Sample records for teflon

  1. Development of Improved LOX-Compatible Laminated Gasket Composite

    DTIC Science & Technology

    1966-08-01

    Braided Teflon 2. Bleached fluorocarbon felt 3. Teflon and asbestos fibers 4. Teflon and ceramic fibers 5. Teflon and glass fibers 6. Viton A and asbestos 7...fluorinated ethylene- propylene (Teflon FEP), polychlorotrifluoroethylene films (Aclar - Kel F), and fluorocarbon elastomers (Viton A - Fluorel, etc...2nd 10th CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE FILLED FLUOROCARBON GLASS FILLED TEFLON FLUOROCARBON LAMINATE ELASTOMER Figure 21

  2. Teflon Might Be a Factor Accounting for a Failed Microvascular Decompression in Hemifacial Spasm: A Technical Note.

    PubMed

    Dou, Ning-Ning; Zhong, Jun; Liu, Ming-Xing; Xia, Lei; Sun, Hui; Li, Bin; Li, Shi-Ting

    2016-01-01

    Although Teflon is widely adopted for microvascular decompression (MVD) surgery, it has never been addressed for failure analysis. This study analyzed the reasons for failed MVDs with emphasis on the Teflon sponge. Among the 685 hemifacial spasm cases between 2010 and 2014, 31 were reoperated on within a week because of unsatisfactory outcome, which was focused on in this study. Intraoperative findings regarding Teflon inserts of these repeat MVDs were reviewed. Among the 38 without satisfactory outcomes, 31 underwent repeat MVDs, and they were all spasm free afterwards. Eventually, the final cure rate was 99.2%. It was found in the repeat MVDs that the failure was attributable to the Teflon insert in most of the cases (74.2%) directly or indirectly. It was caused by improper placement (47.8%), inappropriate size (34.8%) and unsuitable shape (17.4%) of the Teflon sponge. Although it is not difficult for an experienced neurosurgeon to discover a neurovascular conflict during the MVD process, the size, shape and location of the Teflon sponge should not be ignored. Basically, the Teflon insert is used to keep the offending artery away from the facial nerve root rather than to isolate it. Therefore, the ideal Teflon sponge should be just small enough to produce a neurovascular separation. © 2016 S. Karger AG, Basel.

  3. Investigation of Teflon FEP Embrittlement on Spacecraft in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.

    1997-01-01

    Teflon fluorinated ethylene propylene (FEP) (DuPont) is commonly used on exterior spacecraft surfaces for thermal control in the low-Earth orbit environment. Silverized or aluminized Teflon FEP is used for the outer layers of the thermal control blanket because of its high reflectance, low solar absorptance, and high thermal emittance. Teflon FEP is also desirable because, compared with other spacecraft polymers (such as Kapton), it has relatively high resistance to atomic oxygen erosion. Because of its comparably low atomic oxygen erosion yield, Teflon FEP has been used unprotected in the space environment. Samples of Teflon FEP from the Long Duration Exposure Facility (LDEF) and the Hubble Space Telescope (retrieved during its first servicing mission) were evaluated for solar-induced embrittlement and for synergistic effects of solar degradation and atomic oxygen.

  4. Living history in current orthopaedic hip surgery: intrapelvic teflon granuloma after total hip replacement.

    PubMed

    Gheorghiu, Daniel; Peter, Viju; Lynch, Martin

    2010-02-01

    The teflon hip arthroplasty design was used by Sir John Charnley in the early 60's but was taken off the market due to high complication rates. A case is reported of an intrapelvic granuloma after total hip arthroplasty following the use of a teflon socket. This appears to be the last surviving patient treated by Sir John Charnley using a Teflon hip socket design.

  5. [Preparation and clinical application of Teflon-wire piston and stapes height measurer].

    PubMed

    Xie, Nan-ping

    2003-08-01

    With Teflon, and a tiny stainless steel needle of a number 7 injector and an acupuncture needle,Teflon-piston and a measurer of the stapes height were prepared respectively of stapedectomy for treatment of otosclerosis. Good clinical results were achieved with these simple and useful devices.

  6. Embossed Teflon AF Laminate Membrane Microfluidic Diaphragm Valves

    NASA Technical Reports Server (NTRS)

    Willis, Peter; Hunt, Brian; White,Victor; Grunthaner, Frank

    2008-01-01

    A microfluidic system has been designed to survive spaceflight and to function autonomously on the Martian surface. It manipulates microscopic quantities of liquid water and performs chemical analyses on these samples to assay for the presence of molecules associated with past or present living processes. This technology lies at the core of the Urey Instrument, which is scheduled for inclusion on the Pasteur Payload of the ESA ExoMars rover mission in 2013. Fabrication processes have been developed to make the microfabricated Teflon-AF microfluidic diaphragm pumps capable of surviving extreme temperature excursions before and after exposure to liquid water. Two glass wafers are etched with features and a continuous Teflon membrane is sandwiched between them (see figure). Single valves are constructed using this geometry. The microfabricated devices are then post processed by heating the assembled device while applying pneumatic pressure to force the Teflon diaphragm against the valve seat while it is softened. After cooling the device, the embossed membrane retains this new shape. This solves previous problems with bubble introduction into the fluid flow where deformations of the membrane at the valve seat occurred during device bonding at elevated temperatures (100-150 C). The use of laminated membranes containing commercial Teflon AF 2400 sheet sandwiched between spun Teflon AF 1600 layers performed best, and were less gas permeable than Teflon AF 1600 membranes on their own. Spinning Teflon AF 1600 solution (6 percent in FLOURINERT(Registered TradeMark) FC40 solvent, 3M Company) at 500 rpm for 1.5 seconds, followed by 1,000 rpm for 3 seconds onto Borofloat glass wafers, results in a 10-micron-thick film of extremely smooth Teflon AF. This spinning process is repeated several times on flat, blank, glass wafers in order to gradually build a thick, smooth membrane. After running this process at least five times, the wafer and Teflon coating are heated under vacuum at 220 C for one hour in order to drive off any residual solvent present in the composite film. After this, a second blank, glass wafer is brought down from above and the stack is held under vacuum at 3 atm mechanical pressure for ten 10 hours.

  7. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.

  8. On-Orbit Teflon FEP Degradation

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, Joyce A.

    1998-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon' FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon FEP sample evaluation and additional testing of pristine Teflon FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, LTV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon FEP.

  9. On-Orbit Teflon(trademark) FEP Degradation

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Hansen, Patricia A.; Dever, Joyce A.

    1999-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(trademark) FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(trademark) FEP sample evaluation and additional testing of pristine Teflon FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon(trademark) FEP.

  10. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR FILTER WEIGHING (UA-L-9.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures to be followed in determining the pre- and post-exposure weight of 37mm and 25mm Teflon filters, Teflon sentinel filters and Teflon vacuum dust filters. This procedure applies to the pre- and post-exposure weighing of the fil...

  11. On-Orbit Teflon(trademark) FEP Degradation

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, Joyce A.

    1998-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(trademark) FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(trademark) FEP sample evaluation and additional testing of pristine Teflon(trademark) FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon(trademark) FEP.

  12. Evaluation of non-specular reflecting silvered Teflon and filled adhesives

    NASA Technical Reports Server (NTRS)

    Bourland, G.; Cox, R. L.

    1981-01-01

    A non-specular silver-Teflon tape thermal control coating was tested to provide the data necessary to qualify it for use on the Space Shuttle Orbiter radiators. Effects of cure cycle temperature and pressure on optical and mechanical properties on the silver-Teflon tape were evaluated. The baseline Permacel P-223 adhesive, used with the specular silver-Teflon tape initially qualified for the Orbiter radiators, and four alternate metal-filled and unfilled adhesives were evaluated. Tests showed the cure process has no effect on the silver-Teflon optical properties, and that the baseline adhesive cure cycle gives best results. In addition the P-223 adhesive bond is more reproducible than the alternates, and the non-specular tape meets both the mechanical and the optical requirements of the Orbiter radiator coating specification. Existing Orbiter coating techniques were demonstrated to be effective in aplying the non-specular tape to a curved panel simulating the radiators. Author

  13. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR FILTER WEIGHING (UA-L-9.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures to be followed in determining the pre- and post-exposure weight of 37mm and 25mm Teflon filters, Teflon sentinel filters and Teflon vacuum dust filters. This procedure applies to the pre- and post-exposure weighing of the fil...

  14. HNS/Teflon, a new heat resistant explosive

    NASA Technical Reports Server (NTRS)

    Heller, H.; Bertram, A. L.

    1973-01-01

    HNS/Teflon (90/10) is a new pressed explosive developed for use in the Apollo program. The major advantages of HNS/Teflon are (1) excellent thermal stability at elevated temperatures, (2) superior resistance to sublimation at high temperatures and low pressures and (3) ease of molding powder preparation, pressing and machining. The impact sensitivity of HNS/Teflon is between that of Comp B and Comp A-3 while its explosive performance is about the same as TNT. Under the severe environmental conditions of the moon's surface, this explosive successfully performed its intended function of generating seismic waves in the Apollo ALSEP and LSPE experiments. (Modified author abstract)

  15. Isentropic compression of argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is beingmore » sought.« less

  16. The development of an inert simulant for HNS/teflon explosive

    NASA Technical Reports Server (NTRS)

    Elban, W. L.

    1972-01-01

    The report describes the development and evaluation of an inert simulant for the thermally stable, heat-resistant plastic-bonded explosive HNS/Teflon. The simulant is made by dry blending vinylidene fluoride, melamine and Teflon which when compared has a pressed density and thermal properties corresponding closely to the explosive. In addition, the machinability and handling characteristics of the simulant are similar to the explosive.

  17. Hubble Space Telescope Metallized Teflon(registered trademark) FEP Thermal Control Materials: On-Orbit Degradation and Post-Retrieval Analysis

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, J. A.; deGroh, K. K.; Banks, B.; Wang, L.; He, C.

    1988-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), used as the outer layer of the multilayer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(Registered Trademark) FEP sample evaluation and additional testing of pristine Teflon(Registered Trademark) FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations , and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the retrieved Teflon(Registered Trademark) FEP.

  18. Whole-Teflon microfluidic chips

    PubMed Central

    Ren, Kangning; Dai, Wen; Zhou, Jianhua; Su, Jing; Wu, Hongkai

    2011-01-01

    Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time. PMID:21536918

  19. Ultras-stable Physical Vapor Deposited Amorphous Teflon Films with Extreme Fictive Temperature Reduction

    NASA Astrophysics Data System (ADS)

    McKenna, Gregory; Yoon, Heedong; Koh, Yung; Simon, Sindee

    In the present work, we have produced highly stable amorphous fluoropolymer (Teflon AF® 1600) films to study the calorimetric and relaxation behavior in the deep in the glassy regime. Physical vapor deposition (PVD) was used to produce 110 to 700 nm PVD films with substrate temperature ranging from 0.70 Tg to 0.90 Tg. Fictive temperature (Tf) was measured using Flash DSC with 600 K/s heating and cooling rates. Consistent with prior observations for small molecular weight glasses, large enthalpy overshoots were observed in the stable amorphous Teflon films. The Tf reduction for the stable Teflon films deposited in the vicinity of 0.85 Tg was approximately 70 K compared to the Tgof the rejuvenated system. The relaxation behavior of stable Teflon films was measured using the TTU bubble inflation technique and following Struik's protocol in the temperature range from Tf to Tg. The results show that the relaxation time decreases with increasing aging time implying that devitrification is occurring in this regime.

  20. Evaluation of commercially supplied silver coated Teflon for spacecraft temperature control usage

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.

    1974-01-01

    A series of tests are described which were performed to evaluate the acceptability of a commercially supplied silver backed teflon thermal control coating relative to teflon previously coated at GSFC. Optical measurements made on numerous samples indicate that the commercial material possesses an average solar absorptance of 0.085, an emittance of 0.76 and an average alpha/epsilon equal to 0.112, all of which are equivalent to the GSFC coated teflon. The emittance of the protective inconel backing was found to be 0.037. The coating is shown to have good adhesion at the Ag-teflon interface and exposure to UV irradiation uncovered no coating irregularities. Temperature cycling over the range -135 C to +200 C produced crazing in the evaporated Ag layer as expected but no delamination was observed. The suitability of Mystik no. 7366 and 3M no. 467 adhesives as bonding agents for the metallized polymer is demonstrated. Various problems associated with production reproducibility and selection of a proper bonding process are discussed.

  1. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Treesearch

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  2. Excimer laser with fluoropolymer lining

    DOEpatents

    Sze, Robert C.

    1982-01-01

    A cavity formed of Teflon to provide extended static fill lifetimes for gases containing halogens. A double cavity configuration provides structural integrity to the inner Teflon cavity by maintaining an identical multi-atmospheric pressure within the outer structural cavity to minimize tension on the Teflon inner cavity. Use of a quantity of the lasing gas in the outer cavity or a constituent of that gas minimizes contamination of the lasing gas.

  3. Characteristics of edge breakdowns on Teflon samples

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.

    1980-01-01

    The characteristics of electrical discharges induced on silverbacked Teflon samples irradiated by a monoenergetic electron beam have been studied under controlled laboratory conditions. Measurements of breakdown threshold voltages indicate a marked anisotropy in the electrical breakdown properties of Teflon: differences of up to 10 kV in breakdown threshold voltage are observed depending on the sample orientation. The material anisotropy can be utilized in spacecraft construction to reduce the magnitude of discharge currents.

  4. The Bond Strength of Composite Resin to Dental Casting Alloys Using an Electro-Chemical Tin Plating System.

    DTIC Science & Technology

    1985-06-01

    of Opaque-Adhesive Containing Opaque Powder ..................... 36 Figure 12. Isosit Resin Condensed into Teflon Tubes ..... 37 Figure 13. Device...millimeter long teflon tube was positioned centrally on each specimen. The Isosit body resin was condensed into the tube using the blunt end of a...8217.*. .’-~ ~**.*~.**.**.*~.**.*%~ 37 Figure 12. Isosit Resin Condensed into Teflon Tubes Wy~WW’. WVtTh. .. . - . - S.. * ***’h.).’ *.~’b

  5. Mechanical impact tests of materials in oxygen effects of contamination. [Teflon, stainless steel, and aluminum

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1980-01-01

    The effect of contaminants on the mechanical impact sensitivity of Teflon, stainless steel, and aluminum in a high-pressure oxygen environment was investigated. Uncontaminated Teflon did not ignite under the test conditions. The liquid contaminants - cutting oil, motor lubricating oil, and toolmaker dye - caused Teflon to ignite. Raising the temperature lowered the impact energy required for ignition. Stainless steel was insensitive to ignition under the test conditions with the contaminants used. Aluminum appeared to react without contaminants under certain test conditions; however, contamination with cutting oil, motor lubricating oil, and toolmakers dye increased the sensitivity of aluminum to mechanical impact. The grit contaminants silicon dioxide and copper powder did not conclusively affect the sensitivity of aluminum.

  6. Volatilization of PM2.5 Inorganic Ions in a Filter Pack System with Backup Filter and Denuders

    NASA Astrophysics Data System (ADS)

    Kim, C.; Choi, Y.; Ghim, Y.

    2012-12-01

    Concentrations of PM2.5 inorganic ions were measured at the rooftop of the 5-story building on the hill (37.02oN, 127.16oE, 167 m above sea level) in the Global Campus of Hankuk University of Foreign Studies, about 35 km southeast of downtown Seoul, Korea. The measurements were made four times during one-year span between 2011 and 2012 by considering the climate of Korea with distinct seasonal variations: July 29 to August 26 (summer); September 14 to October 13 (fall); November 28 to January 4 (winter); February 14 to May 31 (spring). A filter pack system was composed of PM2.5 cyclone, two annular denuders, Teflon filter, nylon filter, and an annular denuder, in series. Two annular denuders were to remove acidic and basic gases prior to collecting particles on the Teflon filter. Nylon filter and an annular denuder were to back up the Teflon filter by absorbing acidic and basic gases, respectively, which were volatilized from collected particles on the Teflon filter. Samplings were made for 24 hours every day. Extracts from filters and denuders were analyzed by ion chromatography to measure concentrations of anions (SO42-, NO3-, Cl-) and cations (Ca2+, Mg2+, NH4+, Na+, K+). The amounts of ionic species absorbed at the backup nylon filter and denuder were examined in terms of meteorological parameters, the amounts of gases removed in front of the Teflon filter, and the amounts of particulate ions collected on the Teflon filter. Major factors to affect the volatilization from particles collected on the Teflon filter were discussed.

  7. Corrosion Chemistry in Inhibited HDA.

    DTIC Science & Technology

    1980-11-30

    mg HF. 200 B.1 Teflon PFA Reactor 201 (xviii) .. .. - i LIST OF MICROGRAPHS Micrograph Follows Page 4.1 A1/HDA x 1,000 80 4.2 A1/0.4 Wt % PF5 x 2,000...Ethylene Propylene copolymer Teflon PTFE Polytetrafluoroethylene Teflon PFA Perfluoroalkoxy fluorocarbon resin Spectroscopy IR (ir) Infra-red UV...fluoroplastic apparatus (to avoid any possible contamination by the reaction products of HF with glass). Iron powder (0.3g) was placed in a PFA screw-cap

  8. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for VOCs and Explosives

    DTIC Science & Technology

    2007-08-01

    prevent losses due to sorption . The time needed for equilibration will depend on the sampling device (and the materials in the sampler), the physical...bottles contain a perfluoroalkoxy ( PFA ) Teflon-coated spring mechanism that is connected to PFA Teflon end caps at both ends of the bottles...materials: polyvinylidene fluoride (PVDF) Kynar tubing or PFA Teflon tubing. These samplers are deployed in the well with the end caps of the bottle

  9. Nylon and teflon scribe effect on NBR to Chemlok 233 and NBR to NBR bond interfaces

    NASA Technical Reports Server (NTRS)

    Jensen, S. K.

    1990-01-01

    A study was requested by Manufacturing Engineering to determine what effects marking with nylon (6/6) and Teflon scribes may have on subsequent bonding. Witness panel bond specimens were fabricated by the development lab to test both acrylonitrile butadiene rubber (NBR) to Chemlok and NBR to NBR after controlled exposure. The nylon rod used as a scribe tool demonstrates virtually no bond deterioration when used to scribe lines on either the Chemlok to NBR surfaces or the NBR to NBR interface. Lab test results indicate that the nylon rod-exposed samples produce tensile and peel values very similar to the control samples and the Teflon exposed samples produce tensile and peel values much lower than the control samples. Visual observation of the failure surfaces of the tested samples shows that Teflon scribing produces an obvious contamination to the surface and the nylon produces no effect. Photographs of test samples are provided. It is concluded that Teflon stock used as a scribe tool on a Chemlok 233 to NBR surface or an NBR to NBR surface has a detrimental effect on the bond integrity on either of these bond interfaces. Therefore, it is recommended that the nylon rod continue to be used where a scribe line is required in the redesigned solid rocket motor segment insulation layup operations. The use of Teflon scribes should not be considered.

  10. Teflon Injection into the Trachea Causes Predictable Fibroblastic Response and Collagen Deposition: A Pilot Study.

    PubMed

    Longoria, Javier A; Fujiwara, Miwa; Guerra, Catalina; Lee, Jeffrey L; Sassoon, Catherine S H; Mazdisnian, Farhad

    2016-10-01

    Expiratory central airway collapse is an increasingly recognized abnormality of the central airways and may be present in as many as 22% of patients evaluated for chronic obstructive pulmonary disease and/or asthma. Many current treatment options require invasive procedures that have been shown to cause significant morbidity and mortality. To test the hypothesis that Teflon injection will induce sufficient fibroblast proliferation and collagen deposition, we evaluated the time course on the effect of Teflon injection in the posterior membranous trachea on the histopathology of the tracheobronchial tree. Six Yucatan Pigs were assigned to undergo general anesthesia and injection of 0.3 to 0.5 mL of sterile Teflon paste in 50% glycerin into the posterior membranous tracheal wall. A control pig received an equivalent volume of glycerin. Animals were euthanized in predefined intervals and tracheas were excised and examined under light microscopy for identifying fibroblast proliferation and collagen deposition. Compared with the control pig, the Teflon injection site showed tissue reaction of fibrohistiocytic proliferation and subsequent collagen deposition in all animals. Furthermore, the increased fibroblast proliferation and collagen deposition were time dependent (P<0.01). This pilot study demonstrates histopathologic changes in the trachea after Teflon injection, comprised of increased fibroblast activity and collagen deposition that could be of potential use in creating greater airway rigidity in patients with sever diffuse excessive dynamic airway collapse.

  11. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  12. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation. Revised

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.; Hall, Rachelle L.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  13. Teflon-wire piston or stainless-steel bucket stapes prosthesis: does it make a difference?

    PubMed

    Farrior, J B; Temple, A E

    1999-04-01

    The goal of this study was to determine whether postoperative (implantation of a stapes prosthesis) hearing gain and the amount of air-bone gap overclosure are more improved with the Teflon-wire piston or with the stainless-steel bucket prosthesis. We retrospectively reviewed the outcomes of 82 surgeries that had been performed by the primary author; 41 of these patients had received a Fisch Teflon-wire piston, and 41 had received a Bailey-modified Robinson stainless-steel bucket prosthesis. The mean hearing gain for the patients who received the Teflon-wire piston was 23.3 dB after primary stapes surgery and 20.5 dB after revision surgery. Patients who received the stainless-steel bucket prosthesis experienced a mean hearing gain of 20.7 and 20.3 dB, respectively. Following primary stapes surgery, the air-bone gap overclosure was 4.4 dB with the Teflon-wire piston and 5.2 dB with the stainless-steel bucket prosthesis. There was no statistically significant difference in either hearing gain or air-bone gap overclosure between the two prostheses.

  14. Luminal surface fabrication for cardiovascular prostheses

    NASA Technical Reports Server (NTRS)

    Deininger, William D. (Inventor); Gabriel, Stephen B. (Inventor)

    1988-01-01

    A method is provided for forming a mold surface with microscopic upstanding pillars for molding the inside surface of a vascular prostheses (synthetic blood vessel). The mold article is formed from a quantity of Teflon (polytetrafluoroethylene) which has a polished, flat surface on which a gold film has been sputter deposited. A photoresist layer, which cannot adhere directly to Teflon, adheres to the gold. The photoresist is exposed and developed leaving a sputter resistant mask defining the desired pillar locations, and the resulting workpiece is ion etched to form the pillars in the Teflon. A synthetic blood vessel material is cast against the Teflon mold to form blind recesses on the inside of the synthetic blood vessel, with the recesses being of predetermined uniform cross section and present in a predetermined uniform pattern.

  15. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  16. Investigation of Hydrophobic Radomes for Microwave Landing System.

    DTIC Science & Technology

    1982-11-01

    horizontal heating wires on the inside surface, and 2) a slotted waveguide unit (C-band waveguide, about 2 feet in length) covered with a Teflon shrink tube ...AZ) Fiberglass flat 1.5ft x 13ft NE sandwich (EL) Teflon shrink 1 in x 2 ft SW tubing (Field Mon.) 7 (8) Hydrophobic Coating for Antenna Weather...SURFACE PREPARATION 13 24 Mar 󈨖 Conolite Primer: Vellox S-048 Finish: Microfine FSD, 7 coats, sprayed 14 24 Mar 󈨖 Conolite Teflon film, C-TAPE-36

  17. Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1999-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.

  18. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon' FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon FEP.

  19. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Powers, Charles E.; Viens, Michael J.; Ayres-Treusdell, Mary T.; Munoz, Bruno F.

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon' FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(registered trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(registered trademark) FEP.

  20. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(R) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(R) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(R) FEP.

  1. Multiwall carbon nanotube reinforced teflon fibrils for oil spill clean up and its effective recycling as textile dye sorbent.

    PubMed

    Padmajan Sasikala, Suchithra; Mahesh, K V; Prabhakaran, Prem; Peer Mohammed, A; Ananthakumar, S

    2018-04-01

    Surface functionalized multiwall carbon nanotube (MWCNT) reinforced teflon fibrils (MWCNT@Teflon) were successfully tested as an - oil - absorbent that can be used as a potential oil recovery material at the time of oil spill accidents in water. We found that oleic acid functionalization of MWCNTs was important for their adhesion onto teflon fibrils and at the same time prevented the MWCNT leaching into oil/water interface. The fibrils had displayed superior mechanical and thermal stability and provided a new insight to oil spill clean-up applications with easy recovery of absorbed oil by simple squeezing. Recycling of exhausted MWCNT@Teflon fibrils after oil recovery applications was conducted by pyrolysis under inert atmosphere in presence of magnetic clay. The magnetic clay absorbed the pyrolysis products, resulting in a heterostructured magnetic clay carbon composite (MCC) which was found super paramagnetic and chemically stable in all pH. The MCC was found capable of adsorbing textile dye from water ultra-fast with in a maximum contact time of 2 min and magnetically separable after adsorption experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Electrochemical cell

    DOEpatents

    Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

    1992-08-25

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

  3. Electrochemical cell

    DOEpatents

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  4. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  5. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  6. Radon daughter plate-out onto Teflon

    NASA Astrophysics Data System (ADS)

    Morrison, E. S.; Frels, T.; Miller, E. H.; Schnee, R. W.; Street, J.

    2018-01-01

    Radiopure materials for detector components in rare event searches may be contaminated after manufacturing with long-lived 210Pb produced by the decay of atmospheric radon. Charged radon daughters deposited on the surface or implanted in the bulk of detector materials have the potential to cause noticeable backgrounds within dark matter regions of interest. Understanding the mechanics governing these background signals is therefore a paramount concern in dark matter experiments in order to distinguish a real signal from internal detector backgrounds. Teflon (i.e. PTFE) is a specific material of interest because it makes up the walls of the inner detector of many liquid noble detectors such as the LUX-ZEPLIN experiment. The rate of radon daughter plate-out onto Teflon can be orders of magnitude larger than the plate-out rate onto other materials. Mitigation of plate-out onto Teflon and steel by proximity to other materials is demonstrated.

  7. Teflon/SiO₂ Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process.

    PubMed

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran

    2015-04-13

    This study proposes a two-photomask process for fabricating amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO₂ combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO₂ deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity.

  8. ESCA study of several fluorocarbon polymers exposed to atomic oxygen in low earth orbit or within or downstream from a radio-frequency oxygen plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of Tedlar, tetrafluoroethylene-hexafluoropropylene copolymer (in the form of a Teflon FEP coating on Kapton H, i.e., Kapton F), and polytetrafluoroethylene (Teflon or Teflon TFE), exposed to atomic oxygen O(3P) either in LEO on the STS-8 Space Shuttle or within or downstream from a radio-frequency oxygen plasma, were compared. The major difference in surface chemistry of Tedlar induced by the various exposures to O(3P) was a much larger uptake of oxygen when etched either in or out of the glow of an O2 plasma than when etched in LEO. In contrast, Kapton F exhibited very little surface oxidation during any of the three different exposures to O(3P), while Teflon was scarcely oxidized.

  9. Evaluation program for secondary spacecraft cells. Initial evaluation tests of General Electric Company standard and teflonated negative electrode 20.0 ampere-hour, nickel-cadmium spacecraft cells with auxiliary electrodes

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The standard plate cells exhibited higher average end-of-charge (EOC) voltages than the cells with teflonated negative plates; they also delivered a higher capacity output in ampere hours following these charges. All the cells reached a pressure of 20 psia before reaching the voltage limit of 1.550 volts during the pressure versus capacity test. The average ampere hours in and voltages at this pressure were 33.6 and 1.505 volts respectively for the teflonated negative plate cells and 35.5 and 1.523 volts for the standard plate cells. All cells exhibited pressure decay in the range of 1 to 7 psia during the last 30 minutes of the 1-hour open circuit stand. Average capacity out for the teflonated and standard negative plate cells was 29.4 and 29.9 ampere hours respectively.

  10. A Comparison of Space and Ground Based Facility Environmental Effects for FEP Teflon. Revised

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Kitral, Michael

    1998-01-01

    Fluorinated Ethylene Propylene (FEP) Teflon is widely used as a thermal control material for spacecraft, however, it is susceptible to erosion, cracking, and subsequent mechanical failure in low Earth orbit. One of the difficulties in determining whether FEP Teflon will survive during a mission is the wide disparity of erosion rates observed for this material in space and in ground based facilities. Each environment contains different levels of atomic oxygen, ions, and vacuum ultraviolet (VUV) radiation in addition to parameters such as the energy of the arriving species and temperature. These variations make it difficult to determine what is causing the observed differences in erosion rates. This paper attempts to narrow down which factors affect the erosion rate of FEP Teflon through attempting to change only one environmental constituent at a time. This was attempted through the use of a single simulation facility (plasma asher) environment with a variety of Faraday cages and VUV transparent windows. Isolating one factor inside of a radio frequency (RF) plasma proved to be very difficult. Two observations could be made. First, it appears that the erosion yield of FEP Teflon with respect to that of polyimide Kapton is not greatly affected by the presence or lack of VUV radiation present in the RF plasma and the relative erosion yield for the FEP Teflon may decrease with increasing fluence. Second, shielding from charged particles appears to lower the relative erosion yield of the FEP to approximately that observed in space, however it is difficult to determine for sure whether ions, electrons, or some other components are causing the enhanced erosion.

  11. Experimental validation of a numerical model predicting the charging characteristics of Teflon and Kapton under electron beam irradiation

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Yadlowsky, E. J.; Churchill, R. J.; Parker, L. W.; Sellers, B.

    1981-01-01

    The effect differential charging of spacecraft thermal control surfaces is assessed by studying the dynamics of the charging process. A program to experimentally validate a computer model of the charging process was established. Time resolved measurements of the surface potential were obtained for samples of Kapton and Teflon irradiated with a monoenergetic electron beam. Results indicate that the computer model and experimental measurements agree well and that for Teflon, secondary emission is the governing factor. Experimental data indicate that bulk conductivities play a significant role in the charging of Kapton.

  12. Production of biologically inert Teflon thin layers on the surface of allergenic metal objects by pulsed laser deposition technology

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Kresz, N.; Nagy, P. M.; Juhász, A.; Ignácz, F.; Márton, Z.

    Allergic-type diseases are current nowadays, and they are frequently caused by certain metals. We demonstrated that the metal objects can be covered by Teflon protective thin layers using a pulsed laser deposition procedure. An ArF excimer laser beam was focused onto the surface of pressed PTFE powder pellets; the applied fluences were 7.5-7.7 J/cm2. Teflon films were deposited on fourteen-carat gold, silver and titanium plates. The number of ablating pulses was 10000. Post-annealing of the films was carried out in atmospheric air at oven temperatures between 320 and 500 °C. The thickness of the thin layers was around 5 μm. The prepared films were granular without heat treatment or after annealing at a temperature below 340 °C. At 360 °C a crystalline, contiguous, smooth, very compact and pinhole-free thin layer was produced; a melted and re-solidified morphology was observed above 420 °C. The adhesion strength between the Teflon films and the metal substrates was determined. This could exceed 1-4 MPa depending on the treatment temperature. It was proved that the prepared Teflon layers can be suitable for prevention of contact between the human body and allergen metals and so for avoidance of metal allergy.

  13. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.

    PubMed

    Toma, Mana; Loget, Gabriel; Corn, Robert M

    2014-07-23

    Tunable hydrophobic/hydrophilic flexible Teflon nanocone array surfaces were fabricated over large areas (cm(2)) by a simple two-step method involving the oxygen plasma etching of a colloidal monolayer of polystyrene beads on a Teflon film. The wettability of the nanocone array surfaces was controlled by the nanocone array dimensions and various additional surface modifications. The resultant Teflon nanocone array surfaces were hydrophobic and adhesive (a "gecko" type of surface on which a water droplet has a high contact angle but stays in place) with a contact angle that correlated with the aspect ratio/sharpness of the nanocones. The surfaces switched to a superhydrophobic or "lotus" type of surface when hierarchical nanostructures were created on Teflon nanocones by modifying them with a gold nanoparticle (AuNPs) film. The nanocone array surfaces could be made superhydrophobic with a maximum contact angle of 160° by the further modification of the AuNPs with an octadecanethiol (C18SH) monolayer. Additionally, these nanocone array surfaces became hydrophilic when the nanocone surfaces were sequentially modified with AuNPs and hydrophilic polydopamine (PDA) layers. The nanocone array surfaces were tested for two potential applications: self-cleaning superhydrophobic surfaces and for the passive dispensing of aqueous droplets onto hybrid superhydrophobic/hydrophilic microarrays.

  14. Doppler ultrasound compatible plastic material for use in rigid flow models.

    PubMed

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  15. Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.

    2006-10-01

    High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon™ as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to ˜200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.

  16. Europa Propulsion Valve Seat Material Testing

    NASA Technical Reports Server (NTRS)

    Addona, Brad M.

    2017-01-01

    The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.

  17. MUTAGENICITY OF TEFLON-COATED GLASS FIBER FILTERS: A POTENTIAL PROBLEM AND SOLUTIONS

    EPA Science Inventory

    Teflon-coated glass fiber filters, used in studies of airborne particulate matter, were tested for mutagenic activity using the Salmonella/mammalian-microsome (Ames) assay. For each sample, eight blank filters were simultaneously extracted with dichloromethane (DCM), and the extr...

  18. Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process

    PubMed Central

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran

    2015-01-01

    This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO2 combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO2 deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity. PMID:28788026

  19. Poststapedectomy hearing gain: comparison of a Teflon (fluoroplastic ASTM F 754) prosthesis with a Schuknecht-type wire/Teflon prosthesis.

    PubMed

    Zepeda-López, Emilia Guadalupe; Bello-Mora, Antonio; Félix-Trujillo, Manuel Martín

    2005-11-01

    We conducted a retrospective study to compare poststapedectomy hearing gain in study-eligible patients who had received a Teflon (fluoroplastic ASTM F 754) prosthesis (study group; n = 76) with hearing gain achieved in a matched group (by age, sex, and degree of hypoacusis) of patients who had received a Schuknecht-type wire/Teflon prosthesis (control group; n = 70). All procedures had been performed by the authors at our institution between Jan. 2, 1994, and Dec. 31, 1997. Airway averages at low, medium, and high frequencies were estimated on the basis ofpre- and postoperative audiologic evaluations, as were total air-bone gaps at 7 frequencies between 125 and 8, 000 Hz. We found that the study group achieved a significantly greater degree of hearing gain at 125 and 250 Hz and significantly better closure of the air-bone gap at 250, 500, 1,000, 2,000, and 4,000 Hz. The hearing outcomes among patients in the study group were excellent.

  20. Resistance of Spores of Bacillus subtilis var. niger on Kapton and Teflon Film to High Temperature and Dry Heat

    PubMed Central

    Bruch, Mary K.; Smith, Frederick W.

    1968-01-01

    To determine parameters that would assure sterility of a sealed seam of film for application in “split-seam entry,” spores of Bacillus subtilis var. niger were sprayed onto pieces of Kapton and Teflon film. Short-time, high-temperature (200 to 270 C) exposures were made with film pieces between aluminum blocks in a hot-air oven, and the D and z values were determined after subculture of surviving spores. The use of Kapton film allowed the study of high temperatures, since it is not heat sealable and could be used to make thin packages for heat treatment. Spores on Teflon were dry-heat treated in a package designed to simulate an actual seam to be sealed. The z values of 29.1 C (52.4 F) for spores on Kapton and 139 C (250.4 F) for spores on Teflon were calculated. Images Fig. 1 Fig. 2 Fig. 3 PMID:4973071

  1. Cratering and penetration experiments in teflon targets at velocities from 1 to 7 km/s

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Cintala, Mark; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Knight, Jeffrey

    1994-01-01

    Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility after the spacecraft spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments to reproduce such features and to understand the relationships between projectile size and the resulting crater or penetration hole diameter over a wide range of impact velocities. Such relationships are needed to derive the size and mass frequency distribution and flux of natural and man-made particles in low-earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres into pure Teflon targets at velocities ranging from 1 to 7 km/s. Target thickness varied over more than three orders of magnitude from finite halfspace targets to very thin films. Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration hole diameter can become larger than that of a standard crater. The crater diameter in infinite halfspace Teflon targets increases, at otherwise constant impact conditions, with encounter velocity by a factor of V (exp 0.44). In contrast, the penetration hole size in very thin foils is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations apply to all impacts in which the shock-pulse duration of the projectile is shorter than that assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.

  2. Charging and discharging Teflon

    NASA Technical Reports Server (NTRS)

    Passenheim, B. C.; Vanlint, V. A. J.

    1981-01-01

    The charging and discharging characteristics of several common satellite materials exposed to 0-30KV electrons are measured. Teflon is discussed because the charging characteristics are radically altered immediately after a spontaneous discharge. The exterior geometry of the test structure is shown. In all cases dielectric samples were 82 cm in diameter mounted on the front of a 120 cm diameter cylinder supported on an 85 cm, 0.95 cm thick plexiglass disc. Dielectric materials investigated were: back surface aluminized Kapton, back surface silvered Teflon, silicon alkyd white thermal control paint, and 50 cm by 50 cm array of 0.030 cm thick MgF2 coated fused silica solar cell cover slips.

  3. The Effect of Heating on the Degradation of Ground Laboratory and Space Irradiated Teflon(r) FEP

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Martin, Morgana

    2002-01-01

    The outer most layer of the multilayer insulation (MLI) blankets on the Hubble Space Telescope (HST) is back surface aluminized Teflon(R) FEP (fluorinated ethylene propylene). As seen by data collected after each of the three servicing missions and as observed during the second servicing mission (SM2), the FEP has become embrittled in the space environment, leading to degradation of the mechanical properties and severe on-orbit cracking of the FEP. During SM2, a sample of aluminized-FEP was retrieved from HST that had cracked and curled, exposing its aluminum backside to space. Because of the difference in optical properties between FEP and aluminum, this insulation piece reached 200 C on-orbit, which is significantly higher than the nominal MLI temperature extreme of 50 C. This piece was more brittle than other retrieved material from the first and third servicing missions (SM1 and SM3A, respectively). Due to this observation and the fact that Teflon thermal shields on the solar array bi-stems were heated on-orbit to 130 C, experiments have been conducted to determine the effect of heating on the degradation of FEP that has been irradiated in a ground laboratory facility or in space on HST. Teflon FEP samples were X-ray irradiated in a high vacuum facility in order to simulate the damage caused by radiation in the space environment. Samples of pristine FEP, X-ray irradiated FEP and FEP retrieved from the HST during SM3A were heat treated from 50 to 200 C at 25 intervals in a high vacuum facility and then tensile tested. In addition, samples were tested in a density gradient column to determine the effect of the radiation and heating on the density of FEP. Results indicate that although heating does not degrade the tensile properties of non-irradiated Teflon, there is a significant dependence of the percent elongation at failure of irradiated Teflon as a function of heating temperature. Irradiated Teflon was found to undergo increasing degradation in the elongation at failure as temperature was increased from room temperature to 200 C. Rate of degradation changes, which were consistent with the glass I transition temperatures for FEP, appeared to be present in both tensile and density data. The results indicate the significance of the on-orbit temperature of Teflon FEP with respect to its degradation in the low Earth orbital space environment.

  4. Response to ``Comment on `Slow Debye-type peak observed in the dielectric response of polyalcohols' '' [J. Chem. Phys. 134, 037101 (2011)

    NASA Astrophysics Data System (ADS)

    Bergman, R.; Jansson, H.; Swenson, J.

    2011-01-01

    In our recent article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)] we investigated some polyalcohols, i.e., glycerol, xylitol, and sorbitol by dielectric spectroscopy. In the study, a low-frequency peak of Debye character that normally is hidden by the large low-frequency dispersion due to conductivity was revealed by analyzing the real part of the permittivity and by using a thin Teflon film to suppress the low-frequency dispersion. We agree with the comment by Paluch et al. [J. Chem. Phys. 134, 037101 (2011)] that the Teflon film setup will indeed create a peak due to the dc conductivity. However, due to the fact that the location of the peak was almost identical in measurement with and without Teflon, we unfortunately mainly showed the data measured with Teflon, despite that it could also be observed in the real part of the permittivity without using the Teflon setup, as shown in our original article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)]. Here, we show that the low-frequency peak of Debye character can also be observed by subtracting the dc conductivity. Furthermore, we show that the modulus representation used in Paluch et al. [J. Chem. Phys. 134, 037101 (2011).] is also not suitable for detecting processes hidden by the conductivity.

  5. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  6. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  7. Demonstrating a Lack of Reactivity Using a Teflon-Coated Pan.

    ERIC Educational Resources Information Center

    Richmond, Thomas G.

    1995-01-01

    Illustrates the chemical resistance of polytetrafluoroethene to mineral acids using an ordinary Teflon-coated frying pan. The demonstration can also be used to lead to a discussion of the long lifetimes of fluorocarbons and chlorofluorocarbons in the atmosphere and their roles in the breakdown of the ozone layer. (AIM)

  8. 75 FR 77790 - Airworthiness Directives; The Boeing Company Model 767 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... repetitive inspections to detect discrepancies of the wiring and surrounding Teflon sleeves of the fuel tank... airplanes; and repair or replacement of the wiring and sleeves with new parts, as necessary. This proposed...).) That AD requires repetitive inspections to detect discrepancies of the wiring and surrounding Teflon...

