Sample records for teletherapy

  1. 10 CFR 35.600 - Use of a sealed source in a remote afterloader unit, teletherapy unit, or gamma stereotactic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and..., teletherapy unit, or gamma stereotactic radiosurgery unit. A licensee shall use sealed sources in photon...

  2. 10 CFR 35.600 - Use of a sealed source in a remote afterloader unit, teletherapy unit, or gamma stereotactic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and..., teletherapy unit, or gamma stereotactic radiosurgery unit. A licensee shall use sealed sources in photon...

  3. 10 CFR 35.600 - Use of a sealed source in a remote afterloader unit, teletherapy unit, or gamma stereotactic...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and..., teletherapy unit, or gamma stereotactic radiosurgery unit. A licensee shall use sealed sources in photon...

  4. 10 CFR 35.600 - Use of a sealed source in a remote afterloader unit, teletherapy unit, or gamma stereotactic...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and..., teletherapy unit, or gamma stereotactic radiosurgery unit. A licensee shall use sealed sources in photon...

  5. 10 CFR 35.600 - Use of a sealed source in a remote afterloader unit, teletherapy unit, or gamma stereotactic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and..., teletherapy unit, or gamma stereotactic radiosurgery unit. A licensee shall use sealed sources in photon...

  6. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source...

  7. 10 CFR 35.655 - Five-year inspection for teletherapy and gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Five-year inspection for teletherapy and gamma stereotactic radiosurgery units. 35.655 Section 35.655 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic...

  8. 10 CFR 35.655 - Five-year inspection for teletherapy and gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Five-year inspection for teletherapy and gamma stereotactic radiosurgery units. 35.655 Section 35.655 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic...

  9. 10 CFR 35.655 - Five-year inspection for teletherapy and gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Five-year inspection for teletherapy and gamma stereotactic radiosurgery units. 35.655 Section 35.655 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic...

  10. 10 CFR 35.642 - Periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Periodic spot-checks for teletherapy units. 35.642 Section 35.642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.642 Periodic spot-checks...

  11. 10 CFR 35.655 - Five-year inspection for teletherapy and gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Five-year inspection for teletherapy and gamma stereotactic radiosurgery units. 35.655 Section 35.655 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic...

  12. 10 CFR 35.655 - Five-year inspection for teletherapy and gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Five-year inspection for teletherapy and gamma stereotactic radiosurgery units. 35.655 Section 35.655 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic...

  13. 10 CFR 35.642 - Periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Periodic spot-checks for teletherapy units. 35.642 Section 35.642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.642 Periodic spot-checks...

  14. 10 CFR 35.642 - Periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Periodic spot-checks for teletherapy units. 35.642 Section 35.642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.642 Periodic spot-checks...

  15. 10 CFR 35.642 - Periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Periodic spot-checks for teletherapy units. 35.642 Section 35.642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.642 Periodic spot-checks...

  16. 10 CFR 35.615 - Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.615 Section 35.615 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and...

  17. 10 CFR 35.615 - Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.615 Section 35.615 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and...

  18. 10 CFR 35.615 - Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.615 Section 35.615 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and...

  19. 10 CFR 35.615 - Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.615 Section 35.615 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and...

  20. Speech-language pathology teletherapy in rural and remote educational settings: Decreasing service inequities.

    PubMed

    Fairweather, Glenn Craig; Lincoln, Michelle Ann; Ramsden, Robyn

    2016-12-01

    The objectives of this study were to investigate the efficacy of a speech-language pathology teletherapy program for children attending schools and early childcare settings in rural New South Wales, Australia, and their parents' views on the program's feasibility and acceptability. Nineteen children received speech-language pathology sessions delivered via Adobe Connect®, Facetime © or Skype © web-conferencing software. During semi-structured interviews, parents (n = 5) described factors that promoted or threatened the program's feasibility and acceptability. Participation in a speech-language pathology teletherapy program using low-bandwidth videoconferencing improved the speech and language skills of children in both early childhood settings and primary school. Emergent themes related to (a) practicality and convenience, (b) learning, (c) difficulties and (d) communication. Treatment outcome data and parental reports verified that the teletherapy service delivery was feasible and acceptable. However, it was also evident that regular discussion and communication between the various stakeholders involved in teletherapy programs may promote increased parental engagement and acceptability.

  1. Patterns of radiotherapy infrastructure in Japan and in other countries with well-developed radiotherapy infrastructures.

    PubMed

    Nakamura, Katsumasa; Konishi, Kenta; Komatsu, Tetsuya; Sasaki, Tomonari; Shikama, Naoto

    2018-05-01

    In high-income countries, the number of radiotherapy machine per population reaches a sufficient level. However, the patterns of infrastructure of radiotherapy in high-income countries are not well known. Among 29 high-income countries with gross national income of $25,000 or more per capita, we selected 23 countries whose total number of newly diagnosed cancer patients in 2012 was reported in the Organisation for Economic Co-operation and Development Health Statistics 2017. The numbers of radiotherapy centers and teletherapy machines in each of these 23 countries were collected using the Dictionary of Radiotherapy Centers database. The number of cancer patients per teletherapy machine was 452.35-1398.22 (median 711.66) with a three-fold variation, whereas the number of cancer patients per radiotherapy center varied even more widely, from 826.16 to 5159.86 (median 2259.83) with a six-fold variation. The average number of teletherapy machines per radiotherapy center also ranged widely, from 1.24 to 8.29 (median 3.11) with a seven-fold variation. The number of teletherapy machines in each country was almost proportional to that of cancer patients, and the number of teletherapy machines per radiotherapy center was inversely related to the number of radiotherapy centers per cancer patients. The number of teletherapy machines per radiotherapy center in Japan was 1.24, the most fragmented among the high-income countries. The percentage of large radiotherapy centers having three or more teletherapy machines in Japan was the smallest among 23 high-income countries. Optimization of the radiotherapy infrastructure in Japan should be carefully considered.

  2. Human factors evaluation of teletherapy: Function and task analysis. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, R.D.; Henriksen, K.; Jones, R.

    1995-07-01

    As a treatment methodology, teletherapy selectively destroys cancerous and other tissue by exposure to an external beam of ionizing radiation. Sources of radiation are either a radioactive isotope, typically Cobalt-60 (Co-60), or a linear accelerator. Records maintained by the NRC have identified instances of teletherapy misadministration where the delivered radiation dose has differed from the radiation prescription (e.g., instances where fractions were delivered to the wrong patient, to the wrong body part, or were too great or too little with respect to the defined treatment volume). Both human error and machine malfunction have led to misadministrations. Effective and safe treatmentmore » requires a concern for precision and consistency of human-human and human-machine interactions throughout the course of therapy. The present study is the first part of a series of human factors evaluations for identifying the root causes that lead to human error in the teletherapy environment. The human factors evaluations included: (1) a function and task analysis of teletherapy activities, (2) an evaluation of the human-system interfaces, (3) an evaluation of procedures used by teletherapy staff, (4) an evaluation of the training and qualifications of treatment staff (excluding the oncologists), (5) an evaluation of organizational practices and policies, and (6) an identification of problems and alternative approaches for NRC and industry attention. The present report addresses the function and task analysis of teletherapy activities and provides the foundation for the conduct of the subsequent evaluations. The report includes sections on background, methodology, a description of the function and task analysis, and use of the task analysis findings for the subsequent tasks. The function and task analysis data base also is included.« less

  3. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  4. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  5. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  6. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  7. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  8. 10 CFR 35.642 - Periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... coincidence of the radiation field and the field indicated by the light beam localizing device; (4) The... to assure proper operation of— (1) Electrical interlocks at each teletherapy room entrance; (2) Electrical or mechanical stops installed for the purpose of limiting use of the primary beam of radiation...

  9. 10 CFR 35.2642 - Records of periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of periodic spot-checks for teletherapy units. 35.2642 Section 35.2642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records... of each entrance door electrical interlock, each electrical or mechanical stop, each source exposure...

  10. 10 CFR 35.2642 - Records of periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of periodic spot-checks for teletherapy units. 35.2642 Section 35.2642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records... of each entrance door electrical interlock, each electrical or mechanical stop, each source exposure...

  11. 10 CFR 35.2642 - Records of periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of periodic spot-checks for teletherapy units. 35.2642 Section 35.2642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records... of each entrance door electrical interlock, each electrical or mechanical stop, each source exposure...

  12. Evaluated teletherapy source library

    DOEpatents

    Cox, Lawrence J.; Schach Von Wittenau, Alexis E.

    2000-01-01

    The Evaluated Teletherapy Source Library (ETSL) is a system of hardware and software that provides for maintenance of a library of useful phase space descriptions (PSDs) of teletherapy sources used in radiation therapy for cancer treatment. The PSDs are designed to be used by PEREGRINE, the all-particle Monte Carlo dose calculation system. ETSL also stores other relevant information such as monitor unit factors (MUFs) for use with the PSDs, results of PEREGRINE calculations using the PSDs, clinical calibration measurements, and geometry descriptions sufficient for calculational purposes. Not all of this information is directly needed by PEREGRINE. It also is capable of acting as a repository for the Monte Carlo simulation history files from which the generic PSDs are derived.

  13. 10 CFR 35.610 - Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.610 Section 35.610 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units...

  14. 10 CFR 35.690 - Training for use of remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Training for use of remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.690 Section 35.690 Energy NUCLEAR REGULATORY...) Radiation physics and instrumentation; (B) Radiation protection; (C) Mathematics pertaining to the use and...

  15. 10 CFR 35.690 - Training for use of remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Training for use of remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.690 Section 35.690 Energy NUCLEAR REGULATORY...) Radiation physics and instrumentation; (B) Radiation protection; (C) Mathematics pertaining to the use and...

  16. 10 CFR 35.690 - Training for use of remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Training for use of remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.690 Section 35.690 Energy NUCLEAR REGULATORY...) Radiation physics and instrumentation; (B) Radiation protection; (C) Mathematics pertaining to the use and...

  17. 10 CFR 35.690 - Training for use of remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Training for use of remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.690 Section 35.690 Energy NUCLEAR REGULATORY...) Radiation physics and instrumentation; (B) Radiation protection; (C) Mathematics pertaining to the use and...

  18. 10 CFR 35.610 - Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.610 Section 35.610 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units...

  19. 10 CFR 35.610 - Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.610 Section 35.610 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units...

  20. 10 CFR 35.610 - Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.610 Section 35.610 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units...

  1. 10 CFR 35.610 - Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Safety procedures and instructions for remote afterloader units, teletherapy units, and gamma stereotactic radiosurgery units. 35.610 Section 35.610 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units...

  2. Multiple Stakeholder Perspectives on Teletherapy Delivery of Speech Pathology Services in Rural Schools: A Preliminary, Qualitative Investigation

    PubMed Central

    LINCOLN, MICHELLE; HINES, MONIQUE; FAIRWEATHER, CRAIG; RAMSDEN, ROBYN; MARTINOVICH, JULIA

    2015-01-01

    The objective of this study was to investigate stakeholders’ views on the feasibility and acceptability of a pilot speech pathology teletherapy program for children attending schools in rural New South Wales, Australia. Nine children received speech pathology sessions delivered via Adobe Connect® web-conferencing software. During semi-structured interviews, school principals (n = 3), therapy facilitators (n = 7), and parents (n = 6) described factors that promoted or threatened the program’s feasibility and acceptability. Themes were categorized according to whether they related to (a) the use of technology; (b) the school-based nature of the program; or (c) the combination of using technology with a school-based program. Despite frequent reports of difficulties with technology, teletherapy delivery of speech pathology services in schools was highly acceptable to stakeholders. However, the use of technology within a school environment increased the complexities of service delivery. Service providers should pay careful attention to planning processes and lines of communication in order to promote efficiency and acceptability of teletherapy programs. PMID:25945230

  3. Symmetry-Based Variance Reduction Applied to 60Co Teletherapy Unit Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Sheikh-Bagheri, D.

    A new variance reduction technique (VRT) is implemented in the BEAM code [1] to specifically improve the efficiency of calculating penumbral distributions of in-air fluence profiles calculated for isotopic sources. The simulations focus on 60Co teletherapy units. The VRT includes splitting of photons exiting the source capsule of a 60Co teletherapy source according to a splitting recipe and distributing the split photons randomly on the periphery of a circle, preserving the direction cosine along the beam axis, in addition to the energy of the photon. It is shown that the use of the VRT developed in this work can lead to a 6-9 fold improvement in the efficiency of the penumbral photon fluence of a 60Co beam compared to that calculated using the standard optimized BEAM code [1] (i.e., one with the proper selection of electron transport parameters).

  4. Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy.

    PubMed

    Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan

    2018-06-01

    Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Report to Congress on abnormal occurrences, October--December 1994. Volume 17, No. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence (AO) as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such occurrences to be made to Congress. This report provides a description of those incidents and events that have been determined to be AOs during the period of October 1 through December 31, 1994. This report addresses four AOs at NRC-licensed facilities. These occurrences involved the following: a generic concern relating to core shroud cracking in boilingmore » water reactors; recurring incidents of administering higher doses than procedurally allowed for diagnostic imaging at a single facility; one medical teletherapy misadministration; and one medical brachytherapy misadministration. Agreement States submitted four AO reports. These four occurrences involved the following: one major contamination at a commercial facility; two medical brachytherapy misadministrations; and one medical teletherapy misadministration. The report also contains updates of seven AOs previously reported by NRC licensees and four AOs previously reported by the Agreement States. Two ``Other Events of Interest`` are also being reported. These occurrences involved the operability of safety relief valves at a nuclear power plant, and an error in the installation process of a Leksell Gamma KnifeR teletherapy unit that resulted in an operational failure.« less

  6. Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study.

    PubMed

    Baba, Misba H; Mohib-Ul-Haq, M; Khan, Aijaz A

    2013-01-01

    The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.). The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery.

  7. A Roadmap and Cost Implications of Establishing Comprehensive Cancer Care Using a Teleradiotherapy Network in a Group of Sub-Saharan African Countries With No Access to Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Niloy R., E-mail: niloyranjan.datta@ksa.ch; Heuser, Michael; Bodis, Stephan

    Purpose: To propose a roadmap and explore the cost implications of establishing a teleradiotherapy network to provide comprehensive cancer care and capacity building in countries without access to radiation therapy. Methods and Materials: Ten low-income sub-Saharan countries with no current radiation therapy facilities were evaluated. A basic/secondary radiation therapy center (SRTC) with 2 teletherapy, 1 brachytherapy, 1 simulator, and a treatment planning facility was envisaged at a cost of 5 million US dollars (USD 5M). This could be networked with 1 to 4 primary radiation therapy centers (PRTC) with 1 teletherapy unit, each costing USD 2M. The numbers of PRTCsmore » and SRTCs for each country were computed on the basis of cancer incidence, assuming that a PRTC and SRTC could respectively treat 450 and 900 patients annually. Results: An estimated 71,215 patients in these countries will need radiation therapy in 2020. Stepwise establishment of a network with 99 PRTCs and 28 SRTCs would result in 155 teletherapy units and 96% access to radiation therapy. A total of 310 radiation oncologists, 155 medical physicists, and 465 radiation therapy technologists would be needed. Capacity building could be undertaken through telementoring by networking to various international institutions and professional societies. Total infrastructure costs would be approximately USD 860.88M, only 0.94% of the average annual gross domestic product of these 10 countries. A total of 1.04 million patients could receive radiation therapy during the 15-year lifespan of a teletherapy unit for an investment of USD 826.69 per patient. For the entire population of 218.32 million, this equates to USD 4.11 per inhabitant. Conclusion: A teleradiotherapy network could be a cost-contained innovative health care strategy to provide effective comprehensive cancer care through resource sharing and capacity building. The network could also be expanded to include other allied specialties. The proposal calls for active coordination between all national and international organizations backed up by strong geopolitical commitment and action from all stakeholders.« less

  8. 10 CFR 36.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...

  9. 10 CFR 36.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...

  10. 10 CFR 36.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...

  11. 10 CFR 36.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. ...

  12. Assessment of Haptic Interaction for Home-Based Physical Tele-Therapy using Wearable Devices and Depth Sensors.

    PubMed

    Barmpoutis, Angelos; Alzate, Jose; Beekhuizen, Samantha; Delgado, Horacio; Donaldson, Preston; Hall, Andrew; Lago, Charlie; Vidal, Kevin; Fox, Emily J

    2016-01-01

    In this paper a prototype system is presented for home-based physical tele-therapy using a wearable device for haptic feedback. The haptic feedback is generated as a sequence of vibratory cues from 8 vibrator motors equally spaced along an elastic wearable band. The motors guide the patients' movement as they perform a prescribed exercise routine in a way that replaces the physical therapists' haptic guidance in an unsupervised or remotely supervised home-based therapy session. A pilot study of 25 human subjects was performed that focused on: a) testing the capability of the system to guide the users in arbitrary motion paths in the space and b) comparing the motion of the users during typical physical therapy exercises with and without haptic-based guidance. The results demonstrate the efficacy of the proposed system.

  13. Design and study of ultrasound‐based automatic patient movement monitoring device for quantifying the intrafraction motion during teletherapy treatment

    PubMed Central

    Vinothraj, R.

    2012-01-01

    The aim of the present study is to fabricate indigenously ultrasonic‐based automatic patient's movement monitoring device (UPMMD) that immediately halts teletherapy treatment if a patient moves, claiming accurate field treatment. The device consists of circuit board, magnetic attachment device, LED indicator, speaker, and ultrasonic emitter and receiver, which are placed on either side of the treatment table. The ultrasonic emitter produces the ultrasound waves and the receiver accepts the signal from the patient. When the patient moves, the receiver activates the circuit, an audible warning sound will be produced in the treatment console room alerting the technologist to stop treatment. Simultaneously, the electrical circuit to the teletherapy machine will be interrupted and radiation will be halted. The device and alarm system can detect patient movements with a sensitivity of about 1 mm. Our results indicate that, in spite of its low‐cost, low‐power, high‐precision, nonintrusive, light weight, reusable and simplicity features, UPMMD is highly sensitive and offers accurate measurements. Furthermore, UPMMD is patient‐friendly and requires minimal user training. This study revealed that the device can prevent the patient's normal tissues from unnecessary radiation exposure, and also it is helpful to deliver the radiation to the correct tumor location. Using this alarming system the patient can be repositioned after interrupting the treatment machine manually. It also enables the technologists to do their work more efficiently. PACS number: 87.53.Dq PMID:23149769

  14. 10 CFR 35.632 - Full calibration measurements on teletherapy units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... use of the unit; and (2) Before medical use under the following conditions: (i) Whenever spot-check...) of this section must be performed by the authorized medical physicist. (g) A licensee shall retain a...

  15. 10 CFR 35.632 - Full calibration measurements on teletherapy units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... use of the unit; and (2) Before medical use under the following conditions: (i) Whenever spot-check...) of this section must be performed by the authorized medical physicist. (g) A licensee shall retain a...

  16. 10 CFR 35.632 - Full calibration measurements on teletherapy units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... use of the unit; and (2) Before medical use under the following conditions: (i) Whenever spot-check...) of this section must be performed by the authorized medical physicist. (g) A licensee shall retain a...

  17. 10 CFR 35.632 - Full calibration measurements on teletherapy units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use of the unit; and (2) Before medical use under the following conditions: (i) Whenever spot-check...) of this section must be performed by the authorized medical physicist. (g) A licensee shall retain a...

