Its complex genesis is reflected by six different eruption styles and an associated petrographic variety. Furthermore, the Lausche Volcano provides valuable information concerning the morphological evolution of its broader environs. The remnant of an alluvial fan marking a Middle Paleocene-Lower Eocene (62-50 Ma) palaeo-surface is preserved at the base of the volcano. The deposition of this fan can be attributed to a period of erosion of its nearby source area, the Lausitz Block that has undergone intermittent uplift at the Lausitz Overthrust since the Upper Cretaceous. The Lausche Hill is one of at least six volcanoes in the Lausitz Mountains which show an eminent low level of erosion despite their Oligocene age and position on elevated terrain. These volcanoes are exposed in their superficial level which clearly contradicts their former interpretation as subvolcanoes. Among further indications, this implies that the final morphotectonic uplift of the Lausitz Mountains started in the upper Lower Pleistocene ( 1.3 Ma) due to revived subsidence of the nearby Zittau Basin. It is likely that this neotectonic activity culminated between the Elsterian and Saalian Glaciation ( 320 ka). The formation of the low mountain range was substantially controlled by the intersection of the Lausitz Overthrust and the Ohře Rift.
Styles of deformation in Ishtar Terra and their implications
NASA Astrophysics Data System (ADS)
Kaula, William M.; Bindschadler, Duane L.; Grimm, Robert E.; Hansen, Vicki L.; Roberts, Kari M.; Smrekar, Suzanne E.
1992-10-01
Styles of deformation in Ishtar Terra are examined on the basis of imaging by the Magellan radar between the start of the mission and the start of the first superior conjunction hiatus. Ishtar Terra appears to have characteristics of both plume uplifts and convergent belts, and exhibits a great variety of tectonic and volcanic activity, with large variations within distances of only a few hundred kilometers. The most prominent terrain types are the volcanic plains of Lakshmi and the mountain belts of Maxwell, Freyja, and Danu. Ishtar demonstrates three general properties of Venus. Erosional degradation is absent, leading to the preservation of patterns resulting from past activity. Many surface features are the responses of a competent layer less than 10 km thick to flows of 100 km or broader scale. These broader scale flows are controlled mainly by heterogeneities in the mantle.
Styles of deformation in Ishtar Terra and their implications
NASA Technical Reports Server (NTRS)
Kaula, William M.; Bindschadler, Duane L.; Grimm, Robert E.; Hansen, Vicki L.; Roberts, Kari M.; Smrekar, Suzanne E.
1992-01-01
Styles of deformation in Ishtar Terra are examined on the basis of imaging by the Magellan radar between the start of the mission and the start of the first superior conjunction hiatus. Ishtar Terra appears to have characteristics of both plume uplifts and convergent belts, and exhibits a great variety of tectonic and volcanic activity, with large variations within distances of only a few hundred kilometers. The most prominent terrain types are the volcanic plains of Lakshmi and the mountain belts of Maxwell, Freyja, and Danu. Ishtar demonstrates three general properties of Venus. Erosional degradation is absent, leading to the preservation of patterns resulting from past activity. Many surface features are the responses of a competent layer less than 10 km thick to flows of 100 km or broader scale. These broader scale flows are controlled mainly by heterogeneities in the mantle.
NASA Astrophysics Data System (ADS)
Torres, Mark A.; West, A. Joshua; Clark, Kathryn E.; Paris, Guillaume; Bouchez, Julien; Ponton, Camilo; Feakins, Sarah J.; Galy, Valier; Adkins, Jess F.
2016-09-01
The correlation between chemical weathering fluxes and denudation rates suggests that tectonic activity can force variations in atmospheric pCO2 by modulating weathering fluxes. However, the effect of weathering on pCO2 is not solely determined by the total mass flux. Instead, the effect of weathering on pCO2 also depends upon the balance between 1) alkalinity generation by carbonate and silicate mineral dissolution and 2) sulfuric acid generation by the oxidation of sulfide minerals. In this study, we explore how the balance between acid and alkalinity generation varies with tectonic uplift to better understand the links between tectonics and the long-term carbon cycle. To trace weathering reactions across the transition from the Peruvian Andes to the Amazonian foreland basin, we measured a suite of elemental concentrations (Na, K, Ca, Mg, Sr, Si, Li, SO4, and Cl) and isotopic ratios (87Sr/86Sr and δ34S) on both dissolved and solid phase samples. Using an inverse model, we quantitatively link systematic changes in solute geochemistry with elevation to downstream declines in sulfuric acid weathering as well as the proportion of cations sourced from silicates. With a new carbonate-system framework, we show that weathering in the Andes Mountains is a CO2 source whereas foreland weathering is a CO2 sink. These results are consistent with the theoretical expectation that the ratio of sulfide oxidation to silicate weathering increases with increasing erosion. Altogether, our results suggest that the effect of tectonically-enhanced weathering on atmospheric pCO2 is strongly modulated by sulfide mineral oxidation.
Maja Jurc
2003-01-01
Ecological conditions in Slovenia are very complex and heterogeneous due to the influence and interaction among the various climatic, tectonic, edaphic, orographic, lithologic - transitional (ecotonic) regions. Slovenia is a meeting-point of the Alps, the Mediterranean, the Dinaric Mountain Region and the Pannonian Lowland. This complexity of ecological factors has...
NASA Astrophysics Data System (ADS)
Li, W.; Shi, Y.; Zhang, H.; Cheng, H.
2017-12-01
The Hexi Corridor, located between the Alax block and the Caledon fold belt in the North Qilian Mountains, is the forefront area of northward thrust of the Tibet Plateau. Most notably, this active tectonic region consists of a series of faults and western-northwest trending Cenozoic basins. Therefore, it's a pivotal part in terms of recording tectonic pattern of the Tibet Plateau and also demonstrating the northward growth of Tibetan Plateau. In order to explain the mechanism of formation and evolution of the paired basins in the Hexi Corridor and based on the visco-elasticity-plasticity constitutive relation, we construct a 3-D finite element numerical model, including the Altun Tagh fault zone, the northern Qilian Shan-Hexi corridor faults system and the Haiyuan fault zone in northeast of the Tibet Plateau.The boundary conditions are constrained by GPS observations and fault slip rate provided by field geology, with steady rate of deformation of north-south compression and lateral shear along the approximately east-west strike fault zones.In our numerical model, different blocks are given different mechanical features and major fault zones are assumed mechanical weak zones. The long-term (5Ma) accumulation of lithospheric stress, displacement and fault dislocation of the Hexi Corridor and its adjacent regions are calculated in different models for comparison. Meanwhile, we analyze analyzed how the crustal heterogeneity affecting the tectonic deformations in this region. Comparisons between the numerical results and the geological observations indicate that under compression-shear boundary conditions, heterogeneous blocks of various scales may lead to the development of en echelon faults and basins in the Hexi corridor. And the ectonic deformation of Alax and the North Qilian Mountains are almost simultaneous, which may be earlier than the initiation of en echelon basins in the Hexi Corridor and the faults between the en echelon basins. Calculated horizontal and vertical deformation rate are in agreement with geological data. The calculation of deformation process is helpful for understanding the geological evolution history of the northeastwards growth of the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Armadillo, E.; Ferraccioli, F.; Balbi, P.; Bozzo, E.
2013-12-01
Terrane bounding and intra-terrane faults of the Ross Orogen in East Antarctica are linked to several phases of Cambrian to Ordovician age subduction and accretion along the active paleo-Pacific margin of Gondwana. Here we compile and analyse new enhanced aeromagnetic anomaly images over the Northern Victoria Land (NVL) segment of the Ross Orogen and the eastern margin of the Wilkes Subglacial Basin (WSB) that help constrain the extent and structural architecture of these fault systems and enable us re-assess their tectonic evolution. Long-wavelength magnetic lows and residual Bouguer gravity highs are modelled as several-km thick inverted sedimentary basins of early Cambrian(?) age. Tectonic inversion occurred along major thrust faults during the late stages of the Ross Orogen, forming a major high-grade pop-up structure within the central Wilson Terrane, flanked by lower grade rocks. The Prince Albert Fault System can now be recongnised as being located to the west of the Exiles Thrust fault system rather than representing its southern continuation. Relatively thin sheets of mylonitic sheared granitoids and possible ultramafic lenses are associated with the late-Ross (ca 480 Ma) Exiles Thrust fault system, while significantly larger and thicker batholiths were emplaced along the Prince Albert Fault System. Recent zircon U-Pb dating over small exposures of gabbro-diorites within the Prince Albert Mountains to the south lead us to propose that this part of the magmatic arc was emplaced during an earlier phase of subduction (~520 Ma or older?), compared to the late-Ross intrusions to the east. Whether the Prince Albert Fault System was indeed a major cryptic suture in early Cambrian times (Ferraccioli et al., 2002, GRL) remains speculative, but possible. Our aeromagnetic interpretation leads us to conclude that these inherited terrane bounding and intra-terrane fault systems of the Ross Orogen exerted a key influence on Cenozoic tectonic blocks and faults of the Transantarctic Mountains, and that the eastern margin of the WSB adjacent to NVL was also strongly controlled by a complex array of major intraplate strike-slip fault systems.
NASA Astrophysics Data System (ADS)
Yang, H.; Chen, W. S.
2017-12-01
The late Cenozoic mountain belt of Taiwan, resulting from the collision between the Eurasian and Philippine Sea plates, is known for its rapid tectonic uplift. As postglacial sea level rose ca. 15,000 yr ago, the eastern coast of Taiwan, due to the rapid tectonic uplift rate, displayed a totally different scenario comparing with most of the coastal plains around the world. At the beginning of postglacial era, the sea level rising rate was greater than the tectonic uplift rate which induced the original piedmont alluvial fan or coastal plain to be overwhelmed by sea water rapidly. Around 13.5 ka, the tectonic uplift rate caught up with the sea level rising and broad wave-cut platform formed. The approximation of tectonic uplift and sea level rising rates was lasting from 13.5 to 5ka, but shoreline progradation may have been enhanced by increased slope erosion which resulted in the alluvial fan forming at the later time of this period. As soon as the eustasy stabilized, the landmass continued to uplift which might have enhanced the river incising and wave erosion rapidly. Therefore the topographic expression along the eastern fringing of Coastal Range forms extended alluvial-fan, stream, and marine terraces and are covered by late Holocene colluvium and marine deposits. 88 archaeological sites were chosen in this study based on surface survey where the archaeological chronology of cultural stage is established primarily through examining pottery series and associated manual excavation. It is interesting that most of the archaeological sites were located on the alluvial fan although the Holocene marine terraces have formed after 5ka. There are no clear evidences to support a shore-oriented settlement, but the abundant alluvial depositional structures observed from the overlaying formation reveals the stream depositional system was still active at this time. If the Neolithic people wanted to come to the "new born" coastal region for the abundant ocean resources, they have to face the flat marine terraces should be still situated in inter-tidal or shallow sub-tidal zone and the alluvial fan where river began to incise might be a better choice for habitation.
Volcanism Studies: Final Report for the Yucca Mountain Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce M. Crowe; Frank V. Perry; Greg A. Valentine
1998-12-01
This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period ofmore » a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit« less
Thermochronologic constraints on Jurassic rift flank denudation in the Thiel Mountains, Antarctica
Fitzgerald, P.G.; Baldwin, S.L.
2007-01-01
The Thiel Mountains are part of the Transantarctic Mountains (TAM) and occupy a strategic position close to the East-West Antarctic boundary. They occur in a region of relatively subdued topography distal from high topography and high relief of most of the TAM adjacent to the West Antarctic rift system. Low-temperature thermochronology on samples collected from the Reed Ridge granite on the north flank of the Thiel Mountains constrain the thermal and hence tectonic history. Apatite fission track data plus thermal models indicate cooling from ca. 165-150 Ma. In conjunction with 40Ar/39Ar K-feldspar data, the results indicate cooling was due to relatively slow erosional denudation, and not thermal relaxation following Jurassic tholeiitic magmatism. Denudation was most likely associated with the formation of the Jurassic rift system across Antarctica that marked the initial breakup of Gondwana. This is the oldest episode of denudation associated with formation of the present day TAM
Drainage Evolution during the Uplift of the Central Anatolia Plateau
NASA Astrophysics Data System (ADS)
Brocard, G. Y.; Meijers, M. J.; Willenbring, J. K.; Kaymakci, N.; Whitney, D. L.
2015-12-01
The Central Anatolian plateau formed in the past 8-6 Myrs, associated to a change in tectonic regime, from contraction to extensional escape tectonics. We have examined the response of the river drainage of Central Anatolia to the rise of the plateau uplift and to the formation of the Anatolian microplate, tracking changes in drainage organization. Anatolia experienced widespread rock uplift and erosion in the Late Oligocene, generating a narrow, steep, and quickly eroding mountain range above the future southern plateau margin. A regionally widespread marine transgression resulted from wholesale foundering of this orogen in Early Miocene time. Widespread planation surfaces overlapped by Miocene marine carbonates bevel this topography, indicating that relief had been reduced to a low elevation pedimented landscape by the end of the Middle Miocene. Plateau uplift initiated around 11 My ago in Eastern Anatolia; it was echoed in Central Anatolia by a short-lived phase of contraction and localized uplifts that predate escape tectonics and mark the beginning of the current topographic differentiation of the southern plateau margin. The through-going drainage network inherited disintegrated, and a vast zone of inward drainage formed at the location of the future plateau interior. Between 8 and 6 My, the southern plateau margin (i.e. the Tauride Mountains) emerged. δ18O analyses on lacustrine and pedogenic carbonates show that the southern plateau margin, if not the plateau interior, had experienced enough uplift by 5 My to generate a substantial rain shadow over the plateau interior. Being disconnected from the regional base level from the start, the plateau interior was able to rise without experiencing substantial dissection. It reconnected to all surrounding sediment sinks (Mediterranean Sea, Black Sea and Persian Gulf) over the past 5 My. We discuss the mechanisms that have driven this reconnection. Bottom-up processes of integration such as drainage divide retreat did not produce any major changes. Top-down processes such as lake overflow and avulsion achieved most of the re-integration. They result from more positive precipitation/evaporation balances, either due to elevation change during plateau uplift or due to tectonic fragmentation of depocenters during the development of escape tectonics.
NASA Astrophysics Data System (ADS)
Webb, Max; White, Lloyd; Jost, Benjamin
2017-04-01
New Guinea has a long, complicated history of arc magmatism. The present day shape of the island (resembling that of a bird in flight) formed as a result of oblique convergence of the Pacific and Caroline/Philippine plates with the northward moving Australian plate. This convergence resulted in multiple collisions of island arcs with continental crust, representing a modern day analogue to ancient accretionary orogens. This complex geological history has formed four major tectonic belts; accreted Palaeogene island arcs, the New Guinea Mobile Belt, the New Guinea Fold Belt and a stable platform. These tectonic belts are drawn across most of New Guinea in major review papers. However, these tectonic belts are not generally considered to extend through to New Guinea's western most peninsula (the Bird's Head). We present new field evidence, together with new U-Pb zircon geochronology and geochemical analyses from rocks collected within the Bird's Head. These document Middle to Late Miocene intermediate to felsic volcanic rocks and associated granitoid intrusives that formed along an active continental margin. These are effectively the equivalent of the Maramuni arc and Freida River Complex in eastern New Guinea. Several, broadly Eocene island arcs composed of dominantly mafic volcanic rocks are also found in the Bird's Head. These island arcs accreted along the Bird's Head sometime after their initial formation, possibly coinciding with Middle to Late Miocene active continental margin magmatism and we consider them to be equivalents of the Cyclops Mountains arc in Central New Guinea. This work demonstrates that New Guinea's east-west terranes are more extensive than previously thought. This potentially has implications for locating future ore deposits and understanding the relative position of the Bird's Head with respect to the rest of New Guinea in major plate reconstructions.
NASA Astrophysics Data System (ADS)
Marston, B. K.; Bishop, M. P.; Shroder, J. F.
2009-12-01
Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.
Studies in geophysics: Active tectonics
NASA Technical Reports Server (NTRS)
1986-01-01
Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.
NASA Astrophysics Data System (ADS)
Wu, S.; McKay, M.; Evans, K. R.
2017-12-01
Understanding the architecture of mountain belts is limited because studies are typically confined to surficial exposures with lesser amounts of subsurface data and active margins are prone to successive tectonism that obscures the rock record. In west-central Missouri, two Paleozoic meteorite impacts are exposed that contain a range of outcrop-scale structures. While the strain rate in a meteorite impact is an order of magnitude greater than that in orogeny-scale structures, the morphology and spatial relationships in these impact structures may provide insight into larger tectonic features. The entire crater could not be compared to an orogenic event because the amount of strain diffuses as distance increases from the impactor during an impacting event. The center of an impact crater could not be compared to an orogenic event because it has become too deformed. However, the crater rim and the immediate surrounding area could be used as a comparison because it has undergone the right amount of deformation to have recognizable structures. High-detail mapping and structural analyses of road cut exposures near Decaturville, MO reveals thrust fault sequences contain 1-2 m thick mixed carbonate and clastic sheets that include rollover anticlines, structural orphans, and lateral ramp features. Thrust faults dip away from the impact structure and represent gravitational collapse of the central uplift seconds after collision. Thrust sheet thickness, thrust fault spacing, ramp/flat morphology, and shortening of within these structures will be presented and assessed as an analogue for map-scale features in the Southern Appalachian fold and thrust belt. Because temperature controls rock mechanic properties, a thermal model based on thermochronology and thermobarometry for the section will also be presented and discussed in the context of orogenic thermomechanics.
New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology
Miller, E.L.; Toro, J.; Gehrels, G.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, Thomas E.; Cecile, M.P.
2006-01-01
To test existing models for the formation of the Amerasian Basin, detrital zircon suites from 12 samples of Triassic sandstone from the circum-Arctic region were dated by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS). The northern Verkhoyansk (NE Russia) has Permo-Carboniferous (265-320 Ma) and Cambro-Silurian (410-505 Ma) zircon populations derived via river systems from the active Baikal Mountain region along the southern Siberian craton. Chukotka, Wrangel Island (Russia), and the Lisburne Hills (western Alaska) also have Permo-Carboniferous (280-330 Ma) and late Precambrian-Silurian (420-580 Ma) zircons in addition to Permo-Triassic (235-265 Ma), Devonian (340-390 Ma), and late Precambrian (1000-1300 Ma) zircons. These ages suggest at least partial derivation from the Taimyr, Siberian Trap, and/ or east Urals regions of Arctic Russia. The northerly derived Ivishak Formation (Sadlerochit Mountains, Alaska) and Pat Bay Formation (Sverdrup Basin, Canada) are dominated by Cambrian-latest Precambrian (500-600 Ma) and 445-490 Ma zircons. Permo-Carboniferous and Permo-Triassic zircons are absent. The Bjorne Formation (Sverdrup Basin), derived from the south, differs from other samples studied with mostly 1130-1240 Ma and older Precambrian zircons in addition to 430-470 Ma zircons. The most popular tectonic model for the origin of the Amerasian Basin involves counterclockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic margin. The detrital zircon data suggest that the Chukotka part of the microplate originated closer to the Taimyr and Verkhoyansk, east of the Polar Urals of Russia, and not from the Canadian Arctic. Copyright 2006 by the American Geophysical Union.
Regional and local networks of horizontal control, Cerro Prieto geothermal area
Massey, B.L.
