Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M.S.; Reddel, Roger R.; Pickett, Hilda A.
2014-01-01
Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres. PMID:24225324
Bolzán, Alejandro D
2017-07-01
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera?
NASA Astrophysics Data System (ADS)
Menezes, Rodolpho S. T.; Bardella, Vanessa B.; Cabral-de-Mello, Diogo C.; Lucena, Daercio A. A.; Almeida, Eduardo A. B.
2017-10-01
Despite the (TTAGG)n telomeric repeat supposed being the ancestral DNA motif of telomeres in insects, it was repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other representatives of Hymenoptera, this motif was noticed, such as different ant species and the honeybee. These findings raise the question of whether the insect telomeric repeat is or not phylogenetically predominant in Hymenoptera. Thus, we evaluated the occurrence of both the (TTAGG)n sequence and the vertebrate telomere sequence (TTAGGG)n using dot-blotting hybridization in 25 aculeate species of Hymenoptera. Our results revealed the absence of (TTAGG)n sequence in all tested species, elevating the number of hymenopteran families lacking this telomeric sequence to 13 out of the 15 tested families so far. The (TTAGGG)n was not observed in any tested species. Based on our data and compiled information, we suggest that the (TTAGG)n sequence was putatively lost in the ancestor of Apocrita with at least two subsequent independent regains (in Formicidae and Apidae).
Spectroscopic insights into quadruplexes of five-repeat telomere DNA sequences upon G-block damage.
Dvořáková, Zuzana; Vorlíčková, Michaela; Renčiuk, Daniel
2017-11-01
The DNA lesions, resulting from oxidative damage, were shown to destabilize human telomere four-repeat quadruplex and to alter its structure. Long telomere DNA, as a repetitive sequence, offers, however, other mechanisms of dealing with the lesion: extrusion of the damaged repeat into loop or shifting the quadruplex position by one repeat. Using circular dichroism and UV absorption spectroscopy and polyacrylamide electrophoresis, we studied consequences of lesions at different positions of the model five-repeat human telomere DNA sequences on the structure and stability of their quadruplexes in sodium and in potassium. The repeats affected by lesion are preferentially positioned as terminal overhangs of the core quadruplex structurally similar to the four-repeat one. Forced affecting of the inner repeats leads to presence of variety of more parallel folds in potassium. In sodium the designed models form mixture of two dominant antiparallel quadruplexes whose population varies with the position of the affected repeat. The shapes of quadruplex CD spectra, namely the height of dominant peaks, significantly correlate with melting temperatures. Lesion in one guanine tract of a more than four repeats long human telomere DNA sequence may cause re-positioning of its quadruplex arrangement associated with a shift of the structure to less common quadruplex conformations. The type of the quadruplex depends on the loop position and external conditions. The telomere DNA quadruplexes are quite resistant to the effect of point mutations due to the telomere DNA repetitive nature, although their structure and, consequently, function might be altered. Copyright © 2017. Published by Elsevier B.V.
Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg
2015-12-01
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Desmaze, C; Pirzio, L M; Blaise, R; Mondello, C; Giulotto, E; Murnane, J P; Sabatier, L
2004-01-01
Telomeric repeat sequences, located at the end of eukaryotic chromosomes, have been detected at intrachromosomal locations in many species. Large blocks of telomeric sequences are located near the centromeres in hamster cells, and have been reported to break spontaneously or after exposure to ionizing radiation, leading to chromosome aberrations. In human cells, interstitial telomeric sequences (ITS) can be composed of short tracts of telomeric repeats (less than twenty), or of longer stretches of exact and degenerated hexanucleotides, mainly localized at subtelomeres. In this paper, we analyzed the radiation sensitivity of a naturally occurring short ITS localized in 2q31 and we found that this region is not a hot spot of radiation-induced chromosome breaks. We then selected a human cell line in which approximately 800 bp of telomeric DNA had been introduced by transfection into an internal euchromatic chromosomal region in chromosome 4q. In parallel, a cell line containing the plasmid without telomeric sequences was also analyzed. Both regions containing the transfected plasmids showed a higher frequency of radiation-induced breaks than expected, indicating that the instability of the regions containing the transfected sequences is not due to the presence of telomeric sequences. Taken together, our data show that ITS themselves do not enhance the formation of radiation-induced chromosome rearrangements in these human cell lines. Copyright 2003 S. Karger AG, Basel
Mendez-Bermudez, Aaron; Hills, Mark; Pickett, Hilda A.; Phan, Anh Tuân; Mergny, Jean-Louis; Riou, Jean-François; Royle, Nicola J.
2009-01-01
A number of different processes that impact on telomere length dynamics have been identified but factors that affect the turnover of repeats located proximally within the telomeric DNA are poorly defined. We have identified a particular repeat type (CTAGGG) that is associated with an extraordinarily high mutation rate (20% per gamete) in the male germline. The mutation rate is affected by the length and sequence homogeneity of the (CTAGGG)n array. This level of instability was not seen with other sequence-variant repeats, including the TCAGGG repeat type that has the same composition. Telomeres carrying a (CTAGGG)n array are also highly unstable in somatic cells with the mutation process resulting in small gains or losses of repeats that also occasionally result in the deletion of the whole (CTAGGG)n array. These sequences are prone to quadruplex formation in vitro but adopt a different topology from (TTAGGG)n (see accompanying article). Interestingly, short (CTAGGG)2 oligonucleotides induce a DNA damage response (γH2AX foci) as efficiently as (TTAGGG)2 oligos in normal fibroblast cells, suggesting they recruit POT1 from the telomere. Moreover, in vitro assays show that (CTAGGG)n repeats bind POT1 more efficiently than (TTAGGG)n or (TCAGGG)n. We estimate that 7% of human telomeres contain (CTAGGG)n repeats and when present, they create additional problems that probably arise during telomere replication. PMID:19656953
Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.
Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C
1997-12-01
Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R.
Pita, Sebastián; Panzera, Francisco; Mora, Pablo; Vela, Jesús; Palomeque, Teresa; Lorite, Pedro
2016-01-01
Abstract Next-generation sequencing data analysis on Triatoma infestans Klug, 1834 (Heteroptera, Cimicomorpha, Reduviidae) revealed the presence of the ancestral insect (TTAGG)n telomeric motif in its genome. Fluorescence in situ hybridization confirms that chromosomes bear this telomeric sequence in their chromosomal ends. Furthermore, motif amount estimation was about 0.03% of the total genome, so that the average telomere length in each chromosomal end is almost 18 kb long. We also detected the presence of (TTAGG)n telomeric repeat in mitotic and meiotic chromosomes in other three species of Triatominae: Triatoma dimidiata Latreille, 1811, Dipetalogaster maxima Uhler, 1894, and Rhodnius prolixus Ståhl, 1859. This is the first report of the (TTAGG)n telomeric repeat in the infraorder Cimicomorpha, contradicting the currently accepted hypothesis that evolutionarily recent heteropterans lack this ancestral insect telomeric sequence. PMID:27830050
Kapila, R; Das, S; Srivastava, P S; Lakshmikumaran, M
1996-08-01
DNA sequences representing a tandemly repeated DNA family of the Sinapis arvensis genome were cloned and characterized. The 700-bp tandem repeat family is represented by two clones, pSA35 and pSA52, which are 697 and 709 bp in length, respectively. Dot matrix analysis of the sequences indicates the presence of repeated elements within each monomeric unit. Sequence analysis of the repetitive region of clones pSA35 and pSA52 shows that there are several copies of a 7-bp repeat element organized in tandem. The consensus sequence of this repeat element is 5'-TTTAGGG-3'. These elements are highly mutated and the difference in length between the two clones is due to different copy numbers of these elements. The repetitive region of clone pSA35 has 26 copies of the element TTTAGGG, whereas clone pSA52 has 28 copies. The repetitive region in both clones is flanked on either side by inverted repeats that may be footprints of a transposition event. Sequence comparison indicates that the element TTTAGGG is identical to telomeric repeats present in Arabidopsis, maize, tomato, and other plants. However, Bal31 digestion kinetics indicates non-telomeric localization of the 700-bp tandem repeats. The clones represent a novel repeat family as (i) they contain telomere-like motifs as subrepeats within each unit; and (ii) they do not hybridize to related crucifers and are species-specific in nature.
ATM kinase is required for telomere elongation in mouse and human cells
Lee, Stella Suyong; Bohrson, Craig; Pike, Alexandra Mims; Wheelan, Sarah Jo; Greider, Carol Widney
2015-01-01
Summary Short telomeres induce a DNA damage response, senescence and apoptosis; thus, maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease. PMID:26586427
Plant chromosomes from end to end: telomeres, heterochromatin and centromeres.
Lamb, Jonathan C; Yu, Weichang; Han, Fangpu; Birchler, James A
2007-04-01
Recent evidence indicates that heterochromatin in plants is composed of heterogeneous sequences, which are usually composed of transposable elements or tandem repeat arrays. These arrays are associated with chromatin modifications that produce a closed configuration that limits transcription. Centromere sequences in plants are usually composed of tandem repeat arrays that are homogenized across the genome. Analysis of such arrays in closely related taxa suggests a rapid turnover of the repeat unit that is typical of a particular species. In addition, two lines of evidence for an epigenetic component of centromere specification have been reported, namely an example of a neocentromere formed over sequences without the typical repeat array and examples of centromere inactivation. Although the telomere repeat unit is quite prevalent in the plant kingdom, unusual repeats have been found in some families. Recently, it was demonstrated that the introduction of telomere sequences into plants cells causes truncation of the chromosomes, and that this technique can be used to produce artificial chromosome platforms.
Interstitial telomere-like repeats in the Arabidopsis thaliana genome.
Uchida, Wakana; Matsunaga, Sachihiro; Sugiyama, Ryuji; Kawano, Shigeyuki
2002-02-01
Eukaryotic chromosomal ends are protected by telomeres, which are thought to play an important role in ensuring the complete replication of chromosomes. On the other hand, non-functional telomere-like repeats in the interchromosomal regions (interstitial telomeric repeats; ITRs) have been reported in several eukaryotes. In this study, we identified eight ITRs in the Arabidopsis thaliana genome, each consisting of complete and degenerate 300- to 1200-bp sequences. The ITRs were grouped into three classes (class IA-B, class II, and class IIIA-E) based on the degeneracy of the telomeric repeats in ITRs. The telomeric repeats of the two ITRs in class I were conserved for the most part, whereas the single ITR in class II, and the five ITRs in class III were relatively degenerated. In addition, degenerate ITRs were surrounded by common sequences that shared 70-100% homology to each other; these are named ITR-adjacent sequences (IAS). Although the genomic regions around ITRs in class I lacked IAS, those around ITRs in class II contained IAS (IASa), and those around five ITRs in class III had nine types of IAS (IASb, c, d, e, f, g, h, i, and j). Ten IAS types in classes II and III showed no significant homology to each other. The chromosomal locations of ITRs and IAS were not category-related, but most of them were adjacent to, or part of, a centromere. These results show that the A. thaliana genome has undergone chromosomal rearrangements, such as end-fusions and segmental duplications.
Telomere dynamics in an immortal human cell line.
Murnane, J P; Sabatier, L; Marder, B A; Morgan, W F
1994-01-01
The integration of transfected plasmid DNA at the telomere of chromosome 13 in an immortalized simian virus 40-transformed human cell line provided the first opportunity to study polymorphism in the number of telomeric repeat sequences on the end of a single chromosome. Three subclones of this cell line were selected for analysis: one with a long telomere on chromosome 13, one with a short telomere, and one with such extreme polymorphism that no distinct band was discernible. Further subcloning demonstrated that telomere polymorphism resulted from both gradual changes and rapid changes that sometimes involved many kilobases. The gradual changes were due to the shortening of telomeres at a rate similar to that reported for telomeres of somatic cells without telomerase, eventually resulting in the loss of nearly all of the telomere. However, telomeres were not generally lost completely, as shown by the absence of polymorphism in the subtelomeric plasmid sequences. Instead, telomeres that were less than a few hundred base pairs in length showed a rapid, highly heterogeneous increase in size. Rapid changes in telomere length also occurred on longer telomeres. The frequency of this type of change in telomere length varied among the subclones and correlated with chromosome fusion. Therefore, the rapid changes in telomere length appeared occasionally to result in the complete loss of telomeric repeat sequences. Rapid changes in telomere length have been associated with telomere loss and chromosome instability in yeast and could be responsible for the high rate of chromosome fusion observed in many human tumor cell lines. Images PMID:7957062
Chromosome ends: different sequences may provide conserved functions.
Louis, Edward J; Vershinin, Alexander V
2005-07-01
The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection. Copyright (c) 2005 Wiley Periodicals, Inc.
Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas
2009-01-01
Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species. PMID:19635741
Chan, Simon R W L; Blackburn, Elizabeth H
2004-01-01
Telomeres are the protective DNA-protein complexes found at the ends of eukaryotic chromosomes. Telomeric DNA consists of tandem repeats of a simple, often G-rich, sequence specified by the action of telomerase, and complete replication of telomeric DNA requires telomerase. Telomerase is a specialized cellular ribonucleoprotein reverse transcriptase. By copying a short template sequence within its intrinsic RNA moiety, telomerase synthesizes the telomeric DNA strand running 5' to 3' towards the distal end of the chromosome, thus extending it. Fusion of a telomere, either with another telomere or with a broken DNA end, generally constitutes a catastrophic event for genomic stability. Telomerase acts to prevent such fusions. The molecular consequences of telomere failure, and the molecular contributors to telomere function, with an emphasis on telomerase, are discussed here. PMID:15065663
M.N. lslam-Faridi; C.D. Nelson; S.P. DiFazio; L.E. Gunter; G.A. Tuskan
2009-01-01
The 185-285 rDNA and 55 rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 185-285 rDNA sites and one 55 rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones...