  9. Single Common Powertrain Lubricant (SCPL) Development. Part 2

    DTIC Science & Technology

    2014-04-01

    stand and connected via steel braided Teflon hose to the engines oil filter outlet port. A remote liquid-liquid heat exchanger was then added in...series with the stainless braided Teflon oil lines (after the oil filter), and its return was plumbed back to the engine via the engine’s front lower

  10. 78 FR 14934 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... discrepancies of the wiring and surrounding Teflon sleeves of the fuel tank boost pumps and override/jettison... the wiring and sleeves with new parts, as necessary. The first SNPRM proposed to reduce the initial... inspections to detect discrepancies of the wiring and surrounding Teflon sleeves of the fuel tank boost pumps...

  11. [How do metallic middle ear implants behave in the MRI?].

    PubMed

    Kwok, P; Waldeck, A; Strutz, J

    2003-01-01

    Magnetic resonance imaging (MRI) has gained in frequency and importance as a diagnostic procedure. In respect to the close anatomical relationship in the temporal bone it is necessary to know whether it is hazardous to patients with metallic middle ear implants regarding displacement and rise in temperature. For the MR image quality artefacts caused by metallic prostheses should be low. Four different stapes prostheses made from titanium, gold, teflon/platinum and teflon/steel, a titanium total ossicular reconstruction prosthesis (TORP) and two ventilation tubes (made from titanium and gold) were tested in a 1.5 Tesla MRI machine regarding their displacement. All objects were first placed in a petri dish, then suspended from a thread and finally immersed in a dish filled with Gadolinium. Temperature changes of the implants were recorded by a pyrometer. None of the implants moved when they were placed in the petri dish or suspended from the thread. On the water surface the teflon/platinum and the teflon/steel pistons adjusted their direction with their axis longitudinally to the MRI scanner opening and the teflon/steel piston floated towards the MRI-machine when put close enough to the scanner opening. No rise in temperature was recorded. All implants showed as little artefacts that would still make an evaluation of the surrounding tissue possible. Patients with any of the metallic middle ear implants that were examined in this study may undergo MRI-investigations without significant adverse effects.

  12. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.

    PubMed

    Willis, Peter A; Hunt, Brian D; White, Victor E; Lee, Michael C; Ikeda, Michael; Bae, Sam; Pelletier, Michael J; Grunthaner, Frank J

    2007-11-01

    Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.

  14. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water massmore » uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.« less

  15. Pulmonary effects induced by ultrafine PTFE particles.

    PubMed

    Johnston, C J; Finkelstein, J N; Mercer, P; Corson, N; Gelein, R; Oberdörster, G

    2000-11-01

    PTFE (polytetrafluoroethylene) fumes consisting of large numbers of ultrafine (uf) particles and low concentrations of gas-phase compounds can cause severe acute lung injury. Our studies were designed to test three hypotheses: (i) uf PTFE fume particles are causally involved in the induction of acute lung injury, (ii) uf PTFE elicit greater pulmonary effects than larger sized PTFE accumulation mode particles, and (iii) preexposure to the uf PTFE fume particles will induce tolerance. We used uf Teflon (PTFE) fumes (count median particle size approximately 16 nm) generated by heating PTFE in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity. Teflon fumes at ultrafine particle concentrations of 50 microg/m(3) were extremely toxic to rats when inhaled for only 15 min. We found that when generated in argon, the ultrafine Teflon particles alone are not toxic at these exposure conditions; neither were Teflon fume gas-phase constituents when generated in air. Only the combination of both phases when generated in air caused high toxicity, suggesting either the existence of radicals on the surface or a carrier mechanism of the ultrafine particles for adsorbed gas compounds. Aging of the fresh Teflon fumes for 3.5 min led to a predicted coagulation to >100 nm particles which no longer caused toxicity in exposed animals. This result is consistent with a greater toxicity of ultrafine particles compared to accumulation mode particles, although changes in particle surface chemistry during the aging process may have contributed to the diminished toxicity. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-min exposures on 3 days prior to a 15-min exposure. Messages encoding antioxidants and chemokines were increased substantially in nonadapted animals, yet were unaltered in adapted animals. This study shows the importance of preexposure history for the susceptibility to acute ultrafine particle effects. Copyright 2000 Academic Press.

  16. Towards the nonstick egg: designing fluorous proteins.

    PubMed

    Neil, E; Marsh, G

    2000-07-01

    Anyone who has made scrambled eggs will have had cause to praise the properties of Teflon. Teflon's highly chemically inert and nonstick nature derives from the perfluorinated polymer polytetrafluoroethylene. Perfluorocarbons have unique and valuable physical properties not found in nature. By incorporating fluorine into proteins, it might be possible to produce biological molecules with novel and useful properties.

  17. Dimensional scaling for impact cratering and perforation

    NASA Technical Reports Server (NTRS)

    Watts, Alan; Atkinson, Dale; Rieco, Steve

    1993-01-01

    This report summarizes the development of two physics-based scaling laws for describing crater depths and diameters caused by normal incidence impacts into aluminum and TFE Teflon. The report then describes equations for perforations in aluminum and TFE Teflon for normal impacts. Lastly, this report also studies the effects of non-normal incidence on cratering and perforation.

  18. Silver-Teflon contamination UV radiation study

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1978-01-01

    Silver-Teflon (Ag/FEP) is planned to be used as the thermal control material covering the radiator surfaces on the shuttle orbiter payload bay doors. These radiators require the use of materials that have a very low solar absorptance and a high emittance for heat rejection. However, operationally, materials used on these critical radiator surfaces, such as silver-Teflon, will be exposed to a variety of conditions which include both the natural as well as the induced environments from the Shuttle Orbiter. A complete test facility was assembled, and detailed test procedures and a test matrix were developed. Measurements of low solar absorptance were taken before and after contamination, at intervals during irradiation, and after sample cleaning to fulfill all the requirements.

  19. Diagnostic Techniques for Semiconductor Materials Processing. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on November 29-December 2, 1993. Volume 324

    DTIC Science & Technology

    1994-05-01

    phototransmittance (PT) to study PM-HEMTs with different electron densities and found that the first derivative of the ab- sorption coefficient with...circle before striking the sample. Samples are normally sealed into bags of FEP Teflon I and suspended in the beam between strings of PFA Teflon. Prompt

  20. Coronary artery compression by teflon pledget granuloma following aortic valve replacement.

    PubMed

    Cohle, S D; Delavan, J W

    1997-09-01

    We describe a massive fatal posterior myocardial infarct resulting from compression of the right coronary artery by a Teflon pledget granuloma in a patient who had undergone aortic valve replacement six months before death. Other iatrogenic causes of coronary artery occlusion or compression are discussed in this paper. To our knowledge this is the first report of this surgical complication.

  1. Plasma Igniter for Reliable Ignition of Combustion in Rocket Engines

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard

    2011-01-01

    A plasma igniter has been developed for initiating combustion in liquid-propellant rocket engines. The device propels a hot, dense plasma jet, consisting of elemental fluorine and fluorine compounds, into the combustion chamber to ignite the cold propellant mixture. The igniter consists of two coaxial, cylindrical electrodes with a cylindrical bar of solid Teflon plastic in the region between them. The outer electrode is a metal (stainless steel) tube; the inner electrode is a metal pin (mild steel, stainless steel, tungsten, or thoriated-tungsten). The Teflon bar fits snugly between the two electrodes and provides electrical insulation between them. The Teflon bar may have either a flat surface, or a concave, conical surface at the open, down-stream end of the igniter (the igniter face). The igniter would be mounted on the combustion chamber of the rocket engine, either on the injector-plate at the upstream side of the engine, or on the sidewalls of the chamber. It also might sit behind a valve that would be opened just prior to ignition, and closed just after, in order to prevent the Teflon from melting due to heating from the combustion chamber.

  2. Degradation of Hubble Space Telescope Metallized Teflon(trademark) FEP Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Yoshikawa, Yukio; Castro, J. David; Triolo, Jack J.; Peters, Wanda C.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon Fluorinated Ethylene Propylene (FEP) thermal control materials on the Hubble Space Telescope (HST) have degraded over the seven years the telescope has been in orbit. Astronaut observations and photographic documentation from the Second Servicing Mission revealed severe cracks of the multi-layer insulation (MLI) blanket outer layer in many locations around the telescope, particularly on solar facing surfaces. Two samples, the outer Teflon FEP MLI layer and radiator surfaces, were characterized post- mission through exhaustive mechanical, thermal, chemical, and optical testing. The observed damage to the thermal control materials, the sample retrieval and handling, and the significant changes to the radiator surfaces of HST will be discussed. Each of these issues is addressed with respect to current and future mission requirements.

  3. Esophagogastric fistula secondary to teflon pledget: a rare complication following laparoscopic fundoplication.

    PubMed

    Baladas, H G; Smith, G S; Richardson, M A; Dempsey, M B; Falk, G L

    2000-01-01

    Laparoscopic fundoplication has become the standard operation for gastroesophageal reflux disease. In our service, a laparoscopic fundoplication is performed as a 2-cm floppy 360 degrees wrap with division of the short gastric vessels and the fundoplication is sutured using a prolene 2/0 mattress suture (Ethicon, USA) and buttressed laterally with two teflon pledgets (PTFE 1.85 mm; low porosity, Bard, USA). We report a patient with post-operative dysphagia due to an esophagogastric fistula caused by erosion of a teflon pledget. This is the first such case in 734 laparoscopic fundoplications performed between January 1991 and December 1998. Reoperation was required, resulting in a prolonged convalescence. A review of current literature has not revealed any similar cases. Causes for this rare complication are postulated.

  4. Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.

    1995-01-01

    Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.

  5. Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s

    NASA Astrophysics Data System (ADS)

    Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.

    1995-02-01

    Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.

  6. A Study to Analyze the Permeation of High Density Gases and Propellant Vapors Through Single Layer Teflon or Teflon Structure Materials and Laminations. Volume 1

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Young, Donald L. (Technical Monitor)

    1967-01-01

    This report contains the results of a fifteen month analytical and experimental study of the leakage rate of the pressurant gases (N2, He) and the propellant vapors (N2O4,N2H4) through bladder structures consisting of two layers of Teflon separated by a metallic foil diffusion barrier containing microscopic or larger holes. Results were obtained for the steady state leakage rate through circular holes and long rectangular openings in the barrier for arbitrary thicknesses of the two Teflon layers. The effect of hole shape and relative hole position on the leakage rate were studied. The transient problem was analyzed and it was shown that steady state calculations are adequate for estimating the leakage rate. A computer program entitled "Diffusion Analyzer Program" was developed to calculate the leakage rate, both transient and steady state. Finally, the analytical results were compared to experimentally determined values of the leakage rate through a model laminated bladder structure. The results of the analysis are in good agreement with experiment. The experimental effort (Part II of the Bladder Permeation Program) measured the solubility, diffusion coefficient and permeability of helium, nitrogen and nitrogen tetroxide vapor through Teflon TFE and FEP membranes. Data were obtained in the temperature range of 25 to 100 C at pressures ranging from near vacuum to about 20 atmospheres. Results of the experimental effort were compared with the limited data previously reported. As a verification to the applicability of results to actual bladder systems, counter diffusion tests were performed with a laminated sample containing aluminum foil with a selected group of holes.

  7. Randomized Trial of Infusion Set Function: Steel Versus Teflon

    PubMed Central

    Patel, Parul J.; Benasi, Kari; Ferrari, Gina; Evans, Mark G.; Shanmugham, Satya; Wilson, Darrell M.

    2014-01-01

    Abstract Background: This study compared infusion set function for up to 1 week using either a Teflon® (Dupont™, Wilmington, DE) catheter or a steel catheter for insulin pump therapy in type 1 diabetes mellitus. Subjects and Methods: Twenty subjects participating in a randomized, open-labeled, crossover study were asked to wear two Quick-Set® and two Sure-T® infusion sets (both from Medtronic Minimed, Northridge, CA) until the infusion set failed or was worn for 1 week. All subjects wore a MiniMed continuous glucose monitoring system for the duration of the study. Results: One subject withdrew from the study. There were 38 weeks of Sure-T wear and 39 weeks of Quick-Set wear with no difference in the survival curves of the infusion sets. There was, however, a 15% initial failure rate with the Teflon infusion set. After 7 days, both types of infusion sets had a 64% failure rate. Overall, 30% failed because of hyperglycemia and a failed correction dose, 13% were removed for pain, 10% were pulled out by accident, 10% had erythema and/or induration of>10 mm, 5% fell out because of loss of adhesion, and 4% were removed for infection. The main predictor of length of wear was the individual subject. There was no increase in hyperglycemia or daily insulin requirements when an infusion set was successfully used for 7 days (n=25 of 77 weeks). Conclusions: We found no difference between steel and Teflon infusion sets in their function over 7 days, although 15% of Teflon sets failed because of kinking on insertion. The strongest predictor of prolonged 7-day infusion set function was the individual subject, not the type of infusion set. PMID:24090124

  8. Effects of pressure, oxygen concentration, and forced convection on flame spread rate of Plexiglas, Nylon and Teflon

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Burkhardt, L. A.; Cochran, T. H.

    1974-01-01

    Experiments were conducted in which the burning of cylindrical materials in a flowing oxidant stream was studied. Plexiglas, Nylon, and Teflon fuel specimens were oriented such that the flames spread along the surface in a direction opposed to flowing gas. Correlations of flame spread rate were obtained that were power law relations in terms of pressure, oxygen concentration, and gas velocity.

  9. Nitric Oxide Generating Polymeric Coatings for Subcutaneous Glucose Sensors

    DTIC Science & Technology

    2008-10-14

    polymers for RSe immobilization. They both are thermoplastic poly(ether) polyurethanes but differ in composition of soft segments, hydrophobicity...thin layers of silicone rubber and Teflon AF, and the resulting device has yielded excellent NO sensitivity, high selectivity over NO2- and NH4Cl...layers over the sensor represent PDADM, 1% silicone rubber, and Teflon AF, respectively. This sensor can be coated with polymers containing RSe

  10. Low Cost Fiber Optic Cable Assemblies for Local Distribution Systems

    DTIC Science & Technology

    1977-04-01

    coefficient of friction, and is chemically inert. PFA exhibits low water permeability and ab- sorption . FEP-100 and FEP-110 were initially extruded over T08...with FEP 110. To overcome these problems, Teflon PFA 9704 was evaluated. It exhibited good extrudability which allowed application of thin and thick...superior extrudability, in addition to meeting the optical characteristics required for a cladding material, Teflon PFA was considered a viable

  11. Direct Push Chemical Sensors for DNAPL

    DTIC Science & Technology

    2007-01-01

    System Improvements Problem Solution 1. Insufficient thermal protection Implemented use of microporous insulation . Lab and field tests have shown...screw thread cap with Teflon lined septum. The soil and methanol were mixed by hand and the vial was placed in an insulated cooler on ice until...Teflon lined septum. The vials were stored within an insulated cooler on ice until shipped to Columbia Analytical Services for analysis by U.S. EPA

  12. The use of silicone based adhesives to encapsulate manganin gauges for high stress experiments

    NASA Astrophysics Data System (ADS)

    Be'Ery, Ilan; Rosenberg, Zvi

    2007-06-01

    The use of commercial manganin stress gauges has been limited to stresses in the range of 0-20 GPa due to the short-circuiting of their encapsulating materials (epoxy, Kapton) at higher pressures. Researchers at Lawrence Livermore overcome this difficulty by embedding their gauges in Teflon sheets and measured shock pressures as high as 40 GPa. The fact that Teflon can keep its resistivity at high pressures is attributed to the lack of benzene rings in its structure. On the other hand, Teflon is difficult to work with as an encapsulating material because of its poor adhesive properties. In order to overcome this difficulty we encapsulated our foils in between two tapes of Teflon which have a silicone adhesive glued to it. These are 50 μm thick commercial tapes (manufactured by 3M, type #60) which have a 50 μm thick silicone adhesive (PSA -- pressure sensitive adhesive) on them. This adhesive is easy to work with, has no benzene rings in its structure and has a lower carbon content, compared to other adhesives. Several experiments were conducted in order to directly measure the resistivity of these tapes at high pressures, as well as using them to encapsulate our manganin foils for high pressure studies.

  13. Thin teflon-like films for MEMS: Film properties and reliability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B.K.; LaVigne, G.; Sniegowski, J.J.

    1998-07-01

    This work presents film properties and initial reliability studies for thin Teflon-like films applied to a unique test vehicle, the Sandia-designed and fabricated microengine. Results on microengines coated with the film show a factor of three improvement in their lifetime and an order of magnitude reduction in the coefficient of friction when compared to uncoated samples. Coefficients Of Friction (COF) of 0.07 for the Teflon-like film and 1.0 for uncoated samples are extracted from models which match the measured behavior of working microengines. These films, deposited form a plasma source, exhibit the ability to penetrate into very narrow, deep channelsmore » common to many MEMS devices. For as-deposited film, both the refractive index at 1.4 and the contact angle with water at 108{degree} show the film to be very similar to bulk Teflon PTFE. Film stability as a function of temperature has been examined using Fourier Transformation Infrared (FTIR) spectroscopy. The film structure as observed by the fluorine-carbon (F-C) peak is stable up to 200 C, but starts decomposing above 250 C. Film composition has been examined using X-ray photoelectron spectroscopy (XPS) and is quite different for directly exposed surfaces compared with deep, narrow channels where the deposition process is diffusion limited.« less

  14. Selected laboratory evaluations of the whole-water sample-splitting capabilities of a prototype fourteen-liter Teflon churn splitter

    USGS Publications Warehouse

    Horowitz, A.J.; Smith, J.J.; Elrick, K.A.

    2001-01-01

    A prototype 14-L Teflon? churn splitter was evaluated for whole-water sample-splitting capabilities over a range of sediment concentratons and grain sizes as well as for potential chemical contamination from both organic and inorganic constituents. These evaluations represent a 'best-case' scenario because they were performed in the controlled environment of a laboratory, and used monomineralic silica sand slurries of known concentration made up in deionized water. Further, all splitting was performed by a single operator, and all the requisite concentration analyses were performed by a single laboratory. The prototype Teflon? churn splitter did not appear to supply significant concentrations of either organic or inorganic contaminants at current U.S. Geological Survey (USGS) National Water Quality Laboratory detection and reporting limits when test samples were prepared using current USGS protocols. As with the polyethylene equivalent of the prototype Teflon? churn, the maximum usable whole-water suspended sediment concentration for the prototype churn appears to lie between 1,000 and 10,000 milligrams per liter (mg/L). Further, the maximum grain-size limit appears to lie between 125- and 250-microns (m). Tests to determine the efficacy of the valve baffle indicate that it must be retained to facilitate representative whole-water subsampling.

  15. Teflon pledget reinforced fundoplication causes symptomatic gastric and esophageal lumenal penetration.

    PubMed

    Dally, Elizabeth; Falk, Gregory L

    2004-02-01

    Nissen fundoplication has become the standard operative procedure for the treatment of severe gastroesophageal reflux disease. The use of Teflon pledgets in Nissen fundoplications by our unit has been associated with a number of complications that has led to a change of technique in performing these operations. We reviewed our database of all patients who had fundoplications that involved the use of pledgets and identified those who had represented with postoperative complications related to pledget erosion/migration. We identified 11 patients to date from a total of 1,175 fundoplications who had symptomatic pledget erosion occurring between 2 and 85 months after surgery (mean time 33.3 months). Symptoms included dysphagia, recurrent symptomatic gastroesophageal reflux, chest pain, and melaena, and in some cases significant morbidity was associated with the erosion. No common factor predisposing these patients to pledget erosion was identified. In the majority of cases removal of the pledget was associated with resolution of the symptoms. A review of the literature does not reveal any similar studies but problems associated with the erosion and migration of Teflon prostheses are described. The use of Teflon pledgets in fundoplication is associated with a small but significant risk of complications that has led to our unit abandoning this technique.

  16. Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary

    1995-01-01

    Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.

  17. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    NASA Technical Reports Server (NTRS)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  18. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    NASA Astrophysics Data System (ADS)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  19. Measured current drainage through holes in various dielectrics up to 2 kilovolts in a dilute plasma

    NASA Technical Reports Server (NTRS)

    Grier, N. T.; Mckinzie, D. J., Jr.

    1972-01-01

    The electron current drained from a plasma through approximately 0.05 cm diameter holes in eight possible space applicable dielectrics placed on a probe biased at voltages up to 2000 V dc have been determined both theoretically and experimentally. The dielectrics tested were Parylene C and N, Teflon FEP type C, Teflon TFE, Nomex, quartz 7940 Corning Glass, Mylar A, and Kapton H polymide film. A Laplace field was used to predict an upper limit for the drainage current. The measured current was less than the computed current for quartz, Teflon FEP, and the 0.0123 cm thick sample of Parylene N for all voltages tested. The drainage current through the other dielectrics became equal to or greater than the computed current at a voltage below 2000 V. The magnitudes of the currents were between 0.1 and 10 microamperes for most of the dielectrics.

  20. Electrowetting (EW)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow.

    PubMed

    Cheng, Ji-Yen; Hsiung, Lo-Chang

    2004-12-01

    Electrowetting (EW)-based techniques have been widely used in manipulating discrete liquid. However, few articles discussed the controlling of continuous fluid flow by using EW-based techniques. In this paper, an EW-based valve combined with plasma-modified Teflon surface, which serves as a microfluidic guidance, in controlling continuous fluid flow has been demonstrated. The plasma-modified Teflon surface is firstly demonstrated for confining continuous fluid flow. The EW-based microfluidic device possesses the functions of a valve and a microchannel without complex moving parts and grooved microchannels. The quantitative characteristics of the EW-based valve are also studied. Propylene carbonate (PC) is firstly demonstrated as the working liquid in the EW-based device because of its applications in parallel oligonucleotide synthesis. It is found that lower valve actuation voltage reduces the deterioration of the valve and improves the valve stability.

  1. Heterogeneous polymer modification: Polyolefin maleation in supercritical carbon dioxide and amorphous fluoropolymer surface modification

    NASA Astrophysics Data System (ADS)

    Hayes, Heather J.

    1999-11-01

    Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as the highly permeable support layer and chemical vapor deposited poly(p-xylylene) (PPX) as the thin selective layer. This bilayer membrane has oxygen and nitrogen permeability values close to those predicted by the series resistance model. To enhance the weak adhesive bond between Teflon AF and PPX, Na-Nap reduction was used to modify the Teflon AF surface prior to the vapor deposition polymerization of di-p-xylylene monomer.

  2. Laser Generation of Ultrasound.

    DTIC Science & Technology

    1983-02-01

    32 24 Tissue Soaked in Water on Tank ... ........ . . . . 34 25 2 Mil Teflon TFE Sample on Tank ... ........... ... 34 26 2 Mil Teflon PFA Sample on...frequency doubled from 1.06 to 0.532 um since more efficient ab- sorption of the laser took place at the latter wavelength. Von Gutfeld focused the...the temperature rise is 10000 C for aluminum but only 300 C for a plastic, since the ab- sorption depth is much larger. This is indeed confirmed by

  3. A simple antireflection overcoat for opaque coatings in the submillimeter region

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1986-01-01

    An antireflection overcoat for opaque baffle coatings in the far infrared (FIR)/submillimeter region was made from a simple Teflon spray-on lubricant. The Teflon overcoat reduced the specular reflectance of four different opaque coatings by nearly a factor of two. Analysis, based on the interference term of a reflecting-layer model, indicates that in the submillimeter region the reduced reflectance depends primarily on the refractive index of the overcoat and very little on its thickness.

  4. Penetration experiments in aluminum and Teflon targets of widely variable thickness

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Cintala, Mark J.; Bernhard, R. P.; See, T. H.

    1994-01-01

    The morphologies and detailed dimensions of hypervelocity craters and penetration holes on space-exposed surfaces faithfully reflect the initial impact conditions. However, current understanding of this postmortem evidence and its relation to such first-order parameters as impact velocity or projectile size and mass is incomplete. While considerable progress is being made in the numerical simulation of impact events, continued impact simulations in the laboratory are needed to obtain empirical constraints and insights. This contribution summarizes such experiments with Al and Teflon targets that were carried out in order to provide a better understanding of the crater and penetration holes reported from the Solar Maximum Mission (SMM) and the Long Duration Exposure Facility (LDEF) satellites. A 5-mm light gas gun was used to fire spherical soda-lime glass projectiles from 50 to 3175 microns in diameter (D(sub P)), at a nominal 6 km/s, into Al (1100 series; annealed) and Teflon (Teflon(sup TFE)) targets. Targets ranged in thickness (T) from infinite halfspace targets (T approx. equals cm) to ultrathin foils (T approx. equals micron), yielding up to 3 degrees of magnitude variation in absolute and relative (D(sub P)/T) target thickness. This experimental matrix simulates the wide range in D(sub P)/T experienced by a space-exposed membrane of constant T that is being impacted by projectiles of widely varying sizes.

  5. Effects of Various Wavelength Ranges of Vacuum Ultraviolet Radiation on Teflon FEP Film Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; McCracken, Cara A.

    2004-01-01

    Teflon Fluorinated Ethylene Propylene (FTP) films (DuPont) have been widely used for spacecraft thermal control and have been observed to become embrittled and cracked upon exposure to the space environment. This degradation has been attributed to a synergistic combination of radiation and thermal effects. A research study was undertaken at the NASA Glenn Research Center to examine the effects of different wavelength ranges of vacuum ultraviolet (VUV) radiation on the degradation of the mechanical properties of FEP. This will contribute to an overall understanding of space radiation effects on Teflon FEP, and will provide information necessary to determine appropriate techniques for using laboratory tests to estimate space VUV degradation. Research was conducted using inhouse facilities at Glenn and was carried out, in part, through a grant with the Cleveland State University. Samples of Teflon FEP film of 50.8 microns thickness were exposed to radiation from a VUV lamp from beneath different cover windows to provide different exposure wavelength ranges: MgF2 (115 to 400 nm), crystalline quartz (140 to 400 nm), and fused silica (FS, 155 to 400 nm). Following exposure, FEP film specimens were tensile tested to determine the ultimate tensile strength and elongation at failure as a function of the exposure duration for each wavelength range. The graphs show the effect of ultraviolet exposure on the mechanical properties of the FEP samples.

  6. Probing the Self-Assembly and the Accompanying Structural Changes of Hydrophobin SC3 on a Hydrophobic Surface by Mass Spectrometry

    PubMed Central

    Wang, X.; Permentier, H. P.; Rink, R.; Kruijtzer, J. A. W.; Liskamp, R. M. J.; Wösten, H. A. B.; Poolman, B.; Robillard, G. T.

    2004-01-01

    The fungal class I hydrophobin SC3 self-assembles into an amphipathic membrane at hydrophilic-hydrophobic interfaces such as the water-air and water-Teflon interface. During self-assembly, the water-soluble state of SC3 proceeds via the intermediate α-helical state to the stable end form called the β-sheet state. Self-assembly of the hydrophobin at the Teflon surface is arrested in the α-helical state. The β-sheet state can be induced at elevated temperature in the presence of detergent. The structural changes of SC3 were monitored by various mass spectrometry techniques. We show that the so-called second loop of SC3 (C39–S72) has a high affinity for Teflon. Binding of this part of SC3 to Teflon was accompanied by the formation of α-helical structure and resulted in low solvent accessibility. The solvent-protected region of the second loop extended upon conversion to the β-sheet state. In contrast, the C-terminal part of SC3 became more exposed to the solvent. The results indicate that the second loop of class I hydrophobins plays a pivotal role in self-assembly at the hydrophilic-hydrophobic interface. Of interest, this loop is much smaller in case of class II hydrophobins, which may explain the differences in their assembly. PMID:15345568

  7. Effects of gas-wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds

    NASA Astrophysics Data System (ADS)

    Pagonis, Demetrios; Krechmer, Jordan E.; de Gouw, Joost; Jimenez, Jose L.; Ziemann, Paul J.

    2017-12-01

    Recent studies have demonstrated that organic compounds can partition from the gas phase to the walls in Teflon environmental chambers and that the process can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning of organic compounds in Teflon tubing and inside a proton-transfer-reaction mass spectrometer (PTR-MS) used to monitor compound concentrations. Rapid partitioning of C8-C14 2-ketones and C11-C16 1-alkenes was observed for compounds with saturation concentrations (c∗) in the range of 3 × 104 to 1 × 107 µg m-3, causing delays in instrument response to step-function changes in the concentration of compounds being measured. These delays vary proportionally with tubing length and diameter and inversely with flow rate and c∗. The gas-wall partitioning process that occurs in tubing is similar to what occurs in a gas chromatography column, and the measured delay times (analogous to retention times) were accurately described using a linear chromatography model where the walls were treated as an equivalent absorbing mass that is consistent with values determined for Teflon environmental chambers. The effect of PTR-MS surfaces on delay times was also quantified and incorporated into the model. The model predicts delays of an hour or more for semivolatile compounds measured under commonly employed conditions. These results and the model can enable better quantitative design of sampling systems, in particular when fast response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. They may also allow estimation of c∗ values for unidentified organic compounds detected by mass spectrometry and could be employed to introduce differences in time series of compounds for use with factor analysis methods. Best practices are suggested for sampling organic compounds through Teflon tubing.

  8. Toughening of thermosetting polyimides

    NASA Technical Reports Server (NTRS)

    Gollob, D. S.; Mandell, J. F.; Mcgarry, F. J.

    1979-01-01

    Work directed toward increasing the resistance to crack propagation of thermoset polyimides is described. Rubber modification and Teflon microfiber impregnation techniques for increasing fracture toughness are investigated. Unmodified Kerimid 601 has a fracture surface work value of 0.20 in-lbs/sq in. Dispersed particles of amine terminated butadiene acrylonitrile liquid rubber or of silicone rubber do not raise this value much. By contrast, 5 percent of well fibrillated Teflon produces an eight-fold increase in fracture toughness. Further process improvements should increase this factor to 20-30.

  9. Low thrust propulsion system effects on communication satellites.

    NASA Technical Reports Server (NTRS)

    Hall, D. F.; Lyon, W. C.

    1972-01-01

    Choice of type and placement of thrusters on spacecraft (s/c) should include consideration of their effects on other subsystems. Models are presented of the exhaust plumes of mercury, cesium, colloid, hydrazine, ammonia, and Teflon rockets. Effects arising from plume impingement on s/c surfaces, radio frequency interference, optical interference, and earth environmental contamination are discussed. Some constraints arise in the placement of mercury, cesium, and Teflon thrusters. Few problems exist with other thruster types, nor is earth contamination a problem.

  10. Design, Construction, and Validation of the AFIT Small Scale Combustion Facility and Sectional Model of the Ultra-Compact Combustor

    DTIC Science & Technology

    2007-03-01

    use. At the end of these lines, two high temperature hoses provide flexibility for connection. 57 Figure 28: Heater emergency shutoff...stainless steel braided , Teflon tubing. This enables the probe to be easily positioned as required. The oil temperature is measured by a K-type...used to cool emissions probe. The sample gases exit the probe into a 1/4” piece of braided , flexible Teflon tubing to provide for probe

  11. Multifunctional Composites with Applications to Energy Performance and Efficiency

    DTIC Science & Technology

    2011-08-01

    surface for comparing the effects of processing. Parylene/ Teflon AF adhesion was measured using a modified tape test. Samples were razor cut (3-6...lines, 2 mm spacing ) at 0 and 90 degrees to the tape -pull direction. SEMicro CHT tape (synthetic rubber adhesive, 12 to 25 mm wide x 75 mm long) was...surface, a thin layer of Teflon AF (~200 nm) is spin- coated for hydrophobicity. Small drops of ionic liquids in contact with a conductive probe are

  12. Analysis of Retrieved Hubble Space Telescope Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, Joyce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon FEP, the outer-layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the emissivity of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the de-radiation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong, evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP.

  13. Silver Teflon blanket: LDEF tray C-08

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    A study of the Teflon blanket surface at the edge of tray C-08 illustrates the complexity of the microenvironments on the Long Duration Exposure Facility (LDEF). The distribution of particulate contaminants varied dramatically over a distance of half a centimeter (quarter of an inch) near the edge of the blanket. The geometry and optical effects of the atomic oxygen erosion varied significantly over the few centimeters where the blanket folded over the edge of the tray resulting in a variety of orientations to the atomic oxygen flux. A very complex region of combined mechanical and atomic oxygen damage occurred where the blanket contacted the edge of the tray. A brown film deposit apparently fixed by ultraviolet light traveling by reflection through the Teflon film was conspicuous beyond the tray contract zone. Chemical and structural analysis of the surface of the brown film and beyond toward the protected edge of the blanket indicated some penetration of energetic atomic oxygen at least five millimeters past the blanket-tray contact interface.

  14. Teflon Implants Versus Titanium Implants in Stapes Surgery.

    PubMed

    Bansal, Mohan

    2016-03-01

    Otosclerosis is the most common cause of bilateral gradually progressive conductive hearing loss with normal tympanic membrane and Eustachian tube. Otosclerosis surgical treatment is one of the most gratifying operations in Otorhinolaryngology. It is not only the surgical techniques but also the prosthesis which are evolving in the attempt of providing best hearing results. Teflon piston is the most commonly employed prosthesis in stapes surgery. Titanium pistons are relatively the new development in the evolution of stapes prosthesis. The aim of this review article is to know and compare the surgical technicalities and postoperative outcomes including hearing improvement after the use of Teflon and titanium stapes piston. The adverse reactions occurred during follow-up were taken into consideration. The data in this article are supported by a Medline search. The use of both the prosthesis gave good results in cases of otosclerosis. The placement of titanium soft clip design was found easier than the earlier àWengen design of clip piston.

  15. Thermal conductance of Teflon and Polyethylene: Insight from an atomistic, single-molecule level

    PubMed Central

    Buerkle, Marius; Asai, Yoshihiro

    2017-01-01

    The thermal transport properties of teflon (polytetrafluoroethylene) and its polyethylene counterparts are, while highly desirable and widely used, only superficially understood. Here, we aim therefore to provide rigorous insight from an atomistic point of view in context of single-molecule devices. We show that for vinyl polymers adsorbed on metal-surfaces the thermal transport strongly depends on the properties of the metal-molecule interface and that the reduced thermal conductance observed for teflon derivatives originates in a reduced phonon injection life time. In asymmetric molecules phonon blocking on the intra molecular interface leads to a further reduction of thermal conductance. For hetrojunctions with different electrode materials we find that thermal conductance is suppressed due to a reduced overlap of the available phonon modes in the different electrodes. A detailed atomistic picture is thereby provided by studying the transport through perfluorooctane and octane on a single-molecule level using first principles transport calculations and nonequilibrium molecular dynamic simulations. PMID:28150738

  16. Initial study of sediment antagonism and characteristics of silver nanoparticle-coated biliary stents in an experimental animal model.

    PubMed

    Tian, Yigeng; Xia, Mingfeng; Zhang, Shuai; Fu, Zhen; Wen, Qingbin; Liu, Feng; Xu, Zongzhen; Li, Tao; Tian, Hu

    2016-01-01

    Plastic biliary stents used to relieve obstructive jaundice are frequently blocked by sediment, resulting in loss of drainage. We prepared stents coated with silver nanoparticles (AgNPs) and compared their ability to resist sedimentation with Teflon stents in a beagle model of obstructive jaundice. AgNP-coated Teflon biliary stents were prepared by chemical oxidation-reduction and evaluated in an obstructive jaundice model that was produced by ligation of common bile duct (CBD); animals were randomized to two equal groups for placement of AgNP-coated or Teflon control stents. Liver function and inflammatory index were found to be similar in the two groups, and the obstruction was relieved. Stents were removed 21 days after insertion and observed by scanning and transmission electron microscopy. The AgNP coating was analyzed by energy dispersive X-ray analysis (EDXA), and the composition of sediment was assayed by Fourier-transform infrared (FTIR) spectroscopy. Electron microscopy revealed a black, closely adherent AgNP stent coating, with thicknesses of 1.5-6 µm. Sediment thickness and density were greater on Teflon than on AgNP-coated stents. EDXA confirmed the stability and integrity of the AgNP coating before and after in vivo animal experimentation. FTIR spectroscopy identified stent sediment components including bilirubin, cholesterol, bile acid, protein, calcium, and other substances. AgNP-coated biliary stents resisted sediment accumulation in this canine model of obstructive jaundice caused by ligation of the CBD.

  17. Initial study of sediment antagonism and characteristics of silver nanoparticle-coated biliary stents in an experimental animal model

    PubMed Central

    Tian, Yigeng; Xia, Mingfeng; Zhang, Shuai; Fu, Zhen; Wen, Qingbin; Liu, Feng; Xu, Zongzhen; Li, Tao; Tian, Hu

    2016-01-01

    Objective Plastic biliary stents used to relieve obstructive jaundice are frequently blocked by sediment, resulting in loss of drainage. We prepared stents coated with silver nanoparticles (AgNPs) and compared their ability to resist sedimentation with Teflon stents in a beagle model of obstructive jaundice. Methods AgNP-coated Teflon biliary stents were prepared by chemical oxidation–reduction and evaluated in an obstructive jaundice model that was produced by ligation of common bile duct (CBD); animals were randomized to two equal groups for placement of AgNP-coated or Teflon control stents. Liver function and inflammatory index were found to be similar in the two groups, and the obstruction was relieved. Stents were removed 21 days after insertion and observed by scanning and transmission electron microscopy. The AgNP coating was analyzed by energy dispersive X-ray analysis (EDXA), and the composition of sediment was assayed by Fourier-transform infrared (FTIR) spectroscopy. Results Electron microscopy revealed a black, closely adherent AgNP stent coating, with thicknesses of 1.5–6 µm. Sediment thickness and density were greater on Teflon than on AgNP-coated stents. EDXA confirmed the stability and integrity of the AgNP coating before and after in vivo animal experimentation. FTIR spectroscopy identified stent sediment components including bilirubin, cholesterol, bile acid, protein, calcium, and other substances. Conclusion AgNP-coated biliary stents resisted sediment accumulation in this canine model of obstructive jaundice caused by ligation of the CBD. PMID:27217749

  18. Heavy metals in atmospheric surrogate dry deposition

    PubMed

    Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri

    1999-02-01

    This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.

  19. Comparative electron microscopic study of the surface structure of gold, Teflon, and titanium stapes prostheses.

    PubMed

    Kwok, P; Fisch, U; Strutz, J; Jacob, P

    2001-09-01

    The goal of this study was to compare stapes prostheses of different materials with respect to their surface structures and to discuss their suitability for their use in stapes surgery. The surface condition of a stapes prosthesis plays an important role in relation to the type of membrane that forms between the stapes piston and the bony edge of the stapedotomy opening. The quality of this membrane in thickness and mobility is one of the determinants for postoperative hearing improvement. The surface conditions of gold, Teflon/steel, Teflon/platinum, and titanium stapes prostheses were examined with a scanning electron microscope. The loop, shaft, and end of each prosthesis were studied. The gold piston was the smoothest of the four pistons examined. When it was cut with a scalpel, a very smooth surface was achieved at the end area. The Teflon piston had the roughest surface. However, when it was cut, a smooth surface with a parallel arrangement of fibers resulted. Its steel loop was the smoothest, followed by gold and platinum. The titanium shaft had a scaly surface, which remained when the end of the shaft was shortened. Because a certain roughness of the piston surface is necessary for the development of a stable membrane between the piston and the edge of the stapedotomy opening, the titanium prosthesis is considered to be the most suitable for stapes surgery of the three pistons examined.

  20. Treatment of subgingival implant surfaces with Teflon-coated sonic and ultrasonic scaler tips and various implant curettes. An in vitro study.

    PubMed

    Rühling, A; Kocher, T; Kreusch, J; Plagmann, H C

    1994-03-01

    Removal of plaque and calculus by means of sonic and ultrasonic scalers causes considerable damage to implants. With a view to avoiding the aggressive effects of these instruments, an experimental study was carried out for which conventional sonic and ultrasonic scalers were coated with Teflon. The effects of these instruments on implant surfaces was then compared with that of plastic and metal implant curettes. Stereo-microscopy, scanning electron microscopy and surface profilometry were used to detect and record damage to implant surfaces and changes in surface roughness. Generation and propagation of heat in subgingival simulation of use of sonic and ultrasonic scalers were also recorded by means of temperature measurements at the implant surface. The results revealed that no discernible damage was caused by Teflon-coated sonic and ultrasonic scalers or implant curettes made of plastic on smooth titanium surfaces. Instrument material residues were found on rough implant surfaces. It was not the intention of this study to provide an analysis of the prerequisites for the cleaning of rough implant surfaces, but rather to determine what type of damage is to be expected when contact is made with smooth and rough surfaces unintentionally. Temperature measurements during the subgingival use of sonic and ultrasonic scalers indicated satisfactory functioning of the cooling system. Coating of sonic and ultrasonic scaler tips with Teflon thus facilitates the use of high-frequency instruments to achieve professional cleaning of implants.

  1. Use of a single-bowl continuous-flow centrifuge for dewatering suspended sediments: effect on sediment physical and chemical characteristics

    USGS Publications Warehouse

    Rees, T.F.; Leenheer, J.A.; Ranville, J.F.