1979-01-01
The Cerro Prieto geothermal area in the Mexicali Valley 30 km southeast of Mexicali, Baja California, is probably deforming due to (1) the extraction of large volumes of steam and hot water, and (2) active tectonism. Two networks of precise horizontal control were established in Mexicali Valley by the U.S. Geological Survey in 1977 - 1978 to measure both types of movement as they occur. These networks consisted of (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from survey stations on an existing U.S. Geological Survey crustal-strain network north of the international border, and (2) a local net tied to stations in the regional net and encompassing the area of present and planned geothermal production. Survey lines in this net were selected to span areas of probable ground-surface movements in and around the geothermal area. Electronic distance measuring (EDM) instruments, operating with a modulated laser beam, were used to measure the distances between stations in both networks. The regional net was run using a highly precise long-range EDM instrument, helicopters for transportation of men and equipment to inaccessible stations on mountain peaks, and a fixed wing airplane flying along the line of sight. Precision of measurements with this complex long-range system approached 0-2 ppm of line length. The local net was measured with a medium-range EDM instrument requiring minimal ancillary equipment. Precision of measurements with this less complex system approached 3 ppm for the shorter line lengths. The detection and analysis of ground-surface movements resulting from tectonic strains or induced by geothermal fluid withdrawal is dependent on subsequent resurveys of these networks. ?? 1979.
Perspective View, San Andreas Fault
NASA Technical Reports Server (NTRS)
2000-01-01
The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: Varies in a perspective view Location: 34.70 deg. North lat., 118.57 deg. West lon. Orientation: Looking Northwest Original Data Resolution: SRTM and Landsat: 30 meters (99 feet) Date Acquired: February 16, 2000Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models
Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.
2001-01-01
During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Reinen, L. A.; Yule, J. D.
2014-12-01
Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the following summer, the same 5 enrolled in the follow-up course for Fall 2014, and one student changed her major from the social sciences in order to conduct geology senior thesis research. PCAST: http://www.whitehouse.gov/administration/eop/ostp/pcast/docsreports Reinen et al., CUR-Quarterly, 2006. Yule, Geology, 2009.
Provenance of the lower Miocene of the Gulf of Mexico from detrital zircon double dating
NASA Astrophysics Data System (ADS)
xu, J.
2013-12-01
The lower Miocene interval of the Gulf of Mexico (GOM) has recently gained increasing attention from oil and gas industry due to its hydrocarbon potential below the salt canopy. However, it has been less well studied than both the underlying Oligocene and overlying middle Miocene strata. The lower Miocene worldwide is a transitional period of tectonic, climatic, and oceanographic change. In particular, it is a period of major tectonic reorganization in the western interior of North America (Rocky Mountains), involving a shift from the Oligocene thermal phase, with abundant volcanic activity recorded in the thick Frio/Vicksburg succession of the GOM, to the Miocene Basin-Range extensional phase. Climatic conditions also changed from a relatively arid Oligocene to wetter Miocene, resulting in increased sediment yields from exhumed tectonic structures. Previous provenance studies used proportions of quartz, feldspar and lithic fragments and consideration of likely river courses through known paleogeomorphological elements. Only limited detrital zircon (DZ) U-Pb studies on Paleocene strata have been undertaken and there has been no previous U-Pb and (U-Th)/He double dating in the GOM. In this study we apply the latest analytical approaches, such as DZ U-Pb dating to gain robust source terranes ages and more fully elucidate the complex sediment provenance and dispersal history of GOM. We also employ DZ (U-Th)/He (ZHe) dating, combined with DZ U-Pb, to not only define sedimentary provenance but also the exhumation histories of detrital source regions. Samples of lower Miocene outcrop exposures in Texas and Louisiana have been collected to discriminate the varied tectonic and drainage system changes across the basin in lateral. In addition, samples from the Eocene, Oligocene and middle Miocene have been obtained to reveal vertical shift of source terranes contributions. Our initial age data show detrital zircons of lower Miocene sediments come from a wide range of source terranes including a large populations from the western interior of North America (Rocky Mountains), Grenville, Mid-Continent, and Yavapai-Mazatzal provinces, with smaller populations from the Appalachian-Ouachita, Wyoming or Superior regions. Based on U-Pb dating results, we will carry out (U-Th)/He dating on selected zircons to reveal the detailed exhumation histories of the sediment source regions. Using the dual criteria of DZ crystallization age (U-Pb) and cooling age (U-Th/He) to constrain provenance will enable us to generate rigorous reconstructions of the lower Miocene depositional systems from source terrane to deep-water sink for this key transitional period in geologic history.
NASA Astrophysics Data System (ADS)
Salgado, André Augusto Rodrigues; Rezende, Eric de Andrade; Bourlès, Didier; Braucher, Régis; da Silva, Juliana Rodrigues; Garcia, Ricardo Alexandrino
2016-04-01
This study aims to quantify the denudation dynamics of the Brazilian passive margin along a segment of the Continental Rift of Southeast Brazil. The denudation rates of 30 basins that drain both horsts of the continental rift, including the mountain ranges of the Serra do Mar (seaside horst); and the Serra da Mantiqueira (continental horst); were derived from 10Be concentrations measured in sand-sized river sediment. The mean denudation rate ranges from 9.2 m Ma-1 on the plateau of the Serra do Mar to 37.1 m Ma-1 along the oceanic escarpment of the Serra do Mar. The seaward-facing scarps of both mountain ranges exhibit mean denudation rates that are approximately 1.5 times those of the inland-facing scarps. The escarpments of the horst nearer to the ocean (Serra do Mar) exhibit higher denudation rates (mean 30.2 m Ma-1) than the escarpments of the continental horst (Serra da Mantiqueira) (mean 16.5 m Ma-1). The parameters that impact these denudation rates include the catchment relief, the slope gradient, the rock and the climate. The incongruent combination of a mountainous landscape and moderate to low 10Be-based denudation rates averaging at ∼20 m Ma-1 suggests a reduction in intraplate tectonic activity beginning in the Middle Quaternary or earlier.
Use of TOPSAR digital elevation data to determine the 3-dimensional shape of an alluvial fan
NASA Technical Reports Server (NTRS)
Farr, Tom G.
1995-01-01
Landforms in arid regions record the interplay between tectonic forces and climate. Alluvial fans are a common landform in desert regions where the rate of uplift is greater than weathering or sedimentation. Changes in uplift rate or climatic conditions can lead to isolation of the currently forming fan surface through entrenchment and construction of another fan either further from the mountain front (decreased uplift or increased runoff) or closer to the mountain front (increased uplift or decreased runoff). Thus, many alluvial fans are made up of a mosaic of fan units of different age, some older than 1 million years. For this reason, determination of the stages of fan evolution can lead to a history of uplift and runoff. In an attempt to separate the effects of tectonic (uplift) and climatic (weathering, runoff, sedimentation) processes on the shapes of alluvial fan units, a modified conic equation developed by Troeh (1965) was fitted to TOPSAR digital topographic data for the Trail Canyon alluvial fan in Death Valley, California. This allows parameters for the apex position, slope, and radial curvature to be compared with unit age.
The Neogene tectonic evolution and climatic change of the Tianshui Basin, NE Tibetan Plateau
NASA Astrophysics Data System (ADS)
Peng, T.; Li, J.; Song, C.; Zhao, Z.; Zhang, J.; Wang, X.; Hui, Z.
2013-12-01
The Tianshui Basin, located at the conjunction of NE Tibetan Plateau and Chinese Loess Plateau, has received intensive attention recently. Fine-grained Miocene sediment was identified as loess in its north part and this pushes the onset of Asian aridification into 22 Ma. However, our sedimentological, biomarker, pollen, diatom and mammalian fossils evidence propose that these sediments were suggested to be mudflat/distal fan and floodplain deposit instead of eolian deposit. So detailed tectonic background and climate reconstruction may illustrate the controversy and shed light on the tectonic, climate and ecology interactions. Here we report our integrated studies on the tectonic evolution, climate change and paleoecology reconstruction in the Tianshui basin. Based on the magnetostratigraphy and fossil mammal ages, sedimentological and detrital fission-track thermochronologic (DFT) analysis reveals four episodic tectonic uplift events occurred at ~20 Ma, ~14 Ma, ~9.2-7.4 Ma and ~3.6 Ma along the basin and its adjacent mountains. The timing of these activities at Western Qinling have been documented at many segments of the Tibetan Plateau, so most likely they were the remote response to the ongoing India-Asia collision. Pollen, mammalian fossils and biomarker data permit us to illustrate the paleoenvironment in the Tianshui Basin. During the period of ~17-10 Ma, the climate was generally warm-humid revealed by the broad-leaved forest and low Average Chain Length (ACL) values, when the Paltybelodon and Gomphotherium were roaming near an extensive aquatic setting. In addition, the observed Middle Miocene Climatic Optimum and Middle Miocene Climatic Transition events may be a terrestrial response to global climate changes. During the interval of ~10-6 Ma, the climate was relatively arid characterized by the rapid development of steppe and appearance of the Hipparion fauna, consistent with the biomarker proxy. Although the NE Tibetan Plateau experienced a phase of active uplift around ~8 Ma, we mainly ascribe this arid interval to global change known as the C4 grass expansion, because the subsequent early Pliocene turned back to humid-warm climate again. Since ~4 Ma, it became obviously drier than the previous two arid intervals via the biomarker perspective. This dramatic dry trend may be related to the Tibetan Plateau uplift and/or global cooling, highlighting the importance and complexity of tectonic-climate interaction. Acknowledgements: This work was co-supported by the "Strategic Priority Research Program" of the CAS (XDB03020402), the (973) National Basic Research Program of China (2013CB956400) and the National Natural Science Foundation of China (41021091, 41101012).
The many impacts of building mountain belts on plate tectonics and mantle flow
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent
2015-04-01
During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Such an increase of stresses in the lithosphere can impact on plate tectonics and mantle dynamics. We show that mountain belts at plate boundaries increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, this changes the dynamic and kinematic surface conditions of the underlying flowing mantle. Ultimately, this modifies the pattern of mantle flow. This forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among these, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, or the initiation of subduction, the onset of obduction, for the lithosphere. In the mantle, such change in boundary condition redesigns the pattern of mantle flow and, consequently, the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere rests. Our results show that when collision occurs, the mantle flow is highly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) to a modification of the convection style. In turn, the transition between a 'free' convection (mobile lid) and an 'upset' convection (stagnant -or sluggish- lid) highly impacts the dynamics of the lithosphere at the surface of the Earth. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, a fact that may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.
Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal
NASA Astrophysics Data System (ADS)
Lara, Luis E.; Cordova, Loreto
2017-04-01
Southern Andes are a young and active mountain belt where volcanism and tectonic processes (and those related to the hydrometeorological conditions controlled by this geological setting) pose a significant threat to the growing communities nearby. This proposal focus on a ca. 200 km long segment of the Southern Andes where 9 stratovolcanoes and 2 distributed volcanic fields are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Faul System (LOFS), a long-lived active strike-slip fault running for 1200 km. Volcanoes in this area take part of the central province of the Andean Southern Volcanic Zone (37-41°S), particularly the northermost portion that is limited at the south by an Andean tranverse fault (Lanalhue Fault, which define the Villarrica-Lanin volcanic chain) and run along the horse-tail array of the LOFS to the north. Most of the stravolcanoes are atop of the LOFS main branch with only 3 exceptions (Callaqui, Tolhuaca and Lanín) 15-20 km away, but related to transverse faults. Hazards in the segment derive from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting weak activity (e.g., Copahue) or some volcanoes with low frequency but high magnitude eruptions in the geological record. Only since the beggining of the 20th century 80 eruptions have been recorded in this area. In addition, activity of the LOFS has been detected prior to some eruptions and coeval with some others (e.g., Lonquimay 1989). A strong two-way coupling between tectonics and volcanism has been proposed for the segment but only recently detected by geophysical techniques or numerical modelling. Tectonic triggered landslides are frequent in this region together with debris flows at erupting ice-covered volcanoes or stream headed at high altitude basins. The latter scenario seems to be worst at present because of global climate change. Ground-based monitoring networks for both volcanism (the so-called Red Nacional de Vigilancia Volcánica at Sernageomin) and tectonics (Centro Sismólogico Nacional at Universidad de Chile) allow a good complement with space-borne data (e.g., we observed deformation by GPS and InSAR at Villarrica volcano related to the March 3, 2015 eruption) in order to promote basic and applied research for a successful national strategy of disaster risk reduction. In addition, at least 3 active national research grants focus in this area and a number of young scientists are working there. Thus, we propose the Copahue-Lanín (37.5-39.5°S) segment of the Southern Volcanic Zone as a Geohazards Supersite and look forward for an enhanced engagement of the scientific community in this area.
Paleosoils in the loess deposits of eastern Uzbekistan
NASA Astrophysics Data System (ADS)
Abdunazarov, U. K.; Stelmakh, A. G.
2010-12-01
Loess deposits of the eastern Uzbekistan are difficult to study the stratigraphy of the object. Clarification of the relationship of age and genetic features of the considered entities by traditional methods is difficult due to scarcity of remnants of the fauna and flora, the active Quaternary tectonics, the homogeneity of the rocks, especially the formation of loess sequences, specific conditions of geological and tectonic development, etc. In this regard, particularly relevant is the study of loess deposits by paleosoils subdivision and correlation. Paleosoils, which are present in the sections of loess sequences, distinct from loess-like loams, dividing them among themselves. Color these paleosoils noticeable brownish or brown, while the loess is a powdery mildew gray rock. Typically, the general scheme of occurrence of loess cover is linked with levels of relief mountainous areas. Recent studies show that the loess in the piedmont plains overlie a complex manner and include uneven paleosoils. Therefore, loess sequences of different geomorphological levels from the lower parts of slopes to the watershed have been studied in research paleosoils. The scheme was drawn up as a result of the studies. This scheme shows the main horizons paleosoils in loess deposits. Even-aged paleosoils and share their loess were identified in this scheme.
Earth observations taken by the Expedition 14 crew
2006-11-09
ISS014-E-08138 (9 Nov. 2006) --- Gallipoli and Dardanelles Strait, Turkey are featured in this image photographed by an Expedition 14 crewmember on the International Space Station. The city of Gallipoli (or Gelibolu in Turkish) sits at a crossroads between the Marmara and Aegean Seas, connected by the Dardanelles Strait. According to scientists, the strait is a 61 kilometer-long drowned fault valley formed during tectonic activity during the Tertiary period as the Arabian, Indian, and African plates collided with the Eurasian plate. This faulting, which formed the great mountain ranges of the Alps and Himalayas, also created the rugged terrain of western Turkey visible in the lower half of this image. Plate collision continues today, leading to frequent strike-slip (side-by-side relative motion along a fault, rather than up or down motion) earthquakes in the region as Turkey moves westward in relation to Eurasia (sometimes called escape tectonics). The urbanized area of modern Gallipoli is visible as a light gray to pink region at the entrance to the Dardanelles Strait. Water in the Strait flows in both northeast and southwest directions due to opposite surface and undercurrents. Several ships are visible in the Strait to the southwest of Gallipoli (center left).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A; Fowler, A; Al-Amri, A
2005-04-26
A moderate (M{approx}5) earthquake struck the northeastern United Arab Emirates (UAE) and northern Oman on March 11, 2002. The event was felt over a wide area of the northern Emirates and was accompanied by smaller (felt) events before and after the March 11 main shock. The event was large enough to be detected and located by global networks at teleseismic distances. We estimated focal mechanism and depth from broadband complete regional waveform modeling. We report a normal mechanism with a slight right-lateral strike-slip component consistent with the large-scale tectonics. The normal component suggests relaxation of obducted crust of the Semailmore » Ophilite (specifically, the Khor Fakkan Block) while the right-lateral strike-slip component of the mechanism is consistent with shear across the Oman Line. Felt earthquakes are rare in the region, however no regional seismic network exists in the UAE to determine local seismicity. This event offers a unique opportunity to study the active tectonics of the region as well as inform future studies of seismic hazard in the UAE and northern Oman.« less
NASA Astrophysics Data System (ADS)
Anan, Tarek; El Shahat, Adam
2014-12-01
The Middle-Upper Eocene Gehannam and Birket Qarun formations at Wadi Al Hitan (Valley of Whales) in Fayum Province of Egypt are dominated by marine siliciclastic sediments. Sedimentation took place in synclinal basins that were inherited from the Late Cretaceous tectonism. The siliciclastic sediments accumulated in low energy open shallow marine shelf. Most of the siliciclastics are heavily bioturbated by Thalassinoides. The abundance of unstable and moderately stable heavy minerals suggests that the Middle-Upper Eocene clastics were largely derived from the weathered regolith of the exhumed basement rocks of the Red Sea mountains. The ultrastable heavies were mainly recycled from positive landmass that bound the Eocene basins. Two sequence boundaries were observed in the studied succession. The first boundary lies within a rhizolith bearing-sandstone unit that occurs at the boundary between the Gehannam and Birket Qarun formations. The second sequence boundary occurs within the upper part of the Birket Qarun Formation, in a shale horizon bioturbated by Thalassinoides. Three 3rd order depositional sequences were recognized. These sequences may be formed due to tectonic activity that started in the Late Cretaceous and may be rejuvenated again during the Eocene time. Also emergence activities that were active during the Eocene led to the formation of the picked sequences by changing relative sea level. The recorded systems tracts are transgressive systems tract (TST), highstand systems tract (HST), and falling-stage systems tract (FSST).
NASA Astrophysics Data System (ADS)
Tosdal, Richard M.
1990-11-01
The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015° to 035°) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic(?) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79±2 Ma and 70±4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.
Earth observation taken by the Expedition 33 crew.
2012-11-17
ISS033-E-022378 (17 Nov. 2012) --- The Appalachian Mountains in the eastern Unites States are featured in this image photographed by an Expedition 33 crew member on the International Space Station. This regional view shows the striking visual effect of the valley-and-ridge topography of the Appalachian Mountains as viewed from orbit. The view shows more than 300 miles (500 kilometers) of this low mountain chain, from northeast Pennsylvania (lower left) to southern West Virginia, where a dusting of snow can be seen (top center). Sunglint reflections reveal detail of Chesapeake Bay and the great bend of the Potomac River. Cities are difficult to detect from space during daylight hours, so the sickle-shaped bend of the river is a good visual guide for station crew members trying to photograph the nation?s capital, Washington D.C. (upper left). The farm-dominated Piedmont Plateau is the light-toned area between the mountains and the bay. The Appalachian Mountains appear striped because the ridges are forested; providing a dense and dark canopy cover, while the valleys are farmed with crops that generally appear as lighter-toned areas. Geologically the valleys are the softer, more erodible rock layers, much the preferred places for human settlement. Not only do the larger rivers occupy the valley floors, but all the larger rivers flow in them, soils are thicker, slopes are gentle, and valleys are better protected from winter winds. According to scientists, rocks that form the valley-and-ridge province, as it is known, are relatively old (540-300 million years old), and were laid down in horizontal layers when North America was attached to Europe as the ancient supercontinent of Laurasia. During this time Gondwanaland ? an ancient supercontinent that included present-day Africa, India, South America, Australia and Antarctica - was approaching Laurasia under the influence of plate tectonics. The northwest coastline of modern Africa was the section of Gondwanaland that ?bumped up? against modern North America over a long period (320 ? 260 million years ago), according to scientists. The net result of the tectonic collision was the building of a major mountain chain, much higher than the present Appalachian range?in the process of which the flat-lying rock layers were crumpled up into a series of tight folds, at right angles to the advance of Gondwanaland. The collision also formed the singular supercontinent of Pangaea. The scientists say that, over the following 200 million years, Pangaea broke apart; the modern Atlantic Ocean formed; and erosion wore down the high mountains. What is left to see are the coastline of North America, and the eroded stumps of the mountain chain as the relatively low, but visually striking present-day Appalachian Mountains.
Ambient tremors in a collisional orogenic belt
Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei
2014-01-01
Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.