Molecular architecture of classical cytological landmarks: Centromeres and telomeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyne, J.
1994-11-01
Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library ismore » screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.« less
An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity
Tzeng, Tsai-Yu; Lin, I-Hsuan; Hsu, Ming-Ta
2016-01-01
Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2) and protection of telomeres protein 1 (POT1), whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity. PMID:27228173
Double-stranded telomeric DNA binding proteins: Diversity matters.
Červenák, Filip; Juríková, Katarína; Sepšiová, Regina; Neboháčová, Martina; Nosek, Jozef; Tomáška, L'ubomír
2017-01-01
Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.
Hu, Lanying; Lim, Kah Wai; Bouaziz, Serge; Phan, Anh Tuân
2009-11-25
Recently, it has been shown that in K(+) solution the human telomeric sequence d[TAGGG(TTAGGG)(3)] forms a (3 + 1) intramolecular G-quadruplex, while the Bombyx mori telomeric sequence d[TAGG(TTAGG)(3)], which differs from the human counterpart only by one G deletion in each repeat, forms a chair-type intramolecular G-quadruplex, indicating an effect of G-tract length on the folding topology of G-quadruplexes. To explore the effect of loop length and sequence on the folding topology of G-quadruplexes, here we examine the structure of the four-repeat Giardia telomeric sequence d[TAGGG(TAGGG)(3)], which differs from the human counterpart only by one T deletion within the non-G linker in each repeat. We show by NMR that this sequence forms two different intramolecular G-quadruplexes in K(+) solution. The first one is a novel basket-type antiparallel-stranded G-quadruplex containing two G-tetrads, a G x (A-G) triad, and two A x T base pairs; the three loops are consecutively edgewise-diagonal-edgewise. The second one is a propeller-type parallel-stranded G-quadruplex involving three G-tetrads; the three loops are all double-chain-reversal. Recurrence of several structural elements in the observed structures suggests a "cut and paste" principle for the design and prediction of G-quadruplex topologies, for which different elements could be extracted from one G-quadruplex and inserted into another.
Lian, Hui-Yong; Robertson, E Douglas; Hiraga, Shin-ichiro; Alvino, Gina M; Collingwood, David; McCune, Heather J; Sridhar, Akila; Brewer, Bonita J; Raghuraman, M K; Donaldson, Anne D
2011-05-15
DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.
Farmery, James H R; Smith, Mike L; Lynch, Andy G
2018-01-22
Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype.
Telomere sequence content can be used to determine ALT activity in tumours
Lee, Michael; Teber, Erdahl T; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Dagg, Rebecca A; Lau, Loretta M S; Lee, Joyce H; Napier, Christine E; Arthur, Jonathan W; Grimmond, Sean M; Hayward, Nicholas K; Johansson, Peter A; Mann, Graham J; Scolyer, Richard A; Wilmott, James S; Reddel, Roger R; Pearson, John V; Waddell, Nicola; Pickett, Hilda A
2018-01-01
Abstract The replicative immortality of human cancer cells is achieved by activation of a telomere maintenance mechanism (TMM). To achieve this, cancer cells utilise either the enzyme telomerase, or the Alternative Lengthening of Telomeres (ALT) pathway. These distinct molecular pathways are incompletely understood with respect to activation and propagation, as well as their associations with clinical outcomes. We have identified significant differences in the telomere repeat composition of tumours that use ALT compared to tumours that do not. We then employed a machine learning approach to stratify tumours according to telomere repeat content with an accuracy of 91.6%. Importantly, this classification approach is applicable across all tumour types. Analysis of pathway mutations that were under-represented in ALT tumours, across 1,075 tumour samples, revealed that the autophagy, cell cycle control of chromosomal replication, and transcriptional regulatory network in embryonic stem cells pathways are involved in the survival of ALT tumours. Overall, our approach demonstrates that telomere sequence content can be used to stratify ALT activity in cancers, and begin to define the molecular pathways involved in ALT activation. PMID:29718321
Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase
Schawalder, James; Paric, Enesa; Neff, Norma F
2003-01-01
Background Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci. Results Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal. Conclusion These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres. PMID:14577841
Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops.
Kar, Anirban; Willcox, Smaranda; Griffith, Jack D
2016-11-02
The formation of DNA loops at chromosome ends (t-loops) and the transcription of telomeres producing G-rich RNA (TERRA) represent two central features of telomeres. To explore a possible link between them we employed artificial human telomeres containing long arrays of TTAGGG repeats flanked by the T7 or T3 promoters. Transcription of these DNAs generates a high frequency of t-loops within individual molecules and homologous recombination events between different DNAs at their telomeric sequences. T-loop formation does not require a single strand overhang, arguing that both terminal strands insert into the preceding duplex. The loops are very stable and some RNase H resistant TERRA remains at the t-loop, likely adding to their stability. Transcription of DNAs containing TTAGTG or TGAGTG repeats showed greatly reduced loop formation. While in the cell multiple pathways may lead to t-loop formation, the pathway revealed here does not depend on the shelterins but rather on the unique character of telomeric DNA when it is opened for transcription. Hence, telomeric sequences may have evolved to facilitate their ability to loop back on themselves. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
The roles of WRN and BLM RecQ helicases in the Alternative Lengthening of Telomeres
Mendez-Bermudez, Aaron; Hidalgo-Bravo, Alberto; Cotton, Victoria E.; Gravani, Athanasia; Jeyapalan, Jennie N.; Royle, Nicola J.
2012-01-01
Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN– ALT+ cell line lacks the class of complex telomere mutations attributed to inter-telomeric recombination in other ALT+ cell lines. This suggests that WRN facilitates inter-telomeric recombination when there are sequence differences between the donor and recipient molecules or that sister-telomere interactions are suppressed in the presence of WRN and this promotes inter-telomeric recombination. Depleting BLM in the WRN– ALT+ cell line increased the mutation frequency at telomeres and at the MS32 minisatellite, which is a marker of ALT. The absence of complex telomere mutations persisted in BLM-depleted clones, and there was a clear increase in sequence homogenization across the telomere and MS32 repeat arrays. These data indicate that BLM suppresses unequal sister chromatid interactions that result in excessive homogenization at MS32 and at telomeres in ALT+ cells. PMID:22989712
The roles of WRN and BLM RecQ helicases in the Alternative Lengthening of Telomeres.
Mendez-Bermudez, Aaron; Hidalgo-Bravo, Alberto; Cotton, Victoria E; Gravani, Athanasia; Jeyapalan, Jennie N; Royle, Nicola J
2012-11-01
Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN- ALT+ cell line lacks the class of complex telomere mutations attributed to inter-telomeric recombination in other ALT+ cell lines. This suggests that WRN facilitates inter-telomeric recombination when there are sequence differences between the donor and recipient molecules or that sister-telomere interactions are suppressed in the presence of WRN and this promotes inter-telomeric recombination. Depleting BLM in the WRN- ALT+ cell line increased the mutation frequency at telomeres and at the MS32 minisatellite, which is a marker of ALT. The absence of complex telomere mutations persisted in BLM-depleted clones, and there was a clear increase in sequence homogenization across the telomere and MS32 repeat arrays. These data indicate that BLM suppresses unequal sister chromatid interactions that result in excessive homogenization at MS32 and at telomeres in ALT+ cells.
Telomere biology of trypanosomatids: beginning to answer some questions.
Lira, Cristina B B; Giardini, Miriam A; Neto, Jair L Siqueira; Conte, Fábio F; Cano, Maria Isabel N
2007-08-01
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun
Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminalmore » Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adekunle, S.S.A.; Wyandt, H.; Mark, H.F.L.
1994-09-01
Recently we mapped the telomeric repeat sequences to 111 interstitial sites in the human genome and to sites of gaps and breaks induced by aphidicolin and sister chromatid exchange sites detected by BrdU. Many of these sites correspond to conserved fragile sites in man, gorilla and chimpazee, to sites of conserved sister chromatid exchange in the mammalian X chromosome, to mutagenic sensitive sites, mapped locations of proto-oncogenes, breakpoints implicated in primate evolution and to breakpoints indicated as the sole anomaly in neoplasia. This observation prompted us to investigate if the interstitial telomeric sites cluster with these sites. An extensive literaturemore » search was carried out to find all the available published sites mentioned above. For comparison, we also carried out a statistical analysis of the clustering of the sites of the telomeric repeats with the gene locations where only nucleotide mutations have been observed as the only chromosomal abnormality. Our results indicate that the telomeric repeats cluster most with fragile sites, mutagenic sensitive sites and breakpoints implicated in primate evolution and least with cancer breakpoints, mapped locations of proto-oncogenes and other genes with nucleotide mutations.« less
Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA.
Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A
2016-10-07
Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA*
Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A.
2016-01-01
Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. PMID:27563064
Replication Protein A-1 Has a Preference for the Telomeric G-rich Sequence in Trypanosoma cruzi.
Pavani, Raphael Souza; Vitarelli, Marcela O; Fernandes, Carlos A H; Mattioli, Fabio F; Morone, Mariana; Menezes, Milene C; Fontes, Marcos R M; Cano, Maria Isabel N; Elias, Maria Carolina
2018-05-01
Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruziRPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruziRPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.
TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization
Galati, Alessandra; Micheli, Emanuela; Alicata, Claudia; Ingegnere, Tiziano; Cicconi, Alessandro; Pusch, Miriam Caroline; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Cacchione, Stefano
2015-01-01
The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection. PMID:25999344
Russo Krauss, Irene; Ramaswamy, Sneha; Neidle, Stephen; Haider, Shozeb; Parkinson, Gary N
2016-02-03
We report here on an X-ray crystallographic and molecular modeling investigation into the complex 3' interface formed between putative parallel stranded G-quadruplexes and a duplex DNA sequence constructed from the human telomeric repeat sequence TTAGGG. Our crystallographic approach provides a detailed snapshot of a telomeric 3' quadruplex-duplex junction: a junction that appears to have the potential to form a unique molecular target for small molecule binding and interference with telomere-related functions. This unique target is particularly relevant as current high-affinity compounds that bind putative G-quadruplex forming sequences only rarely have a high degree of selectivity for a particular quadruplex. Here DNA junctions were assembled using different putative quadruplex-forming scaffolds linked at the 3' end to a telomeric duplex sequence and annealed to a complementary strand. We successfully generated a series of G-quadruplex-duplex containing crystals, both alone and in the presence of ligands. The structures demonstrate the formation of a parallel folded G-quadruplex and a B-form duplex DNA stacked coaxially. Most strikingly, structural data reveals the consistent formation of a TAT triad platform between the two motifs. This triad allows for a continuous stack of bases to link the quadruplex motif with the duplex region. For these crystal structures formed in the absence of ligands, the TAT triad interface occludes ligand binding at the 3' quadruplex-duplex interface, in agreement with in silico docking predictions. However, with the rearrangement of a single nucleotide, a stable pocket can be produced, thus providing an opportunity for the binding of selective molecules at the interface.
Upton, Heather E; Hong, Kyungah; Collins, Kathleen
2014-11-15
The eukaryotic reverse transcriptase telomerase copies its internal RNA template to synthesize telomeric DNA repeats at chromosome ends in balance with sequence loss during cell proliferation. Previous work has established several factors involved in telomerase recruitment to telomeres in yeast and mammalian cells; however, it remains unclear what determines the association of telomerase with telomeres in other organisms. Here we investigate the cell cycle dependence of telomere binding by each of the seven Tetrahymena thermophila telomerase holoenzyme proteins TERT, p65, Teb1, p50, p75, p45, and p19. We observed coordinate cell cycle-regulated recruitment and release of all of the subunits, including the telomeric-repeat DNA-binding subunit Teb1. Using domain truncation and mutagenesis approaches, we investigated which subunits govern the interaction of telomerase holoenzyme with telomeres. Our results show that Teb1 is critical for telomere interaction of other holoenzyme subunits and demonstrate that high-affinity Teb1 DNA-binding activity is necessary and sufficient for cell cycle-regulated telomere association. Overall, these and additional findings indicate that in the ciliate Tetrahymena, telomerase recruitment to telomeres requires direct binding to single-stranded DNA, unlike the indirect DNA recognition through telomere-bound proteins essential in yeast and mammalian cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator.