    1991-01-01

    Sediment-recovery efficiency of 86-91% is comparable to that of other types of CFC units. The recovery efficiency is limited by the particle-size distribution of the feed water and by the limiting particle diameter that is retained in the centrifuge bowl. Contamination by trace metals and organics is minimized by coating all surfaces that come in contact with the sample with either FEP or PFA Teflon and using a removable FEP Teflon liner in the centrifuge bowl. -from Authors

  2. Evaluation of alternative filter media for particulate matter emission testing of residential wood heating devices

    DOE PAGES

    Allen, George; Rector, Lisa; Butcher, Thomas; ...

    2017-07-31

    The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less

  3. Evaluation of alternative filter media for particulate matter emission testing of residential wood heating devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, George; Rector, Lisa; Butcher, Thomas

    The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfabmore » filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.« less

  4. Teflon probing for the flow characterization of arc-heated wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Gulli, Stefano; Ground, Cody; Crisanti, Matthew; Maddalena, Luca

    2014-02-01

    The experimental flow characterization of the arc-heated wind tunnel of the University of Texas at Arlington is investigated in this work using ablative Teflon probes in combination with total pressure measurements. A parallel analytical work, focused on the dimensional analysis of the ablation process, has been conducted with the purpose of improving existing semi-empirical correlations for the heat blockage due to the mass injection inside the boundary layer. A control volume analysis at the receding surface of the specimens is used to calculate the wall heat transfer for a non-ablating probe by including the blockage effect. The new correlations, obtained for the convective blockage, show an improvement of the correlation coefficient of 110 % with respect to those available in literature, once a new blowing parameter containing the stagnation pressure is introduced. A correlation developed by NASA during the Round-Robin program, which relates the Teflon mass loss rate to the total pressure and cold-wall heat flux measured experimentally, is also used to predict the wall heat transfer referred to the ablation temperature of Teflon. For both approaches, a simplified stagnation point convective heat transfer equation allows the average stagnation enthalpy to be calculated. Several locations downstream of the nozzle exit have been surveyed, and selected points of the facility's performance map have been used for the experimental campaign. The results show that both approaches provide similar results in terms of stagnation heat flux and enthalpy prediction with uncertainties comparable to those provided by standard intrusive heat flux probes ( δ q max < 25 %). The analysis of the Teflon's ablated surface does not reveal significant flow non-uniformities, and a 1.14 heat flux enhancement factor due to the shock-shock interaction is detectable at x = 3.5 in. from the nozzle exit plane. The results show the use of ablative probes for the flow characterization of arc plasma facilities to be promising for the dual purpose of calculating the local flow properties (i.e., heat flux and enthalpy) as well as verifying the uniformity of the flow by inspecting the footprint of the plume on the exposed surfaces.

  5. A methodology to determine boundary conditions from forced convection experiments using liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Jakkareddy, Pradeep S.; Balaji, C.

    2017-02-01

    This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.

  6. VUV light reflectivity measurements from PTFE in Liquid Xenon for the LZ Dark Matter experiment

    NASA Astrophysics Data System (ADS)

    Pushkin, Kirill; LZ Collaboration

    2016-03-01

    The LUX-Zeplin (LZ) collaboration is the next generation of the experiment to search for Dark Matter in the Universe with a dual-phase detector based on liquid xenon (LXe) with a target mass of 7 ton. LXe dual phase detectors are very sensitive probes to search for WIMP dark matter interactions. The LZ collaboration is conducting R&D to study VUV light reflectivity from PTFE (Teflon) in LXe. Teflon is used in dual phase detectors both as an electrical insulator and as reflector of VUV scintillation light (~175 nm) to improve photon detection with photomultiplier tubes (PMTs). However, experimental data for the reflectance of VUV light from PTFE in LXe is not sufficiently conclusive. We present a new technique of measuring the light reflectivity from PTFE by varying the fractional area of the PMT in the detector. PTFE reflectivity measurements were performed as a function of Teflon wall thickness in the range of 2 mm to 9.5 mm. The method, apparatus and experimental results will be presented.

  7. UV and IR laser radiation's interaction with metal film and teflon surfaces

    NASA Astrophysics Data System (ADS)

    Fedenev, A. V.; Alekseev, S. B.; Goncharenko, I. M.; Koval', N. N.; Lipatov, E. I.; Orlovskii, V. M.; Shulepov, M. A.; Tarasenko, V. F.

    2003-04-01

    The interaction of Xe ([lambda] [similar] 1.73 [mu]m) and XeCl (0.308 [mu]m) laser radiation with surfaces of metal and TiN-ceramic coatings on glass and steel substrates has been studied. Correlation between parameters of surface erosion versus laser-specific energy was investigated. Monitoring of laser-induced erosion on smooth polished surfaces was performed using optical microscopy. The correlation has been revealed between characteristic zones of thin coatings damaged by irradiation and energy distribution over the laser beam cross section allowing evaluation of defects and adhesion of coatings. The interaction of pulsed periodical CO2 ([lambda] [similar] 10.6 [mu]m), and Xe ([lambda] [similar] 1.73 [mu]m) laser radiation with surfaces of teflon (polytetrafluoroethylene—PTFE) has been studied. Monitoring of erosion track on surfaces was performed through optical microscopy. It has been shown that at pulsed periodical CO2-radiation interaction with teflon the sputtering of polymer with formation of submicron-size particles occurs. Dependencies of particle sizes, form, and sputtering velocity on laser pulse duration and target temperature have been obtained.

  8. Flammability testing conducted in support of Apollo 13

    NASA Technical Reports Server (NTRS)

    Leger, L. J.; Bricker, R. W.

    1971-01-01

    In support of the Apollo 13 investigation of the oxygen tank failure, flame propagation rates were determined for Teflon insulation in cryogenic and ambient temperature oxygen for upward, downward, and zero g burns. The propagation rates depended heavily on configuration and varied from 4.8 to 10.9 cm/sec for upward one g burns to 0.48 cm/sec for zero g burns. In addition to the flame propagation rates, tests were conducted to determine if Teflon burning in cryogenic oxygen could ignite metals (promoted ignition) with which it came in contact. Tests conducted on various metal alloys used in the oxygen tank indicated that most of the alloys could be ignited by burning Teflon in certain configurations. After the propagation rates and promoted metal ignitions had been evaluated, a test was conducted on a quantity gauge and wire harness used in the oxygen tank to determine if flame propagation to the tank wall was possible. Propagation of the wire bundle after ignition resulted in a catastrophic failure of the test vessel in the area of the quantity gauge.

  9. Comparison of Fluoroplastic Causse Loop Piston and Titanium Soft-Clip in Stapedotomy

    PubMed Central

    Faramarzi, Mohammad; Gilanifar, Nafiseh; Roosta, Sareh

    2017-01-01

    Introduction: Different types of prosthesis are available for stapes replacement. Because there has been no published report on the efficacy of the titanium soft-clip vs the fluoroplastic Causse loop Teflon piston, we compared short-term hearing results of both types of prosthesis in patients who underwent stapedotomy due to otosclerosis. Materials and Methods: A total of 57 ears were included in the soft-clip group and 63 ears were included in the Teflon-piston group. Pre-operative and post-operative air conduction, bone conduction, air-bone gaps, speech discrimination score, and speech reception thresholds were analyzed. Results: Post-operative speech reception threshold gains did not differ significantly between the two groups (P=0.919). However, better post-operative air-bone gap improvement at low frequencies was observed in the Teflon-piston group over the short-term follow-up (at frequencies of 0.25 and 0.50 kHz; P=0.007 and P=0.001, respectively). Conclusion: Similar post-operative hearing results were observed in the two groups in the short-term. PMID:28229059

  10. Characteristics of high-purity Teflon vial for 14C measurement in old tree rings

    NASA Astrophysics Data System (ADS)

    Sakurai, H.; Saswaki, Y.; Matsumoto, T.; Aoki, T.; Kato, W.; Gandou, T.; Gunji, S.; Tokanai, F.

    2003-06-01

    14C concentration in single-year tree rings of an old cedar of ca. 2500 years ago is measured to investigate the 11-yr periodicity of solar activity. Our highly accurate 14C measuring system is composed of a benzene synthesizer capable of producing a large quantity (10 g) of benzene and a Quantulus 1220™ liquid scintillation counting system. The accuracy is less than 0.2% for measurements of 14C concentration. The benzene sample is contained in a high-purity Teflon/copper-counting vial (20 ml) manufactured by Wallac Oy Company. We found a vial with an irregular copper cap for the measurements of 11 tree rings. The behavior of the vial with the irregular cap was investigated. The Teflon sheet inside the cap plays an important role in achieving stable measurement. The rate of volatilization of the benzene was less than 0.35 mg/day for vials with ordinary caps. This results in the volatilization rate of 0.003% for 10.5 g of benzene and hence guarantees measurement at an accuracy of 0.2% for 70 days.

  11. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  12. 200 Deg C Demonstration Transformer Operates Efficiently at 50 kHz

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E. (Technical Monitor)

    2003-01-01

    A compact, high temperature demonstration transformer was constructed, using a moly permalloy powder core and Teflon -insulated copper wire. At 50 kHz and 200 C, this 1:2 ratio transformer is capable of 98 percent efficiency when operating at a specific power of 6.1 kW/kg at 4 kW. This roughly 7 cm diameter transformer has a mass of 0.65 kg. Although Teflon is unstable above 200 C, about the same electrical performance was seen at 250 C. A plot of winding loss versus frequency illustrates the need to control these losses at high frequency.

  13. Adaptation of ion beam technology to microfabrication of solid state devices and transducers

    NASA Technical Reports Server (NTRS)

    Topich, J. A.

    1978-01-01

    A number of areas were investigated to determine the potential uses of ion beam techniques in the construction of solid state devices and transducers and the packaging of implantable electronics for biomedical applications. The five areas investigated during the past year were: (1) diode-like devices fabricated on textured silicon; (2) a photolithographic technique for patterning ion beam sputtered PVC (polyvinyl chloride); (3) use of sputtered Teflon as a protective coating for implantable pressure sensors; (4) the sputtering of Macor to seal implantable hybrid circuits; and (5) the use of sputtered Teflon to immobilize enzymes.

  14. Studies of erosion of solar max samples of Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Fristrom, R. M.; Benson, R. C.; Bargeron, C. B.; Phillips, T. E.; Vest, C. E.; Hoshall, C. H.; Satkiewicz, F. G.; Uy, O. M.

    1985-01-01

    Several samples of Kapton and Teflon which was exposed to solar radiation were examined. The samples represent material behavior in near Earth space. Clues to the identity of erosive processes and the responsible species were searched for. Interest centered around oxygen atoms which are ubiquitous at these altitudes and are known to erode some metal surfaces. Three diagnostic methods were employed: optical microscopy, scanning electron microscopy, and fourier transform infrared spectroscopy. Two types of simulation were used: a flow containing low energy oxygen atoms and bombardment with 3000 volt Ar ions. Results and conclusions are presented.

  15. Heterogeneous losses of externally generated I atoms for OIL

    NASA Astrophysics Data System (ADS)

    Torbin, A. P.; Mikheyev, P. A.; Ufimtsev, N. I.; Voronov, A. I.; Azyazov, V. N.

    2012-01-01

    Usage of an external iodine atom generator can improve energy efficiency of the oxygen-iodine laser (OIL) and expand its range of operation parameters. However, a noticeable part of iodine atoms may recombine or undergo chemical bonding during transportation from the generator to the injection point. Experimental results reported in this paper showed that uncoated aluminum surfaces readily bounded iodine atoms, while nickel, stainless steel, Teflon or Plexiglas did not. Estimations based on experimental results had shown that the upper bound of probability of surface iodine atom recombination for materials Teflon, Plexiglas, nickel or stainless steel is γrec <= 10-5.

  16. Analysis of Surveyor 3 television cable after residence on the moon

    NASA Technical Reports Server (NTRS)

    Gross, F. C.; Park, J. J.

    1972-01-01

    The Apollo 12 astronauts brought the Surveyor III television camera back from the moon in November 1969. Chemical analyses of a portion of television cable revealed changes in the glass fabric sleeve and in the wire insulation as a result of exposure to the lunar environment. Loss of volatile constituents from the glass fabric and a discoloration of the glass occurred. The Teflon layer on the wire showed a slight discoloration and possibly a slight change in its infrared spectrum. Both the polyimide layer and the Teflon layer of the wire insulation showed changes in tensile strength and elongation.

  17. The search for materials to mitigate spacecraft charging

    NASA Technical Reports Server (NTRS)

    Losure, Nancy S.

    1996-01-01

    As spacecraft orbit the earth, they encounter a variety of particles and radiation. Charged particles are common enough that a spacecraft can collect substantial charges on its surfaces. If these charges are not bled off, they can accumulate until electrostatic discharges occur between a charged surface and some lower-potential location on the craft. Electrostatic discharge (ESD) is the suspected culprit in a number of spacecraft failures. Silverized Teflon film has become the standard heat-reflecting outer layer of spacecraft because of its flexibility, chemical inertness, and low volatiles content. However, as spacecraft are designed to operate in orbits with greater probability of accumulating enough ions and electrons to create ESD, the Teflon-based thermal control blankets are becoming a liability. Unless stringent (and sometimes burdensome) shielding measures are taken, ESD can upset delicate electronic systems by upsetting or destroying components, interfering with radio signals, garbling internal instructions, and so on. As orbits become higher and more eccentric, as electronics become more sensitive, and as fault-free operation becomes more crucial, it is becoming necessary to find a replacement for silver/Teflon that has comparable strength, flexibility and chemical inertness, as well as a much lower potential for ESD. This is a report of the steps taken toward the goal of selecting a replacement for silver/Teflon during the Summer of 1995. It is a condensation of a much larger report available on request from the author. Three tasks were undertaken. Task 1 was to specify desirable properties for thermal control blankets. The second task was to collect data on materials properties from the literature and organize into a format useful for identifying candidate materials. The third task was to identify candidate materials and begin testing.

  18. Impact penetration experiments in teflon targets of variable thickness

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Bernhard, R. P.; See, T. H.

    1993-03-01

    Approximately 20.4 sq m of Teflon thermal blankets on the nonspinning Long Duration Exposure Facility (LDEF) were exposed to the orbital debris and micrometeoroid environment in low-Earth orbit (LEO) for approximately 5.7 years. Each blanket consisted of an outer layer (approximately 125 micron thick) of FEP Teflon that was backed by a vapor-deposited metal mirror (Inconel; less than 1 micron thick). The inner surface consisted of organic binders and Chemglaze thermal protective paint (approximately 50 micron thick) resulting in a somewhat variable, total blanket thickness of approximately 180 to 200 microns. There was at least one of these blankets, each exposing approximately 1.2 sq m of surface area, on nine of LDEF's 12 principal pointing directions, the exceptions being Rows 3, 9, and 12. As a consequence, these blankets represent a significant opportunity for micrometeoroid and debris studies, in general, and specifically they provide an opportunity to address those issues that require information about pointing direction (i.e., spatial density of impact events as a function of instrument orientation). During deintegration of the LDEF spacecraft at KSC, all penetration holes greater than or equal to 300 micron in diameter were documented and were recently synthesized in terms of spatial density as a function of LDEF viewing direction by. The present report describes ongoing cratering and penetration experiments in pure Teflon targets, which are intended to establish the relationships between crater or penetration-hole diameters and the associated projectile dimensions at laboratory velocities (i.e., 6 km/s). The ultimate objective of these efforts is to extract reliable mass-frequencies and associated fluxes of hypervelocity particles in LEO.

  19. Experimental impacts into Teflon targets and LDEF thermal blankets

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Zolensky, M. E.; Bernhard, R. P.; See, T. H.

    1994-03-01

    The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features.

  20. In vitro osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement

    PubMed Central

    Eid, Ashraf A.; Niu, Li-na; Primus, Carolyn M.; Opperman, Lynne A.; Watanabe, Ikuya; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Introduction Calcium aluminosilicate cements are fast-setting, acid-resistant, bioactive cements that may be used as root-repair materials. This study examined the osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement (Quick-Set) using a murine odontoblast-like cell model. Methods Quick-Set and white ProRoot MTA (WMTA) were mixed with the proprietary gel or deionized water, allowed to set completely in 100% relative humidity and aged in complete growth medium for 2 weeks until rendered non-cytotoxic. Similarly-aged Teflon discs were used as negative control. The MDPC-23 cell-line was used for evaluating changes in mRNA expressions of genes associated with osteogenic/dentinogenic differentiation and mineralization (qRT-PCR) alkaline phosphatase enzyme production and extracellular matrix mineralization (Alizarin red-S staining). Results After MDPC-23 cells were incubated with the materials in osteogenic differentiation medium for 1 week, both cements showed upregulation in ALP and DSPP expression. Fold increases in these two genes were not significantly different between Quick-Set and WMTA. Both cements showed no statistically significant upregulation/downregulation in RUNX2, OCN, BSP and DMP1 gene expression compared with Teflon. Alkaline phosphatase activity of cells cultured on Quick-Set and WMTA were not significantly different at 1 week or 2 weeks, but were significantly higher (p<0.05) than Teflon in both weeks. Both cements showed significantly higher calcium deposition compared with Teflon after 3 weeks of incubation in mineralizing medium (p<0.001). Differences between Quick-Set and WMTA were not statistically significant. Conclusions The experimental calcium aluminosilicate cement exhibits similar osteogenic/dentinogenic properties to WMTA and may be a potential substitute for commercially-available tricalcium silicate cements. PMID:23953291

  1. Effects of Gas-Wall Partitioning in Teflon Tubing, Instrumentation and Other Materials on Time-Resolved Measurements of Gas-Phase Organic Compounds

    NASA Astrophysics Data System (ADS)

    Pagonis, D.; Deming, B.; Krechmer, J. E.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    Recently it has been shown that gas-phase organic compounds partition to and from the walls of Teflon environmental chambers. This process is fast, reversible, and can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning inside Teflon tubing by introducing step function changes in the concentration of compounds being sampled and measuring the delay in the response of a proton transfer reaction-mass spectrometer (PTR-MS). We find that these delays are significant for compounds with a saturation vapor concentration (c*) below 106 μg m-3, and that the Teflon tubing and the PTR-MS both contribute to the delays. Tubing delays range from minutes to hours under common sampling conditions and can be accurately predicted by a simple chromatography model across a range of tubing lengths and diameters, flow rates, compound functional groups, and c*. This method also allows one to determine the volatility-dependent response function of an instrument, which can be convolved with the output of the tubing model to correct for delays in instrument response time for these "sticky" compounds. This correction is expected to be of particular interest to researchers utilizing and developing chemical ionization mass spectrometry (CIMS) techniques, since many of the multifunctional organic compounds detected by CIMS show significant tubing and instrument delays. These results also enable better design of sampling systems, in particular when fast instrument response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. Additional results presented here extend this method to quantify the relative sorptive capacities for other commonly used tubing materials, including PFA, FEP, PTFE, PEEK, glass, copper, stainless steel, and passivated steel.

  2. Collection of Aerosolized Human Cytokines Using Teflon® Filters

    PubMed Central

    McKenzie, Jennifer H.; McDevitt, James J.; Fabian, M. Patricia; Hwang, Grace M.; Milton, Donald K.

    2012-01-01

    Background Collection of exhaled breath samples for the analysis of inflammatory biomarkers is an important area of research aimed at improving our ability to diagnose, treat and understand the mechanisms of chronic pulmonary disease. Current collection methods based on condensation of water vapor from exhaled breath yield biomarker levels at or near the detection limits of immunoassays contributing to problems with reproducibility and validity of biomarker measurements. In this study, we compare the collection efficiency of two aerosol-to-liquid sampling devices to a filter-based collection method for recovery of dilute laboratory generated aerosols of human cytokines so as to identify potential alternatives to exhaled breath condensate collection. Methodology/Principal Findings Two aerosol-to-liquid sampling devices, the SKC® Biosampler and Omni 3000™, as well as Teflon® filters were used to collect aerosols of human cytokines generated using a HEART nebulizer and single-pass aerosol chamber setup in order to compare the collection efficiencies of these sampling methods. Additionally, methods for the use of Teflon® filters to collect and measure cytokines recovered from aerosols were developed and evaluated through use of a high-sensitivity multiplex immunoassay. Our results show successful collection of cytokines from pg/m3 aerosol concentrations using Teflon® filters and measurement of cytokine levels in the sub-picogram/mL concentration range using a multiplex immunoassay with sampling times less than 30 minutes. Significant degradation of cytokines was observed due to storage of cytokines in concentrated filter extract solutions as compared to storage of dry filters. Conclusions Use of filter collection methods resulted in significantly higher efficiency of collection than the two aerosol-to-liquid samplers evaluated in our study. The results of this study provide the foundation for a potential new technique to evaluate biomarkers of inflammation in exhaled breath samples. PMID:22574123

  3. Sunscreen tests: correspondence between in vitro data and values reported by the manufacturers.

    PubMed

    Garoli, Denis; Pelizzo, Maria Guglielmina; Bernardini, Bianca; Nicolosi, Piergiorgio; Alaibac, Mauro

    2008-12-01

    In vitro sunscreen tests are diffusively used to test both the sun protection factor (SPF) and the photo-stability of filters. Spectrophotometric measurements of the absorbance of ultraviolet radiations through a sunscreen applied on a suitable substrate allow a rapid evaluation of its protection factor both at short and long wavelength ultraviolet radiation (UVB and UVA). The objective of this study has been to demonstrate if Teflon can be adopted as substrate both for SPF evaluation and photo-stability tests. Moreover, we have investigated if there is a correspondence between in vitro SPF measurements and values reported by manufacturers on sunscreens. Teflon has been used to perform several photo-stability tests by irradiating the filters with different wavebands and analyzing the combined effect of UV and infrared (IR) light. Similar analyses have been carried out using PMMA Plates, which is the standard substrate for UVA in vitro test. We have demonstrated that it is possible to establish a good correspondence between in vitro SPF and values reported by manufacturers on sunscreens. We have also verified that the in vitro/label SPF correlation curve depends on the quantity of product applied while this does not seem to be true for other parameters like Critical Wavelength and UVA ratio. With regard to photo-stability studies, our results indicate for the first time that IR irradiation may have a role on photo-degradation. The results show that there is a good correlation between the in vitro SPF determined by the present method and the SPF reported by the manufacturer. The compatibility of the results obtained using Teflon and PMMA Plates demonstrates that Teflon can be utilized for both SPF determination and photo-stability tests.

  4. Investigation of space stable thermal control coating properties

    NASA Technical Reports Server (NTRS)

    Mookherji, T.

    1971-01-01

    A capability to study the nuclear magnetic resonance of spacecraft thermal control coating has been built utilizing an electromagnet and V-series and Wl-series electronics. The electronics associated with the electromagnet had to be modified to make it compatible with the resonance measuring system. Resonance measurements have been performed on ZnO, Zn2TiO4 and FEP Teflon. The failure to observe resonance in ZnO and Zn2TiO4 has been theoretically explained. The linewidth and second moment measurements on ultraviolet irradiated FEP Teflon showed that there was no measurable degradation of the material due to short term irradiation.

  5. PALS and SPM/EFM investigation of charged nanoporous electret films

    NASA Astrophysics Data System (ADS)

    Chiang, Dar-Ming; Liu, Wen-Liang; Chen, Jen-Luan; Susuki, Ryoichi

    2005-08-01

    The electret properties of nanoporous Teflon-FEP films, fabricated by the super-critical fluids method and charged by the corona method at room temperature, are investigated. PALS and SAXS are applied first to examine the charge characteristics of a free volume of electret materials. The topography and surface charges of electret materials are determined by scanning probe microscopy and electric field microscopy, respectively. The experimental results reveal that the interior surface areas of the pores of the electret materials influence the retention and stability of charge. Initial and aged surface charge was increased by factors of two and ten, with and without nanoporous Teflon-FEP films, respectively.

  6. Preparation and optical properties of Au/Teflon nanocomposites.

    PubMed

    Goncharenko, A V; Grynko, D O; Grytsenko, K P; Lozovski, V Z

    2005-11-01

    Using thermal deposition technique, we have prepared Au/Teflon thin films on glass substrates. To control the film microstructure, both TEM and AFM characterization have been carried out. The visible optical transmission spectra have been measured in-situ. The peak positions and linewidths in the spectra have been identified in terms of the gold nanoparticle shape, size, and arrangement. The results obtained provide evidence for formation of both sphere-like and cylinder-like gold nanoparticles in the films. The fraction of each kind of the particles depends on whether the plasma treatment has been used. The treatment is shown to enhance the fraction of the cylinder-like particles.

  7. An analysis of LDEF-exposed silvered FEP teflon thermal blanket material

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.

    1991-01-01

    The characterization of selected silvered fluorinated ethylene propylene (FEP) teflon thermal blanket material which received 5 years and 9 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. X-ray photoelectron spectroscopy, infrared, and thermal analyses did not detect a significant change at the molecular level as the result of this exposure. However, various microscopic analyses revealed a roughening of the coating surface due to atomic oxygen erosion which resulted in some materials changing from specular reflectors of visible radiation to diffuse reflectors. The potential effect of silicon-containing molecular contamination on these materials is addressed.

  8. Mini-BRU/BIPS foil bearing development

    NASA Technical Reports Server (NTRS)

    Dobler, F. X.; Miller, L. J.

    1978-01-01

    The analysis revealed the failure agent to be a combination of poor teflon coating adhesion, a decrease in bearing sway space and, possibly, lack of flushing flow through the bearing. A change in Teflon coating vendors provided substantially improved coating quality and surface finish. The sway space was increased and the cooling bleed flow was adjusted to flush the bearing. These changes were included in a test conducted in the WHL from 6 April to 22 May 1978 which resulted in the completion of 1006.9 hours of operation at temperature and load. Post-test inspection revealed the bearings to be in excellent condition and capable of completing a much longer test.

  9. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters

    NASA Astrophysics Data System (ADS)

    Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.

    2018-02-01

    Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.

  10. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    NASA Astrophysics Data System (ADS)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  11. Reliability analysis of component of affination centrifugal 1 machine by using reliability engineering

    NASA Astrophysics Data System (ADS)

    Sembiring, N.; Ginting, E.; Darnello, T.

    2017-12-01

    Problems that appear in a company that produces refined sugar, the production floor has not reached the level of critical machine availability because it often suffered damage (breakdown). This results in a sudden loss of production time and production opportunities. This problem can be solved by Reliability Engineering method where the statistical approach to historical damage data is performed to see the pattern of the distribution. The method can provide a value of reliability, rate of damage, and availability level, of an machine during the maintenance time interval schedule. The result of distribution test to time inter-damage data (MTTF) flexible hose component is lognormal distribution while component of teflon cone lifthing is weibull distribution. While from distribution test to mean time of improvement (MTTR) flexible hose component is exponential distribution while component of teflon cone lifthing is weibull distribution. The actual results of the flexible hose component on the replacement schedule per 720 hours obtained reliability of 0.2451 and availability 0.9960. While on the critical components of teflon cone lifthing actual on the replacement schedule per 1944 hours obtained reliability of 0.4083 and availability 0.9927.

  12. Composite electrochemical biosensors: a comparison of three different electrode matrices for the construction of amperometric tyrosinase biosensors.

    PubMed

    Serra, B; Jiménez, S; Mena, M L; Reviejo, A J; Pingarrón, J M

    2002-03-01

    A comparison of the behaviour of three different rigid composite matrices for the construction of amperometric tyrosinase biosensors, which are widely used for the detection of phenolic compounds, is reported. The composite electrode matrices were, graphite-Teflon; reticulated vitreous carbon (RVC)-epoxy resin; and graphite-ethylene/propylene/diene (EPD) terpolymer. After optimization of the experimental conditions, different aspects regarding the stability of the three composite tyrosinase electrode designs were considered and compared. A better reproducibility of the amperometric responses was found with the graphite-EPD electrodes, whereas a longer useful lifetime was observed for the graphite-Teflon electrodes. The kinetic parameters of the tyrosinase reaction were calculated for eight different phenolic compounds, as well as their corresponding calibration plots. The general trend in sensitivity was graphite-EPD>graphite-Teflon>RVC-epoxy resin. A correlation between sensitivity and the catalytic efficiency of the enzyme reaction for each phenolic substrate was found. Furthermore, differences in the sensitivity order for the phenolic compounds were observed among the three biocomposite electrodes, which suggests that the nature of the electrode matrix influences the interactions in the tyrosinase catalytic cycle.

  13. A Roof for the Lion's House

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Fans of the National Football League's Detroit Lions don't worry about gameday weather. Their magnificent new Pontiac Stadium has a domed, air-supported, fabric roof that admits light but protects the playing field and patrons from the elements. The 80,000-seat "Silverdome" is the world's largest fabric-covered structure-and aerospace technology played an important part in its construction. The key to economical construction of the Silverdome-and many other types of buildings-is a spinoff of fiber glass Beta yarn coated with Teflon TFE fluorocarbon resin. The big advance it offers is permanency. Fabric structures-tents, for example have been around since the earliest years of human civilization. But their coverings-hides, canvas and more recently plastics-were considered temporary; though tough, these fabrics were subject to weather deterioration. Teflon TFE-coated Beta Fiberglas is virtually impervious to the effects of weather and sunlight and it won't stretch, shrink, mildew or rot, thus has exceptional longevity; it is also very strong, lightweight, flame resistant and requires no periodic cleaning, because dirt will not stick to the surface of Teflon TFE. And to top all that, it costs only 30 to 40 percent as much as conventional roofing.

  14. Ablative overlays for Space Shuttle leading edge ascent heat protection

    NASA Technical Reports Server (NTRS)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  15. Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets

    NASA Astrophysics Data System (ADS)

    Wan, Zhiliang; Zeng, Hongjun; Feinerman, Alan

    2006-11-01

    The authors report a micromirror device actuated by electrowetting effect. The micromirror surface is formed by a liquid-metal droplet jetted on a substrate and then topped with a parylene/Teflon coated indium tin oxide glass slide. The droplet is deformed by a voltage applied across the parylene/Teflon film. The radius of micromirror is tuned from 13μm (0V) to 88μm (90V), and the normalized area increases from 0.2 to 0.94 accordingly. The switching time ranges from 1ms for a 350μm diameter droplet to 0.2ms for a 50μm one. A 4×1 micromirror array is demonstrated and switched simultaneously.

  16. The effects of dissecting tools on the trace element concentrations of fish and mussel tissues.

    PubMed

    Heit, M; Klusek, C S

    1982-06-01

    A comparison of the effects of dissecting tools composed of various materials on the trace element content of the muscle of the marine bluefish, Pomatomus saltatrix, and the soft tissues of freshwater mussels, Eliptio complanatus and Lampsilus radiata, is presented. The fish were dissected with blades made of stainless steel, Lexan plastic, titanium, and Teflon-coated stainless steel. The mussels were dissected with stainless and Teflon tools only. Elements measured included As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn, Te, V, and Zn. Significant concentration differences (P = 0.01) were not found for any element in fish or mussel samples dissected by the different tools.

  17. Bacterial adhesion capacity on food service contact surfaces.

    PubMed

    Fink, Rok; Okanovič, Denis; Dražič, Goran; Abram, Anže; Oder, Martina; Jevšnik, Mojca; Bohinc, Klemen

    2017-06-01

    The aim of this study was to analyse the adhesion of E. coli, P. aeruginosa and S. aureus on food contact materials, such as polyethylene terephthalate, silicone, aluminium, Teflon and glass. Surface roughness, streaming potential and contact angle were measured. Bacterial properties by contact angle and specific charge density were characterised. The bacterial adhesion analysis using staining method and scanning electron microscopy showed the lowest adhesion on smooth aluminium and hydrophobic Teflon for most of the bacteria. However, our study indicates that hydrophobic bacteria with high specific charge density attach to those surfaces more intensively. In food services, safety could be increased by selecting material with low adhesion to prevent cross contamination.

  18. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  19. Infrared blocking, microwave and terahertz low-loss transmission AlN films grown on flexible polymeric substrates

    NASA Astrophysics Data System (ADS)

    Rudenko, E.; Tsybrii, Z.; Sizov, F.; Korotash, I.; Polotskiy, D.; Skoryk, M.; Vuichyk, M.; Svezhentsova, K.

    2017-04-01

    Aluminum nitride (AlN) film coatings on flexible substrates (polymeric Teflon, Mylar) have been obtained using a hybrid helicon-arc ion-plasma deposition technique with high adhesion of coatings. Studies of optical, morphological, and structural properties of AlN films have been carried out. It was found that AlN coatings on Teflon and Mylar thin-film substrates substantially suppress transmission of infrared (IR) radiation within the spectral range λ ˜ 5-20 μm at certain technological parameters and thickness of AlN. Transmission in THz regions by using quasioptics attains T ≈ 79%-95%, and losses measured in the channels within the microwave region 2 to 36 GHz are <0.06 dB. The obtained composite structures (AlN coatings on Teflon and Mylar thin-film substrates), due to a high thermal conductivity of AlN, could be used as efficient blocking structures in the infrared spectral range ("infrared stealth") withdrawing the heat from filters warmed by IR radiation. At the same time, they can be used as the transparent ones in the microwave and THz regions, which can be important for low-temperature detector components of navigation, positioning, and telecommunication systems due to reducing the background noise.

  20. Surface characterization of nickel titanium orthodontic arch wires

    PubMed Central

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  1. Covalent immobilisation of antibodies in Teflon-FEP microfluidic devices for the sensitive quantification of clinically relevant protein biomarkers.

    PubMed

    Pivetal, Jeremy; Pereira, Filipa M; Barbosa, Ana I; Castanheira, Ana P; Reis, Nuno M; Edwards, Alexander D

    2017-03-13

    This study reports for the first time the sensitive colorimetric and fluorescence detection of clinically relevant protein biomarkers by sandwich immunoassays using the covalent immobilisation of antibodies onto the fluoropolymer surface inside Teflon®-FEP microfluidic devices. Teflon®-FEP has outstanding optical transparency ideal for high-sensitivity colorimetric and fluorescence bioassays, however this thermoplastic is regarded as chemically inert and very hydrophobic. Covalent immobilisation can offer benefits over passive adsorption to plastic surfaces by allowing better control over antibody density, orientation and analyte binding capacity, and so we tested a range of different and novel covalent immobilisation strategies. We first functionalised the inner surface of a 10-bore, 200 μm internal diameter FEP microcapillary film with high-molecular weight polyvinyl alcohol (PVOH) without changing the outstanding optical transparency of the device delivered by the matched refractive index of FEP and water. Glutaraldehyde immobilisation was compared with the use of photoactivated linkers and NHS-ester crosslinkers for covalently immobilising capture antibodies onto PVOH. Three clinically relevant sandwich ELISAs were tested against the cytokine IL-1β, the myocardial infarct marker cardiac troponin I (cTnI), and the chronic heart failure marker brain natriuretic peptide (BNP). Overall, glutaraldehyde immobilisation was effective for BNP assays, but yielded unacceptable background for IL-1β and cTnI assays caused by direct binding of the biotinylated detection antibody to the modified PVOH surface. We found NHS-ester groups reacted with APTES-treated PVOH coated fluoropolymers. This facilitated a novel method for capture antibody immobilisation onto fluoropolymer devices using a bifunctional NHS-maleimide crosslinker. The density of covalently immobilised capture antibodies achieved using PVOH/APTES/NHS/maleimide approached levels seen with passive adsorption, and sensitive and quantitative assay performance was achieved using this method. Overall, the PVOH coating provided an excellent surface for controlled covalent antibody immobilisation onto Teflon®-FEP for performing high-sensitivity immunoassays.

  2. HST Multi Layer Insulation Failure Review Board Findings

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Hansen, Patricia

    1998-01-01

    The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon fluorinated ethylene propylene (FEP), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the absorptance of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. A Failure Review Board was established to determine the damage mechanism and to identify a replacement material. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the degradation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain structural integrity for at least ten years. Ten candidate materials were exposed to simulated orbital environments and a replacement material was selected. This presentation will summarize the FRB results, in particular, the analysis of the retrieved specimens, the results of the simulated environmental exposures, and the selection of the replacement material. The NASA Space Environments and Effects community needs to hear these results because they reveal that Teflon (FEP) films should not be used in LEO as routinely as they are today.

  3. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1991-01-01

    Cumulative space environment effects on Ag/fluorinated ethylene propylene (FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition and chemistry were observed. Researchers hypothesize that the FEP surfaces on LDEF were degraded by ultraviolet radiation exposure at all orientations, but that the damaged material had been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage on trays flanking the trailing edge.

  4. Fundamental ignition study for material fire safety improvement, part 1

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Zung, L. B.

    1970-01-01

    The investigation of preignition, ignition, and combustion characteristics of Delrin (acetate terminated polyformaldehyde) and Teflon (polytetrafluoroethylene) resins in air and oxygen are presented. The determination of ignition limits and their dependence on temperature and the oxidizing media, as well as the analyses of the volatiles produced, were studied. Tests were conducted in argon, an inert medium in which only purely pyrolytic reactions can take place, using the stagnation burner arrangement designed and constructed for this purpose. A theoretical treatment of the ignition and combination phenomena was devised. In the case of Delrin the ignition and ignition delays are apparently independent of the gas (air, oxygen) temperatures. The results indicate that hydrogen is the ignition triggering agent. Teflon ignition limits were established in oxygen only.

  5. Charging rates of metal-dielectric structures. [with implications for spacecraft

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Staskus, J. V.; Roche, J. C.; Berkopec, F. D.

    1979-01-01

    Metal plates partially covered by 0.01-centimeter-thick fluorinated ethylene-propylene (FEP) Teflon were charged in the Lewis Research Center's geomagnetic substorm simulation facility using 5-, 8-, 10-, and 12-kilovolt electron beams. Surface voltage as a function of time was measured for various initial conditions (Teflon discharged or precharged) with the metal plate grounded or floating. Results indicate that both the charging rates and the levels to which the samples become charged are influenced by the geometry and initial charge state of the insulating surfaces. The experiments are described and the results are presented and discussed. NASA charging analyzer program (NASCAP) models of the experiments have been generated, and the predictions obtained are described. Implications of the study results for spacecraft are discussed.

  6. Atomic oxygen effects on candidate coatings for long-term spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Lan, E. H.; Smith, Charles A.; Cross, J. B.

    1988-01-01

    Candidate atomic oxygen protective coatings for long-term low Earth orbit (LEO) spacecraft were evaluated using the Los Alamos National Laboratory O-atom exposure facility. The coatings studied include Teflon, Al2O3, SiO2, and SWS-V-10, a silicon material. Preliminary results indicate that sputtered PTFE Teflon (0.1 micrometers) has a fluence lifetime of 10 to the 19th power O-atoms/cm (2), and sputtered silicon dioxide (0.1 micrometers), aluminum oxide (0.1 micrometers), and SWS-V-10, a silicone, (4 micrometers) have fluence lifetimes of 10 to the 20th power to 10 to the 21st power O-atoms/cm (2). There are large variations in fluence lifetime data for these coatings.

  7. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Döring, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2, and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96° to 30-37° and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy.

  8. Relative toxicity of lead and five proposed substitute shot types to pen-reared mallards

    USGS Publications Warehouse

    Grandy, John W.; Locke, Louis N.; Bagley, George E.

    1968-01-01

    A 30-day toxicity test was made to determine the relative toxicity of lead, a tin-lead alloy, zinc, nickel, teflon-coated steel, and tin, all in shot form, to pen-reared mallard drakes. All of the 15 ducks dosed with lead died. Twenty-seven percent of 15 dosed with alloy, and 20 percent of 15 dosed with zinc also died. Ten of the remaining zinc-dosed ducks showed signs of distress, including losses of muscular control and body weight. There were no deaths among 15 ducks dosed with nickel, 15 dosed with teflon-coated steel, and 15 dosed with tin. Seventy-three percent of those dosed with nickel shot eliminated all shot before the end of the 30-day period. Acid-fast intranuclear inclusion bodies were present in the kidneys of mallards dosed with commercial lead shot, or with tin-lead alloy shot, but not in the kidneys of birds given nickel, tin, or teflon-coated steel shot. Atypical, pale, acid-fast bodies were found in kidneys of 1 of 15 birds dosed with zinc. An iron-containing pigment, which stained positive with the Prussian blue technique, was present in variable amounts in almost all livers. Zinc-dosed ducks that died or were killed while still showing signs of zinc intoxication had higher iron levels in the liver than ducks that had recovered from zinc intoxication.

  9. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  10. THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating.

    PubMed

    Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J

    2017-02-20

    An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.