Research on the Crustal Deformation Characteristics in Beijing Using Insar and Gnss Technology
NASA Astrophysics Data System (ADS)
Hu, L.; Xing, C.; Dai, K.; Li, Y.; Li, Z.; Zhang, J.; Yan, R.; Xu, B.; Fan, Z.
2018-04-01
In this paper, we tried to reveal the characteristics of the crustal deformation in both the horizontal and vertical directions in Beijing using InSAR and GNSS observations. Regarding the serious land subsidence in Beijing plain, we also analysed the mechanism of the occurrence and development of the subsidence in combination with the tectonic settings. The GNSS results reveal that the crust in Beijing shows a significant left-lateral trend movement in the horizontal direction, while the vertical direction shows a gentle rise in the mountainous region and a significant subsidence in the plain area. The INSAR results shows a detailed subsidence area and the deformation characteristics were analyzed considering the fault activity. The foundation of geological structure dominates the subsiding in the Beijing Plain. The exploitation of groundwater exacerbates the level of subsidence and has new development. The active faults controlled the development of the subsiding in present days.
Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Kristianto, E-mail: kris@vsi.esdm.go.id
Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination ofmore » the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.« less
Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan
NASA Astrophysics Data System (ADS)
Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.
2015-12-01
Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.
NASA Technical Reports Server (NTRS)
Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.
1974-01-01
Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.
The role of latitude in mobilism debates
Irving, Edward
2005-01-01
In the early 1920s, the continental displacement theory of Wegener, latitude studies of Köppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves. PMID:15684058
The role of latitude in mobilism debates.
Irving, Edward
2005-02-08
In the early 1920s, the continental displacement theory of Wegener, latitude studies of Koppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves.
NASA Astrophysics Data System (ADS)
Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.
2009-12-01
Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a spatial resolution, and confirmed that the final model has an enough resolution down to the depth of 5 km. We also performed a Monte Carlo uncertainty analysis (Korenaga et al, 2000) to estimate the posteriori model variance, showing that most velocities are well constrained with standard deviation of less than 0.20 km/s. Our result strongly indicates the existences of low velocity zones (< 6.0 km/s) along the tectonic boundaries and high velocity bodies (> 6.0 km/s) just beneath MM and TM, which correspond to the middle crust of the Izu-Bonin arc (Kodaira et al., 2007). In the analysis (2), hypocenters and velocity structure were simultaneously determined based on the double-difference method (Zhang and Thurber, 2003). The hypocenter distribution and final velocity structure obtained indicate several interesting features, including low velocity sedimentary layer (< 6.0 km/s) along the KMF and prominent seismic activity in the middle-lower crust (6.0-6.8 km/s) in the Izu-Bonin arc (10-25 km depth beneath TM). These results give us very important constraints for the collision process ongoing in our research area.
NASA Technical Reports Server (NTRS)
Meszaros, S. P.
1985-01-01
Visual, scaled comparisons are made among prominent volcanic, tectonic, crater and impact basin features photographed on various planets and moons in the solar system. The volcanic formation Olympus Mons, on Mars, is 27 km tall, while Io volcanic plumes reach 200-300 km altitude. Valles Marineris, a tectonic fault on Mars, is several thousand kilometers long, and the Ithasa Chasma on the Saturnian moon Tethys extends two-thirds the circumference of the moon. Craters on the Saturnian moons Tethys and Mimas are large enough to suggest a collision by objects which almost shattered the planetoids. Large meteorite impacts may leave large impact basins or merely ripples, such as found on Callisto, whose icy surface could not support high mountains formed by giant body impacts.
NASA Astrophysics Data System (ADS)
2014-01-01
Peter Molnar, professor of geological sciences at the University of Colorado at Boulder, is the recipient of the 2014 Crafoord Prize in Geosciences, the Royal Swedish Academy of Sciences (RAS) announced on 16 January. RAS noted that the award is being presented to Molnar "for his ground-breaking contribution to the understanding of global tectonics, in particular the deformation of continents and the structure and evolution of mountain ranges, as well as the impact of tectonic processes on ocean-atmosphere circulation and climate." The award, which comes with a prize of 4 million Swedish kronor (about US$600,000), was established in 1980 to promote international basic research in astronomy, mathematics, geosciences, biosciences, and rheumatoid arthritis. According to RAS, those disciplines were chosen to complement those for which the Nobel Prizes are awarded.
Crone, Anthony J.; Wheeler, Russell L.
2000-01-01
The USGS is currently leading an effort to compile published geological information on Quaternary faults, folds, and earthquake-induced liquefaction in order to develop an internally consistent database on the locations, ages, and activity rates of major earthquake-related features throughout the United States. This report is the compilation for such features in the Central and Eastern United States (CEUS), which for the purposes of the compilation, is defined as the region extending from the Rocky Mountain Front eastward to the Atlantic seaboard. A key objective of this national compilation is to provide a comprehensive database of Quaternary features that might generate strong ground motion and therefore, should be considered in assessing the seismic hazard throughout the country. In addition to printed versions of regional and individual state compilations, the database will be available on the World-Wide Web, where it will be readily available to everyone. The primary purpose of these compilations and the derivative database is to provide a comprehensive, uniform source of geological information that can by used to complement the other types of data that are used in seismic-hazard assessments. Within our CEUS study area, which encompasses more than 60 percent of the continuous U.S., we summarize the geological information on 69 features that are categorized into four classes (Class A, B, C, and D) based on what is known about the feature's Quaternary activity. The CEUS contains only 13 features of tectonic origin for which there is convincing evidence of Quaternary activity (Class A features). Of the remaining 56 features, 11 require further study in order to confidently define their potential as possible sources of earthquake-induced ground motion (Class B), whereas the remaining features either lack convincing geologic evidence of Quaternary tectonic faulting or have been studied carefully enough to determine that they do not pose a significant seismic hazard (Classes C and D). The correlation between historical seismicity and Quaternary faults and liquefaction features in the CEUS is generally poor, which probably reflects the long return times between successive movements on individual structures. Some Quaternary faults and liquefaction features are located in aseismic areas or where historical seismicity is sparse. These relations indicate that the record of historical seismicity does not identify all potential seismic sources in the CEUS. Furthermore, geological studies of some currently aseismic faults have shown that the faults have generated strong earthquakes in the geologically recent past. Thus, the combination of geological information and seismological data can provide better insight into potential earthquake sources and thereby, contribute to better, more comprehensive seismic-hazard assessments.
NASA Astrophysics Data System (ADS)
Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.
2017-12-01
A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.
NASA Astrophysics Data System (ADS)
Speece, M. A.; Link, C. A.; Stickney, M.
2011-12-01
In 1983 and 1984 Techco of Denver, Colorado, acquired approximately 302 linear kilometers of two-dimensional (2D) seismic reflection data in Flathead and Lake Counties, Montana, USA, as part of an initiative to identify potential drilling targets beneath the Swan and Whitefish Mountain Ranges and adjacent basins of northwestern Montana. These seismic lines were collected in the Montana Disturbed Belt (MDB) or Montana thrust belt along the western edge of Glacier National Park in mountainous terrain with complicated subsurface structures including thrust faults and folds. These structures formed during the Laramide Orogeny as sedimentary rocks of the Precambrian Belt Supergroup were thrust eastward. Later, during the Cenozoic, high-angle normal faults produced prominent west-facing mountain scarps of the Mission, Swan and Whitefish mountains. The 1983 data set consisted of two profiles of 24-fold (96-channels) Vibroseis data and four profiles of 24-fold (96-channels) helicopter-assisted dynamite data. The dynamite data were collected using the Poulter Method in which explosives were placed on poles and air shots were recorded. The 1983 dynamite profiles extend from southwest to northeast across the Whitefish Mountain Range to the edge of Glacier National Park and the Vibroseis data were collected along nearby roadways. The 1984 data set consists of four profiles of 30-fold (120-channels) helicopter-assisted dynamite data that were also collected using the Poulter Method. The 1984 profiles cross the Swan Mountain Range between Flathead Lake and Glacier National Park. All of these data sets were recently donated to Montana Tech and subsequently recovered from nine-track tape. Conventionally processed seismic stacked sections from the 1980s of these data show evidence of a basement decollement that separates relatively undeformed basement from overlying structures of the MDB. Unfortunately, these data sets have not been processed using modern seismic processing techniques including linear noise suppression of the air wave and ground roll, refraction statics, and prestack migration. Reprocessing of these data using state-of-the-art seismic reflection processing techniques will provide a detailed picture of the stratigraphy and tectonic framework for this region. Moreover, extended correlations of the Vibroseis records to Moho depths might reveal new insights on crustal thickness and provide a framework for understanding crustal thickening during the Laramide Orogeny as well as later Cenozoic extension.
NASA Astrophysics Data System (ADS)
Arita, Kazunori; Ikawa, Takashi; Ito, Tanio; Yamamoto, Akihiko; Saito, Matsuhiko; Nishida, Yasunori; Satoh, Hideyuki; Kimura, Gaku; Watanabe, Teruo; Ikawa, Takeshi; Kuroda, Toru
1998-05-01
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of ˜7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9-6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.
NASA Astrophysics Data System (ADS)
Kalbas, James L.
Stratigraphic, structural, and geophysical modeling studies focusing on both the Mesozoic and modern development of southern Alaska aid in understanding the nature of tectonic responses to oblique plate convergence. Analyses of the Lower to Upper (?) Cretaceous Kahiltna assemblage of the western Alaska Range and the Upper Cretaceous Kuskokwim Group of the northern Kuskokwim Mountains provide a stratigraphic record of orogenic growth in southwestern Alaska. The Kahiltna assemblage records dominantly west-directed gravity-flow transport of sediment to the axis of an obliquely closing basin that made up the suture zone between the allochthonous Wrangellia composite terrane and the North American pericratonic margin. Stratigraphic, compositional, and geochronologic analyses suggest that submarine-fan systems of the Kahiltna basin were fed from the subearial suture zone and contain detrital grains derived from both allochthonous and pericratonic sources, thereby implying a relatively close proximity of the island-arc terrane to the North American margin by late Early Cretaceous time. In contrast, Upper Cretaceous strata exposed immediately west of the Kahiltna assemblage record marine deposition during a period of transition from island arc accretion to strike-slip tectonics. The new stratigraphic model presented here recognizes diverse bathyal- to shelfal-marine depositional systems within the Kuskokwim Group that represent distinctive regional sediment entry points to the basin. Collectively, these strata suggest that the Kuskokwim Group represents the waning stages of marine deposition in a long-lived intra-oceanic and continental margin basin. Geodynamic studies focus on the mechanics of contemporary fault systems in southern Alaska inboard of the collisional Yakutat microplate. Finite-element analyses predict that a poorly understood Holocene strike-slip fault in the St. Elias Mountains transfers shear from the Queen Charlotte fault northward to the Denali fault, thereby forming a continuous transform system that accommodates right-lateral motion of the Pacific plate and Yakutat microplate relative to the stable North American craton. Although the best-fit model implies some component of anelastic deformation in the vicinity of the St. Elias Mountains and the western Alaska Range, results imply overall block-like behavior throughout the area of interest.
Magnetic properties of the upper mantle beneath the continental United States
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Ferre, E. C.; Demory, F.; Rochette, P.; Martin Hernandez, F.; Conder, J. A.
2012-12-01
The interpretation of long wavelength satellite magnetic data (Magsat, Oersted, CHAMP, SWARM) requires an understanding of magnetic mineralogy in the lithospheric mantle and reliable models of induced and remanent magnetic sources in the lithospheric mantle and the crust. Blakely et al. (2005) proposed the hypothesis of a magnetic lithospheric mantle in subduction zones. This prompted us to reexamine magnetic sources in the lithospheric mantle in different tectonic settings where unaltered mantle xenolith have been reported since the 1990s. Xenoliths from the upper mantle beneath the continental United States show different magnetic properties depending on the tectonic setting in which they equilibrated. Three localities in the South Central United States (San Carlos, AZ; Kilbourne Hole, NM; Knippa, TX) produced lherzolite and harzburgite xenoliths, while the Bearpaw Mountains in Montana (subduction zone) produced dunite and phlogopite-rich dunite xenoliths. Paleomagnetic data on these samples shows the lack of secondary alteration which is commonly caused by post-eruption serpentinization and the lack of basalt contamination. The main magnetic carrier is pure magnetite. The ascent of mantle xenoliths to the surface of the Earth generally takes only a few hours. Numerical modelling shows that nucleation of magnetite during ascent would form superparamagnetic grains and therefore cannot explain the observed magnetic grain sizes. This implies that the ferromagnetic phases present in the studied samples formed at mantle depth. The samples from the South Central United States exhibit a small range in low-field magnetic susceptibility (+/- 0.00003 [SI]), and Natural Remanent Magnetization (NRM) between 0.001 - 0.100 A/m. To the contrary samples from the Bearpaw Mountains exhibit a wider range of low-field susceptibilities (0.00001 to 0.0015 [SI]) and NRM (0.01 and 9.00 A/m). These samples have been serpentinized in-situ by metasomatic fluids related to the Farallon plate (Facer et al., 2009). Hence, the magnetic properties of the lithospheric mantle beneath the continental United States differ significantly depending on tectonic setting. The combination of the low geotherm observed in the Bearpaw Mountains with the stronger induced and remanent magnetization of mantle rocks in this area may produce a detectable LWMA.
NASA Astrophysics Data System (ADS)
Tello Saenz, C. A.; Hackspacher, P. C.; Hadler Neto, J. C.; Iunes, P. J.; Guedes, S.; Ribeiro, L. F. B.; Paulo, S. R.
2003-01-01
Apatite fission-track analysis was used for the determination of thermal histories and ages in Precambrian areas of southeast Brazil. Together with geological and geomorphologic information, these ages enable us to quantify the thermal histories and timing of Mesozoic and Cenozoic epirogenic and tectonic processes. The collected samples are from different geomorphologic blocks: the high Mantiqueira mountain range (HMMR) with altitude above 1000 m, the low Mantiqueira mountain range (LMMR) under 1000 m, the Serra do Mar mountain range (SMMR), the Jundiaí and Atlantic Plateaus, and the coastline, all of which have distinct thermal histories. During the Aptian (˜120 Ma), there was an uplift of the HMMR, coincident with opening of the south Atlantic Ocean. Its thermal history indicates heating (from ˜60 to ˜80 °C) until the Paleocene, when rocks currently exposed in the LMMR reached temperatures of ˜100 °C. In this period, the Serra do Mar rift system and the Japi erosion surface were formed. The relief records the latter. During the Late Cretaceous, the SMMR was uplifted and probably linked to its origin; in the Tertiary, it experienced heating from ˜60 to ˜90 °C, then cooling that extends to the present. The SMMR, LMMR, and HMMR were reactivated mainly in the Paleocene, and the coastline during the Paleogene. These processes are reflected in the sedimentary sequences and discordances of the interior and continental margin basins.
Morphological expression of active tectonics in the Southern Alps
NASA Astrophysics Data System (ADS)
Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Hergarten, Stefan
2015-04-01
Evolving drainage pattern and corresponding metrics of the channels (e.g. normalized steepness index) are sensitive indicators for tectonic or climatic events punctuating the evolution of mountain belts and their associated foreland basins. The analysis of drainage systems and their characteristic properties represents a well-established approach to constrain the impact of tectonic and climatic drivers on mountainous landscapes in the recent past. The Southern Alps (SA) are one of the seismically most active zones in the periphery of northern Adria. Recent deformation is caused by the ongoing convergence of the Adriatic and European plate and is recorded by numerous earthquakes in the domain of the SA. Deformation in the SA is characterized by back-thrusting causing crustal thickening and should therefore result in uplift and topography formation. The vertical velocity field determined by GPS-data clearly indicates a belt of significant uplift in the south South alpine indenter between Lake Garda in the west and the Triglav in the east and strong subsidence of the foreland basin surrounding the Mediterranean Sea near Venice, although subsidence is often related to ongoing subduction of the Adriatic microplate underneath Appennines. Despite of these short term time series, timing, rates and drivers of alpine landscape evolution are not well constrained and the linkage between crustal deformation and topographic evolution of this highly active alpine segment remains unclear for the following reasons: (1) The eastern Southern Alps were heavily overprinted by the Pleistocene glaciations and tectonic signals in the alpine landscape are blurred. Only the transition zone to the southern foreland basin remained unaffected and allows an analysis of a glacially undisturbed topography. (2) The major part of this domain is covered by lithology (carbonatic rocks) which is unsuitable for low temperature geochronology and cosmogenic isotope dating so that exhumation and erosion rates are not well constrained for the entire domain. Despite of that, extensive karstification in some areas limits the validity of a morphometric analysis in particular of the upper reaches of the drainage system and leads to a long term persistence of landforms (e.g. plateaus). In this study we focus on the drainage pattern of the eastern Southern Alps and the adjacent southern foreland basin. We use a high-resolution digital elevation model and a novel numerical approach to extract characteristic parameters of the morphology for the entire eastern Southern Alps with a high spatial resolution. We explore deviations in the steepness of channels from an equilibrium state and knick-points in longitudinal channel profiles and interpret these features in terms of (a) active tectonics, and variable uplift rates, (b) lithological effects like erodibility contrasts and karstification, and (c) base level lowering caused by glacial erosion and Messinian preconditioning. The drainage system of the Adige shows the most significant deviations from a fluvial equilibrium. This is documented in the normalized steepness index of the main channel and all tributaries as well as in the longitudinal channel profile. The main channel shows several sections of downstream steepening and extremely low channel gradients in the lower reach. Similar deviations are also observed in the Brenta catchment situated east of the Adige drainage system. In contrast to the two large western catchments of the study region, the Piave and particularly the Tagliamento catchment show well graded channel profiles and uniform normalized steepness indices despite of the glacial history. This clear west to east trend from highly disturbed to overall well graded channels has never been documented before and may be explained in the light of increased uplift rates in the east and differences in onset and timing of topography formation between the western and eastern sector of the study region.
NASA Astrophysics Data System (ADS)
Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem
2015-04-01
During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .
Modern Uplift of the Transantarctic Mountains: Preliminary Results of an Autonomous GPS Array
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Heflin, M. B.; Ivins, E. R.; James, T. S.
1998-01-01
An autonomous GPS array is being implemented in the Transantarctic Mountains, sponsored by NSF and NASA, for the purpose of measuring uplift resulting from post-glacial rebound (PGR). The rebound of the solid earth due to unloading of ice since the Last Glacial Maximum is expected to dominate the measured uplift for most of West Antarctica, dwarfing the signals due to present-day ice sheet mass balance changes and tectonic motion, as long as mantle viscosity is greater than about 10(exp 20) Pa-s. Predicted uplift patterns have been calculated for a range of model scenarios, which illustrate how the uplift pattern might distinguish between different-sized ice sheets and deglaciation histories as represented by the competing models. The scenarios considered by James and Ivins (1998) include ICE-3G, CLIMAP and a variation of the CLIMAP model by Denton et al. For these models, peak uplift rates occur in the Transantarctic Mountains, and differences between models is often large there. Thus, the Transantarctic Mountains are an ideal place to obtain uplift measurements to constrain deglaciation models.
NASA Technical Reports Server (NTRS)
Cauthen, Clay; Coombs, Cassandra R.
1996-01-01
In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit further study and monitoring of the volcanic activity in the area. This is of concern due to the large numbers of refugees fleeing into Zaire where they are being positioned at the base of Mt. Nyiragongo. The refugees located at the base of the volcano are in direct hazard of suffocation by gas emission and destruction by lava flow. The results from this summer study will be used to secure future funding to enable continuation of this project.