  18. 10 CFR 35.632 - Full calibration measurements on teletherapy units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... use of the unit; and (2) Before medical use under the following conditions: (i) Whenever spot-check...) of this section must be performed by the authorized medical physicist. (g) A licensee shall retain a...

  19. Endometrial response to endogenous hormones after pelvic irradiation for genital malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, J.E.; Whitney, C.W.; Zaino, R.

    1990-01-01

    Two cases are presented which demonstrate histologically an endometrial response to endogenous hormones after pelvic teletherapy and brachytherapy in patients who have undergone lateral ovarian transposition. Reasons for such a response are briefly discussed.

  20. Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study

    PubMed Central

    Baba, Misba H; Mohib-ul-Haq, M.; Khan, Aijaz A.

    2013-01-01

    Objective The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. Methodology The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.) Results The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. Conclusion The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery. PMID:23559901

  1. 10 CFR 35.690 - Training for use of remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... measurement of radioactivity; and (D) Radiation biology; and (ii) 500 hours of work experience, under the... section, and has achieved a level of competency sufficient to function independently as an authorized user...

  2. Adaptive Tele-Therapies Based on Serious Games for Health for People with Time-Management and Organisational Problems: Preliminary Results

    PubMed Central

    Frutos-Pascual, Maite; García Zapirain, Begoña; Méndez Zorrilla, Amaia

    2014-01-01

    Attention Deficit with Hyperactivity Disorder (ADHD) is one of the most prevalent disorders within the child population today. Inattention problems can lead to greater difficulties in completing assignments, as well as problems with time management and prioritisation of tasks. This article presents an intelligent tele-therapy tool based on Serious Games for Health, aimed at the improvement of time management skills and the prioritisation of tasks. This tele-system is based on the use of decision trees within Django, a high-level Python Web framework. The technologies and techniques used were selected so as to boost user involvement and to enable the system to be easily customised. This article shows the preliminary results of the pilot-phase in an experiment performed to evaluate the use of adaptive tele-therapies within a group of typically developing children and adolescents aged between 12 and 19 years old without ADHD. To do so, we relied on the collection of parameters and the conduct of surveys for assessing time management skills, as well as measuring system usability and availability. The results of a time management survey highlighted that the users involved in the trial did not use any specific or effective time management techniques, scoring 1.98 and 2.30 out of 5 points in this area for ages under 15 and over 16 years old, respectively. The final calculations based on the usability questionnaire resulted in an average score of 78.75 out of 100. The creation of a customisable tool capable of working with different skills, in conjunction with the replication of the current study, may help to understand these users’ needs, as well as boosting time management skills among teenagers with and without ADHD. PMID:24402063

  3. Radiation therapy infrastructure and human resources in low- and middle-income countries: present status and projections for 2020.

    PubMed

    Datta, Niloy R; Samiei, Massoud; Bodis, Stephan

    2014-07-01

    Radiation therapy, a key component of cancer management, is required in more than half of new cancer patients, particularly in low- and middle-income countries (LMICs). The projected rise in cancer incidence over the next decades in LMICs will result in an increasing demand for radiation therapy services. Considering the present cancer incidence and that projected for 2020 (as listed in GLOBOCAN), we evaluated the current and anticipated needs for radiation therapy infrastructure and staffing by 2020 for each of the LMICs. Based on World Bank classification, 139 countries fall in the category of LMICs. Details of teletherapy, radiation oncologists, medical physicists, and radiation therapy technologists were available for 84 LMICs from the International Atomic Energy Agency-Directory of Radiotherapy Centres (IAEA-DIRAC) database. Present requirements and those for 2020 were estimated according to recommendations from the IAEA and European Society for Radiotherapy & Oncology (ESTRO-QUARTS). Only 4 of the 139 LMICs have the requisite number of teletherapy units, and 55 (39.5%) have no radiation therapy facilities at present. Patient access to radiation therapy in the remaining 80 LMICs ranges from 2.3% to 98.8% (median: 36.7%). By 2020, these 84 LMICs would additionally need 9169 teletherapy units, 12,149 radiation oncologists, 9915 medical physicists, and 29,140 radiation therapy technologists. Moreover, de novo radiation therapy facilities would have to be considered for those with no services. Twelve pragmatic steps are proposed for consideration at national and international levels to narrow the gap in radiation therapy access. Multipronged and coordinated action from all national and international stakeholders is required to develop realistic strategies to curb this impending global crisis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Radiation Therapy Infrastructure and Human Resources in Low- and Middle-Income Countries: Present Status and Projections for 2020

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Niloy R., E-mail: niloyranjan.datta@ksa.ch; Samiei, Massoud; Bodis, Stephan

    2014-07-01

    Purpose: Radiation therapy, a key component of cancer management, is required in more than half of new cancer patients, particularly in low- and middle-income countries (LMICs). The projected rise in cancer incidence over the next decades in LMICs will result in an increasing demand for radiation therapy services. Considering the present cancer incidence and that projected for 2020 (as listed in GLOBOCAN), we evaluated the current and anticipated needs for radiation therapy infrastructure and staffing by 2020 for each of the LMICs. Methods and Materials: Based on World Bank classification, 139 countries fall in the category of LMICs. Details ofmore » teletherapy, radiation oncologists, medical physicists, and radiation therapy technologists were available for 84 LMICs from the International Atomic Energy Agency–Directory of Radiotherapy Centres (IAEA-DIRAC) database. Present requirements and those for 2020 were estimated according to recommendations from the IAEA and European Society for Radiotherapy and Oncology (ESTRO-QUARTS). Results: Only 4 of the 139 LMICs have the requisite number of teletherapy units, and 55 (39.5%) have no radiation therapy facilities at present. Patient access to radiation therapy in the remaining 80 LMICs ranges from 2.3% to 98.8% (median: 36.7%). By 2020, these 84 LMICs would additionally need 9169 teletherapy units, 12,149 radiation oncologists, 9915 medical physicists, and 29,140 radiation therapy technologists. Moreover, de novo radiation therapy facilities would have to be considered for those with no services. Conclusions: Twelve pragmatic steps are proposed for consideration at national and international levels to narrow the gap in radiation therapy access. Multipronged and coordinated action from all national and international stakeholders is required to develop realistic strategies to curb this impending global crisis.« less

  5. Adaptive tele-therapies based on serious games for health for people with time-management and organisational problems: preliminary results.

    PubMed

    Frutos-Pascual, Maite; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2014-01-07

    Attention Deficit with Hyperactivity Disorder (ADHD) is one of the most prevalent disorders within the child population today. Inattention problems can lead to greater difficulties in completing assignments, as well as problems with time management and prioritisation of tasks. This article presents an intelligent tele-therapy tool based on Serious Games for Health, aimed at the improvement of time management skills and the prioritisation of tasks. This tele-system is based on the use of decision trees within Django, a high-level Python Web framework. The technologies and techniques used were selected so as to boost user involvement and to enable the system to be easily customised. This article shows the preliminary results of the pilot-phase in an experiment performed to evaluate the use of adaptive tele-therapies within a group of typically developing children and adolescents aged between 12 and 19 years old without ADHD. To do so, we relied on the collection of parameters and the conduct of surveys for assessing time management skills, as well as measuring system usability and availability. The results of a time management survey highlighted that the users involved in the trial did not use any specific or effective time management techniques, scoring 1.98 and 2.30 out of 5 points in this area for ages under 15 and over 16 years old, respectively. The final calculations based on the usability questionnaire resulted in an average score of 78.75 out of 100. The creation of a customisable tool capable of working with different skills, in conjunction with the replication of the current study, may help to understand these users' needs, as well as boosting time management skills among teenagers with and without ADHD.

  6. 10 CFR 35.605 - Installation, maintenance, adjustment, and repair.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Installation, maintenance, adjustment, and repair. 35.605 Section 35.605 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.605...

  7. 10 CFR 35.605 - Installation, maintenance, adjustment, and repair.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Installation, maintenance, adjustment, and repair. 35.605 Section 35.605 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.605...

  8. 10 CFR 35.605 - Installation, maintenance, adjustment, and repair.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Installation, maintenance, adjustment, and repair. 35.605 Section 35.605 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.605...

  9. 10 CFR 35.605 - Installation, maintenance, adjustment, and repair.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Installation, maintenance, adjustment, and repair. 35.605 Section 35.605 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.605...

  10. 10 CFR 35.605 - Installation, maintenance, adjustment, and repair.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Installation, maintenance, adjustment, and repair. 35.605 Section 35.605 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.605...

  11. 10 CFR 36.1 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... area subject to irradiation are contained within a device and are not accessible by personnel), medical radiology or teletherapy, radiography (the irradiation of materials for nondestructive testing purposes), gauging, or open-field (agricultural) irradiations. [58 FR 7728, Feb. 9, 1993, as amended at 78 FR 17007...

  12. Combining Teletherapy and On-line Language Exercises in the Treatment of Chronic Aphasia: An Outcome Study

    PubMed Central

    STEELE, RICHARD D.; BAIRD, ALLISON; MCCALL, DENISE; HAYNES, LISA

    2015-01-01

    We report a 12-week outcome study in which nine persons with long-term chronic aphasia received individual and group speech-language teletherapy services, and also used on-line language exercises to practice from home between therapy sessions. Participants were assessed at study initiation and completion using the Western Aphasia Battery, a portion of the Communicative Effectiveness Index, ASHA National Outcome Measurement System, and RIC Communication Confidence Rating Scale for Aphasia; additionally participants were polled regarding satisfaction at discharge. Pretreatment and post-treatment means were calculated and compared, and matched t-tests were used to determine significance of improvements following treatment, with patterns of independent on-line activity analyzed. Analysis of scores shows that means improved on most measures following treatment, generally significantly: the WAB AQ improved +3.5 (p = .057); the CETI Overall (of items administered) — +17.8 (p = .01), and CCRSA Overall — + 10.4 (p = .0004). Independent work increased with time, and user satisfaction following participation was high. PMID:25945225

  13. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  14. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  15. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  16. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Additional technical requirements for mobile remote afterloader units. 35.647 Section 35.647 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  17. 10 CFR 35.657 - Therapy-related computer systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Therapy-related computer systems. 35.657 Section 35.657... Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.657 Therapy-related computer... computer systems in accordance with published protocols accepted by nationally recognized bodies. At a...

  18. 10 CFR 35.657 - Therapy-related computer systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Therapy-related computer systems. 35.657 Section 35.657... Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.657 Therapy-related computer... computer systems in accordance with published protocols accepted by nationally recognized bodies. At a...

  19. 10 CFR 35.657 - Therapy-related computer systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Therapy-related computer systems. 35.657 Section 35.657... Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.657 Therapy-related computer... computer systems in accordance with published protocols accepted by nationally recognized bodies. At a...

  20. 10 CFR 35.657 - Therapy-related computer systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Therapy-related computer systems. 35.657 Section 35.657... Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.657 Therapy-related computer... computer systems in accordance with published protocols accepted by nationally recognized bodies. At a...

  1. 10 CFR 35.657 - Therapy-related computer systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Therapy-related computer systems. 35.657 Section 35.657... Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.657 Therapy-related computer... computer systems in accordance with published protocols accepted by nationally recognized bodies. At a...

  2. 10 CFR 35.2642 - Records of periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....2642 Section 35.2642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records... must include— (1) The date of the spot-check; (2) The manufacturer's name, model number, and serial... device; (6) The determined accuracy of each distance measuring and localization device; (7) The...

  3. 10 CFR 35.2642 - Records of periodic spot-checks for teletherapy units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....2642 Section 35.2642 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records... must include— (1) The date of the spot-check; (2) The manufacturer's name, model number, and serial... device; (6) The determined accuracy of each distance measuring and localization device; (7) The...

  4. 10 CFR 35.633 - Full calibration measurements on remote afterloader units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Full calibration measurements on remote afterloader units. 35.633 Section 35.633 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.633...

  5. Analysis of errors detected in external beam audit dosimetry program at Mexican radiotherapy centers

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, José T.; Tovar-Muñoz, Víctor M.

    2012-10-01

    Presented and analyzed are the causes of deviation observed in the pilot postal dosimetry audit program to verify the absorbed dose to water Dw in external beams of teletherapy 60Co and/or linear accelerators in Mexican radiotherapy centers, during the years 2007-2011.

  6. 10 CFR 35.643 - Periodic spot-checks for remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Periodic spot-checks for remote afterloader units. 35.643 Section 35.643 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.643 Periodic...

  7. 10 CFR 35.633 - Full calibration measurements on remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Full calibration measurements on remote afterloader units. 35.633 Section 35.633 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.633...

  8. 10 CFR 35.643 - Periodic spot-checks for remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Periodic spot-checks for remote afterloader units. 35.643 Section 35.643 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.643 Periodic...

  9. 10 CFR 35.643 - Periodic spot-checks for remote afterloader units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Periodic spot-checks for remote afterloader units. 35.643 Section 35.643 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.643 Periodic...

  10. 10 CFR 35.633 - Full calibration measurements on remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Full calibration measurements on remote afterloader units. 35.633 Section 35.633 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.633...

  11. 10 CFR 35.643 - Periodic spot-checks for remote afterloader units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Periodic spot-checks for remote afterloader units. 35.643 Section 35.643 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.643 Periodic...

  12. 10 CFR 35.633 - Full calibration measurements on remote afterloader units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Full calibration measurements on remote afterloader units. 35.633 Section 35.633 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.633...

  13. 10 CFR 35.633 - Full calibration measurements on remote afterloader units.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Full calibration measurements on remote afterloader units. 35.633 Section 35.633 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.633...

  14. Specification of High Activity Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    International Commission on Radiation Units and Measurements, Washington, DC.

    The report is concerned with making recommendations for the specifications of gamma ray sources, which relate to the quantity of radioactive material and the radiation emitted. Primary consideration is given to sources in teletherapy and to a lesser extent those used in industrial radiography and in irradiation units used in industry and research.…

  15. 10 CFR 35.615 - Safety precautions for remote afterloader units, teletherapy units, and gamma stereotactic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... room with viewing and intercom systems to permit continuous observation of the patient or the human... treatment room by a door at each entrance. (b) A licensee shall equip each entrance to the treatment room... cycle unless each treatment room entrance door is closed; (2) Cause the source(s) to be shielded when an...

  16. Optically stimulated Al2O3:C luminescence dosimeters for teletherapy: Hp(10) performance evaluation.

    PubMed

    Hashim, S; Musa, Y; Ghoshal, S K; Ahmad, N E; Hashim, I H; Yusop, M; Bradley, D A; Kadir, A B A

    2018-05-01

    The performance of optically stimulated luminescence dosimeters (OSLDs, Al 2 O 3 :C) was evaluated in terms of the operational quantity of H P (10) in Co-60 external beam teletherapy unit. The reproducibility, signal depletion, and dose linearity of each dosimeter was investigated. For ten repeated readouts, each dosimeter exposed to 50mSv was found to be reproducible below 1.9 ± 3% from the mean value, indicating good reader stability. Meanwhile, an average signal reduction of 0.5% per readout was found. The dose response revealed a good linearity within the dose range of 5-50mSv having nearly perfect regression line with R 2 equals 0.9992. The accuracy of the measured doses were evaluated in terms of operational quantity H P (10), wherein the trumpet curve method was used respecting the 1990 International Commission on Radiological Protection (ICRP) standard. The accuracy of the overall measurements from all dosimeters was discerned to be within the trumpet curve and devoid of outlier. It is established that the achieved OSL Al 2 O 3 :C dosimeters are greatly reliable for equivalent dose assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. In regard to "Tran A, Zhang J, Woods K, Yu V, Nguyen D, Gustafson G, Rosen L, Sheng K. Treatment planning comparison of IMPT, VMAT and 4π radiotherapy for prostate cases. Radiation oncology. 2017 Jan 11; 12(1):10".

    PubMed

    Sarkar, Biplab

    2018-04-12

    This article describe the three dimensional geometrical incompetency of the term "4π radiotherapy"; frequently used in radiation oncology to establish the superiority (or rather complexity) of particular kind of external beam delivery technique. It was claimed by several researchers, to obtain 4π c solid angle at target centre created by the tele-therapy delivery machine in three dimensional Euclidian space. However with the present design of linear accelerator (or any other tele-therapy machine) it is not possible to achieve more than 2π c with the allowed boundary condition of 0 ≤ Gnatry position≤π c and [Formula: see text]≤Couch Position≤[Formula: see text] .This article describes why it is not possible to achieve a 4π c solid angle at any point in three dimensional Euclidian spaces. This article also recommends not to use the terminology "4π radiotherapy" for describing any external beam technique or its complexity as this term is geometrically wrong.

  18. Verification of Entrance Dose Measurements with Thermoluminescent Dosimeters in Conventional Radiotherapy Procedures Delivered with Co-60 Teletherapy Machine.

    PubMed

    Evwierhurhoma, O B; Ibitoye, Z A; Ojieh, C A; Duncan, Jtk

    2015-01-01

    The use of in vivo dosimetry with thermolumiscent dosimeters (TLDs) as a veritable means of quality control in conventional radiotherapy procedures was determined in this work. The objective of this study was to determine the role of in vivo dosimetry with thermoluminescent dosimeters (TLDs) as part of quality control and audit in conventional radiotherapy procedures delivered with Co-60 teletherapy machine. Fifty-seven patients with cancers of the breast, pelvis, head and neck were admitted for this study. TLD system at the Radiation Monitoring and Protection Centre, Lagos State University, Ojo, Lagos-Nigeria was used for the in vivo entrance dose readings. All patients were treated with Co-60 (T780c) teletherapy machine at 80 cm source to surface distance located at Eko Hospitals, Lagos. Two TLDs were placed on the patient surface within 1 cm from the center of the field of treatment. Build-up material made of paraffin wax with a density of 0.939 g/cm(3) and a thickness 0.5 cm was placed on top of the TLDs. A RADOS RE 200 TLD reader was used to read out the TLDs over 12 s and at a temperature of 300°C. The results showed that there was no significant difference between the expected dose and measured dose of breast (P = 0.11), H and N (P = 0.52), and pelvis (P = 0.31) patients. Furthermore, percentage difference between expected dose and measured dose of the three treatment sites were not significantly different (P = 0.11). More so, 88.9% (16/18) treated breast, 91.3% (21/23) pelvis, and 86.7% (13/15) H and N patients had percentage deviation difference less than 5%. In general, 89.3% (50/56) patients admitted for this study had their percentage deviation difference below 5% recommended standard limit. The values obtained establish that there are no major differences from similar studies reported in literature. This study was also part of quality control and audit of the radiotherapy procedures in the center as expected by national and international regulatory bodies.