  11. Accuracy of megavolt radiation dosimetry using thermoluminescent lithium fluoride.

    PubMed

    Rudén, B I; Bengtsson, L G

    1977-04-01

    The relative light output per Gy in polystyrene for roentgen beams of 6 and 42 MV and electrons between 2.2 and 34.5 MeV relative to 60Co gamma radiation is reported for different kinds of LiF dosemeters. The distribution of the absorbed dose inside a 0.25 and 0.4 mm thick LiF-teflon disc surrounded by polystyrene and irradiated with 60Co, 42 MV roentgen radiation and 39 MeV electrons was measured using 0.01 and 0.02 mm thick Lif-teflon discs. The measurements show that the absorbed dose distribution in the dosemeter depends on the energy of the radiation. When flat dosemeters were used, differences between the signals measured at the two orientations possible during read-out could easily amount to several per cent, and for this reason 0.4 mm and 0.5 mm LiF-Teflon discs were not trusted when the highest accuracy was required. The cavity theory by Burlin does not account for the phenomena caused by differences in electron scattering properties of the dosemeter and the phantom material. Some suggestions are presented for a different cavity theory for flat dosemeters dealing also with these phenomena. It describes the results to about the same degree of approximation as the Burlin theory, and fails to explain the observed energy dependence for electrons.

  12. Evaluation of a teflon based ultraviolet light system on the disinfection of water in a textile air washer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.E.; Whisnant, R.B.

    The report provides an in-depth evaluation of an ultraviolet (UV) disinfection unit as applied to the treatment of cooling water in a textile air washer system. The UV unit tests used a teflon tube to transport the aquatic phase. The unit reduced microbial populations and maintained an average level of 10,000 Colony formed unites/mL for the 6-month testing period, without the addition of biocides. No cleaning or other maintenance was required of the wetted surfaces during the testing period. Slime deposits observed on walls of the air washer during chemical treatment were also eliminated. The UV unit can be utilizedmore » on both cooling towers and air washers without extensive installation.« less

  13. Nickel-Cadmium Cell Design Variable Program Data Analysis

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1985-01-01

    A program was undertaken in conjunction with the General Electric Company to evaluate 9 of the more important nickel cadmium aerospace cell designs that are currently being used or that have been used in the past 15 years. Design variables tested in this program included teflonated negative plates, silver treated negative plates, light plate loading level, no positive plate cadmium treatment, plate design of 1968 utilizing both old and new processing techniques, and electrochemically impregnated positive plates. The data acquired from these test packs in a low Earth orbit cycling regime is presented and analyzed here. This data showed conclusively that the cells manufactured with no positive plate cadmium treatment outperformed all other cell designs in all aspects of the program and that the cells with teflonated negative electrodes performed very poorly.

  14. Large silver-cadmium technology program

    NASA Technical Reports Server (NTRS)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  15. A triboelectric wind turbine for small-scale energy harvesting

    NASA Astrophysics Data System (ADS)

    Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc

    2016-11-01

    This paper deals with a rotational energy harvester including a Horizontal Axis Wind Turbine (HAWT), a cylindrical stator covered by several electrodes, and thin Teflon dielectric membranes hung on the rotor. The sliding contact of the Teflon membranes on the stator provides simultaneously large capacitance variations and a polarization source for the electrostatic converter by exploiting triboelectric phenomena. 1μW has been harvested at 4m/s; 130μW at 10m/s and 550μW at 20m/s with a 40mmØ device. In order to validate the energy harvesting chain, the airflow energy harvester has been connected to a power management circuit implementing Synchronous Electric Charge Extraction (SECE) to supply a wireless sensor node with temperature and acceleration measurements, transmitted to a computer at 868MHz.

  16. Design of transmission-type phase holograms for a compact radar-cross-section measurement range at 650 GHz.

    PubMed

    Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti

    2007-07-10

    A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.

  17. Space shuttle nonmetallic materials age life prediction

    NASA Technical Reports Server (NTRS)

    Mendenhall, G. D.; Hassell, J. A.; Nathan, R. A.

    1975-01-01

    The chemiluminescence from samples of polybutadiene, Viton, Teflon, Silicone, PL 731 Adhesive, and SP 296 Boron-Epoxy composite was measured at temperatures from 25 to 150 C. Excellent correlations were obtained between chemiluminescence and temperature. These correlations serve to validate accelerated aging tests (at elevated temperatures) designed to predict service life at lower temperatures. In most cases, smooth or linear correlations were obtained between chemiluminescence and physical properties of purified polymer gums, including the tensile strength, viscosity, and loss tangent. The latter is a complex function of certain polymer properties. Data were obtained with far greater ease by the chemiluminescence technique than by the conventional methods of study. The chemiluminescence from the Teflon (Halon) samples was discovered to arise from trace amounts of impurities, which were undetectable by conventional, destructive analysis of the sample.

  18. Testing of typical spacecraft materials in a simulated substorm environment

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Staskus, J. V.; Blech, R. A.; Narciso, S. J.

    1977-01-01

    The test specimens were spacecraft paints, silvered Teflon, thermal blankets, and solar array segments. The samples, ranging in size from 300 to 1000 sq cm were exposed to monoenergetic electron energies from 2 to 20 keV at a current density of 1 NA/sq cm. The samples generally behaved as capacitors with strong voltage gradient at their edges. The charging characteristics of the silvered Teflon, Kapton, and solar cell covers were controlled by the secondary emission characteristics. Insulators that did not discharge were the spacecraft paints and the quartz fiber cloth thermal blanket sample. All other samples did experience discharges when the surface voltage reached -8 to -16kV. The discharges were photographed. The breakdown voltage for each sample was determined and the average energy lost in the discharge was computed.

  19. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1992-01-01

    Cumulative space environmental effects on silver/fluorinated ethylene propylene (Ag/FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition, and chemistry were observed. We hypothesize that the FEP surfaces on the LDEF are degraded by UV radiation at all orientations, but that the damaged material has been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage in some areas on the trays flanking the trailing edge.

  20. Finnish spectrolite as high-dose gamma detector

    NASA Astrophysics Data System (ADS)

    Antonio, Patrícia L.; Caldas, Linda V. E.

    2015-11-01

    A natural material called spectrolite, from Finland, was studied in this work. The purpose was to test it in gamma radiation beams to verify its performance as a high-dose detector. From this material, pellets were manufactured with two different concentrations of Teflon and spectrolite, and their responses were verified using two luminescent techniques: thermoluminescence (TL) and optically stimulated luminescence (OSL). The TL and OSL signals were evaluated by means of characterization tests of the material response, after exposure to a nominal absorbed dose interval of 5 Gy to 10 kGy. The results obtained, for both concentrations, showed a good performance of this material in beams of high-dose gamma radiation. Both techniques were utilized in order to investigate the properties of the spectrolite+Teflon samples for different applications.

  1. Unexpected embolization of Teflon pledget in the left main stem during: a Bentall operation.

    PubMed

    Rubino, Antonino S; Serraino, Giuseppe F; Marsico, Roberto; Renzulli, Attilio

    2011-01-01

    We report the case of an 83-year-old man in whom acute left ventricular failure with ventricular arrhythmic storm developed during a Bentall operation. During re-exploration of the annular and coronary ostial anastomoses, no abnormality was seen, and none of the common sequelae of aortic root replacement was evident. The application of retrograde cardioplegia yielded a Teflon pledget that had migrated into the distal part of the left main stem. The pledget was removed, the anastomoses were reestablished, and the patient recovered uneventfully. This case suggests that left ostial anastomosis re-exploration should be carefully considered when no other cause of coronary insufficiency is obvious, and that retrograde cardioplegia may be useful to detect embolization in the left coronary system.

  2. Unexpected Embolization of Teflon Pledget in the Left Main Stem during a Bentall Operation

    PubMed Central

    Rubino, Antonino S.; Serraino, Giuseppe F.; Marsico, Roberto; Renzulli, Attilio

    2011-01-01

    We report the case of an 83-year-old man in whom acute left ventricular failure with ventricular arrhythmic storm developed during a Bentall operation. During re-exploration of the annular and coronary ostial anastomoses, no abnormality was seen, and none of the common sequelae of aortic root replacement was evident. The application of retrograde cardioplegia yielded a Teflon pledget that had migrated into the distal part of the left main stem. The pledget was removed, the anastomoses were reestablished, and the patient recovered uneventfully. This case suggests that left ostial anastomosis re-exploration should be carefully considered when no other cause of coronary insufficiency is obvious, and that retrograde cardioplegia may be useful to detect embolization in the left coronary system. PMID:22163143

  3. Investigation of Stainless Steel Corrosion in Ultrahigh-Purity Water and Steam Systems by Surface Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Iacocca, Ronald G.; Bustard, Bethany L.; Kemp, Craig A. J.

    2010-02-01

    Stainless steel pipes with different degrees of rouging and a Teflon®-coated rupture disc with severe corrosion were thoroughly investigated by combining multiple surface analytical techniques. The surface roughness and iron oxide layer thickness increase with increasing rouge severity, and the chromium oxide layer coexists with the iron oxide layer in samples with various degrees of rouging. Unlike the rouging observed for stainless steel pipes, the fast degradation of the rupture disc was caused by a crevice corrosion environment created by perforations in the protective Teflon coating. This failure analysis clearly shows the highly corrosive nature of ultrapure water used in the manufacture of pharmaceutical products, and demonstrates some of the unexpected corrosion mechanisms that can be encountered in these environments.

  4. Analyse de l'interface cuivre/Teflon AF1600 par spectroscopie des photoelectrons rayons x

    NASA Astrophysics Data System (ADS)

    Popovici, Dan

    The speed of electrical signals through the microelectronic multilevel interconnects depends of the delay time R x C. In order to improve the transmission speed of future microdevices, the microelectronics industry requires the use of metals having lower resistivities and insulators having lower permittivities. Copper and fluoropolymers are interesting candidates for the replacement of the presently used Al/polyimide technology. This thesis presents an X-ray photoelectron spectroscopy (XPS) analysis of the Cu/Teflon AF1600 interface, in order to have a better understanding of those interfacial interactions leading to improved adhesion. Several deposition methods, such as evaporation, sputtering and laser-induced chemical deposition were analyzed and compared. X-ray photoelectron spectroscopy (XPS) was used as the primary characterization technique of the different surfaces and interfaces. In the case of evaporation and sputtering, the loss of fluorine and oxygen atoms leads to graphitization and the crosslinking of carbon chains. The extent of damage caused by copper deposition is higher for sputter deposition because of the higher energies of the incidents atoms. This energy (two orders of magnitude higher than the energy involved in the evaporation) is also responsible for the total reaction of Cu with F and C. For the physical depositions (sputtering and evaporation), an angle-resolved XPS diffusion study showed the copper distribution as a function of depth. (i) For sputter deposition, this distribution is uniform. (ii) In the case of evaporation, we computed the concentration profile using the inverse Laplace transform. Several samples, annealed at different temperatures, were used to calculate the diffusion coefficients for the Cu/Teflon AF1600 interface. The study of interactions at the interface between Teflon AF1600 and copper deposited by different metallization techniques permitted us to elucidate some aspects related to the chemistry and structure of the interface. The presence of the strong Cu-C bond may lead to an enhanced adhesion but a pretreatment (plasma RF, X-ray or excimer laser) is necessary to increase the surface concentration of reactive groups. (Abstract shortened by UMI.)

  5. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method.

    PubMed

    Rahnamoun, A; van Duin, A C T

    2014-04-17

    Atomic oxygen (AO) is the most abundant element in the low Earth orbit (LEO). It is the result of the dissociation of molecular oxygen by ultraviolet radiation from the sun. In the LEO, it collides with the materials used on spacecraft surfaces and causes degradation of these materials. The degradation of the materials on the surface of spacecrafts at LEO has been a significant problem for a long time. Kapton polyimide, polyhedral oligomeric silsesquioxane (POSS), silica, and Teflon are the materials extensively used in spacecraft industry, and like many other materials used in spacecraft industry, AO collision degradation is an important issue in their applications on spacecrafts. To investigate the surface chemistry of these materials in exposure to space AO, a computational chemical evaluation of the Kapton polyimide, POSS, amorphous silica, and Teflon was performed in separate simulations under similar conditions. For performing these simulations, the ReaxFF reactive force-field program was used, which provides the computational speed required to perform molecular dynamics (MD) simulations on system sizes sufficiently large to describe the full chemistry of the reactions. Using these simulations, the effects of AO impact on different materials and the role of impact energies, the content of material, and temperature of material on the behavior of the materials are studied. The ReaxFF results indicate that Kapton is less resistant than Teflon toward AO damage. These results are in good agreement with experiment. These simulations indicate that the amorphous silica shows the highest stability among these materials before the start of the highly exothermic silicon oxidation. We have verified that adding silicon to the bulk of the Kapton structure enhances the stability of the Kapton against AO impact. Our canonical MD simulations demonstrate that an increase in the heat transfer in materials during AO impact can provide a considerable decrease in the disintegration of the material. This effect is especially relevant in silica AO collision. Considerable experimental efforts have been undertaken to minimize such AO-based degradations. As our simulations demonstrate, ReaxFF can provide a cost-effective screening tool for future material optimization.

  6. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  7. Among the New Worlds.

    ERIC Educational Resources Information Center

    Algeo, John; Algeo, Adele

    1989-01-01

    Presents definitions and examples of usage of late-twentieth century American words and terms, including: bite, dramedy, photo op, photo opportunist, safe computer practice, sound bite, teflon, trapdoor, vaccination program, computer virus, and wait state. (CB)

  8. Development of an improved membrane for a vapor diffusion water recovery process. [onboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Rich, T. R.; Mix, T. W.

    1974-01-01

    Recovery of potable water from urine on manned space missions of extended duration was the objective of work aimed at the improvement of membrane performance for the vapor diffusion process (VDR). Kynar, Teflon, PVC, and polysulfone candidate membranes were evaluated from chemical, thermal, mechanical, and fabricating standpoints to determine their suitability for operation in the VDR pervaporation module. Pervaporation rates and other performance characteristics were determined in a breadboard pervaporator test rig. Kynar and Teflon membranes were demonstrated to be chemically stable at pervaporation temperatures in urine pretreated with chromic acid bactericide. The separation of the pervaporator and condenser modules, the use of a recirculating sweep gas to conduct pervaporate to the condenser, and the selection of a hollow fiber membrane configuration for pervaporator module design is recommended as a result of the investigation.

  9. Characterization of electrical discharges on Teflon dielectrics used as spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.

    1979-01-01

    The dual effects of system degradation and reduced life of synchronous-orbit satellites as a result of differential spacecraft charging underscore the need for a clearer understanding of the prevailing electrical discharge phenomena. In a laboratory simulation, the electrical discharge current, surface voltage, emitted particle fluxes, and photo-emission associated with discharge events on electron beam irradiated silver-backed Teflon samples were measured. Sample surface damage was examined with optical and electron beam microscopes. The results are suggestive of a model in which the entire sample surface is discharged by lateral sub-surface currents flowing from a charge deposition layer through a localized discharge channel to the back surface of the sample. The associated return current pulse appears to have a duration which may be a signature by which different discharge processes may be characterized.

  10. Measurements of radon concentrations in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.; Jackson, P. O.; Langford, J. C.

    1977-01-01

    The radon concentrations in the lunar atmosphere were determined by measuring the Po-210 progeny activity in artifacts returned from the moon. Experiments performed on a section of the polished aluminum strut from Surveyor 3 and data obtained from the Apollo 16 Cosmic Ray Detector Experiment Teflon thermal shield are compared with other values of the lunar radon concentration obtained at different times and different locations and by various techniques. Possible sources and release mechanisms compatible with all of the data are discussed. An experimental procedure to determine the relative retention coefficients of various types of material for radon progeny in a simulated lunar environment is described. The results of several experiments are given, and their effect on lunar radon progeny measurements is discussed. An analytical procedure is given for the analysis of a Teflon matrix for trace constituents.

  11. Improving practice using action research: resolving the problem of kinking with non-metal cannulae.

    PubMed

    Griffith, Sue

    2011-11-01

    In one UK hospice, inpatient unit records showed that over 8 years 12 needlestick injuries related to continuous subcutaneous infusion of medication occurred. Following a change-over to Teflon cannulae no further incidents were reported. However, when the more sensitive and accurate McKinley T34 syringe drivers were introduced in 2007 a new problem of recurrent occlusion alarm sounding manifested. Investigation revealed that the Teflon cannulae were often kinking, delaying medication delivery and necessitating re-siting of the cannula. The action research approach was used to find an alternative device to improve practice and ensure that both staff and patients were safeguarded. This paper explains how that process was followed until a satisfactory alternative was sourced and evidenced, including an account of the problems that were experienced along the way.

  12. Flaw criticality of circular disbond defects in compressive laminates. M.S. Thesis. Interim Report, 1980 - 1981; [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Webster, J. D.

    1981-01-01

    The compressive behavior of T300/5208 graphite-epoxy laminates containing circular delaminations was studied to determine the flaw criticality of two types of implanted defect, Kapton bag and Teflon film, on several laminate configurations. Defect size was varied. Results, presented in the form of residual strength curves, indicate that the Teflon film defect reduced strength more than the Kapton bad defect in 12-ply samples, but that two laminates (+ or - 45) sub 2s and (90/+ or - 45) sub s were insensitive to any implanted defect. A clear thickness effect was shown to exist for the (o/+ pr 45) sub ns laminate and was attributed to failure mode transition. The analytically predicted buckling loads show excellent agreement with experimental results and are useful in predicting failure mode transition.

  13. Formation of droplet interface bilayers in a Teflon tube

    NASA Astrophysics Data System (ADS)

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.

    2016-09-01

    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications.

  14. Electrical characterization of glass, teflon, and tantalum capacitors at high temperatures

    NASA Technical Reports Server (NTRS)

    Hammoud, A. N.; Baumann, E. D.; Myers, I. T.; Overton, E.

    1991-01-01

    Dielectric materials and electrical components and devices employed in radiation fields and the space environment are often exposed to elevated temperatures among other things. Therefore, these systems must withstand the high temperature exposure while still providing good electrical and other functional properties. Experiments were carried out to evaluate glass, teflon, and tantalum capacitors for potential use in high temperature applications. The capacitors were characterized in terms of their capacitance and dielectric loss as a function of temperature up to 200 C. At a given temperature, these properties were obtained in a frequency range of 50 Hz to 100 kHz. The DC leakage current measurements were also performed in a temperature range from 20 to 200 C. The obtained results are discussed and conclusions are made concerning the suitability of the capacitors investigated for high temperature applications.

  15. The crimping problem in stapes surgery.

    PubMed

    Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen

    2007-01-01

    The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee crimper and straight alligator forceps for the crimping of the loops. In all prostheses, a sufficiently firm attachment of the long process of the incus was achieved. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.

  16. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  17. Teflon haemoptysis.

    PubMed

    Aboudara, Matthew; Krimsky, William; Harley, Daniel

    2012-03-20

    Teflon-coated pledgeted sutures can be used to reinforce the bronchial anastomosis site following a pulmonary resection in order to prevent bronchopleural fistula formation. The authors describe the case of a 42-year-old woman with recurrent haemoptysis secondary to the erosion of a pledgeted suture through the distal trachea. The pledgeted suture was used to reinforce a defect in the wall of the distal trachea after a right upper lobectomy for stage 2a squamous cell carcinoma. Surgically, a completion pneumonectomy with carinal reconstruction was thought necessary to treat the haemoptysis. Given her age and potential surgical morbidities, the decision was made to perform serial bronchoscopies with careful pruning and eventual removal of the pledget by using the cryoprobe and a flexible scissors. This resulted in the eventual removal of the suture. Follow-up bronchoscopy 4 weeks postremoval demonstrated no residual defect on the airway wall.

  18. Teflon haemoptysis

    PubMed Central

    Aboudara, Matthew; Krimsky, William; Harley, Daniel

    2012-01-01

    Teflon-coated pledgeted sutures can be used to reinforce the bronchial anastomosis site following a pulmonary resection in order to prevent bronchopleural fistula formation. The authors describe the case of a 42-year-old woman with recurrent haemoptysis secondary to the erosion of a pledgeted suture through the distal trachea. The pledgeted suture was used to reinforce a defect in the wall of the distal trachea after a right upper lobectomy for stage 2a squamous cell carcinoma. Surgically, a completion pneumonectomy with carinal reconstruction was thought necessary to treat the haemoptysis. Given her age and potential surgical morbidities, the decision was made to perform serial bronchoscopies with careful pruning and eventual removal of the pledget by using the cryoprobe and a flexible scissors. This resulted in the eventual removal of the suture. Follow-up bronchoscopy 4 weeks postremoval demonstrated no residual defect on the airway wall. PMID:22605709

  19. Endoscopic laser-assisted dacryocistorhinostomy DCR with the placement of a customised silicone and Teflon bicanalicular stent Endoscopic laser-assisted dacryocystorhinostomy (DCR).

    PubMed

    D'Ecclesia, A; Cocchi, R F; Giordano, F; Mazzilli, E; Longo, C; Laborante, A

    We present our experience in endoscopic laser assisted dacryocystorhinostomy (DCR) analyzing the results obtained with a new technique that involves placing bicanalicolar silicone stent more Teflon tube, in combination with paraseptal silastic sheet. In our study 49 of 57 patients (85%) at a mean follow up of at least 12 months have not reported epiphora or more episodes of acute dacryocystitis. 49 out of the 57 patients (85%) in our group reported no additional epiphora or episodes of acute dacryocystitis. Endoscopic DCR is currently the gold standard for sac and post-sac stenosis given the minimal invasiveness of the procedure and the long-term results that appear comparable to those obtained with extrinsic DCR. The principal problem is cicatricial stenosis that can occlude the stoma over time.

  20. Heat-enhanced peptide synthesis on Teflon-patterned paper.

    PubMed

    Deiss, Frédérique; Yang, Yang; Matochko, Wadim L; Derda, Ratmir

    2016-06-14

    In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids.

  1. A study of the effects of aligned vertically growth time on ZnO nanorods deposited for the first time on Teflon substrate

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Oglat, Ammar A.; Abuelsamen, A. A.; Bououdina, M.; Qaeed, M. A.

    2017-12-01

    In this study, ZnO nanorods (NRs) were well deposited on Teflon substrates (PTFE) via a chemical bath deposition (CBD) method at low temperature. The consequences of growth time (1 h-4 h) on the structural and optical properties of the aligned ZnO (NRs) were investigated through X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) analyses. The results show that the ZnO (NRs) were preferred to grew aligned along the c-axis as hexagonal wurtzite structure as proved by the sharp and strong ZnO (002) peaks of the ZnO (NRs). Irrespective of the growth continuation, FESEM photos confirmed that the ZnO nanorods arrays were fit to be aligned along the c-axis and perpendicular to (PTFE) substrates. The ZnO nanorods that exhibited the sharper stand most intense PL peaks among the sample were grown for 3hs as demonstrated by PL spectra. The device further showed a sensitivity of 4068 to low-power (1.25 mW/cm2) 375 nm light pulses without an external bias. The measurements of photoresponse demonstrated the highly reproducible characteristics of the fabricated UV detector with rapid response and baseline recovery times of 48.05 ms. Thus, this work introduced a simple, low-cost method of fabricating rapid-response, and highly photosensitive UV detectors with zero power consumption on Teflon substrates.

  2. MISSE 6, 7 and 8 Materials Sample Experiments from the International Space Station Materials and Processes Team

    NASA Technical Reports Server (NTRS)

    Kravchenko, Michael; ORourke, Mary Jane; Golden, Johnny; Finckenor, Miria; Leatherwood, Michael; Alred, John

    2010-01-01

    The International Space Station Materials and Processes (ISS M&P) team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. The ISS M&P team has participated in previous MISSE activities in order to better characterize the LEO effects on Space Station materials. This investigation will further this effort. Results for the following MISSE 6 samples materials will be presented: a comparison of anodize and chemical conversion coatings on various aluminum alloys, electroless nickel; AZ93 white ceramic thermal control coating with and without Teflon; Hyzod(TM) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; reformulated Teflon (TM) coated Beta Cloth (Teflon TM without perfluorooctanoic acid (PFOA)) and a Dutch version of beta cloth. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: deionized water sealed anodized aluminum Photofoil(TM); indium tin oxide (ITO)- coated Kapton(TM) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth ( alpha/Beta transformation); Crew Exploration Vehicle (CEV) parachute soft goods. MISSE 8 sample: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, Davlyn fiberglass sleeve material, Permacel and Intertape protective tapes, and ITO-coated Kapton.

  3. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  4. Breath condenser coatings affect measurement of biomarkers in exhaled breath condensate.

    PubMed

    Rosias, P P; Robroeks, C M; Niemarkt, H J; Kester, A D; Vernooy, J H; Suykerbuyk, J; Teunissen, J; Heynens, J; Hendriks, H J; Jöbsis, Q; Dompeling, E

    2006-11-01

    Exhaled breath condensate collection is not yet standardised and biomarker measurements are often close to lower detection limits. In the current study, it was hypothesised that adhesive properties of different condenser coatings interfere with measurements of eicosanoids and proteins in breath condensate. In vitro, condensate was derived from a collection model using two test solutions (8-isoprostane and albumin) and five condenser coatings (silicone, glass, aluminium, polypropylene and Teflon). In vivo, condensate was collected using these five coatings and the EcoScreen condenser to measure 8-isoprostane, and three coatings (silicone, glass, EcoScreen) to measure albumin. In vitro, silicone and glass coatings had significantly higher albumin recovery compared with the other coatings. A similar trend was observed for 8-isoprostane recovery. In vivo, median (interquartile range) 8-isoprostane concentrations were significantly higher using silicone (9.2 (18.8) pg.mL(-1)) or glass (3.0 (4.5) pg.mL(-1)) coating, compared with aluminium (0.5 (2.4) pg.mL(-1)), polypropylene (0.5 (0.5) pg.mL(-1)), Teflon (0.5 (0.0) pg.mL(-1)), and EcoScreen (0.5 (2.0) pg.mL(-1)). Albumin in vivo was mainly detectable using glass coating. In conclusion, a condenser with silicone or glass coating is more efficient for measurement of 8-isoprostane or albumin in exhaled breath condensate, than EcoScreen, aluminium, polypropylene or Teflon. Guidelines for exhaled breath condensate standardisation should include the most valid condenser coating to measure a specific biomarker.

  5. Microvascular decompression for hemifacial spasm secondary to vertebrobasilar dolichoectasia: surgical strategies, technical nuances and clinical outcomes.

    PubMed

    Zaidi, Hasan A; Awad, Al-Wala; Chowdhry, Shakeel A; Fusco, David; Nakaji, Peter; Spetzler, Robert F

    2015-01-01

    Hemifacial spasm (HFS) due to direct compression of the facial nerve by a dolichoectatic vertebrobasilar artery is rare. Vessels are often non-compliant and tethered by critical brainstem perforators. We set out to determine surgical strategies and outcomes for this challenging disease. All patients undergoing surgery for HFS secondary to vertebrobasilar dolichoectasia were reviewed. Hospital records, clinic notes and radiographic imaging were collected for outcome measures. Seventeen patients (eight males, nine females) were identified. Sixteen patients (94%) were treated with Teflon pledgets (DuPont, Wilmington, DE, USA) and one (6%) patient had a vascular sling placed around a severely diseased vertebral artery. All patients had significant reduction in symptoms and 82% of patients had complete resolution of symptoms (average follow-up: 41.4 months). One patient suffered persistent facial nerve paresis and swallowing difficulty. Two other patients suffered a 1 point decrease in the House-Brackmann facial nerve grading scale. Four patients (23%) required re-operation (infection, cerebrospinal fluid leak, and two patients with delayed recurrence of HFS). Of the latter, one patient required repositioning of a Teflon pledget and another patient underwent a sling decompression. There were no perioperative strokes or death. Excellent relief of symptoms with acceptable preoperative morbidity can be achieved using Teflon pledgets alone in most cases. In recalcitrant cases, sling transposition can be used to further augment the decompression. Careful attention must be paid to prevent vascular kinking and preserve brainstem perforators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Insert sleeve prevents tube soldering contamination

    NASA Technical Reports Server (NTRS)

    Stein, J.

    1966-01-01

    Teflon sleeve insert prevents contamination of internal tube surfaces by solder compound during soldering operations that connect and seal the tube ends. The sleeve insert is pressed into the mating tube ends with a slight interference fit.

  7. Reusable anaerobic system for microbiological studies - A concept

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1971-01-01

    Simple, low cost system consists of semirigid incubation chamber with clear Teflon window, airtight zipper and internal compartments for petri dishes or microbial plates. Device interests schools, medical laboratories, and manufacturers of biological and pharmaceutical supplies.

  8. Oxygen cocoon for patients under intensive care

    NASA Technical Reports Server (NTRS)

    Maas, J. W.

    1975-01-01

    Cocoon is made from Teflon film. It includes full-length, pressure zipper on top side and bottom part is rigid pad constructed of burn-resistant material. Cocoon includes oxygen supply port with exhaust port at opposite end.

  9. Measurements of particle emission from discharge sites in Teflon irradiated by high energy electron beams

    NASA Technical Reports Server (NTRS)

    Hazelton, R. C.; Churchill, R. J.; Yadlowsky, E. J.

    1979-01-01

    Anomalous behavior of synchronous orbit satellites manifested by overall degradation of system performance and reduced operating life is associated with electrical discharges resulting from differential charging of the spacecraft surface by fluxes of high energy electrons. During a laboratory simulation silver-backed Teflon samples have been irradiated by electron beams having energies in the range 16-26 keV. Charged particles emitted from the resultant electrical discharges have been measured with a biased Faraday cup and retarding potential analyser. Measurements indicate the presence of two distinct fluxes of particles, the first being an early pulse (0-600ns) of high energy (about 7keV) electrons, while the second is a late pulse (1-5 microseconds) of low energy electrons (less than 1eV) and ions (70eV) leaving the discharge site as a quasi plasma. Calculations indicate an electrostatic field as the dominant accelerating mechanism for charged particles.

  10. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  11. Determination of mechanical properties of polymer film materials

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Rutherford, J. L.

    1975-01-01

    Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.

  12. Micromechanical testing of individual collagen fibrils.

    PubMed

    van der Rijt, Joost A J; van der Werf, Kees O; Bennink, Martin L; Dijkstra, Pieter J; Feijen, Jan

    2006-09-15

    A novel method based on AFM was used to attach individual collagen fibrils between a glass surface and the AFM tip, to allow force spectroscopy studies of these. The fibrils were deposited on glass substrates that are partly coated with Teflon AF. A modified AFM tip was used to accurately deposit epoxy glue droplets on either end of the collagen fibril that cross the glass-Teflon AF interface, as to such attach it with one end to the glass and the other end to the AFM tip. Single collagen fibrils have been mechanically tested in ambient conditions and were found to behave reversibly up to stresses of 90 MPa. Within this regime a Young's modulus of 2-7 GPa was obtained. In aqueous media, the collagen fibrils could be tested reversibly up to about 15 MPa, revealing Young's moduli ranging from 0.2 to at most 0.8 GPa.

  13. Mass analysis of neutral particles and ions released during electrical breakdowns on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1983-01-01

    A specialized spectrometer was designed and developed to measure the mass and velocity distributions of neutral particles (molecules and molecular clusters) released from metal-backed Teflon and Kapton films. Promising results were obtained with an insulation breakdown initiation system based on a moveable contact touching the insulated surfaces. A variable energy, high voltage pulse is applied to the contact. The resulting surface damage sites can be made similar in size and shape to those produced by a high voltage electron beam system operating at similar discharge energies. The point discharge apparatus was used for final development of several high speed recording systems and for measurements of the composition of the materials given off by the discharge. Results with this apparatus show evolution of large amounts of fluorocarbon fragments from discharge through Teflon FEP, while discharges through Kapton produce mainly very light hydrocarbon fragments at masses below about 80 a.m.u.

  14. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  15. Behavior of sandhill cranes harnessed with different satellite transmitters

    USGS Publications Warehouse

    Olsen, Glenn H.; Ellis, D.H.; Landfried, S.E.; Miller, L.H.; Klugman, S.S.; Fuller, M.R.; Vermillion, C.H.

    1992-01-01

    The effectiveness of various attachment methods and designs of platform transmitting terminals (PTT's) was tested on captive sandhill cranes (Grus canadensis) at the Patuxent Wildlife Research Center, Laurel, Maryland, during 1989-91. Combinations of attachment and transmitter designs included neoprene cord harness with batteries separate from the transmitter (2 harness designs), Teflon ribbon harness with batteries incorporated into the transmitter package (4 transmitter models), and a package attached directly to the bird with epoxy glue only. Physical effects seen on cranes wearing PTT's ranged from skin lacerations (caused by rubbing of harness material) to no observed effects (other than feather wear). The most successful harness material and design utilized a Teflon ribbon harness with the 4 ribbon ends from the transmitter forming a neck loop and a body loop joined at the sternum. Time spent by sandhill cranes performing most activities did not change after transmitter attachment using this harness method.

  16. Hostel for the Hajjis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Skidmore, Owings and Merrill (SOM), architects and engineers for the Haj Terminal, and the Saudi Ministry of Defense and Aviation needed to design some type of covered space that would process as many as 5,000 persons an hour and shelter up to 100,000 at a time during the annual haji pilgrimage. In this area, the temperature may reach 130 degrees Fahrenheit. The answer came from a fabric used by NASA in 1967 when they were looking for a new fabric for astronaut space suits. Owens Corning had been experimenting with an ultrafine pure glass finer yarn called Beta. The yarn was woven into a fabric, coated with Teflon and tailored for astronaut wear. SOM decided upon an open-sided, tented-roof structure with white Fiberglas fabric, coated with Teflon on both sides that reflects 75 percent of the solar radiation reaching the roof, thus helping to curb the intense heat.

  17. Mechanical Properties Degradation of Teflon(Trademark) FEP Returned from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; deGroh, Kim K.; Townsend, Jacqueline A.; Wang, L. Len

    1998-01-01

    After 6.8 years on orbit, degradation has been observed in the mechanical properties of second-surface metalized Teflon(Reg) FEP (fluorinated ethylene propylene) used on the Hubble Space Telescope (HST) on the outer surface of the multi-layer insulation (MLI) blankets and on radiator surfaces. Cracking of FEP surfaces on HST was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission (SM1) conducted 3.6 years after HST was put into orbit. Astronaut observations and photographs from the second servicing mission (SM2), conducted after 6.8 years on orbit, revealed severe cracks in the FEP surfaces of the MLI on many locations around the telescope. This paper describes results of mechanical properties testing of FEP surfaces exposed for 3.6 years and 6.8 years to the space environment on HST. These tests include tensile testing, surface micro-hardness testing, and bend testing.

  18. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1974-01-01

    The ability of psychrophilic microorganisms to grow in some of the environmental conditions suggested for Mars is studied with particular attention given to the effects of moisture and nutrients on growth. Results of growth with the slide culture technique are presented and indicate that this technique can be a rapid and sensitive technique for demonstration of microbial growth under various environmental conditions. Additional soil samples have been obtained from Cape Kennedy, and results of these assays at various low temperatures for psychrophilic populations are presented. The heat resistance of some of the psychrophilic sporeformers have been determined. Psychrophilic organisms were isolated from the teflon ribbons at Cape Kennedy and characterization of these was begun. In addition, heat survivors from the teflon ribbons are being investigated, and partial characterizations of these are presented.

  19. Struvite formation and the fouling propensity of different materials.

    PubMed

    Doyle, J D; Oldring, K; Churchley, J; Parsons, S A

    2002-09-01

    Struvite (MgNH4PO4 x 6H2O) fouling was investigated to identify the impact supersaturation and material had on scaling rates. Tests were undertaken at three supersaturation ratios and with three different materials: stainless steel, teflon and acrylic. Impellers consisting of a clasp unit and two corrosion coupons that could be attached were used to mix centrate liquor and precipitation was initiated by the change in pH caused by degassing. Increasing the supersaturation ratio from 1.7 to 5.3 led to a doubling in the scaling rate of stainless-steel coupons. Experiments with acrylic and teflon coupons showed the influence of surface roughness upon scaling propensity. Coarsely roughened coupons following 40 h of mixing had a mass of 413 mg of struvite attached compared to smooth coupons that had a mass of 240 mg attached. Material did have an influence upon struvite fouling but this influence diminished with increasing surface roughness.

  20. Vacuum ultraviolet radiation/atomic oxygen synergism in fluorinated ethylene propylene Teflon erosion

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Laue, Eric G.; Anderson, Mark S.; Liang, Ranty H.

    1992-01-01

    A micrographic investigation is reported of samples of the fluorinated ethylene propylene (FEP) Teflon thermal-blanketing materials recovered from the Long-Duration Exposure Facility (LDEF) satellite. The samples are taken from the trailing edge and row 8 which correspond to exposures to vacuum UV (VUV) and VUV + atomic O, respectively. Data are taken from SEM and IR-spectra observations, and the LDEF leading-edge FEP shows a high degree of erosion, roughening, and sharp peaks angled in the direction of the flow of atomic O. The trailing edge sample influenced primarily by VUV shows a hard brittle layer and some cracked mosaic patterns. Comparisons to a reference sample suggest that the brittle layer is related to exposure to VUV and is removed by atomic-O impingement. Polymers that are stable to VUV radiation appear to be more stable in terms of atomic oxygen.

  1. Flexible, FEP-Teflon covered solar cell module development

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.; Cannady, M. D.

    1976-01-01

    Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.

  2. Neutronic experiments with fluorine rich compounds at LR-0 reactor

    DOE PAGES

    Losa, Evzen; Kostal, Michal; Czakoj, T.; ...

    2018-06-06

    Here, research on molten salt reactor (MSR) neutronics continues in Research Centre Rez (Czech Republic) with experimental work being conducted using fluoride salt that was originally used in the Molten Salt Reactor Experiment (MSRE). Previous results identified significant variations in the neutron spectrum measured in LiF-NaF salt. These variations could originate from the fluorine description in current nuclear data sets. Subsequent experiments were performed to try to confirm this phenomenon. Therefore, another fluorine-rich compound, Teflon, was used for testing. Critical experiments showed slight discrepancies in C/E-1 for both compounds, Teflon and FLIBE, and systematic overestimation of criticality was observed inmore » calculations. Different nuclear data libraries were used for data set testing. For Teflon, the overestimation is higher when using JENDL-3.3, JENDL-4, and RUSFOND-2010 libraries, all three of which share the same inelastic-to-elastic scattering cross section ratio. Calculations using other libraries (ENDF/B-VII.1, ENDF/B-VII.0, JEFF-3.2, JEFF-3.1, and CENDL-3.1) tend to be closer to the experimental value. Neutron spectrum measurement in both substances revealed structure similar to that seen in previous measurements using LiF-NaF salt, which indicates that the neutron spectrum seems to be strongly shaped by fluorine. Discrepancies between experimental and calculational results seem to be larger in the neutron energy range of 100–1300 keV than in higher energies. In the case of neutron spectrum calculation, none of the tested libraries gives overall better results than the others.« less

  3. Systematic studies of small scintillators for new sampling calorimeter

    NASA Astrophysics Data System (ADS)

    Jacosalem, E. P.; Iba, S.; Nakajima, N.; Ono, H.; Sanchez, A. L. C.; Bacala, A. M.; Miyata, H.

    2007-12-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R&D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated ^{90}Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness.

  4. Neutronic experiments with fluorine rich compounds at LR-0 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losa, Evzen; Kostal, Michal; Czakoj, T.

    Here, research on molten salt reactor (MSR) neutronics continues in Research Centre Rez (Czech Republic) with experimental work being conducted using fluoride salt that was originally used in the Molten Salt Reactor Experiment (MSRE). Previous results identified significant variations in the neutron spectrum measured in LiF-NaF salt. These variations could originate from the fluorine description in current nuclear data sets. Subsequent experiments were performed to try to confirm this phenomenon. Therefore, another fluorine-rich compound, Teflon, was used for testing. Critical experiments showed slight discrepancies in C/E-1 for both compounds, Teflon and FLIBE, and systematic overestimation of criticality was observed inmore » calculations. Different nuclear data libraries were used for data set testing. For Teflon, the overestimation is higher when using JENDL-3.3, JENDL-4, and RUSFOND-2010 libraries, all three of which share the same inelastic-to-elastic scattering cross section ratio. Calculations using other libraries (ENDF/B-VII.1, ENDF/B-VII.0, JEFF-3.2, JEFF-3.1, and CENDL-3.1) tend to be closer to the experimental value. Neutron spectrum measurement in both substances revealed structure similar to that seen in previous measurements using LiF-NaF salt, which indicates that the neutron spectrum seems to be strongly shaped by fluorine. Discrepancies between experimental and calculational results seem to be larger in the neutron energy range of 100–1300 keV than in higher energies. In the case of neutron spectrum calculation, none of the tested libraries gives overall better results than the others.« less

  5. Influence of Superhydrophobic Properties on Deicing

    NASA Astrophysics Data System (ADS)

    Nazhipkyzy, M.; Mansurov, Z. A.; Amirfazli, A.; Esbosin, A.; Temirgaliyeva, T. S.; Lesbayev, B. T.; Aliyev, E. T.; Prikhodko, N. G.