Jahn, Arne; Rane, Grishma; Paszkowski-Rogacz, Maciej; Sayols, Sergi; Bluhm, Alina; Han, Chung-Ting; Draškovič, Irena; Londoño-Vallejo, José Arturo; Kumar, Alan Prem; Buchholz, Frank; Butter, Falk; Kappei, Dennis
2017-06-01
Telomeres constitute the ends of linear chromosomes and together with the shelterin complex form a structure essential for genome maintenance and stability. In addition to the constitutive binding of the shelterin complex, other direct, yet more transient interactions are mediated by the CST complex and HOT1/HMBOX1, while subtelomeric variant repeats are recognized by NR2C/F transcription factors. Recently, the Kruppel-like zinc finger protein ZBTB48/HKR3/TZAP has been described as a novel telomere-associated factor in the vertebrate lineage. Here, we show that ZBTB48 binds directly both to telomeric and to subtelomeric variant repeat sequences. ZBTB48 is found at telomeres of human cancer cells regardless of the mode of telomere maintenance and it acts as a negative regulator of telomere length. In addition to its telomeric function, we demonstrate through a combination of RNAseq, ChIPseq and expression proteomics experiments that ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1). This discovery places ZBTB48 at the interface of telomere length regulation, transcriptional control and mitochondrial metabolism. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Srivastava, Prateek; Hira, Sumit Kumar; Sharma, Amod; Kashif, Mohammad; Srivastava, Prashant; Srivastava, Divesh N Narayan; Singh, Ram Adhar; Manna, Partha Pratim
2018-05-25
Mammalian telomerase maintain the length and integrity of telomeres by adding the telomeric repeats to chromosome end. This work describes the telomerase responsive delivery of doxorubicin against telomerase positive human and murine cancer cells. Wrapping of doxorubicin loaded mesoporous silica nanoparticles with specific oligonucleotide sequence, containing telomeric repeat complementary sequence and a telomerase substrate primer sequence resulted slow and sustained release of doxorubicin, contiguous to the tumor cells. The DNA wrapped nano probe significantly inhibit the proliferation and enhanced the cytotoxicity in telomerase positive human and mouse tumor cells, and its function is impeded following exposure to specific telomerase inhibitor, AZT. Entrapping of doxorubicin by telomerase specific oligo, manifests enhanced apoptosis and significantly higher uptake of the drug in the tumor cells. Treatment of telomerase positive Dalton's lymphoma bearing mice with a novel and newly designed oligo wrapped nano probe, specific for mouse telomerase, significantly enhanced the survival and improved the histopathological parameters. In addition, the treatment also induced significant reduction in the number of tumor foci and restored the normal architecture of the vascularised organs, besides preventing metastasis.
Gancarcíková, M; Zemanová, Z; Brezinová, J; Berková, A; Vcelíková, S; Smigová, J; Michalová, K
2010-01-01
Human telomeres (discovery of telomere structure and function has been recently awarded The Nobel Prize) consist of approximately 5-12 kb of tandem repeated sequences (TTAGGG)n and associated proteins capping chromosome ends which prevent degradation, loss of genetic information, end-to-end fusion, senescence and apoptosis. Due to the end-replication problem, telomere repeats are lost with each cell division, eventually leading to genetic instability and cellular senescence when telomeres become critically short. Stabilization of the telomeric DNA through telomerase activation, unique reverse transcriptase, or activation of the alternative mechanism of telomere maintenance is essential if the cells are to survive and proliferate indefinitely. Telomerase is expressed during early development and remains fully active in specific germline cells, but is undetectable in most normal somatic cells. High level of telomerase activity is detected in almost 90% of human tumours and immortalized cell lines. The hematopoietic compartment may develop genetic instability as a consequence of telomere erosion, resulting in aplastic anaemia (AA) and increased risk of myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Genetic instability associated with telomere dysfunction (i.e. short telomeres) is an early event in carcinogenesis. The molecular cytogenetic method telomere/centromere fluorescence in situ hybridization (T/C-FISH) can be used to characterize the telomere length of hematopoietic cells. This review describes recent advances in the molecular characterization of telomere system, the regulation of telomerase activity in cancer pathogenesis and shows that the telomeric length could be a potential clinical marker of hematologic neoplasia and prognosis of disease.
Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N
2017-11-01
Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.
Telomere maintenance in liquid crystalline chromosomes of dinoflagellates.
Fojtová, Miloslava; Wong, Joseph T Y; Dvorácková, Martina; Yan, Kosmo T H; Sýkorová, Eva; Fajkus, Jirí
2010-10-01
The organisation of dinoflagellate chromosomes is exceptional among eukaryotes. Their genomes are the largest in the Eukarya domain, chromosomes lack histones and may exist in liquid crystalline state. Therefore, the study of the structural and functional properties of dinoflagellate chromosomes is of high interest. In this work, we have analysed the telomeres and telomerase in two Dinoflagellata species, Karenia papilionacea and Crypthecodinium cohnii. Active telomerase, synthesising exclusively Arabidopsis-type telomere sequences, was detected in cell extracts. The terminal position of TTTAGGG repeats was determined by in situ hybridisation and BAL31 digestion methods and provides evidence for the linear characteristic of dinoflagellate chromosomes. The length of telomeric tracts, 25-80 kb, is the largest among unicellular eukaryotic organisms to date. Both the presence of long arrays of perfect telomeric repeats at the ends of dinoflagellate chromosomes and the existence of active telomerase as the primary tool for their high-fidelity maintenance demonstrate the general importance of these structures throughout eukaryotes. We conclude that whilst chromosomes of dinoflagellates are unique in many aspects of their structure and composition, their telomere maintenance follows the most common scenario.
Telomere Biology—Insights into an Intriguing Phenomenon
Venkatesan, Shriram; Khaw, Aik Kia; Hande, Manoor Prakash
2017-01-01
Bacteria and viruses possess circular DNA, whereas eukaryotes with typically very large DNA molecules have had to evolve into linear chromosomes to circumvent the problem of supercoiling circular DNA of that size. Consequently, such organisms possess telomeres to cap chromosome ends. Telomeres are essentially tandem repeats of any DNA sequence that are present at the ends of chromosomes. Their biology has been an enigmatic one, involving various molecules interacting dynamically in an evolutionarily well-trimmed fashion. Telomeres range from canonical hexameric repeats in most eukaryotes to unimaginably random retrotransposons, which attach to chromosome ends and reverse-transcribe to DNA in some plants and insects. Telomeres invariably associate with specialised protein complexes that envelop it, also regulating access of the ends to legitimate enzymes involved in telomere metabolism. They also transcribe into repetitive RNA which also seems to be playing significant roles in telomere maintenance. Telomeres thus form the intersection of DNA, protein, and RNA molecules acting in concert to maintain chromosome integrity. Telomere biology is emerging to appear ever more complex than previously envisaged, with the continual discovery of more molecules and interplays at the telomeres. This review also includes a section dedicated to the history of telomere biology, and intends to target the scientific audience new to the field by rendering an understanding of the phenomenon of chromosome end protection at large, with more emphasis on the biology of human telomeres. The review provides an update on the field and mentions the questions that need to be addressed. PMID:28629193
Hirashima, Kyotaro; Seimiya, Hiroyuki
2015-02-27
Telomere erosion causes cell mortality, suggesting that longer telomeres enable more cell divisions. In telomerase-positive human cancer cells, however, telomeres are often kept shorter than those of surrounding normal tissues. Recently, we showed that cancer cell telomere elongation represses innate immune genes and promotes their differentiation in vivo. This implies that short telomeres contribute to cancer malignancy, but it is unclear how such genetic repression is caused by elongated telomeres. Here, we report that telomeric repeat-containing RNA (TERRA) induces a genome-wide alteration of gene expression in telomere-elongated cancer cells. Using three different cell lines, we found that telomere elongation up-regulates TERRA signal and down-regulates innate immune genes such as STAT1, ISG15 and OAS3 in vivo. Ectopic TERRA oligonucleotides repressed these genes even in cells with short telomeres under three-dimensional culture conditions. This appeared to occur from the action of G-quadruplexes (G4) in TERRA, because control oligonucleotides had no effect and a nontelomeric G4-forming oligonucleotide phenocopied the TERRA oligonucleotide. Telomere elongation and G4-forming oligonucleotides showed similar gene expression signatures. Most of the commonly suppressed genes were involved in the innate immune system and were up-regulated in various cancers. We propose that TERRA G4 counteracts cancer malignancy by suppressing innate immune genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuskan, Gerald A; Gunter, Lee E; DiFazio, Stephen P
The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequencemore » assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.« less
Alcivar-Warren, Acacia; Meehan-Meola, Dawn; Wang, Yongping; Guo, Ximing; Zhou, Linghua; Xiang, Jianhai; Moss, Shaun; Arce, Steve; Warren, William; Xu, Zhenkang; Bell, Kireina
2006-01-01
To develop genetic and physical maps for shrimp, accurate information on the actual number of chromosomes and a large number of genetic markers is needed. Previous reports have shown two different chromosome numbers for the Pacific whiteleg shrimp, Penaeus vannamei, the most important penaeid shrimp species cultured in the Western hemisphere. Preliminary results obtained by direct sequencing of clones from a Sau3A-digested genomic library of P. vannamei ovary identified a large number of (TAACC/GGTTA)-containing SSRs. The objectives of this study were to (1) examine the frequency of (TAACC)n repeats in 662 P. vannamei genomic clones that were directly sequenced, and perform homology searches of these clones, (2) confirm the number of chromosomes in testis of P. vannamei, and (3) localize the TAACC repeats in P. vannamei chromosome spreads using fluorescence in situ hybridization (FISH). Results for objective 1 showed that 395 out of the 662 clones sequenced contained single or multiple SSRs with three or more repeat motifs, 199 of which contained variable tandem repeats of the pentanucleotide (TAACC/GGTTA)n, with 3 to 14 copies per sequence. The frequency of (TAACC)n repeats in P. vannamei is 4.68 kb for SSRs with five or more repeat motifs. Sequence comparisons using the BLASTN nonredundant and expressed sequence tag (EST) databases indicated that most of the TAACC-containing clones were similar to either the core pentanucleotide repeat in PVPENTREP locus (GenBank accession no. X82619) or portions of 28S rRNA. Transposable elements (transposase for Tn1000 and reverse transcriptase family members), hypothetical or unnamed protein products, and genes of known function such as 18S and 28S rRNAs, heat shock protein 70, and thrombospondin were identified in non-TAACC-containing clones. For objective 2, the meiotic chromosome number of P. vannamei was confirmed as N = 44. For objective 3, four FISH probes (P1 to P4) containing different numbers of TAACC repeats produced positive signals on telomeres of P. vannamei chromosomes. A few chromosomes had positive signals interstitially. Probe signal strength and chromosome coverage differed in the general order of P1>P2>P3>P4, which correlated with the length of TAACC repeats within the probes: 83, 66, 35, and 30 bp, respectively, suggesting that the TAACC repeats, and not the flanking sequences, produced the TAACC signals at chromosome ends and TAACC is likely the telomere sequence for P. vannamei.
NASA Astrophysics Data System (ADS)
Sabale, Pramod M.; George, Jerrin Thomas; Srivatsan, Seergazhi G.
2014-08-01
Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures.Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures. Electronic supplementary information (ESI) available. Figures, tables, experimental procedures and NMR spectra. See DOI: 10.1039/c4nr00878b
Hall, Amanda C.; Ostrowski, Lauren A.; Mekhail, Karim
2017-01-01
ABSTRACT Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci. PMID:28406751
Repetitive telomeric sequences in chromosomal translocations involving chromosome 21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, J.; Dallaire, L.; Fetni, R.
Telomeres perform key functions in maintaining chromosome integrity. In some structural rearrangements the structure and polymorphism in human telomeres may play a significant role. However, of all the telomeric and subtelomeric sequences, only the terminal TTAGGG repeats are believed essential for telomere function. During the course of a study on the role of telomere structure and polymorphism in chromosomal rearrangements observed in families referred for prenatal diagnosis, we studied three cases in which chromosome 21 was involved. Repetitive TTAGGG sequences for all human chromosomes were used as probes (Oncor). Case 1, a de novo cryptic translocation (2;21) was initially identifiedmore » as monosomy 21 in a child with psychomotor delay and mild dysmorphism. Using a cosmid probe specific for region 21q22.3 and whole chromosome 21 specific painting probe, the long arm of 21 was found on the short arm of chromosome 2 with an interstitial telomere at the breakpoint junction. All the cells were monosomic for 21pter{yields}q21. Case 2 is a familial (19;21) translocation. GTG-banding and FISH with a satellite probe showed no apparent loss of material at the end of either 19q or 21q, with an interstitial telomere at the fusion site of the two intact chromosomes. In case 3, a four generation reciprocal (20;21) translocation, there was no interstitial telomere. The persistence of an interstitial telomere is a relatively rare event which can now be observed with in situ hybridization. Its study may lead to a better understanding of the dynamics of translocations and of chromosome imbalance.« less
2017-01-01
Abstract Target search as performed by DNA-binding proteins is a complex process, in which multiple factors contribute to both thermodynamic discrimination of the target sequence from overwhelmingly abundant off-target sites and kinetic acceleration of dynamic sequence interrogation. TRF1, the protein that binds to telomeric tandem repeats, faces an intriguing variant of the search problem where target sites are clustered within short fragments of chromosomal DNA. In this study, we use extensive (>0.5 ms in total) MD simulations to study the dynamical aspects of sequence-specific binding of TRF1 at both telomeric and non-cognate DNA. For the first time, we describe the spontaneous formation of a sequence-specific native protein–DNA complex in atomistic detail, and study the mechanism by which proteins avoid off-target binding while retaining high affinity for target sites. Our calculated free energy landscapes reproduce the thermodynamics of sequence-specific binding, while statistical approaches allow for a comprehensive description of intermediate stages of complex formation. PMID:28633355
Fujimoto, Satoru; Sugano, Shigeo S.; Kuwata, Keiko; Osakabe, Keishi; Matsunaga, Sachihiro
2016-01-01
Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in sub-nuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms. PMID:27811079
Polynucleotides encoding TRF1 binding proteins
Campisi, Judith; Kim, Sahn-Ho
2002-01-01
The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.
Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities
Hanaoka, Shingo; Nagadoi, Aritaka; Nishimura, Yoshifumi
2005-01-01
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2. PMID:15608118
Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption.
Charif, Razan; Granotier-Beckers, Christine; Bertrand, Hélène Charlotte; Poupon, Joël; Ségal-Bendirdjian, Evelyne; Teulade-Fichou, Marie-Paule; Boussin, François D; Bombard, Sophie
2017-08-21
Telomeres protect the ends of chromosomes against illegitimate recombination and repair. They can be targets for G-quadruplex ligands and platinum complexes due to their repeated G-rich sequences. Protection of telomeres is ensured by a complex of six proteins, including TRF2, which inhibits the DNA damage response pathway. We analyzed telomere modifications induced in cancer cells by the experimental hybrid platinum complex, Pt-MPQ, comprising both an ethylene diamine monofunctional platinum complex and a G-quadruplex recognition moiety (MPQ). Pt-MPQ promotes the displacement of two telomeric proteins (TRF2 and TRF1) from telomeres, as well as the formation of telomere damage and telomere sister losses, whereas the control compound MPQ does not. This suggests that the platinum moiety potentiates the targeting of the G-quadruplex ligand to telomeres, opening a new perspective for telomere biology and anticancer therapy. Interestingly, the chemotherapy drug cisplatin, which has no specific affinity for G-quadruplex structures, partially induces the TRF2 delocalization from telomeres but produces less telomeric DNA damage, suggesting that this TRF2 displacement could be independent of G-quadruplex recognition.
DNA Replication Origins and Fork Progression at Mammalian Telomeres
Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa
2017-01-01
Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373
Telomere fusion in Drosophila: The role of subtelomeric chromatin
Marzullo, Marta; Gatti, Maurizio
2015-01-01
Drosophila telomeres are maintained by transposition to chromosome ends of the HeT-A, TART and TAHRE retrotransposons, collectively designated as HTT. Although all Drosophila telomeres terminate with HTT arrays and are capped by the terminin complex, they differ in the type of subtelomeric chromatin. The HTT sequences of YS, YL, XR, and 4L are juxtaposed to constitutive heterochromatin, while the HTTs of the other telomeres are linked to either the TAS repeat-associated chromatin (XL, 2L, 2R, 3L, 3R) or to the specialized 4R chromatin. We found that mutations in pendolino (peo) cause (telomeric fusions) that preferentially involve the heterochromatin-associated telomeres (Ha-telomeres), a telomeric fusion pattern never observed in the other 10 telomere-capping mutants characterized so far. Peo, is homologous to the E2 variant ubiquitin-conjugating enzymes and is required for DNA replication. Our analyses lead us to hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in Ha-telomeres. These data provide the first demonstration that subtelomeres can affect telomere fusion. PMID:26786804
RPA and POT1: friends or foes at telomeres?
Flynn, Rachel Litman; Chang, Sandy; Zou, Lee
2012-02-15
Telomere maintenance in cycling cells relies on both DNA replication and capping by the protein complex shelterin. Two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomere 1 (POT1) play critical roles in DNA replication and telomere capping, respectively. While RPA binds to ssDNA in a non-sequence-specific manner, POT1 specifically recognizes singlestranded TTAGGG telomeric repeats. Loss of POT1 leads to aberrant accumulation of RPA at telomeres and activation of the ataxia telangiectasia and Rad3-related kinase (ATR)-mediated checkpoint response, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. The requirement for both POT1 and RPA in telomere maintenance and the antagonism between the two proteins raises the important question of how they function in concert on telomeric ssDNA. Two interesting models were proposed by recent studies to explain the regulation of POT1 and RPA at telomeres. Here, we discuss how these models help unravel the coordination, and also the antagonism, between POT1 and RPA during the cell cycle.
APE1 incision activity at abasic sites in tandem repeat sequences.
Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M
2014-05-29
Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.
Hills, Mark; Jeyapalan, Jennie N; Foxon, Jennifer L; Royle, Nicola J
2007-04-01
Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.
DNA Excision Repair at Telomeres
Jia, Pingping; Her, Chengtao; Chai, Weihang
2015-01-01
DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132
Distribution of Interstitial Telomeric Sequences in Primates and the Pygmy Tree Shrew (Scandentia).
Mazzoleni, Sofia; Schillaci, Odessa; Sineo, Luca; Dumas, Francesca
2017-01-01
It has been hypothesized that interstitial telomeric sequences (ITSs), i.e., repeated telomeric DNA sequences found at intrachromosomal sites in many vertebrates, could be correlated to chromosomal rearrangements and plasticity. To test this hypothesis, we hybridized a telomeric PNA probe through FISH on representative species of 2 primate infraorders, Strepsirrhini (Lemur catta, Otolemur garnettii, Nycticebus coucang) and Catarrhini (Erythrocebus patas, Cercopithecus petaurista, Chlorocebus aethiops, Colobus guereza), as well as on 1 species of the order Scandentia, Tupaia minor, used as an outgroup for primates in phylogenetic reconstructions. In almost all primate species analyzed, we found a telomeric pattern only. In Tupaia, the hybridization revealed many bright ITSs on at least 11 chromosome pairs, both biarmed and acrocentric. These ITS signals in Tupaia correspond to fusion points of ancestral human syntenic associations, but are also present in other chromosomes showing synteny to only a single human chromosome. This distribution pattern was compared to that of the heterochromatin regions detected through sequential C-banding performed after FISH. Our results in the analyzed species, compared with literature data on ITSs in primates, allowed us to discuss different mechanisms responsible for the origin and distribution of ITSs, supporting the correlation between rearrangements and ITSs. © 2017 S. Karger AG, Basel.
Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R
2006-12-01
Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.
Chirino, Mónica G; Dalíková, Martina; Marec, František R; Bressa, María J
2017-07-01
Tandem arrays of TTAGG repeats show a highly conserved location at the telomeres across the phylogenetic tree of arthropods. In giant water bugs Belostoma , the chromosome number changed during speciation by fragmentation of the single ancestral X chromosome, resulting in a multiple sex chromosome system. Several autosome-autosome fusions and a fusion between the sex chromosome pair and an autosome pair resulted in the reduced number in several species. We mapped the distribution of telomeric sequences and interstitial telomeric sequences (ITSs) in Belostoma candidulum (2n = 12 + XY/XX; male/female), B. dentatum (2n = 26 + X 1 X 2 Y/X 1 X 1 X 2 X 2 ), B. elegans (2n = 26 + X 1 X 2 Y/X 1 X 1 X 2 X 2 ), B. elongatum (2n = 26 + X 1 X 2 Y/X 1 X 1 X 2 X 2 ), B. micantulum (2n = 14 + XY/XX), and B. oxyurum (2n = 6 + XY/XX) by FISH with the (TTAGG) n probes. Hybridization signals confirmed the presence of TTAGG repeats in the telomeres of all species examined. The three species with reduced chromosome numbers showed additional hybridization signals in interstitial positions, indicating the occurrence of ITS. From the comparison of all species here analyzed, we observed inverse relationships between chromosome number and chromosome size, and between presence/absence of ITS and chromosome number. The ITS distribution between these closely related species supports the hypothesis that several telomere-telomere fusions of the chromosomes from an ancestral diploid chromosome number 2n = 26 + XY/XX played a major role in the karyotype evolution of Belostoma . Consequently, our study provide valuable features that can be used to understand the karyotype evolution, may contribute to a better understanding of taxonomic relationships, and also elucidate the high plasticity of nuclear genomes at the chromosomal level during the speciation processes.
Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic.
Amosova, Alexandra V; Bolsheva, Nadezhda L; Samatadze, Tatiana E; Twardovska, Maryana O; Zoshchuk, Svyatoslav A; Andreev, Igor O; Badaeva, Ekaterina D; Kunakh, Viktor A; Muravenko, Olga V
2015-01-01
Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species.
Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic
Amosova, Alexandra V.; Bolsheva, Nadezhda L.; Samatadze, Tatiana E.; Twardovska, Maryana O.; Zoshchuk, Svyatoslav A.; Andreev, Igor O.; Badaeva, Ekaterina D.; Kunakh, Viktor A.; Muravenko, Olga V.
2015-01-01
Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species. PMID:26394331
NASA Technical Reports Server (NTRS)
Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.
1995-01-01
In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.
Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase.
van Overbeek, Megan; de Lange, Titia
2006-07-11
Human chromosome ends are protected by shelterin, an abundant six-subunit protein complex that binds specifically to the telomeric-repeat sequences, regulates telomere length, and ensures that chromosome ends do not elicit a DNA-damage response (reviewed in). Using mass spectrometry of proteins associated with the shelterin component Rap1, we identified an SMN1/PSO2 nuclease family member that is closely related to Artemis. We refer to this protein as Apollo and report that Apollo has the ability to localize to telomeres through an interaction with the shelterin component TRF2. Although its low abundance at telomeres indicates that Apollo is not a core component of shelterin, Apollo knockdown with RNAi resulted in senescence and the activation of a DNA-damage signal at telomeres as evidenced by telomere-dysfunction-induced foci (TIFs). The TIFs occurred primarily in S phase, suggesting that Apollo contributes to a processing step associated with the replication of chromosome ends. Furthermore, some of the metaphase chromosomes showed two telomeric signals at single-chromatid ends, suggesting an aberrant telomere structure. We propose that the Artemis-like nuclease Apollo is a shelterin accessory factor required for the protection of telomeres during or after their replication.
Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination
Grandin, Nathalie; Damon, Christelle; Charbonneau, Michel
2001-01-01
Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13-induced telomeric DNA damage in proliferating cells. Checkpoint-deficient cdc13-1 cells accumulated DNA damage and eventually senesced. However, these telomerase-proficient cells could survive by using homologous recombination but, contrary to telomerase-deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13-1 mec3, as well as in telomerase-deficient cdc13-1 cells, which were Rad52- and Rad50-dependent but Rad51-independent, exclusively amplified the TG1–3 repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13-1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13-1– Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase. PMID:11689452
Live-cell CRISPR imaging in plants reveals dynamic telomere movements.
Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas
2017-08-01
Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training.
Denham, Joshua; O'Brien, Brendan J; Charchar, Fadi J
2016-09-01
Telomeres are tandem repeat DNA sequences located at distal ends of chromosomes that protect against genomic DNA degradation and chromosomal instability. Excessive telomere shortening leads to cellular senescence and for this reason telomere length is a marker of biological age. Abnormally short telomeres may culminate in the manifestation of a number of cardio-metabolic diseases. Age-related cardio-metabolic diseases attributable to an inactive lifestyle, such as obesity, type 2 diabetes mellitus and cardiovascular disease, are associated with short leukocyte telomeres. Exercise training prevents and manages the symptoms of many cardio-metabolic diseases whilst concurrently maintaining telomere length. The positive relationship between exercise training, physical fitness and telomere length raises the possibility of a mediating role of telomeres in chronic disease prevention via exercise. Further elucidation of the underpinning molecular mechanisms of how exercise maintains telomere length should provide crucial information on how physical activity can be best structured to combat the chronic disease epidemic and improve the human health span. Here, we synthesise and discuss the current evidence on the impact of physical activity and cardiorespiratory fitness on telomere dynamics. We provide the molecular mechanisms with a known role in exercise-induced telomere length maintenance and highlight unexplored, alternative pathways ripe for future investigations.
Lin, Jiangguo; Countryman, Preston; Buncher, Noah; Kaur, Parminder; E, Longjiang; Zhang, Yiyun; Gibson, Greg; You, Changjiang; Watkins, Simon C; Piehler, Jacob; Opresko, Patricia L; Kad, Neil M; Wang, Hong
2014-02-01
Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼ 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼ 2.8-3.6 κ(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.
Super-resolution optical microscopy study of telomere structure.
Phipps, Mary Lisa; Goodwin, Peter M; Martinez, Jennifer S; Goodwin, Edwin H
2016-09-01
Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5?-TTAGGG-3? in humans) repeated more than a thousand times, a short 3? single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3? overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded “t-loop.” Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies.
Super-resolution optical microscopy study of telomere structure
NASA Astrophysics Data System (ADS)
Phipps, Mary Lisa; Goodwin, Peter M.; Martinez, Jennifer S.; Goodwin, Edwin H.
2016-09-01
Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5‧-TTAGGG-3‧ in humans) repeated more than a thousand times, a short 3‧ single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3‧ overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded "t-loop." Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies.
Henle, E S; Han, Z; Tang, N; Rai, P; Luo, Y; Linn, S
1999-01-08
Preferential cleavage sites have been determined for Fe2+/H2O2-mediated oxidations of DNA. In 50 mM H2O2, preferential cleavages occurred at the nucleoside 5' to each of the dG moieties in the sequence RGGG, a sequence found in a majority of telomere repeats. Within a plasmid containing a (TTAGGG)81 human telomere insert, 7-fold more strand breakage occurred in the restriction fragment with the insert than in a similar-sized control fragment. This result implies that telomeric DNA could protect coding DNA from oxidative damage and might also link oxidative damage and iron load to telomere shortening and aging. In micromolar H2O2, preferential cleavage occurred at the thymidine within the sequence RTGR, a sequence frequently found to be required in promoters for normal responses of many procaryotic and eucaryotic genes to iron or oxygen stress. Computer modeling of the interaction of Fe2+ with RTGR in B-DNA suggests that due to steric hindrance with the thymine methyl, Fe2+ associates in a specific manner with the thymine flipped out from the base stack so as to allow an octahedrally-oriented coordination of the Fe2+ with the three purine N7 residues. Fe2+-dependent changes in NMR spectra of duplex oligonucleotides containing ATGA versus those containing AUGA or A5mCGA were consistent with this model.