  19. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic filmsmore » EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed dose after two parallel opposed irradiation fields. (authors)« less

  20. Re-Shielding of Cobalt-60 Teletherapy Rooms for Tomotherapy and Conventional Linear Accelerators using Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Yazgan, Çağrı

    2017-09-01

    Purpose. Nearly all Cobalt-60 teletherapy machines were removed around the world during the last two decades. The remaining ones are being used for experimental purposes. However, the rooms of these teletherapy machines are valuable because of lack of space in radiotherapy clinics. In order to place a new technology treatment machine in one of these rooms, one should re-shield the room since it was designed only for 1.25 MeV gamma beams on average. Mostly, the vendor of the new machine constructs the new shielding of the room using their experience. However, every radiotherapy room has different surrounding work areas and it would be wise to shield the room considering these special conditions. Also, the shield design goal of the clinic may be much lower than the International Atomic Energy Agency (IAEA) or the local association accepts. The study shows re-shielding of a Cobalt-60 room, specific to the clinic, using Monte Carlo simulations. Materials & Methods: First, a 6 MV Tomotherapy machine, then a 10 MV conventional linear accelerator (LINAC) was placed inside the Cobalt-60 teletherapy room. The photon flux outside the room was simulated using Monte Carlo N-Particle (MCNP6.1) code before and after re-shielding. For the Tomotherapy simulation, flux distributions around the machine were obtained from the vendor and implemented as the source of the model. The LINAC model was more generic with the 10 MeV electron source, the tungsten target, first and secondary collimators. The aim of the model was to obtain the maximum (40x40 cm2) open field at the isocenter. Two different simulations were carried out for gantry angles 90o and 270o. The LINAC was placed in the room such that the primary walls were A' (Gantry 270o) and C' (Gantry 90o) (figure 1). The second part of the study was to model the re-shielding of the room for Tomotherapy and for the conventional LINAC, separately. The aim was to investigate the recommended shielding by the vendors. Left side of the room was adjacent to a LINAC room with 2 meters thick concrete wall (figure 1). No shielding was necessary for that wall. Behind wall A-A' there was an outdoors forbidden area; behind wall B-B' was the contouring room for the doctors; and the control room was behind wall C-C' (figure 1). After some modifications, the final shielding was designed. Results: The photon flux distributions outside the room before and after the re-shielding were compared. The re-shielding of Tomotherapy reduced the flux down to 1.89 % on average with respect to pre-shielding (table 1). For the conventional LINAC case; after re-shielding, the photon flux in the control room -which corresponds to gantry 90°- decreased down to 0.57% with respect to pre-shielding (table 2). The photon flux behind wall A' -which corresponds to gantry 270°- decreased down to 2.46%. Everybody was all safe behind wall B' even before re-shielding.

  1. Dosimetry Evolution in Teletherapy: Polimer Gel

    NASA Astrophysics Data System (ADS)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  2. SU-E-T-93: Activation of Psoralen at Depth Using Kilovoltage X-Rays: Physics Considerations in Implementing a New Teletherapy Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, J; Yoon, P; Liu, L

    2015-06-15

    Purpose: Psoralen is a UV-light activated anti-cancer biotherapeutic used for treating skin lesions (PUVA) and advanced cutaneous T-cell lymphoma (ECP). To date psoralen has not been used to treat deep seated tumors due to difficulty in generating UV-light at depth. We recently demonstrated psoralen activation at depth by introducing energy converting particles that absorb kV x-ray radiation and re-emit UV-light. Our in-vitro work found that 0.2–1Gy using 40–100kVp x-rays combined with psoralen and particles can induce a substantial apoptotic response beyond that expected from the sum of individual components. In preparation for a phase I clinical trial of canine companionmore » animals, we address the physics and dosimetry considerations for applying this new teletherapy paradigm to an in-vivo setting. Methods: The kV on-board imaging (OBI) system mounted on a medical linear accelerator (Varian) was commissioned to deliver the prescribed dose (0.6Gy) using 80 and 100kVp. Dosimetric measurements included kVp, HVL, depth dose, backscatter factors, collimator and phantom scatter factors, field size factors, and blade leakage. Absolute dosimetry was performed following AAPM TG61 recommendations and verified with an independent kV dose meter. We also investigated collimated rotational delivery to minimize skin dose using simple dose calculations on homogeneous cylindrical phantoms. Results: Single beam delivery is feasible for shallow targets (<5cm) without exceeding skin tolerance, while a rotational delivery may be utilized for deeper targets; skin dose is ∼75% of target dose for 80kVp collimated rotational delivery to a 3cm target within a 20cm phantom. Heat loading was tolerable; 0.6Gy to 5cm can be delivered before the anode reaches 75% capacity. Conclusion: KV teletherapy for Psoralen activation in deep seated tissue was successfully commissioned for a Varian OBI machine for use in a phase I clinical trial in canines. Future work will use Monte Carlo dosimetry to investigate dose in presence of bone. Research funded by Immunolight LLC. H. Walder, Z. Fathi, & W. Beyer are employees of Immunolight LLC which holds a patent on the technology. Drs. Adamson and Oldham are consultants to Immunolight LLC.« less

  3. Tumour regression of uveal melanoma after ruthenium-106 brachytherapy or stereotactic radiotherapy with gamma knife or linear accelerator.

    PubMed

    Georgopoulos, Michael; Zehetmayer, Martin; Ruhswurm, Irene; Toma-Bstaendig, Sabine; Ségur-Eltz, Nikolaus; Sacu, Stefan; Menapace, Rupert

    2003-01-01

    This study assesses differences in relative tumour regression and internal acoustic reflectivity after 3 methods of radiotherapy for uveal melanoma: (1) brachytherapy with ruthenium-106 radioactive plaques (RU), (2) fractionated high-dose gamma knife stereotactic irradiation in 2-3 fractions (GK) or (3) fractionated linear-accelerator-based stereotactic teletherapy in 5 fractions (Linac). Ultrasound measurements of tumour thickness and internal reflectivity were performed with standardised A scan pre-operatively and 3, 6, 9, 12, 18, 24 and 36 months postoperatively. Of 211 patients included in the study, 111 had a complete 3-year follow-up (RU: 41, GK: 37, Linac: 33). Differences in tumour thickness and internal reflectivity were assessed with analysis of variance, and post hoc multiple comparisons were calculated with Tukey's honestly significant difference test. Local tumour control was excellent with all 3 methods (>93%). At 36 months, relative tumour height reduction was 69, 50 and 30% after RU, GK and Linac, respectively. In all 3 treatment groups, internal reflectivity increased from about 30% initially to 60-70% 3 years after treatment. Brachytherapy with ruthenium-106 plaques results in a faster tumour regression as compared to teletherapy with gamma knife or Linac. Internal reflectivity increases comparably in all 3 groups. Besides tumour growth arrest, increasing internal reflectivity is considered as an important factor indicating successful treatment. Copyright 2003 S. Karger AG, Basel

  4. Energy- and Intensity-Modulated Electron Beam for Breast Cancer Treatment

    DTIC Science & Technology

    1999-10-01

    calculations," in Teletherapy: Present and Future, Ed. By T.R. Mackie and J.R. Palta (Advanced Medical Publishing, Madison WI) Mackie TR, Reckwerdt PJ...edited by T. R. Mackie and J. R. Palta from 10% to 20% (or a 5-20 mm shift in the isodose lines) (Advanced Medical Publishing, Madison, WI, 1996). to...Ayyangar K, Palta J R, Sweet J W and Suntharalingam N 1993 Experimental verification of a three-dimensional dose calculation algorithm using a specially

  5. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    PubMed

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  6. A review of portal screen-film technology and five radiologists' evaluations of some existing products.

    PubMed

    Walker, M A; Steinheimer, D N; Weir, V A; Homco, L D; Green, R W; Morris, E L; Hess, M E

    1999-01-01

    Portal radiographs, radiographs made to document the accuracy of radiotherapy treatment fields, are typically of poor image contrast. Recently, a new portal film and screened-cassette system was marketed, the Kodak EC-L system, with the claim of greatly improved image contrast. This new EC-L system was tested on a canine cadaver exposed to Cobalt-60 teletherapy gamma radiation, and image quality was compared to earlier marketed Kodak portal film products. The EC-L system was found to provide portal images of improved contrast/quality.

  7. Experience of disused source management in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimenta Mourao, R.

    2008-07-01

    The Centro de Desenvolvimento da Tecnologia Nuclear (Center for the Development of Nuclear Technology) - CDTN - has been actively engaged in cooperation programs for disused source management throughout the Latin American and the Caribbean region since 1996. The CDTN source conditioning team participated in the preparation of the technical procedures established for the different tasks involved in the radium sources conditioning operations, like preparation of the packaging for conditioning; sources conditioning; capsule welding; leak test in radium-containing capsule; and radiation protection planning for the conditioning of disused radium sources. The team also carried out twelve radium sources conditioning operationmore » in the region, besides in-house operations, which resulted in a total conditioned activity of approximately 525 GBq, or 14,200 mg of radium. Additionally, one operation was carried out in Nicaragua to safely condition three Cobalt teletherapy heads stored under very precarious conditions in the premises of an old hospital. More recently, the team started its participation in an IAEA- and US State Department-sponsored program for the repatriation of disused or excess transuranic sources presently stored at users' premises or under regulatory control in different countries in the region. In September 2007 the team attended a theoretical and practical training in transuranic sources management, including the participation in the conditioning of different neutron sources in certified packages. It is expected that the trained team will carry out similar operations in other Latin American countries. Finally, the team is expected be involved in the near future in the repatriation of US-origin teletherapy heads and industrial gauges. (authors)« less

  8. [Soft- and hardware support for the setup for computer tracking of radiation teletherapy].

    PubMed

    Tarutin, I G; Piliavets, V I; Strakh, A G; Minenko, V F; Golubovskiĭ, A I

    1983-06-01

    A hard and soft ware computer assisted complex has been worked out for gamma-beam therapy. The complex included all radiotherapeutic units, including a Siemens program controlled betatron with an energy of 42 MEV computer ES-1022, a Medigraf system of the processing of graphic information, a Mars-256 system for control over the homogeneity of distribution of dose rate on the field of irradiation and a package of mathematical programs to select a plan of irradiation of various tumor sites. The prospects of the utilization of such complexes in the dosimetric support of radiation therapy are discussed.

  9. COMPARTMENTALIZED PHANTOMS FOR THE STANDARD MAN, ADOLESCENT AND CHILD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, R.L.; Brucer, M.

    A compartmentalized phantom for the standard man was designed and built of readily available and inexpensive materials. Similar phantoms were also designed for an adolescent and a child. The basic emphasis in the designs is on general utility so that a variety of different dosemeasurement techniques could be used on the same phantom. The designs are, however, in reasonable agreement with authropometric data reported in the literature. The phantoms proved to be extremely useful in depth-dose and energy-absorption measurements for total-body irradiation therapy. Dose measurements with beam teletherapy, brachytherapy devices, and internally distributed radioisotopes were also made. (auth)

  10. Treatment of earlobe keloids using the cobalt 60 teletherapy unit.

    PubMed

    Malaker, Kamal; Zaidi, Mustafa; Franka, Mohamad Rida

    2004-06-01

    The purpose of this study was to develop an easily accessible technique for the delivery of postoperative radiotherapy for the treatment of earlobe keloids. Forty-seven earlobe keloids were given postoperative radiation using the smallest achievable half field Telecobalt technique. Results showed 41 (87.2%) of treated patients' postoperative scars remained free from recurrent keloid formation. Acute reactions were minimal and patient compliance was excellent. In conclusion, the technique described in this study for the delivery of postoperative radiation to earlobe keloids should be readily available in areas of high prevalence. Results are comparable to previously used radiotherapy techniques.

  11. MONTE CARLO SIMULATION OF OUT-OF-FIELD ORGAN DOSES AND CANCER RISK IN TANZANIA FOR RADIATION THERAPY OF UNILATERAL RETINOBLASTOMA USING A 60Co UNIT.

    PubMed

    Suleiman, Suleiman Ameir; Qi, Yaping; Pi, Yifei; George Xu, X

    2018-05-01

    The use of 60Co teletherapy unit for the treatment of unilateral retinoblastoma (Rb) patients is a very common procedure in many developing countries including Tanzania. The aim of this study was to estimate organ-specific absorbed doses from an external beam radiation therapy 60Co unit for unilateral Rb and to assess the risks of the patients developing a secondary primary cancer. The absorbed dose estimations were based on a Monte Carlo method and a set of age-dependent computational male phantoms. The estimated doses were used to calculate the secondary cancer risks in out-of-field organs using the Biological Effects of Ionising Radiation VII risk models. The survival information and baseline cancer risks were based on relevant statistics for the Tanzanian population. The resulting out-of-field organ doses data showed that organs which are close to the target volume, such as the brain, salivary glands and thyroid glands, received the highest absorbed dose from scattered photons during the treatment of Rb. It was also found that the resulting photons dose to specific organs depends on the patient's age. Younger patients are more sensitive to radiation and also received higher dose contributions from the treatment head due to a larger part of the body exposed to the photon radiation. In all sites considered, the overall risks associated with radiation-induced secondary cancer were relatively lower than the baseline risks. Thus, the results in this article can help to provide good estimations of radiation-induced secondary cancer after radiation treatment of unilateral Rb using 60Co teletherapy unit in Tanzania and other developing countries.

  12. Anatomic and dosimetric changes in patients with head and neck cancer treated with an integrated MRI-tri-60Co teletherapy device.

    PubMed

    Raghavan, Govind; Kishan, Amar U; Cao, Minsong; Chen, Allen M

    2016-11-01

    Prior studies have relied on CT to assess alterations in anatomy among patients undergoing radiation for head and neck cancer. We sought to determine the feasibility of using MRI-based image-guided radiotherapy to quantify these changes and to ascertain their potential dosimetric implications. 6 patients with head and neck cancer were treated with intensity-modulated radiotherapy (IMRT) on a novel tri- 60 Co teletherapy system equipped with a 0.35-T MRI (VR, ViewRay Incorporated, Oakwood Village, OH) to 66-70 Gy in 33 fractions (fx). Pre-treatment MRIs on Fx 1, 5, 10, 15, 20, 25, 30 and 33 were imported into a contouring interface, where the primary gross tumour volume (GTV) and parotid glands were delineated. The centre of mass (COM) shifts for these structures were assessed relative to Day 1. Dosimetric data were co-registered with the MRIs, and doses to the GTV and parotid glands were assessed. Primary GTVs decreased significantly over the course of IMRT (median % volume loss, 38.7%; range, 29.5-72.0%; p < 0.05) at a median rate of 1.2%/fx (range, 0.92-2.2%/fx). Both the ipsilateral and contralateral parotid glands experienced significant volume loss (p < 0.05, for all) and shifted medially during IMRT. Weight loss correlated significantly with parotid gland volume loss and medial COM shift (p < 0.05). Integrated on-board MRI can be used to accurately contour and analyze primary GTVs and parotid glands over the course of IMRT. COM shifts and significant volume reductions were observed, confirming the results of prior CT-based exercises. Advances in knowledge: The superior resolution of on-board MRI may facilitate online adaptive replanning in the future.

  13. Development, physical properties and clinical applicability of a mechanical Multileaf Collimator for the use in Cobalt-60 radiotherapy

    NASA Astrophysics Data System (ADS)

    Langhans, Marco; Echner, Gernot; Runz, Armin; Baumann, Martin; Xu, Mark; Ueltzhöffer, Stefan; Häring, Peter; Schlegel, Wolfgang

    2015-04-01

    According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.

  14. Metal-polysiloxane shields for radiation therapy of maxillo-facial tumors.

    PubMed

    Farahani, M; Eichmiller, F C; McLaughlin, W L

    1991-01-01

    In the treatment of some head and neck lesions with high-intensity radiation (teletherapy), an essential procedure is the application of an individually customized shielding appliance, which is designed, modeled, and formed into a working extra- or intraoral stent for the purpose of sparing healthy tissues. The present state of the art is slow and technique intensive, which can add to patient discomfort and inconvenience during molding and fabrication. A new formulation is described, which offers speed and ease of forming a moldable composite stent especially for intraoral use. Interleaved stacks of calibrated thin radiochromic film strips and soft-tissue-simulating plastic (polystyrene) layers gave a means of mapping one- or two-dimensional profiles of dose distributions adjacent to the high-density shielding materials using a spectrophotometer equipped with a gel scanner or a scanning laser-beam microdensitometer. Tests using collimated gamma-ray beams from a 60Co teletherapy unit were made in order to measure the dose distribution near interfaces of tissue-simulating polymer and the composite stent material with and without mixtures of metals (Ag-Cu and Sn-Sb). These results show that quickly formed composites made of a flexible resin with high concentrations of powdered spherical metal alloys provide effective custom-designed shielding, and, with a thin overlayer of the resin without metal, a diminished back-scattered radiation dose to normal tissues. An example of a successful formulation is a mixture of 90% by weight Ag-Cu alloy powder in a vinyl polysiloxane resin. This material is a moldable putty which, upon polymerization, forms a rigid elastomeric material, providing a half-value layer of approximately 2.5 to 2.8 cm for a gamma-ray beam from a 60Co source.

  15. Calibration of strontium-90 eye applicator using a strontium external beam standard.

    PubMed

    Siddle, D; Langmack, K

    1999-07-01

    Four techniques for measuring the dose rate from Sr-90 concave eye plaques are presented. The techniques involve calibrating a concave eye plaque against a Sr-90 teletherapy unit using X-Omat film, radiochromic film, black LiF TLD discs and LiF chips. The mean dose rate predicted by these dosimeters is 7.5 cGy s(-1). The dose rate quoted by the manufacturer is 33% lower than this value, which is consistent with discrepancies reported by other authors. Calibration against a 6 MV linear accelerator was also carried out using each of the above dosimetric devices, and appropriate sensitivity correction factors have been presented.

  16. Calibration of strontium-90 eye applicator using a strontium external beam standard

    NASA Astrophysics Data System (ADS)

    Siddle, D.; Langmack, K.

    1999-07-01

    Four techniques for measuring the dose rate from Sr-90 concave eye plaques are presented. The techniques involve calibrating a concave eye plaque against a Sr-90 teletherapy unit using X-Omat film, radiochromic film, black LiF TLD discs and LiF chips. The mean dose rate predicted by these dosimeters is 7.5 cGy s-1. The dose rate quoted by the manufacturer is 33% lower than this value, which is consistent with discrepancies reported by other authors. Calibration against a 6 MV linear accelerator was also carried out using each of the above dosimetric devices, and appropriate sensitivity correction factors have been presented.

  17. Stress analysis for wall structure in mobile hot cell design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effectmore » from the sand to the MHC wall structure.« less

  18. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space

    DOEpatents

    Schach Von Wittenau, Alexis E.

    2003-01-01

    A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Brandi R., E-mail: bpage@wakehealth.edu; Hudson, Alana D.; Brown, Derek W.