NASA Astrophysics Data System (ADS)
Cheloni, Daniele; D'Agostino, Nicola; Selvaggi, Giulio
2014-05-01
The interaction of the African, Arabian, and Eurasia plates in the "greater" Mediterranean region yields to a broad range of tectonic processes including active subduction, continental collision, major continental strike-slip faults and "intra-plate" mountain building. In this puzzling region the convergence between Adria microplate and Eurasia plate is partly or entirely absorbed within the South-Eastern Alps, where the Adriatic lithosphere underthrusts beneath the mountain belt. Historical seismicity and instrumentally recorded earthquakes show thrust faulting on north-dipping low-angle faults in agreement with geological observations of active mountain building and active fold growing at the foothills of the South-Eastern Alps. In this study, we use continuous GPS observations to document the geodetic strain accumulation across the South-Eastern Alps (NE Italy). We estimate the pattern of interseismic coupling on the intra-continental collision north-dipping thrust faults that separate the Eastern Alps and the Venetian-Friulian plain using the back-slip approach and discuss the seismic potential and earthquake recurrence. Comparison between the rigid-rotation predicted motion and the shortening observed across the studied area indicates that the South-Eastern Alpine thrust front absorbs about 80% of the total convergence rate between the Adria microplate and Eurasia plate. The modelled thrust fault is currently locked from the surface to a depth of approximately 10 km. The transition zone between locked and creeping portions of the fault roughly corresponds with the belt of microseismicity parallel and to the north of the mountain front. The estimated moment deficit rate is 1.27±0.14×10^17 Nm/yr. The comparison between the estimated moment deficit and that released historically by the earthquakes suggests that to account for the moment deficit the following two factors or their combination should be considered: (1) a significant part of the observed interseismic coupling is released aseismically by folding or creeping; (2) infrequent "large" events with long return period (>1000 years) and with magnitudes larger than the value assigned to the largest historical events (Mw≡6.7).
Volcanism on Io: New insights from global geologic mapping
Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Yff, J.A.; Jaeger, W.L.; Schenk, P.M.; Geissler, P.E.; Becker, T.L.
2011-01-01
We produced the first complete, 1:15M-scale global geologic map of Jupiter's moon Io, based on a set of monochrome and color Galileo-Voyager image mosaics produced at a spatial resolution of 1km/pixel. The surface of Io was mapped into 19 units based on albedo, color and surface morphology, and is subdivided as follows: plains (65.8% of surface), lava flow fields (28.5%), mountains (3.2%), and patera floors (2.5%). Diffuse deposits (DD) that mantle the other units cover ???18% of Io's surface, and are distributed as follows: red (8.6% of surface), white (6.9%), yellow (2.1%), black (0.6%), and green (???0.01%). Analyses of the geographical and areal distribution of these units yield a number of results, summarized below. (1) The distribution of plains units of different colors is generally geographically constrained: Red-brown plains occur >??30?? latitude, and are thought to result from enhanced alteration of other units induced by radiation coming in from the poles. White plains (possibly dominated by SO2+contaminants) occur mostly in the equatorial antijovian region (??30??, 90-230??W), possibly indicative of a regional cold trap. Outliers of white, yellow, and red-brown plains in other regions may result from long-term accumulation of white, yellow, and red diffuse deposits, respectively. (2) Bright (possibly sulfur-rich) flow fields make up 30% more lava flow fields than dark (presumably silicate) flows (56.5% vs. 43.5%), and only 18% of bright flow fields occur within 10km of dark flow fields. These results suggest that secondary sulfurous volcanism (where a bright-dark association is expected) could be responsible for only a fraction of Io's recent bright flows, and that primary sulfur-rich effusions could be an important component of Io's recent volcanism. An unusual concentration of bright flows at ???45-75??N, ???60-120??W could be indicative of more extensive primary sulfurous volcanism in the recent past. However, it remains unclear whether most bright flows are bright because they are sulfur flows, or because they are cold silicate flows covered in sulfur-rich particles from plume fallout. (3) We mapped 425 paterae (volcano-tectonic depressions), up from 417 previously identified by Radebaugh et al. (Radebaugh, J., Keszthelyi, L.P., McEwen, A.S., Turtle, E.P., Jaeger, W., Milazzo, M. [2001]. J. Geophys. Res. 106, 33005-33020). Although these features cover only 2.5% of Io's surface, they correspond to 64% of all detected hot spots; 45% of all hot spots are associated with the freshest dark patera floors, reflecting the importance of active silicate volcanism to Io's heat flow. (4) Mountains cover only ???3% of the surface, although the transition from mountains to plains is gradational with the available imagery. 49% of all mountains are lineated and presumably layered, showing evidence of linear structures supportive of a tectonic origin. In contrast, only 6% of visible mountains are mottled (showing hummocks indicative of mass wasting) and 4% are tholi (domes or shields), consistent with a volcanic origin. (5) Initial analyses of the geographic distributions of map units show no significant longitudinal variation in the quantity of Io's mountains or paterae, in contrast to earlier studies. This is because we use the area of mountain and patera materials as opposed to the number of structures, and our result suggests that the previously proposed anti-correlation of mountains and paterae (Schenk, P., Hargitai, H., Wilson, R., McEwen, A., Thomas, P. [2001]. J. Geophys. Res. 106, 33201-33222; Kirchoff, M.R., McKinnon, W.B., Schenk, P.M. [2011]. Earth Planet. Sci. Lett. 301, 22-30) is more complex than previously thought. There is also a slight decrease in surface area of lava flows toward the poles of Io, perhaps indicative of variations in volcanic activity. (6) The freshest bright and dark flows make up about 29% of all of Io's flow fields, suggesting active emplacement is occurring in less than a third of Io's
Geologic evolution of the Akna Montes-Atropos Tessera region, Venus
NASA Astrophysics Data System (ADS)
Marinangeli, Lucia; Gilmore, Martha S.
2000-05-01
The investigated area comprises an arcuate mountain belt, Akna Montes, in Western Ishtar Terra, associated with an outboard plateau, Atropos Tessera, to the west and a volcanic plateau, Lakshmi Planum, to the east. Eight geologic units have been recognized on the basis of their geomorphic and structural characteristics as they appear on Magellan radar images. Our stratigraphic analysis shows that the geological evolution of the study area can be explained by four main steps: (1) formation of the older substrata of Atropos Tessera and Lakshmi, (2) extensive plains emplacement, (3) an orogenic phase including the formation of Akna Montes, and (4) local emplacement of younger plains. The tectonic evolution shows a deformational sequence characterized by contraction, shear, and topographic relaxation. This sequence is interpreted to be a consequence of the variation of crustal stresses and crustal thickening during orogenic events as observed for terrestrial high plateaus associated with a mountain belt (i.e., Himalaya and Tibet, Andes and Altiplano). In order to estimate the amount of crustal shortening associated with the Akna Montes, we considered two end-members for structural style of the mountain belt: a symmetric fold model and fault-bend fold model. The models are theoretical because terrestrial orogenic belts are often formed by a combination of different compressional structures. However, symmetric and fault-bend faults represent the minimum and maximum crustal shortening, respectively, and thus they do place bounds on the amount of strain recorded by Akna Montes. The first model yields a shortening value less than 1%, whereas a range of 17-34% is derived for the second model. The large difference between these values underscores the importance of fold geometries for estimating strain and to place constraints on geodynamic models for mountain belt formation. On the basis of our study we think that a combination of mantle downwelling and horizontal convergence may provide a good explanation of the geology and tectonics we observed in the Akna Montes-Atropos Tessera region.
Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran
NASA Astrophysics Data System (ADS)
Sheikholeslami, M. R.; Kouhpeyma, M.
2012-10-01
The Binalud Mountains are situated in the south of the Kopeh Dagh as a transitional zone between the Alborz and Central Iran zones. The Palaeotethys suture of the north Iran is located in this area. The Binalud Mountains consists of relatively thick successions of sedimentary, metamorphic and igneous rocks. The earliest deformation, a polyphase synmetamorphic deformation which occurred entirely in ductile conditions, is distinguished in the metamorphic rocks of the eastern part. D1, D2 and D3 deformation phases are related to this deformation. The D4 deformation affected the area after a period of sedimentation and erosion. The thrust faults of the central and southern part of the eastern Binalud were classified as structures related to the D5 tectonic event. From the geodynamic point of view, in Late Palaeozoic times the studied area formed an oceanic trench generated by the subduction of the Palaeotethys oceanic lithosphere beneath the Turan Plate. In the Late Triassic, the Early Cimmerian Event resulted in a collisional type orogeny generating a transpression polyphase deformation and the metamorphism of Permian and older sediments. Following this collision, granite intrusions were emplaced in the area and caused contact metamorphism. The exhumation and erosion of the rocks deformed and metamorphosed during Early Cimmerian Event caused the formation of molassic type sediments in a Rhaetian-Lias back arc basin. The continuation of convergence between the Turan and Iran Plates caused the metamorphism of these sediments and their transformation to phyllite and meta-sandstone. During Late Mesozoic and Early Cenozoic times, the convergence between Central Iran and Turan Plates continued and a NE compression caused folding of the Cretaceous and older rocks in the Kopeh Dagh area. In the Binalud area this deformation caused the generation of several thrust fault systems with S to SW vergence, resulting in a thrusting of Palaeozoic and Mesozoic successions on each other and on the Neogene sediments at the southern border of the Binalud Mountains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Perry
Studies of volcanic risk to the proposed high-level radioactive waste repository at Yucca Mountain have been ongoing for 25 years. These studies are required because three episodes of small-volume, alkalic basaltic volcanism have occurred within 50 km of Yucca Mountain during the Quaternary. Probabilistic hazard estimates for the proposed repository depend on the recurrence rate and spatial distribution of past episodes of volcanism in the region. Several independent research groups have published estimates of the annual probability of a future volcanic disruption of the proposed repository, most of which fall in the range of 10{sup -7} to 10{sup -9} permore » year; similar conclusions were reached. through an extensive expert elicitation sponsored by the Department of Energy in 1995-1996. The estimated probability values are dominated by a regional recurrence rate of 10{sup -5} to 10{sup -6} volcanic events per year (equating to recurrence intervals of several hundred thousand years). The recurrence rate, as well as the spatial density of volcanoes, is low compared to most other basaltic volcanic fields in the western United States, factors that may be related to both the tectonic history of the region and a lithospheric mantle source that is relatively cold and not prone to melting. The link between volcanism and tectonism in the Yucca Mountain region is not well understood beyond a general association between volcanism and regional extension, although areas of locally high extension within the region may control the location of some volcanoes. Recently, new geologic data or hypotheses have emerged that could potentially increase past estimates of the recurrence rate, and thus the probability of repository disruption. These are (1) hypothesized episodes of anomalously high strain rate, (2) hypothesized presence of a regional mantle hotspot, and (3) new aeromagnetic data suggesting as many as twelve previously unrecognized volcanoes buried in alluvial-filled basins near Yucca Mountain.« less
East Meets West: An Earthquake in India Helps Hazard Assessment in the Central United States
,
2002-01-01
Although geographically distant, the State of Gujarat in India bears many geological similarities to the Mississippi Valley in the Central United States. The Mississippi Valley contains the New Madrid seismic zone that, during the winter of 1811-1812, produced the three largest historical earthquakes ever in the continental United States and remains the most seismically active region east of the Rocky Mountains. Large damaging earthquakes are rare in ‘intraplate’ settings like New Madrid and Gujarat, far from the boundaries of the world’s great tectonic plates. Long-lasting evidence left by these earthquakes is subtle (fig. 1). Thus, each intraplate earthquake provides unique opportunities to make huge advances in our ability to assess and understand the hazards posed by such events.
The tectonics of anorthosite massifs
NASA Technical Reports Server (NTRS)
Seyfert, C. K.
1981-01-01
Anorthosite massifs developed approximately 1.4 to 1.5 billion years ago along an arch which developed parallel to a zone of continental separation as a block which included North America, Europe, and probably Asia separated from a block which included parts of South America, Africa, India, and Australia. Anorthosite massifs also developed at the same time along a belt which runs through the continents which comprise Gondwanaland (South America), Africa, India, Australia, and Antarctica. This was a zone of continental separation which subsequently became a zone of continental collision about 1.2 billion years ago. The northern anorthosite belt also parallels an orogenic belt which was active between 1.8 and 1.7 billion years ago. Heat generated during this mountain building period helped in the formation of the anorthosites.
A tectonic reconstruction of accreted terranes along the paleo-Pacific margin of Gondwana
NASA Astrophysics Data System (ADS)
Bammel, Brandon
The southern oceanic margin of Gondwana was nearly 40,000 km long or 24,854.8 miles. The southern margin was the result of the Terra Australis orogen. Spanning 18,000 km or 11,184.7 miles and is proposed as one of the largest and longest lived orogens in Earth history. The paleo-Pacific margin of Gondwana consisted of segments of the Australian-Antarctic craton, southern South America (modern Argentina and Chile), southern South Africa, Marie Byrdland, New Zealand and its adjacent continental shelf, the Ellsworth Mountains, and the Transantarctic Mountains. The process of terrane accretion has played a substantial part in the assembly of the continents as they look today. The paleo-Pacific margin of Gondwana was an active region of terrane accretion from the Neoproterozoic to the Late Mesozoic. This research study examines the accretion of terranes across the paleo-Pacific Gondwana margin to provide a comprehensive reconstruction. A paleogeographic basemap was created using PALEOMAP Project maps and the geology data was provided by the School of Geoscience from the University of Witwatersrand of South Africa. Location and data analyzed for terranes were collected building a PDF library of journal articles across numerous geological publications.
Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies
Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.
2004-01-01
Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.
Ca isotopes reveal weak control of tectonic uplift on long-term climate change
NASA Astrophysics Data System (ADS)
Moore, J.; Jacobson, A. D.; Holmden, C. E.; Craw, D.
2010-12-01
Ca-Mg silicate weathering consumes atmospheric CO2 over geological timescales (≥106 yr) whereas carbonate weathering has no effect. High Ca fluxes from active orogens have been used to argue that mountain uplift is a disproportionately large CO2 sink. To test this hypothesis, it is essential to determine proportions of Ca from silicate versus carbonate weathering. High precision measurement of Ca isotopes (δ44/40Ca) provides a novel method to directly quantify Ca sources. To this end, we examined δ44/40Ca in rivers draining the Southern Alps of New Zealand. The Southern Alps have large tectonic and climatic gradients but nearly constant bedrock chemistry. West of the main topographic divide, uplift and precipitation rates are high, and steep, fast-flowing rivers drain schist. East of the divide, uplift and precipitation rates are low, and low-gradient, braided rivers drain either schist or greywacke. Both schist and greywacke contain up to 3% hydrothermal and metamorphic calcite. Glaciers feed several schist and greywacke catchments. Examined as δ44/40Ca versus Sr/Ca, values measured for carbonate and silicate end-members define two-component mixing envelopes. Rivers west of the divide plot within the envelope, ruling out isotopic fractionation as a factor for these streams. Several rivers east of the divide are 40Ca enriched relative to the envelope. In-situ fractionation of stream water Ca cannot explain this pattern because fractionation is expected to preferentially remove 40Ca. We measured δ42/44Ca ratios to test if chemical weathering preferentially releases 40Ca. When examined as δ40/44Ca versus δ42/44Ca, the data only display mass-dependent isotope effects. Ca in grass and the exchangeable pool of shallow soils is enriched in 40Ca relative to waters and bedrock. This Ca defines a third mixing end-member that contributes 15-30% of the Ca in rivers east of the divide. Evidence of the plant-fractionated signal likely reflects water residence times, which are longer on the eastern side of the main divide. After correcting for this input, we apportion Ca in all rivers to silicate versus carbonate weathering using a two-component mixing equation. For non-glaciated streams, the δ44/40Ca method and a conventional Ca/Na method agree within 2%. Silicate weathering contributes less Ca west of the main divide where uplift rates are highest. For actively glaciated catchments, the δ44/40Ca method attributes 26% more Ca to silicate weathering than the Ca/Na method. We ascribe this difference to non-stoichiometric leaching of Ca from freshly cleaved rock surfaces. This reaction must occur even faster than carbonate weathering, which dominates in adjacent non-glaciated watersheds. Our results support the assertion that mountain uplift does not dramatically elevate long-term atmospheric CO2 consumption rates compared to tectonically stable landscapes. However, δ44/40Ca reveals that glaciation, which is genetically linked to mountain uplift, yields moderately higher CO2 consumption rates than previously realized. Additionally, our study highlights how biological processes can influence the terrestrial Ca cycle.
Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.
2014-01-01
The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.
Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia
NASA Astrophysics Data System (ADS)
Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu
2015-08-01
Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.
Cenozoic geodynamic evolution of the Aegean
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Brun, Jean-Pierre
2010-01-01
The Aegean region is a concentrate of the main geodynamic processes that shaped the Mediterranean region: oceanic and continental subduction, mountain building, high-pressure and low-temperature metamorphism, backarc extension, post-orogenic collapse, metamorphic core complexes, gneiss domes are the ingredients of a complex evolution that started at the end of the Cretaceous with the closure of the Tethyan ocean along the Vardar suture zone. Using available plate kinematic, geophysical, petrological and structural data, we present a synthetic tectonic map of the whole region encompassing the Balkans, Western Turkey, the Aegean Sea, the Hellenic Arc, the Mediterranean Ridge and continental Greece and we build a lithospheric-scale N-S cross-section from Crete to the Rhodope massif. We then describe the tectonic evolution of this cross-section with a series of reconstructions from ~70 Ma to the Present. We follow on the hypothesis that a single subduction has been active throughout most of the Mesozoic and the entire Cenozoic, and we show that the geological record is compatible with this hypothesis. The reconstructions show that continental subduction (Apulian and Pelagonian continental blocks) did not induce slab break-off in this case. Using this evolution, we discuss the mechanisms leading to the exhumation of metamorphic rocks and the subsequent formation of extensional metamorphic domes in the backarc region during slab retreat. The tectonic histories of the two regions showing large-scale extension, the Rhodope and the Cyclades are then compared. The respective contributions to slab retreat, post-orogenic extension and lower crust partial melting of changes in kinematic boundary conditions and in nature of subducting material, from continental to oceanic, are discussed.
NASA Astrophysics Data System (ADS)
Mazzotti, S.; Tarayoun, A.; Marechal, A.; Audet, P.
2017-12-01
The Northern Cordillera of North America is a type example of present-day strain distribution across a wide orogeny. Several geodynamic models are proposed to explain this large-scale tectonic activity, with two main end-members: strain transfer from the Yakutat collision zone (orogenic float) and strain transfer from upper mantle convection (lithosphere basal traction). One of the main differences between these is the lithosphere vertical rheology profile: the former requires significant crust - mantle decoupling to allow far field strain transfer, whereas the latter requires a vertically coupled lithosphere. Here we combine recent data across the eastern region of the Northern Cordillera (eastern Alaska, Yukon, western Northwest Territories) to characterize its states of strain rate, stress, and crustal and lithospheric structure, in order to test the role of the Yakutat collision and upper mantle convection in its present-day tectonics. Recent GPS data confirm the radial, east- to northeastward motion of the central Yukon and foreland belt (Mackenzie and Richardson Mountains), albeit at a much lower velocity than previously proposed. This motion is primarily accommodated by E-W to NE-SW shortening, mainly in the foreland belt, and small to near-zero lateral motion on the major Denali and Tintina strike-slip faults. Seismic anisotropy data further suggest that these two major faults, like most of the Yukon Cordillera, have kept their early Cenozoic crustal and upper mantle structures, as shown by the fault-parallel (NW-SE) fast anisotropy orientation. We use these new data, combined with numerical models of strain distribution under various boundary conditions, to provide constraints on the respective role of the Yakutat collision and upper mantle convection in the present-day tectonics. Preliminary results suggest that, whichever the driving mechanism (or combination thereof), the total strain associated with the present-day tectonics must remain small in order to preserve the inherited crustal and mantle fabrics. Such small cumulative strain appears in contradiction with a thin decoupling layer (such as lower crust decoupling in the orogenic float model) and seems more suggestive of distributed shear across a large part of the lithosphere.