P. berghei Telomerase Subunit TERT is Essential for Parasite Survival
Religa, Agnieszka A.; Ramesar, Jai; Janse, Chris J.; Scherf, Artur; Waters, Andrew P.
2014-01-01
Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA), though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO) homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR) in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF) analysis. TERT and TR were detected in blood stages and an average telomere length of ∼950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert − mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further investigations to identify telomerase inhibitors to induce parasite cell death. PMID:25275500
Recombinogenic Telomeres in Diploid Sorex granarius (Soricidae, Eulipotyphla) Fibroblast Cells
Draskovic, I.; Minina, J. M.; Karamysheva, T. V.; Novo, C. L.; Liu, W.-Y.; Porreca, R. M.; Gibaud, A.; Zvereva, M. E.; Skvortsov, D. A.; Rubtsov, N. B.
2014-01-01
The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism. PMID:24842907
Gamo, F J; Lafuente, M J; Casamayor, A; Ariño, J; Aldea, M; Casas, C; Herrero, E; Gancedo, C
1996-06-15
We report the sequence of a 15.5 kb DNA segment located near the left telomere of chromosome XV of Saccharomyces cerevisiae. The sequence contains nine open reading frames (ORFs) longer than 300 bp. Three of them are internal to other ones. One corresponds to the gene LGT3 that encodes a putative sugar transporter. Three adjacent ORFs were separated by two stop codons in frame. These ORFs presented homology with the gene CPS1 that encodes carboxypeptidase S. The stop codons were not found in the same sequence derived from another yeast strain. Two other ORFs without significant homology in databases were also found. One of them, O0420, is very rich in serine and threonine and presents a series of repeated or similar amino acid stretches along the sequence.
Reynolds, Gloria E; Gao, Qing; Miller, Douglas; Snow, Bryan E; Harrington, Lea A; Murnane, John P
2011-11-10
Telomerase serves to maintain telomeric repeat sequences at the ends of chromosomes. However, telomerase can also add telomeric repeat sequences at DNA double-strand breaks (DSBs), a process called chromosome healing. Here, we employed a method of inducing DSBs near telomeres to query the role of two proteins, PIF1 and NBS1, in chromosome healing in mammalian cells. PIF1 was investigated because the PIF1 homolog in Saccharomyces cerevisiae inhibits chromosome healing, as shown by a 1000-fold increase in chromosome in PIF1-deficient cells. NBS1 was investigated because the functional homolog of NBS1 in S. cerevisiae, Xrs2, is part of the Mre11/Rad50/Xrs2 complex that is required for chromosome healing due to its role in the processing of DSBs and recruitment of telomerase. We found that disruption of mPif1 had no detectable effect on the frequency of chromosome healing at DSBs near telomeres in murine embryonic stem cells. Moreover, the Nbs1(ΔB) hypomorph, which is defective in the processing of DSBs, also had no detectable effect on the frequency of chromosome healing, DNA degradation, or gross chromosome rearrangements (GCRs) that result from telomeric DSBs. Although we cannot rule out small changes in chromosome healing using this system, it is clear from our results that knockout of PIF1 or the Nbs1(ΔB) hypomorph does not result in large differences in chromosome healing in murine cells. These results represent the first genetic assessment of the role of these proteins in chromosome healing in mammals, and suggest that murine cells have evolved mechanisms to ensure the functional redundancy of Pif1 or Nbs1 in the regulation of chromosome healing. Copyright © 2011 Elsevier B.V. All rights reserved.
Shoeb, Mohammad; Joseph, Pius; Kodali, Vamsi; Mustafa, Gul; Farris, Breanne Y; Umbright, Christina; Roberts, Jenny R; Erdely, Aaron; Antonini, James M
2017-12-11
Exposure to silica can cause lung fibrosis and cancer. Identification of molecular targets is important for the intervention and/or prevention of silica-induced lung diseases. Telomeres consist of tandem repeats of DNA sequences at the end of chromosomes, preventing chromosomal fusion and degradation. Regulator of telomere length-1 (RTEL1) and telomerase reverse transcriptase (TERT), genes involved in telomere regulation and function, play important roles in maintaining telomere integrity and length. The goal of this study was to assess the effect of silica inhalation on telomere length and the regulation of RTEL1 and TERT. Lung tissues and blood samples were collected from rats at 4, 32, and 44 wk after exposure to 15 mg/m 3 of silica × 6 h/d × 5 d. Controls were exposed to air. At all-time points, RTEL1 expression was significantly decreased in lung tissue of the silica-exposed animals compared to controls. Also, significant increases in telomere length and TERT were observed in the silica group at 4 and 32 wk. Telomere length, RTEL1 and TERT expression may serve as potential biomarkers related to silica exposure and may offer insight into the molecular mechanism of silica-induced lung disease and tumorigeneses.
Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J.; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H.; Lieberman, Paul M.; Tzfati, Yehuda
2013-01-01
Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal–Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres. PMID:23959892
Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H; Lieberman, Paul M; Tzfati, Yehuda
2013-09-03
Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres.
Chabchoub, Elyes; Rodríguez, Laura; Galán, Enrique; Mansilla, Elena; Martínez‐Fernandez, Maria Luisa; Martínez‐Frías, Maria Luisa; Fryns, Jean‐Pierre; Vermeesch, Joris Robert
2007-01-01
Background Broken chromosomes must acquire new telomeric “caps” to be structurally stable. Chromosome healing can be mediated either by telomerase through neo‐telomere synthesis or by telomere capture. Aim To unravel the mechanism(s) generating complex chromosomal mosaicisms and healing broken chromosomes. Methods G banding, array comparative genomic hybridization (aCGH), fluorescence in‐situ hybridisation (FISH) and short tandem repeat analysis (STR) was performed on a girl presenting with mental retardation, facial dysmorphism, urogenital malformations and limb anomalies carrying a complex chromosomal mosaicism. Results & discussion The karyotype showed a de novo chromosome rearrangement with two cell lines: one cell line with a deletion 9pter and one cell line carrying an inverted duplication 9p and a non‐reciprocal translocation 5pter fragment. aCGH, FISH and STR analysis enabled the deduction of the most likely sequence of events generating this complex mosaic. During embryogenesis, a double‐strand break occurred on the paternal chromosome 9. Following mitotic separation of both broken sister chromatids, one acquired a telomere vianeo‐telomere formation, while the other generated a dicentric chromosome which underwent breakage during anaphase, giving rise to the del inv dup(9) that was subsequently healed by chromosome 5 telomere capture. Conclusion Broken chromosomes can coincidently be rescued by both telomere capture and neo‐telomere synthesis. PMID:17172463
Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Chaubey, Amit Kumar; Dubey, Kshatresh Dutta; Ojha, Rajendra Prasad
2012-03-01
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)4. Here we report the relative stabilities of these structures under K+ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.
Schleiermacher, Gudrun; Bourdeaut, Franck; Combaret, Valérie; Picrron, Gaelle; Raynal, Virginie; Aurias, Alain; Ribeiro, Agnes; Janoueix-Lerosey, Isabelle; Delattre, Olivier
2005-05-05
In neuroblastoma, the most frequent genetic alterations are unbalanced translocations involving chromosome 17. To gain insights into these rearrangements, we have characterized a previously identified der(1)t(1;17) of the CLB-Bar cell line. The 17q breakpoint was mapped by FISH. Subsequently, a rearranged fragment was identified by Southern analysis, cloned in a lambda vector and sequenced. The chromosome rearrangement is more complex than expected due to the presence of an interstitial 4p telomeric sequence between chromosome 1p and 17q. Three different genes, which may play a role in neuroblastoma development, are disrupted by the translocation breakpoints. Indeed, the 3'UTR of the PIP5K2B gene on chromosome 17q is directly fused to the (TTAGGG)n repeat of the chromosome 4p telomere, and the (1;4) fusion disrupts the MACF1 (microtubule-actin crosslinking factor 1) and POLN genes, respectively. Interestingly, the (1;4) fusion was present at diagnosis and at relapse, whereas the (4;17) fusion was detected at relapse only, leading to a secondary 17q gain confirmed by array CGH therefore indicating that 17q gain may not be a primary event in neuroblastoma. Finally, screening of a panel of neuroblastoma cell lines identified interstitial telomeric sequences in three other cases, suggesting that this may be a recurrent mechanism leading to unbalanced translocations in neuroblastoma.
Relationship between leukocyte telomere length and personality traits in healthy subjects.
Sadahiro, R; Suzuki, A; Enokido, M; Matsumoto, Y; Shibuya, N; Kamata, M; Goto, K; Otani, K
2015-02-01
It has been shown that certain personality traits are related to mortality and disease morbidity, but the biological mechanism linking them remains unclear. Telomeres are tandem repeat DNA sequences located at the ends of chromosomes, and shorter telomere length is a predictor of mortality and late-life disease morbidity. Thus, it is possible that personality traits influence telomere length. In the present study, we examined the relationship of leukocyte telomere length with personality traits in healthy subjects. The subjects were 209 unrelated healthy Japanese who were recruited from medical students at 4th-5th grade. Assessment of personality traits was performed by the Revised NEO Personality Inventory (NEO-PI-R) and the Temperament and Character Inventory (TCI). Leukocyte relative telomere length was determined by a quantitative real-time PCR method for a ratio of telomere/single copy gene. In the stepwise multiple regression analysis, shorter telomere length was related to lower scores of neuroticism (P<0.01) and conscientiousness (P<0.05) of the NEO-PI-R, and lower scores of harm avoidance (P<0.05) and reward dependence (P<0.05) of the TCI. The present study suggests that leukocyte telomere length is associated with some personality traits, and this association may be implicated in the relationship between personality traits and mortality. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Kedziora, Sylwia; Gali, Vamsi K; Wilson, Rosemary H C; Clark, Kate R M; Nieduszynski, Conrad A; Hiraga, Shin-Ichiro; Donaldson, Anne D
2018-05-04
The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.
Reference karyotype and cytomolecular map for loblolly pine (Pinus taeda L.)
M. Nurul Islam-faridi; C. Dana Nelson; Thomas L. Kubisiak
2007-01-01
A reference karyotype is presented for loblolly pine (Pinus taeda L., subgenus Pinus , section Pinus, subsection Australes), based on fluorescent in situ hybridization (FISH), using 18s-28s rDNA, 5s rDNA, and Arabidopsis-type telomere repeat sequence (A-type TRS). Well...
Jeyapalan, Jennie N; Varley, Helen; Foxon, Jenny L; Pollock, Raphael E; Jeffreys, Alec J; Henson, Jeremy D; Reddel, Roger R; Royle, Nicola J
2005-07-01
Immortal human cells maintain telomere length by the expression of telomerase or through the alternative lengthening of telomeres (ALT). The ALT mechanism involves a recombination-like process that allows the rapid elongation of shortened telomeres. However, it is not known whether activation of the ALT pathway affects other sequences in the genome. To address this we have investigated, in ALT-expressing cell lines and tumours, the stability of tandem repeat sequences known to mutate via homologous recombination in the human germline. We have shown extraordinary somatic instability in the human minisatellite MS32 (D1S8) in ALT-expressing (ALT+) but not in normal or telomerase-expressing cell lines. The MS32 mutation frequency varied across 15 ALT+ cell lines and was on average 55-fold greater than in ALT- cell lines. The MS32 minisatellite was also highly unstable in three of eight ALT+ soft tissue sarcomas, indicating that somatic destabilization occurs in vivo. The MS32 mutation rates estimated for two ALT+ cell lines were similar to that seen in the germline. However, the internal structures of ALT and germline mutant alleles are very different, indicating differences in the underlying mutation mechanisms. Five other hypervariable minisatellites did not show elevated instability in ALT-expressing cell lines, indicating that minisatellite destabilization is not universal. The elevation of MS32 instability upon activation of the ALT pathway and telomere length maintenance suggests there is overlap between the underlying processes that may be tractable through analysis of the D1S8 locus.
Characterisation of the subtelomeric regions of Giardia lamblia genome isolate WBC6.
Prabhu, Anjali; Morrison, Hilary G; Martinez, Charles R; Adam, Rodney D
2007-04-01
Giardia trophozoites are polyploid and have five chromosomes. The chromosome homologues demonstrate considerable size heterogeneity due to variation in the subtelomeric regions. We used clones from the genome project with telomeric sequence at one end to identify six subtelomeric regions in addition to previously identified subtelomeric regions, to study the telomeric arrangement of the chromosomes. The subtelomeric regions included two retroposons, one retroposon pseudogene, and two vsp genes, in addition to the previously identified subtelomeric regions that include ribosomal DNA repeats. The presence of vsp genes in a subtelomeric region suggests that telomeric rearrangements may contribute to the generation of vsp diversity. These studies of the subtelomeric regions of Giardia may contribute to our understanding of the factors that maintain stability, while allowing diversity in chromosome structure.