    2016-11-01

    Nowadays the creation of anti-icing, or deicing, surfaces is one of the most important problems, as such surfaces are widely used in aeronautics, wind turbines, and telecommunication antennas. In this paper, we focus mainly on reducing the ice adhesion forces and easy ice removal, once ice has formed. Removal of a liquid from a surface can be provided by modification of the surface wettability by means of applying superhydrophobic coatings. Such coatings are water-resistant, i.e., are characterized by low water adhesion forces. To study the impact of superhydrophobic coatings, tests were performed on the surface of a wing in a wind tunnel. By spraying Teflon and polyphenylene sulfide (PPS) on the wing, we obtained a superhydrophobic film. This film has a structure that provides superhydrophobic properties, so that the wetting angle is above 140°. A comparison of the resulting surface with a clean Teflon one shows that adhesion of the Teflon + PPS mixture to an aluminum surface is five times higher. We also investigate the degree of ice formation on the surfaces of simple and superhydrophobic aircraft wings at a temperature of -18°C. It was shown that ice was formed on a simple wing within 40 s and on a superhydrophobic wing within 25 s. When the simple wing with a mass of 23 g was inserted into the wind tunnel, its mass reached 50 g, and for a superhydrophobic wing with a mass of 26 g the latter reached 42 g. The sample of the airfoil wing we prepared has a low adhesion, which helps in easy ice removal.

  6. Viscoelasticity of rabbit vocal folds after injection augmentation.

    PubMed

    Dahlqvist, Ake; Gärskog, Ola; Laurent, Claude; Hertegård, Stellan; Ambrosio, Luigi; Borzacchiello, Assunta

    2004-01-01

    Vocal fold function is related to the viscoelasticity of the vocal fold tissue. Augmentation substances used for injection treatment of voice insufficiency may alter the viscoelastic properties of vocal folds and their vibratory capacity. The objective was to compare the mechanical properties (viscoelasticity) of various injectable substances and the viscoelasticity of rabbit vocal folds, 6 months after injection with one of these substances. Animal model. Cross-linked collagen (Zyplast), double cross-linked hyaluronan (hylan B gel), dextranomers in hyaluronan (DHIA), and polytetrafluoroethylene (Teflon) were injected into rabbit vocal folds. Six months after the injection, the animals were killed and the right- and left-side vocal folds were removed. Dynamic viscosity of the injected substances and the vocal folds was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Hylan B gel and DiHA showed the lowest dynamic viscosity values, and vocal folds injected with these substances also showed the lowest dynamic viscosity (similar to noninjected control samples). Teflon (and vocal folds injected with Teflon) showed the highest dynamic viscosity values, followed by the collagen samples. Substances with low viscoelasticity alter the mechanical properties of the vocal fold to a lesser degree than substances with a high viscoelasticity. The data indicated that hylan B gel and DiHA render the most natural viscoelastic properties to the vocal folds. These substances seem to be appropriate for preserving or restoring the vibratory capacity of the vocal folds when glottal insufficiency is treated with augmentative injections.

  7. Evaluation of Microlon and Technol-G : final report.

    DOT National Transportation Integrated Search

    1982-01-01

    An evaluation was made of the cost-effectiveness of the automotive products Microlon, an engine treatment consisting of Teflon suspended in a solvent, and Technol-G, a gasoline treating additive consisting of a blend of aliphatic and aromatic distill...

  8. Planetary quarantine: Supporting research and technology

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.

    1975-01-01

    Planetary quarantine strategies for advanced missions are described, along with natural space environment studies and post launch recontamination studies. Spacecraft cleaning and decontamination techniques and assay activities are reviewed. Teflon ribbon experiments and pyrolsis gas-liquid chromatography study are also considered.

  9. An Inexpensive, Foolproof Apparatus for Flash Chromatography.

    ERIC Educational Resources Information Center

    Thompson, Wayne J.; Hanson, Bryan A.

    1984-01-01

    Describes a new, modified "flash chromatography" apparatus which overcomes difficulties found in conventional apparatus. For example, an expensive teflon pressure valve is not necessary in the modified version. The apparatus is suitable as an instructional tool in undergraduate courses. (JN)

  10. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of approximately five years in the HST environment. Uncoated aluminized FEP Teflon(R) was determined to be the most appropriate thermal shield material and was used on the bi-stems of replacement solar arrays installed on HST during SMI in December 1993. The SMI -installed solar arrays air scheduled to be replaced during MST's fourth servicing mission (SM3B) in early 2002.

  11. The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes

    DTIC Science & Technology

    1980-07-01

    titrated mulating cathodes, along with their BET surface potentiometrically with standardized silver nitrate areas. Shawinigan black possesses the...assembly steps when individually dissolved can be titrated through were accomplished in the glove box. iodimetry or iodometry, respectively (7). If

  12. The structure of hydrophobic gas diffusion electrodes.

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.

  13. Lead-oxygen closed-loop battery system

    NASA Technical Reports Server (NTRS)

    Britz, W. J.; Boshers, W. A.; Kaufmann, J. J.

    1975-01-01

    Calculations show that battery can deliver up to 35 watt-hours per pound, conventional lead-acid batteries deliver 10 to 15 watt-hours per pound. Weight reduction is due to replacement of solid lead-peroxide electrodes with metal current-collector screen, catalyst, and Teflon membrane.

  14. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  15. IACP (INTEGRATED AIR CANCER PROJECT) EMISSIONS: TRANSFORMATIONS AND FATE

    EPA Science Inventory

    As part of the Integrated Air Cancer Project (IACP), diluted emissions from wood stoves and automobiles were injected into a Teflon smog chamber and irradiated to simulate their photochemical transformation in the atmosphere. Changes in the chemical composition and physical prope...

  16. WIND TUNNEL EVALUATION OF AN AIRCRAFT-BORNE SAMPLING SYSTEM

    EPA Science Inventory

    The US Environmental Protection Agency (EPA), the Florida Department of Environmental Protection (FLDEP), and Texas A&M University collaborated in the design, construction, and testing of a unique highly cross-linked Teflon coated inlet and manifold gas and aerosol sampling syste...

  17. Plasma copolymerization of ethylene and tetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1992-01-01

    An IR and XPS study of the low-pressure, radiofrequency, glow-discharge plasma copolymerization of ethylene (ET) and tetrafluoroethylene (TFE) is presented. The potential for creating Tefzel- or Teflon-like coatings on various polymeric substrates for use in advanced life support systems is examined.

  18. Evaluation of Surlyn 8920 as PHE Visor Material and Evaluations of New Adhesives for Improving Bonding Between Teflon and Stainless Steel at Cryogenic Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1991-01-01

    Two studies are presented, and in the first study, Surlyn 8920 (an ionic and amorphous low density polyethylene made by Dupont) was evaluated as a possible replacement of Plexyglass G as PHE visor material. Four formulations of the polymer were made by adding different amounts of UV stabilizer, energy quencher, and antioxident in a Brabender Plasticorder. The formulated polymers were molded in the form of sheets in a compression molder. Cut samples from the molded sheets were exposed in a weatherometer and tested on Instron Tensile Tester for strength and elongation. Specially molded samples of the formulated polymers were subjected to Charpy Impact Tests. In the second study, preliminary evaluations of adhesives for improvement of bonding between Teflon and stainless steel (SS) were performed. Kapton, a high temperature polyimide made by Dupont, and a rubber based adhesive made by Potter Paint Co., were evaluated against industrial quality epoxy, the current material used to bond Teflon and SS. The degreased surfaces of the SS discs were etched mechanically, with a few of these etched chemically. The surfaces of the SS discs were etched mechanically, with a few of these etched chemically. Bonding strengths were evaluated using lap shear tests on the Instron Tensile Tester for the samples bonded by Kapton and industrial quality epoxy. Bond strengths were also evaluated using a pull test on the Instron for the samples bonded by Potter adhesive (CWL-152) and industrial quality epoxy. Based on limited lap shear data, Kapton gave bond strength favorable compared to that of industrial epoxy. Based on limited pull test data, Kapton bonded and CWL-152 bonded samples showed poor strength compared to epoxy bonded sample.

  19. Immediate performance of self-etching versus system adhesives with multiple light-activated restoratives.

    PubMed

    Irie, M; Suzuki, K; Watts, D C

    2004-11-01

    The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. For light-activated restorative materials during early setting (<3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r = 0.86-0.89, p < 0.02-0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.

  20. Effects of Heating on Teflon(Registered Trademark) FEP Thermal Control Material from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim; Gaier, James R.; Hall, Rachelle L.; Norris, Mary Jo; Espe, Matthew P.; Cato, Daveen R.

    1999-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene) thermal control material on the Hubble Space Telescope (HST) is degrading in the space environment. Teflon(Registered Trademark) FEP thermal control blankets (space-facing FEP) retrieved during the first servicing mission (SM1) were found to be embrittled on solar facing surfaces and contained microscopic cracks. During the second servicing mission (SM2) astronauts noticed that the FEP outer layer of the multi-layer insulation (MLI) covering the telescope was cracked in many locations around the telescope. Large cracks were observed on the light shield, forward shell and equipment bays. A tightly curled piece of cracked FEP from the light shield was retrieved during SM2 and was severely embrittled, as witnessed by ground testing. A Failure Review Board (FRB) was organized to determine the mechanism causing the MLI degradation. Density, x-ray crystallinity and solid state nuclear magnetic resonance (NMR) analyses of FEP retrieved during SM1 were inconsistent with results of FEP retrieved during SM2. Because the retrieved SM2 material curled while in space, it experienced a higher temperature extreme during thermal cycling, estimated at 200 C, than the SM1 material, estimated at 50 C. An investigation on the effects of heating pristine and FEP exposed on HST was therefore conducted. Samples of pristine. SM1, and SM2 FEP were heated to 200 C and evaluated for changes in density and morphology. Elevated temperature exposure was found to have a major impact on the density of the retrieved materials. Characterization of polymer morphology of as-received and heated FEP samples by NMR provided results that were consistent with the density results. These findings have provided insight to the damage mechanisms of FEP in the space environment.

  1. COMPARATIVE ANALYSIS OF THE SHRINKAGE STRESS OF COMPOSITE RESINS

    PubMed Central

    Pereira, Rosana Aparecida; de Araujo, Paulo Amarante; Castañeda-Espinosa, Juan Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500). In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (α=0.05). The obtained contraction forces were: Grandio = 12.18 ± 0.428N; Filtek Z 250 = 11.80 ± 0.760N; Filtek Supreme = 11.80 ± 0.707 N; and Admira = 11.89 ± 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 ± 0.0357%; Filtek Supreme = 0.36 ± 0.0438%; Admira = 0.25 ± 0.0346% and Grandio = 0.16 ± 0.008%. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 ± 2.160 μm; Filtek Supreme = 10.66 ± 1.211μm; Admira = 11.16 ± 2.041 μm and Grandio = 10.50 ± 1.224 μm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization) and third method (wall-to-wall shrinkage). The composite resins obtained with the second method (Teflon method) differed significantly regarding gap formation. PMID:19089286

  2. Soft X-Ray Exposure Testing of FEP Teflon for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.

    1998-01-01

    The FEP Teflon (DuPont) multilayer insulation (MLI) thermal-control blanket material on the Hubble Space Telescope is degrading in the space environment. During the first Hubble servicing mission in 1993, after 3.6 years in low Earth orbit, aluminized and silvered FEP Teflon MLI thermal-control blanket materials were retrieved. These materials have been jointly analyzed by the NASA Lewis Research Center and the NASA Goddard Space Flight Center for degradation induced in the space environment (ref. 1). Solar-facing blanket materials were found to be embrittled with through-the-thickness cracking in the 5-mil FEP. During the second Hubble servicing mission in 1997, astronauts noticed that several blankets had large areas with tears. The torn FEP was curled up in some areas, exposing the underlying materials to the space environment. This tearing problem, and the associated curling up of torn areas, could lead to over-heating of the telescope and to particulate contamination. A Hubble Space Telescope MLI Failure Review Board was assembled by Goddard to investigate and identify the degradation mechanism of the FEP, to identify and characterize replacement materials, and to estimate the extent of damage at the time of the third servicing mission in 1999. A small piece of FEP retrieved during the second servicing mission is being evaluated by this failure review board along with materials from the first servicing mission. Since the first servicing mission, and as part of the failure review board, Lewis has been exposing FEP to soft x-rays to help determine the damage mechanisms of FEP in the space environment. Soft x-rays, which can penetrate into the bulk of FEP, are generated during solar flares and appear to be contributing to the degradation of the Hubble MLI.

  3. Deformable known component model-based reconstruction for coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tilley, S.; Xu, S.; Mathews, A.; McVeigh, E. R.; Stayman, J. W.

    2017-03-01

    Purpose: Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component. Methods: The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR). Results: Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF- dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR - much closer to the expected 0.0414 mm-1. Conclusion: The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.

  4. Levels of perfluorinated compounds in human breast milk in Jordan: the impact of sociodemographic characteristics.

    PubMed

    Al-sheyab, Nihaya A; Al-Qudah, Khaled M; Tahboub, Yahya R

    2015-08-01

    There is scarcity in literature in regards to the exact levels of such compounds in the Middle Eastern region including Jordan. This study was conducted to measure the presence and levels of perfluoroalkyl substances (PFASs) (perfluoroocane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)) in human milk and local fresh cow milk in northern Jordan and also to investigate the relationship between levels of PFASs and some sociodemographic characteristics of breastfeeding mothers and their infants as well as usage of Teflon kitchenware products. Seventy-nine milk samples were collected from breastfeeding women and 25 samples from local fresh cow milk in northern Jordan. Levels of PFOS and PFOA were liquid/liquid extracted (LLE) by acetone followed by purification on an Oasis hydrophilic-lipophilic balance (HLB) solid-phase extraction (SPE). Separations and detections were performed by liquid chromatography-tandem mass spectrometry. Limits of quantitation (LOQs) were 10 ng/L for both PFOA and PFOS. The measured concentrations ranged between non-detectable (ND) and 178 ng/L for PFOS and between 24 and 1120 ng/L for PFOA in human milk and between ND-178 ng/L and LOQ-160 ng/L in fresh cow milk, respectively. Median concentrations of PFOS in human milk samples from Jordan in this study were lower than those found in a recent study from Italy. Moreover, mean concentrations of PFOA and PFOS were significantly higher in milk samples provided by older women. Also, mean concentrations of PFOA was much higher in multiparas and those who have younger infants. The mean rank of PFOA was twice as high in the milk of women who had older Teflon products in kitchen compared to those who had relatively new Teflon products.

  5. TEFLON BELLOWS PULSE GENERATORS FOR SOLVENT EXTRACTION PULSE COLUMNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, P.B.

    1954-01-01

    A Teflon bellows-type pulse generator is described which consists of two 3-in. nominal diameter Teflon bellows mounted on either end of a flanged spool piece and rigidly connected internally by a push rod so that the two of bellows move in tandem. The ends of the two bellows are closed by means of blind flanges. Tne spool piece is designed for insertion in a 6-in. diameter nozzle on a solvent extraction pulse column. The double bellows arrangement constitutes a safety feature to prevent loss of the column contents in the event of failure of the inner bellows in contact withmore » column solution. Failure of the inner bellows may be detected by a conductivity probe mounted in the air space inside of the double bellows assembly. Reciprocating motion is imcrank arm rigidly connected through a cross head and push rod to the face of the external bellows flange. The push rod is guided by means of linear ball bushings. Frequency variation over a range of 30 to 100 cycles/ min.was obtained by use of a Thymotrol-controlled electric motor to drive the crank arm. Variable stroke adjustment (0 to 1-in. range) was possible by adjustment of linkages on the crank arm. A load compensating spring was founnd desirable to counteract the thrust on the push rod resulting tom the static pressure at the bottom of the solvent extraction column. Without the spring, accelerated wear of the bearing on the crank arm occured. The pulse generator operated uneventfully for 1776 hours (6.61x lO/sup 6/ cycles) at a frequency of 62 cycles/min. and a bellows travel of l-in. (equivalent to a displacement of 1.6 in. in a 3-in. diam. column). (auth)« less

  6. Single Crystal Substrates for Surface Acoustic Wave Devices.

    DTIC Science & Technology

    1981-01-01

    Research Laboratory 2W 5 University Park PA 16802____________ 1 1. CONTROLLING OFFICE NAME ANO ADDRESS Deputy for Electronic Technology (RADC/ EEA )// Janu...avoid contamination during the preparation of the reacted starting powders. Mixina was performed in plastic hall mills with teflon rollers, and sinterinq

  7. 77 FR 39188 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... existing AD currently requires repetitive inspections to detect discrepancies of the wiring and surrounding... new sleeves, for certain airplanes; and repair or replacement of the wiring and sleeves with new parts... currently requires repetitive inspections to detect discrepancies of the wiring and surrounding Teflon...

  8. Promotion of dropwise condensation of ethyl alcohol, methyl alcohol, and acetone by polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Kirby, C. E.

    1972-01-01

    Coating condensing surfaces with thin layer of nonpolar Teflon results in dropwise condensation of polar organic vapor. Greater heat transfer coefficients are produced increasing effectiveness of condensing system. Investigation shows that vapors with strong dipole moment tend to condense dropwise.

  9. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    An electron bombardment argon ion source was used to ion etch polyimide (Kapton) and fluorinated ethylene, FEP (Teflon). Samples of polyimide and FEP were exposed to (0.5-1.0) keV Ar ions at ion current densities of (1.0-1/8) mA/sq cm for various exposure times. Changes in the optical and electrical properties of the samples were used to characterize the exposure. Spectral reflectance and transmittance measurements were made between 0.33 and 2.16 micron m using an integrating sphere after each exposure. From these measurements, values of solar absorptance were obtained. Total emittance measurements were also recorded for some samples. Surface resistivity was used to determine changes in the electrical conductivity of the etched samples. A scanning electron microscope recorded surface structure after exposure. Spectral optical data, resistivity measurements, calculated absorptance and emittance measurements are presented along with photomicrographs of the surface structure for the various exposures to Ar ions.

  10. M and D SIG progress report: Laboratory simulations of LDEF impact features

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, R. P.; See, T. H.; Atkinson, D.; Allbrooks, M.

    1992-01-01

    Laboratory impact experiments are needed to understand the relationship between a measured penetration hole diameter and associated projectile dimension in the thermal blankets of experiment A0178, which occupied some 16 sq. m. These blankets are composed of 125 micron thick Teflon that has an Ag/enconel second mirror surface, backed by organic binder and Chemglaze paint for a total thickness of some 170 microns. While dedicated experiments are required to understand the penetration behavior of this compound target in detail, we report here on impact simulations sponsored by other projects into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both exposed and unexposed, for a refined understanding of the LDEF's collisional environment. We employed a light gas gun to launch soda-lime glass spheres from 50 to 3200 microns in diameter that impacted targets of variable thickness. Penetration measurements are given.

  11. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    NASA Technical Reports Server (NTRS)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  12. Armored instrumentation cable for geothermal well logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, B.R.; Johnson, J.; Todd, B.

    1981-01-01

    Multiconductor armored well-logging cable is used extensively by the oil and natural gas industry to lower various instruments used to measure the geological and geophysical parameters into deep wellbores. Advanced technology in oil-well drilling makes it possible to achieve borehole depths of 9 km (30,000 ft). The higher temperatures in these deeper boreholes demand advancements in the design and manufacturing of wireline cable and in the electrical insulating and armoring materials used as integral components. If geothermal energy is proved an abundant economic resource, drilling temperatures approaching and exceeding 300/sup 0/C will become commonplace. The adaptation of teflons as electricalmore » insulating material permitted use of armored cable in geothermal wellbores where temperatures are slightly in excess of 200/sup 0/C, and where the concentrations of corrosive minerals and gases are high. Teflon materials presently used in wireline cables, however, are not capable of continuous operation at the anticipated higher temperatures.« less

  13. Condensation Dynamics on Mimicked Metal Matrix Hydrophobic Nanoparticle-Composites

    NASA Astrophysics Data System (ADS)

    Damle, Viraj; Sun, Xiaoda; Rykaczewski, Konrad

    2014-11-01

    Use of hydrophobic surfaces promotes condensation in the dropwise mode, which is significantly more efficient than the common filmwise mode. However, limited longevity of hydrophobic surface modifiers has prevented their wide spread use in industry. Recently, metal matrix composites (MMCs) having microscale hydrophobic heterogeneities dispersed in hydrophilic metal matrix have been proposed as durable and self-healing alternative to hydrophobic surface coatings interacting with deposited water droplets. While dispersion of hydrophobic microparticles in MMC is likely to lead to surface flooding during condensation, the effect of dispersion of hydrophobic nanoparticles (HNPs) with size comparable to water nuclei critical radii and spacing is not obvious. To this end, we fabricated highly ordered arrays of Teflon nanospheres on silicon substrates that mimic the top surface of the MMCs with dispersed HNPs. We used light and electron microscopy to observe breath figures resulting from condensation on these surfaces at varied degrees of subcooling. Here, we discuss the relation between the droplet size distribution, Teflon nanosphere diameter and spacing, and condensation mode. KR acknowledges startup funding from ASU.

  14. Active shape control of composite blades using shape memory actuation

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh

    2001-10-01

    This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).

  15. High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers

    NASA Technical Reports Server (NTRS)

    Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.

    1992-01-01

    Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.

  16. Optimization of Uranium Molecular Deposition for Alpha-Counting Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria

    2016-12-12

    Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less

  17. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1982-01-01

    A test was conducted to determine the solar reflections from the Orbiter radiator panels. A one-tenth scale model of the forward and mid-forward radiator panels in the deployed position was utilized in the test. Test data was obtained to define the reflected one-sun envelope for the embossed silver/Teflon radiator coating. The effects of the double contour on the forward radiator panels were included in the test. Solar concentrations of 2 suns were measured and the one-sun envelope was found to extend approximately 86 inches above the radiator panel. A limited amount of test data was also obtained for the radiator panels with the smooth silver/Teflon coating to support the planned EVA on the Orbiter STS-5 flight. Reflected solar flux concentrations as high as 8 suns were observed with the smooth coating and the one-sun envelope was determined to extend 195 inches above the panel. It is recommended that additional testing be conducted to define the reflected solar environment beyond the one-sun boundary.

  18. Performance of silvered Teflon thermal control blankets on spacecraft

    NASA Astrophysics Data System (ADS)

    Pippin, G.; Stuckey, W. K.; Hemminger, C. S.

    1993-03-01

    Silver-backed fluorinated ethylene propylene Teflon (Ag/FEP) thin film material was used for thermal control in many locations on the Long Duration Exposure Facility (LDEF). The Ag/FEP registered the effects of atomic oxygen, solar ultraviolet radiation, meteoroid and debris impacts, thermal cycling, and contamination. This report summarizes the post-flight condition of the Ag/FEP, compares the results with performance on other spacecraft, and presents lifetime estimates for use under a variety of environmental exposures. Measurements of optical property and mechanical property and surface chemistry changes with exposure conditions, and their significance for design considerations and expected performance lifetimes, are reported for material flown on LDEF. The LDEF based data provides detailed information performance of Ag/FEP under relatively long term exposure in low Earth orbit. Comparison of this data with results from short term shuttle flights, Solar Max, SCATHA, other satellites, and ground based measurements is made to present a comprehensive summary of the use of this material for spacecraft applications.

  19. Thermal control materials on EOIM-3

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Linton, Roger C.; Kamenetzky, Rachel R.; Vaughn, Jason A.

    1995-01-01

    Thermal control paints, anodized aluminum, and beta cloth samples were flown on STS-46 as part of the Evaluation of Oxygen Interaction with Materials Experiment (EOIM-3). The thermal control paints flown on EOIM-3 include ceramic and polyurethane-based paints. Passively exposed samples are compared to actively heated samples and controlled exposure samples. Optical property measurements of absorptivity, emissivity, and spectrofluorescence are presented for each paint. Several variations of anodized aluminum, including chromic acid anodize, sulfuric acid anodize, and boric/sulfuric acid anodize were flown on the actively heated trays and the passive exposure trays. The post-flight optical properties are within tolerances for these materials. Also flown were two samples of yellow anodized aluminum. The yellow anodized aluminum samples darkened noticeably. Samples of aluminized and unaluminized beta cloth, a fiberglass woven mat impregnated with TFE Teflon, were flown with passive exposure to the space environment. Data from this part of the experiment is correlated to observations from LDEF and erosion of the Teflon thin film samples also flown on EOIM-3 and LDEF.

  20. High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers

    NASA Astrophysics Data System (ADS)

    Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.

    1992-06-01

    Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.

  1. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    PubMed

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  2. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  3. Equation of State of an Aluminum Teflon Mixture

    NASA Astrophysics Data System (ADS)

    Reinhart, William; Chhabildas, Lalit; Wilson, Leonard

    2017-06-01

    A test program has been conducted at Sandia National Laboratories for the development of a competent model for polymeric mixtures This is to promote an understanding of reactions that may undergo under high pressures and high temperature conditions that exist under dynamic loading. An aluminum teflon composite mixture was chosen for this study. A series of plate impact experiments were conducted utilizing propellant and light gas guns to provide basic material properties needed for the computational analysis that includes Hugoniot data at shock pressures up to 60 GPa. Velocity interferometry was used to obtain material velocity wave profiles for determination of shock Hugoniot data. This data will be useful to evaluate various mixture material models that evaluate reaction kinetics for such systems. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. A new design of groundwater sampling device and its application.

    PubMed

    Tsai, Yih-jin; Kuo, Ming-ching T

    2005-01-01

    Compounds in the atmosphere contaminate samples of groundwater. An inexpensive and simple method for collecting groundwater samples is developed to prevent contamination when the background concentration of contaminants is high. This new design of groundwater sampling device involves a glass sampling bottle with a Teflon-lined valve at each end. A cleaned and dried sampling bottle was connected to a low flow-rate peristaltic pump with Teflon tubing and was filled with water. No headspace volume was remained in the sampling bottle. The sample bottle was then packed in a PVC bag to prevent the target component from infiltrating into the water sample through the valves. In this study, groundwater was sampled at six wells using both the conventional method and the improved method. The analysis of trichlorofluoromethane (CFC-11) concentrations at these six wells indicates that all the groundwater samples obtained by the conventional sampling method were contaminated by CFC-11 from the atmosphere. The improved sampling method greatly eliminated the problems of contamination, preservation and quantitative analysis of natural water.

  5. Suspension string: a new method of aortic valvuloplasty for aortic insufficiency and ventricular septal defect.

    PubMed

    Huang, Zhixiong

    2006-09-01

    In a 4-year-old boy with ventricular septal defect, severe aortic insufficiency, and mild infundibular stenosis, a new method was used to reconstruct the prolapsed aortic cusp. Two ends of a pledged stitch were passed through the aorta at each side of the right, noncoronary commissure and then through another pledget, and were then tied repeatedly in a row. The length of the row of knots was equal to that of the free edge of left coronary or noncoronary leaflet. The remainder of the stitch was passed through a pledget and then the aortic wall at each side of the left and right coronary commissure to the extraaortic wall pledget and were tied. A suspension string was formed by the row of knots and supported by a Teflon (Dupont Teflon, Wilmington, DE) felt pledget sandwich at each of two commissures. The free margin of the prolapsed cusp was attached to the suspension string by a continuous suture. The concomitant anomalies were corrected. The result was satisfactory.

  6. Patent ductus arteriosus in adults: surgical experience in Ivory-Coast.

    PubMed

    Yangni-Angate, H; Ayegnon, G; Meneas, C; Diby, F L; Yapobi, Y

    2007-03-01

    Patent ductus arteriosus surgery is well documented. Hospital Mortality has reduced to almost 0%. Yet, with adults, this surgical cure is likely to be difficult and require some technical skills A retrospective study of surgical procedures and results after surgery of patent ductus arteriosus (PDA) in adults. Since 1978 to 2000 we have reported 16 operated cases. The average age was 22.5 years. There was female predominance with a sex ratio of 2.3/1. All patent ductus arteriosus had been confirmed by two dimensional echocardiography (2D echocardiography) and cardiac catheterization. All hemodynamic types of Nadas classification were observed. Double or triple ligation supported on Teflon felt was the most frequent technique used (69%). This technique gave good results in view of the absence of hospital mortality and only 1 case of recanalisation after a long follow up of all patients from 1 - 7 years (mean 5 years). Double or triple ligation on Teflon felt according to Wright technique is a good technique.

  7. Unique applications of fluoroepoxy materials

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1991-01-01

    The following subject areas are covered: (1) fluoroepoxy and curing agents; (2) an excellent moisture vapor barrier coating; (3) as adhesives to bond Teflon without any surface treatment; (4) a new method to make thermosetting fluoropolymer foam; and (5) as a new antifoaming agent for epoxy material manufacturing and processing.

  8. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  9. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  10. An experimental investigation of microstrip properties on soft substrates from 2 to 40 GHz

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Ponchak, G. E.; Downey, A. N.; Connolly, D. J.

    1985-01-01

    Dispersion and loss characteristics of microstrip lines on 10 mil and 31 mil electrodeposited and electroless copper clad-Teflon substrates were experimentally obtained from 2 to 40 GHz. The roles of surface roughness and radiation in total loss were examined.

  11. 77 FR 65501 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... done. (g) Retained Replacement of Wiring, Installation of Sleeving, and Associated Actions This... requires replacing wiring for the fuel boost pumps and override pumps with new wiring, installing Teflon sleeving on the wiring, and doing associated actions; and doing repetitive inspections to detect damage of...

  12. 78 FR 10499 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... done. (g) Retained Replacement of Wiring, Installation of Sleeving, and Associated Actions This... replacing wiring for the fuel boost pumps and override pumps with new wiring, installing Teflon sleeving on the wiring, and doing associated actions; and doing repetitive inspections to detect damage of the...

  13. Modeling for Standoff Surface Detection

    DTIC Science & Technology

    2013-11-01

    Height and Volume of a Droplet ..............................................37 9. INKJET PRINTING OF DROPLET DISTRIBUTION...38 9.1 Inkjet Printing of SF96-5 on Teflon Material ..................................................38 9.2 VLSTRACK Witness Card...modeled droplet distribution on relevant surfaces with actual chemicals. This unique printer is a flatbed inkjet printer that can be used to deposit

  14. Laser Processing for Interconnect Technology

    DTIC Science & Technology

    1992-02-27

    2.1 0.0002 - available in film ethylene- - insoluble propylene (FEP) Perfluoroalkoxy ( PFA ) Teflon AF Amorphous DuPont 1.9 0.0002 - soluble form...t,) where the pulse is sorption coefficient, hv is the photon energy, and f is the a maximum at the surface at time t0. The distance marker fraction

  15. 46 CFR 153.530 - Special requirements for alkylene oxides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be composites of spirally wound stainless steel and Teflon or similar fluorinated polymer. (c) The...; (3) Be assembled from valves, fittings, and accessories having a pressure rating of not less than..., one in each emergency shutdown station required by § 153.296; and (3) Covers the area of application...

  16. 46 CFR 153.530 - Special requirements for alkylene oxides.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be composites of spirally wound stainless steel and Teflon or similar flourinated polymer. (c) The...; (3) Be assembled from valves, fittings, and accessories having a pressure rating of not less than..., one in each emergency shutdown station required by § 153.296; and (3) Covers the area of application...

  17. 46 CFR 153.530 - Special requirements for alkylene oxides.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be composites of spirally wound stainless steel and Teflon or similar flourinated polymer. (c) The...; (3) Be assembled from valves, fittings, and accessories having a pressure rating of not less than..., one in each emergency shutdown station required by § 153.296; and (3) Covers the area of application...

  18. Flammability control for electrical cables and connectors

    NASA Technical Reports Server (NTRS)

    Wick, W. O.; Buckey, D. L.

    1973-01-01

    Technique of covering fire-hazardous sections of electrical wiring with fireproof materials prevents fires from spreading in oxygen-enriched atmospheres and eliminates use of heavy metal enclosures. Materials used to cover potting on connectors and ground terminals are made from Teflon-coated Beta cloth and Fluorel, a nonflammable fully-saturated polymer.

  19. THE POTENTIAL INFLUENCES OF FACE VELOCITY ON PM ARTIFACT LOSSES FOR EXPOSURE SAMPLERS USING TEFLON FILTER COLLECTION SUBSTRATES

    EPA Science Inventory

    The influences of artifact formations and losses on Particulate Matter (PM) sampler collection surfaces are well documented, especially for nitrates (Hering and Cass, 1999), and SVOC's (McDow, 1999), and more recently for speciated carbon (Turpin and Lim, 2001). These artifact...

  20. Method of bonding diamonds in a matrix and articles thus produced

    DOEpatents

    Taylor, G.W.

    1981-01-27

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  1. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  2. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cleaned with benzene then with acetone. 2. Pre-weigh the 2 ml Teflon cups to one hundredth of a milligram..., including at least one sample during each shift for each battery and each job classification within the... controls to control coke oven emissions during charging operations: (a) One of the following methods of...

  3. 29 CFR 1910.1029 - Coke oven emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cleaned with benzene then with acetone. 2. Pre-weigh the 2 ml Teflon cups to one hundredth of a milligram..., including at least one sample during each shift for each battery and each job classification within the... controls to control coke oven emissions during charging operations: (a) One of the following methods of...

  4. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  5. Mutagenicity in Salmonella of a Simulated Urban-Smog Atmosphere Generated Using a Mobile Reaction Chamber

    EPA Science Inventory

    The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...

  6. 40 CFR 53.58 - Operational field precision and blank test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... samplers are also subject to a test for possible deposition of particulate matter on inactive filters... deposition is defined as the mass of material inadvertently deposited on a sample filter that is stored in a... electrical power to accommodate three test samplers are required. (2) Teflon sample filters, as specified in...

  7. Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2012-09-30

    the CS2 was contained in a rectangular colorimeter cell with a custom built Teflon cap to alleviate the evaporation of the hazardous chemical...6: A comparison of the image quality between the older colorimeter cell (a) and the new containment cell (b). 2.5 Autocorrelation-Based Pulse Length

  8. Friction in Sliding Orthodontic Mechanics: Ceramic Brackets, Teflon-Coated Wires and Comparative Resistances

    DTIC Science & Technology

    1989-01-01

    Nitinol ; Unitek Corp., Monrovia, CA.) against the 3 bracket-slot. With increased angulation, however, the Nitinol wire created much less friction than...Palmer, F.: Friction, Sci. Am. 184:54-58, 1951. Petersen, L., Spencer, R., and Andreasen, G.: A com- parison of friction resistance for Nitinol and

  9. Two Simulated-Smog Atmospheres with Different Chemical Compositions Produce Contrasting Mutagenicity in Salmonella.

    EPA Science Inventory

    Ozone (O3), particulate matter (PM), and nitrogen dioxide (NO2) are criteria pollutants used to evaluate air quality. Using a 14.3-m3 Teflon-lined smog chamber with 120 UV bulbs to simulate solar radiation, we generated 2 simulated-smog atmospheres (SSA-1 & SSA-2) with differ...

  10. Scratching the First Teflon Presidency: Frank Kent vs. Franklin Roosevelt.

    ERIC Educational Resources Information Center

    Olasky, Marvin N.

    While the typical pantheon of journalism history heroes is made up almost entirely of individuals who campaigned for more governmental regulation and increased social liberalism, there is also an opposing tradition in American journalism, one based on the premise that governmental cures are in most cases worse than the diseases they are designed…

  11. 46 CFR 153.530 - Special requirements for alkylene oxides.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) and (c) of this section, a cargo containment system must be made of: (1) Stainless steel other than types 416 and 442; and (2) Steel. (b) Except as provided in paragraph (c) of this section, gaskets must be composites of spirally wound stainless steel and Teflon or similar flourinated polymer. (c) The...

  12. Follow-up on the effects of the space environment on UHCRE thermal blankets

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Vaneesbeek, Marc

    1993-01-01

    An overview of the effects of the space environment on the thermal blanket of the UHCRE experiment is presented with an emphasis on atomic oxygen (AO) erosion. A more accurate value for FEP Teflon reaction efficiency is given and corresponds, at normal incidence, to 3.24 10(exp -25) cu cm/atomic, therefore, the FEP Teflon erosion corresponding to the Long Duration Exposure Facility (LDEF) total mission is 29.5 microns. A power 1.44 of the cosine of the incident angle of the oxygen atoms is found. It is shown that this value is not far from the power found using Fergusson's relationship between efficiency and energy of the O-atoms. An hypothesis concerning the effect of oxygen ions (O(+)) is also presented. The presence of oxygen ions may explain the different results obtained from different flights and from laboratory tests. Finally an XPS analysis of Chemglaze Z306(tm) black paint demonstrates the presence of silicone in the paint which may explain part of the contamination found on LDEF.

  13. Effect of Air and Vacuum Storage on the Tensile Properties of X-Ray Exposed Aluminized-FEP

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Gummow, Jonathan D.

    2000-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), a common spacecraft thermal control material, from the exterior layer of the Hubble Space Telescope (HST) has become embrittled and suffers from extensive cracking. Teflon samples retrieved during Hubble servicing missions and from the Long Duration Exposure Facility (LDEF) indicate that there may be continued degradation in tensile properties over time. An investigation has been conducted to evaluate the effect of air and vacuum storage on the mechanical properties of x-ray exposed FEP. Aluminized-FEP (Al-FEP) tensile samples were irradiated with 15.3 kV Cu x-rays and stored in air or under vacuum for various time periods. Tensile data indicate that samples stored in air display larger decreases in tensile properties than for samples stored under vacuum. Air-stored samples developed a hazy appearance, which corresponded to a roughening of the aluminized surface. Optical property changes were also characterized. These findings indicate that air exposure plays a role in the degradation of irradiated FEP, therefore proper sample handling and storage is necessary with materials retrieved from space.

  14. Secondary electron emission from electrically charged fluorinated-ethylene-propylene Teflon for normal and non-normal electron incidence. M.S. Thesis; [spacecraft thermal coatings

    NASA Technical Reports Server (NTRS)

    Budd, P. A.

    1981-01-01

    The secondary electron emission coefficient was measured for a charged polymer (FEP-Teflon) with normally and obliquely incident primary electrons. Theories of secondary emission are reviewed and the experimental data is compared to these theories. Results were obtained for angles of incidence up to 60 deg in normal electric fields of 1500 V/mm. Additional measurements in the range from 50 to 70 deg were made in regions where the normal and tangential fields were approximately equal. The initial input angles and measured output point of the electron beam could be analyzed with computer simulations in order to determine the field within the chamber. When the field is known, the trajectories can be calculated for impacting electrons having various energies and angles of incidence. There was close agreement between the experimental results and the commonly assumed theoretical model in the presence of normal electric fields for angles of incidence up to 60 deg. High angle results obtained in the presence of tangential electric fields did not agree with the theoretical models.

  15. Comparison of Intralaminar and Interlaminar Mode-I Fracture Toughness of Unidirectional IM7/8552 Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James

    2012-01-01

    The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy.

  16. Generation of microgrooved silica nanotube membranes with sustained drug delivery and cell contact guidance ability by using a Teflon microfluidic chip

    NASA Astrophysics Data System (ADS)

    Chen, Song; Shi, Xuetao; Chinnathambi, Shanmugavel; Wu, Hongkai; Hanagata, Nobutaka

    2013-02-01

    Silica nanotubes have been extensively applied in the biomedical field. However, very little attention has been paid to the fabrication and application of micropatterned silica nanotubes. In the present study, microgrooved silica nanotube membranes were fabricated in situ by microgrooving silica-coated collagen hybrid fibril hydrogels in a Teflon microfluidic chip followed by calcination for removal of collagen fibrils. Scanning electron microscopy images showed that the resulting silica nanotube membranes displayed a typical microgroove/ridge surface topography with ˜50 μm microgroove width and ˜120 μm ridge width. They supported adsorption of bone morphogenetic protein 2 (BMP-2) and exhibited a sustained release behavior for BMP-2. After culturing with osteoblast MC3T3-E1 cells, they induced an enhanced osteoblast differentiation due to the release of biologically active BMP-2 and a strong contact guidance ability to directly align and elongate osteoblasts due to the presence of microgrooved surface topography, indicating their potential application as a multi-functional cell-supporting matrix for tissue generation.

  17. Nucleate boiling performance on nano/microstructures with different wetting surfaces

    PubMed Central

    2012-01-01

    A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173

  18. Role of the Filters in the Formation and Stabilization of Semiquinone Radicals Collected from Cigarette Smoke

    PubMed Central

    Maskos, Zofia; Dellinger, Barry

    2013-01-01

    The fractional pyrolysis of Bright tobacco was performed in nitrogen atmosphere over the temperature range of 240 – 510 °C in a specially constructed, high temperature flow reactor system. Electron paramagnetic resonance (EPR) spectroscopy was used to analyze the free radicals in the initially produced total particular matter (TPM) and in TPM after exposure to ambient air (aging). Different filters have been used to collect TPM from tobacco smoke: cellulosic, cellulose nitrate, cellulose acetate, nylon, Teflon and Cambridge. The collection of the primary radicals (measured immediately after collection of TPM on filters), the formation and stabilization of the secondary radicals (defined as radicals formed during aging of TPM samples on the filters) depend significantly on the material of the filter. A mechanistic explanation about different binding capability of the filters decreasing in the order: cellulosic < cellulose nitrate < cellulose acetate < nylon ~ teflon is presented. Different properties were observed for the Cambridge filter. Specific care must be taken using the filters for identification of radicals from tobacco smoke to avoid artifacts in each case. PMID:24265513

  19. Evaluation of Thermal Control Coatings and Polymeric Materials Exposed to Ground Simulated Atomic Oxygen and Vacuum Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.

    1995-01-01

    Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.