    The international growth of cancer and lack of available treatment is en route to become a global crisis. With >60% of cancer patients needing radiation therapy at some point during their treatment course, the lack of available facilities and treatment programs worldwide is extremely problematic. The number of deaths from treatable cancers is projected to increase to 11.5 million deaths in 2030 because the international population is aging and growing. In this review, we present how best to answer the need for radiation therapy facilities from a technical standpoint. Specifically, we examine whether cobalt teletherapy machines or megavoltage linear acceleratormore » machines are best equipped to handle the multitudes in need of radiation therapy treatment in the developing world.« less

  20. MO-D-213-02: Quality Improvement Through a Failure Mode and Effects Analysis of Pediatric External Beam Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J; Lukose, R; Bronson, J

    2015-06-15

    Purpose: To conduct a failure mode and effects analysis (FMEA) as per AAPM Task Group 100 on clinical processes associated with teletherapy, and the development of mitigations for processes with identified high risk. Methods: A FMEA was conducted on clinical processes relating to teletherapy treatment plan development and delivery. Nine major processes were identified for analysis. These steps included CT simulation, data transfer, image registration and segmentation, treatment planning, plan approval and preparation, and initial and subsequent treatments. Process tree mapping was utilized to identify the steps contained within each process. Failure modes (FM) were identified and evaluated with amore » scale of 1–10 based upon three metrics: the severity of the effect, the probability of occurrence, and the detectability of the cause. The analyzed metrics were scored as follows: severity – no harm = 1, lethal = 10; probability – not likely = 1, certainty = 10; detectability – always detected = 1, undetectable = 10. The three metrics were combined multiplicatively to determine the risk priority number (RPN) which defined the overall score for each FM and the order in which process modifications should be deployed. Results: Eighty-nine procedural steps were identified with 186 FM accompanied by 193 failure effects with 213 potential causes. Eighty-one of the FM were scored with a RPN > 10, and mitigations were developed for FM with RPN values exceeding ten. The initial treatment had the most FM (16) requiring mitigation development followed closely by treatment planning, segmentation, and plan preparation with fourteen each. The maximum RPN was 400 and involved target delineation. Conclusion: The FMEA process proved extremely useful in identifying previously unforeseen risks. New methods were developed and implemented for risk mitigation and error prevention. Similar to findings reported for adult patients, the process leading to the initial treatment has an associated high risk.« less

  1. Anatomic and dosimetric changes in patients with head and neck cancer treated with an integrated MRI-tri-60Co teletherapy device

    PubMed Central

    Raghavan, Govind; Kishan, Amar U; Cao, Minsong

    2016-01-01

    Objective: Prior studies have relied on CT to assess alterations in anatomy among patients undergoing radiation for head and neck cancer. We sought to determine the feasibility of using MRI-based image-guided radiotherapy to quantify these changes and to ascertain their potential dosimetric implications. Methods: 6 patients with head and neck cancer were treated with intensity-modulated radiotherapy (IMRT) on a novel tri-60Co teletherapy system equipped with a 0.35-T MRI (VR, ViewRay Incorporated, Oakwood Village, OH) to 66–70 Gy in 33 fractions (fx). Pre-treatment MRIs on Fx 1, 5, 10, 15, 20, 25, 30 and 33 were imported into a contouring interface, where the primary gross tumour volume (GTV) and parotid glands were delineated. The centre of mass (COM) shifts for these structures were assessed relative to Day 1. Dosimetric data were co-registered with the MRIs, and doses to the GTV and parotid glands were assessed. Results: Primary GTVs decreased significantly over the course of IMRT (median % volume loss, 38.7%; range, 29.5–72.0%; p < 0.05) at a median rate of 1.2%/fx (range, 0.92–2.2%/fx). Both the ipsilateral and contralateral parotid glands experienced significant volume loss (p < 0.05, for all) and shifted medially during IMRT. Weight loss correlated significantly with parotid gland volume loss and medial COM shift (p < 0.05). Conclusion: Integrated on-board MRI can be used to accurately contour and analyze primary GTVs and parotid glands over the course of IMRT. COM shifts and significant volume reductions were observed, confirming the results of prior CT-based exercises. Advances in knowledge: The superior resolution of on-board MRI may facilitate online adaptive replanning in the future. PMID:27653787

  2. AphasiaBank as BigData

    PubMed Central

    MacWhinney, Brian; Fromm, Davida

    2017-01-01

    AphasiaBank has used a standardized protocol to collect narrative, procedural, personal, and descriptive discourse from 290 persons with aphasia, as well as 190 control participants. These data have been transcribed in the Codes for the Human Analysis of Transcripts (CHAT) format for analysis by the Computerized Language Analysis (CLAN) programs. Here, we review results from 45 studies based on these data that investigate aphasic productions in terms of these eight areas: discourse, grammar, lexicon, gesture, fluency, syndrome classification, social factors, and treatment effects. For each area, we also indicate how use of the CLAN programs has facilitated the analysis. We conclude with an examination of ways in which the size of the database could be increased through on-site recordings and data from teletherapy. PMID:26882361

  3. AphasiaBank as BigData.

    PubMed

    MacWhinney, Brian; Fromm, Davida

    2016-02-01

    AphasiaBank has used a standardized protocol to collect narrative, procedural, personal, and descriptive discourse from 290 persons with aphasia, as well as 190 control participants. These data have been transcribed in the Codes for the Human Analysis of Transcripts (CHAT) format for analysis by the Computerized Language Analysis (CLAN) programs. Here, we review results from 45 studies based on these data that investigate aphasic productions in terms of these eight areas: discourse, grammar, lexicon, gesture, fluency, syndrome classification, social factors, and treatment effects. For each area, we also indicate how use of the CLAN programs has facilitated the analysis. We conclude with an examination of ways in which the size of the database could be increased through on-site recordings and data from teletherapy. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. SU-C-BRC-01: A Monte Carlo Study of Out-Of-Field Doses From Cobalt-60 Teletherapy Units Intended for Historical Correlations of Dose to Normal Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petroccia, H; Olguin, E; Culberson, W

    2016-06-15

    Purpose: Innovations in radiotherapy treatments, such as dynamic IMRT, VMAT, and SBRT/SRS, result in larger proportions of low-dose regions where normal tissues are exposed to low doses levels. Low doses of radiation have been linked to secondary cancers and cardiac toxicities. The AAPM TG Committee No.158 entitled, ‘Measurements and Calculations of Doses outside the Treatment Volume from External-Beam Radiation Therapy’, has been formed to review the dosimetry of non-target and out-of-field exposures using experimental and computational approaches. Studies on historical patients can provide comprehensive information about secondary effects from out-of-field doses when combined with long-term patient follow-up, thus providing significantmore » insight into projecting future outcomes of patients undergoing modern-day treatments. Methods: We present a Monte Carlo model of a Theratron-1000 cobalt-60 teletherapy unit, which historically treated patients at the University of Florida, as a means of determining doses located outside the primary beam. Experimental data for a similar Theratron-1000 was obtained at the University of Wisconsin’s ADCL to benchmark the model for out-of-field dosimetry. An Exradin A12 ion chamber and TLD100 chips were used to measure doses in an extended water phantom to 60 cm outside the primary field at 5 and 10 cm depths. Results: Comparison between simulated and experimental measurements of PDDs and lateral profiles show good agreement for in-field and out-of-field doses. At 10 cm away from the edge of a 6×6, 10×10, and 20×20 cm2 field, relative out-of-field doses were measured in the range of 0.5% to 3% of the dose measured at 5 cm depth along the CAX. Conclusion: Out-of-field doses can be as high as 90 to 180 cGy assuming historical prescription doses of 30 to 60 Gy and should be considered when correlating late effects with normal tissue dose.« less

  5. The changing role of accelerators in radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, W.F.

    Conventional low energy x-rays have been used in radiation therapy since the turn of the century. Van de Graaff and Betatron accelerators changed the complexion of radiation therapy in the mid 1940's by providing significantly deeper penetrating photon beams and also providing therapeutic quality electron beams. The development of Cobalt-60 teletherapy in the mid 1950's suppressed the role of accelerators in radiation therapy for nearly 20 years. However, with the development of reliable isocentric rotating linear accelerators, accelerators are rapidly becoming the most popular conventional therapy devices. Following unfavorable clinical results with fast neutron therapy in the late 1930's andmore » early 1940's, the role of cyclotron produced fast neutrons is presently experiencing a renewal in radiation therapy. Several facilities are also experimenting with heavy charged particle beams for therapy.« less

  6. Dosimetry for a uterine cervix cancer treatment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponce, Miguel; Rodríguez-Villafuerte, Mercedes; Sánchez-Castro, Ricardo

    2003-09-01

    The dose distribution around the 3M 137Cs brachytherapy source as well as the same source inside the Amersham ASN 8231 applicator was measured using thermoluminescent dosimeters and radiochromic films. Some of the results were compared with those obtained from a Monte Carlo simulation and a good agreement was observed. The teletherapy dose distribution was measured using a pin-point ionization chamber. In addition, the experimental measurements and the Monte Carlo results were used to estimate the dose received in the rectum and bladder of an hypothetical patient treated with brachytherapy and compared with the dose distribution obtained from the Hospital's brachytherapy planning system. A 20 % dose reduction to the rectum and bladder was observed in both Monte Carlo and experimental measurements, compared with the results of the planning system, which results in a better dose control to these structures.

  7. Studies on the Induction of Bone and Soft Tissue Tumours in Rats by Gamma Irradiation and the Effect of Growth Hormone and Thyroxine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cater, D. B.; Baserga, R.; Lisco, H.

    1959-06-01

    A single dose of 3000 roentgen of gamma irradiation from a iridium-192 teletherapy source applied to both knee joints of growing female rats induced osteosarcomata in 34 out of 116 rats. Fifty rats developed sarcomata of soft tissues, 10 cancer of the skin, and 12 had mammary cancers. Eighty days after irradiation, ten-week courses of growth hormone, thyroxine, growth hormone followed by thyroxine, and saline were given to study the effect of hormone treatment on the incidence and induction period of radiationinduced bone sarcomata. Twelve out of 30 growthhormone-treated rats developed bone sarcomata compared with 7 out of 31 inmore » the saline injected group. Thyroxine treatment significantly reduced the mean latent period of radiation-induced osteosarcomata. The incidence of other types of malignant tumors was not affected by the hormone treatments.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einck, John P., E-mail: jeinck@ucsd.edu; Hudson, Alana; Shulman, Adam C.

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single {sup 60}Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in themore » developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries.« less

  9. Report to Congress on abnormal occurrences, October--December 1993. Volume 16, No. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from October 1 through December 31, 1993. This report discusses six abnormal occurrences at NRC-licensed facilities. Five involved medical brachytherapy misadministrations, and one involved an overexposure to a nursing infant. Seven abnormal occurrences that were reported by the Agreement States are also discussed, based on informationmore » provided by the Agreement States as of February 28, 1994. Of these events, three involved brachytherapy misadministrations, one involved a teletherapy misadministration, one involved a theft of radioactive material during transport and improper disposal, and two involved lost sources.« less

  10. Feasibility of magnetic resonance imaging-guided liver stereotactic body radiation therapy: A comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based intensity modulated radiation therapy.

    PubMed

    Kishan, Amar U; Cao, Minsong; Wang, Pin-Chieh; Mikaeilian, Argin G; Tenn, Stephen; Rwigema, Jean-Claude M; Sheng, Ke; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Lee, Percy

    2015-01-01

    The purpose of this study was to investigate the dosimetric feasibility of liver stereotactic body radiation therapy (SBRT) using a teletherapy system equipped with 3 rotating (60)Co sources (tri-(60)Co system) and a built-in magnetic resonance imager (MRI). We hypothesized tumor size and location would be predictive of favorable dosimetry with tri-(60)Co SBRT. The primary study population consisted of 11 patients treated with SBRT for malignant hepatic lesions whose linear accelerator (LINAC)-based SBRT plans met all mandatory Radiation Therapy Oncology Group (RTOG) 1112 organ-at-risk (OAR) constraints. The secondary study population included 5 additional patients whose plans did not meet the mandatory constraints. Patients received 36 to 60 Gy in 3 to 5 fractions. Tri-(60)Co system SBRT plans were planned with ViewRay system software. All patients in the primary study population had tri-(60)Co SBRT plans that passed all RTOG constraints, with similar planning target volume coverage and OAR doses to LINAC plans. Mean liver doses and V10Gy to the liver, although easily meeting RTOG 1112 guidelines, were significantly higher with tri-(60)Co plans. When the 5 additional patients were included in a univariate analysis, the tri-(60)Co SBRT plans were still equally able to pass RTOG constraints, although they did have inferior ability to pass more stringent liver and kidney constraints (P < .05). A multivariate analysis found the ability of a tri-(60)Co SBRT plan to meet these constraints depended on lesion location and size. Patients with smaller or more peripheral lesions (as defined by distance from the aorta, chest wall, liver dome, and relative lesion volume) were significantly more likely to have tri-(60)Co plans that spared the liver and kidney as well as LINAC plans did (P < .05). It is dosimetrically feasible to perform liver SBRT with a tri-(60)Co system with a built-in MRI. Patients with smaller or more peripheral lesions are more likely to have optimal liver and kidney sparing, with the added benefit of MRI guidance, when receiving tri-(60)Co-based SBRT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  11. Evaluation of radiotherapy after incomplete surgery in patients with carcinoma of the maxillary sinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korzeniowski, S.; Reinfuss, M.; Skolyszewski, J.

    1985-03-01

    The retrospective analysis of 57 patients with cancer of the maxillary antrum irradiated after incomplete surgery was performed is described. The majority of patients had very advanced disease (54% T4 tumors). In 18 patients partial resection of maxillary antrum was performed: 39 patients underwent total maxillectomy. In 35 patients macroscopic residual tumor (MRT) was present after surgery. All patients were irradiated postoperatively with /sup 60/Co teletherapy and received a dose of 60 Gy in 20-30 fractions over 4-6 weeks. Five year symptom-free survival in the whole group was 35%. An analysis of pattern of relapses indicates that histology should bemore » regarded as an important factor of management. In keratinizing squamous cell cancer, local control remains the main problem. In patients with nonkeratinizing squamous cell cancer, both local and regional control is important and elective irradiation of neck nodes may be of value. In patients with undifferentiated cancer, distant metastases appear to have the greatest impact on survival.« less

  12. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil*

    PubMed Central

    da Silva, Rogério Matias Vidal; Pinezi, Juliana Castro Dourado; Macedo, Luiz Eduardo Andrade; Souza, Divanízia do Nascimento

    2014-01-01

    Objective To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and Methods In the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results Sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion The authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. PMID:25741073

  13. Quality assurance for gamma knives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.D.; Banks, W.W.; Fischer, L.E.

    1995-09-01

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys,more » interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.« less

  14. Irradiation of nonlymphoproliferative neoplasms of the nasal cavity and paranasal sinuses in 16 cats.

    PubMed

    Théon, A P; Peaston, A E; Madewell, B R; Dungworth, D L

    1994-01-01

    Sixteen cats with malignant tumors (10 carcinomas, 6 sarcomas) of the nasal cavity and paranasal sinuses were treated with curative intent by radiotherapy. Clinical stating was based on radiographic findings, using the tumor, node, metastasis classification system of the World Health Organization. Irradiation was done with a telecobalt-60 unit (13 cats) and an orthovoltage unit (3 cats). Fourteen cats were treated with irradiation alone, and 2 cats had incomplete surgical resections prior to radiotherapy. Treatment dose was 48 Gy (minimum tumor dose), administered by use of 4 Gy per fraction on a Monday/Wednesday/Friday basis over 4 weeks. Survival times after treatment ranged from 1 to 36 months. The 1- and 2-year overall survival rates were 44.3 and 16.6%, respectively. Histologic type and clinical stage did not have prognostic value. Most acute radiation reactions were mild and self-limiting. Chronic ocular complications were seen in 3 cats. These treatment responses compared favorably with those previously described in dogs and cats with intranasal neoplasms treated with teletherapy and provided a perspective for comparison of new treatment methods.

  15. Radiation induced vertebral osteosarcoma following treatment of an intradural extramedullary spinal cord tumor in a dog.

    PubMed

    Dickinson, P J; McEntee, M C; Lipsitz, D; Keel, K; LeCouteur, R A

    2001-01-01

    A 2-year-old neutered female Rottweiler diagnosed with an intradural extramedullary spinal cord tumor at T12-T13 was successfully treated with cytoreductive surgery followed by Cobalt 60 teletherapy. The dog was euthanised 5-and-a-half years later following diagnosis of an osteosarcoma involving the L1 and L2 vertebrae. Evidence of the initial tumor was not present at necropsy. The vertebral neoplasm fulfilled all of the accepted criteria for a radiation induced tumor. It was concluded that adjunctive irradiation should be considered for treatment of intradural extramedullary tumors of young dogs when total surgical resection is not possible. Although tumor induction is a rare late effect of radiation therapy, the risk of this occurrence should be considered when irradiating young animals. Radiation induced tumors in dogs have been associated with coarse fractionation schemes, or when large intraoperative doses have been administered. A lower dose per fraction, e.g., 3 Gy/fraction or less, is advisable when irradiating young dogs or any dog in which the life expectancy is 3-5 or more years after irradiation.

  16. Radiotherapy of primary carcinoma of the vagina: management and results of different therapy schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucera, H.; Langer, M.; Smekal, G.

    1985-05-01

    Three hundred and sixty-two cases of primary vaginal carcinoma were treated at the Irradiation Department of the University Clinic for Obstetrics and Gynecology, Vienna, from 1950 to 1977. As the method of choice an individually dosed, fractioned, and protracted radium-telecobalt therapy was employed. Comparing the last period analyzed (1971-1977) with another period 20 years earlier (1951-1956), a marked increase of advanced stages and older patients can be observed. These changes are reflected in the 5-year remission rate: in the total population it was 39.8%, as compared to 32% for the period from 1971 to 1977. For a group of 99more » patients, who were treated between 1971 and 1977, the therapeutic effect of different therapy schemes is reported. The benefit of teletherapy is remarkable for advanced states, whereas for stages I and II an intrauterine application may be of importance. The complication rate amounted to 8% recto- or vesicovaginal fistulas and 41% and 43% cystitis and proctitis. The central importance of gynecological screening, especially for older women, is emphasized.« less

  17. Tolerance doses of cutaneous and mucosal tissues in ring-necked parakeets (Psittacula krameri) for external beam megavoltage radiation.

    PubMed

    Barron, Heather W; Roberts, Royce E; Latimer, Kenneth S; Hernandez-Divers, Stephen; Northrup, Nicole C

    2009-03-01

    Currently used dosages for external-beam megavoltage radiation therapy in birds have been extrapolated from mammalian patients and often appear to provide inadequate doses of radiation for effective tumor control. To determine the tolerance doses of cutaneous and mucosal tissues of normal birds in order to provide more effective radiation treatment for tumors that have been shown to be radiation responsive in other species, ingluvial mucosa and the skin over the ingluvies of 9 ring-necked parakeets (Psittacula krameri) were irradiated in 4-Gy fractions to a total dose of either 48, 60, or 72 Gy using an isocentric cobalt-60 teletherapy unit. Minimal radiation-induced epidermal changes were present in the high-dose group histologically. Neither dose-related acute nor chronic radiation effects could be detected in any group grossly in cutaneous or mucosal tissue over a 9-month period. Radiation doses of 72 Gy in 4-Gy fractions were well tolerated in the small number of ring-necked parakeets in this initial tolerance dose study.

  18. Acute secondary effects in the esophagus in patients undergoing radiotherapy for carcinoma of the lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarenhas, F.; Silvestre, M.E.; Sa da Costa, M.

    1989-02-01

    The incidence and nature of acute secondary irradiation esophagitis was studied in a series of 38 patients undergoing 60Co teletherapy for carcinoma of the lung. Thirty-four patients were male and four female, with ages ranging from 38 to 78 years. The mediastinum being irradiated in the process, all the patients underwent endoscopy for signs of esophagitis and/or gastritis after a dose of 30-40 Gy was delivered to the esophagus. Eighteen patients complained of dysphagia, but only in 12 of them did endoscopy show esophagitis. Of the remaining patients without complaints five had endoscopic signs of esophagitis. Gastritis was found inmore » 18 cases and confirmed histologically in 14. In 17 cases, esophagitis and/or gastritis were confirmed histologically. It is believed that there is a fairly close correlation among clinical, endoscopic, and histological findings to support the claim that esophagitis in these patients is radiation induced. However, the cause of gastritis is not well understood. Data in the literature suggest that nonsteroid anti-inflammatory agents can act as prophylactic means of preventing radiation esophagitis.« less

  19. Patterns of patient specific dosimetry in total body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akino, Yuichi; Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871; McMullen, Kevin P.