The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannone, Richard J; McDonald, W Hayes; Hurst, Gregory
Telomere integrity (including telomere length and capping) is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography - tandem mass spectrometry (MudPIT LC-MS/MS). After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidencemore » towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.« less
Interactions of DNA binding proteins with G-Quadruplex structures at the single molecule level
NASA Astrophysics Data System (ADS)
Ray, Sujay
Guanine-rich nucleic acid (DNA/RNA) sequences can form non-canonical secondary structures, known as G-quadruplex (GQ). Numerous in vivo and in vitro studies have demonstrated formation of these structures in telomeric and non-telomeric regions of the genome. Telomeric GQs protect the chromosome ends whereas non-telomeric GQs either act as road blocks or recognition sites for DNA metabolic machinery. These observations suggest the significance of these structures in regulation of different metabolic processes, such as replication and repair. GQs are typically thermodynamically more stable than the corresponding Watson-Crick base pairing formed by G-rich and C-rich strands, making protein activity a crucial factor for their destabilization. Inside the cell, GQs interact with different proteins and their enzymatic activity is the determining factor for their stability. We studied interactions of several proteins with GQs to understand the underlying principles of protein-GQ interactions using single-molecule FRET and other biophysical techniques. Replication Protein-A (RPA), a single stranded DNA (ssDNA) binding protein, is known to posses GQ unfolding activity. First, we compared the thermal stability of three potentially GQ-forming DNA sequences (PQS) to their stability against RPA-mediated unfolding. One of these sequences is the human telomeric repeat and the other two, located in the promoter region of tyrosine hydroxylase gene, are highly heterogeneous sequences that better represent PQS in the genome. The thermal stability of these structures do not necessarily correlate with their stability against protein-mediated unfolding. We conclude that thermal stability is not necessarily an adequate criterion for predicting the physiological viability of GQ structures. To determine the critical structural factors that influence protein-GQ interactions we studied two groups of GQ structures that have systematically varying loop lengths and number of G-tetrad layers. We observed a linear increase in the steady-state stability of the GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by different GQ structures varied by at least three orders of magnitude. Finally, we studied another protein-GQ system where a protein complex works synergistically with a GQ to suppress DNA damage signals by preventing RPA to bind to telomeric DNA. Human telomeres that terminate with a single-stranded 3' G-overhang can be recognized as a DNA damage site by RPA. The protection of telomere-1 (POT1) and POT1-interacting protein (TPP1) heterodimer, binds specifically to telomeric DNA and protects it against RPA binding. Using model telomeric DNA, we studied the competition between POT1/TPP1 and RPA to access telomeric GQs in vitro. Under physiological salt and pH conditions, POT1/TPP1 stably load to a minimal DNA sequence adjacent to a folded GQ and unfolds the anti-parallel GQ as the parallel conformation remains folded. We showed that GQ formation of telomeres enhances the ability of POT1/TPP1 to block RPA's access to telomeres by two orders of magnitude and contributes to suppress DNA damage signals.
Nagesh, Narayana; Krishnaiah, Abburi
2003-07-31
DNA from the telomeres contains a stretch of simple tandemly repeated sequences in which clusters of G residues alternate with clusters of T/A sequences along one DNA strand. Model telomeric G-clusters form four-stranded structures in presence of Na(I), K(I) and NH(4)(I) ions. Electrophoretic and spectroscopic studies were made with the telomeric related sequences d(T6G16) or d(G4T2G4T2G4T2G4). It was noticed earlier that G-quadruplex may either be inter-molecular, or intra-molecular, or a mixture of both. CD spectral characteristics of various G-quadruplex DNA suggests that the CD maximum at 293 nm corresponds to that of an intra-molecular G-quadruplex structure or hairpin dimers. Fluorescence titration studies also show that acridine and the bis-acridine are interacting with G-quadruplex DNA and destabilize the K(I)-quadruplex structure more efficiently than the quadruplex formed by NH(4)(I) ion. Among the two drugs studied, acridine is more capable of breaking the G-quadruplex structure than bis-acridine. This result is further confirmed by the CD experiments.
Mandrioli, Mauro; Zanasi, Federica; Manicardi, Gian Carlo
2014-01-01
Abstract Karyotype analysis of nine strains of the peach-potato aphid Myzus persicae (Sulzer, 1776), collected on Lavandula sp. plants, evidenced showed that five of them had a standard 2n = 12 karyotype, one possessed a fragmentation of the X chromosome occurring at the telomere opposite to the NOR-bearing one and three strains had a chromosome number 2n = 11 due to a non-reciprocal translocation of an autosome A3 onto an A1 chromosome. Interestingly, the terminal portion of the autosome A1 involved in the translocation was the same in all the three strains, as evidenced by FISH with the histone cluster as a probe. The study of telomeres in the Myzus persicae strain with the X fission evidenced that telomerase synthesised de novo telomeres at the breakpoints resulting in the stabilization of the chromosomal fragments. Lastly, despite the presence of a conserved telomerase, aphid genome is devoid of genes coding for shelterin, a complex of proteins involved in telomere functioning frequently reported as conserved in eukaryotes. The absence of this complex, also confirmed in the genome of other arthropods, suggests that the shift in the sequence of the telomeric repeats has been accompanied by other changes in the telomere components in arthropods in respect to other metazoans. PMID:25610541
Obodo, Udochukwu C.; Epum, Esther A.; Platts, Margaret H.; Seloff, Jacob; Dahlson, Nicole A.; Velkovsky, Stoycho M.; Paul, Shira R.
2016-01-01
DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition. PMID:27044869
Gokhman, Vladimir E; Kuznetsova, Valentina G
2018-06-01
Telomeric repeats in two members of the sawfly family Tenthredinidae (Hymenoptera), namely, Tenthredo omissa (Förster, 1844) and Taxonus agrorum (Fallén, 1808) (both have n = 10), were studied using fluorescence in situ hybridization (FISH). Chromosomes of both species were demonstrated to contain the canonical TTAGG insect telomeric repeat, which constitutes the first report of the (TTAGG) n telomeric motif for the Tenthredinidae as well as for the clade Eusymphyta and the suborder Symphyta in general. Taken together with the presence of this repeat in many other Holometabola as well as in the hymenopteran families Formicidae and Apidae from the suborder Apocrita, these results collectively suggest the ancestral nature of the (TTAGG) n telomeric motif in the Hymenoptera as well as its subsequent loss within the clade Unicalcarida and independent reappearance in ants and bees. If this is true, the loss of the TTAGG repeat can be considered as a synapomorphy of the corresponding clade.
Azhibek, Dulat; Skvortsov, Dmitry; Andreeva, Anna; Zatsepin, Timofei; Arutyunyan, Alexandr; Zvereva, Maria; Dontsova, Olga
2016-06-01
Telomerase is a key component of the telomere length maintenance system in the majority of eukaryotes. Telomerase displays maximal activity in stem and cancer cells with high proliferative potential. In humans, telomerase activity is regulated by various mechanisms, including the interaction with telomere ssDNA overhangs that contain a repetitive G-rich sequence, and with noncoding RNA, Telomeric repeat-containing RNA (TERRA), that contains the same sequence. So these nucleic acids can compete for telomerase RNA templates in the cell. In this study, we have investigated the ability of different model substrates mimicking telomere DNA overhangs and TERRA RNA to compete for telomerase in vitro through a previously developed telomerase inhibitor assay. We have shown in this study that RNA oligonucleotides are better competitors for telomerase that DNA ones as RNA also use an alternative binding site on telomerase, and the presence of 2'-OH groups is significant in these interactions. In contrast to DNA, the possibility of forming intramolecular G-quadruplex structures has a minor effect for RNA binding to telomerase. Taking together our data, we propose that TERRA RNA binds better to telomerase compared with its native substrate - the 3'-end of telomere DNA overhang. As a result, some specific factor may exist that participates in switching telomerase from TERRA to the 3'-end of DNA for telomere elongation at the distinct period of a cell cycle in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Evolutionary Dynamics of the W Chromosome in Caenophidian Snakes
Augstenová, Barbora; Rovatsos, Michail
2017-01-01
The caenophidian (assigned also as “advanced”) snakes are traditionally viewed as a group of reptiles with a limited karyotypic variation and stable ZZ/ZW sex chromosomes. The W chromosomes of the caenophidian snakes are heterochromatic, and pioneering studies demonstrated that they are rich in repetitive elements. However, a comparative study of the evolutionary dynamics of the repetitive content of the W chromosome across the whole lineage is missing. Using molecular-cytogenetic techniques, we explored the distribution of four repetitive motifs (microsatellites GATA, GACA, AG and telomeric-like sequences), which are frequently accumulated in differentiated sex chromosomes in vertebrates, in the genomes of 13 species of the caenophidian snakes covering a wide phylogenetic spectrum of the lineage. The results demonstrate a striking variability in the morphology and the repetitive content of the W chromosomes even between closely-related species, which is in contrast to the homology and long-term stability of the gene content of the caenophidian Z chromosome. We uncovered that the tested microsatellite motifs are accumulated on the degenerated, heterochromatic W chromosomes in all tested species of the caenophidian snakes with the exception of the Javan file snake representing a basal clade. On the other hand, the presence of the accumulation of the telomeric-like sequences on the caenophidian W chromosome is evolutionary much less stable. Moreover, we demonstrated that large accumulations of telomeric-like motifs on the W chromosome contribute to sexual differences in the number of copies of the telomeric and telomeric-like repeats estimated by quantitative PCR, which might be confusing and incorrectly interpreted as sexual differences in telomere length. PMID:29283388
Recognition and Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1
2015-01-01
The specific recognition by proteins of G-quadruplex structures provides evidence of a functional role for in vivo G-quadruplex structures. As previously reported, the ribonucleoprotein, hnRNP Al, and it is proteolytic derivative, unwinding protein 1 (UP1), bind to and destabilize G-quadruplex structures formed by the human telomeric repeat d(TTAGGG)n. UP1 has been proposed to be involved in the recruitment of telomerase to telomeres for chain extension. In this study, a detailed thermodynamic characterization of the binding of UP1 to a human telomeric repeat sequence, the d[AGGG(TTAGGG)3] G-quadruplex, is presented and reveals key insights into the UP1-induced unfolding of the G-quadruplex structure. The UP1–G-quadruplex interactions are shown to be enthalpically driven, exhibiting large negative enthalpy changes for the formation of both the Na+ and K+ G-quadruplex–UP1 complexes (ΔH values of −43 and −19 kcal/mol, respectively). These data reveal three distinct enthalpic contributions from the interactions of UP1 with the Na+ form of G-quadruplex DNA. The initial interaction is characterized by a binding affinity of 8.5 × 108 M–1 (strand), 200 times stronger than the binding of UP1 to a single-stranded DNA with a comparable but non-quadruplex-forming sequence [4.1 × 106 M–1 (strand)]. Circular dichroism spectroscopy reveals the Na+ form of the G-quadruplex to be completely unfolded by UP1 at a binding ratio of 2:1 (UP1:G-quadruplex DNA). The data presented here demonstrate that the favorable energetics of the initial binding event are closely coupled with and drive the unfolding of the G-quadruplex structure. PMID:24831962
Telomerase Repeated Amplification Protocol (TRAP).
Mender, Ilgen; Shay, Jerry W
2015-11-20
Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is analyzed by electrophoresis. TSNT is, an internal standard control, amplified by TS primer. NT is its own reverse primer, which is not a substrate for telomerase. These primers are used to identify false-negative results by if the gel lacks internal control bands.
[Telomere lengthening by trichostatin A treatment in cloned pigs].
Xie, Bing-Teng; Ji, Guang-Zhen; Kong, Qing-Ran; Mao, Jian; Shi, Yong-Qian; Liu, Shi-Chao; Wu, Mei-Ling; Wang, Juan; Liu, Lin; Liu, Zhong-Hua
2012-12-01
Telomeres are repeated GC rich sequences at the end of chromosomes, and shorten with each cell division due to DNA end replication problem. Previously, reprogrammed somatic cells of cloned animals display variable telomere elongation. However, it was reported that the cloned animals including Dolly do not reset telomeres and show premature aging. In this study, we investigated telomere function in cloned or transgenic cloned pigs, including the cloned Northeast Min pigs, eGFP, Mx, and PGC1α transgenic cloned pigs, and found that the telomere lengths of cloned pigs were significantly shorter than the nuclear donor adult fibroblasts and age-matched noncloned pigs (P<0.05), indicating that nuclear reprogramming did not restore cellular age of donor cells after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA), an inhibitor of histone deacetylase, has proven to enhance the efficiency of nuclear reprogramming in several species. In order to test whether TSA also can effectively enhance reprogramming of telomeres, TSA (40 nmol/L) was used to treat porcine cloned embryos at 1-cell stage for 24 h. Consistent with previous reports, the developmental rate of SCNT embryos to the blastocyst stage was significantly increased compared with those of the control group (16.35% vs. 27.09%, 21.60% vs. 34.90%, P<0.05). Notably, the telomere length of cloned porcine blastocysts was also significantly elongated (P<0.05). Although TSA did not improve the cloning efficiency (1.3% vs. 1.7%, TSA vs. control), the telomere lengths of cloned pig-lets were significantly longer compared with those of the control group and the donor fibroblasts (P<0.05). In conclusion, telomeres have not been effectively restored by SCNT in pigs but TSA can effectively lengthen the telomere lengths of cloned pigs.