The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR
Soderblom, L.A.; Brown, R.H.; Soderblom, J.M.; Barnes, J.W.; Kirk, R.L.; Sotin, Christophe; Jaumann, R.; MacKinnon, D.J.; Mackowski, D.W.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.
2009-01-01
Joint Cassini VIMS and RADAR SAR data of ???700-km-wide Hotei Regio reveal a rich collection of geological features that correlate between the two sets of images. The degree of correlation is greater than anywhere else seen on Titan. Central to Hotei Regio is a basin filled with cryovolcanic flows that are anomalously bright in VIMS data (in particular at 5 ??m) and quite variable in roughness in SAR. The edges of the flows are dark in SAR data and appear to overrun a VIMS-bright substrate. SAR-stereo topography shows the flows to be viscous, 100-200 m thick. On its southern edge the basin is ringed by higher (???1 km) mountainous terrain. The mountains show mixed texture in SAR data: some regions are extremely rough, exhibit low and spectrally neutral albedo in VIMS data and may be partly coated with darker hydrocarbons. Around the southern margin of Hotei Regio, the SAR image shows several large, dendritic, radar-bright channels that flow down from the mountainous terrain and terminate in dark blue patches, seen in VIMS images, whose infrared color is consistent with enrichment in water ice. The patches are in depressions that we interpret to be filled with fluvial deposits eroded and transported by liquid methane in the channels. In the VIMS images the dark blue patches are encased in a latticework of lighter bands that we suggest to demark a set of circumferential and radial fault systems bounding structural depressions. Conceivably the circular features are tectonic structures that are remnant from an ancient impact structure. We suggest that impact-generated structures may have simply served as zones of weakness; no direct causal connection, such as impact-induced volcanism, is implied. We also speculate that two large dark features lying on the northern margin of Hotei Regio could be calderas. In summary the preservation of such a broad suite of VIMS infrared color variations and the detailed correlation with features in the SAR image and SAR topography evidence a complex set of geological processes (pluvial, fluvial, tectonic, cryovolcanic, impact) that have likely remained active up to very recent geological time (<104 year). That the cryovolcanic flows are excessively bright in the infrared, particularly at 5 ??m, might signal ongoing geological activity. One study [Nelson, R.M., and 28 colleagues, 2009. Icarus 199, 429-441] reported significant 2-??m albedo changes in VIMS data for Hotei Arcus acquired between 2004 and 2006, that were interpreted as evidence for such activity. However in our review of that work, we do not agree that such evidence has yet been found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tosdal, R.M.
1990-11-10
The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015{degree} to 035{degree}) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic( ) and Cretaceous sedimentary rocks across the various partsmore » of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79{plus minus}2 Ma and 70{plus minus}4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.« less
Saltus, R.W.; Day, W.C.
2006-01-01
The Yukon-Tanana Upland is a complex composite assemblage of variably metamorphosed crystalline rocks with strong North American affinities. At the broadest scale, the Upland has a relatively neutral magnetic character. More detailed examination, however, reveals a fundamental northeast-southwest-trending magnetic gradient, representing a 20-nT step (as measured at a flight height of 300 m) with higher values to the northwest, that extends from the Denali fault to the Tintina fault and bisects the Upland. This newly recognized geophysical gradient is parallel to, but about 100 km east of, the Shaw Creek fault. The Shaw Creek fault is mapped as a major left-lateral, strike-slip fault, but does not coincide with a geophysical boundary. A gravity gradient coincides loosely with the southwestern half of the magnetic gradient. This gravity gradient is the eastern boundary of a 30-mGal residual gravity high that occupies much of the western and central portions of the Big Delta quadrangle. The adjacent lower gravity values to the east correlate, at least in part, with mapped post-metamorphic granitic rocks. Ground-based gravity and physical property measurements were made in the southeastern- most section of the Big Delta quadrangle in 2004 to investigate these geophysical features. Preliminary geophysical models suggest that the magnetic boundary is deeper and more fundamental than the gravity boundary. The two geophysical boundaries coincide in and around the Tibbs Creek region, an area of interest to mineral exploration. A newly mapped tectonic zone (the Black Mountain tectonic zone of O'Neill and others, 2005) correlates with the coincident geophysical boundaries.
NASA Astrophysics Data System (ADS)
von Hagke, C.; Luijendijk, E.; Hindle, D.
2017-12-01
In contrast to the internal zones of orogens, where the stacking of thrust sheets can overwhelm more subtle signals, foreland basins can record long-wavelength subsidence or uplift signals caused by mantle processes. We use a new and extensive compilation of geological and thermochronology data from the North Alpine Foreland Basin to understand the dynamics of foreland basins and their interaction with surface and geodynamic processes. We quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model, pybasin. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. Uncertainty analysis shows that thermochronometers can be explained by cooling starting as early as the Miocene or as late as the Pleistocene. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. We suggest that new (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.
Is there uniformitarian or catastrophic tectonics on Venus?
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1993-01-01
The distribution and modification of craters on Venus favors a near global, volcanic resurfacing event about 500 Myrs ago. Such an event indicates that the tectonic evolution of Venus was catastrophic rather than uniformitarian. The creation of a global, single-plate lithosphere on Venus about 500 Myrs ago can explain a variety of tectonic features on Venus that are not consistent with the thin lithosphere required by a uniformitarian hypothesis. A lithosphere on Venus that has thickened for 500 Myrs has a present thickness of about 300 km whereas steady-state heat loss from Venus requires a mean lithospheric thickness near 40 km. A thick lithosphere on Venus can support the high plateaus (elevations of 3-4 km) and mountain belts (up to 9 km) using the same isostatic compensation concepts applicable to the earth. If a thick lithosphere is thinned by a mantle plume, elevation is caused by thermal isostasy. The elevation due to the thinning of a 300 km thick lithosphere is about 3 km. Thus the domal elevation of Beta Regio can be explained by the same mechanism responsible for the elevation of the Hawaiian Swell. While the broad highland plateaus on Venus may be associated with thermal isostasy, the mountain belts in Ishtar Terra clearly cannot be. The high topography of Freyja Montes is almost certainly associated with underthrusting and the likely compensation mechanism is Airy isostasy associated with a thickened crust. With a density contrast delta, of 500 kg m(exp -3) an elevation of 9 km requires a crustal thickening of about 70 km. With a thick lithosphere there is no difficulty in supporting such a thick crust.
Seismic component of the STEEP project, Alaska: Results of the first field season
NASA Astrophysics Data System (ADS)
Hansen, R. A.; Estes, S.; Stachnik, J.; Lafevers, M.; Roush, J.; Sanches, R.; Fuerst, E.; Sandru, J.; Ruppert, N.; Pavlis, G.; Bauer, M.
2005-12-01
STEEP (SainT Elias Erosion/tectonics Project) is a five year, multi-disciplinary study that addresses evolution of the highest coastal mountain range on Earth - the St. Elias Mountains of southern Alaska and northwestern Canada. The overall goal of the project is to develop a comprehensive model for the St. Elias orogen that accounts for the interaction of regional plate tectonic processes, structural development, and rapid erosion. The seismic component of this project includes passive seismic experiment utilizing the IRIS PASSCAL Program instruments. The total project consists of 22 new, telemetered, digital broad band seismic stations, most accessible by helicopter only. There are 12 existing short period stations in the area. Eight new stations were installed in the coastal region in June 2005. Freewave IP radios provide the telemetry to the newly installed VSAT at the Bering Glacier camp site. The challenge was to find ice-free locations, on bedrock, large enough to install equipment and still have a helicopter landing zone nearby. The stations consist of Quanterra Q330 digitizers with baler, a STS-2 seismometer installed in a vault, a Freewave IP radio, a Scala 900 Mhz antenna, twenty 100 AH rechargeable batteries with a 2400AH backup Celair primary battery, and three solar panels mounted on hut. The acquired data is recorded in real time at the Alaska Earthquake Information Center located in Fairbanks and is incorporated into the standard data processing procedures. High quality data allows for more reliable automatic earthquake detections in the region with lower magnitude threshold. In addition to tectonic earthquakes, glacial events that occur within the vast ice fields of the region are also regularly detected. Broadband instruments complement regional broadband network for more reliable calculations of the regional moment tensors.
Earth Observations taken by the Expedition 16 Crew
2007-12-23
ISS016-E-018385 (23 Dec. 2008) --- Luquillo Mountains, Puerto Rico are featured in this image photographed by an Expedition 16 crewmember on the International Space Station. The Luquillo Mountains are located in the northeastern portion of Puerto Rico and rise to elevations of 1,075 meters. According to scientists, the mountains are comprised mainly of volcanic rock material that was uplifted by tectonism - Puerto Rico is located between the junction of the North American and Caribbean plates - approximately 37--28 million years ago. Prevailing easterly winds bring moisture from the Caribbean Sea that falls as precipitation as they cross the mountains. Higher elevations receive more rainfall than lower elevations, leading to subtropical forest types in the lowlands and montane forest types near the summits. This image, taken during the rainy season, illustrates the rich vegetation cover of the mountains. The rapid change in ecosystems with elevation, land use history, and exposure to frequent natural disturbances (such as hurricanes) makes the Luquillo Mountains as ideal location for ecological study. The Luquillo Experimental Forest Long Term Ecological Research (LTER) site is contained within the Luquillo National Forest, covering much of the mountains to the southwest of the city of Luquillo (center). Historical human land uses in the Forest -- such as logging, agriculture, charcoal production, and coffee plantations - have determined much of the current ecosystem structure. Results of LTER site research indicates that the forest ecosystems recover more rapidly from natural disturbances (like hurricanes) than they do from human disturbance.
Sand fairway mapping as a tool for tectonic restoration in orogenic belts
NASA Astrophysics Data System (ADS)
Butler, Rob
2016-04-01
The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.
NASA Astrophysics Data System (ADS)
Feucht, D. W.; Sheehan, A. F.; Bedrosian, P.
2015-12-01
A recent magnetotelluric (MT) survey in central Colorado, USA, when interpreted alongside existing seismic tomography, reveals potential mechanisms of support for high topography both regionally and locally. Broadband and long period magnetotelluric data were collected at twenty-three sites along a 330 km E-W profile across the Southern Rocky Mountains and High Plains of central North America as part of the Deep RIFT Electrical Resistivity (DRIFTER) experiment. Remote-reference data processing yielded high quality MT data over a period range of 100 Hz to 10,000 seconds. A prominent feature of the regional geo-electric structure is the Denver Basin, which contains a thick package of highly conductive shales and porous sandstone aquifers. One-dimensional forward modeling was performed on stations within the Denver Basin to estimate depth to the base of this shallow conductor. Those estimates were then used to place a horizontal penalty cut in the model mesh of a regularized two-dimensional inversion. Two-dimensional modeling of the resistivity structure reveals two major anomalous regions in the lithosphere: 1) a high conductivity region in the crust under the tallest peaks of the Rocky Mountains and 2) a lateral step increase in lithospheric resistivity beneath the plains. The Rocky Mountain crustal anomaly coincides with low seismic wave speeds and enhanced heat flow and is thus interpreted as evidence of partial melt and/or high temperature fluids emplaced in the crust by tectonic activity along the Rio Grande Rift. The lateral variation in the mantle lithosphere, while co-located with a pronounced step increase in seismic velocity, appears to be a gradational boundary in resistivity across eastern Colorado and could indicate a small degree of compositional modification at the edge of the North American craton. These inferred conductivity mechanisms, namely crustal melt and modification of mantle lithosphere, likely contribute to high topography locally in the Rocky Mountains and regionally in the High Plains.
NASA Astrophysics Data System (ADS)
McDonough, Michael R.; Simony, Philip S.
1989-03-01
The Valemount strain zone (VSZ), a narrow zone of high orogen-parallel (OP) strain in pebble conglomerate of the Late Proterozoic Miette Group, is the footwall expression of a thrust fault on the western edge of the Rocky Mountain belt, marking the eastern limit of a wide zone of OP fabrics distributed through the Omineca crystalline and western Rocky Mountain belts of the southeastern Canadian Cordillera. Kinematic indicators from the VSZ and the adjacent Bear Foot thrust zone show that both thrust and dextral displacement are associated with folding and thrust motion in the Rocky Mountains, thereby linking the southern Rocky Mountain belt to the Omineca belt by an oblique-slip thrust regime that is tectonically unrelated to the Southern Rocky Mountain Trench. Transverse shortening of thrust sheets and subsequent distribution of OP shear are invoked to explain the parallelism of stretching lineations and fold axes. Strain and kinematic data and the thrust-belt geometry of the VSZ suggest that OP lineations are a product of a large amount of transverse shortening during slightly oblique A-type subduction. Thus, OP lineations are not representative of relative plate motions between North America and accreted terranes, but probably are a function of footwall buttressing of thrust sheets, a mechanism that may be widely applicable to the internal zones of collisional orogens.
Finn, Carol A.; Goodge, John W.
2010-01-01
Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.
NASA Astrophysics Data System (ADS)
Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV
2016-12-01
The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.
Morrowan sedimentation in the Orogrande basin, west Texas and south-central New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, W.M.; Stanton, R.J. Jr.
1986-03-01
Morrowan strata in the Hueco and Franklin Mountains reflect deposition within a shallow, gradually subsiding, carbonate shelf lagoon. Postulated environments fluctuated between open shelf lagoon with localized shoaling, restricted inner shelf lagoon, and peritidal settings. Variations in depth were slight, probably not exceeding several tens of meters within the photic zone. The La Tuna Formation (Franklin Mountains) was deposited near the axis (center) of the Orogrande basin; the lower division of the Magdalena limestone (Hueco Mountains), 30 mi east, was deposited 20-30 mi west of the paleoshoreline. Physiographically, the Orogrande sea was a small gulf, offering a certain degree ofmore » protection from the Morrowan seaway to the south. Sedimentologically, it was a wide expanse of predominantly quiet-water carbonate sedimentation with subordinate argillaceous influex and coarser peripheral clastics. The Orogrande basin, a stratigraphic feature, corresponds to a blanket deposit of shallow epeiric carbonates. Climatic and orographic effects are invoked to explain the contrasting style of clastic sedimentation in the Delaware and orogrande basins, east and west of the Pedernal uplift. Analysis of Morrowan carbonates reveals no evidence of cyclicity, major transgressions or regressions, or local tectonic activity. Deposition was stable and in equilibrium with a gradually subsiding shallow basin. Based on lithologic, faunal, biostratigraphic, and paleogeographic criteria, the lower division is both laterally and temporally equivalent with the La Tuna Formation. Accordingly, the latter term is advocated in favor of the former, which lacks both priority and formal status.« less
Kirby, Stephen H.
2011-01-01
The observation that southeastern Central America is a hotspot for orchid diversity has long been known and confirmed by recent systematic studies and checklists. An analysis of the geographic and elevation distribution demonstrates that the most widespread species of “core” Maxillariinae are all adapted to life near sea level, whereas the most narrowly endemic species are largely distributed in wet highland environments. Drier, hotter lowland gaps exist between these cordilleras and evidently restrict the dispersal of the species adapted to wetter, cooler conditions. Among the recent generic realignments of “core” Maxillariinae based on molecular phylogenetics, the Camaridium clade is easily the most prominent genus in Central America and is largely restricted to the highlands of Costa Rica and Panama, indicating that this region is the ancestral home of this genus and that its dispersal limits are drier, lowland cordilleran gaps. The mountains of Costa Rica and Panama are among the geologically youngest topographic features in the Neotropics, reflecting the complex and dynamic interactions of numerous tectonic plates. From consideration of the available geological evidence, I conclude that the rapid growth of the mountain ranges in Costa Rica and Panama during the late Cenozoic times created, in turn, very rapid ranges in ecological life zones and geographic isolation in that part of the isthmus. Thus, I suggest that these recent geologic events were the primary drivers for accelerated orchid evolution in southeastern Central America.
Kirby, Stephen H.
2011-01-01
The observation that southeastern Central America is a hotspot for orchid diversity has long been known and confirmed by recent systematic studies and checklists. An analysis of the geographic and elevation distribution demonstrates that the most widespread species of “core” Maxillariinae are all adapted to life near sea level, whereas the most narrowly endemic species are largely distributed in wet highland environments. Drier, hotter lowland gaps exist between these cordilleras and evidently restrict the dispersal of the species adapted to wetter, cooler conditions. Among the recent generic realignments of “core” Maxillariinae based on molecular phylogenetics, the Camaridium clade is easily the most prominent genus in Central America and is largely restricted to the highlands of Costa Rica and Panama, indicating that this region is the ancestral home of this genus and that its dispersal limits are drier, lowland cordilleran gaps. The mountains of Costa Rica and Panama are among the geologically youngest topographic features in the Neotropics, reflecting the complex and dynamic interactions of numerous tectonic plates. From consideration of the available geological evidence, I conclude that the rapid growth of the mountain ranges in Costa Rica and Panama during the late Cenozoic times created, in turn, very rapid ranges in ecological life zones and geographic isolation in that part of the isthmus. Thus, I suggest that these recent geologic events were the primary drivers for accelerated orchid evolution in southeastern Central America.
Cenozoic stratigraphy of the Sahara, Northern Africa
Swezey, Christopher S.
2009-01-01
This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the mountains blocked fluvial access to the Mediterranean Sea. Uppermost Miocene evaporites (and an end-Miocene regional unconformity) in the northern Sahara are correlated with the Messinian desiccation of the Mediterranean Sea. Abundant and widespread Pliocene paleosols are attributed to the onset of relatively arid climate conditions and (or) greater variability of climate conditions, and the appearance of persistent and widespread eolian sediments in the Sahara is coincident with the major glaciation in the northern hemisphere during the Pliocene.
First ERTS-1 results in southeastern France: Geology, sedimentology, pollution at sea
NASA Technical Reports Server (NTRS)
Fontanel, A.; Guillemot, J.; Guy, M.
1973-01-01
Results obtained by four ERTS projects in southeastern France are summarized. With regard to geology, ERTS photos of Western Alps are very useful for tectonic interpretation because large features are clearly visible on these photographs even though they are often hidden by small complicated structures if studied on large scale documents. The 18-day repetition coverage was not obtained, and time-varying sedimentological surveys were impossible. Nevertheless, it was possible to delineate the variations of the shorelines in the Rhone Delta for a period covering the least 8,000 years. Some instances of industries discharging pollutant products at sea were detected, as well as very large anomalies of unknown origin. Some examples of coherent optical processing have been made in order to bring out tectonic features in the Alps mountains.
Topographic representation using DEMs and its applications to active tectonics research
NASA Astrophysics Data System (ADS)
Oguchi, T.; Lin, Z.; Hayakawa, Y. S.
2016-12-01
Identifying topographic deformations due to active tectonics has been a principal issue in tectonic geomorphology. It provides useful information such as whether a fault has been active during the recent past. Traditionally, field observations, conventional surveying, and visual interpretation of topographic maps, aerial photos, and satellite images were the main methods for such geomorphological investigations. However, recent studies have been utilizing digital elevation models (DEMs) to visualize and quantitatively analyze landforms. There are many advantages to the use of DEMs for research in active tectonics. For example, unlike aerial photos and satellite images, DEMs show ground conditions without vegetation and man-made objects such as buildings, permitting direct representation of tectonically deformed landforms. Recent developments and advances in airborne LiDAR also allow the fast creation of DEMs even in vegetated areas such as forested lands. In addition, DEMs enable flexible topographic visualization based on various digital cartographic and computer-graphic techniques, facilitating identification of particular landforms such as active faults. Further, recent progress in morphometric analyses using DEMs can be employed to quantitatively represent topographic characteristics, and objectively evaluate tectonic deformation and the properties of related landforms. This paper presents a review of DEM applications in tectonic geomorphology, with attention to historical development, recent advances, and future perspectives. Examples are taken mainly from Japan, a typical tectonically active country. The broader contributions of DEM-based active tectonics research to other fields, such as fluvial geomorphology and geochronology, will also be discussed.