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at ourmore » institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10%. However, some large differences greater than 35% were also found at several points. For one case, the knee received double the prescribed dose. When the dose differences for multiple fractions were averaged, compliance ({+-}10%) between the prescription and measured dose was improved compared to the dose difference of the first single fraction, for example, as at umbilicus, which improved from 83.9% to 98.5%. Conclusions: Actual dose measurement analysis of TBI patients revealed a potentially wide variance from the calculated dose. Based from their IVD method for TBI using Cobalt-60 irradiator and moving table, {+-}10% over entire body is hard to achieve. However, it can be significantly improved with immediate feedback after the first fraction prior to subsequent treatments.« less

  20. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  1. COBALT 60 KILOCURIE TELETHERAPY ADVANTAGES AND LIMITATIONS--TECHNICAL PROBLEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patricio, M.B.

    1961-12-01

    The advantages of Co/sup 60/ therapy over conventional x-ray therapy, stemming from the fact that in the lst instance energy absorption within the tissues is by the Compton effect and in the 2nd case by the photoelectric effect, are: (1) increased skin tolerance, (2) reduced bone absorption, (3) increase in depth dose, (4) diminished radiation sickness, and (5) simplicity of operation. As a disadvantage, possibility of injury to adjacent organs is greater with Co/ sup 60/ therapy, since skin reactions, indicative of overdosage with x-ray therapy, may be absent. Some tumors at limited skin depth, such as in the larynx,more » are not amenable to Co/sup 60/ therapy because of the high exit dose. Various technical problems of Co/sup 60/ therapy are discussed, including precise localization of the tumor, calculation of dosage, use of filters to evenly distribute radiation and prevent hot spots, immobilization and positioning of the patient, and direct dosimetry for affirmation of calculated dosage. Favorable results are described in patients with urinary bladder tumors administered l50- to 200-rad daily doses, for a total of 6000 to 8000 rads over 6 to 8 weeks. (H.H.D.)« less

  2. Dose-Effect Relationships for Recurrence of Keloid and Pterygium After Surgery and Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kal, Henk B.; Veen, Ronald E.; Juergenliemk-Schulz, Ina M.

    2009-05-01

    Purpose: To show radiation dose-response relationships for recurrence of keloid and pterygium after radiotherapy following surgery. Methods and Materials: Using PubMed, we performed a retrospective review of articles reporting incidences and/or dose-response relationships for recurrence of keloid and pterygium after radiotherapy following surgery. The irradiation regimens identified were normalized by use of the linear-quadratic model; biologically effective doses (BEDs) were calculated. Results: For keloid recurrence after radiotherapy following keloid removal, with either teletherapy or brachytherapy, the recurrence rate after having delivered a BED greater than 30 Gy is less than 10%. For pterygium recurrence after bare sclera surgery and {supmore » 90}Sr {beta}-irradiation, a BED of about 30 Gy seems to be sufficient also to reduce the recurrence rate to less than 10%. Conclusions: Most of the doses in the radiotherapy schemes used for prevention of keloid recurrence after surgery are too low. In contrast, the doses applied in most regimens to prevent pterygium recurrence are too high. A scheme with a BED of 30 to 40 Gy seems to be sufficient to prevent recurrences of keloid as well as pterygium.« less

  3. Poster - 11: Radiation barrier thickness calculations for the GammaPod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Russa, Daniel; Vandervoort, Eric; Wilkins, Davi

    A consortium of radiotherapy centers in North America is in the process of evaluating a novel new {sup 60}Co teletherapy device, called the GammaPod™ (Xcision Medical Systems, Columbia Maryland), designed specifically for breast SBRT. The GammaPod consists of 36 collimated {sup 60}Co sources with a total activity of 4320 Ci. The sources are housed in a hemispherical source carrier that rotates during treatment to produce a cylindrically symmetric cone of primary beam spanning 16° – 54° degrees from the horizontal. This unique beam geometry presents challenges when designing or evaluating room shielding for the purposes of meeting regulatory requirements, andmore » for ensuring the safety of staff and the public in surrounding areas. Conventional methods for calculating radiation barrier thicknesses have been adapted so that barrier transmission factors for the GammaPod can be determined from a few relevant distances and characteristics of the primary beam. Simple formalisms have been determined for estimating shielding requirements for primary radiation (with a rotating and non-rotating source carrier), patient-scattered radiation, and leakage radiation. When making worst case assumptions, it was found that conventional barrier thicknesses associated with linac treatment suites are sufficient for shielding all sources of radiation from the GammaPod.« less

  4. The release of bystander factor(s) from tissue explant cultures of rainbow trout (Onchorhynchus mykiss) after exposure to gamma radiation.

    PubMed

    O'Dowd, Colm; Mothersill, Carmel E; Cairns, Michael T; Austin, Brian; McClean, Brendan; Lyng, Fiona M; Murphy, James E J

    2006-10-01

    The bystander response has been documented in cell lines and cell cultures derived from aquatic species over the past several years. However, little work has been undertaken to identify a similar bystander response in tissue explant cultures from fish. In this study, indirect effects of ionizing gamma radiation on tissue explant cultures of fish were investigated. Tissue explants in culture were exposed to 0.5 Gy and 5 Gy gamma radiation from a 60Co teletherapy unit. A bystander response in Epithelioma papulosum cyprini (EPC) cells exposed to gamma-irradiated tissue conditioned medium from rainbow trout explants was investigated, and the effects on cell survival were quantified by the clonogenic survival assay. Dichlorofluorescein and rhodamine 123 fluorescent dyes were used to identify alterations in reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), respectively. Results indicate a different response for the three tissue types investigated. Clonogenic assay results vary from a decrease in cell survival (gill) to no effect (skin) to a stimulatory effect (spleen). Results from fluorescence assays of ROS and MMP show similarities to clonogenic assay results. This study identifies a useful model for further studies relating to the bystander effect in aquatic organisms in vivo and ex vivo.

  5. Intracavitary applicator in relation to complications of pelvic radiation: the Ernst system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotman, M.; John, M.J.; Roussis, K.

    Case studies were reviewed for 100 consecutive patients with carcinoma of the cervix, Stages I to III, who were treated prior to 1968 at a large municipal hospital in New York City. Treatments consisted of orthovoltage therapy prior to or following intracavitary radium. A 250 kV x-ray unit delivered a 3000 rad tumor dose in 3 weeks through four oblique fields. Intracavitary radium delivered 6000 to 7200 mg hr using the Ernst applicator. The 9% incidence of fistulae was 4-fold higher than that found in subsequent years using /sup 60/Co teletherapy and the afterloading Fletcher-Suit applicator. A review of themore » dosimetry relating to the use of the Ernst applicator demonstrates inherent structural characteristics which lend themselves to such complications. Where less than an ideal application is possible, this rigid applicator compacts itself in accordion-like fashion, producing a so-called short-system. Coupled with a reduced source to applicator-surface distance, such applications result in unacceptable dose anisotropy and excessive radiation of critical structures where a predetermined dose is to be delivered to anatomic Point A. Information gleaned from this study can be extrapolated to other rigid unprotected short-surface distance intra-vaginal applicators that have proliferated in recent years.« less

  6. Quality of radiotherapy services in post-Soviet countries: An IAEA survey.

    PubMed

    Rosenblatt, Eduardo; Fidarova, Elena; Ghosh, Sunita; Zubizarreta, Eduardo; Unterkirhere, Olga; Semikoz, Natalia; Sinaika, Valery; Kim, Viktor; Karamyan, Nerses; Isayev, Isa; Akbarov, Kamal; Lomidze, Darejan; Bondareva, Oksana; Tuzlucov, Piotr; Zardodkhonova, Manzura; Tkachev, Sergey; Kislyakova, Marina; Alimov, Jamshid; Pidlubna, Tetiana; Barton, Michael; Mackillop, William

    2018-04-25

    The quality of radiotherapy services in post-Soviet countries has not yet been studied following a formal methodology. The IAEA conducted a survey using two sets of validated radiation oncology quality indicators (ROIs). Eleven post-Soviet countries were assessed. A coordinator was designated for each country and acted as the liaison between the country and the IAEA. The methodology was a one-time cross-sectional survey using a 58-question tool in Russian. The questionnaire was based on two validated sets of ROIs: for radiotherapy centres, the indicators proposed by Cionini et al., and for data at the country level, the Australasian ROIs. The overall response ratio was 66.3%, but for the Russian Federation, it was 24%. Data were updated on radiotherapy infrastructure and equipment. 256 radiotherapy centres are operating 275 linear accelerators and 337 Cobalt-60 units. 61% of teletherapy machines are older than ten years. Analysis of ROIs revealed significant differences between these countries and radiotherapy practices in the West. Naming, task profile and education programmes of radiotherapy professionals are different than in the West. Most countries need modernization of their radiotherapy infrastructure coupled with adequate staffing numbers and updated education programmes focusing on evidence-based medicine, quality, and safety. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Assessment on security system of radioactive sources used in hospitals of Thailand

    NASA Astrophysics Data System (ADS)

    Jitbanjong, Petchara; Wongsawaeng, Doonyapong

    2016-01-01

    Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources used in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.

  8. Compensators: An alternative IMRT delivery technique

    PubMed Central

    Chang, Sha X.; Cullip, Timothy J.; Deschesne, Katharin M.; Miller, Elizabeth P.; Rosenman, Julian G.

    2004-01-01

    Seven years of experience in compensator intensity‐modulated radiotherapy (IMRT) clinical implementation are presented. An inverse planning dose optimization algorithm was used to generate intensity modulation maps, which were delivered via either the compensator or segmental multileaf collimator (MLC) IMRT techniques. The in‐house developed compensator‐IMRT technique is presented with the focus on several design issues. The dosimetry of the delivery techniques was analyzed for several clinical cases. The treatment time for both delivery techniques on Siemens accelerators was retrospectively analyzed based on the electronic treatment record in LANTIS for 95 patients. We found that the compensator technique consistently took noticeably less time for treatment of equal numbers of fields compared to the segmental technique. The typical time needed to fabricate a compensator was 13 min, 3 min of which was manual processing. More than 80% of the approximately 700 compensators evaluated had a maximum deviation of less than 5% from the calculation in intensity profile. Seventy‐two percent of the patient treatment dosimetry measurements for 340 patients have an error of no more than 5%. The pros and cons of different IMRT compensator materials are also discussed. Our experience shows that the compensator‐IMRT technique offers robustness, excellent intensity modulation resolution, high treatment delivery efficiency, simple fabrication and quality assurance (QA) procedures, and the flexibility to be used in any teletherapy unit. PACS numbers: 87.53Mr, 87.53Tf PMID:15753937

  9. In vivo urethral dose measurements: a method to verify high dose rate prostate treatments.

    PubMed

    Brezovich, I A; Duan, J; Pareek, P N; Fiveash, J; Ezekiel, M

    2000-10-01

    Radiation doses delivered in high dose rate (HDR) brachytherapy are susceptible to many inaccuracies and errors, including imaging, planning and delivery. Consequently, the dose delivered to the patient may deviate substantially from the treatment plan. We investigated the feasibility of using TLD measurements in the urethra to estimate the discrepancy in treatments for prostate cancer. The dose response of the 1 mm diam, 6 mm long LiF rods that we used for the in vivo measurements was calibrated with the 192Ir HDR source, as well as a 60Co teletherapy unit. A train of 20 rods contained in a sterile plastic tube was inserted into the urethral (Foley) catheter for the duration of a treatment fraction, and the measured doses were compared to the treatment plan. Initial results from a total of seven treatments in four patients show good agreement between theory and experiment. Analysis of any one treatment showed agreement within 11.7% +/- 6.2% for the highest dose encountered in the central prostatic urethra, and within 10.4% +/- 4.4% for the mean dose. Taking the average over all seven treatments shows agreement within 1.7% for the maximum urethral dose, and within 1.5% for the mean urethral dose. Based on these initial findings it seems that planned prostate doses can be accurately reproduced in the clinic.

  10. Reduced incidence of interstitial pneumonitis after allogeneic hematopoietic stem cell transplantation using a modified technique of total body irradiation.

    PubMed

    Chiang, Yun; Tsai, Cheng-Hong; Kuo, Sung-Hsin; Liu, Chieh-Yu; Yao, Ming; Li, Chi-Cheng; Huang, Shang-Yi; Ko, Bor-Sheng; Lin, Chien-Ting; Hou, Hsin-An; Chou, Wen-Chien; Liu, Jia-Hau; Lin, Chien-Chin; Wu, Shang-Ju; Hsu, Szu-Chun; Chen, Yao-Chang; Lin, Kai-Hsin; Lin, Dong-Tsamn; Chou, Hsien-Tang; Lu, Meng-Yu; Yang, Yung-Li; Chang, Hsiu-Hao; Liu, Ming-Chih; Liao, Xiu-Wen; Wu, Jian-Kuen; Chou, Sheng-Chieh; Cheng, Chieh-Lung; Chen, Chien-Yuan; Tsay, Woei; Tien, Hwei-Fang; Tang, Jih-Luh; Chen, Yu-Hsuan

    2016-11-10

    Allogeneic hematopoietic stem cell transplantation is a curative-intent treatment for patients with high-risk hematologic diseases. However, interstitial pneumonitis (IP) and other toxicities remain major concerns after total body irradiation (TBI). We have proposed using linear accelerators with rice-bag compensators for intensity modulation (IM-TBI), as an alternative to the traditional cobalt-60 teletherapy with lung-shielding technique (Co-TBI). Patients who received a TBI-based myeloablative conditioning regimen between 1995 and 2014 were recruited consecutively. Before March 2007, TBI was delivered using Co-TBI (n = 181); afterward, TBI was administered using IM-TBI (n = 126). Forty-four patients developed IP; of these cases, 19 were idiopathic. The IP-related mortality rate was 50% in the total IP cohort and 63% in the idiopathic subgroup. The 1-year cumulative incidences of IP and idiopathic IP were 16.5% and 7.4%, respectively; both rates were significantly higher in the Co-TBI group than in the IM-TBI group. Multivariate analysis revealed that Co-TBI was an independent prognostic factor for both total and idiopathic IP. In the acute myeloid leukemia subgroup, patients with different TBI techniques had similar outcomes for both overall and relapse-free survival. In conclusion, IM-TBI is an easy and effective TBI technique that could substantially reduce the complication rate of IP without compromising treatment efficacy.

  11. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.

    PubMed

    Figueroa, R G; Valente, M

    2015-09-21

    The main purpose of this work is to determine the feasibility and physical characteristics of a new teletherapy device of radiation therapy based on the application of a convergent x-ray beam of energies like those used in radiotherapy providing highly concentrated dose delivery to the target. We have denominated it Convergent Beam Radio Therapy (CBRT). Analytical methods are developed first in order to determine the dosimetry characteristic of an ideal convergent photon beam in a hypothetical water phantom. Then, using the PENELOPE Monte Carlo code, a similar convergent beam that is applied to the water phantom is compared with that of the analytical method. The CBRT device (Converay(®)) is designed to adapt to the head of LINACs. The converging beam photon effect is achieved thanks to the perpendicular impact of LINAC electrons on a large thin spherical cap target where Bremsstrahlung is generated (high-energy x-rays). This way, the electrons impact upon various points of the cap (CBRT condition), aimed at the focal point. With the X radiation (Bremsstrahlung) directed forward, a system of movable collimators emits many beams from the output that make a virtually definitive convergent beam. Other Monte Carlo simulations are performed using realistic conditions. The simulations are performed for a thin target in the shape of a large, thin, spherical cap, with an r radius of around 10-30 cm and a curvature radius of approximately 70 to 100 cm, and a cubed water phantom centered in the focal point of the cap. All the interaction mechanisms of the Bremsstrahlung radiation with the phantom are taken into consideration for different energies and cap thicknesses. Also, the magnitudes of the electric and/or magnetic fields, which are necessary to divert clinical-use electron beams (0.1 to 20 MeV), are determined using electromagnetism equations with relativistic corrections. This way the above-mentioned beam is manipulated and guided for its perpendicular impact upon the spherical cap. The first results that were achieved show in-depth dose peaks, having shapes qualitatively similar to those from hadrontherapy techniques. The obtained results demonstrate that in-depth dose peaks are generated at the focus point or isocenter. These results are consistent with those obtained with Monte Carlo codes. The peak-focus is independent of the energy of the photon beam, though its intensity is not. The realistic results achieved with the Monte Carlo code show that the Bremsstrahlung generated on the thin cap is mainly directed towards the focus point. The aperture angle at each impact point depends primarily on the energy beam, the atomic number Z and the thickness of the target. There is also a poly-collimator coaxial to the cap or ring with many holes, permitting a clean convergent-exit x-ray beam with a dose distribution that is similar to the ideal case. The electric and magnetic fields needed to control the deflection of the electron beams in the CBRT geometry are highly feasible using specially designed electric and/or magnetic devices that, respectively, have voltage and current values that are technically achievable. However, it was found that magnetic devices represent a more suitable option for electron beam control, especially at high energies. The main conclusion is that the development of such a device is feasible. Due to its features, this technology might be considered a powerful new tool for external radiotherapy with photons.

  12. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    PubMed

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  13. Present Status of Radiotherapy in Clinical Practice

    NASA Astrophysics Data System (ADS)

    Duehmke, Eckhart

    Aims of radiation oncology are cure from malignant diseases and - at the same time preservation of anatomy (e.g. female breast, uterus, prostate) and organ functions (e.g. brain, eye, voice, sphincter ani). At present, methods and results of clinical radiotherapy (RT) are based on experiences with natural history and radiobiology of malignant tumors in properly defined situations as well as on technical developments since World War II in geometrical and biological treatment planning in teletherapy and brachytherapy. Radiobiological research revealed tolerance limits of healthy tissues to be respected, effective total treatment doses of high cure probability depending on histology and tumor volume, and - more recently - altered fractionation schemes to be adapted to specific growth fractions and intrinsic radiosensitivities of clonogenic tumor cells. In addition, Biological Response Modifiers (BRM), such as cis-platinum, oxygen and hyperthermia may steepen cell survival curves of hypoxic tumor cells, others - such as tetrachiordekaoxid (TCDO) - may enhance repair of normal tissues. Computer assisted techniques in geometrical RT-planning based on individual healthy and pathologic anatomy (CT, MRT) provide high precision RT for well defined brain lesions by using dedicated linear accelerators (Stereotaxy). CT-based individual tissue compensators help with homogenization of distorted dose distributions in magna field irradiation for malignant lymphomas and with total body irradiation (TBI) before allogeneic bone marrow transplantation, e.g. for leukemia. RT with fast neutrons, Boron Neutron Capture Therapy (BNCT), RT with protons and heavy ions need to be tested in randomized trials before implementation into clinical routine.