Telomerase Mechanism of Telomere Synthesis
Wu, R. Alex; Upton, Heather E.; Vogan, Jacob M.; Collins, Kathleen
2017-01-01
Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines. PMID:28141967
Begnis, Martina; Apte, Manasi S; Masuda, Hirohisa; Jain, Devanshi; Wheeler, David Lee; Cooper, Julia Promisel
2018-04-01
The identification of telomerase-negative HAATI (heterochromatin amplification-mediated and telomerase-independent) cells, in which telomeres are superseded by nontelomeric heterochromatin tracts, challenged the idea that canonical telomeres are essential for chromosome linearity and raised crucial questions as to how such tracts translocate to eroding chromosome ends and confer end protection. Here we show that HAATI arises when telomere loss triggers a newly recognized illegitimate translocation pathway that requires RNAi factors. While RNAi is necessary for the translocation events that mobilize ribosomal DNA (rDNA) tracts to all chromosome ends (forming "HAATI rDNA " chromosomes), it is dispensable for HAATI rDNA maintenance. Surprisingly, Dicer (Dcr1) plays a separate, RNAi-independent role in preventing formation of the rare HAATI subtype in which a different repetitive element (the subtelomeric element) replaces telomeres. Using genetics and fusions between shelterin components and rDNA-binding proteins, we mapped the mechanism by which rDNA loci engage crucial end protection factors-despite the absence of telomere repeats-and secure end protection. Sequence analysis of HAATI rDNA genomes allowed us to propose RNA and DNA polymerase template-switching models for the mechanism of RNAi-triggered rDNA translocations. Collectively, our results reveal unforeseen roles for noncoding RNAs (ncRNAs) in assembling a telomere-free chromosome end protection device. © 2018 Begnis et al.; Published by Cold Spring Harbor Laboratory Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, J.; Harris, P.C.; Wood, W.G.
The authors have previously described a series of patients in whom the deletion of 1--2 megabases (Mb) of DNA from the tip of the short arm of chromosome 16 (band 16p13.3) is associated with [alpha]-thalassemia/mental retardation syndrome (ATR-16). They now show that one of these patients has a de novo truncation of the terminal 2 Mb of chromosome 16p and that telomeric sequence (TTAGGG)[sub n] has been added at the site of breakage. This suggests that the chromosomal break, which is paternal in origin and which probably arose at meiosis, has been stabilized in vivo by the direct addition ofmore » the telomeric sequence. Sequence comparisons of this breakpoint with that of a previously described chromosomal truncation ([alpha][alpha][sup TI]) do not reveal extensive sequence homology. However, both breakpoints show minimal complementarity (3--4 bp) to the proposed RNA template of human telomerase at the site at which telomere repeats have been added. Unlike previously characterized individuals with ATR-16, the clinical features of this patient appear to be solely due to monosomy for the terminal portion of 16p13.3. The identification of further patients with [open quotes]pure[close quotes] monosomy for the tip of chromosome 16p will be important for defining the loci contributing to the phenotype of this syndrome. 33 refs., 4 figs., 1 tab.« less
Dong, Yuanjun; Zhang, Guiqing; Yuan, Xiuyu; Zhang, Yueqi; Hu, Min
2016-05-01
The aim of the present study was to explore the telomere length of peripheral blood leukocytes from a rat model of post-traumatic stress disorder (PTSD), as well as the expression level of telomere-binding protein in the hippocampal CA1 region. The PTSD model was established with 42 adult male Wistar rats. The relative telomere length of the leukocytes was measured by real-time fluorescence quantitative polymerase chain reaction, and the expression levels of telomere repeating factor 1 (TRF1) and telomere repeating factor 2 (TRF2) in the hippocampal CA1 region of the PTSD rat model were determined by immunofluorescence technology. The covariance analysis of repeated measurements by the mixed model approach was used for the telomere length analysis. The comparison of averaged data among groups was performed using least significant difference and analysis of variance. The Student's t test or the Mann-Whitney U test was used for intragroup comparison. The association study among groups was conducted using the Spearman test. The shortening speed of telomere length significantly accelerated in rats after Single Prolonged Stress (SPS) stimulation (P<0.05). The expression levels of TRF1 and TRF2 increased with the progress of PTSD, and the expression peak was shown in day 14, which was significantly different from the control group (P<0.05). The shortening speed of the telomere length of peripheral blood leukocytes accelerated in PTSD rats, and the expression levels of TRF1 and TRF2 increased in hippocampus, both of which were closely associated with the pathological progress of the PTSD-like model and unfavorable prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Bechard, Laura H.; Jamieson, Nathan; McEachern, Michael J.
2011-01-01
In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis. We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae, however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52. Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis. PMID:21148753
Telomere Restriction Fragment (TRF) Analysis.
Mender, Ilgen; Shay, Jerry W
2015-11-20
While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al. , 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al. , 1990; Ouellette et al. , 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of restriction enzyme recognition sites within TTAGGG tandem telomeric repeats, therefore digestion of genomic DNA, not telomeric DNA, with a combination of 6 base restriction endonucleases reduces genomic DNA size to less than 800 bp.
Angelier, Frédéric; Costantini, David; Blévin, Pierre; Chastel, Olivier
2018-01-15
Following the discoveries of telomeres and of their implications in terms of health and ageing, there has been a growing interest into the study of telomere dynamics in wild vertebrates. Telomeres are repeated sequences of non-coding DNA located at the terminal ends of chromosomes and they play a major role in maintaining chromosome stability. Importantly, telomeres shorten over time and shorter telomeres seem to be related with lower survival in vertebrates. Because of this potential link with longevity, it is crucial to understand not only the ecological determinants of telomere dynamics but also the regulatory endocrine mechanisms that may mediate the effect of the environment on telomeres. In this paper, we review the relationships that link environmental conditions, glucocorticoids (GC, the main hormonal mediator of allostasis) and telomere length in vertebrates. First, we review current knowledge about the determinants of inter-individual variations in telomere length. We emphasize the potential strong impact of environmental stressors and predictable life-history events on telomere dynamics. Despite recent progress, we still lack crucial basic data to fully understand the costs of several life-history stages and biotic and abiotic factors on telomere length. Second, we review the link that exists between GCs, oxidative stress and telomere dynamics in vertebrates. Although circulating GC levels may be closely and functionally linked with telomere dynamics, data are still scarce and somewhat contradictory. Further laboratory and field studies are therefore needed not only to better assess the proximate link between GC levels and telomere dynamics, but also to ultimately understand to what extent GCs and telomere length could be informative to measure the fitness costs of specific life-history stages and environmental conditions. Finally, we highlight the importance of exploring the functional links that may exist between coping styles, the GC stress response, and telomere dynamics in a life-history framework. To conclude, we raise new hypotheses regarding the potential of the GC stress response to drive the trade-off between immediate survival and telomere protection. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wai Mun; DaGloria, Jeanne; Fox, Heather
2012-09-05
Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodesmore » a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide.« less
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-01-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445
Epigenetic telomere protection by Drosophila DNA damage response pathways.
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-05-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-02-06
Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-09-01
Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Mathematical model of alternative mechanism of telomere length maintenance
NASA Astrophysics Data System (ADS)
Kollár, Richard; Bod'ová, Katarína; Nosek, Jozef; Tomáška, L'ubomír
2014-03-01
Biopolymer length regulation is a complex process that involves a large number of biological, chemical, and physical subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres—nucleoprotein structures at the ends of linear chromosomes consisting of tandemly repeated DNA sequences and a specialized set of proteins. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady-state approximation. The detailed treatment of kinetic rates yields explicit formulas for expected size distributions of telomeres that demonstrate the key role played by the J factor, a quantitative measure of bending of polymers. The results are in agreement with experimental data and point out interesting phenomena: an appearance of very long telomeric circles if the total telomere density exceeds a critical value (excess mass) and a nonlinear response of the telomere size distributions to the amount of telomeric DNA in the system. The results can be of general importance for understanding dynamics of telomeres in telomerase-independent systems as this mode of telomere maintenance is similar to the situation in tumor cells lacking telomerase activity. Furthermore, due to its universality, the model may also serve as a prototype of an interaction between linear and circular DNA structures in various settings.
Kurjanowicz, P; Moskovtsev, S; Librach, C
2017-11-01
Can differences in DNA isolation alter assessment of sperm telomere length (spTL) and do they account for conflicting results in the literature on spTL and male fertility? DNA isolation methods preferentially include or exclude short, extrachromosomal (EC) telomere-specific sequences that alter spTL measurements, and are responsible for a proportion of the disparity observed between investigations. The relationship between spTL and male fertility has become an active area of research. The results across investigations, however, have been discordant, generating a need to critically evaluate the existing body of knowledge to guide future investigations. Quantitative experiments determined the effect of DNA isolation on the integrity of sperm DNA and measures of spTL, while a systematic analysis of the current literature evaluated the effect of DNA isolation and study design on experimental outcomes. Two DNA isolation methods were compared: Genomic Tips which isolate 'High Molecular Weight' (HMW) DNA exclusively, and QIAamp® DNA Mini which isolates 'Total' genomic DNA irrespective of size. DNA quality was assessed via field inversion gel electrophoresis (FIGE) and spTL was measured via terminal restriction fragment analysis. In addition, major databases in medicine, health and the life sciences were subject to a targeted search, and results were independently screened according to defined exclusion/inclusion criterion. Findings from primary articles were analyzed for concordance and study designs were compared across six moderator variables (sample size, participant age, fertility status, semen fraction, telomere population and type of analysis). HMW DNA spTL was significantly longer than spTL measured from total DNA (P < 0.01), indicating that Total DNA contained short, EC telomeric repeats that shifted downstream assessment towards shorter spTL. HMW DNA spTL reflected the length of intact, chromosomal telomeres. Major findings on spTL showed the greatest concordance amongst studies that implemented HMW DNA isolation prior to spTL assessment. Studies that utilized Total DNA varied in concordance, but outcomes were similar if (i) a comparative analysis was applied or (ii) a sample size threshold of 81 was achieved for correlative analysis. Chromosomal and EC telomeric DNA were distinguished based on outcomes of HMW DNA isolation and size. Further experiments are required to determine the nature and function of these two types of telomeric sequences. This study reveals a dramatic impact of upstream DNA processing and study design on measurements of spTL, which accounts for conflicting results in the literature. Future assessments of spTL should incorporate independent detection of chromosomal and EC telomeric DNA and specific experimental planning. This study was funded by CReATe Fertility Centre, Toronto, Ontario, Canada. The authors have declared no conflict of interest. N/A. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Guan, Jing-Zhi; Guan, Wei-Ping; Maeda, Toyoki; Makino, Naoki
2012-01-01
Oxidative stress (OS) may be involved in the neurodegenerative process in Alzheimer's disease (AD). Telomeres, the repeated sequences that cap chromosome ends, undergo shortening with each cell division, are sensitive to OS, and serve as markers of a cell's replicative history. Telomere length shortening has been reported to relate to OS with aging process and aging-associated diseases, but the telomeric changes were not always identical, especially in change of telomere length distribution and subtelomeric methylation. The involvement of an OS-associated telomere change in the pathogenesis of AD has been discussed for decades, and the telomere length and telomerase activity were analyzed. However, other telomeric factors, such as the telomere distribution and subtelomeric methylation status, have not yet been analyzed. The subtelomeric methylation status as well as the telomere length were studied in AD with an antioxidant vitamin in terms of OS. We measured urinary 8-iso-PGF2α, a lipid-peroxidation product as an OS marker, and methylated and non-methylated telomere lengths in the peripheral blood mononuclear cells by Southern blotting in AD patients before and after vitamin E treatment. The level of urinary 8-iso-PGF2α was found to have increased in AD. Middle-ranged telomeres (4.4-9.4 kb) increased and the shortest telomeres (<4.4 kb) decreased in AD patients. Telomeres were more methylated in both long telomeres and in short telomeres in AD compared with the control. The oral administration of the antioxidant vitamin E in 400 mg/day for 6 months in AD patients partly reversed AD-associated alterations in OS marker levels. AD patients showed an elevated OS marker level, and vitamin E lowered the OS level. In comparison with controls, AD patients showed shorter telomere lengths. Cells with short and long telomeres bore relatively hypermethylated subtelomeres in AD patients. Aging-associated accumulation of cells bearing short telomeres was not observed in AD. These results imply that long telomeres with hypomethylation tend to shorten faster, and cells bearing short telomeres with hypomethylation tend to more easily enter into a senescent state under elevated OS stress in AD. However, no significant effect on the altered telomeric profiles in AD patients could be detected after a 6-month administration of vitamin E. Copyright © 2011 S. Karger AG, Basel.
Burstyn, J N; Heiger-Bernays, W J; Cohen, S M; Lippard, S J
2000-11-01
Mapping of cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) DNA adducts over >3000 nucleotides was carried out using a replication blockage assay. The sites of inhibition of modified T4 DNA polymerase, also referred to as stop sites, were analyzed to determine the effects of local sequence context on the distribution of intrastrand cisplatin cross-links. In a 3120 base fragment from replicative form M13mp18 DNA containing 24.6% guanine, 25.5% thymine, 26.9% adenine and 23.0% cytosine, 166 individual stop sites were observed at a bound platinum/nucleotide ratio of 1-2 per thousand. The majority of stop sites (90%) occurred at G(n>2) sequences and the remainder were located at sites containing an AG dinucleotide. For all of the GG sites present in the mapped sequences, including those with Gn(>)2, 89% blocked replication, whereas for the AG sites only 17% blocked replication. These blockage sites were independent of flanking nucleotides in a sequence of N(1)G*G*N(2) where N(1), N(2) = A, C, G, T and G*G* indicates a 1,2-intrastrand platinum cross-link. The absence of long-range sequence dependence was confirmed by monitoring the reaction of cisplatin with a plasmid containing an 800 bp insert of the human telomere repeat sequence (TTAGGG)(n). Platination reactions monitored at several formal platinum/nucleotide ratios or as a function of time reveal that the telomere insert was not preferentially damaged by cisplatin. Both replication blockage and telomere-insert plasmid platination experiments indicate that cisplatin 1,2-intrastrand adducts do not form preferentially at G-rich sequences in vitro.