  20. Electron microscopy and computed microtomography studies of in vivo implanted mini-TL dosimeters.

    PubMed

    Strand, S E; Strandh, M; Spanne, P

    1993-01-01

    The need for direct methods of measuring the absorbed dose in vivo increases for systemic radiation therapy, and in more sophisticated methodologies developed for radioimmunotherapy. One method suggested is the use of mini-thermoluminescent dosimeters (TLD). Recent reports indicate a marked loss of signal when the dosimeters are used in vivo. We investigated the exterior surface of the dosimeters with scanning electron microscopy and the interior dosimeter volume with computed microtomography. The results show that the dosimeters initially have crystals uniformly embedded in the teflon matrix, with some of them directly exposed to the environment. After incubation in gel, holes appear in the dosimeter matrix where the crystals should have been. The computed microtomographic images show that crystals remain in the interior of the matrix, producing the remaining signal. We conclude that these dosimeters should be very carefully handled, and for practical use of mini-TLDs in vivo the dosimeters should be calibrated in equivalent milieus. An alternative solution to the problem of decreased TL efficiency, would be to coat the dosimeters with a thin layer, of Teflon, or other suitable material.

  1. Evaluation of Low Earth Orbit Environmental Effects on International Space Station Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rutledge, Sharon K.; Hasegawa, Mark M.; Reed, Charles K.

    1998-01-01

    Samples of International Space Station (ISS) thermal control coatings were exposed to simulated low Earth orbit (LEO) environmental conditions to determine effects on optical properties. In one test, samples of the white paint coating Z-93P were coated with outgassed products from Tefzel(R) (ethylene tetrafluoroethylene copolymer) power cable insulation as-may occur on ISS. These samples were then exposed, along with an uncontaminated Z-93P witness sample, to vacuum ultraviolet (VUV) radiation to determine solar absorptance degradation. The Z-93P samples coated with Tefzel(R) outgassing products experienced greater increases in solar absorptance than witness samples not coated with Tefzel(R) outgassing products. In another test, samples of second surface silvered Teflon(R) FEP (fluorinated ethylene propylene), SiO. (where x=2)-coated silvered Teflon(R) FEP, and Z-93P witness samples were exposed to the combined environments of atomic oxygen and VLTV radiation to determine optical properties changes due to these simulated ISS environmental effects. This test verified the durability of these materials in the absence of contaminants.

  2. Wire-guided sphincterotomy.

    PubMed

    Sherman, S; Uzer, M F; Lehman, G A

    1994-12-01

    Guidewire-assisted techniques have acquired an important role in endoscopic interventions in the pancreaticobiliary tree. The wire-guided sphincterotome allows the endoscopist to maintain direct access to the biliary tree before or after the sphincterotomy. It has the additional advantages of allowing for more expeditious placement of accessories and being useful in combined percutaneous-endoscopic procedures. There are two basic designs of wire-guided sphincterotomes. The single-channel model has a single lumen for both the cutting wire and guidewire and requires guidewire removal before the application of power. The double-channel model has two separate lumens for the guidewire and stainless steel cutting wire. In vitro data suggest that significant capacitive coupling currents (or short circuits) may occur on the standard Teflon-coated guidewire when used with a double lumen sphincterotome, resulting in electrosurgical burns. Thus, the manufacturers of the double-lumen models recommend removing the Teflon-coated wire before performing sphincterotomy. Although limited data in humans have been published, it appears that wire-guided sphincterotomy and standard sphincterotomy have similar complication rates. More safety information in humans is awaited.

  3. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators.

    PubMed

    Subczynski, Witold K; Felix, Christopher C; Klug, Candice S; Hyde, James S

    2005-10-01

    Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.

  4. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators

    NASA Astrophysics Data System (ADS)

    Subczynski, Witold K.; Felix, Christopher C.; Klug, Candice S.; Hyde, James S.

    2005-10-01

    Measurement of the bimolecular collision rate between a spin label and oxygen is conveniently carried out using a gas permeable plastic sample tube of small diameter that fits a loop-gap resonator. It is often desirable to concentrate the sample by centrifugation in order to improve the signal-to-noise ratio (SNR), but the deformable nature of small plastic sample tubes presents technical problems. Solutions to these problems are described. Two geometries were considered: (i) a methylpentene polymer, TPX, from Mitsui Chemicals, at X-band and (ii) Teflon tubing with 0.075 mm wall thickness at Q-band. Sample holders were fabricated from Delrin that fit the Eppendorf microcentrifuge tubes and support the sample capillaries. For TPX, pressure of the sealant at the end of the sample tube against the Delrin sample holder provided an adequate seal. For Teflon, the holder permitted introduction of water around the tube in order to equalize pressures across the sealant during centrifugation. Typically, the SNR was improved by a factor of five to eight. Oxygen accessibility applications in site-directed spin labeling studies are discussed.

  5. Characterization of α-spodumene to OSL dosimetry

    NASA Astrophysics Data System (ADS)

    d'Amorim, R. A. P. O.; de Vasconcelos, D. A. A.; de Barros, V. S. M.; Khoury, H. J.; Souza, S. O.

    2014-02-01

    The aim of this paper is to evaluate the optically stimulated luminescence (OSL) response of spodumene (LiAlSi2O6) silicate and its potential use for gamma radiation dosimetry. A natural Brazilian crystal of α-spodumene was used in this study. After the crystal grinding, pellets with the diameter of 6.0 mm were prepared using a mixture of α-spodumene and polytetrafluoroethylene (Teflon®) (1:2). To study the OSL response, the samples were irradiated with gamma radiation beam of Co-60 and the response was measured using an OSL Reader in two modes of operation: Continuous-wave and pulsed stimulation. The results of the integrated OSL curve of the pellets irradiated with the dose of 30 Gy showed that their response is reproducible within ±2%. The variation of the OSL response upon the dose exhibits a linear response in the range from 30 Gy to 10 kGy, with a correlation coefficient of 0.99. It is possible to conclude that the α-LiAlSi2O6/Teflon® has a great potential for OSL dosimetry of high gamma doses.

  6. ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.

    2016-12-01

    In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.

  7. Study of thermal control systems for orbiting power systems. Materials experiment carrier thermal control system study

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1980-01-01

    Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.

  8. Space Environmental Effects on the Optical Properties of Selected Transparent Polymers

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Willowby, Douglas J.; Hubbs, Whitney C.; Piszczor, Michael F., Jr.; Bowden, Mary L.

    1997-01-01

    Transparent polymer films are currently considered for use as solar concentrating lenses for spacecraft power and propulsion systems. These polymer films concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. Conversion efficiency is directly related to the polymer transmission. Space environmental effects will decrease the transmission and thus reduce the conversion efficiency. This investigation focuses on the effects of ultraviolet and charged particle radiation on the transmission of selected transparent polymers. Multiple candidate polymer samples were exposed to near ultraviolet (NUV) radiation to screen the materials and select optimum materials for further study. All materials experienced transmission degradation of varying degree. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance of NUV. Teflon(Tm) FEP and Teflon(Tm) PFA were selected for further study. These materials were subjected to a combined charged particle dose equivalent to 5 years in a typical geosynchronous Earth orbit (GEO). Results from these NUV screening tests and the 5 year GEO equivalent dose are presented.

  9. [Effect of CO2 laser on prostheses used in middle ear surgery].

    PubMed

    Szymański, Marcin

    2005-01-01

    The use of CO2 laser is advocated in primary and revision stapes surgery. The aim of the study was to assess the effect of CO2 laser on stapes prostheses. CO2 laser was applied on several types of stapes prostheses and PORPs, with power settings suggested by the manufacturer (continuous wave, 2 W and 6 W; 0,05 s). Application of the laser on stainless steel or titanium prosthesis did not exert any effect on the structure of the prosthesis. The use of the laser on the Teflon piston caused superficial burning with power 2 W, and melting and holes in the piston with power settings at 6W. Similar plastipore prostheses were melting. Hydroxyapatite PORP shattered after application of the laser energy. Teflon and hydroxyapatite prostheses are easily damaged by the laser energy, therefore applying a laser on them should be avoided. CO2 laser can be used on stainless steel and titanium prostheses without risk of damaging them. However the possibility of transmission of heat to the vestibule has to be taken into consideration.

  10. Development of a prototype flexible radiator system

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1979-01-01

    The radiator is a roll-up flexible panel with the transport fluid manifolds located at the ends of the 27 foot length. A total of fifty Teflon flow tubes are sandwiched between the layers of silver wire mesh and sealed in the Teflon film. The transport fluid flows from an inlet manifold through 25 panel flow tubes to the end of the radiator panel into a manifold which directs the fluid into the other 25 flow tubes on its return to the base of the radiator. Deployment/retraction of the flexible radiator panel is by low pressure inflation tubes (one along each side of the panel) which incorporate a flat spring. The spring supplies the retraction force to wind the radiator panel on a drum when the pressure in the inflation tubes is relieved. Room ambient deployment tests of the radiator panel were conducted to verify the inflation tube spring deployment, and retraction capability. The panel underwent a thermal vacuum, solar spectrum exposure test. After approximately 100 hours of solar exposure, post-test inspection revealed no structural or optical properties degraded.

  11. Physico-mechanical and thermal characteristics of commercially available and newly developed dental flowable composites

    NASA Astrophysics Data System (ADS)

    Kamalak, Hakan; Canbay, C. Aksu; Yiğit, Oktay; Altin, Serdar

    2018-03-01

    In this study, we investigated the structural stability, thermal conductivity, thermal analysis, materials' homogeneity of newly developed flowable composites. 6 different dental flowable composite resins; Grandio Flow (GF), Charisma Flow (CF), Tetric N Flow (TNF), Clearfil Majesty Flow (CMF),3M Filtek Ultimate Flow (3MFU), Voco Amaris Flow (VFA) were used. Restorations were made in standard teflon molds and the materials were light-cured for 20s in a 6 mm × 2 mm teflon mould. After polymerization, samples were kept in distilled water at 37 °C/24 h .It was found that the composites have multiphase component such as metallic dopant and organic binder. The XRD investigation showed that there was a broad halo in the pattern which indicates the organic section in the composites. The FTIR results indicate the bond structure of the composites. The temperature dependence of the thermal conductivity of the composites were found below to 5 mW/K value depending on the type of the composites, which are low enough for dental application. The micro-hardness of the samples was analyzed and the result was compared.

  12. The Competing Influences of the Radiation Belts on the Charging of Extremely Resistive Spacecraft Materials

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Roeder, J. L.; Looper, M. D.; O'Brien, T. P., III; Fennell, J. F.; Mazur, J. E.

    2016-12-01

    Spacecraft suffer from various types of anomalies caused by space weather. One important source of spacecraft anomalies is internal electrostatic discharge (IESD), which occurs when penetrating electrons deposit charge inside dielectrics faster than that charge can dissipate via conduction currents. This causes the electric field to build up to a breakdown threshold. The most electrically resistive materials, such as Teflon, are of greatest concern for IESD. Laboratory measurements of the conductivity of Teflon and other highly resistive polymers show that their conventional conductivity is negligible in comparison to their radiation-induced conductivity (RIC), an alternate source of conduction that is linearly proportional to the ionizing dose rate received by the material. The space radiation environment therefore plays contradictory roles in extremely resistive polymers, both depositing charge and dissipating it. The spectral shape, rather than the total electron flux, becomes the primary consideration for IESD because it determines the relative deposition of charge and ionizing dose in materials. A counterintuitive result is that soft spectra may be a greater risk for IESD, because relative to hard spectra they deposit more charge than dose in materials. This differs from the standard practice of defining the worst-possible environment for charging and IESD as the spectrum in which the electron flux is highest at all energies that could reach the material. We present analyses of CRRES MEA and HEEF measurements, and simulate the charging of material samples from the CRRES Internal Discharge Monitor. We briefly demonstrate the unexpected results described here, and quantify the effect of different energetic electron spectra observed by CRRES on the buildup of charge in Teflon samples from the Internal Discharge Monitor. Finally, we will comment on the perceived deficiency of "worst case" charging environments for predicting IESD, and how we can better quantify IESD risk in extremely resistive materials.

  13. Low surface energy polymeric release coating for improved contact print lithography

    NASA Astrophysics Data System (ADS)

    Mancini, David P.; Resnick, Douglas J.; Gehoski, Kathleen A.; Popovich, Laura L.; Chang, Daniel

    2002-03-01

    Contact printing has been used for decades in many various lithography applications in the microelectronic industry. While vacuum contact printing processes offer sub-micron resolution and high throughput, they often suffer from some important drawbacks. One of the most common problems is degradation in both resolution and defect density which occurs when the same mask si used for multiple exposures without frequent mask cleans. This is largely due to the relatively high surface energy of both quartz and chrome and the tendency of most photoresists to adhere to these surfaces. As a result, when a mask and wafer are pressed into intimate contact, resist will tend to stick to the mask creating a defect on the wafer, effectively propagating defects to subsequent wafers. In this study, DuPont Teflon AF 1601S is used as a photomask coating and evaluated for its ability to act as a release agent and reduce defects while maintaining resolution for multiple exposures. Teflon AF is an amorphous, transparent, low surface energy, polymeric material that can be spin coated into a thin conformal film. Tests have shown that when using an uncoated mask in vacuum contact, resolution of 0.75 micrometers dense lines is severely degraded after less than 10 consecutive exposures. However, when the mask is coated, 0.75 micrometers dense lines were successfully resolved using vacuum contact for over 200 exposures without cleaning. In addition, it has been demonstrated that Teflon AF coatings impart to a mask a self-cleaning capability, since particles tend to stick to the photoresist rather than the mask. A coated mask, which was purposefully contaminated with particulates, resolved 0.75 micrometers dense lines on all but the first wafer of a series of 25 consecutive exposures. The patented mask releases layer process has successfully been demonstrated with a positive novolak resist. Additional data which describes the system chemistry, dilution and coating process, and film morphology are also presented.

  14. Smooth perfluorinated surfaces with different chemical and physical natures: their unusual dynamic dewetting behavior toward polar and nonpolar liquids.

    PubMed

    Cheng, Dalton F; Masheder, Benjamin; Urata, Chihiro; Hozumi, Atsushi

    2013-09-10

    The effects of surface chemistry and the mobility of surface-tethered functional groups of various perfluorinated surfaces on their dewetting behavior toward polar (water) and nonpolar (n-hexadecane, n-dodecane, and n-decane) liquids were investigated. In this study, three types of common smooth perfluorinated surfaces, that is, a perfluoroalkylsilane (heptadecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilane, FAS17) monomeric layer, an amorphous fluoropolymer film (Teflon AF 1600), and a perfluorinated polyether (PFPE)-terminated polymer brush film (Optool DSX), were prepared and their static/dynamic dewetting characteristics were compared. Although the apparent static contact angles (CAs) of these surfaces with all probe liquids were almost identical to each other, the ease of movement of liquid drops critically depended on the physical (solidlike or liquidlike) natures of the substrate surface. CA hysteresis and substrate tilt angles (TAs) of all probe liquids on the Optool DSX surface were found to be much lower than those of Teflon AF1600 and FAS17 surfaces due to its physical polymer chain mobility at room temperature and the resulting liquidlike nature. Only 6.0° of substrate incline was required to initiate movement for a small drop (5 μL) of n-decane, which was comparable to the reported substrate TA value (5.3°) for a superoleophobic surface (θ(S) > 160°, textured perfluorinated surface). Such unusual dynamic dewetting behavior of the Optool DSX surface was also markedly enhanced due to the significant increase in the chain mobility of PFPE by moderate heating (70 °C) of the surface, with substrate TA reducing to 3.0°. CA hysteresis and substrate TAs rather than static CAs were therefore determined to be of greater consequence for the estimation of the actual dynamic dewetting behavior of alkane probe liquids on these smooth perfluorinated surfaces. Their dynamic dewettability toward alkane liquids is in the order of Optool DSX > Teflon AF1600 ≈ FAS17.

  15. Characterization of plastic deformation and chemical reaction in titanium-polytetrafluoroethylene mixture

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery Jon

    1998-09-01

    The subject of this dissertation is the deformation process of a single metal - polymer system (titanium - polytetrafluoroethylene) and how this process leads to initiation of chemical reaction. Several different kinds of experiments were performed to characterize the behavior of this material to shock and impact. These mechanical conditions induce a rapid plastic deformation of the sample. All of the samples tested had an initial porosity which increased the plastic flow condition. It is currently believed that during the deformation process two important conditions occur: removal of the oxide layer from the metal and decomposition of the polymer. These conditions allow for rapid chemical reaction. The research from this dissertation has provided insight into the complex behavior of plastic deformation and chemical reactions in titanium - polytetrafluoroethylene (PTFE, Teflon). A hydrodynamic computational code was used to model the plastic flow for correlation with the results from the experiments. The results from this work are being used to develop an ignition and growth model for metal/polymer systems. Three sets of experiments were used to examine deformation of the 80% Ti and 20% Teflon materials: drop- weight, gas gun, and split-Hopkinson pressure bar. Recovery studies included post shot analysis of the samples using x-ray diffraction. Lagrangian hydrocode DYNA2D modeling of the drop-weight tests was performed for comparison with experiments. One of the reactions know to occur is Ti + C → TiC (s) which results in an exothermic release. However, the believed initial reactions occur between Ti and fluorine which produces TixFy gases. The thermochemical code CHEETAH was used to investigate the detonation products and concentrations possible during Ti - Teflon reaction. CHEETAH shows that the Ti - fluorine reactions are thermodynamically favorable. This research represents the most comprehensive to date study of deformation induced chemical reaction in metal/polymers.

  16. The corrosion effect of ozonated seawater solution on titanium in polymer generated crevice environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leveillee, S.Y.

    1998-01-01

    Two different tests were designed to evaluate the reaction of various polymers and grade-2 titanium in ozonated seawater in conjunction with a comparative analysis in an aerated seawater solution. The first was a weight loss test measuring the weight change of Polyvinyl chloride (PVC), Polyethylene and Teflon{trademark} in both ozonated and aerated artificial seawater baths. The second test was designed to induce crevice corrosion on the titanium test samples using various crevice generating materials in both ozonated and aerated solutions. The materials used to create the crevices were grade-2 titanium washers, PVC, Polyethylene, Saran and Teflon{trademark}. The weight loss testmore » showed that all three polymers lost weight in the ozonated bath. The results of the titanium washer crevice test provided no indication of corrosion or surface discoloration in either the ozonated or aerated solutions. Energy dispersive spectrometry (EDS) analysis found no fluorine, chlorine or other corrosion product. The PVC samples in the aerated bath also showed no signs of corrosion, but the PVC samples in the ozonated tank had light brown rings of surface discoloration. One of the ozonated PVC samples did show evidence of chlorine in the corrosion product. The outer circumference of the ozonated PVC washers exhibited the same type bleaching effect as in the weight loss samples, but the whitening of these samples were more pronounced. The polyethylene samples under aeration showed no discoloration or presence of fluorine or chlorine. The polyethylene crevice samples in the ozonated solution all exhibited the distinct brilliant blue color of titanium oxide. Fluorine was found in the corrosion product on only one of the samples. Chlorine was found on the surface of one of the other corrosion coupons. The results of the Teflon{trademark} crevice samples substantiated the previous Rensselaer study.« less

  17. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Technical Reports Server (NTRS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  18. Self-diagnosis of damage in fibrous composites using electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Kang, Ji Ho; Paty, Spandana; Kim, Ran Y.; Tandon, G. P.

    2006-03-01

    The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in situ damage detection and sensing in carbon fiber reinforced plastic (CFRP) composite structures. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested and post-processed with the measurement data. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. Encouraged by the results of coupon specimens, we implemented the measurement system on panel specimens. Three different quasi-isotropic panels were designed and manufactured: a panel with artificial delamination by inserting Teflon film at the midplane, a panel with artificial delamination by inserting Teflon film between the second and third plies from the surface, and an undamaged panel. The first two panels were designed to determine the feasibility of detecting delamination using the developed measurement system. The third panel had no damage at first, and then three different sizes of holes were drilled at a chosen location. Panels were prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrode connections for a panel. All possible pairs of electrodes were scanned and the resistance was measured for each pair. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

  19. Gaskets of teflon-bonded EPDM halt leakage from acid lines - low sealing force design eliminates flange distress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, I.S.; Gaines, A.

    1987-11-01

    The W.R. Grace Chemical Division plant in Lake Charles, LA had to stop producing catalysts for the oil refining industry whenever a piping system for 98% sulfuric acid developed a leak. Gaskets of a nonasbestos material were being used between the flanges of the steel pipe lined with TFE or polypropylene. The flange bolts were kept tight, but the gaskets usually failed to maintain a leaktight seal with the acid at 60 psi for more than a few weeks or months. The acid lines had to be drained before the faulty gasket could be replaced, and production downtime would rangemore » from one to three hours. In July 1986, the plant decided to try a chemical resistant gasket of Teflon molded and bonded to a core of Shore A 65-66 durometer EPDM rubber in the acid lines. The resilient gasket also has patented double convex rings on both faces for optimum sealing with only one-eighth the bolt tightening torque commonly required with flat-faced gaskets. The low sealing force requirement prolongs the life of the gasket, eliminates plastic cold flow at the flange of lined steel pipe, and avoids stresses that can damage thermoplastic and fiberglass piping systems. The gasket has a temperature range of {minus}4 to 210{degree}F and is available in 1/2 through 12 inch sizes that conform to ANSI B16.1 flange dimensions. Alternative gasket materials are Kynar PVDF-bonded EPDM and EPDM without a fluoropolymer laminate. The Teflon-bonded EPDM gaskets eliminated unscheduled catalyst production downtime due to leakage from the sulfuric acid piping system. The plant maintains an inventory of the low torque gasket, but has never had to replace any that have been in service since July 1986.« less

  20. First principles numerical model of avalanche-induced arc discharges in electron-irradiated dielectrics

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.

    1979-01-01

    The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.

  1. Services provided in support of the planetary quarantine requirements

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1972-01-01

    Tests were conducted to determine the dry heat resistance at 125 C of a naturally occurring bacterial spore population in a mixture of sieved vacuum cleaner dusts from Cape Kennedy. The dust was aerosolized in a special chamber and was allowed to settle on 32 Teflon ribbons to provide approximately 500,000 spores per ribbon.

  2. The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes.

    DTIC Science & Technology

    1981-01-01

    100C. The cathode was then extracted with a total volume of 100 cc of water and aliquots of the extract titrated potentiometrically with a standardized...S02C12 In an alkaline aqueous solution, S02 or Cl2 when individually dissolved, can be titrated through iodimetry or iodometry, respectively.8 If both

  3. Modification of polymeric surface for improved adhesion via electron beam exposure

    DOEpatents

    Kelber, Jeffry A.

    1989-01-01

    Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 .ANG. with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10.sup.-6 Torr, to enhance the ability of the surface to be adhered to a variety of substrates.

  4. Development of Nonelectronic Part Cyclic Failure Rates

    DTIC Science & Technology

    1977-12-01

    Schilling, W. A., "The User-Oriented Connector," Microwave Journal, Octcber 1976 40. Schneider, C., "Military Relay Reliability," Bell Telephone...polyimide B Diallyl phthalate, melamine , -55 to 200 fluorosilicone, silicone rubber, polysulfone, epoxy resin C Polytetrafluoroethylene (teflon) -55 to 125...propagation, solid state sciences, microwave physics and electronic reliability, maintainabilitg andcompatibility. .,% -UT104, , 8. g z

  5. EAST VERSUS WEST IN THE US: CHEMICAL CHARACTERISTICS OF PM 2.5 DURING THE WINTER OF 1999

    EPA Science Inventory

    The chemical composition of PM2.5 was investigated at four sites (Rubidoux, CA, Phoenix, AZ, Philadelphia, PA, and RTP, NC) in January and February of 1999. Three samplers were used to determine both the overall mass and the chemical composition of the aerosol. Teflon filters wer...

  6. MEASUREMENT OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) ASSOCIATED WITH FINE PARTICULATE MATTER TO ESTIMATE STATEWIDE CUMULATIVE EXPOSURES IN NORTH CAROLINA

    EPA Science Inventory

    Airborne particulate matter (PM) is routinely collected at over a thousand air monitoring stations across the nation using Teflon filters. After they are weighed to measure the amount of PM in the air, the filters are stored in refrigerators and, after a year, are thrown away. ...

  7. Turbulent Boundary Layer Flow over Superhydrophobic Surfaces

    DTIC Science & Technology

    2013-05-10

    DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Turbulent Boundary Layer Flow over Superhydrophobic ...modified surfaces. This study encompassed the testing of four different surfaces: 1) Teflon SLIP, 2) Aluminum SLIP, 3) Honeycomb Superhydrophobic and 4...Polydimethylsiloxane elastomer (PDMSe) Superhydrophobic . Each of these surfaces uses specific geometrical surface features to modify the original

  8. Annual Conference (4th) on HAN-Based Liquid Propellants. Volume 2

    DTIC Science & Technology

    1989-05-01

    TEFLON STOPCOCK pH METERI HAN PRODUCT RESERVOIR MAGNETIC STIRRER I 148 EQUIPMENT FOR ION EXCHANGE RESIN HNO 3 + HAN [~0.6 M HNO 3 1 __ REGENERANT [10% NH4...34Study of Thermal Diffusive-Reactive Instability in Liquid Propellants: The Effects of Surface Tension and Gravity " by R. C. Armstrong and S. B. Margolis

  9. Particulate emissions from a mid-latitude prescribed chaparral fire

    Treesearch

    Wesley R. Cofer; Joel S. Levine; Daniel I. Sebacher; Edward L. Winstead; Philip J. Riggan; James A. Brass; Vincent G. Ambrosia

    1988-01-01

    Smoke aerosol was collected on filters from a helicopter during a 400-acre (1.62 km2) prescribed chaparral burn in the San Dimas Experimental Forest on December 12, 1986. Hi-Vol samplers were used to collect particles on both Teflon and glass fiber filters. Scanning electron microscopy of the filters revealed particles that ranged in size from...

  10. A study of the effect on a typical orbiter payload thermal environment resulting from specular reflections from the forward orbiter radiators

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Turner, L.; Littles, J. W.

    1979-01-01

    The orbiter radiator external coating is highly specular silverized Teflon. Solar energy specularly reflected from these radiators on a typical payload which, when deployed, extends above the payload bay envelope was studied. The flux levels are compared assuming both diffuse and specular radiators.

  11. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.

  12. Universal Documentation System

    DTIC Science & Technology

    2012-07-01

    Follow preparation instructions in Section 5.2.1 for the entries ITEM NO. and REMARKS. FLOTATION DURATION: Enter flotation duration of the test unit...Teflon, carbon steel, copper and copper alloys, and stainless steel (martensitic, ferritic, austenitic). • Quantity: Enter the quantity of components...DESCRIPTION 1470 ITEM NO.: FLOTATION DURATION: ELECTRONIC AIDS • TYPE: • POWER OUT (WATTS): • FREQUENCY (MHz): C-22 • MODULATION

  13. 1997 IEEE/LEOS Summer Topical Meeting on Gallium Nitride Materials, Processing and Devices Held in Montreal, Quebec, Canada on 11-15 August 1997

    DTIC Science & Technology

    1998-01-01

    photochemical exposure, these monomer systems form highly crosslinked networks which exhibit low intrinsic ab- sorption in the wavelength range extending...losses. The tip is also coated with a PFA Teflon coating to minimize the sticking of the cauterized tissue onto the tip. The dedicated forceps is mounted

  14. Study of Improvement of Hydrogen Maser Frequency Standard

    NASA Technical Reports Server (NTRS)

    Crampton, S. B.

    1977-01-01

    The research work dealt primarily with reducing the atom leakage rate using as storage surfaces the FEP Teflon surfaces conventionally used in contemporary hydrogen maser frequency standards. Some work was also done on a possible alternative to the conventional surfaces, but the results here and elsewhere suggest that the alternative surface is not promising enough to warrant much further work.

  15. Small satellite generic bus structure

    NASA Astrophysics Data System (ADS)

    Fiore, John N.; Summers, George D.

    1993-02-01

    A 'Smallsat' generic structure has been developed for LEO and expendable launch vehicles. The structure makes extensive use of Al-alloy honeycomb-stabilized panels in order to satisfy stiffness, weight, strength and thermal stability requirements in the LEO environment, in conjunction with discrete applications of multilayered insulation blankets and silverized Teflon radiators. The Smallsat structure is ideally suited for assembly-line manufacturing and storage until required.

  16. Waste Minimization in Circuit Board Manufacturing by PARMOD(TM) Technology

    DTIC Science & Technology

    1998-06-24

    a foil package in air or in a plastic syringe. Thermogravimetric Analysis (TGA) Ink samples were evaluated using thermogravimetric analysis in...DTA Differential Thermal Analysis FEP Fluorinated Ethylene Propylene (Teflon®) FTIR Fourier Transform Infrared spectroscopy MOD Metallo-Organic...Decomposition ROM Reactive Organic Medium SEM Scanning Electron Microscopy TGA Thermal Gravimetry Analysis Torr Unit of pressure (one mm mercury

  17. M and D SIG progress report: Laboratory simulations of LDEF impact features

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, R. P.; See, Thomas H.; Atkinson, Dale R.; Allbrooks, Martha K.

    1991-01-01

    Reported here are impact simulations into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both unexposed and exposed, for a refined understanding of the Long Duration Exposure Facility's collisional environment.

  18. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF AIR SAMPLES FOR GC/MS ANALYSIS OF PESTICIDES (BCO-L-11.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for extracting and preparing an air sample consisting of a polyurethane foam (PUF) plug and Teflon-coated glass fiber filter (Pallflex T60A20) for analysis of pesticides. This procedure covers sample preparation for samples t...

  19. Improved polymeric surface for adhesion through electron stimulated chemical modification of polymeric surface

    DOEpatents

    Kelber, J.A.

    1987-04-08

    Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 A, with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10 /sup /minus/6/ Torr, to enhance the ability of the surface to be adhered to a variety of substrates.

  20. Investigation of CaCO3 fouling in plate heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhou, Kan; Manglik, Raj M.; Li, Guan-Qiu; Bergles, Arthur E.

    2016-11-01

    An experimental investigation, coupled with theoretical modeling of CaCO3 fouling in plate-and-frame type heat exchangers (PHEs) have been conducted. Four different plates, made of SS-304, are used in two different surface patterns (chevron and zig-zag) of varying corrugation severity (waviness depth and pitch) and area enhancement. They were further characterized in clean, non-fouled convection by their measured heat transfer coefficients and friction factors in the Reynolds number range of 600-6000. The flow-fouling experiments delineate the effects of temperature and plate-surface geometry on growth rates and stabilization of fouling resistance, along with the anti-fouling behavior of plates coated with a hydrophobic PTFE (Teflon) film. Moreover, the microscopic structure of fouling deposits is mapped in a scanning-electron microscope. Corrugated plates with the largest height-to-pitch ratio and hydraulic diameter are found to have the lowest fouling growth rate and resistance; Teflon-film coating of plate surface is also found to mitigate fouling relative to the performance of bare stainless steel plates. Finally, a semi-empirical fouling model, based on the Prandtl-Taylor analogy, has been devised to describe the experimental data and provide a predictive tool.

  1. Development and characterization of high refractive index and high scattering acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-04-01

    The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.

  2. Transport of organic solutes through amorphous teflon AF films.

    PubMed

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  3. Potential release of PCBs from plastic scientific gear to fringing coral reef sediments in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Hong, Gi Hoon; Kim, Chang Joon; Yeemin, Thamasak; Siringan, Fernando P.; Zhang, Jing; Lee, Hyun Mi; Choi, Ki Young; Yang, Dong Beom; Ahn, Yu Whan; Ryu, Joo Hyung

    2013-11-01

    A status on environmental contamination of the coral reefs on the islands of Samui and Katen of the western part of the Gulf of Thailand was investigated with a preliminarily analysis of bottom sediment samples. Coral reef bed sediments were characterized as relatively uncontaminated by human activities in terms of selected metals and PCBs. Potential release of PCBs to the ambient seawater from scientific equipment made of plastic materials placed into the coral reef waters for an extended period was investigated because the sedimentary PCBs concentrations were very low in the region. Eight plastics - acrylic, mono cast nylon, polycarbonate, polyethylene, polypropylene, ivory and grey-colored polyvinyl chloride, and Teflon® - were subjected to leaching in seawater after being thoroughly washed with laboratory detergent and distilled water. All plastics were found to release PCBs at highly variable rates to seawater in the initial 60 days. Grey-colored PVC, Teflon, and polycarbonate after rinsing with n-hexane were found to release less than 50ng PCBs/kg of plastics and they could therefore be used to make scientific equipment to be deployed on the relatively PCBs-free coral reef beds.

  4. Development and characterization of high refractive index and high scattering acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-11-01

    In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.

  5. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  6. Dry compliant seal for phosphoric acid fuel cell

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1990-01-01

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  7. Biocompatibility tests of components of an implantable cardiac assist device.

    PubMed

    von Recum, A F; Imamura, H; Freed, P S; Kantrowitz, A; Chen, S T; Ekstrom, M E; Baechler, C A; Barnhart, M I

    1978-09-01

    A permanently implantable in-series left ventricular assist device, the dynamic aortic patch (DAP), has been tested in chronic animal experiments. The DAP replaces a section of the intrathoracic aortic wall. Hemothorax and hematocele at the implantation site have been complications in recent experiments. Primary postoperative hemorrhage was ruled out, and the biocompatibility of all components was therefore examined. Dacron velour, Teflon felt, conductive polyurethane, segmented polyether polyurethane, and Teflon-coated polyester fiber sutures were implanted in the pleural cavities of dogs and tested in vitro by culturing canine saphenous vein explants on them. In vivo experiments demonstrated that all components elicited mild to moderate inflammatory reactions, but hematocele occurred only when the components were implanted in the aorta with direct blood contact and exposed to arterial blood pressures. In vitro, cells were cultured on all components with no signs of toxic reactions. These results indicated that the host tolerated all implant components without major inflammatory responses. However, histological data indicated that chronic slow bleeding into or through the Dacron velour in contact with the arterial blood serum could account for hemothorax or hematocele formation. Therefore, a configuration of the assist device using materials impermeable to blood may obviate these difficulties.

  8. Mechanized syringe homogenization of human and animal tissues.

    PubMed

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  9. Porous Teflon ring-solid disk electrode arrangement for differential mass spectrometry measurements in the presence of convective flow generated by a jet impinging electrode in the wall-jet configuration.

    PubMed

    Treufeld, Imre; Jebaraj, Adriel Jebin Jacob; Xu, Jing; Martins de Godoi, Denis; Scherson, Daniel

    2012-06-19

    A porous Teflon ring|solid disk electrode is herein described specifically designed for acquiring online mass spectrometric measurements under well-defined forced convection created by liquid emerging from a circular nozzle impinging on the disk under wall-jet conditions. Measurements were performed for the oxidation of hydrazine, N(2)H(4), in a deaerated phosphate buffer electrolyte (pH 7) on Au, a process known to yield dinitrogen as the product. The N(2)(+) ion currents, measured by the mass spectrometer, i(N(2)(+)), as well as the corresponding polarization curves recorded simultaneously displayed very similar s-like shapes when plotted as a function of the potential applied to the Au disk. In fact, the limiting currents observed both electrochemically and spectrometrically were found to be proportional to [N(2)H(4)]. However, the limiting values of i(N(2)(+)) did not increase monotonically with the flow rate, ν(f), reaching instead a maximum and then decreasing to values independent of ν(f). This behavior has been attributed in part to hindrances in the mass transport of gases through the porous materials.

  10. Area scaling investigations of charging phenomena. [discharge pulse characteristics of Teflon thermal control tape

    NASA Technical Reports Server (NTRS)

    Aron, P. R.; Staskus, J. V.

    1979-01-01

    The charging and discharging behavior of square, planar samples of silvered, fluorinated ethylene-propylene (FEP) Teflon thermal control tape was measured. The equilibrium voltage profiles scaled with the width of the sample. A wide range of discharge pulse characteristics was observed, and the area dependences of the peak current, charge, and pulse widths are described. The observed scaling of the peak currents with area was weaker than that previously reported. The discharge parameters were observed to depend strongly on the grounding impedance and the beam voltage. Preliminary results suggest that measuring only the return-current-pulse characteristics is not adequate to describe the spacecraft discharging behavior of this material. The seams between strips of tape appear to play a fundamental role in determining the discharging behavior. An approximate propagation velocity for the charge cleanoff was extracted from the data. The samples - 232, 1265, and 5058 square centimeters in area - were exposed at ambient temperature to a 1- to 2-nA/sq cm electron beam at energies of 10, 15, and 20 kilovolts in a 19-meter-long by 4.6-meter-diameter simulation facility at the Lewis Research Center.

  11. Photoconductivity of high-voltage space insulating materials

    NASA Technical Reports Server (NTRS)

    Coffey, H. T.; Nanevicz, J. E.; Adamo, R. C.

    1975-01-01

    The dark and photoconductivities of four high voltage spacecraft insulators, Kapton-H, FEP Teflon, Parylene, and fused quartz, were studied under a variety of conditions intended to simulate a space environment. All measurements were made in a vacuum of less than .00001 torr while the temperature was varied from 22 C to 100 C. Some of the samples used employed conventional deposited metal electrodes--others employed electrodes composed either of an electron beam or a plasma formed by ionization of the residual gas in the test chamber. Test results show: (1) Kapton had unusual conduction properties; it conductivity decreased by more than an order of magnitude when heated at 100 C in a vacuum, but ultimately attained a stable and reproducible value. (2) Both Teflon and fused quartz had high dark resistivities but low photoresistivities when exposed to UV. Optical-density measurements revealed that both materials transmitted UV with little attenuation. (3) Parylene was found to have a low but relatively stable resistivity--comparatively minor changes occurred upon heating or illuminating the sample. Optical-density measurements showed that Parylene was absorbent in the UV and would prevent photoemission from the metal electrode on the back surface.

  12. A new device for slow progressive narrowing of vessels.

    PubMed

    Lange, P E; Sievers, H H; Nürnberg, J H; Engler, K; Pilarczyk, J; Onnasch, D G; Bernhard, A; Heintzen, P H

    1985-01-01

    The purpose of this work was to develop a device which allows slow progressive banding of a great artery in infants within 4 to 5 weeks. Employed was the hygroscopic casein ameroid. When brought in contact with fluids, an ameroid cylinder expands characteristically. An early phase of fast expansion proceeds gradually to a phase of slow growth. Size, shape, and encasement of ameroid as well as temperature and type of surrounding fluid modify but do not alter the typical pattern of expansion. The developed constrictor (weight: 5.8 kg, length: 18 mm, diameter: 12 mm) includes a stainless steel socket containing an ameroid cylinder (length: 8.5 mm, diameter: 8 mm). The expanding ameroid pushes a piston with a concave extension (makrolon) a maximum of 2 mm against the artery, which is fixed to the metal housing by a teflon band (width: 4 mm, thickness: 0.5 mm). The band runs in 2 fitting grooves on the metal housing to which it is fixed by a metal ring with a precisely manufactured internal thread allowing exact tightening and loosening of the band around the artery. Utilization of inert materials like teflon, makrolon, and stainless steel warrants experimental and possibly clinical application of the developed small constrictor.

  13. Structural Features of a Hyperthermostable Endo-β-1,3-glucanase in Solution and Adsorbed on “Invisible” Particles

    PubMed Central

    Koutsopoulos, Sotirios; van der Oost, John; Norde, Willem

    2005-01-01

    Conformational characteristics and the adsorption behavior of endo-β-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133°C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature. PMID:15516527

  14. Understanding mineral dusts from the Middle East

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. P.; McDonald, E.; Gillies, J. A.; Jayanty, J.; Casuccio, G.; Gertler, A.

    2012-12-01

    The purpose of the program was to provide scientifically founded information on the chemical and physical properties of airborne mineral dust collected during a period of approximately one year, largely in 2006, at Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (Northern, Central, Coastal, and Southern regions). To fully understand mineral dusts, their chemical and physical properties as well as mineralogical interrelationships were accurately established. Three collocated low volume particulate samplers, one each for the total suspended (TSP), less than 10 μm in aerodynamic diameter (PM10), and less than 2.5 μm in aerodynamic diameter (PM2.5) particulate matter were deployed at each of the 15 sites, operating on a "1 in 6 day" sampling schedule. A total of 3,136 filter samples were collected on a 1-in-6 day schedule, along with one-time bulk soil samples, at each of the 15 sites. Sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The provisional study of the data revealed three broad air pollution sources: geological dust, smoke from burn pits, and until now unidentified lead-zinc smelters and battery-processing facilities. SEM results and secondary electron imagery show that quartz and other silicate minerals and, to a lesser extent, dolomite and calcite particles are coated by a thin Si-Al-Mg layer, probably the clay minerals palygorskite and/or montmorillonite/illite. Positive Matrix Factorization (PMF) was performed on aerosol samples collected at six military sites in Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad). PMF results reflect chemical differences amongst sources impacting at individual sites, further complicated by the regional geomorphology and meteorology. Sampling sites are seldom impacted by one source at a time. Also, dust palls are continually being modified by added dust from soils across which they migrate, and by particle segregation in the dust plume followed by precipitation of the coarser particles. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. A set of 392 Teflon filter samples analyzed for 25 elemental species was modeled by PMF. A five factor solution identified three soil factors, a silicate soil, limestone soil, and a gypsum soil, as well as a salt factor and an anthropogenic metal factor. Similarly, a set of 362 quartz filter samples analyzed for 10 selected chemical species was modeled by PMF. A five factor solution provided a limestone-gypsum soil, diesel combustion, secondary ammonium sulfate, salt and agricultural-burnpit combustion source type.