  14. Assessment on security system of radioactive sources used in hospitals of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jitbanjong, Petchara, E-mail: petcharajit@gmail.com; Wongsawaeng, Doonyapong

    Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources usedmore » in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.« less

  15. Technology improves upper extremity rehabilitation.

    PubMed

    Kowalczewski, Jan; Prochazka, Arthur

    2011-01-01

    Stroke survivors with hemiparesis and spinal cord injury (SCI) survivors with tetraplegia find it difficult or impossible to perform many activities of daily life. There is growing evidence that intensive exercise therapy, especially when supplemented with functional electrical stimulation (FES), can improve upper extremity function, but delivering the treatment can be costly, particularly after recipients leave rehabilitation facilities. Recently, there has been a growing level of interest among researchers and healthcare policymakers to deliver upper extremity treatments to people in their homes using in-home teletherapy (IHT). The few studies that have been carried out so far have encountered a variety of logistical and technical problems, not least the difficulty of conducting properly controlled and blinded protocols that satisfy the requirements of high-level evidence-based research. In most cases, the equipment and communications technology were not designed for individuals with upper extremity disability. It is clear that exercise therapy combined with interventions such as FES, supervised over the Internet, will soon be adopted worldwide in one form or another. Therefore it is timely that researchers, clinicians, and healthcare planners interested in assessing IHT be aware of the pros and cons of the new technology and the factors involved in designing appropriate studies of it. It is crucial to understand the technical barriers, the role of telesupervisors, the motor improvements that participants can reasonably expect and the process of optimizing IHT-exercise therapy protocols to maximize the benefits of the emerging technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cognitive Behavioral Therapy (CBT) for Subacute Low Back Pain: a Systematic Review.

    PubMed

    Mariano, Timothy Y; Urman, Richard D; Hutchison, Catherine A; Jamison, Robert N; Edwards, Robert R

    2018-02-23

    Chronic low back pain (CLBP) is a major source of physical and psychiatric morbidity and mortality, and the current overreliance on opioid analgesics has contributed to a burgeoning epidemic in the USA. Cognitive behavioral therapy (CBT) is an empirically supported treatment for CLBP, but little information exists regarding its potential efficacy for CLBP's precursor condition, subacute low back pain (sALBP), defined here as having a 7-12-week duration. Earlier intervention with CBT at the sALBP stage could produce larger clinical benefits. This systematic review was undertaken to characterize and highlight this knowledge gap. Of 240 unique articles identified by comprehensive database searches, only six prospective, sALBP-focused, randomized controlled trials (RCTs) published within the past 20 years met criteria for inclusion in this review. These studies varied widely in their sample sizes, precise definition of sALBP, nature of CBT intervention, and outcome measures. Five of the six showed significant improvements associated with CBT, but the heterogeneity of the studies prevented quantitative comparisons. CBT has not been adequately studied as a potential early intervention treatment for sALBP patients. None of the six identified papers studied US civilians or leveraged innovations such as teletherapy-able to reach patients in remote or underserved areas-underscoring critical gaps in current back pain treatment. Given the severity of the US opioid epidemic, non-pharmacologic options such as CBT should be rigorously explored in the sALBP population.

  17. Uveal melanoma: relatively rare but deadly cancer

    PubMed Central

    Kaliki, S; Shields, C L

    2017-01-01

    Although it is a relatively rare disease, primarily found in the Caucasian population, uveal melanoma is the most common primary intraocular tumor in adults with a mean age-adjusted incidence of 5.1 cases per million per year. Tumors are located either in iris (4%), ciliary body (6%), or choroid (90%). The host susceptibility factors for uveal melanoma include fair skin, light eye color, inability to tan, ocular or oculodermal melanocytosis, cutaneous or iris or choroidal nevus, and BRCA1-associated protein 1 mutation. Currently, the most widely used first-line treatment options for this malignancy are resection, radiation therapy, and enucleation. There are two main types of radiation therapy: plaque brachytherapy (iodine-125, ruthenium-106, or palladium-103, or cobalt-60) and teletherapy (proton beam, helium ion, or stereotactic radiosurgery using cyber knife, gamma knife, or linear accelerator). The alternative to radiation is enucleation. Although these therapies achieve satisfactory local disease control, long-term survival rate for patients with uveal melanoma remains guarded, with risk for liver metastasis. There have been advances in early diagnosis over the past few years, and with the hope survival rates could improve as smaller tumors are treated. As in many other cancer indications, both early detection and early treatment could be critical for a positive long-term survival outcome in uveal melanoma. These observations call attention to an unmet medical need for the early treatment of small melanocytic lesions or small melanomas in the eye to achieve local disease control and vision preservation with the possibility to prevent metastases and improve overall patient survival. PMID:27911450

  18. Reirradiation of tumors in cats and dogs.

    PubMed

    Turrel, J M; Théon, A P

    1988-08-15

    Fifty-one cats and dogs with tumor recurrence after irradiation were treated with a second course of radiotherapy, using either teletherapy or brachytherapy. Eighty-six percent of the tumors had partial or complete response at 2 months after reirradiation. Tumor response was significantly (P = 0.041) affected when the interval between the 2 courses of irradiation was greater than 5 months. The estimated local tumor control rate was 38% at 1 year after reirradiation. Of all the factors examined, complete response at 2 months, reirradiation field size less than or equal to 10 cm2, and reirradiation dose greater than 40 gray emerged as predictors of local tumor control. The estimated overall survival rate was 47% at 2 years. Tumor location had a significant (P = 0.001) influence on overall survival; animals with cutaneous tumors had the longest survival times, and those with oral tumors had the shortest survival times. The other significant (P = 0.001) factor affecting overall survival time was the field size of the reirradiated site. Estimated survival time after reirradiation was 41% at 1 year. Favorable prognostic indicators were complete response at 2 months and location of tumor; animals with skin tumors had a favorable prognosis. The acute effects of reirradiation on normal tissues were acceptable, but 12% of the animals had severe delayed complications. Significant risk of complications after reirradiation was associated with squamous cell carcinoma (P = 0.015) and reirradiated field size greater than 30 cm2 (P = 0.056). When the interval between irradiations was greater than 5 months, the risk of complications was significantly (P = 0.022) lower.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niebuhr, Nina I., E-mail: n.niebuhr@dkfz.de; Johnen, Wibke; Güldaglar, Timur

    Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effectivemore » atomic number, as well as T1- and T2-relaxation times to patient and literature values. Results: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K{sub 2}HPO{sub 4}, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. Conclusions: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.« less

  20. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.

    PubMed

    Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A

    2014-12-01

    To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  1. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile

    NASA Astrophysics Data System (ADS)

    M. Noor, Noramaliza; Nisbet, A.; Hussein, M.; Chu S, Sarene; Kadni, T.; Abdullah, N.; Bradley, D. A.

    2017-11-01

    Quality audits and intercomparisons are important in ensuring control of processes in any system of endeavour. Present interest is in control of dosimetry in teletherapy, there being a need to assess the extent to which there is consistent radiation dose delivery to the patient. In this study we review significant factors that impact upon radiotherapy dosimetry, focusing upon the example situation of radiotherapy delivery in Malaysia, examining existing literature in support of such efforts. A number of recommendations are made to provide for increased quality assurance and control. In addition to this study, the first level of intercomparison audit i.e. measuring beam output under reference conditions at eight selected Malaysian radiotherapy centres is checked; use being made of 9 μm core diameter Ge-doped silica fibres (Ge-9 μm). The results of Malaysian Secondary Standard Dosimetry Laboratory (SSDL) participation in the IAEA/WHO TLD postal dose audit services during the period between 2011 and 2015 will also been discussed. In conclusion, following review of the development of dosimetry audits and the conduct of one such exercise in Malaysia, it is apparent that regular periodic radiotherapy audits and intercomparison programmes should be strongly supported and implemented worldwide. The programmes to-date demonstrate these to be a good indicator of errors and of consistency between centres. A total of ei+ght beams have been checked in eight Malaysian radiotherapy centres. One out of the eight beams checked produced an unacceptable deviation; this was found to be due to unfamiliarity with the irradiation procedures. Prior to a repeat measurement, the mean ratio of measured to quoted dose was found to be 0.99 with standard deviation of 3%. Subsequent to the repeat measurement, the mean distribution was 1.00, and the standard deviation was 1.3%.

  2. THE EFFECTS OF RADIATION THERAPY ON THE EAR WITH PARTICULAR REFERENCE TO RADIATION OTITIS MEDIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borsanyi, S.J.

    Between l957 and 1961 over l00 patients who were treated by a Co/sup 60/ teletherapy unit for malignant tumors of the head and neck were observed. The ears were included in the field of irradiation (4000 to 6000 r to the region of the inner ear). Between 50 and 60% of the patients developed ear symptoms during or shortly after completion of treatment. The most common symptoms were a sensation of fullness in the ear, some loss of hearing, earache, and tinnitus. Examination of ears revealed mild to moderate hyperemia of ear drums, with slight retraction in eariy stages andmore » bulging at iater stages. There was a moderate conductive hearing loss also. This disease entity is termed radiation otitis media and its pathophysiologic mechanism is similar to that of serous otitis media. Sterile fluid fills the middle ear, containing also some desquamated epithelial cells. Radiation otitis media usually clears up in a few weeks after the completion of treatment. In the management of this condition, vasoconstrictors, mild analgesics, and gentie politzeration were sufficient. However, in a few cases bacterial invasion of the sterile fluid occurred, resulting in purulent otitis media which required the use of antibiotics. Hearing of 20 patients was tested at weekly intervals during and after the completion of radiation. Cut of the 40 ears, 16 showed a conductive hearing loss, averaging 20 db. Six ears showed a worsening of the original loss of preceptive hearing. However, this was also primarily due to the development of a conductive component. There were no microscopicaiiy detectable immediate changes in the cochlea or labyrinth exposed to radiation in cancerocidal doses. (H.H.D.)« less

  3. Spinal cord protection during radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coia, L.; Chu, J.; Larsen, R.

    1986-09-01

    Treating intrathoracic malignancies to high doses, particularly those of lung and esophagus, requires limiting the radiation dose delivered to the spinal cord. Several factors are important in determining the cord dose. These are: The distance from the block or collimator edge to the cord, the variation of dose with distance from the block or collimator edge and, the expected variation of this distance for clinical set-up from day-to-day. When treating with an oblique beam, the position of the cord may be difficult to identify. A technique for localizing the spinal cord on a simulator film at an arbitrary gantry anglemore » is presented. The technique requires determination of distances from the central axis of the beam to the medial aspect of the pedicle and posterior vertebral body. These can readily be obtained from measurements on orthogonal, AP/PA and lateral isocentric simulator radiographs. A mathematical transformation is applied to determine the corresponding cord locations on the oblique radiographs for any arbitrary gantry angle. The accuracy of cord localization was within 2-3 mm with a precision of 2 mm for five physicians who used this technique. The beam edge characteristics for 60Co, 6 MV, and 10 MV teletherapy unit were measured for various depths and field sizes. For the 6 and 10 MV units, the beam penumbra is nearly independent of the field size, depth and field defining devices (inner and outer collimator jaws, trimmer bars, and shielding blocks). Because the beam penumbra is dependent on the design of the linear accelerator, its measurement should be made individually for each linear accelerator. Our preliminary data on patient positioning uncertainty did not exceed the 6-8 mm limit documented in the literature.« less

  4. Safety assessment of borehole disposal of unwanted radioactive sealed sources in Egypt using Goldsim.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Mattie, Patrick D.

    2004-10-01

    A radioactive sealed source is any radioactive material that is encased in a capsule designed to prevent leakage or escape of the radioactive material. Radioactive sealed sources are used for a wide variety of applications at hospitals, in manufacturing and research. Typical uses are in portable gauges to measure soil compaction and moisture or to determine physical properties of rocks units in boreholes (well logging). Hospitals and clinics use radioactive sealed sources for teletherapy and brachytherapy. Oil exploration and medicine are the largest users. Accidental mismanagement of radioactive sealed sources each year results in a large number of people receivingmore » very high or even fatal does of ionizing radiation. Deliberate mismanagement is a growing international concern. Sealed sources must be managed and disposed effectively in order to protect human health and the environment. Effective national safety and management infrastructures are prerequisites for efficient and safe transportation, treatment, storage, and disposal. The Integrated Management Program for Radioactive Sealed Sources in Egypt (IMPRSS) is a cooperative development agreement between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), the University of New Mexico (UNM), and Agriculture Cooperative Development International (ACDI/VOCA). The EAEA, teaming with SNL, is conducting a Preliminary Safety Assessment (PSA) of an intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S. Greater Confinement Disposal (GCD). Goldsim has been selected for the preliminary disposal system assessment for the Egyptian GCD Study. The results of the PSA will then be used to decide if Egypt desires to implement such a disposal system.« less

  5. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system.

    PubMed

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali

    2012-01-01

    The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72-18.55 Gy) and 5.17 Gy (range 0.72-15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system.

  6. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali

    2012-01-01

    Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037

  7. Partial breast radiotherapy with simple teletherapy techniques.

    PubMed

    Fekete, Gábor; Újhidy, Dóra; Együd, Zsófia; Kiscsatári, Laura; Marosi, Gusztáv; Kahán, Zsuzsanna; Varga, Zoltán

    2015-01-01

    A prospective pilot study of partial breast irradiation (PBI) with conventional vs hypofractionated schedules was set out. The study aimed to determine efficacy, acute and late side effects, and the preference of photon vs electron irradiation based on individual features. Patients were enrolled according to internationally accepted guidelines on PBI. Conformal radiotherapy plans were generated with both photon and electron beams, and the preferred technique based on dose homogeneity and the radiation exposure of healthy tissues was applied. For electron dose verification, a special phantom was constructed. Patients were randomized for fractionation schedules of 25 × 2 vs 13 × 3Gy. Skin and breast changes were registered at the time of and ≥1 year after the completion of radiotherapy. Dose homogeneity was better with photons. If the tumor bed was located in the inner quadrants, electron beam gave superior results regarding conformity and sparing of organ at risk (OAR). If the tumor was situated in the lateral quadrants, conformity was better with photons. A depth of the tumor bed ≥3.0cm predicted the superiority of photon irradiation (odds ratio [OR] = 23.6, 95% CI: 5.2 to 107.5, p < 0.001) with >90% sensitivity and specificity. After a median follow-up of 39 months, among 72 irradiated cases, 1 local relapse out of the tumor bed was detected. Acute radiodermatitis of grade I to II, hyperpigmentation, and telangiectasia developed ≥1 year after radiotherapy, exclusively after electron beam radiotherapy. The choice of electrons or photons for PBI should be based on tumor bed location; the used methods are efficient and feasible. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  8. The importance of serum serotonin levels in the measurement of radiation-induced bystander cell death in HaCaT cells.

    PubMed

    Lyng, Fiona M; Desplanques, Maxime; Jella, Kishore Kumar; Garcia, Amaya; McClean, Brendan

    2012-10-01

    The aim of this study was to investigate the importance of serum serotonin levels in the measurement of bystander cell death. The study was undertaken as part of an intercomparison exercise involving seven European laboratories funded under the European Union Sixth Framework Programme (FP6) Non-Targeted Effects (NOTE) integrated project. Three batches of foetal bovine serum were tested; serum with high and low serotonin content from the intercomparison exercise as well as serum from the home laboratory. Three sets of human keratinocytes (HaCaT cell line) were cultured in DMEM:F12 medium supplemented with serum with high or low serotonin content or serum from the home laboratory and both donor and recipient HaCaT cells were plated. The donor HaCaT cells were irradiated (0.5 Gy) using a cobalt 60 teletherapy unit, the medium was harvested 1 hour post irradiation and transferred to the recipient HaCaT cells. Bystander induced cell death was measured by the clonogenic survival assay and the Alamar blue viability assay. A significant reduction in cell survival, as measured by the clonogenic assay, and in cell viability, as measured by the Alamar blue assay, was observed in the recipient HaCaT cells treated with medium from irradiated cells compared to the cells treated with medium from unirradiated cells. No significant difference was found between the three batches of serum. The data suggest that in our cell system and with our endpoints (clonogenic assay and Alamar blue assay), serum serotonin levels do not play a role in bystander-induced cell death.

  9. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy.

    PubMed

    Niebuhr, Nina I; Johnen, Wibke; Güldaglar, Timur; Runz, Armin; Echner, Gernot; Mann, Philipp; Möhler, Christian; Pfaffenberger, Asja; Jäkel, Oliver; Greilich, Steffen

    2016-02-01

    Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K2HPO4, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.

  10. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    PubMed

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  11. Dosimetric feasibility of magnetic resonance imaging-guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity.

    PubMed

    Kishan, Amar U; Cao, Minsong; Mikaeilian, Argin G; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Kamrava, Mitchell

    2015-01-01

    The purpose of this study was to investigate the dosimetric differences of delivering preoperative intensity modulated radiation therapy (IMRT) to patients with soft tissue sarcomas of the extremity (ESTS) with a teletherapy system equipped with 3 rotating (60)Co sources and a built-in magnetic resonance imaging and with standard linear accelerator (LINAC)-based IMRT. The primary study population consisted of 9 patients treated with preoperative radiation for ESTS between 2008 and 2014 with LINAC-based static field IMRT. LINAC plans were designed to deliver 50 Gy in 25 fractions to 95% of the planning target volume (PTV). Tri-(60)Co system IMRT plans were designed with ViewRay system software. Tri-(60)Co-based IMRT plans achieved equivalent target coverage and dosimetry for organs at risk (long bone, skin, and skin corridor) compared with LINAC-based IMRT plans. The maximum and minimum PTV doses, heterogeneity indices, and ratio of the dose to 50% of the volume were equivalent for both planning systems. One LINAC plan violated the maximum bone dose constraint, whereas none of the tri-(60)Co plans did. Using a tri-(60)Co system, we were able to achieve equivalent dosimetry to the PTV and organs at risk for patients with ESTS compared with LINAC-based IMRT plans. The tri-(60)Co system may be advantageous over current treatment platforms by allowing PTV reduction and by elimination of the additional radiation dose associated with daily image guidance, but this needs to be evaluated prospectively. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  12. Effect of low-level laser therapy on radiotherapy-induced hyposalivation and xerostomia: a pilot study.

    PubMed

    Saleh, Jamil; Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen; Braga-Filho, Aroldo; Salum, Fernanda Gonçalves

    2014-10-01

    The present pilot study aimed to assess the effect of low-level laser therapy (LLLT) on hyposalivation and xerostomia as a consequence of head and neck radiotherapy. The benefits of LLLT in salivary flow have been shown; however, there are no studies investigating its effects on patients who have already undergone radiotherapy and present hyposalivation and xerostomia as a sequela. Twenty-three patients with a history of head and neck malignancy, who were treated by fractioned teletherapy (dosimetry ranging from 45 to 70 Gy) in the cervicofacial region were selected. They all presented with xerostomia and severe hyposalivation. Patients were randomly distributed into a laser group (n=12) and a control group (n=11). A GaAlAs laser (830 nm, 100 mW, illuminated area 0.028 cm2, 3.57 W/cm2, 20 sec, 2.0 J, 71 J/cm2) was used punctually in the major salivary glands, twice a week for 6 weeks, with a 12 session total. Stimulated and unstimulated salivary flow rate (SFR) were assessed, as well as the xerostomia and quality of life related to oral health (QLROH). The analysis did not show any significant difference between the groups with regards to the SFR and xerostomia, and the QLROH. However, at the end of the treatment, the xerostomia and the QLROH showed significant improvement in both groups compared with assessments performed at baseline, highlighting the importance of advice given to the irradiated patients, and their follow-up. With the parameters used, LLLT was not able to increase SFR or decrease xerostomia. The results may be associated with the late effects of radiotherapy on glandular structure, such as fibrosis and acinar atrophy.