Earth Observations taken by the Expedition 18 Crew
2009-02-24
ISS018-E-035716 (24 Feb. 2009) --- Minchinmavida and Chaiten Volcanoes in Chile are featured in this image photographed by an Expedition 18 crewmember on the International Space Station. The Andes mountain chain along the western coastline of South America includes numerous active stratovolcanoes. The majority of these volcanoes are formed, and fed, by magma generated as the oceanic Nazca tectonic plate moves northeastward and plunges beneath the less dense South American continental tectonic plate (a process known as subduction). The line of Andean volcanoes marks the approximate location of the subduction zone. This astronaut photograph highlights two volcanoes located near the southern boundary of the Nazca ? South America subduction zone in southern Chile. Dominating the scene is the massive Minchinmavida stratovolcano at center. An eruption of this glaciated volcano was observed by Charles Darwin during his Galapagos Island voyage in 1834; the last recorded eruption took place the following year. The white, snow covered summit of Minchinmavida is blanketed by gray ash erupted from its much smaller but now active neighbor to the west, Volcan (volcano) Chaiten. The historically inactive Chaiten volcano, characterized by a large lava dome within a caldera (an emptied and collapsed magma chamber beneath a volcano) roared back to life unexpectedly on May 2, 2008, generating dense ash plumes and forcing the evacuation of the nearby town of Chaiten. Volcanic activity continues at Chaiten, including partial collapse of a new lava dome and generation of a pyroclastic flow several days before this photograph was taken. A steam and ash plume is visible extending to the northeast from the eruptive center of the volcano.
NASA Astrophysics Data System (ADS)
Gulick, Sean; Jaeger, John; Mix, Alan; Swartz, John; Worthington, Lindsay; Reece, Robert
2014-05-01
Collision of the Yakutat microplate with North American formed the St. Elias Mountains in coastal Gulf of Alaska. While the tectonic driver for orogenesis has been ongoing since the Miocene, results from the Integrated Ocean Drilling Program Expedition 341 suggests that direct climatic perturbation of active orogenesis through glacial erosion is non-linear. Geophysical studies of the glaciated continental margin, slope, and adjacent deep-sea Surveyor Fan allow examination of the glaciated orogen from source to sink. Using high-resolution and crustal-scale seismic data and through comparison with other glaciated margins, we can identify key diagnostic seismic morphologies and facies indicative of glacial proximity and sediment routing. Expedition drilling results calibrated these images suggesting a timeline for initial advances of the Cordilleran ice sheet related glacial systems onto the shelf and a further timeline for the development of ice streams that reach the shelf edge. Comparisons can be made within this single margin between evolution of the tectonic-glacial system where erosion and sediment transport are occurring within a fold and thrust belt versus on a more stable shelf region. Onshore the Bering-Bagley glacial system in the west flows across the Yakataga fold and thrust belt, allowing examination of whether glacial erosion can cause tectonic feedbacks, whereas offshore the Bering-Bagley system interacts with the Pamplona Zone thrusts in a region of significant sediment accommodation. Results from Expedition 341 imply that timing of glacial advance to the shelf edge in this region may be driven by the necessity of filling up the accommodation through aggradation followed by progradation and thus is autogenic. In contrast the Malaspina-Hubbard glacial system to the east encountered significantly less accommodation and more directly responded to climatic forcing including showing outer shelf glacial occupation since the mid-Pleistocene transition-MPT to 100 kyr glacial-interglacial cycles. Examination of the sink for both of these systems, which includes the Surveyor Fan and Aleutian Trench wedge, demonstrates a clear climatic driver for sediment flux to the deep sea. The first appearance of ice-rafted debris at our distal drill site closely approximates the start of the Pleistocene and a doubling of sediment accumulation accompanies the MPT. Converting sediment volumes just within the deep-sea sinks back to erosion rates in the orogen and correlating with changes in exhumation rates from thermochronology demonstrates a lack of accelerated tectonic response to the intensification of Northern Hemisphere glaciations at the start of the Pleistocene but increased shortening and exhumation of sediments at the MPT. The form of tectonic response differs between out-of-sequence thrusting or antiformal stacking within the fold and thrust belt to the west and a near vertical advection of material in a tectonic aneurysm in the core of the orogen to the east.
Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada
Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.
1998-01-01
Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.
Volcanism on Io: Insights from Global Geologic Mapping
NASA Astrophysics Data System (ADS)
Williams, D. A.; Keszthelyi, L. P.; Crown, D. A.; Yff, J. A.; Jaeger, W. L.; Schenk, P. M.
2008-12-01
NASA's Galileo Mission (1996-2003) acquired excellent images of the antijovian (or far side) hemisphere of Jupiter's volcanic moon Io, which are complementary to the subjovian (or near side) images obtained by the 1979 NASA Voyager Mission. In 2005 the U.S. Geological Survey produced a set of global image mosaics of Io (spatial resolution 1 kilometer/picture element and full color) that enable for the first time production of a complete global geologic map. We have mapped Io using ArcGIS software to assess the types and abundances of process-related geologic material units and structures, to gain further insights into the types and styles of activity that shape this hyperactive volcanic moon. We find that lava flow fields make up about 28% of the surface, in which bright (presumably sulfur) flows are twice as abundant as dark (presumably silicate) flows. Many of the bright flows do not have adjacent dark flows, perhaps indicative of extensive primary rather than secondary sulfur volcanism (i.e., effusion of crustal sulfur magma, rather than sulfur-rich country rock melted by adjacent silicate magma). Ephemeral, diffuse pyroclastic plume deposits mantle about 18% of the surface at any time, and include condensed sulfur and sulfur dioxide gases and silicate ash. Patera (i.e., caldera) floors contain lava flows and/or some lava lakes, and cover only 2.5% of the surface, but are the source of most of the active hot spots. Restriction of effusive resurfacing mostly to caldera-like topographic depressions, and the ephemeral nature of plume deposits, explains the relatively small amount of surface changes observed between the Voyager and Galileo missions. Tectonic mountains, rising up to 17 km, cover about 3% of the surface, but close association of about one-third to one-half of the mountains with paterae suggest linkage of volcanic and tectonic processes. About 67% of Io is covered by plains, thought to consist of silicate crust covered with accumulations of lava flows and pyroclastics whose boundaries are not discernable. No impact craters have been found on Io, indicating a surface age of less than a few tens of millions of years. We will discuss the implications of these results for Io's volcanism.
Geology of the southwestern Pasco Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-09-01
The objective of this study was to define those aspects of the stratigraphic, structural, and tectonic setting which are important to the integrity of a deep-mined waste-isolation cavern in the Columbia River basalts. Three principal structural features received the focus of the field effort in the 1,485-square-kilometer area. These are the northern end of the Horse Heaven uplift, the linear ridges of the Badger Mountain-Red Mountain trend, and the Rattlesnake uplift. The thickest sequence of basalt exposed in the study area is on the steep, northeastern slope of Rattlesnake Mountain; about 485 meters of stratigraphic section can be examined inmore » the field area. Subsidence and weak deformation of the southwestern Pasco Basin area during Yakima time can be recognized in the disposition of flows and interbeds. In the southwestern Pasco Basin, most of the topographically expressed basalt bedrock mountains, ridges, hills, and knolls have developed since spreading of the Saddle Mountains flows. Deformation since Ice Harbor time (about 8 million years ago) has been by folding, faulting, and in some structures, by a combination of both. The doubly plunging anticlinal folds of Badger Mountain, Red Mountain, and easternmost Rattlesnake Hills have vertical structural amplitudes in the 80 to 200-meter range. The high-angle, possibly reverse Badger Mountain fault has offset up to 60 meters; offset is downward on the northeast. Rattlesnake Mountain is, in part, a tilted fault-block structure. The western end of the Rattlesnake uplift, Rattlesnake Hills, is principally a broad anticline with numerous minor folds and faults. Geomorphic relations suggest that the post-Ice Harbor structural movement in the study area is of one episode. 65 figures, 8 tables.« less
NASA Astrophysics Data System (ADS)
Tanner, David C.; Krawczyk, Charlotte M.
2017-04-01
Reverse movement on the Harz Northern Boundary Fault was responsible for the Late Cretaceous uplift of the Harz Mountains in northern Germany. Using the known geometry of the surface position and dip of the fault, and a published cross section of the Base Permian horizon, we show that it is possible to predict the probable shape of the fault at depth, down to a detachment level. We use the `inclined-shear' method with constant heave and argue that a shear angle of 30° was most likely. In this case, the detachment level is at a depth of ca. 25 km. Kinematic restoration of the Harz Mountains using this fault geometry does not produce a flat horizon, rather it results in a ca. 4 km depression. Airy-Heiskanen isostatic equilibrium adjustment of the Harz Mountains restores the Base Permian horizon to the horizontal, as well as raising the Moho to a depth of 32 km, a typical value for northern Germany. Restoration also causes a rotation of tectonic fabrics within the Harz Mountains of about 11° clockwise. We show that this model geometry is very good fit to the interpreted DEKORP BASIN 9601 deep seismic profile.
NASA Astrophysics Data System (ADS)
Balling, Philipp; Ballato, Paolo; Dunkl, István; Zeillinger, Gerold; Heidarzadeh, Ghasem; Ghasemi, Mohammad; Strecker, Manfred R.
2014-05-01
The Iranian Plateau is situated in the collision zone between the Arabian and Eurasian plates and forms a NW-SE elongated, 40- to 50-km-thick crustal block, delimited to the north by the Urmieh Dokhtar Volcanic Zone and to south by the High Zagros Mountains. The plateau is characterized by a series of basins and mountain ranges bounded by reverse and transpressive faults. These mountain ranges reflect a history of strong collisional deformation, with intensely faulted and folded Pre-Cambrian (basement) to Miocene (terrestrial sediments of the Upper Red Formation) rocks. Based on the structural evolution, high mean elevation of 2 km, and a crustal thickness of up to 56 km, the realm of the present-day plateau must have absorbed a significant fraction of past plate convergence between Eurasia and Arabia. However, according to seismic and GPS data active deformation is rather limited. In addition, the exact timing and style of deformation, the extent of crustal shortening and thickening on the northern Iranian Plateau during continental collision remain unclear. To address these issues we collected structural data and modeled deformation scenarios cross four mountain ranges that constitute the northern margin of the Iranian Plateau (NW Iran). The Tarom, Mah Neshan and Sultanije mountain ranges are NW-SE oriented, while the northernmost (Bozgosh) is E-W aligned. Due to the lack of subsurface data, several forward and backward models were generated with MOVE (Midland Valley, structural modelling software). The model with the simplest and most robust geological explanation of the field data was chosen. In addition, we combined our structural work with an apatite (U-Th)/He study (AHe) along two transects (Bozgosh, Mah Neshan) and Zircon (U-Th)/He data (ZHe) on higher exhumed locations. In the northern sector of the plateau late Cretaceous (or Paleocene?) rocks had been deposited unconformably onto older, deformed rocks. This suggests that the Arabia-Eurasia collision was predated by at least one contractional episode, which was most likely associated with the deposition of red continental conglomerates (Fajan Fm.). Consequently, some of the major faults affecting Tertiary units in the region may be inherited structures, reactivated during collisional deformation. Our structural results indicate that the different mountain ranges constituting the northern plateau are characterized by thick-skinned deformation (tectonics) with major deep-seated faults exposing basement rocks. Locally, thin-skinned tectonics occurred, with multiple detachment horizons within evaporites of the Lower and Upper Red formations (Oligo-Miocene), and shales of the Shemshak (Jurassic), and the Barut (Cambrian) formations. The first obtained AHe cooling ages for this area suggest that the more internal sectors of the Iranian Plateau (SW of the Mah Neshan profile) record an early cooling phase at 25-20 Ma. This was followed by outward propagation of deformation fronts to the north and northeast from approximately 12 to 8 Ma. This resulted in the development of a contractional basin and range morphology of the Iranian Plateau.
Hilley, George E; Porder, Stephen
2008-11-04
Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.
NASA Astrophysics Data System (ADS)
Wang, Yizhou; Zhang, Huiping; Zheng, Dewen; von Dassow, Wesley; Zhang, Zhuqi; Yu, Jingxing; Pang, Jianzhang
2017-05-01
In order to test the hypothesis that the stationary nature of the Yarlung Tsangpo Gorge is tectonically controlled, the rock uplift pattern in the southeast Tibetan Plateau and the critical condition to sustain a stable knickpoint must be derived. Via slope-area analysis and the integral approach, we first quantify the pattern of channel steepness in southeast Tibet and find that the steepness index shows higher values around the gorge but lower values toward the inner land and the mountain front. Such a pattern of channel steepness indicates that the active rock uplift is restricted in the zone just around the Yarlung Tsangpo Gorge. Then, we derive a general knickpoint migration model that accounts for spatially variant rock uplift rates. From the model, a critical condition for maintaining a stable knickpoint is concluded that the difference of incision rates in the downstream and upstream reaches of the knickpoint should match that of rock uplift. Employing a stream-power river incision model, we calculate the incision rate in the gorge and find a higher correspondence with differential rock uplift rates in the downstream and upstream reaches of the knickpoint. Therefore, we favor tectonic control as the primary mechanism to explain the stability of the knickpoint within the Yarlung Tsangpo Gorge.
NASA Astrophysics Data System (ADS)
Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.
2004-12-01
Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, < 10 km circular to elliptical small "rings") and later stage basaltic features (< 11 my, small flows, cones, dikes) in the Southwest Nevada Volcanic Field. Miocene rhyolitic calderas cluster within the central area and on the outer margin of the interpreted larger mega-ring complex. The mega-ring interpretation is consistent with observations of regional physiography, tomographic images, seismicity patterns, and structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5) Similar to features described from terrestrial and planetary caldera-collapse studies, and as modeled in laboratory scaled investigations (ice melt, balloon/sand). Post Mid-Miocene basalts commonly occur within or adjacent to the older rhyolitic caldera moats; other basaltic material occurs marginal to both the outer rings of the interpreted mega-ring system and high velocity pipe. The YM repository may be situated in an isolated structural setting within the mega-ring system; basaltic materials are absent in the block for over 11my for geologic reasons. The mega-ring model may better explain YM area structures (Highway 95 fault), tectonism, and volcanism. Coincident physiographic, geologic, and geophysical features associated with the mega-rings feature, and temporal characteristics of regional seismicity and volcanism suggest the need to critically re-assess regional scale and YM tectonic, seismotectonic, and volcanic models.
New geophysical views of Mt.Melbourne Volcano (East Antarctica)
NASA Astrophysics Data System (ADS)
Armadillo, E.; Gambetta, M.; Ferraccioli, F.; Corr, H.; Bozzo, E.
2009-05-01
Mt. Melbourne volcano is located along the transition between the Transantarctic Mountains and the West Antarctic Rift System. Recent volcanic activity is suggested by the occurrence of blankets of pyroclastic pumice and scoria fall around the eastern and southern flanks of Mt Melbourne and by pyroclastic layers interbedded with the summit snows. Geothermal activity in the crater area of Mount Melbourne may be linked to the intrusion of dykes within the last 200 years. Geophysical networks suggest that Mount Melbourne is a quiescent volcano, possibly characterised by slow internal dynamics. During the 2002-2003 Italian Antarctic campaign a high-resolution aeromagnetic survey was performed within the TIMM (Tectonics and Interior of Mt. Melbourne area) project. This helicopter-borne survey was flown at low-altitude and in drape-mode configuration (305 m above terrain) with a line separation less than 500 m. Our new high-resolution magnetic maps reveal the largely ice-covered magmatic and tectonic patters in the Mt. Melbourne volcano area. Additionally, in the frame of the UK-Italian ISODYN-WISE project (2005-06), an airborne ice-sounding radar survey was flown. We combine the sub-ice topography with images and models of the interior of Mt. Melbourne volcano, as derived from the high resolution aeromagnetic data and land gravity data. Our new geophysical maps and models also provide a new tool to study the regional setting of the volcano. In particular we re-assess whether there is geophysical evidence for coupling between strike-slip faulting, the Terror Rift, and Mount Melbourne volcano.
NASA Astrophysics Data System (ADS)
Jordan, T. A.; Ferraccioli, F.; Ross, N.; Siegert, M. J.; Corr, H.; Leat, P. T.; Bingham, R. G.; Rippin, D. M.; le Brocq, A.
2012-04-01
The >500 km wide Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up, and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Here we present new aeromagnetic data combined with airborne radar and gravity data collected during the 2010-11 field season over the Institute and Moeller ice stream in West Antarctica. Our interpretations identify the major tectonic boundaries between the Weddell Sea Rift, the Ellsworth-Whitmore Mountains block and East Antarctica. Digitally enhanced aeromagnetic data and gravity anomalies indicate the extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic granites, and post Jurassic sedimentary infill. Two new joint magnetic and gravity models were constructed, constrained by 2D and 3D magnetic depth-to-source estimates to assess the extent of Proterozoic basement and the thickness of major Jurassic intrusions and post-Jurassic sedimentary infill. The Jurassic granites are modelled as 5-8 km thick and emplaced at the transition between the thicker crust of the Ellsworth-Whitmore Mountains block and the thinner crust of the Weddell Sea Rift, and within the Pagano Fault Zone, a newly identified ~75 km wide left-lateral strike-slip fault system that we interpret as a major tectonic boundary between East and West Antarctica. We also suggest a possible analogy between the Pagano Fault Zone and the Dead Sea transform. In this scenario the Jurassic Pagano Fault Zone is the kinematic link between extension in the Weddell Sea Rift and convergence across the Pacific margin of West Antarctica, as the Dead Sea transform links Red Sea extension to compression within the Zagros Mountains.
Geologic map of the Sauk River 30- by 60-minute quadrangle, Washington
Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.
2002-01-01
Summary -- The north-south-trending regionally significant Straight Creek Fault roughly bisects the Sauk River quadrangle and defines the fundamental geologic framework of it. Within the quadrangle, the Fault mostly separates low-grade metamorphic rocks on the west from medium- to high-grade metamorphic rocks of the Cascade metamorphic core. On the west, the Helena-Haystack melange and roughly coincident Darrington-Devils Mountain Fault Zone separate the western and eastern melange belts to the southwest from the Easton Metamorphic Suite, the Bell Pass melange, and rocks of the Chilliwack Group, to the northeast. The tectonic melanges have mostly Mesozoic marine components whereas the Chilliwack is mostly composed of Late Paleozoic arc rocks. Unconformably overlying the melanges and associated rocks are Eocene volcanic and sedimentary rocks, mostly infaulted along the Darrington-Devils Mountain Fault Zone. These younger rocks and a few small Eocene granitic plutons represent an extensional tectonic episode. East of the Straight Creek Fault, medium to high-grade regional metamorphic rocks of the Nason, Chelan Mountains, and Swakane terranes have been intruded by deep seated, Late Cretaceous granodioritic to tonalitic plutons, mostly now orthogneisses. Unmetamorphosed mostly tonalitic intrusions on both sides of the Straight Creek fault range from 35 to 4 million years old and represent the roots of volcanoes of the Cascade Magmatic Arc. Arc volcanic rocks are sparsely preserved east of the Straight Creek fault, but dormant Glacier Peak volcano on the eastern margin of the quadrangle is the youngest member of the Arc. Deposits of the Canadian Ice Sheet are well represented on the west side of the quadrangle, whereas alpine glacial deposits are common to the east. Roughly 5000 years ago lahars from Glacier Peak flowed westward filling major valleys across the quadrangle.