  15. The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube

    DTIC Science & Technology

    1992-06-01

    9 C. CONDENSER SECTION .................................... 12 D. COOLING SECTION...lower tube kc thermal conductivity of copper L active boiling tube length Lu non-boiling tube length x Nu Nusselt number p tube outside wall perimeter Pr...teflon endplates. 2. A condenser , assembled using a similar Pyrex-glass tee with aluminum endplates. 3. A reservoir for R- 114 liquid storage. 4. A

  16. Nanotechnology and Lifestyle

    DTIC Science & Technology

    2006-11-01

    technology and a power supply . • As tiny as dust particles, smart dust motes can be spread throughout buildings or into the atmosphere to collect...for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...DuPont Teflon coating – the stuff of nonstick cookware – • The benefits come courtesy of cotton or synthetic fibers engineered with whiskery molecules

  17. Preliminary Design Guide for Arctic Equipment

    DTIC Science & Technology

    1989-05-01

    areas that need to be addressed. The components of the various assemblies that Metals , plastics and elastomers make up the subject piece of equipment...polyester elastomer . Allow sufficient length for contraction (- 10- in./in, per IF). Do not allow long, unsup- ported lengths of hose . Lubricants Viscosity...this compressed air cools upon several manufacturers offer teflon hoses with expansion and contact with a cold surface, the braided stainless steel

  18. Heat treatment of wet wood fiber: A study of the effect of reaction conditions on the formation of furfurals

    Treesearch

    Mandla A. Tshabalala; James D. McSweeny; Roger M. Rowell

    2012-01-01

    Furan monomers are produced when wood is heated at high temperatures. To understand the process conditions for production of furfural (FF) and hydroxymethylfurfural (HMF) from wood, samples of milled aspen wood were subjected to autohydrolyzis by microwave heating in a sealed Teflon reactor. The experiments were designed to simulate temperature and pressure variables...

  19. A Fundamental Study of the Electromagnetic Properties of Advanced Composite Materials

    DTIC Science & Technology

    1978-07-01

    MKDC), Space and Missile Systems Organization (SAMSO). Aeronautical System Division (ASD), Electronic Systems Division ( ESD ), Air Force Avionics...discussions, the work reported involved only one fiber type--Thornel T300 as used in Narmco 5208 pre-preg tapes . Individual graphite fibers have radii... teflon coated tweezers to separate individual fibers from the bundle. Microscopic observation and a steady hand during this procedure improved the

  20. Resin Characterization

    DTIC Science & Technology

    2015-06-01

    environmental test chamber attachment to control temperature and disposable parallel plates . The experiment can be stopped when the sample...is auto-stopping when its torque limit is reached and to prevent too high of an extent of cure that could make removal of the disposable plates from...separated by a 0.025-mm-thick Teflon spacer (International Crystal Labs) or pressed with potassium bromide (KBr) powder into pellets. The salt plate

  1. In vitro flow measurements in ion sputtered hydrocephalus shunts

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.

    1989-01-01

    This paper describes an experimental procedure for accurate measurements of the pressure-drop/flow rate relationship in hydrocephalus shunts. Using a fish-hook arrangement, small flow rates in a perforated ion-sputtered Teflon microtubule were measured in vitro in a pressured system and were correlated with pressure in the system. Results indicate that appropriate drainage rates could be obtained in the physiological range for hydrocephalus shunts.

  2. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    NASA Technical Reports Server (NTRS)

    Leslie, Ian H.

    1989-01-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from the code show the recompression effect but predict much lower peak temperatures than the thermodynamic model.

  3. Electrocautery Devices With Feedback Mode and Teflon-Coated Blades Create Less Surgical Smoke for a Quality Improvement in the Operating Theater

    PubMed Central

    Kisch, Tobias; Liodaki, Eirini; Kraemer, Robert; Mailaender, Peter; Brandenburger, Matthias; Hellwig, Veronika; Stang, Felix H.

    2015-01-01

    Abstract Monopolar electrocautery is a fast and elegant cutting option. However, as it creates surgical smoke containing polycyclic aromatic hydrocarbons (PAHs), it may be hazardous to the health of the surgical team. Although new technologies, such as feedback mode (FM) and Teflon-coated blades (TBs), reduce tissue damage, their impact on surgical smoke creation has not yet been elucidated. Therefore, we analyzed the plume at its source. The aim of this study was to evaluate if electrocautery FM and TBs create less surgical smoke. Porcine tissue containing skin was cut in a standardized manner using sharp-edged Teflon-coated blades (SETBs), normal-shaped TBs, or stainless steel blades (SSBs). Experiments were performed using FM and pure-cut mode. Surgical smoke was sucked through filters or adsorption tubes. Subsequently, filters were scanned and analyzed using a spectrophotometer. A high-performance liquid chromatography (HPLC-UV) was performed to detect benzo[a]pyrene (BaP) and phenanthrene as 2 of the most critical PAHs. Temperature changes at the cutting site were measured by an infrared thermometer. In FM, more surgical smoke was created using SSB compared with TBs (P < 0.001). Furthermore, differences between FM and pure-cut mode were found for SSB and TB (P < 0.001), but not for SETB (P = 0.911). Photometric analysis revealed differences in the peak heights of the PAH spectrum. In HLPC-UV, the amount of BaP and phenanthrene detected was lower for TB compared with SSB. Tissue temperature variations increased when SSB was used in FM and pure-cut mode. Furthermore, different modes revealed higher temperature variations with the use of SETB (P = 0.004) and TB (P = 0.005) during cutting, but not SSB (P = 0.789). We found that the use of both TBs and FM was associated with reduced amounts of surgical smoke created during cutting. Thus, the surgical team may benefit from the adoption of such new technologies, which could contribute to the primary prevention of smoke-related diseases. PMID:26166102

  4. Electrocautery Devices With Feedback Mode and Teflon-Coated Blades Create Less Surgical Smoke for a Quality Improvement in the Operating Theater.

    PubMed

    Kisch, Tobias; Liodaki, Eirini; Kraemer, Robert; Mailaender, Peter; Brandenburger, Matthias; Hellwig, Veronika; Stang, Felix H

    2015-07-01

    Monopolar electrocautery is a fast and elegant cutting option. However, as it creates surgical smoke containing polycyclic aromatic hydrocarbons (PAHs), it may be hazardous to the health of the surgical team. Although new technologies, such as feedback mode (FM) and Teflon-coated blades (TBs), reduce tissue damage, their impact on surgical smoke creation has not yet been elucidated. Therefore, we analyzed the plume at its source.The aim of this study was to evaluate if electrocautery FM and TBs create less surgical smoke.Porcine tissue containing skin was cut in a standardized manner using sharp-edged Teflon-coated blades (SETBs), normal-shaped TBs, or stainless steel blades (SSBs). Experiments were performed using FM and pure-cut mode. Surgical smoke was sucked through filters or adsorption tubes. Subsequently, filters were scanned and analyzed using a spectrophotometer. A high-performance liquid chromatography (HPLC-UV) was performed to detect benzo[a]pyrene (BaP) and phenanthrene as 2 of the most critical PAHs. Temperature changes at the cutting site were measured by an infrared thermometer.In FM, more surgical smoke was created using SSB compared with TBs (P < 0.001). Furthermore, differences between FM and pure-cut mode were found for SSB and TB (P < 0.001), but not for SETB (P = 0.911). Photometric analysis revealed differences in the peak heights of the PAH spectrum. In HLPC-UV, the amount of BaP and phenanthrene detected was lower for TB compared with SSB. Tissue temperature variations increased when SSB was used in FM and pure-cut mode. Furthermore, different modes revealed higher temperature variations with the use of SETB (P = 0.004) and TB (P = 0.005) during cutting, but not SSB (P = 0.789).We found that the use of both TBs and FM was associated with reduced amounts of surgical smoke created during cutting. Thus, the surgical team may benefit from the adoption of such new technologies, which could contribute to the primary prevention of smoke-related diseases.

  5. The Conductor-Dielectric Junctions in a Low Density Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale; deGroot, Wim; Thomson, Clint; Dennison, J. R.; Davies, Robert

    1999-01-01

    A conductor-dielectric junction exposed to the space environment is a frequent spacecraft design feature. Due to spacecraft charging and/or solar array operation, the conductor can acquire a high potential with respect to the surrounding plasma. If this potential is positive the insulators adjacent to exposed conductors can collect current as if they were conductors themselves. This phenomenon, called snapover, results in a substantial increase in current collection, and may even result in a glow discharge if the potential is high enough. If a conductor has a negative potential, arcing can occur at the site of a junction. Both of these phenomena negatively affect spacecraft operation. To prevent negative consequences, the physical mechanisms of snapover and arc inception require investigation. In this paper, results are presented of an experimental and theoretical study of snapover, glow discharge, and arc phenomena for different materials immersed in argon or xenon plasmas. The effect of snapover is investigated for several metal-dielectric junctions: copper-teflon, copper-Kapton, copper-glass, aluminum-teflon, aluminum-Kapton, steel-teflon, anodized aluminum with pinholes, and copper-ceramics. I-V curves are measured and snapover inception voltages, essential parameters (increase in current and collection area due to secondary electrons), and glow discharge inception thresholds are determined. Optical spectra are obtained for glow discharges in both argon and xenon plasmas. These spectra provide information regarding atomic species entrapped in the glow region. Some spectral lines can be used to estimate plasma parameters in the discharge area. A video-camera and linear array were used to confirm that snapover inception is accompanied by very low intensity visible light emission. This result seems to be important for the estimate of the light pollution around spacecraft. Optical spectra (wavelengths 380-650 nm) of arcs are also obtained on a negatively biased chromic acid anodized aluminum plate immersed in low density argon and xenon plasmas. Analysis of these spectra confirms our earlier findings that aluminum atoms are ejected from the arc site. Moreover, it is found that chromium atoms are also quite abundant in the arc plasma. It is believed that the latter results contribute considerably to the understanding of processes of plasma contamination caused by arcing.

  6. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    NASA Astrophysics Data System (ADS)

    Leslie, Ian H.

    1989-12-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained.

  7. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  8. Highly Destructive Polymer-Contained Neutralizing Skin Protectants

    DTIC Science & Technology

    1997-06-01

    compound derived by reaction with a polymer or monomer. Our Phase I experiments have identified and proved out the feasibility of at least 3 metal...neutralizing agents are incorporated into a base cream, containing a mixture of perfluorinated polyether oil and Teflon particulates as thickener, for...reaction. PURPOSE The ultimate purpose of this research effort was to develop neutralizing compounds , which when incorporated into a base cream, provide a

  9. Department of Defense Enhanced Particulate Matter Surveillance Program (EPMSP)

    DTIC Science & Technology

    2008-02-01

    on Teflon® membrane, 23,807 on quartz fiber, and several million single particle analyses on Nuclepore® filters. Analytical results were...Nuclepore® filters, the sampling period was two hours, so as to provide lightly loaded filters with dispersed single particles, as required for CCSEM...membrane, 23,807 on quartz fiber, and several million single particle analyses on Nuclepore®. All results, together with summary tables and more than

  10. DebriSat Laboratory Analyses

    DTIC Science & Technology

    2015-01-05

    droplets. Fluorine from Teflon wire insulation was also common in the SEM stub and witness plates deposits. Nano droplets of metallic materials...and Debris-LV debris. Aluminum was from the Al honeycomb, nadir and zenith panels, structural core and COPV liner. Aluminum oxide particles were...three pieces: Outer Nylon shell (sabot) with 2 part hollow aluminum insert. • ~600 grams, 8.6 cm diameter X 10.3 cm long – size of a soup can

  11. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1973-01-01

    The project to evaluate thermal sterilization for unmanned landers is reported. A temperature controlled oven with a nitrogen gas supply containing a known concentration of water is discussed. The studies show that bacillus lentus, bacillus brevis, bacillus coagulans, atypical bacillus spp., and actinomycete are isolated heat survivors. The thermal resistance is given for naturally occurring airborne bacterial spores collected on exposed teflon ribbons.

  12. Mass Spectrometry Vapor Analysis for Improving Explosives Detection Canine Proficiency

    DTIC Science & Technology

    2017-02-10

    ionization (SESI), 8,19-21 dielectric barrier discharge ionization (DBDI), 21,22 selected-ion-flow-tube (SIFT), 23,24 and proton transfer reaction...handled only with wood- en or Teflon® spatulas to prevent static discharge . Using these precautions, we never experienced an accidental detonation...ionization (SESI) and dielectric barrier discharge ionization (DBDI) sources were used for vapor ioni- zation. Source temperature was held at 100 o C

  13. Proceedings of the Workshop on Mobility and Control in Challenging Environments

    DTIC Science & Technology

    2007-09-20

    1.18 h (V) -3.48 Electronic Nervous Systems Activating Nitinol With Electronic Neurons Controlling Walking With EN Networks ele dep prot ret forward...command backward command Myomorphic Actuators •Artificial Muscle Nitinol : 50/50 Alloy of Nickel and Titanium. • Two stable crystalline states • State...an electrical current through it causing conversion to austenite and shorteningText Kevlar “Tendon” Crimp Connector Teflon Coated Nitinol Current

  14. Lightweight, Durable Army Antennas Using Carbon Nanotube Technology

    DTIC Science & Technology

    2013-01-01

    may be adjusted by collecting the sheet on a revolving substrate conveyor belt (e.g., Teflon belt ), as shown in figure 15 (12). SEM images of the... designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use...CNT) materials to produce lightweight, flexible, and durable alternatives to existing and future Army antenna designs is explored through fabrication

  15. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, Gene W.; Roybal, Herman E.

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  16. Stability Improvements of DNA Photonic Devices

    DTIC Science & Technology

    2008-12-20

    possible in such areas as photonics, separation process or biomedical materials . Recent research results on DNA-lipid complexes have shown various...onto Teflon- coated glass plate to obtain films by irradiating UV light to cause crosslinking reactions of the Adeka sol-gel materials Clear and...into sol-gel materials or synthetic polymers so that water permeation is prevented by glass or synthetic polymers to stabilize and to keep the optical

  17. Ultrasonic Attenuation in Normal and Superconducting Indium.

    DTIC Science & Technology

    1980-05-22

    dimension x space coordinate, dislocation displacement dislocation displacement y space coordinate.1z space coordinate x ACKNOWLEDGMENTS The author...The driving force on the dislocation is given by: F=bO (2.7) In general, the dislocation displacement will be a function of three space coordinates...mm diameter, 50 Q impedance coaxial conductors 47 * made of stainless steel and teflon . The cavity button is soldered * directly to the rigid

  18. Retractor Tool for Brain Surgery

    NASA Technical Reports Server (NTRS)

    Helms, R.; Hayes, T.

    1982-01-01

    Proposed brain-surgery tool has an octogonal fixture for positioning latex tube over incision. Eight stainless-steel wires embedded in latex extend to hold positioning fixture. Another eight are also embedded in the latex. Concentric sleeves are successively inserted into expandable latex tube. The first sleeve is placed over a solid rod. Last sleeve is a stainless-steel tube 1 inch in diameter. It is overcoated with Teflon (or equivalent) material.

  19. Introduction of the new concept: Potential Aerosol Mass (PAM) for Inorganic and Organic Secondary Aerosol

    NASA Astrophysics Data System (ADS)

    Kang, E.; Root, M. J.; Brune, W. H.

    2006-12-01

    A new concept, the Potential Aerosol Mass (PAM), is being developed and tested in the laboratory with the goal of deploying instruments to measure PAM in the atmosphere. PAM can be defined as the maximum aerosol mass that precursor gases can be oxidized to form. In the PAM concept, all precursor gases are oxidized to low volatile compounds with excessive amount of oxidants in a small continuous-flow Teflon cylinder, resulting in aerosol formation. Excessive amounts of OH and O3 are produced by a UV light that shines into the Teflon chamber. For our studies, the aerosol mass is then detected with a real-time aerosol mass measurement instrument, the Rupprecht and Patashnick Tapered Element Oscillating Microbalance (TEOM) and Filter Dynamic Measurement System (FDMS). As a test of the system, SO2 was oxidized to sulfate; the measured and calculated conversion ratios of sulfate aerosol mass to SO2 mass agree to within 10%. We will discuss the results of a series of laboratory tests that have been conducted with α-pinene to determine the variables that most affect its Secondary Organic Aerosol (SOA) yield. We will also discuss the results of some atmospheric measurement tests made at a site on the Penn State University campus.

  20. Effects of Combined Stressing on the Electrical Properties of Film and Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Overton, Eric; Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.

    1994-01-01

    Advanced power systems which generate, control, and distribute electrical power to many large loads are a requirement for future space exploration missions. The development of high temperature insulating materials and power components constitute a key element in systems which are lightweight, efficient, and are capable of surviving the hostile space environment. In previous work, experiments were carried out to evaluate film and ceramic capacitors for potential use in high temperature applications. The effects of thermal stressing, in air and without electrical bias, on the electrical properties of the capacitors as a function of thermal aging up to 12 weeks were determined. In this work, the combined effects of thermal aging and electrical stresses on the properties of teflon film and ceramic power capacitors were examined. The ceramic capacitors were thermally aged for 35 weeks and the teflon capacitors for 15 weeks at 200 C under full electrical bias and were characterized, on a weekly basis, in terms of their capacitance stability and electrical loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also obtained. The results obtained represent the influence that short-term thermal aging and electrical bias have on the electrical properties of the power capacitors characterized.

  1. Design and development of pressure and repressurization purge system for reusable space shuttle multilayer insulation system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The experimental determination of purge bag materials properties, development of purge bag manufacturing techniques, experimental evaluation of a subscale purge bag under simulated operating conditions and the experimental evaluation of the purge pin concept for MLI purging are discussed. The basic purge bag material, epoxy fiberglass bounded by skins of FEP Teflon, showed no significant permeability to helium flow under normal operating conditions. Purge bag small scale manufacturing tests were conducted to develop tooling and fabrication techniques for use in full scale bag manufacture. A purge bag material layup technique was developed whereby the two plys of epoxy fiberglass enclosed between skins of FEP Teflon are vacuum bag cured in an oven in a single operation. The material is cured on a tool with the shape of a purge bag half. Plastic tooling was selected for use in bag fabrication. A model purge bag 0.6 m in diameter was fabricated and subjected to a series of structural and environmental tests simulating various flight type environments. Pressure cycling tests at high (450 K) and low (200 K) temperature as well as acoustic loading tests were performed. The purge bag concept proved to be structurally sound and was used for the full scale bag detailed design model.

  2. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    NASA Astrophysics Data System (ADS)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  3. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    NASA Astrophysics Data System (ADS)

    Yoo, Hana; Park, Soojin

    2010-06-01

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.

  4. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots.

    PubMed

    Yoo, Hana; Park, Soojin

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.

  5. Particle bounce in a personal cascade impactor: a field evaluation.

    PubMed

    Hinds, W C; Liu, W C; Froines, J R

    1985-09-01

    The collection characteristics of five types of substrates (collection surfaces) used in personal cascade impactors were evaluated for particle bounce in the laboratory with lead dioxide dust, and in the field with brass pouring fume and brass grinding dust. The substrates tested were uncoated stainless steel, silicon grease-coated stainless steel, oil-saturated Millipore membrane filter, oil-saturated Teflon membrane filter and oil-saturated sintered stainless steel. The use of coated and uncoated stainless steel plates to collect lead dioxide dust produced no difference in measured mass median diameter (MMD); however, with brass grinding dust, there was a 50% decrease in measured MMD when uncoated stainless steel substrates were used, as compared with coated stainless steel substrates. Oil-saturated Millipore membrane surfaces gave consistently lower MMDs than coated stainless steel surfaces. Coated and uncoated stainless steel gave similar MMDs when used to sample brass pouring fume. Oil-saturated Teflon membrane and oil-saturated sintered metal, surfaces for which the collection efficiency is presumed to be independent of the particle loading, gave MMDs similar to those measured for grease-coated stainless steel. The implications of these comparisons are discussed. It is concluded that bounce characteristics are strongly dependent on aerosol material and the suitability of collection surfaces needs to be determined by field evaluation.

  6. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    NASA Astrophysics Data System (ADS)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  7. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    NASA Technical Reports Server (NTRS)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  8. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  10. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.

    PubMed

    Mo, X; Weber, H-J; Ramakrishna, S

    2006-08-01

    The objective of this paper was to fabricate a biodegradable tubular scaffold for small diameter (d<6 mm) blood vessel tissue engineering. The tube scaffold needed a porous wall for cell attachment, proliferation and tissue regeneration with its degradation. A novel method given in this paper was to coat a porous layer of poly (epsilon-caprolactone) (PCL) on the outside of a poly (glycolic-co-lactic acid) (PGLA with GA:LA=90:10) fiber braided tube to give a PCL-PGLA composite. The PGLA tube was fabricated using a braiding machine by inserting a Teflon tube with the desired diameter in center of the 20 spindles, which are the carriers of PGLA fibers. Changing the diameter of the Teflon tube can vary the inner diameter of a braided PGLA tube. Thermally induced phase separation method was used for PCL solution coating on the surface of the PGLA braided tube. Controlling the polymer concentration, non-solvent addition and quenching temperature generated the pore structures, with pore sizes ranging from 10-30 microm. The fibroblast cells were seeded on the tubular scaffold and cultured in vitro for the biocompatibility investigation. Histology results showed that the fibroblast cells proliferated on the interconnected pore of the PCL porous layer in 1 week.

  11. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  12. MIL-L-87177 and CLT:X-10 Lubricants Improve Electrical Connector Fretting Corrosion Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AUKLAND,NEIL R.; HANLON,JAMES T.

    1999-10-12

    We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants weremore » poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions.« less

  13. Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.

    PubMed

    Allen, Stewart J; Ross, James A

    2007-01-01

    The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.

  14. Mass absorption efficiency of elemental carbon over Van Vihar National Park, Bhopal, India: Temporal variability and implications to estimates of black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Samiksha, S.; Raman, R. S.; Singh, A.

    2016-12-01

    It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2.However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed. It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2. However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed.

  15. Installation Restoration Program. Phase II. Confirmation McClellan AFB, California. Volume 2.

    DTIC Science & Technology

    1983-06-01

    ARM SYSTE . Hazard Assesment Rating Methodology. HEAD. Height of the free surface of fluid above any point in a hydrau- lic...pest/herb/metals) previous sample was insuf- 1 gallon bottle ficient. Hydrocarbons were (GC/NS) on top of water surface , I VDA bottle about 1/2 inch... surface . Water became 1 quart polyeth- silty during bailing. Samples ylene bottle waere obtained using the glass/ (cyanide) Teflon sampler. Both the

  16. 40 CFR Appendix A-2 to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...

  17. The use of FEP Teflon in solar cell cover technology

    NASA Technical Reports Server (NTRS)

    Broder, J. D.; Mazaris, G. A.

    1973-01-01

    FEP plastic film was used as a cover and as an adhesive to bond cover glasses to silicon solar cells. Various anti-reflective coatings were applied to cells and subsequently covered with FEP. Short circuit currents were measured before and after application of the coating and of the FEP. FEP was bonded to seven of the nine differently coated cells, with no change in the total short circuit current in four cases.

  18. The use of FEP Teflon in solar cell cover technology

    NASA Technical Reports Server (NTRS)

    Broder, J. D.; Mazaris, G. A.

    1974-01-01

    FEP plastic film was used as a cover and as an adhesive to bond cover glasses to silicon solar cells. Various anti-reflective coatings were applied to cells and subsequently covered with FEP. Short-circuit currents were measured before and after application of the coating and of the FEP. FEP bonded to seven of the nine differently coated cells, with no change in the total short circuit current in four cases.

  19. Adjuvant Activity of a Novel Metabolizable Lipid Emulsion with Inactivated Viral Vaccines

    DTIC Science & Technology

    1980-06-01

    glycerol and lecithin . Hamsters and mice inoculated with lipid 0 emulsion plus western or Venezuelan equine encephalitis vaccine were signifi- cantly...antibody titer. soybean lecithin (Centrolex-F, Central Soya, Ft. Immunization and challenge studies. Mice or Wayne, Ind.) was dissolved in 10 parts...vaccine combined a sterile Teflon magnetic bar. The glycerol and lecithin with LE or saline as shown in the tables of individual mixture was transferred

  20. JSTO Science and Technology Update. Volume 1, Number 2, Winter 2011

    DTIC Science & Technology

    2011-01-01

    Figure 2. Passage of methyl salicylate simulant through an expanded Teflon control (blue), the open IPN (black) and the closed IPN (pink). The...membrane (blue). ET is used in breathable sports clothing. The materials were challenged using vapor from the CW agent simulant methyl salicylate (MS). The...was challenged with vapor from chloroethyl ethyl sulfide (a mus- tard gas simulant), benzene, and liquid with dissolved methyl parathion (a V-agent

  1. The Hydrophobicity and Adhesion of Heterogeneous Surfaces of Dual Nanometer and Micron Scale Structures

    DTIC Science & Technology

    2011-04-11

    scale post geometry. superhydrophobic , surface modification, adhesion, contact angle, Cassie, Wenzel, PDMS, CYTOP, Teflon AF, roll-off angle U U U U SAR...width > 1, the micro-scale features dominated the wetting state regardless of the nano-scale post geometry., KEYWORDS superhydrophobic , surface... superhydrophobicity can be routinely found in nature. Fo~ example, many plant leaves1.2, bird feathers3, insect wings and insect legs4 take advantage of

  2. 40 CFR Appendix A to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sampling time. The concentration of SO2 in the ambient air is computed and expressed in micrograms per... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...

  3. 40 CFR Appendix A-2 to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...

  4. 40 CFR Appendix A-2 to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...

  5. 40 CFR Appendix A-2 to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rate and the sampling time. The concentration of SO2 in the ambient air is computed and expressed in... tetracetic acid disodium salt (EDTA) and phosphoric acid,(10, 12) and ozone by time delay.(10) Up to 60 µg Fe... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec...

  6. Enhanced adhesion by high energy bombardment

    NASA Technical Reports Server (NTRS)

    Griffith, Joseph E. (Inventor); Qiu, Yuanxun (Inventor); Tombrello, Thomas A. (Inventor)

    1984-01-01

    Films (12) of gold, copper, silicon nitride, or other materials are firmly bonded to insulator substrates (12) such as silica, a ferrite, or Teflon (polytetrafluorethylene) by irradiating the interface with high energy ions. Apparently, track forming processes in the electronic stopping region cause intermixing in a thin surface layer resulting in improved adhesion without excessive doping. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters.

  7. Development of a Plastic Rotating Band for High Performance Projectiles

    DTIC Science & Technology

    1974-07-01

    changes in the program: a. It became clearly unfeasible to include a significant mechanical anchorage in that restricted depth. b. The stock of TP...Wilmington, Delaware responded. Tefzel is a ETFE material, or a copolymer of TFE (Teflon) with ethylene. The properties and merits of Tefzel for this...polycarbonate was discontinued. Valox 420 with 30 percent glass failed at -650F. Tefzel ETFE fluoropolymer unfilled and with 25 percent glass was tried; the

  8. Benthic Flux Sampling Device. Operations, Methods, and Procedures

    DTIC Science & Technology

    1993-02-01

    nitric acid (HNO3) overnight, then rinse with D.I. water. When in doubt, consult with the chemist for proper cleaning protocols. CHARGE BATTERIES...sis being performed. The system will be flushed with methanol to remove organic com- pounds and with nitric acid to remove metals. The nitric acid ... acid -washed, 500-me Teflon (TFE) sampling bottles aboard the BFSD. After each deployment, blank ferrules are fitted in place of the sampling lines and

  9. Explosive Testing of Class 1.3 Rocket Booster Propellant

    DTIC Science & Technology

    1994-08-01

    molds were lined with 0.025 mm (0.001 in.) Velostat conductive plastic sheet and sprayed with a mold release that dried leaving fine Teflon powder... Velostat sheet (0.03 in.) was wrapped around the sample and grounded for improved electrostatic safety. Similar to previous cylinder tests, the...layer of thin Velostat plastic sheet, its contribution to camera viewing distortion of the flame front is not known. Overall, an average velocity over

  10. Spacecraft Charging Standard Report.

    DTIC Science & Technology

    1980-09-30

    SSPM include: SAMPLE POTENTIAL (with respect to S/C ground) Aluminized Kapton -2.0 kV Silvered Teflon -4.0 kV Astroquartz -3.7 kV 50.3 Analysis. As...and potential gradients on the space vehicle (candidate spacecraft locations for ESD tests) (The NASCAP computer code, when validated, will be useful...The coupling analysis should then determine as a minimum: I. electromagnetic fields generated interior to the space vehicle due to ESD 2. induced

  11. Sensitivity Testing of RDX/Aluminum Powdered Explosive Mixtures for the Improved Dispersed Explosives (IDX) Project

    DTIC Science & Technology

    1993-04-01

    perpendicular to the pipe axis. During assembly, the threads are lubricated and Teflon tape is used for sealing. Aluminum witness plates (25.4 mm thick...3.3 Electrostatic Discharge ( ESD ) ................................. 7 4. INTERMEDIATE-SCALE SENSITIVITY TESTING ..................... 8 4.1 Card Gap...tests include the DWIT, friction, and electrostatic discharge ( ESD ) tests. The purpose of these tests is to enable the researcher to ensure that the

  12. A History of Services Contingency Capability: 1975-1985.

    DTIC Science & Technology

    1986-04-01

    vegetables, fruits, bakery mixes, dehydrated fruits, vegetables, juices, and soups, and staples such as flour , sugar, and spices (74:14). There were...feed 1000 meals per day (85:--). With the WRM storage program, it was difficult to find out the composition of the set and its condition (87:--). Even...facilities. The kitchen was designed to prepare A rations including bread . The griddle was teflon coated. The kitchen equipment was designed to meet the

  13. Wetting and adhesion evaluation of cosmetic ingredients and products: correlation of in vitro-in vivo contact angle measurements.

    PubMed

    Capra, P; Musitelli, G; Perugini, P

    2017-08-01

    The aim of this work was to use the contact angle measurement in order to predict the behaviour of ingredients and finished cosmetic products on skin to improve skin feel and product texture. Different classes of cosmetic ingredients and formulations were evaluated. The contact angle measurements were carried out by the sessile drop method using an apparatus, designed and set up in laboratory. Glass, Teflon and human skin were the reference substrates. In a preliminary phase, TEWL parameter, sebum content and hydration of human skin were measured to set up method. Data demonstrated that glass substrate may be used as replacement of the skin:critical surface tension of skin and glass were about of 27 and 31 dyne cm -1 , respectively. Non-ionic surfactant with increasing HLB was evaluated: a correlation between contact angle measured and HLB was not observed because of different and complex molecular structure. In detail, ethylhexyl hydroxystearate (θ glass = 17.1°) showed lower contact angle value with respect to Polysorbate 20 (θ glass = 28.1°). Sodium laureth sulphate and stearalkonium chloride were also evaluated: anionic molecule showed more affinity for glass with respect to Teflon (θ glass = 21.7° and θ Teflon = 52.3°). Lipids and silicones showed different affinity for substrate according to hydrophilic groups and hydrocarbon chain: contact angles of silicones remained unchanged independently from substrate. Finished cosmetic products (O/W, W/O emulsions, cleansing oil, dry skin oil) showed different profiles according to surfactant and its affinity for continuous phase of the formulation. Comparing the values of the contact angle on skin of non-ionic surfactants, as ethylhexyl hydroxystearate and Polysorbate 20, they showed values lower (near to zero) than ones of sodium laureth sulphate and Stearalkonium Chloride (21.7° and 66.8°, respectively). Finally, finished cosmetic products tested on human skin showed different profile: corresponded contact angle values were less than 20°. The product tended to be quickly adsorbed on human skin. Systematic study carried out by evaluating the wettability of single cosmetic ingredients on different substrates allowed to find correlations between the use of certain ingredients and the final performance of a cosmetic product. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Photon beam dosimetry with EBT3 film in heterogeneous regions: Application to the evaluation of dose-calculation algorithms

    NASA Astrophysics Data System (ADS)

    Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Byungdo; Cheong, Kwang-Ho

    2014-12-01

    For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose-calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 × 3 × 3 cm3) or teflon (2 × 2 × 2 cm3 or 3 × 3 × 3 cm3), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 × 2, 3 × 3, and 5 × 5 cm2. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy (<5%) in heterogeneities.

  15. Water Management In PEM Fuel Cell -“ A Lattice-Boltzmann Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Shiladitya; Cole, James Vernon; Jain, Kunal

    2009-06-01

    In Proton Exchange Membrane Fuel Cells (PEMFCs), water management and the effective transport of water through the gas-diffusion-layer (GDL) are key issues for improved performance at high power density and for durability during freeze-thaw cycles. The diffusion layer is a thin (~150-350{micro}m), porous material typically composed of a web of carbon fibers and particles, and is usually coated with hydrophobic Teflon to remove the excess water through capillary action. In-situ diagnostics of water movement and gas-reactant transport through this thin opaque substrate is challenging. Numerical analyses are typically based on simplified assumptions, such as Darcy's Law and Leverett functions formore » the capillary pressure. The objective of this work is to develop a high fidelity CFD modeling and analysis tool to capture the details of multiphase transport through the porous GDL. The tool can be utilized to evaluate GDL material design concepts and optimize systems based on the interactions between cell design, materials, and operating conditions. The flow modeling is based on the Lattice Boltzmann Method (LBM). LBM is a powerful modeling tool to simulate multiphase flows. Its strength is in its kinetic theory based foundation, which provides a fundamental basis for incorporating intermolecular forces that lead to liquid-gas phase separation and capillary effects without resorting to expensive or ad-hoc interface reconstruction schemes. At the heart of the solution algorithm is a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The solution advances by a streaming and collision type algorithm, mimicking actual molecular physics, which makes it suitable for porous media involving complex boundaries. We developed a numerical scheme to reconstruct various porous GDL microstructures including Teflon loading. Single and multiphase LBM models are implemented to compute permeability. Predicted values are in good agreement with measured data. The present modeling approach resolves the GDL microstructures and captures the influence of fiber orientation on permeability and the influence of Teflon loading on the development of preferential flow paths through the GDL. These observations can potentially guide the development of novel GDL materials designed for efficient removal of water.« less

  16. Explosives for Lunar Seismic Profiling Experiment (LSPE)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Explosive charges of various sizes were investigated for use in lunar seismic studies. Program logistics, and the specifications for procurement of bulk explosives are described. The differential analysis, thermal properties, and detonation velocity measurements on HNS/Teflon 7C 90/10 are reported along with the field tests of the hardware. It is concluded that nearly all large explosive charges crack after fabrication, from aging or thermal shock. The cracks do not affect the safety, or reliability of the explosives.

  17. Electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1980-01-01

    The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.

  18. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  19. Design of Multi-Order Diffractive THz Lenses

    DTIC Science & Technology

    2012-09-23

    surface. This makes the fabrication process easier and more accurate, thereby improving optical quality. A CNC lathe can be used to carve the lens out...for low-end THz operation (200-800 GHz). The lens was fabricated in Teflon with a small CNC lathe and can be seen in Fig. 3. With only 4 zones...excellent THz transparency and is readily available. Once the CNC turning was complete, the lens was separated from its substrate with a band-saw and

  20. Bull’s-Eye Structure with a Sub-Wavelength Circular Aperture

    DTIC Science & Technology

    2013-08-30

    experimentation. Bull’s-eye structures were fabricated with high precision using a CNC lathe machine and a thermal evaporator. Then, quality of...periodic grooves in the 3-mm-wavelength bull’s-eye structure were created with a CNC lathe on a Teflon or high-density polyethylene (HDPE) substrate... CNC lathe . Figure 26 (far right) shows the cross section of the bull’s-eye structure with six periodic grooves. By clicking on “Preferences” in

  1. Mission Integration Study for Solid Teflon Pulsed Plasma Millipound Propulsion System.

    DTIC Science & Technology

    1980-09-01

    ADDRESSCOERE Air Foc IoktPouso abrtr 1 SD~kr8PIS reto o f Scegain and oSld Teyn Pulsedr A*S team s ona Pr o on rolling 181 87 -68 14. ONITRINGA N ~ (d~ff...57 4.3.3 Subsystem Impact Assessment .......... 63 4.4 Interactive Effects ....... ............... 671 4.4.1 Material Deposition on Spacecraft...Assessment ....... ... 127 5.4 Interactive Effects .... ................ .... 128 5.4.1 Material Deposition Requirements for Pulsed Plasma Thruster on DSP

  2. Anaerobic Degradation of C1 and C2 Chlorinated Hydrocarbons

    DTIC Science & Technology

    1985-12-01

    two substrates, chloroform (CF) and dichloromethane (DCH), degradative pathways were examined through use of radioisotopes . An aqueous stock solution...sealed with a TeflonTH-lined rubber septum and aluminum crimp cap, and stored in a refrigerator when " not in use. In the case of DCM, the radioisotope was...sealed LSV, which was then shaken to dissolve the radioisotope . Another 0.5 mL headspace samp]e from the serum bottle was injected into the GC, for

  3. GFAAS determination of selenium in infant formulas using a microwave digestion method.

    PubMed

    Alegria, A; Barbera, R; Farré, R; Moreno, A

    1994-01-01

    A method for determining the selenium content of infant formulas is proposed. It includes wet digestion with nitric acid and hydrogen peroxide in medium pressure teflon bombs in a microwave oven and determination by graphite furnace atomic absorption spectrometry (GFAAS). The absence of interferences is checked. Values obtained for the limit of detection (19.4 ng/g), precision (RSD = 2.2%) and accuracy by analysis of a reference material show that the method is reliable.

  4. Design of a Combined Ballistic Simulator and Primer Force Experimental Fixture

    DTIC Science & Technology

    2015-08-01

    preload bolt and breech, and between the breech and chamber, were found to be too loose. When heavy grease or Teflon tape was used to tighten the...increase the difficulty of removing and tightening the breech. The preload bolt does not have to be removed between firing and in future designs could use... tightened it could loosen the primer plate, so left-handed threads were machined on the primer plate. The ballistic simulator fixture was occasionally

  5. Thermal Investigations of Nanoaluminum/Perfluoropolyether Core-Shell Impregnated Composites for Structural Energetics

    DTIC Science & Technology

    2014-07-19

    that undergo an oxidation reduction thermite reaction releasing energy. Advances in the field have generated diverse material platforms ranging from bulk...This is a pre ignition reaction (PIR) similar to the one observed by Pantoya and Dean in n Al/Teflon thermite based reactions [14]. PIR exotherms were...2010) 2560–2569. [5] S. Yan, G. Jian, M.R. Zachariah, Electrospun nanofiber-based thermite textiles and their reactive properties, ACS Appl. Mater

  6. A New Look for the Shopping Mall

    NASA Technical Reports Server (NTRS)

    1985-01-01

    STRUCTO-FAB, a product of Owens-Corning Fiberglas Corporation, is a lightweight but extremely durable tent-like material made of Fiberglas coated with Teflon. It transmits daylight with a reduced need for artificial lighting. It is an outgrowth of a material formulated by NASA in 1967 as a new space suit fabric. Owens-Corning and DuPont provided the original material, which was the basis for Structo-Fab, a permanent architectural fabric used for shopping malls, sports stadiums, etc.

  7. Results of literature search on dielectric properties and electron interaction phenomena related to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Wall, J. A.; Burke, E. A.; Frederickson, A. R.

    1977-01-01

    The objective of the literature search was to determine the required material properties and electron interaction parameters needed for modeling charge buildup and breakdown in insulators. A brief overview of the results of the literature search is given. A partial list of the references covered is included in a bibliography. Although inorganic insulators were also considered in the search, coverage is limited to the organics, primarily Kapton and Teflon.

  8. Meeting Future C3I (Command-Control-Communications-Intelligence) Needs with Fiber Optics,

    DTIC Science & Technology

    1985-05-01

    Frequency dependence of the sensitivity of fibers with hard coatings is relatively small. Nylon gives the weakest dependence, while the soft UV -cured...elastomer gives the strongest. Maximum sensitivity is obtained with Teflon TFE, while the minimum is achieved with the soft UV coating. With the latter...fiber-optics systems: the LED (Light Emitting Diode) and ILD (Injection Laser Diode). These devices emit light when an electric current is applied. The

  9. A Durable Airfield Marking System.

    DTIC Science & Technology

    1985-06-01

    Resin is Mixed with the Black Curing Agent to Form the Epoxy Adhesive ..... ........... 17 14 The Gray Adhesive (White Resin Mixed with Black Curing...rubber 100 0 Polyester (peroxide-catalyzed) 100 0 Urethane 100 0 Epoxy polyamide 100 0 Acrylic latex (TT-P-1952) 100 0 Thermoplastic Tapes Type 1 100 0...suzmarrizes cost data co1parisons for traffic marking tapes, CAS tiles, fluorocarbon composites (Teflon ),and acrylic latex paint TT-P-1952. 8 -p °’. TABLE 2

  10. Measurements of Gas-Wall Partitioning of Oxidized Species in Environmental Smog Chambers and Teflon Sampling Lines

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.