  13. Factors associated with changes in vaginal length and diameter during pelvic radiotherapy for cervical cancer.

    PubMed

    Martins, Jumara; Vaz, Ana Francisca; Grion, Regina Celia; Esteves, Sérgio Carlos Barros; Costa-Paiva, Lúcia; Baccaro, Luiz Francisco

    2017-12-01

    This study reports the incidence and factors associated with vaginal stenosis and changes in vaginal dimensions after pelvic radiotherapy for cervical cancer. A descriptive longitudinal study with 139 women with cervical cancer was conducted from January 2013 to November 2015. The outcome variables were vaginal stenosis assessed using the Common Terminology Criteria for Adverse Events (CTCAE v3.0) and changes in vaginal diameter and length after the end of radiotherapy. Independent variables were the characteristics of the neoplasm, clinical and sociodemographic data. Bivariate analysis was carried out using χ 2 , Kruskal-Wallis and Mann-Whitney's test. Multiple analysis was carried out using Poisson regression and a generalized linear model. Most women (50.4%) had stage IIIB tumors. According to CTCAE v3.0 scale, 30.2% had no stenosis, 69.1% had grade 1 and 0.7% had grade 2 stenosis after radiotherapy. Regarding changes in vaginal measures, the mean variation in diameter was - 0.6 (± 1.7) mm and the mean variation in length was - 0.6 (± 1.3) cm. In the final statistical model, having tumoral invasion of the vaginal walls (coefficient + 0.73, p < 0.01) and diabetes (coefficient + 1.16; p < 0.01) were associated with lower vaginal stenosis and lower reduction of vaginal dimensions. Advanced clinical stage (coefficient + 1.44; p = 0.02) and receiving brachytherapy/teletherapy (coefficient - 1.17, p < 0.01) were associated with higher reduction of vaginal dimensions. Most women had mild vaginal stenosis with slight reductions in both diameter and length of the vaginal canal. Women with tumoral invasion of the vagina have an increase in vaginal length soon after radiotherapy due to a reduction in tumoral volume.

  14. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J. L., E-mail: jlreed2@wisc.edu; Micka, J. A.; Culberson, W. S.

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were usedmore » to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.« less

  15. The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations.

    PubMed

    Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H

    2009-03-01

    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.

  16. TU-C-BRF-01: Innovation in Medical Physics and Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, R; Pelc, N; Jaffray, D

    We seek to heighten the awareness of the role of research and innovation that leads to clinical advances in the field of medical physics and engineering. Marie Curie (discovery and use of radium) and Harold Johns (Co-60 tele-therapy) in radiotherapy, and pioneers in imaging (Allan Cormack and Godfrey Hounsfield for the CT and Paul Lauterbur, Peter Mansfield for MRI, etc.) were scientists often struggling against great odds. Examples of more recent innovations that are clearly benefitting our patients include IMRT, Image Guided Radiation Therapy and Surgery, Particle Therapy, Quantitative imaging, amongst others.We would also like to highlight the fact thatmore » not all of the discovery and engineering that we benefit from in today’s world, was performed at research institutions alone. Rather, companies often tread new ground at financial and reputational risk. Indeed the strength of the private sector is needed in order to bring about new advances to our practice. The keys to long term success in research and development may very well include more public and private research spending. But, when more investigators are funded, we also need to recognize that there needs to be a willingness on the part of the funding institutions, academic centers and investigators to risk failure for the greater potential achievements in innovation and research. The speakers will provide examples and insight into the fields of innovation and research in medical physics from their own first hand experiences. Learning Objectives: To obtain an understanding of the importance of research and development towards advances in physics in medicine. To raise awareness of the role of interdisciplinary collaborations in translational research and innovation. To highlight the importance of entrepreneurships and industrial-institutional research partnerships in fostering new ideas and their commercial success. To recognize and account for the risk of failure for the greater potential achievements in innovation and research.« less

  17. SU-E-J-72: Design and Study of In-House Web-Camera Based Automatic Continuous Patient Movement Monitoring and Controlling Device for EXRT.

    PubMed

    Senthil Kumar, S; Suresh Babu, S S; Anand, P; Dheva Shantha Kumari, G

    2012-06-01

    The purpose of our study was to fabricate in-house web-camera based automatic continuous patient movement monitoring device and control the movement of the patients during EXRT. Web-camera based patient movement monitoring device consists of a computer, digital web-camera, mounting system, breaker circuit, speaker, and visual indicator. The computer is used to control and analyze the patient movement using indigenously developed software. The speaker and the visual indicator are placed in the console room to indicate the positional displacement of the patient. Studies were conducted on phantom and 150 patients with different types of cancers. Our preliminary clinical results indicate that our device is highly reliable and can accurately report smaller movements of the patients in all directions. The results demonstrated that the device was able to detect patient's movements with the sensitivity of about 1 mm. When a patient moves, the receiver activates the circuit; an audible warning sound will be produced in the console. Through real-time measurements, an audible alarm can alert the radiation technologist to stop the treatment if the user defined positional threshold is violated. Simultaneously, the electrical circuit to the teletherapy machine will be activated and radiation will be halted. Patient's movement during the course for radiotherapy was studied. The beam is halted automatically when the threshold level of the system is exceeded. By using the threshold provided in the system, it is possible to monitor the patient continuously with certain fixed limits. An additional benefit is that it has reduced the tension and stress of a treatment team associated with treating patients who are not immobilized. It also enables the technologists to do their work more efficiently, because they don't have to continuously monitor patients with as much scrutiny as was required. © 2012 American Association of Physicists in Medicine.

  18. End of Life Decisions for Sealed Radioactive Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Kathryn H.

    Sealed radioactive sources are encountered in a wide variety of settings – from household smoke detectors and instrument check sources, through fixed industrial gauges, industrial radiography and well logging sources, to irradiators and medical teletherapy devices. In general, the higher the level of activity in the sealed source, the stricter the regulatory control that is applied to its use, control and ultimate disposition. Lower levels of attention and oversight can and do lead to sources ending up in the wrong place – as orphan sources in uncontrolled storage, disposed in a sanitary landfill, melted down in metal recycling operations andmore » incorporated into consumer products, or handled by an unsuspecting member of the public. There are a range of issues that contribute to the problem of improper disposal of sealed sources, and, in particular, to disused source disposal. General licensed sources and devices are particularly at risk of being disposed incorrectly. Higher activity general licensed sources, although required to be registered with the Nuclear Regulatory Commission (NRC) or Agreement State, receive limited regulatory oversight and are not tracked on a national scale. Users frequently do not consider the full life-cycle costs when procuring sources or devices and discover that they cannot afford to package, transport and dispose of their sources properly. The NRC requirements for decommissioning funding plans and financial assurance are not adequate to cover sealed source transport and disposal costs fully. While there are regulatory limits for storage of disused sources, enforcement is limited and there is no financial incentive for owners to dispose of the sources. In some cases, the lack of availability of approved Department of Transportation (DOT) Type B shipping casks also presents a barrier to sealed source disposal. The report of the Disused Sources Working Group does an excellent job of framing these issues. This article reviews both the issues and the report’s recommendations, which are designed to improve sealed source control and encourage proper disposal of disused sources.« less

  19. Cobalt-60 Machines and Medical Linear Accelerators: Competing Technologies for External Beam Radiotherapy.

    PubMed

    Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A

    2017-02-01

    Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Conditioning of the 4 Curies Radium-226 Sealed Radiation Source in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punnachaiya, M.; Sawangsri, T.; Wanabongse, P.

    This paper describes the conditioning of the 4 curies Radium-226 (Ra-226) sealed radiation source using as a teletherapy unit for cancer treatment in Thailand. The conditioning was under the International Atomic Energy Agency (IAEA) supervision and budgetary supports, comprised of 6 operational steps: the surface dose rate and actual dimension of radium unit measurements, the appropriate lead shielding design with IAEA approval, confirmation of radioactive contamination before conditioning (smear test and radon gas leakage test), transfer of radium source unit into the designed shielding, confirmation of radioactive contamination and dose rate measurement after conditioning, and transportation of Ra-226 conditioning wastemore » package to OAP interim waste storage. The Ra-226 unit was taken out of OAP temporary waste storage for the surface dose rate and the actual dimension measurements behind the 12 inches thick heavy concrete shielding. The maximum measured surface dose rate was 70 R/hr. The special lead container was designed according to its surface dose rate along the source unit which the maximum permissible dose limit for surface dose rate of waste package after conditioning at 2 mSv/hr was applied. The IAEA approved container had total weight of 2.4 ton. After the confirmation of radioactive contamination, Ra-226 source unit was transferred and loaded in the designed lead shielding within 2 minutes. The results of smear test before and after conditioning including radon gas leakage test revealed that there was no radioactive contamination. After conditioning, the surface dose rate measured on the top, bottom were 15,10 mR/hr and varied from 6 - 50 mR/hr around lead container. The Ra-226 conditioning waste package was safely transported to store in OAP interim waste storage. Total working time including the time consumed for radon gas leakage test was 3.5 hours. The total radiation dose received by 16 operators, were ranged from 1 - 69.84 {mu}Sv and the operational team completed the conditioning safely within the effective dose limit for occupational exposure of 50 mSv/year (200 {mu}Sv/day). (authors)« less

  1. SU-E-T-287: Patterns of Patient Specific Dosimetry in Total Body Irradiation.

    PubMed

    Akino, Y; McMullen, K; Das, I

    2012-06-01

    Total body irradiation (TBI) is commonly used for conditioning prior to transplant in hematologic and immunologic diseases. Due to variability in body thickness, achieving dose uniformity across body within ±10% of the prescribed dose is challenging. The dose uniformity is further complicated by, techniques and beam energy used, lung shielding and selection of detector. The translational table technique for TBI could compensate for estimated delivered dose to whole body by adjusting couch speed during treatment. However, it is difficult to accurately estimate the dose by calculation and hence in vivo dosimetry (IVD) is routinely performed for TBI. The patterns of patient specific dosimetry, IVD are presented in this study. Under IRB exempt status, 161 patients who received TBI treatment between 2006 and 2011 were retrospectively analyzed using the treatment records from Cobalt-60 teletherapy unit and translational treatment couch. During treatment, IVD detectors (TLD, diode, or MOSFET) were placed on patient surface; both entrance and exit dose were recorded at the patient's head, neck, mediastinum, umbilicus, and knee. When large differences between prescribed and measured dose were observed, the dose delivery was corrected for subsequent fractions by adjustment in couch speed and/or bolus placement. Across the entire cohort, the mean (range) percent variance between calculated and measured dose were -2.3% (-66.2 - 35.3), 1.1% (-62.2 - 40.3), -1.9% (-66.4 - 46.6), -1.1% (-35.2 - 42.9), and 3.4% (-47.9 - 108.5) for head, neck, mediastinum, umbilicus, and knee, respectively. When the dose differences for multiple fractions were averaged, the compliance (±10%) between prescription and measured dose was improved as at umbilicus from 83.9% to 98.5%. Actual dose measurement analysis of TBI patients reveals a potentially wide variance from calculated dose. Dose uniformity can be significantly improved with immediate feedback after the first fraction prior to subsequent treatments. This work was supported by the JSPS Core-to-Core Program No. 23003. © 2012 American Association of Physicists in Medicine.

  2. Morbidity and prostate-specific antigen control of external beam radiation therapy plus low-dose-rate brachytherapy boost for low, intermediate, and high-risk prostate cancer.

    PubMed

    Koontz, Bridget F; Chino, Junzo; Lee, W Robert; Hahn, Carol A; Buckley, Niall; Huang, Samuel; Kim, Jay; Reagan, Robert; Joyner, Raymond; Anscher, Mitchell S

    2009-01-01

    Dose escalation has been shown beneficial in prostate cancer. Brachytherapy (BT) provides an opportunity for dose escalation beyond what can be safely delivered using only teletherapy methods. The purpose of this study was to determine cancer control and morbidity of external beam radiation therapy (EBRT) plus low-dose-rate (LDR) BT boost in patients with prostate cancer treated at Duke University Health System. Between June 1997 and August 2007, 199 patients were consecutively treated at our facility with 46Gy EBRT followed by 100Gy palladium-103 ((103)Pd) or 120Gy iodine-125 ((125)I) LDR prostate implant. Treatment characteristics and followup data were retrospectively analyzed. Intermediate risk was defined as T2b-c, Gleason score 7 (GS 7), or prostate-specific antigen (PSA) of 10.1-19.9ng/mL. High risk was defined as GS 8-10, PSA>20, T3+, or two intermediate risk factors. The Radiation Therapy Oncology Group toxicity scale was used to report morbidity for gastrointestinal (GI) and genitourinary (GU) effects. PSA recurrence was defined as nadir+2ng/mL. Median followup was 4.2 years for all patients, 4.8 years for high-risk patients. Risk categories were as follows: 20% low risk, 47% intermediate risk, and 33% high risk. Forty five percent of patients received adjuvant androgen deprivation therapy (ADT). The median length of time since end of ADT to last followup was 2.7 years in all patients, 2.0 years for high-risk patients. Five-year biochemical relapse-free survival was 87% for all, 81% for high-risk patients. PSA control was similar at 92% for all and 86% for high-risk patients. Five-year actuarial risk of any and Grade 3 late GI morbidity was 38% and 7% respectively, and any and Grade 3 late GU morbidity was 21% and 3%, respectively. There were no significant differences in risk of Grade 2+GI or GU morbidity with choice of isotope. EBRT plus LDR BT has acceptable morbidity and, with 5-year followup, provides excellent cancer control even in high-risk patients.

  3. Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems.

    PubMed

    Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G

    2010-02-21

    Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2-1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit.

  4. Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems

    PubMed Central

    Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G

    2010-01-01

    Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2–1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit. PMID:20090187

  5. Elective neck irradiation for nasopharyngeal carcinoma.

    PubMed

    Wang, C J; Chen, H C; Huang, E Y; Lee, S P

    2000-07-01

    This study was conducted to evaluate the effectiveness of elective neck irradiation (ENI) for nasopharyngeal carcinoma (NPC), and to analyze factors associated with ENI failure. A radiation port covering the side of a neck without gross nodal metastasis was qualified for evaluation of the effectiveness of ENI. From 1988 through 1992, a total of 261 patients with N0 (130 cases), N1 (91 cases), and N3 (40 cases) NPCs were studied. All patients were irradiated with 60Co teletherapy or 10 MV x-ray to a total dose of 46.8 Gy/26 fractions, followed by a boost treatment to the primary site to a total dose of 64.8 to 75.6 Gy/36-42 fractions. All ENI ports received irradiation to a dose of 46.8 to 60.8 Gy. The duration of follow-up was 6 to 10 years, with a median of 8.1 years. Factors associated with to the risk of ENI failure were analyzed. (1) The overall 5-year actuarial local control rate and actuarial survival rate were 74% and 63%, respectively. (2) Among the 261 cases in which ENI treatment was used, the treatment failed in 12 cases, accounting for a crude ENI failure rate of 5%. The overall 5- and 10-year cumulative risk of ENI failure was 5% and 7%, respectively. (3) Time from the start of treatment to ENI failure ranged from 9 to 66 months, with a median of 17 months. (4) Of the 12 patients for whom EMI failed, 11 (92%) had recurrence in the upper neck, and one in the lower neck. (5) Existence of prior failure at the primary site was the only factor significantly correlated with the risk of ENI failure (p < 0.001). The 5-year cumulative risk of ENI failure for patients with local failure vs. those without was 16% vs. 1% (p < 0.0001). Moderate-dose ENI was highly effective in the control of subclinical disease in the neck for NPC. ENI failure was closely associated with prior failure at the primary site, implying that local primary tumor failure may lead to an increased potential for metastasis to the neck.

  6. Are State-Sponsored New Radiation Therapy Facilities Economically Viable in Low- and Middle-Income Countries?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Niloy R., E-mail: nrdatta@yahoo.com; Samiei, Massoud; Bodis, Stephan

    Purpose: The economic viability of establishing a state-funded radiation therapy (RT) infrastructure in low- and middle-income countries (LMICs) in accordance with the World Bank definition has been assessed through computation of a return on investment (ROI). Methods and Materials: Of the 139 LMICs, 100 were evaluated according to their RT facilities, gross national income (GNI) per capita, and employment/population ratio. The assumption was an investment of US$5 million for a basic RT center able to treat 1000 patients annually. The national breakeven points and percentage of ROI (%ROI) were calculated according to the GNI per capita and patient survival ratesmore » of 10% to 50% at 2 years. It was assumed that 50% of these patients would be of working age and that, if employed and able to work after treatment, they would contribute to the country's GNI for at least 2 years. The cumulative GNI after attaining the breakeven point until the end of the 15-year lifespan of the teletherapy unit was calculated to estimate the %ROI. The recurring and overhead costs were assumed to vary from 5.5% to 15% of the capital investment. Results: The %ROI was dependent on the GNI per capita, employment/population ratio and 2-year patient survival (all P<.001). Accordingly, none of the low-income countries would attain an ROI. If 50% of the patients survived for 2 years, the %ROI in the lower-middle and upper-middle income countries could range from 0% to 159.9% and 11.2% to 844.7%, respectively. Patient user fees to offset recurring and overhead costs could vary from “nil” to US$750, depending on state subsidies. Conclusions: Countries with a greater GNI per capita, higher employment/population ratio, and better survival could achieve a faster breakeven point, resulting in a higher %ROI. Additional factors such as user fees have also been considered. These can be tailored to the patient's ability to pay to cover the recurring costs. Certain pragmatic steps that could be undertaken to address these issues are discussed in the present study.« less

  7. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    PubMed

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a useful tool for the improvement of quality in radiotherapy. It succeeded to disseminate the IAEA TRS-398 protocol in nearly all radiotherapy centers achieving homogenization and consistency of dosimetry within the country. Also, it detected discrepancies in dosimetry and provided guidance and recommendations to eliminate sources of errors. Finally, it proved that quality assurance programs, periodic quality control tests, maintenance and service play an important role for achieving accuracy and safe operation in radiotherapy.

  8. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.

    PubMed

    Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy

    2016-01-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage non−small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merna, Catherine; Rwigema, Jean-Claude M.; Cao, Minsong

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non−small cell lung cancer with a tri-cobalt-60 (tri-{sup 60}Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)–based SBRT. In all, 20 patients with large central early-stage non−small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-{sup 60}Co system for a prescription dose of 50 Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R{sub 100} values were calculatedmore » as the total tissue volume receiving 100% of the dose (V{sub 100}) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-{sup 60}Co SBRT plans were performed using Student's t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3 cc (range: 12.1 to 139.4 cc). Of the tri-{sup 60}Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R{sub 100} values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-{sup 60}Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-{sup 60}Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial.« less

  10. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, C; Borras, C; Carlson, D

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protectionmore » will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how they might be used to address clinically relevant problems. Underlying assumptions and limitations of existing models and their proper application will be discussed. This multidisciplinary educational session combines the fundamentals of radiobiology for radiation therapy and radiation protection with the practical application of biophysical models for treatment planning and evaluation. Learning Objectives: To understand fractionation in teletherapy and dose rate techniques in brachytherapy. To understand how the linear-quadratic models the effect of radiobiological parameters for radiotherapy. To understand the radiobiological basis of radiation protection standards applied to radiotherapy. To distinguish between stochastic effects and tissue reactions. To learn how to apply concepts of biological effective dose and RBE-weighted dose and to incorporate biological factors that alter radiation response. To discuss clinical strategies to increase therapeutic ratio, i.e., maximize local control while minimizing the risk of acute and late normal tissue effects.« less

  11. Characterization of a 2.5 MV inline portal imaging beam

    PubMed Central

    Owen, Jennifer; Eduardo Villarreal‐Barajas, J.; Khan, Rao F.H.