Formation of fluvial knickzones in Japanese mountainous areas: A spatial analysis using GIS and DEMs
NASA Astrophysics Data System (ADS)
Hayakawa, Y. S.; Oguchi, T.
2006-12-01
Fluvial knickzones are the elements of bedrock rivers that can enhance stream erosion into bedrock, and they can be key morphologies highlighting interactions among earth surface processes such as erosion, tectonics, and volcanism. This study examines the longitudinal profiles of Japanese mountain rivers to illustrate the distribution of knickzones and discusses their role in the landscape development. Using 50-m DEMs, knickzones were extracted based on a quantitative criterion, and 5,753 knickzones were identified in the rivers of ca. 65,000 km long. The location of the knickzones was then examined along with other GIS data including topography, geology and precipitation. Overall, topographical conditions have the strongest influences on knickzone abundance, and upstream steep reaches of the rivers are more favorable for knickzone existence. The knickzone abundance for each rock type is also controlled by stream gradients, and lighologic boundaries do not show significant correlations with the knickzone locations. The controls of lithologic substrate on the knickzone locations are therefore limited. The abundant knickzones in steep river reaches indicate a hydraulic origin of knickzones, where stream erosions have enough strength in shaping the bedrock. Moreover, the knickzones are frequently observed in reaches slightly upstream from the major confluences at which stream discharge abruptly increases, indicating that the hydraulic anomalies of water flows at the confluences can cause knickzones which may later migrate upstream. The other possible causes of knickzone initiation including volcanic, tectonic and climatic effects are also suggested. The abundant knickzones in Japanese mountain rivers, resulted from the interactions among surface processes, suggest that river morphology modeling needs to consider the initiation and development of knickzones. tokyo.ac.jp/~hayakawa/
NASA Astrophysics Data System (ADS)
Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M. L.
2012-11-01
The Ouarzazate basin is a Cenozoic foreland basin located to the south of the High Atlas Mountains. The basin has been externally drained during the Quaternary, with fluvial dynamics dominated by erosive processes from a progressive base level drop. The current drainage network is composed of rivers draining the mountain and carrying large amounts of coarse sediments and by piedmont streams with smaller catchments eroding the soft Cenozoic rocks of the Ouarzazate basin. The coarse-grained sediments covering the channel beds of main rivers cause the steepening of the channel gradient and act as a shield inhibiting bedrock incision. Under such circumstances, piedmont streams that incise to lower gradients evolve to large, depressed pediments at lower elevations and threaten to capture rivers originating in the mountain. Much of the current surface of the Ouarzazate basin is covered by coarse sediments forming large systems of stepped fan pediments that developed by the filling of low elevation pediments after a capture event. We identified 14 capture events, and previously published geochronology support an ~ 100 ka frequency for fan pediment formation. Our study indicates that the reorganization of the fluvial network in the Ouarzazate basin during the late Pleistocene and Holocene has been controlled by the piedmont-stream piracy process, a process ultimately controlled by the cover effect. The stream capture is influenced by erosion, sediment supply and transport, and therefore may not be entirely decoupled from tectonic and climatic forcing. Indeed, we show that at least two capture events may have occurred during climate changes, and local tectonic structures control at most the spatial localization of capture events.
Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen
NASA Astrophysics Data System (ADS)
Ganade de Araujo, Carlos E.; Rubatto, Daniela; Hermann, Joerg; Cordani, Umberto G.; Caby, Renaud; Basei, Miguel A. S.
2014-10-01
The deeply eroded West Gondwana Orogen is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks, such as eclogites. The position of these eclogites marks the suture zone between colliding cratons, and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. Here we investigate the metamorphic conditions and age of high-pressure and ultrahigh-pressure eclogites from Mali, Togo and NE-Brazil and demonstrate that continental subduction occurred within 20 million years over at least a 2,500-km-long section of the orogen during the Ediacaran. We consider this to be the earliest evidence of large-scale deep-continental subduction and consequent appearance of Himalayan-scale mountains in the geological record. The rise and subsequent erosion of such mountains in the Late Ediacaran is perfectly timed to deliver sediments and nutrients that are thought to have been necessary for the subsequent evolution of sustainable life on Earth.
McCarthy, J.; Larkin, S.P.; Fuis, G.S.; Simpson, R.W.; Howard, K.A.
1991-01-01
The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensiional image of this part of the metamorphic core complex belt. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 km s-1) overlying a fairly homogeneous basement (~6.0 km s-1) and a localized high-velocity (6.4 km s -1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin Rawhide mountains between 10 and 20km depth. -from Authors
Perea, Silvia; Cobo-Simon, Marta; Doadrio, Ignacio
2016-04-01
Southern Iberian freshwater ecosystems located at the border between the European and African plates represent a tectonically complex region spanning several geological ages, from the uplifting of the Betic Mountains in the Serravalian-Tortonian periods to the present. This area has also been subjected to the influence of changing climate conditions since the Middle-Upper Pliocene when seasonal weather patterns were established. Consequently, the ichthyofauna of southern Iberia is an interesting model system for analyzing the influence of Cenozoic tectonic and climatic events on its evolutionary history. The cyprinids Squalius malacitanus and Squalius pyrenaicus are allopatrically distributed in southern Iberia and their evolutionary history may have been defined by Cenozoic tectonic and climatic events. We analyzed MT-CYB (510 specimens) and RAG1 (140 specimens) genes of both species to reconstruct phylogenetic relationships and to estimate divergence times and ancestral distribution ranges of the species and their populations. We also assessed their levels of genetic structure and diversity as well as the amount of gene flow between populations. To investigate recent paleogeographical and climatic factors in southern Iberia, we modeled changes-through-time in sea level from the LGM to the present. Phylogenetic, geographic and population structure analyses revealed two well-supported species (S. malacitanus and S. pyrenaicus) in southern Iberia and two subclades (Atlantic and Mediterranean) within S. malacitanus. The origin of S. malacitanus and the separation of its Atlantic and Mediterranean populations occurred during the Serravalian-Tortonian and Miocene-Pliocene periods, respectively. These divergence events occurred in the Middle Pliocene and Pleistocene in S. pyrenaicus. In both species, Atlantic basins possessed populations with higher genetic diversity than Mediterranean, which may be explained by the Janda Lagoon. The isolation of S. malacitanus was earlier and related to the rising of the Betic Mountains. Divergence of its Atlantic and Mediterranean populations was associated with the creation of the freshwater systems of southern Iberia close to the Gibraltar Strait. The presence of S. pyrenaicus in southern Iberia may be the result of recent colonization associated with river capture, as demonstrated our biogeographic reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.
2000-01-01
The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.
NASA Astrophysics Data System (ADS)
Argyriou, Athanasios V.; Teeuw, Richard M.; Soupios, Pantelis; Sarris, Apostolos
2017-11-01
Geomorphic indices can be used to examine the geomorphological and tectonic processes responsible for the development of the drainage basins. Such indices can be dependent on tectonics, erosional processes and other factors that control the morphology of the landforms. The inter-relationships between geomorphic indices can determine the influence of regional tectonic activity in the shape development of drainage basins. A Multi-Criteria Decision Analysis (MCDA) procedure has been used to perform an integrated cluster analysis that highlights information associated with the dominant regional tectonic activity. Factor Analysis (FA) and Analytical Hierarchy Process (AHP) were considered within that procedure, producing a representation of the distributed regional tectonic activity of the drainage basins studied. The study area is western Crete, located in the outer fore-arc of the Hellenic subduction zone, one of the world's most tectonically active regions. The results indicate that in the landscape evolution of the study area (especially the western basins) tectonic controls dominate over lithological controls.
NASA Astrophysics Data System (ADS)
Bhattarai, I.; Gani, N. D.
2016-12-01
The Nepalese Himalaya is one of the most active regions within the Himalayan Mountain Belt, which is characterized by a thick succession of Siwalik sedimentary rocks deposited at its foreland basin. To date, much of the tectonic geomorphologic study in the Nepalese Siwalik is poorly understood, particularly in the Surai Khola section. Thus, the study of quantitative analysis of bedrock river parameters will provide crucial information regarding tectonic activities in the area. This study investigates geomorphic parameters of longitudinal river profiles from 54 watersheds within the Siwalik section of the Nepalese Himalaya. We extracted a total of 140 bedrock rivers from these watersheds using stream power-law function and 30-meter resolution ASTER DEM. In addition, we used 90-meter resolution SRTM DEM for structural mapping within the Surai Khola section. Our new results show presence of major and minor knickpoints that were classified on the basis of relief of the longitudinal profiles. We identified 180 major knickpoints out of 305 total knickpoints. Normalized steepness index (ksn) and concavity index values vary above and below these knicpoints. The ksn values range from 5.3 to 140.6 while concavity index of the streams in the study area ranges from as low as -12.1 to as high as 31.1. We also identified a total of 133 structural lineations that were mapped for the first time using various sun illumination angles and azimuths, and slope. Most of these structural lineations are likely faults that follow the similar east-west trends of the Main Frontal Thrust (MFT) Fault. The length of these faults ranges from 0.5 km to 8 km. We interpreted that a few measured knickpoints might be associated with our mapped mesoscale faults, while the majority of the knickpoints in the river profiles are locally adjusting to the MFT related uplift.
Resolving the tectonic transition between ancestral North America and the northern Cordillera
NASA Astrophysics Data System (ADS)
Schaeffer, A. J.; Audet, P.; Lebedev, S.
2015-12-01
The northern Cordillera, situated in the Canadian northwest, is one of the most actively deforming regions in Canada and host to the highest earthquake activity in the country. Furthermore, it presents a largely contiguous snapshot through almost 4 Gyr of Earth's history across a zone <2000 km in linear extent. Deformation is thought to be driven by tectonic forces transferred from the Alaska-Pacific plate collision eastwards to the Cordilleran Deformation Front (CDF), where the westward edge of the Canadian Shield acts as a rigid backstop. Past studies in the southern Yukon indicate a sharp transition into the craton underlying the CDF and evidence of craton growth through shallow subduction. Further north the proximity of the craton edge to the CDF remains largely unresolved; based on studies of the southern Cordillera and Alaska, significant variations in lithospheric architecture are expected. Additionally, significant seismicity is observed further north off the Beaufort Shelf; however, its relationship to the regional stress fields and associated tectonic forcing is unclear. Despite the high seismicity levels across, detailed study of this region has been limited by insufficient coverage of seismological infrastructure, hindering resolution in past models. With the deployment of the USArray Transportable Array in Alaska over the last several years, combined with regional arrays such as the Yukon-Northwest Seismic Network (YNSN), Banks Island Seismic Network (BISN) and Mackenzie Mountains Experiment, new studies will leverage these datasets enabling more detailed imaging of the structure and seismicity across the region. Here we present a new high-resolution, vertically polarized shear speed and azimuthal model of northwestern Canada and Alaska, constrained by vertical component seismogram fits computed using the Automated Multimode Inversion of Surface, S, and multiple-S waveforms. With this new model, we aim to address key questions relating to the dynamics of the northern Cordillera, including how far west the craton edge extends at depth, in addition to the crustal thickness, velocity structure, and pattern of crustal fabrics around major faults throughout the region.
Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.
2014-01-01
The Ute Mountain 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Ute Mountain has the distinction of being one of the largest intermediate composition eruptive centers of the Taos Plateau, a largely volcanic tableland occupying the southern portion of the San Luis Basin. Ute Mountain rises to an elevation in excess of 3,000 m, nearly 700 m above the basaltic plateau at its base, and is characterized by three distinct phases of Pliocene eruptive activity recorded in the stratigraphy exposed on the flanks of the mountain and in the Rio Grande gorge. Unconformably overlain by largely flat-lying lava flows of Servilleta Basalt, the area surrounding Ute Mountain records a westward thickening of basin-fill volcanic deposits interstratified in the subsurface with Pliocene basin-fill sedimentary deposits derived from older Tertiary and Precambrian sources to the east. Superimposed on this volcanic stratigraphy are alluvial and colluvial deposits derived from the flanks of Ute Mountain and more distally-derived alluvium from the uplifted Sangre de Cristo Mountains to the east, that record a complex temporal and stratigraphic succession of Quaternary basin deposition and erosion. Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens. These poorly exposed fault scarps cutting lava flows of Ute Mountain volcano. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the relative youth of the deposits has resulted in only modest displacements on most faults, and (3) some of the faults may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub-horizontal contacts. Those faults characterized as “certain” either have distinct offset of map units or had slip planes that were directly observed in the field. Lineaments defined from magnetic anomalies form an additional constraint on potential fault locations and are indicated as such on the map sheet.
Barnett, Elizabeth; Sherrod, Brian; Hughes, Jonathan F.; Kelsey, Harvey M.; Czajkowski, Jessica L.; Walsh, Timothy J.; Contreras, Trevor A.; Schermer, Elizabeth R.; Carson, Robert J.
2015-01-01
Trench and wetland coring studies show that northeast‐striking strands of the Saddle Mountain fault zone ruptured the ground about 1000 years ago, generating prominent scarps. Three conspicuous subparallel fault scarps can be traced for 15 km on Light Detection and Ranging (LiDAR) imagery, traversing the foothills of the southeast Olympic Mountains: the Saddle Mountain east fault, the Saddle Mountain west fault, and the newly identified Sund Creek fault. Uplift of the Saddle Mountain east fault scarp impounded stream flow, forming Price Lake and submerging an existing forest, thereby leaving drowned stumps still rooted in place. Stratigraphy mapped in two trenches, one across the Saddle Mountain east fault and the other across the Sund Creek fault, records one and two earthquakes, respectively, as faulting juxtaposed Miocene‐age bedrock against glacial and postglacial deposits. Although the stratigraphy demonstrates that reverse motion generated the scarps, slip indicators measured on fault surfaces suggest a component of left‐lateral slip. From trench exposures, we estimate the postglacial slip rate to be 0.2 mm/yr and between 0.7 and 3.2 mm/yr during the past 3000 years. Integrating radiocarbon data from this study with earlier Saddle Mountain fault studies into an OxCal Bayesian statistical chronology model constrains the most recent paleoearthquake age of rupture across all three Saddle Mountain faults to 1170–970 calibrated years (cal B.P.), which overlaps with the nearby Mw 7.5 1050–1020 cal B.P. Seattle fault earthquake. An earlier earthquake recorded in the Sund Creek trench exposure, dates to around 3500 cal B.P. The geometry of the Saddle Mountain faults and their near‐synchronous rupture to nearby faults 1000 years ago suggest that the Saddle Mountain fault zone forms a western boundary fault along which the fore‐arc blocks migrate northward in response to margin‐parallel shortening across the Puget Lowland.
NASA Astrophysics Data System (ADS)
Srivastava, Pradeep; Singh, Vimal
2017-05-01
Tectonically active Himalayan mountains evolves via feedbacks from deep earth and surface processes; the complex interaction of various processes results into the landscape which is dynamic both at longer and shorter time scales. The extreme hydrological events that possibly ride over a long term climate cycle bring the changes in the landscape that impact human societies more closely. These events in the Himalaya frequently cause huge damage to economy and human lives. The geologist community under the umbrella of Himalaya-Karakorum-Tibet (HKT) workshop in its 30th edition convened a special session and deliberated on the subject. This special issue "Quaternary of Himalaya" is an outcome of papers presented and discussion held during this session; it consists of 18 papers in three sub-themes (i) Extreme Events in Himalaya (ii) Paleoglaciation in Himalaya and (iii) Expressions of climate and neotectonics in Himalaya.
Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.
2014-04-01
The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.
Thresholds for soil cover and weathering in mountainous landscapes
NASA Astrophysics Data System (ADS)
Dixon, Jean; Benjaram, Sarah
2017-04-01
The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigott, J.D.; Geiger, C.
1994-07-01
Recent field reconnaissance, petrography, nanno and foraminifera age determinations, and seismic stratigraphy of the Sepik and Piore subbasins of northern New Guinea reveal the existence of an extensive, tectonically unstable, Miocene-Pliocene carbonate shelf system. These findings represent the first recorded evidence of northern Papuan limestones coeval in age to those of the hydrocarbon productive Salawati Basin of Irian Jaya. Moreover, these observations also demonstrate the significance of episodic activities of the northern New Guinea fault zone upon the changes in carbonate sedimentation and diagenesis. During the Neogene, algal biosparites to foraminiferal biomicrites defined the clean portion of a mixed clastic-carbonatemore » shelf system of the northern New Guinea basin, which began at the central New Guinea cordillera and deepened northward. This shelf was interrupted by coral-coralline algal boundstone fringing- to patch-reef buildups with associated skeletal grainstones. Clean carbonates were spatially and temporally restricted to basement blocks, which episodically underwent uplift while terrigenous dilutes carbonates were more common in adjacently subsiding basement block bathymetric lows. These tectonic expressions were caused by the spatially transient nature of constraining bends of the evolving north New Guinea faults. As shown by seismic stratigraphy, by the late Miocene to the early Pliocene the uplift of the Bewani-Torricelli Mountains sagittally divided the shelf of the northern New Guinea basin into the Ramu-Sepik and the Piore basins. Continued regional sinistral transpression between the Pacific and the New Guinea leading edge of the Indo-Australian plates led to the reverse tilting of the Piore basin, the shallowing of the former distal shelf with concomitant extensive biolithite development (e.g., on subsiding volcanic islands) eventual uplifting of the Oenake Range, and en echelon faulting of the Bewani-Torricelli Mountains.« less
Howard, Keith A.
2005-01-01
Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.
NASA Astrophysics Data System (ADS)
Echaurren, A.; Folguera, A.; Gianni, G.; Orts, D.; Tassara, A.; Encinas, A.; Giménez, M.; Valencia, V.
2016-05-01
The North Patagonian fold-thrust belt (41°-44° S) is characterized by a low topography, reduced crustal thickness and a broad lateral development determined by a broken foreland system in the retroarc zone. This particular structural system has not been fully addressed in terms of the age and mechanisms that built this orogenic segment. Here, new field and seismic evidence of syntectonic strata constrain the timing of the main deformational stages, evaluating the prevailing crustal regime for the different mountain domains through time. Growth strata and progressive unconformities, controlled by extensional or compressive structures, were recognized in volcanic and sedimentary rocks from the cordilleran to the extra-Andean domain. These data were used to construct a balanced cross section, whose deep structure was investigated through a thermomechanical model that characterizes the upper plate rheology. Our results indicate two main compressive stages, interrupted by an extensional relaxation period. The first contractional stage in the mid-Cretaceous inverted Jurassic-Lower Cretaceous half graben systems, reactivating the western Cañadón Asfalto rift border ~ 500 km away from the trench, at a time of arc foreland expansion. For this stage, available thermochronological data reveal forearc cooling episodes, and global tectonic reconstructions indicate mid-ocean ridge collisions against the western edge of an upper plate with rapid trenchward displacement. Widespread synextensional volcanism is recognized throughout the Paleogene during plate reorganization; retroarc Paleocene--Eocene flare up activity is interpreted as product of a slab rollback, and fore-to-retroarc Oligocene slab/asthenospheric derived products as an expression of enhanced extension. The second stage of mountain growth occurred in Miocene time associated with Nazca Plate subduction, reaching nearly the same amplitude than the first compressive stage. Extensional weakening of the upper plate predating the described contractional stages appears as a necessary condition for abnormal lateral propagation of deformation.
Reconstructing the Thermo-tectonic history of the Rwenzori Mountains, D. R. Congo
NASA Astrophysics Data System (ADS)
Mansour, S.; Bauer, F.; Glasmacher, P. D. U. A. A.; Grobe, R. W.; Starz, M.