    2015-12-01

    Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ­ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.

  11. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  12. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications

    PubMed Central

    2016-01-01

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented. PMID:27579343

  13. Energy response of CaSO4:Dy teflon TLD disk dosimeters to photons and electrons.

    PubMed

    Sharada, K S

    1983-01-01

    The photon energy response of CaSO4:Dy teflon disk dosimeters used widely in radiation dosimetry is computed using the energy absorption coefficient values for calcium, sulfur, oxygen, and carbon taken from J. H. Hubbell's tables. For fluorine, the energy absorption coefficients were obtained from the values given by F. H. Attix for CaF2 and Ca. The energy response of the radiation-monitoring disk for the range of 10 keV to 10 MeV, relative to air, is computed and plotted. The response is maximum between 20 and 30 keV and then gradually falls to a constant at 200 keV to 10 MeV. This computed response for different energies is compared with the experimental TL response of the dosimeter. The electron energy response of these TLD disks is computed using the stopping-power values for the different component elements. The electron stopping power for sulfur and calcium from 10 keV to 10 MeV is computed using the Bethe-Bloch formula. Those for oxygen and carbon are taken from the tables given by M. J. Berger and S. M. Seltzer. For fluorine, the values are computed from those for Li and LiF given in the same tables. This calculated response is compared with the experimental beta response of the TL dosimeter.

  14. No More HF: Teflon-Assisted Ultrafast Removal of Silica to Generate High-Surface-Area Mesostructured Carbon for Enhanced CO2 Capture and Supercapacitor Performance.

    PubMed

    Singh, Dheeraj Kumar; Krishna, Katla Sai; Harish, Srinivasan; Sampath, Srinivasan; Eswaramoorthy, Muthusamy

    2016-02-05

    An innovative technique to obtain high-surface-area mesostructured carbon (2545 m(2)  g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0 wt %). JNC-1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK-3 (1.2 wt %) at -196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292 F g(-1) and 182 F g(-1) at a drain rate of 1 A g(-1) and 50 A g(-1) , respectively, in 1 m H2 SO4 compared to CMK-3 and activated carbon. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity.

    PubMed

    Faille, Christine; Jullien, Celine; Fontaine, Francoise; Bellon-Fontaine, Marie-Noelle; Slomianny, Christian; Benezech, Thierry

    2002-08-01

    The ability of bacterial spores and vegetative cells to adhere to inert surfaces was investigated by means of the number of adherent spores (Bacillus cereus and Bacillus subtilis spores) and Escherichia coli cells and their resistance to cleaning or rinsing procedures (adhesion strength). Six materials (glass, stainless steel, polyethylene high density (PEHD), polyamide-6, polyvinyl chloride, and Teflon) were tested. Slight differences in the number of adherent spores (less than 1 log unit) were observed between materials, but a higher number of adherent E. coli cells was found on the hydrophobic materials PEHD and Teflon. Conversely, the resistance of both B. cereus and B. subtilis spores to a cleaning procedure was significantly affected by the material. Hydrophobic materials were harder to clean. The topography parameter derived from the Abbott-Firestone curve, RVK, and, to a lesser extent, the widely used roughness parameters RA (average roughness) and Rz (maximal roughness), were related to the number of adherent cells. Lastly, the soiling level as well as the adhesion strength were shown to depend largely on the microorganism. The number of adhering B. cereus hydrophobic spores and their resistance to a cleaning procedure were found to be 10 times greater than those of the B. subtilis hydrophilic spores. Escherichia coli was loosely bound to all the materials tested, even after 24 h biofilm formation.

  16. Analyses of Hubble Space Telescope Aluminized-Teflon Insulation Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.

    2012-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket s aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.

  17. Teflon impregnated anatase TiO2 nanoparticles irradiated by 80 keV Xe+ ions

    NASA Astrophysics Data System (ADS)

    Khanam, Rizwin; Paul, Nibedita; Kumar, P.; Kanjilal, D.; Ahmed, Gazi A.; Mohanta, Dambarudhar

    2014-10-01

    We report the effect of 80 keV Xe+ ion irradiation on the morphological and optical responses of TiO2 nanoparticles spread over commercially available polytetrafluoroethylene (PTFE, Teflon). These nanoparticles were synthesized via a convenient, sol-gel approach with titanium isopropoxide as the main precursor. From X-ray diffraction (XRD) studies we found that, the nanoparticles crystallize in anatase phase and with a preferential orientation of crystallites along (1 0 1) plane. Upon irradiation at a fluence of 1.25 × 1017 ions/cm2, the nanoparticle dimension was found to increase from a value of ∼9 nm to ∼20-30 nm. Essentially, particle growth is predicted as a consequence of swelling behavior accompanied by the formation of Xe van der Waal crystals in isolated regions of nano-titania. Evidence of nanoripples was also witnessed on the surface of the irradiated nano-titania. The morphological evolution was assessed both by atomic force and transmission electron microscopies (AFM and TEM) independently. From the UV-Vis optical absorption studies, the estimated optical band gap was found to drop with increasing fluence, while refractive index exhibited a remarkable improvement. Photoluminescence (PL) studies have revealed that, the band edge emission and those due to the self trapped excitons (STE) and other oxygen vacancy related ones were manifested considerably as a result of Xe ion irradiation.

  18. Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers.

    PubMed

    Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L

    2017-10-17

    Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.

  19. Remote liquid target loading system for LANL two-stage gas gun

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.

    2009-06-01

    A Remote Liquid Loading System (RLLS) was designed to load high hazard liquid materials into targets for gas-gun driven impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target in place immediately prior to firing the gun, provides the most stable and reliable target fielding approach. We present the design and evaluation of a RLLS built for the LANL two-stage gas gun. Targets for the gun are made of PMMA and assembled to form a liquid containment cell with a volume of approximately 25 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with highly concentrated hydrogen peroxide. Teflon and 304-stainless steel were the two most compatible materials with the materials to be tested. Teflon valves and tubing, as well as stainless steel tubing, were used to handle the liquid, along with a stainless steel reservoir. Preliminary testing was done to ensure proper flow rate and safety. The system has been used to successfully load 97.5 percent hydrogen peroxide into a target cell just prior to a successful multiple magnetic gauge experiment. TV cameras on the target verified the bubble-free filling operation.

  20. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    PubMed

    Khan, Farid Ullah

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented.

  1. Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Takele, H.; Schürmann, U.; Greve, H.; Paretkar, D.; Zaporojtchenko, V.; Faupel, F.

    2006-02-01

    Nanocomposite films containing Au nanoparticles embedded in a polymer matrix were prepared by vapour phase co-deposition of Au and polymers (Teflon AF and Poly(α -methylstyrene)) in high vacuum. The microstructure of the composite materials as well as metal content strongly depend on the condensation coefficient of the Au atoms, the deposition rates of the components, the substrate temperature, and the type of polymer matrix. The condensation coefficient, which varies between 0.03 and 1, was determined from energy dispersive X-ray spectrometer (EDX) and surface profilometry. It is shown that the microstructure of nanocomposites (size, size distribution, and interparticle separation of metal clusters), which was determined by transmission electron microscopy, can be controlled by the deposition parameters and the choice of polymer matrix. The optical absorption in the visible region due to the particle plasmon resonance has a strong dependence on the metal filling factor. The correlation between the microstructure of nanocomposites and optical properties, studied using UV-Vis spectroscopy, was also established. Further more, the electrical properties of the composites were studied as a function of the metal volume fraction. It was observed that the nanocomposite films exhibit a percolation threshold at a metal volume fraction of 0.43 and 0.20 for gold nanoclusters in Teflon AF and Poly(α-methylstyrene), respectively.

  2. GC-MS determination of levoglucosan in atmospheric particulate matter collected over different filter materials.

    PubMed

    Fabbri, Daniele; Modelli, Stefano; Torri, Cristian; Cemin, Andrea; Ragazzi, Marco; Scaramuzza, Patrizia

    2008-12-01

    An analytical procedure consisting of ultrasonic extraction with acetonitrile, trimethylsilylation and GC-MS analysis was applied to the determination of levoglucosan (LG) in aerosol collected with three different filter types (teflon, quartz, glass). Methyl-beta-L-arabinopyranoside (MA) and sedoheptulosan (SD, 2,7-anhydro-beta-D-altro-heptulopyranose) were investigated as recovery standards. Mean recovery of MA decreased in the order 82%, 78%, 74% and that of SD from 82% to 76% and 32% from teflon, quartz and glass blank filters, respectively, whereas recovery of LG was little affected (80-86%). The extraction efficiency from glass filters could be increased by using methanol in place of acetonitrile, but recovery of SD remained inadequate. Internal calibration with MA was linear in the 0.035-70 microg mL(-1) LG concentration interval. The method was tested on different air filter materials utilized to sample PM(10) in outdoor air and wood smoke emitted from stove and boiler encompassing LG concentrations from 0.06 to 230 microg m(-3) with RSD in the 2.9-22% range. The application of the method in aerosol sampled in alpine zones of Italy revealed a linear correlation between LG and PM(10) concentrations with a higher proportion of LG in winter and in rural areas where the use of woody biomass for residential heating is widespread.

  3. Semiautomatic sequential extraction of polycyclic aromatic hydrocarbons and elemental bio-accessible fraction by accelerated solvent extraction on a single particulate matter sample.

    PubMed

    Astolfi, Maria Luisa; Di Filippo, Patrizia; Gentili, Alessandra; Canepari, Silvia

    2017-11-01

    We describe the optimization and validation of a sequential extractive method for the determination of the polycyclic aromatic hydrocarbons (PAHs) and elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, V and Zn) that are chemically fractionated into bio-accessible and mineralized residual fractions on a single particulate matter filter. The extraction is performed by automatic accelerated solvent extraction (ASE); samples are sequentially treated with dichloromethane/acetone (4:1) for PAHs extraction and acetate buffer (0.01M; pH 4.5) for elements extraction (bio-accessible fraction). The remaining solid sample is then collected and subjected to acid digestion with HNO 3 :H 2 O 2 (2:1) to determine the mineralized residual element fraction. We also describe a homemade ASE cell that reduces the blank values for most elements; in this cell, the steel frit was replaced by a Teflon pierced disk and a Teflon cylinder was used as the filler. The performance of the proposed method was evaluated in terms of recovery from standard reference material (SRM 1648 and SRM 1649a) and repeatability. The equivalence between the new ASE method and conventional methods was verified for PAHs and for bio-accessible and mineralized residual fractions of elements on PM 10 twin filters. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Black carbon, mass and elemental measurements of airborne particles in the village of Serowe, Botswana

    NASA Astrophysics Data System (ADS)

    Moloi, K.; Chimidza, S.; Lindgren, E. Selin; Viksna, A.; Standzenieks, P.

    Absorption of sunlight by sub-micron particles is an important factor in calculations of the radiation balance of the earth and thus in climate modelling. Carbon-containing particles are generally considered as the most important in this respect. Major sources of these particles are generally considered to be bio-mass burning and vehicle exhaust. In order to characterise size fractionated particulate matter in a rural village in Botswana with respect to light absorption and elemental content experiments were performed, in which simultaneous sampling was made with a dichotomous impactor and a laboratory-made sampler, made compatible with black carbon analysis by reflectometry. The dichotomous impactor was equipped with Teflon filters and the other sampler with glass fibre filters. Energy dispersive X-ray fluorescence was used for elemental analysis of both kinds of filters. It appeared that Teflon filters were the most suitable for the combination of mass-, elemental- and black carbon measurements. The black carbon content in coarse (2.5-10 μm) and fine (<2.5 μm) particles was determined separately and related to elemental content and emission source. The results show that the fine particle fraction in the aerosol has a much higher contribution of black particles than the coarse particle fraction. This observation is valid for the village in Botswana as well as for a typical industrialised city in Sweden, used as a reference location.

  5. Fuel and Fuel System Materials Compatibility Test Program for A JP-8+100 Fuel Additive. Volume 1: Thermal Stability Additive Package BetzDearborn Spec Aid(Registered) 8Q462

    DTIC Science & Technology

    2001-10-01

    SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic

  6. Pulsed ion beam investigation of the kinetics of surface reactions

    NASA Technical Reports Server (NTRS)

    Horton, C. C.; Eck, T. G.; Hoffman, R. W.

    1989-01-01

    Pulsed ion beam measurements of the kinetics of surface reactions are discussed for the case where the width of the ion pulse is comparable to the measured reaction time, but short compared to the time between successive pulses. Theoretical expressions are derived for the time dependence of the ion-induced signals for linear surface reactions. Results are presented for CO emission from surface carbon and CF emission from Teflon induced by oxygen ion bombardment. The strengths and limitations of this technique are described.

  7. The Solar Shield: A Thermally Insulating, Broad-Band, Electromagnetic Window for Satellites

    DTIC Science & Technology

    1986-06-02

    1.2 but is difficult to machine to thicknesses less than about 1/4 in. without breakage. The one disadvantage of the quartz paper is that it is somewhat...flimsy. Additional structural S•.support was provided by fusing one side of the paper to FEP teflon-coated Kapton* in a laminat - ing press. Kapton...loose quartz fibers from escaping. .4.’ A non-outgassing, polyester netting+ was chosen to separate the composite layers from eachother. * DuPont Corp

  8. Thermal Modeling and Performance Measurements of Radiometric Arrays for Near Space Propulsion

    DTIC Science & Technology

    2012-07-16

    radiometer vane dimensions for maximum force production. Square vanes with an edge thickness of 1.57 mm and thickness of 0.5 mm were modeled as aerogel ...materials evaluated include aerogel , Teflon, silicon dioxide, type 304 stainless steel, aluminum, and pure copper (thermal conductivity = 0.017, 0.25...front face 0.5 1 0.1 Absorptivity of aerogel 0.1 0.5 0.1 Convection coefficient across vanes (W/m^2*K) 5 40 5 Vane thickness (mm) 0.5 2 0.25

  9. Carbon catalysis of reactions in the lithium SOCl2 and SO2 systems

    NASA Technical Reports Server (NTRS)

    Kilroy, W. P.

    1981-01-01

    Certain hazards associated with lithium batteries have delayed widespread acceptance of these power sources. The reactivity of ground lithium carbon mixtures was examined. The effect of carbon types on this reactivity was determined. The basic reaction involved mixtures of lithium and carbon with battery electrolyte. The various parameters that influenced this reactivity included: the nature and freshness of the carbon; the freshness, the purity, and the conductive salt of the electrolyte; and the effect of Teflon or moisture.

  10. Use of a Nafion Membrane Probe for Quick, On-the-Spot Determination of Ionic Copper Contamination Levels in Natural Waters

    DTIC Science & Technology

    2000-01-01

    avert an environmental problem. The developed sensor uses the perfluorinated ionomeric film, Nation 117. This film has a Teflon matrix with sulfate...Dexter et al 1975, Dexter 1978). Once the surface is organically "wet" then bacteria can attach (reversible sorption ) but are removed easily (Marshall... sorption ) and the primary biofouling film forms (Little 1984). This primary film becomes attractive to algae and protozoa as well as attracting detritus

  11. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for Inorganic Analytes

    DTIC Science & Technology

    2008-12-01

    08-25 3 Accumulation samplers rely on both diffusion through a membrane and then sorption by some type of sorbent material that is contained in the...the materials in the sampler to equilibrate with the analytes in the well water thereby prevent- ing losses of analytes due to sorption by the sampler...The spring in the bottles is coated with perfluoroalkoxy ( PFA ) (Teflon) and is connected to PFA end caps at both ends of the bottle. Currently

  12. Lightweight ozonizer for field and airborne use

    NASA Astrophysics Data System (ADS)

    Stone, E. J.; Caldwell, J. R.; de Waal, C.; Horvath, J. J.; Pearson, R., Jr.; Stedman, D. H.

    1982-12-01

    An efficient, lightweight apparatus for the production of ozone in flowing oxygen or air has been constructed and tested. The exciter is an automotive electronic ignition running from a 28-V dc power source. The discharge tube consists of coaxial conductive-coated flint glass tubing fitting into Teflon end pieces. A single such unit will produce 4% ozone in oxygen flowing at 0.2 l/min, or a maximum of 0.020 l of ozone per minute in a total flow of 1.0 l/min.

  13. Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments: Standard Operating Procedure for PE Analysis

    DTIC Science & Technology

    2012-12-01

    4.5 Food-grade aluminum foil 4.6 Stainless steel forceps 4.7 Single-edge razor blades 4.8 Teflon (or similar non-contaminating material) cutting...handling PE to avoid cross-contaminating the PE. 6.3 Methylene chloride (pesticide grade) rinsed, stainless steel forceps and scissors are used...3.1 PE is susceptible to contamination from atmospheric and surfaces, and so it must be handled using clean techniques. 3.2 While the formation of

  14. MURI: An Integrated Multi-Scale Approach for Understanding Ion Transport in Complex Heterogeneous Organic Materials

    DTIC Science & Technology

    2017-09-30

    characterization of PS-b-PVBC block copolymer and corresponding blends A micrometer blade film applicator was used to cast consistent films of various...means the titration is under tested. cMeasured at 20 °C in 18 MW water. Teflon stripe was running as background. The films were suspended in...overnight in the dark. Cross-linking of the membranes was achieved by exposure to UV light (Fusion UV systems, Inc. belt speed at 122 3, 7 runs

  15. MURI: An Integrated Multi-Scale Approach for Understanding Ion Transport in Complex Heterogeneous Organic Materials

    DTIC Science & Technology

    2018-01-12

    characterization of PS-b-PVBC block copolymer and corresponding blends A micrometer blade film applicator was used to cast consistent films of various...means the titration is under tested. cMeasured at 20 °C in 18 MW water. Teflon stripe was running as background. The films were suspended in...overnight in the dark. Cross-linking of the membranes was achieved by exposure to UV light (Fusion UV systems, Inc. belt speed at 122 3, 7 runs

  16. Optical multilayers with an amorphous fluoropolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, R.; Loomis, G.E.; Lindsey, E.F.

    1994-07-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, together with other optical materials. A high reflector at 1064 run was made with ZnS and AF2400. An all-organic 1064-nm reflector was made from AF2400 and polyethylene. Oxide (HfO{sub 2}, SiO{sub 2}) compatibility was also tested. Each multilayer system adhered to itself. The multilayers were influenced by coating stress and unintentional temperature rises during PVD deposition.

  17. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity

    NASA Technical Reports Server (NTRS)

    Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

    1990-01-01

    Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

  18. Granulated lead oxides with teflon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, O.

    An improvement in the production of tube electrodes for lead storage batteries comprising mixing a small amount (0.1 to 3 weight percent) of polytetrafluoroethylene (Ptfe) with lead powder, the mixture is heated and shear stresses are applied thereto sufficient to convert substantially all of the ptfe in the mixture to fibrous form and to form a non-powdery dough. The dough is then granulated and the doughy granules about 100 mu to 500 mu in major dimension are used for filling tube elctrodes a lead-acid storage battery.

  19. Methods of Producing Freeze-Dried Acellular Vascular, Peripheral Nerve and Generic Tissue Grafts for the Treatment of Combat Casualties

    DTIC Science & Technology

    1998-02-01

    wcollection of infrma tion. Send comments re8ardinfg this burden estimate or any Other aspect of this • collection of informationj ncluding sug(estions...and the vessels were then immedi- ately immersed in Vitrification Solution Maltodextrin (VSMD), comprised of a 75% buffered solution of maltodextrin ...concentration of 75% maltodextrin is very viscous and unlikely to passively perfuse the graft. Secondly, the vessels were sutured to teflon struts which

  20. Injectable Ceramic Microcast Silicon Carbonitride (SiCN) Microelectromechanical System (MEMS) for Extreme Temperature Environments with Extension: Micro Packages for Nano-Devices

    DTIC Science & Technology

    2004-01-01

    pyrolyzed to produce the ceramic (SiCN) parts, or they may be retained in the polymeric state and used as high-temperature polymer /glass MEMS devices. Two...structure and the SU8 /wafer is weak due to the Teflon coating. (j) A free standing polymer structure results. The structure is then crosslinked and... polymer . Further efforts are necessary to identify the least damaging rinsing chemicals, that is, chemicals which would not contaminate polymerized

  1. Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

    NASA Technical Reports Server (NTRS)

    Riley, T.; Mahuson, T. C.; Seibert, K.

    1979-01-01

    A procedure is described for using argon and oxygen plasmas to promote adhesion of parylene coatings upon many difficult-to-bond substrates. Substrates investigated were gold, nickel, kovar, teflon (FEP), kapton, silicon, tantalum, titanium, and tungsten. Without plasma treatment, 180 deg peel tests yield a few g/cm (oz/in) strengths. With dc plasma treatment in the deposition chamber, followed by coating, peel strengths are increased by one to two orders of magnitude.

  2. Spatially Targeted Activation of a Shape Memory, Polymer-Based, Reconfigurable Skin System

    DTIC Science & Technology

    2014-02-01

    bone samples described in ASTM Standard D638 using a CNC router. Compression test samples were cured in an aluminum cylinder mold treated with mold...release with Teflon end plugs and cut to length with a small lathe . 2.2 Tensile/Compressive Tests Tensile tests were conducted on a MTS QTest/1L...fixture with a CNC mill and a decal applied to the front surface for tracking by the DIC system. Figure 10: Shear Test Sample with DIC Decal 10

  3. Characterizing and Quantifying Local and Regional Particulate Matter Emissions from Department of Defense Installations

    DTIC Science & Technology

    2005-03-01

    region (Fig. 4.1). A summary of the annual and seasonal average temperature, precipitation , and wind conditions for El Paso is presented in Table 4.1... Precipitation (cm) 2 Average Wind Speed 2 (km/hr) Prevailing Wind Direction 2 (degrees) Annual 17.3 22.4 14.2 360 Winter (Dec...Chow, 2001; Chow et al., 2003). The Teflon-membrane filters were analyzed for mass by gravimetry using a Cahn 31 Electro-microbalance and for 40

  4. Electrochemical Atomic Layer Processing

    DTIC Science & Technology

    1994-06-25

    small parastaltic pumps were used. The solution reservoirs were made with Pyrex glass bottles and Teflon valves. The design of the flow-cell (FIG. 1...cells were used, as well (6). These electrodes consist of an Au rod set in a fitted glass cavity. The glass walls were designed to be on the order of...0.001" from the Au rod. Two pin holes were ground into the bottom of the glass in order for the solution to be flushed in and out of the thin-layer

  5. Shock Sensitivity of PBXN-109 When Containing Different RDX Fills Without and With Aging

    DTIC Science & Technology

    2011-11-01

    probes on outside of acceptor tubes with gap attached: a. SWs bridging space between two pieces of tape on IMADGT tube; b. SPs in plastic block on...AWG wire that is taped down circumferentially over a piece of Teflon film used for sealing pipe threads. Any rapid expansion of the tube wall causes...acceptor tubes with gap attached: a. SWs bridging space between two pieces of tape on IMADGT tube; b. SPs in plastic block on ELSGT tube Several tests

  6. Commutating Feed Assembly.

    DTIC Science & Technology

    1980-06-01

    6 dB Stripline Couplers 29 3-4 Properties of Teflon -Fiberglass 30 5-1 Power Consumption for Various Motor Windings 47 5-2 Summary of Flanged 50-Ohm... spacing of 0.62A at the design frequency of 1.3 GHz. The diameter of such an array is nominally 180 inches. The chosen number of array elements is one-half...4 14 that required for a full-sized antenna with the same inter-element spacing . Azimuth patterns were computed for several circular array designs

  7. Laboratory Studies of Containment in Underground Nuclear Tests.

    DTIC Science & Technology

    1980-01-31

    and filling the space between charge holder and tube with epoxy. The access tube is filled with epoxy. Vel t iug occurs when tile tube is drilled out...membrane is then stretched over the eud of the access tube and held in place by means of a Teflon ferrule and epoxy sa I . Tile membrane is filled with...electrically conductive silver -based paint. Two copper tabs are first embedded in the surface of the sphere during cast ing. After the grout is cured, the paint

  8. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor Under Simulated Microgravity Inhibits Rapamycin Production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  9. Preliminary Assessment/Site Inspection Work Plan for Granite Mountain Radio Relay System

    DTIC Science & Technology

    1994-09-01

    represent field conditions, and (3) sampling results are repeatable. Final (04 WV---,,1-, ,W•, S 2, mbr . 19W4 13 RyCWed 1.5.2 Sample Handling Sample...procedures specified in Section 2.1.3. Samples collected from shallow depths will be obtained by submerging a stainless- steel, Teflon, or glass... submerged in a manner that minimizes agitation of sediment and the water sample. If a seep or spring has minimal discharge flow, gravel, boulders, and soil

  10. Oxygen Interaction With Space-Power Materials

    NASA Technical Reports Server (NTRS)

    Eck, Thomas G.; Hoffman, Richard W.

    1996-01-01

    Four investigations were undertaken during the period of this grant: (1 ) oxidation of molybdenum and of niobium-1 % zirconium, (2) preparation of and examination of EOIM-3 samples, (3) sputtering of Teflon by oxygen ion bombardment,and (4) sputtering of Ions from copper and aluminum by oxygen and argon ion bombardment. Investigations (1), (3), and (4) used a low-energy Ion gun to bombard surfaces within an ultra-high vacuum system. Particles ejected from the surfaces were detected by a mass spectrometer.

  11. Tensile Fabrics Enhance Architecture Around the World

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Using a remarkable fabric originally developed to protect Apollo astronauts, Birdair Inc. of Amherst, New York, has crafted highly durable, safe, environmentally friendly, and architecturally stunning tensile membrane roofs for over 900 landmark structures around the world. Travelers in airports, sports fans at stadiums, and shoppers in malls have all experienced the benefits of the Teflon-coated fiberglass fabric that has enabled Birdair to grow from a small company established in its founder?s kitchen in 1955 to a multimillion-dollar specialty contractor today.

  12. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  13. Collaborative study of the determination of boric acid in caviar by emission spectroscopy.

    PubMed

    Franco, V; Holak, W

    1975-03-01

    Caviar samples were spiked at the 0.1 and 0.2% levels and digested with nitric acid in a closed Teflon-lined digestion vessel to prevent volatility losses. The boron was complexed with 2-ethyl-1,3-hexanediol and extracted into methylisobulty ketone. The emission of the boron oxide band was measured in a nitrous oxidehydrogen flame. The mean recoveries at the 0.1 and 0.2% levels for 6 collaborators were 95.7 and 97.1%, respectively.

  14. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  15. Protection of Polymers from the Space Environment by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Lindholm, Ned F.; Zhang, Jianming; Minton, Timothy K.; O'Patchen, Jennifer; George, Steven M.; Groner, Markus D.

    2009-01-01

    Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. For example, oxygen atoms can etch and oxidize these materials. Photons may act either alone or in combination with oxygen atoms to degrade polymers and paints and thus limit their usefulness. Colors fade under the intense vacuum ultraviolet (VUV) solar radiation. Ions can lead to the build-up of static charge on polymers. Atomic layer deposition (ALD) techniques can provide coatings that could mitigate many challenges for polymers in space. ALD is a gas-phase technique based on two sequential, self-limiting surface reactions, and it can deposit very uniform, conformal, and pinhole-free films with atomic layer control. We have studied the efficacy of various ALD coatings to protect Kapton® polyimide, FEP Teflon®, and poly(methyl methacrylate) films from atomic-oxygen and VUV attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-breakdown source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings applied to polyimide and FEP Teflon® films protected the underlying substrates from O-atom attack, and ZnO coatings protected the poly(methyl methacrylate) substrate from VUV-induced damage.

  16. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.

    PubMed

    Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong

    2017-08-01

    This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

  17. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    NASA Astrophysics Data System (ADS)

    Guo, Aobo; Ashmead, Claire C.; de Groh, Kim K.; Sechkar, Edward A.

    When exposed to low Earth orbit (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and interaction with atomic oxygen (AO). Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical properties deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cm3/atom) of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon® fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 × 10-24 cm3/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 × 10-24 cm3/atom. The Ey of the pristine samples was 1.6 to 1.7 × 10-24 cm3/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  18. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    NASA Technical Reports Server (NTRS)

    Guo, Aobo; Ashmead, Claire C.; deGroh, Kim K.

    2012-01-01

    When exposed to low Earth orbital (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and atomic oxygen (AO) interaction. Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical property deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cu cm/atom), of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 10(exp -24)cu cm/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 10(exp -24)cu cm/atom. The Ey of the pristine samples was 1.6- 1.7 10(exp -24)cu cm/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  19. Studies on new neutron-sensitive dosimeters using an optically stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, M. S.; Luszik-Bhadra, M.; Behrens, R.; Muthe, K. P.; Rawat, N. S.; Gupta, S. K.; Sharma, D. N.

    2011-07-01

    The neutron response of detectors prepared using α-Al 2O 3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al 2O 3:C + 6LiF/α-Al 2O 3:C + 7LiF and α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al 2O 3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al 2O 3:C phosphor. The Hp(10) response of the α-Al 2O 3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.

  20. Tuning the Composition of Electrodeposited Bimetallic Tin-Lead Catalysts for Enhanced Activity and Durability in Carbon Dioxide Electroreduction to Formate.

    PubMed

    Moore, Colin E; Gyenge, Előd L

    2017-09-11

    Bimetallic Sn-Pb catalysts with five different Sn/Pb atomic ratios were electrodeposited on Teflonated carbon paper and non-Teflonated carbon cloth using both fluoroborate- and oxide-containing deposition media to produce catalysts for the electrochemical reduction of CO 2 (ERC) to formate (HCOO - ). The interaction between catalyst composition, morphology, substrate, and deposition media was investigated by using cyclic voltammetry and constant potential electrolysis at -2.0 V versus Ag/AgCl for 2 h in 0.5 m KHCO 3 . The catalysts were analyzed before and after electrolysis by using SEM and XRD to determine the mechanisms of Faradaic efficiency loss and degradation. Catalysts that are mainly Sn with 15-35 at % Pb generated Faradaic efficiencies up to 95 % with a stable performance. However, pure Sn catalysts showed high initial stage formate production rates but experienced an extensive (up to 30 %) decrease of the Faradaic efficiency. The XRD results demonstrated the presence of polycrystalline SnO 2 after electrolysis using Sn-Pb catalysts with 35 at % Pb and its absence in the case of pure Sn. It is proposed that the presence of Pb (15-35 at %) in mainly Sn catalysts stabilized SnO 2 , which is responsible for the enhanced Faradaic efficiency and catalytic durability in the ERC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents.

    PubMed

    Choi, Sung Chul; Yoo, Mi Ae; Lee, Su Yeon; Lee, Hyun Ji; Son, Dong Hoon; Jung, Jessica; Noh, Insup; Kim, Chan-Wha

    2015-09-01

    Modulation of both mechanical properties and biocompatibilities of hyaluronic acid (HA) hydrogels is very importance for their applications in biomaterials. Pure HA solution was converted into a hydrogel by using butanediol diglycidyl ether (BDDE) as a crosslinking agent. Mechanical properties of the HA hydrogels have been evaluated by adding up different amount of BDDEs. While the mechanical properties of the obtained HA hydrogels were evaluated by measuring their crosslinking degrees, elastic modulus and viscosity, their in vitro biocompatibilities were done by measuring the degrees of anti-inflammatory reactions, cell viabilities and cytotoxicity. The degrees of anti-inflammatory reactions were determined by measuring the amount of nitric oxides (NOs) released from lipopolysaccharide(LPS)(+)-induced macrophages; cell viability was evaluated by observing differences in the behaviors of fibroblasts covered with the HA hydrogels, compared with those covered with the films of Teflon and Latex. Cytotoxicity of the HA hydrogels was also evaluated by measuring the degrees of viability of the cells exposed on the extracts of the HA hydrogels over those of Teflon, Latex and pure HA solutions by the assays of thiazoly blue tetrazolium bromide (MTT), neutral reds, and bromodeoxyuridine (BrdU). The results showed that employment of BDDEs beyond critical amounts showed lower biocompatibility of the crosslinked HA hydrogels but higher crosslinking degrees and mechanical properties, indicating the importance of controlling the HA concentrations, BDDE amounts and their reaction times for the synthesis of the crosslinked HA hydrogels for their clinical applications as biomaterials. © 2015 Wiley Periodicals, Inc.

  2. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclical amplification with beads (PMCAb)

    USGS Publications Warehouse

    Johnson, Chad J.; Aiken, Judd M.; McKenzie, Debbie; Samuel, Michael D.; Pedersen, Joel A.

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/−mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  3. Highly Efficient Amplification of Chronic Wasting Disease Agent by Protein Misfolding Cyclic Amplification with Beads (PMCAb)

    PubMed Central

    Johnson, Chad J.; Aiken, Judd M.; McKenzie, Debbie; Samuel, Michael D.; Pedersen, Joel A.

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/− mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility. PMID:22514738

  4. Disc erosion in Models 103 and 104 of Beall mitral valve prostheses

    PubMed Central

    Gómez, Ricardo; Verduras, María José; Lopez-Quintana, Alfonso; Riera, Luis; Zerolo, Ignacio; Martinez-Bordiu, Cristóbal

    1981-01-01

    Three cases of severe disc variance and erosion of the Teflon-disc Beall mitral valve prosthesis (Models 103 and 104) are reported. In two patients, the Beall mitral valves were excised and replaced with two Björk-Shiley mitral valves. The remaining patient did not survive, and at autopsy, the lens was found at the aortic bifurcation level. Because of this potentially lethal complication, careful follow-up of patients with Beall mitral valve prostheses (Models 103 and 104) is recommended. Images PMID:15216211

  5. Air Force Geophysics Laboratory Aerodynamically Shaped Tethered Balloon. 45,000 Cubic Feet.

    DTIC Science & Technology

    1980-12-01

    21 ~i ag 1 -- - - - - ’U - .~ zw ’U - - .~ -- ~ - ~-4 a~ - ~ N. ’U 1 N. - - - ~ - - ~- >- - ~J-’~ - -4-4 ~4 Cf -4 N N~’ N -, N. N.-~N.N.- N. ~ ~ ~ N N...extent that the physical parafmters will change, thus requiring vendor formulation selection. The above polymers plus others such as Teflon, Saran and EPDM ...Lnating Between Plies L utYi1 rubber i,, recommended by ILC Dover, instead of neoprene, for the middle 1,1vor of 󈧏 two ply biased laminated

  6. Microfluidics Transport and Path Control via Programmable Electrowetting on Dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodore W. Von Bitner, Ph.D.

    2002-08-22

    This research was conducted in collaboration with Professor Chang-Jin Kim of the University of California, Los Angeles. In phase I, the IOS-UCLA collaboration demonstrated the transport and manipulation of insulting liquid droplets using the principles of EWOD. A postage stamp sized array of electronically addressable Teflon pads, whose surface tension characteristics could be altered on command through computer algorithms, was developed and tested using deionized water as the liquid. Going beyond the tasks originally proposed for Phase I, droplet manipulation was achieved and droplet stability in the EWOD device was examined.

  7. Silver-Teflon coating improvement

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1976-01-01

    Approximately forty adhesives were subjected to laboratory screening. Seven candidate adhesives were selected from the screening tests and evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on epoxide, polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint-on or spray-on adhesives. The panels were tested in a space environmental simulation laboratory chamber during the July 9-20, 1973 time span.

  8. Solar array experiments on the Sphinx satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  9. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  10. Water Quality Research Program: Recent Developments in the Analysis of Metals in Water, Wastewater, and Other Matrices.

    DTIC Science & Technology

    1987-11-01

    for various types of samples and acids. The system features PFA -closed vessels that will tolerate up to 100 psi, a Teflon-lined cavity that reduces...complexes. Selec- tivity is accomplished by masking agents and pH adjustment and sorption on a small XAD-4 resin column. Evaporation of solvent 119...same pH, Cr(VI) is selectively reduced to Cr(III) and accumulated by adsorption at -0.3 V versus SCE (Batley and Matousek 1980). 150. Sorption , ion

  11. Resonant frequency of microstrip antennas calculated from TE-excitation of an infinite strip embedded in a grounded dielectric slab

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1979-01-01

    The calculation of currents induced by a plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer the resonant width (or frequency) of rectangular microstrip antennas. By placing the strip inside the dielectric, the effect of a dielectric cover of the same material as the substrate can be included in the calculation of resonant frequency. A comparison with measured results indicated agreement of 1 percent or better for rectangular microstrip antennas constructed on Teflon-fiberglass substrate.

  12. Observed light yield of scintillation pixels: Extending the two-ray model

    NASA Astrophysics Data System (ADS)

    Kantorski, Igor; Jurkowski, Jacek; Drozdowski, Winicjusz

    2016-09-01

    In this paper we propose an extended, two dimensional model describing the propagation of scintillation photons inside a cuboid crystal until they reach a PMT window. In the simplest approach the model considers two main reasons for light losses: standard absorption obeying the classical Lambert-Beer law and non-ideal reflectivity of the "mummy" covering formed by several layers of Teflon tape wrapping the sample. Results of the model calculations are juxtaposed with experimental data as well as with predictions of an earlier, one dimensional model.

  13. Insulin Infusion Sets: A Critical Reappraisal.

    PubMed

    Heinemann, Lutz

    2016-05-01

    An insulin infusion set (IIS) is a key component of insulin pumps. In daily practice issues with the IIS appear to be as relevant for a successful insulin therapy as the pumps themselves. The insulin is applied to the subcutaneous tissue via a Teflon(®) (Dupont, Wilmington, DE) or steel cannula. There are intensive discussions about the impact the choice of material for insulin application has on insulin pharmacokinetics. In this review, this factor and others that are known to have an impact on the successful usage of IIS are discussed.

  14. Ozone measurements

    NASA Technical Reports Server (NTRS)

    Randhawa, J.

    1978-01-01

    The chemiluminescent ozonesonde to be flown with the STRATCOM balloon flight consisted of two main parts: (1) A constant-volume sampling pump made from TEFLON was used for the intake of the air sample. Sample was drawn at a rate of 200 millimeters per minute. (2) Ozone was detected by the chemiluminescent process (Rhodamine - B). Ozone molecules in the air sample flowed over the detector and the photons produced by the destruction of ozone molecules on the chemiluminescent material were monitored by the photomultiplier tube, the output signal from which was transmitted to the ground receiver.

  15. Evaluation and Prediction of Henry’s Law Constants and Aqueous Solubilities for Solvents and Hydrocarbon Fuel Components. Volume 1. Technical Discussion

    DTIC Science & Technology

    1987-09-01

    spectrum cap with a Teflonýliner facing toward the bottle headspace. These liners are used only once to prevent adsorption of test compound into the...used to predict carbon adsorption of contaminants, and the air or steam stripping behavior for a given organic. For highly soluble materials these data...first of these stems from the organic-solute losses due to adsorption of the solute on the flask walls or to evaporation. This quantity is somewhat

  16. Cold Background, Flight Motion Simulator Mounted, Infrared Scene Projectors Developed for use in AMRDEC Hardware-in-the-Loop

    DTIC Science & Technology

    2004-01-01

    cooled below –40ºC with the ultra low temperature chiller operating at –50ºC. At these low temperatures, elastomer compounds (i.e. nylon hose and o...projector hardware. Consideration of steel braided Teflon hose or even a thin wall flexible steel hose will be made for future operation of the YUGO...Cajon VCR vacuum port on the bottom of the array using a metal gasket. This change eliminated one elastomer seal that was most likely to fail at low

  17. Novel Non-Intrusive Trans-Dermal Remote Wireless Micro-Fluidic Monitoring System Applied to Continuous Glucose and Lactate Assays for Casualty Care and Combat Readiness Assessment

    DTIC Science & Technology

    2004-09-01

    identification of the lettered features. 2.2 BFIT Sampling Chip The BFIT sampling chip is a flexible patch-like chip with a multilayer polymeric metal...PPy) and glucose oxidase (GOD). The BFIT fabrication process uses SU8 as a principal structural material consisting of five steps (Figure 2). This...process is a subset of an earlier technology developed for the polymer material PDMS.11,12,13,14,15 The first step was the deposition of a Teflon

  18. Prototype apparatus for the measurement of tritium in expired air using plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Ito, Takeshi

    2018-02-01

    A new apparatus for measuring tritiated water in expired air was developed using plastic scintillator (PS) pellets and a low-background liquid scintillation counter. The sensitivity of the apparatus was sufficient when a large adapted Teflon vial was used. The measurement method generated low amounts of organic waste because the PS pellets were reusable by rinsing, and had adequate detection limits. The apparatus is useful for the safety management of workers that are exposed to radioactive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of contact angle hysteresis on moving liquid film integrity

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Hsu, Y. Y.

    1972-01-01

    A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.

  20. Effect of contact angle hysteresis on moving liquid film integrity.

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Hsu, Y. Y.

    1972-01-01

    A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.

Top