    2016-01-01

    A new megavoltage (MV) energy was recently introduced on Varian TrueBeam linear accelerators for imaging applications. This work describes the experimental characterization of a 2.5 MV inline portal imaging beam for commissioning, routine clinical use, and quality assurance purposes. The beam quality of the 2.5 MV beam was determined by measuring a percent depth dose, PDD, in water phantom for 10×10 cm2 field at source‐to‐surface distance 100 cm with a CC13 ion chamber, plane parallel Markus chamber, and GafChromic EBT3 film. Absolute dosimetric output calibration of the beam was performed using a traceable calibrated ionization chamber, following the AAPM Task Group 51 procedure. EBT3 film measurements were also performed to measure entrance dose. The output stability of the imaging beam was monitored for five months. Coincidence of 2.5 MV imaging beam with 6 MV therapy beam was verified with hidden‐target cubic phantom. Image quality was studied using the Leeds and QC3 phantom. The depth of maximum dose, dmax, and percent dose at 10 cm depth were, respectively, 5.7 mm and 51.7% for CC13, 6.1 mm and 51.9% for Markus chamber, and 5.1 mm and 51.9% for EBT3 film. The 2.5 MV beam quality is slightly inferior to that of a  60Co teletherapy beam; however, an estimated kQ of 1.00 was used for output calibration purposes. The beam output was found to be stable to within 1% over a five‐month period. The relative entrance dose as measured with EBT3 films was 63%, compared to 23% for a clinical 6 MV beam for a 10×10 cm2 field. Overall coincidence of the 2.5 MV imaging beam with the 6 MV clinical therapy beam was within 0.2 mm. Image quality results for two commonly used imaging phantoms were superior for the 2.5 MV beam when compared to the conventional 6 MV beam. The results from measurements on two TrueBeam accelerators show that 2.5 MV imaging beam is slightly softer than a therapeutic  60Co beam, it provides superior image quality than a 6 MV therapy beam, and has excellent output stability. These 2.5 MV beam characterization results can serve as reference for clinics planning to commission and use this novel energy‐image modality. PACS number(s): 87.57.‐s, 87.59.‐e, 06.20.fb, 87.53.Bn PMID:27685135

  12. CT-image-based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning.

    PubMed

    Polgár, C; Major, T; Somogyi, A; Takácsi-Nagy, Z; Mangel, L C; Forrai, G; Sulyok, Z; Fodor, J; Németh, G

    2000-03-01

    To compare the conventional 2-D, the simulator-guided semi-3-D and the recently developed CT-guided 3-D brachytherapy treatment planning in the interstitial radiotherapy of breast cancer. In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single, double and triple plane implant was used in 6, 89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3-D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. With the help of conformal semi-3-D and 3-D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi-3-D planning, however, it was increased by 16.2% with 3-D planning, compared to the 2-D planning. The application of clips into the tumor bed and the conformal (semi-3-D and 3-D) planning help to avoid geographical miss. CT is suitable for 3-D brachytherapy planning. Better local control with less side effects might be achieved with these new techniques. Conformal 3-D brachytherapy calls for new treatment planning concepts, taking the irregular 3-D shape of the target volume into account. The routine clinical application of image-based 3-D brachytherapy is a real aim in the very close future.

  13. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less

  14. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.

    PubMed

    Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard

    2013-08-01

    Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.

  15. Frontiers of Physics 1998, Proceedings of the Intl Mtg

    NASA Astrophysics Data System (ADS)

    Chia, S. P.; Bradley, D. A.

    The Table of Contents for the book is as follows: * FOREWORD * PLENARY SESSIONS * Progress of RFQ and superconducting accelerators in China * Dual Ginzburg-Landau theory and quark nuclear physics * Study of solid surfaces on a atomic scale * QCD phase transition in the laboratory and in the early universe * X-ray studies of magnetism: the synchrotron revolution * On the possibility of a gamma-laser: photon emission by a charged particle channeling in a acoustically bent crystal * Frontiers in ultrafast laser science * Inductively coupled RF discharges * Asymmetries of sea quark distributions in baryons * High energy limit of photon-atom interactions: example of double ionization of He by photoabsorption * Excitation of nuclear levels in atomic transitions * PARALLEL SESSIONS * Condensed Matter Physics * A variational approach to many-particle systems * Path-integral approach to band tail density of states in heavily doped semiconductors * Study of vibrational spectra of nanocrystalline silicon by Raman scattering and photoluminescence spectroscopy * Derivation of nonlinear magnetic susceptibility tensors for a ferromagnet * High hard magnetic properties of Sr hexagonal ferrite substituted by La * Elastic anomalies in superconducting and non-superconducting tl-based compounds * Theoretical calculation of the variation of interface parameter, S with the band gap of the ionic insulator * Stationary waves in nonlinear crystal lattices * Quantum field theory, non-linear optics and magnetic phase transitions * Annealing effects on optical and electrical properties of hydrogenated amorphous silicon film * Effect of composition, sintering and grain size on the physical properties of cullet-mica ceramics * Optical characterisation of thin metal film using surface plasmons resonance * A look at nonlinear susceptibility coefficients of ferroelectrics in the far infrared * Elastic behaviour of lead zinc phosphate glasses * Characterization of Gd doped Y-Ba-Cu-O superconductor by ac-susceptibility method * Role of Pb substitution in the formation of single phase Bi-Sr-Ca-Cu-O superconductors * Magnetic and electrical properties of Bi1.6Pb0.4Sr2Ca2(Su1-xSnx)3Oδ superconducting ceramics * Synchrotron Light Sources * Synchrotron radiation activities at KEK * From archaeology to zoology: the diversity in experimentation at a versatile synchrotron radiation beamline * Beijing light source: the Beijing synchrotron radiation facility * Present status of Pohang light source * Present status of synchrotron radiation research in Thailand - the Siam Photon project * Present status of Taiwan light source * Plasma Physics & Technology * Results of the UNU/ICTP PFF network * Dense plasma focus and plasma processing of materials * Carbon nitride thin films research at Nanyang Technological University * High voltage shock-wave and soliton generation * Film deposition of TiN on metal substrates using a plasma sputter-type Ion source * Investigation of the performance of a 2.3 kJ plasma focus device * Dense plasma sequential focus device * Time profile of the neutron emission from a small plasma focus * Characterization of a plasma ozonizer and its application * 0.2 micron lithography using a powerful plasma focus soft X-ray source * Transverse profile analysis of a plasma beam in a plasma-sputter-type ion source * Ion dynamics in the sheath in multicomponent plasma with negative ions * Atomic Physics * New generation positron-atom scattering theories * Electron impact on excited helium * An ab initio optical potential treatment of positron scattering by H atom * Optical potential models for positron scattering from bound atoms * Particle Physics * Superconducting pairing of quarks in QCD * Absorptive contributions of the electroweak penguins * Results on atmospheric neutrinos from super-Kamiokande - evidence for νμ oscillations - * Fermion quantum field theory in black-hole spacetimes * Calculation of the Higgs-Penguin vertex function * Torsion and the Adler-Bell-Jackiw anomaly * Cosmological constant in de-Sitter spacetime * Quantum supergroups and noncommutative superspaces * Production of dissimilar quark-antiquark pairs from e+e- collision * Flavour-changing two-gluon penguin vertex * Laser Physics * Photon-gated persistent spectral hole burning * Propagation of finite electromagnetic waves in the generalised eikonal formalism * Digital recording and reconstruction of holograms * A two-stage Blumlein circuit for nitrogen laser * Some characteristics of thermally induced fracture of glass under non-uniform radiant heating * Digital holography and application to laser metrology * Investigation of laser-etching quality on film substrate using copper vapour and argon ion lasers * Studies of side pin electrode configuration in a fast-axial-flow CW CO2 laser * Laser trimming of thick film resistors * Damage performed by a Q-switched infrared laser * Applied Physics * Wind driven circulation of the South China Sea * An efficient analysis of temporal pulse propagation through a turbid medium using a Monte Carlo protocol * Pulsed photothermal radiometry in lateral geometry * Changes in dielectric constant and loss factor of various cooking oils * Polarization conversion through the excitation of electromagnetic modes on grating and grating waveguide * Vibration monitoring of a rotary vacuum pump at various levels of vacuum and their remedial techniques * El Nino southern oscillation (ENSO) and outgoing longwave radiation (OLR) * Experimental evidence for variation in electronic chemical potential with size of metal substrate in a reversible electrode * Radiation & Nuclear Physics * Effect of soil type on environmental terrestrial gamma radiation dose in Johor State, Malaysia * Uptake and tissue distribution of 137Cs by Magur fish (clarius batrachus) * Diurnal and spacial variation of radon concentration in Malaysian houses * Tests of thermoluminescence dating at Gua Tok Long archaeological site * Alpha spectra from samples of alluvial material contaminated by oxides of thorium * Effect of radiation on thermoluminescence and transmission characteristics of optical fibres * Photon backscatter factors for ISO reference radiations * Discriminant analysis of breast tissue elemental concentration data with determination limits * Determination of air kerma and absorbed dose to water calibration factors of a chamber in a 60Co gamma ray beam * Beam size measurement of a 60Co teletherapy unit at a dosimeter calibration position * Modern neutron skyshine response functions for integral line-beam and conical-beam methods * On the normalization constants associated with the nuclear bound-state wavefunctions * Atomic and nuclear cluster effects in deuterium cluster ion implantation on solids * Optical Fibres * Research in optical fibres devices at Telekom Malaysia photonics laboratory * Erbium doped fiber lasers for optical communications * Characteristics evolution in erbium-doped fibre amplifiers * Development of optical fiber preform fabrication facility at Telekom Malaysia * Multiple signal generation in a BEFL system * Fibre Bragg gratings for optical communication: fabrication and characterisation * Optimization of the reflectivity in Er3+/Yb3+ co-doped fiber laser design for maximum output power * Back reflection study on a fiber laser system * Mathematical and Computational Physics * Simplifying complexity * Asymptotic behaviour of Burgers equation with noisy boundary condition * Kinematical symmetries on punctured sphere * Cellular automata studies of the prisoner's dilemma * Astrophysics * Gravitational wave detection in the laboratory * Eclipsing binary stars in the EROS catalogue * Measurement of seismic noise at the site of Tianyin-100 in UTM * Using thinner suspension wire to reduce thermal noise in Tianyin-100 * Energy losses of solar neutrinos using the standard solar model * Participant List

  16. INTRODUCTION: The early days of the journal

    NASA Astrophysics Data System (ADS)

    Burns, J. E.

    2006-07-01

    When he discovered that I was an assistant editor in the 1960s, Alun Beddoe asked me to write a brief article about the early days of Physics in Medicine and Biology in order to `lighten up' the 50th anniversary issue. Forty years is a long time ago and I did not keep a diary, so all I can do is to recall a few memories and reminiscences and hope that they are reasonably accurate and of some interest. Medical physics in the UK started expanding in the years after World War II, partly because of the number of hospital physicists recruited after the inauguration of the National Health Service in 1948, and also because of the introduction of high energy generators used in radiotherapy (2 MV van de Graaffs, linacs, cobalt-60 teletherapy etc), radioactive isotopes, and increasing concern about radiation protection in such areas as diagnostic radiology. As they perceived that this would give rise to an increasing number of papers in this area of science, in 1956 the publishers Taylor & Francis launched a new quarterly journal entitled Physics in Medicine and Biology (PMB) in collaboration with the Hospital Physicists' Association (HPA). For various reasons the publication date of an issue began to lag further and further behind the date on the front cover. The journal was not gaining sufficient subscribers and was failing to attract many authors, and there was a serious danger that it was going to cease publication. The HPA Executive Committee discussed whether to make the purchase of PMB compulsory for all HPA members, but decided against it. As the great majority of papers on medical physics at that time were still published in a wide range of other scientific or medical journals, it was intended, as a service to readers of PMB, that about a quarter of each issue should be devoted to abstracts of selected articles published in other journals. By the 1960s there was an average of well over 200 abstracts in each quarterly issue, written specially for PMB by a team of expert and hard-working volunteers. Over 100 journals were abstracted, many of which were foreign and difficult to obtain. This service, organized by the HPA Abstracts Sub-Committee with Walter Langmead as the first of several Abstracts Editors, was no mean undertaking, but was well worth the effort. By providing information of immediate and practical use to readers, it encouraged them to purchase their personal copies, and thereby helped PMB to survive during its early years. Apart from the advertisements, other useful features that appeared in the journal included correspondence, brief contributions that went under the headings of scientific, technical or instrumental notes, book reviews, lists of forthcoming events, proceedings of relevant scientific conferences, and obituaries. Nevertheless, the success of a scientific journal depends in the end on the quality of its submitted or commissioned articles. In 1961 the decision was taken to ask Professor Joseph Rotblat to be the editor. In those days Taylor & Francis were responsible for the publicity, the distribution, liaison with the printers, and all financial matters. The editorial work, including correspondence with authors and referees, preparing the papers for the printer and proof reading, was the responsibility of the editor. Realizing that he could not do this single handed, the new editor enlisted the help of three medical physicists as assistant editors. Under the energetic and inspired leadership of Rotblat the journal began to prosper. By producing an issue every two months instead of three months, the actual date of publication soon caught up with the date on the front cover. As the publication time decreased, more and more medical physicists decided to send their papers to PMB, and the editor managed to persuade a number of experts to write specially commissioned review articles. Since then PMB has never looked back. The editing arrangements were as follows. Authors were instructed to send their papers to the editor at St Bartholomew's Hospital Medical School. He (or usually his secretary) would acknowledge receipt and immediately forward the paper to one of the assistant editors, keeping one copy for safety purposes. The assistant editors were then expected to deal with all correspondence with the authors and referees, and in exceptional circumstances to reject a paper if it was quite obviously unsuitable for PMB. Only when the final version of a paper was prepared for the printer was it returned to the editor for his approval and inclusion in the next issue of PMB. The assistant editors also dealt with the subsequent proof reading and any queries. Most of the papers I had to deal with were fully appropriate for PMB and of high quality, and so presented few problems in editing. There were however a few exceptions, and one incident that still sticks in my memory concerns a paper written by a person who was a professor, no less. I forget the exact details, but it was quite clearly unsuitable for PMB, even if edited. I therefore returned it to the author, apologising and explaining why it had to be rejected. A couple of days later I received an irate phone call from the author asking who I was that had the temerity to reject one of his papers. When I explained that I was an assistant editor he replied that I would not be for much longer as Professor Rotblat was a personal friend of his. I immediately phoned Rotblat and explained the situation. Later in the day I received a phone call from Rotblat who was (as always) terse and to the point: `I read the article. I agree with you. The author did phone me. Don't worry, you won't hear from him again.' End of call. End of problem. As medical physics was a young profession it was very difficult to find good referees and, when found, to avoid losing their goodwill by overloading them with work. One referee did not reply for 18 months despite several reminders; by the time I received his comments (which were negligible) the paper had already been published 9 months previously. Other problems were with referees who went on ego trips, or who made savage and quite unwarranted criticisms of papers. In these cases I either edited the referee's comments or just ignored them. If an author disagreed with a referee's comments I nearly always gave the author the benefit of the doubt; after all, it is the author who is responsible for his paper, not the anonymous referee. One of the duties of the referees is to detect plagiarisms, but they can still slip through (see PMB 7 (1962) p 1). However I once encountered a strange case of attempted plagiarism by a referee. Some time in the late 1960s I received a paper from an American author on a topic in my field of expertise so I sent it to only one referee whose comments were relatively trivial. I returned the paper to the author with suggestions for a few minor improvements. About two months later I received a letter from his place of work with the sad news that he had died suddenly. I asked them whether the paper should be published posthumously, but they replied that it concerned some of his personal research and that nobody else could really take responsibility for its validity. About three years later I received a paper that seemed familiar. Luckily, I had kept a copy of the above paper and when I compared the two I found that the text agreed almost word for word, and the illustrations were identical. Curious! Even more curious was the fact that the new author was now the referee to whom I had sent the original paper. In retrospect, what still surprises me is that the referee was sufficiently naive to send the paper to PMB, when if he had sent it to almost any other relevant journal it would have got through without detection. When Rotblat was away due to his heavy responsibilities with the Pugwash conferences, I took over some of his duties. One of these was to liaise with the person who translated authors' abstracts of the papers into French, German and Russian versions, which were published at the end of each paper. It was the Russian that always seemed to give the most problems. I would receive phone calls from the translator (who sounded Russian, or possibly Polish) asking what the author of a paper precisely meant by a particular sentence. It was no use my replying that it seemed clear enough to me, because slight differences in meaning needed a different translation into Russian. This usually meant me trying to contact the author by phone. This was even more difficult if the paper had been dealt with by one of the other assistant editors. If the author of the paper lived abroad this was impossible in the time available. In some cases I just had to guess, and hope that not many people would read the Russian abstract anyway. My work as an editor was made a great deal easier with the assistance of my secretary, Val Northen. She kept the filing system in order, wrote some of the routine correspondence herself, and dealt with phone calls when I was out of the office. The same applied to Professor Rotblat's secretary, whose name I have unfortunately forgotten. When I left medical physics in 1968 to work at the National Physical Laboratory I found myself well below the level of seniority which would have entitled me to a secretary, so I had to write out my letters longhand to be typed by copy typists in the typing pool. Phone calls went unanswered. After a couple of years I gave up the struggle and resigned my editorial duties. Soon after that PMB was purchased from Taylor & Francis by Institute of Physics Publishing and the editing taken over by the office that edited all the other IOP journals, but I did not foresee this. For the benefit of future readers at the time of the 100th anniversary of PMB in 2056, and whose knowledge of the dates of various technological advances may be a bit hazy, I should explain that, during the period I have described, scientific research, publication of journals and editorial work was carried out before the existence of answer phones, photo-copiers, personal computers, the internet, search engines and online publication. And, of course, before all the other technological advances that may occur between 2006 and 2056. We must all admire the foresight of Taylor & Francis in launching PMB in 1956, and their willingness to continue supporting it, despite making financial losses in its early years. By the time of its 15th anniversary in 1971, the journal had acquired an international reputation, and its future was assured. However, it could not have achieved this success without the enthusiastic and entirely unpaid efforts of the various editors, referees and abstractors in that period. Tribute must also be paid to those authors who shared our confidence and kept submitting their papers to the journal at a time when its future looked uncertain. And many thanks to all those secretaries whose valuable contributions so often went unacknowledged at the time. Finally, it was a privilege to work with the eminent scientist, Joseph Rotblat, who was to be awarded the Nobel Peace Prize many years later.

Top