2014-12-01
The Albertine Rift forms the northern section of the western Rift of the East African Rift System (EARS). The Rwenzori Mtns evolved along the eastern rift shoulder of the Albertine Rift, rising up to form a striking feature within the rift valley with elevations reaching 5109 m a.s.l. While, the scarcity of volcanic activity in the Western Rift has raised questions about the Rwenzori Mtns origin and how this fits into the general evolution of the Albertine Rift and the EARS. Detailed thermochronologic study of Bauer et al., (2013) on the eastern side on Rwenzori Mtns, differentiated it into northern and southern blocks. The northern block cooled faster to ~120 °C in Carboniferous to Permian times. The second cooling event to ~70 °C occurred in Mesozoic time. The third cooling event to surface temperature occurred in the Neogene. While, the southern block shows an earlier onset of cooling at >400 Ma. Temperatures of about 70 °C were reached in Silurian to Devonian times. During this study, 33 samples were collected from the western side of central Rwenzori. Zircon and apatite fission track and (U/Th)-He techniques were applied on these samples. The apatite fission track data could be divided into three age groups; ~45±11, ~25±5, ~12±2 Ma. These results reveal the difference in thermo-tectonic history between the eastern and western flanks of Rwenzori Mtns and support the tilt uplift geometry hypotheses (e.g. Pickford et al., 1993). ReferencesBauer, F.U., Glasmacher, U.A., Ring, U., Karl, M., Schumann, A., Nagudi, B., 2013. Tracing the exhumation history of the Rwenzori Mountains, Albertine Rift, Uganda, using low-temperature thermochronology, Tectonophysics, 599, 8-28. http://dx.doi.org/10.1016/j.tecto.2013.03.032. Pickford, M., Senut, B., Hadoto, D., 1993. Geology and Palaeobiology of the Albertine Rift Valley Uganda-Zaire, vol. 1. Geology. CIFEG Occas, Orleans. Publication, vol. 24, pp. 1-190.
Topography of the Central Alps in the light of Tertiary collisional tectonics
NASA Astrophysics Data System (ADS)
Rosenberg, Claudio; Garcia, Sebastian
2013-04-01
Collisional shortening in the Central Alps is partitioned very differently between the upper and lower plates along the strike of the orogen. North of the Insubric Line, the amount of post-nappe shortening accommodated in the wedge of accreted lower crustal material, increases westwards, whereas south of the Insubric Line, post-nappe shortening accommodated in the upper plate increases eastward (Rosenberg and Kissling, 2013). Taking the Bergell pluton as a time marker, the age of these deformations is inferred to be post 30 Ma. We investigate the present-day topography of the Central Alps, in order to test whether the systematic, along-strike changes, in the amounts of post-nappe shortening are associated to a systematic change in the topographic signature. In order to do so, the maximum and minimum elevations, and the local relief along a series of N-S sections are analysed and compared. The analysis of these topographic sections shows that the local relief varies following two along-strike trends: 1. North of the Insubric Line, i.e. in the wedge of accreted lower crust, the relief decreases from west to east, showing the transition from a highly incised topography in the west to a plateau-like topography in the East. 2. South of the Insubric Line, i.e. in the lower plate, the relief increases from East to West. These trends point to a positive correlation between the amount of shortening and the intensity of local relief. Linear correlations between local relief and uplift rate (e.g. Hurtez et al., 1999), and between local relief and shortening rates (Champagnac et al., 2012) have been inferred for different, tectonically active areas. Areas of larger finite shortening in the Central Alps, characterized by higher local relief, probably correspond to areas of higher shortening (and uplift) rates during Alpine collision. Considering the very slow, present-day, convergent movements across the Central Alps (Noquet and Calais, 2004) it is not clear whether the observed correlation between shortening and relief is the result of past, but still active tectonics or a well preserved relict of Miocene teconic activity. References: Champagnac, J.-D., P. Molnar, C. Sue, and F. Herman (2012), Tectonics, climate, and mountain topography, J. Geophys. Res., 117, B02403, doi:10.1029/2011JB008348. Hurtez, J._E., Lucazeau, F., Lavé, J., and Avouac, J.-P. (1999), Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal. J. Geophys. Res., 104, NO. B6, PAGES 12,779-12,796 Nocquet, J.-M. and Calais, E. (2004), Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure and Applied Geophysics, 161, 661-681, doi:10.1007/s00024-003-2468-z Rosenberg, C.L. and Kissling, E. (2013), 3D Structure of collision in the Central Alps: lower-plate or upper-plate indentation? EGU Abstract volume, EGU2013-ASC-2013-7946.
NASA Astrophysics Data System (ADS)
Candaux, Zoé; Sosson, Marc; Adamia, Shota; Sadradze, Nino; Alania, Victor; Enukidze, Onise; Chabukiani, Alexandre
2017-04-01
The Greater Caucasus mountain belt is the result of a long live subduction process and collisions of continental microplates (e.g. Dercourt et al., 1986; Barrier and Vrielynck, 2008). The northward subduction of Tethys beneath Eurasian plate initiated a back-arc basin: the Greater Caucasus basin (e.g. Adamia et al., 1981; Zonenshain and Le Pichon, 1986; Roberston et al., 1996; Stephenson and Schellart, 2010 among others). It took place from Middle Jurassic to Late Cretaceous. First compression stage started at the end of Cretaceous in the Lesser Caucasus (e.g. Rolland et al., 2010; Sosson et al. 2010, 2016) and Palaeocene-early Eocene in Crimean Mountains (northwestern continuation of the Greater Caucasus) (Sheremet et al., 2016). In southern Greater Caucasus (Georgian area) the age of deformation during the beginning of the collision is still a subject of debate: Oligocene-Lower Miocene at the frontal part (e.g. Adamia et al. 2010) or Eocene (Mosar et al., 2010). The deformation continues at Miocene, Pliocene and actual time in Kura and Rioni foreland basins (Forte et al., 2010; 2013; Mosar et al., 2010). The different timing is interpreted to be the result of the Taurides-Anatolides-South Armenian microcontinent collision with Eurasia, followed by the collision with Arabia. During the first collision, during Paleocene-Eocene, the so-called Adjara-Trialeti basin opened north of the volcanic arc. One question is if this local extension affect the timing of compression observed in the Greater Caucasus or not. In Georgia, we investigated new structural analyses, and considered unconformities and growth strata at the frontal part of deformations in Kura and Rioni forelands basins (in front of the Greater Caucasus). Our results evidence different tectonic stages and their timing. In Adjara-Trialeti, Kura and south Rioni basins deformation starts at Middle-Late Miocene. In northern Rioni basin Upper Cretaceous-Lower Paleocene compression is evidenced. The structures observed in the Greater Caucasus, forelands basins (Kura and Rioni basins) and in the Adjara-Trialeti belt are different: some are linked to thin-skinned tectonic deformations while some induces deformation at depth (thick-skinned tectonic). These observations outline the role of the inherited structures within the basement. The normal faults due to the previous extensional stages are reactivated as thrust during collision while detachment levels are observed in deposits not involved in the extensional stages. These observations bring out the importance of the chronology of the different tectonic stages to better understand the tectonic frame and geodynamic processes involved from the Early Cretaceous in this area and the role on the resulting structures.
NASA Astrophysics Data System (ADS)
Demirkesen, A. C.
2009-01-01
A digital terrain model and a 3D fly-through model of the Nigde province in central Anatolia, Turkey were generated and quantitatively analyzed employing the shuttle radar topographic mission (SRTM) digital elevation model (DEM). Besides, stream drainage patterns, lineaments and structural-geological features were extracted and analyzed. In the process of analyzing and interpreting the DEM for landforms, criteria such as color and color tones (attributes of heights), topography (shaded DEM and 3D fly-through model) and stream drainage patterns were employed to acquire geo-information about the land, such as hydrologic, geomorphologic, topographic and tectonic structures. In this study, the SRTM DEM data of the study region were experimentally used for both DEM classification and quantitative analysis of the digital terrain model. The results of the DEM classification are: (1) low plain including the plains of Bor and Altunhisar (20.7%); (2) high plain including the Misli (Konakli) plain (28.8%); (3) plateau plain including the Melendiz (Ciftlik) plateau plain (1.0%); (4) mountain including the Nigde massif (33.3%); and (5) high mountain (16.2%). High mountain areas include a caldera complex of Mt Melendiz, Mt Hasan and Mt Pozanti apart from the Ala mountains called Aladaglar and the Bolkar mountains called Bolkarlar in the study region (7,312 km2). Analysis of both the stream drainage patterns and the lineaments revealed that the Nigde province has a valley zone called Karasu valley zone (KVZ) or Nigde valley zone (NVZ), where settlements and agricultural plains, particularly the Bor plain in addition to settlements of the Bor town and the central city of Nigde have the most flooding risk when a heavy raining occurs. The study revealed that the NVZ diagonally divides the study region roughly into two equal parts, heading from northeast to southwest. According to the map created in this study, the right side of the NVZ has more mountainous area, where the Aladaglar is a wildlife national park consisting of many species of fauna and flora whereas the left side of the NVZ has more agricultural plain, with exception of a caldera complex of Mt Melendiz and volcanic Mt Hasan. The south of the study region includes the Bolkarlar. In addition, the Ecemis fault zone (EFZ) lying along the Ecemis rivulet, running from north to south at the west side of the Aladaglar, forms the most important and sensitive location in the region in terms of the tectonics.
NASA Astrophysics Data System (ADS)
Rosskopf, Carmen Maria; Filocamo, Francesca; Amato, Vincenzo; Cesarano, Massimo
2016-04-01
The Matese Massif is a ca. 1000 km2 wide and NW-SE elongated carbonate relief, located in the inner sector of the Southern Apennine chain. It has a tabular setting with steep structural slopes bordering the central high mountain sector including its major peaks and is crossed from approximately west to east by the border between Campania and Molise regions. The Matese Mountains represent a key area for the comprehension of the geological and tectonic evolution of the Southern Apennines since Mesozoic times. Its long-term geomorphological evolution has been controlled by Quaternary tectonics and climate variations that have allowed the temporary or permanent establishment of various environments and morphodynamics. Deposits and landforms originated by glacial, periglacial, karst and fluvial processes, along with a rich assemblage of tectonic-structural features and landforms of complex origin have given origin to a geological heritage of exceptional value. The geosites actually censured within the Campanian sector of Matese are reported in the Geosites Map of Campania, available at the website of Campania Region and partly included in the Italian Geosites Inventory of ISPRA. The geosites of the Molise sector have been recently assessed within the geosite inventory carried out by Molise University. They are reported in the Geosites Map of Molise, available at the website of Molise Region, and partly included in the ISPRA's National Inventory of Geosites. The Matese area is largely included in protected areas: the Campania portion falls within the Matese Regional Park, established in 2002, while most of the Molise sector falls in the extensive ZPS/SIC IT72222287. To better protect and exploit the unique natural and geological heritage of the Matese Massif, numerous initiatives aimed at the establishment of the National Park of Matese have continued for several years and very recent attempts to promote the Matese Geopark have been made, but unfortunately without any success. Meanwhile, there are various initiatives that promote geotourism separately in the Molise and Campania sectors. However, a network of geotourism initiatives linking the two sectors and allowing the exploitation of the geological heritage of the Matese area as a whole is still lacking. Aim of this study is, obviously, the promotion of the geoheritage of the Matese Massif. Specific objects are to contribute to a better connectivity between its two sectors, the development of an overall geotourism network and, somehow, the establishment of the Matese National Park/Geopark. We propose a first geological itinerary that runs through the entire Matese Massif, from south to north. The proposed itinerary includes geosites of local to national relevance and various scientific interest (from Paleontology to Geomorphology). It allows also non-scientific audiences to understand the main steps of the rich geological history of the Matese Mountains and the geomorphic processes that have given rise to the high variety of paleo- and active landscapes and landforms, but also to appreciate its natural heritage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isachsen, Y.W.
1978-09-27
Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similarmore » dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.« less
Geologic map of the Mohave Mountains area, Mohave County, western Arizona
Howard, K.A.; Nielson, J.E.; Wilshire, W.G.; Nakata, J.K.; Goodge, J.W.; Reneau, Steven L.; John, Barbara E.; Hansen, V.L.
1999-01-01
Introduction The Mohave Mountains area surrounds Lake Havasu City, Arizona, in the Basin and Range physiographic province. The Mohave Mountains and the Aubrey Hills form two northwest-trending ranges adjacent to Lake Havasu (elevation 132 m; 448 ft) on the Colorado River. The low Buck Mountains lie northeast of the Mohave Mountains in the alluviated valley of Dutch Flat. Lowlands at Standard Wash separate the Mohave Mountains from the Bill Williams Mountains to the southeast. The highest point in the area is Crossman Peak in the Mohave Mountains, at an elevation of 1519 m (5148 ft). Arizona Highway 95 is now rerouted in the northwestern part of the map area from its position portrayed on the base map; it now also passes through the southern edge of the map area. Geologic mapping was begun in 1980 as part of a program to assess the mineral resource potential of Federal lands under the jurisdiction of the U.S. Bureau of Land Management (Light and others, 1983). Mapping responsibilities were as follows: Proterozoic and Mesozoic rocks, K.A. Howard; dikes, J.K. Nakata; Miocene section, J.E. Nielson; and surficial deposits, H.G. Wilshire. Earlier geologic mapping includes reconnaissance mapping by Wilson and Moore (1959). The present series of investigations has resulted in reports on the crystalline rocks and structure (Howard and others, 1982a), dikes (Nakata, 1982), Tertiary stratigraphy (Pike and Hansen, 1982; Nielson, 1986; Nielson and Beratan, 1990), surficial deposits (Wilshire and Reneau, 1992), tectonics (Howard and John, 1987; Beratan and others, 1990), geophysics (Simpson and others, 1986), mineralization (Light and McDonnell, 1983; Light and others, 1983), field guides (Nielson, 1986; Howard and others, 1987), and geochronology (Nakata and others, 1990; Foster and others, 1990).
NASA Astrophysics Data System (ADS)
Kazem Shiroodi, Sadjad; Ghafoori, Mohammad; Faghih, Ali; Ghanadian, Mostafa; Lashkaripour, Gholamreza; Hafezi Moghadas, Naser
2015-11-01
Distinctive characteristics of inverted structures make them important criteria for the identification of certain structural styles of folded belts. The interpretation of 3D seismic reflection and well data sheds new light on the structural evolution and age of inverted structures associated to the Hendijan-Nowrooz-Khafji Fault within the Persian Gulf Basin and northeastern margin of Afro-Arabian plate. Analysis of thickness variations of growth strata using "T-Z plot" (thickness versus throw plot) method revealed the kinematics of the fault. Obtained results show that the fault has experienced a multi-phase evolutionary history over six different extension and compression deformation events (i.e. positive and negative inversion) between 252.2 and 11.62 Ma. This cyclic activity of the growth fault was resulted from alteration of sedimentary processes during continuous fault slip. The structural development of the study area both during positive and negative inversion geometry styles was ultimately controlled by the relative motion between the Afro-Arabian and Central-Iranian plates.
NASA Astrophysics Data System (ADS)
Fort, Monique
2015-04-01
Mountain environments are very sensitive to climate change, yet assessing the potential impacts of these changes is not easy because of the complexity and diversity of mountain systems. The Himalayan permafrost belt presents three main specificities: (1) it develops in a geodynamically active mountain, which means that the controlling factors are not only temperature but also seismo-tectonic activity; (2) due to the steepness of the southern flank of the Greater Himalaya and potential large scale rock failures, permafrost evidence manifests itself best in the inner valleys and on the northern, arid side of the Himalayas (elevations >4000m); (3) the east-west strike of the mountain range creates large spatial discontinuity in the "cold" belt, mostly related to precipitation nature and availability. Only limited studies have been carried to date, and there is no permanent "field laboratory", nor continuous records but a few local studies. Based on preliminary observations in the Nepal Himalayas (mostly in Mustang and Dolpo districts), and Indian Ladakh, we present the main features indicating the existence of permafrost (either continuous or discontinuous). Rock-glaciers are quite well represented, though their presence may be interpreted as a combined result from both ground ice and large rock collapse. The precise altitudinal zonation of permafrost belt (specifying potential permafrost, probable permafrost, observed permafrost belts) still requires careful investigations in selected areas. Several questions arise when considering the evolution of permafrost in a context of climate change, with its impacts on the development of potential natural hazards that may affect the mountain population. Firstly, permafrost degradation (ground ice melting) is a cause of mountain slope destabilization. When the steep catchments are developed in frost/water sensitive bedrock (shales and marls) and extend to high elevations (as observed in Mustang or Dolpo), it would supply more mass-wasting and debris-flow events and may directly threat the infrastructures recently built to unlock these remote areas. Secondly, acceleration of permafrost degradation might also affect the steepest rock walls (as in Khumbu, Manang and Mustang Himals) and cause rock avalanches that could impact nearby settlements, as suggested by relicts of past events. Lastly, ground ice is a hidden source of water in areas without permanent glacial ice. In a context of global warming this non-renewable resource would be depleted and no longer available for the population living in these areas, all the more as growing tourism activities are increasing the demand for water consumption that may conflicts with irrigated agricultural uses down valley. More in-situ observations and long-term monitoring studies should certainly be useful to understand climate trends hence permafrost evolution and their consequences in order to help mountain populations of the cold, arid Himalayas to adjust to progressive changes in their environmental conditions and resources.
NASA Astrophysics Data System (ADS)
Aronoff, R.; Andronicos, C.; Vervoort, J. D.; Hunter, R. A.
2014-12-01
Lu-Hf garnet dating of Proterozoic rocks of the southwestern United States provides constraints on the timing and geographic extent of metamorphism associated with the Yavapai, Mazatzal, and newly recognized Picuris orogenies. Prior work focusing on U-Pb dating of plutons and Ar geochronology has left the timing of prograde metamorphism ambiguous, particularly in northern New Mexico and southern Colorado. Because the Lu-Hf system dates the onset of garnet growth, it can constrain the timing of the prograde P-T path. Garnet schist samples from central and northern New Mexico exhibit garnet growth restricted to the time period between ~1460 and 1400 Ma. In the Picuris and Manzano mountains, the oldest Lu-Hf garnet ages predate the U-Pb ages of ~1.4 Ga plutons located near the dated samples. This implies that garnet growth, and therefore the onset of amphibolite facies metamorphism, cannot be driven by contact metamorphism, as has been previously inferred. Garnet-bearing samples from the Needle and Wet Mountains in southern Colorado display a range of garnet ages between ~1750 and 1470 Ma. A garnet gneiss from the Needle Mountains in southwestern Colorado yields an age of 1748 Ma, which is consistent with the Yavapai orogeny. This Lu-Hf garnet age has not been reset by contact metamorphism associated with the emplacement of the ~1.4 Ga Eolus batholith. Anatectic garnet in an orthogneiss from the northern Wet Mountains yields an age of 1601 Ma and is interpreted to date partial melting at the close of the Mazatzal orogeny. A 1476 Ma garnet age from the aureole of the 1440 Ma Oak Creek pluton is interpreted to date upper amphibolite facies metamorphism. The age distribution of these samples shows that rocks in Colorado underwent a complex, poly-metamorphic history, while rocks in New Mexico underwent a single progressive metamorphic event. This contrast implies that the boundary between rocks deformed and metamorphosed during the ~1800-1600 Ma Yavapai and Mazatzal orogenies and those only deformed and metamorphosed during the ~1460-1400 Ma Picuris orogeny lies in northern New Mexico, along what has previously been considered the Mazatzal front. By using Lu-Hf geochronology to directly date a rock-forming mineral, we are better able to reconstruct the tectonic history of this region.