[Telomerase activity in uveal melanomas].
Rohrbach, J M; Riedinger, C; Wild, M; Partsch, M
2000-05-01
The maximum number of cell divisions of a certain cell population is genetically fixed so that aging cells become non-dividing (senescent) at least. This replicative life span, also known as "Hayflick limit", is probably defined by a "critical" length of the telomeres. Telomeres are special DNA-sequences located at the four ends of the chromosomes which are shortened with each cell cycle. Cells of most, but not all malignant tumours have been shown to reactivate the enzyme telomerase so that telomeres can be reconstructed, "Hayflick limit" can be overcome, and unlimited cell division can be established. This study was undertaken to elucidate whether telomerase reactivation is used by uveal melanoma cells. Fresh tumour tissue was removed from 10 untreated uveal melanomas after enucleation. Telomerase activity was determined using a PCR ELISA according to the Telomeric Repeat Amplification Protocol (TRAP). Normal tissue of the skin and the conjunctiva served as control. Telomerase activity was detectable in 90% of the investigated uveal melanomas. All control specimens were telomerase negative. Uveal melanoma growth seems to depend on telomerase reactivation. Thus, telomerase inhibition could offer a new principle for uveal melanoma therapy in the future.
Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification.
Deng, Sarah K; Yin, Yi; Petes, Thomas D; Symington, Lorraine S
2015-11-05
Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.
Casas-Vila, Núria; Scheibe, Marion; Freiwald, Anja; Kappei, Dennis; Butter, Falk
2015-11-17
To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi. Using label-free quantitative proteomics, we here investigate the telosome of Neurospora crassa, a fungus with canonical telomeric repeats. We show that at least six of the candidates detected in our screen are direct TTAGGG-repeat binding proteins. While three of the direct interactors (NCU03416 [ncTbf1], NCU01991 [ncTbf2] and NCU02182 [ncTay1]) feature the known myb/homeobox DNA interaction domain also found in the vertebrate telomeric factors, we additionally show that a zinc-finger protein (NCU07846) and two proteins without any annotated DNA-binding domain (NCU02644 and NCU05718) are also direct double-strand TTAGGG binders. We further find two single-strand binders (NCU02404 [ncGbp2] and NCU07735 [ncTcg1]). By quantitative label-free interactomics we identify TTAGGG-binding proteins in Neurospora crassa, suggesting candidates for telomeric factors that are supported by phylogenomic comparison with yeast species. Intriguingly, homologs in yeast species with degenerated telomeric repeats are also TTAGGG-binding proteins, e.g. in S. cerevisiae Tbf1 recognizes the TTAGGG motif found in its subtelomeres. However, there is also a subset of proteins that is not conserved. While a rudimentary core TTAGGG-recognition machinery may be conserved across yeast species, our data suggests Neurospora as an emerging model organism with unique features.
Kipling, D; Wilson, H E; Thomson, E J; Cooke, H J
1995-06-01
Three Mus musculus DBA/2 YAC libraries were constructed using a half-YAC telomere cloning vector. This functional complementation approach yields libraries which include terminal restriction fragments of the mouse genome. Screening all three libraries led to the isolation of 32 independent clones which carry linear YACs containing the mouse terminal repeat sequence, (TTAGGG)n. These YACs provide a resource to isolate regions of the mouse genome close to chromosome termini and excluded from existing conventional YAC libraries. To demonstrate their utility, a hybridization probe was isolated from Mtel-1, the first (TTAGGG)n-containing YAC isolated. This probe detects a approximately 70 kb Kpnl fragment in the mouse genome which is sensitive to pretreatment with BAL31 exonuclease. A PCR-based genetic marker generated from the sequence of this probe maps 4.4 cM from the most distal anchor locus on chromosome 10 in the EUCIB interspecific backcross. STS primers for this locus, D10Hgu1, were used to isolate YAC 110F4 from a commercially available mouse YAC library. Fluorescence in situ hybridization demonstrates that YAC 110F4 hybridizes to the distal telomere of chromosome 10. Clones in this collection of telomere YACs therefore partially overlap clones in conventional YAC libraries, and thus the previously unavailable terminal regions of the mouse genome can now be linked with the developing mouse STS YAC contig. Genetic markers such as D10Hgu1 allow the ends of the mouse genetic map to be defined, thus closing the map.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, Christina A.; Guldener, Ulrich; Xu, Jin Rong
2007-09-07
We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher ratesmore » of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.« less
[Direct human DNA damage by unfavorable environmental and climatic factors].
Doroshtuk, N A; Postnov, A Iu; Doroshtuk, A D; Khasanova, E B; Konovalova, N V; Khesuani, Iu D; Osiaeva, M K; Rodnenkov, O V; Chazova, I E
2014-01-01
To study the impact of simulated climatic conditions of the 2010 summer in Moscow on the telomere repeats of chromosomes in human blood cells. The climatic conditions of July-August 2010 in Moscow were simulated at the Medical Technical Complex, Institute of Biomedical Problems, Russian Academy of Sciences. The relative length of the telomeric repeats of blood cell chromosomes from 6 apparently healthy volunteers was measured by quantitative real-time polymerase chain reaction. These conditions were ascertained to lead to a statistically significant decline in the length of telomere repeats in the terminal portions of chromosomes by 15%. Environmental changes and abnormal temperature rises may result in oxidative stress accompanied by telomere shortening, which can be, in turn, a factor of premature aging.
Fleming, Aaron M.; Burrows, Cynthia J.
2013-01-01
Telomere shortening occurs during oxidative and inflammatory stress with guanine (G) as the major site of damage. In this work, a comprehensive profile of the sites of oxidation and structures of products observed from G-quadruplex and duplex structures of the human telomere sequence was studied in the G-quadruplex folds (hybrid (K+), basket (Na+), and propeller (K+ + 50% CH3CN)) resulting from the sequence 5’-(TAGGGT)4T-3’ and in an appropriate duplex containing one telomere repeat. Oxidations with four oxidant systems consisting of riboflavin photosensitization, carbonate radical generation, singlet oxygen, and the copper Fenton-like reaction were analyzed under conditions of low product conversion to determine relative reactivity. The one-electron oxidants damaged the 5’-G in G-quadruplexes leading to spiroiminodihydantoin (Sp) and 2,2,4-triamino-2H-oxazol-5-one (Z) as major products as well as 8-oxo-7,8-dihydroguanine (OG) and 5-guanidinohydantoin (Gh) in low relative yields, while oxidation in the duplex context produced damage at the 5’- and middle-Gs of GGG sequences and resulted in Gh being the major product. Addition of the reductant N-acetylcysteine (NAC) to the reaction did not alter the riboflavin-mediated damage sites, but decreased Z by 2-fold and increased OG by 5-fold, while not altering the hydantoin ratio. However, NAC completely quenched the CO3•− reactions. Singlet oxygen oxidations of the G-quadruplex showed reactivity at all Gs on the exterior faces of G-quartets and furnished the product Sp, while no oxidation was observed in the duplex context under these conditions, and addition of NAC had no effect. Because a long telomere sequence would have higher-order structures of G-quadruplexes, studies were also conducted with 5’-(TAGGGT)8-T-3’, and it provided similar oxidation profiles to the single G-quadruplex. Lastly, CuII/H2O2-mediated oxidations were found to be indiscriminate in the damage patterns, and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) was found to be a major duplex product, while nearly equal yields of 2Ih and Sp were observed in G-quadruplex contexts. These findings indicate that the nature of the secondary structure of folded DNA greatly alters both the reactivity of G toward oxidative stress as well as the product outcome and suggest that recognition of damage in telomeric sequences by repair enzymes may be profoundly different from that of B-form duplex DNA. PMID:23438298
Eisenberg, Dan T. A.; Hayes, M. Geoffrey; Kuzawa, Christopher W.
2012-01-01
Telomeres are repeating DNA sequences at the ends of chromosomes that protect and buffer genes from nucleotide loss as cells divide. Telomere length (TL) shortens with age in most proliferating tissues, limiting cell division and thereby contributing to senescence. However, TL increases with age in sperm, and, correspondingly, offspring of older fathers inherit longer telomeres. Using data and samples from a longitudinal study from the Philippines, we first replicate the finding that paternal age at birth is associated with longer TL in offspring (n = 2,023, P = 1.84 × 10−6). We then show that this association of paternal age with offspring TL is cumulative across multiple generations: in this sample, grandchildren of older paternal grandfathers at the birth of fathers have longer telomeres (n = 234, P = 0.038), independent of, and additive to, the association of their father’s age at birth with TL. The lengthening of telomeres predicted by each year that the father’s or grandfather’s reproduction are delayed is equal to the yearly shortening of TL seen in middle-age to elderly women in this sample, pointing to potentially important impacts on health and the pace of senescent decline in tissues and systems that are cell-replication dependent. This finding suggests a mechanism by which humans could extend late-life function as average age at reproduction is delayed within a lineage. PMID:22689985
Telomere Organization in the Ligninolytic Basidiomycete Pleurotus ostreatus▿ †
Pérez, Gúmer; Pangilinan, Jasmyn; Pisabarro, Antonio G.; Ramírez, Lucía
2009-01-01
Telomeres are structural and functional chromosome regions that are essential for the cell cycle to proceed normally. They are, however, difficult to map genetically and to identify in genome-wide sequence programs because of their structure and repetitive nature. We studied the telomeric and subtelomeric organization in the basidiomycete Pleurotus ostreatus using a combination of molecular and bioinformatics tools that permitted us to determine 19 out of the 22 telomeres expected in this fungus. The telomeric repeating unit in P. ostreatus is TTAGGG, and the numbers of repetitions of this unit range between 25 and 150. The mapping of the telomere restriction fragments to linkage groups 6 and 7 revealed polymorphisms compatible with those observed by pulsed field gel electrophoresis separation of the corresponding chromosomes. The subtelomeric regions in Pleurotus contain genes similar to those described in other eukaryotic systems. The presence of a cluster of laccase genes in chromosome 6 and a bipartite structure containing a Het-related protein and an alcohol dehydrogenase are especially relevant; this bipartite structure is characteristic of the Pezizomycotina fungi Neurospora crassa and Aspergillus terreus. As far as we know, this is the first report describing the presence of such structures in basidiomycetes and the location of a laccase gene cluster in the subtelomeric region, where, among others, species-specific genes allowing the organism to adapt rapidly to the environment usually map. PMID:19114509
Komosa, Martin; Root, Heather; Meyn, M. Stephen
2015-01-01
Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain <5 ECTR DNA molecules/nucleus. ECTR DNA in ALT cells exhibit striking cell-to-cell variations in number (<20 to >300), range widely in length (<1 to >200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells. PMID:25662602
Population mixture model for nonlinear telomere dynamics
NASA Astrophysics Data System (ADS)
Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl
2008-12-01
Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.
Peitl, Paulo; Mello, Stephano S; Camparoto, Marjori L; Passos, Geraldo A S; Hande, Manoor P; Cardoso, Renato S; Sakamoto-Hojo, Elza T
2002-01-01
Chromosomal instability involving telomeric DNA sequences was studied in mouse Balb/3T3 fibroblasts transfected with a mutated human c-Ha-ras-1 gene (B61 cells) and spontaneously immortalized normal parental cells (A31 cells), using fluorescence in situ hybridization (FISH). FISH analysis with a telomeric probe revealed high frequencies of chromosome alterations involving telomeric regions, mainly stable and unstable Robertsonian fusion-like configurations (RLC) (0.25 and 1.95/cell in A31 and B61 cells, respectively) and chromosome ends lacking telomeric signals in one (LTS') or both chromatids (LTS") (5.9 and 17.5/cell for A31 and B61 cells, respectively). Interstitial telomeric sequences (ITS) were also detected at both non-telomeric sites and in the centromeres of RLC. The frequencies of RLCs with ITS located in the centromeres were 3-fold higher in B61 compared with A31 cells. We demonstrated a high level of chromosome instability involving telomeric DNA sequences in ras-transfected cells overexpressing ras mRNA, which could be a consequence of rapid cell cycle progression associated with a deficient telomere capping mechanism.
Measurement of telomerase activity in dog tumors.
Yazawa, M; Okuda, M; Setoguchi, A; Nishimura, R; Sasaki, N; Hasegawa, A; Watari, T; Tsujimoto, H
1999-10-01
Telomeres are specific structures present at the end of liner chromosomes. DNA polymerase can not synthesize the end of liner DNA and, as a result, the telomeres become progressively shortened by successive cell divisions. To overcome the end replication problem, telomerase adds new telomeric sequences to the end of chromosomal DNA. The enzyme activity is undetectable in most normal human adult somatic cells, in which shortening of the telomere is thought to limit the somatic-cell life span. In contrast to normal somatic cells, many human tumors possess telomerase activity. The present study looked at whether telomerase activity might serve as a marker for canine tumors. Telomerase activity was measured using the telomeric repeat amplification protocol assay. Normal dog somatic tissues showed little or no telomerase activity, while normal testis exhibited a high level of telomerase activity. We measured telomerase activity in tumor samples from 45 dogs; 21 mammary gland tumors, 16 tumors developed in the skin and oral cavity, 7 vascular tumors and 1 Sertoli cell tumor. Greater than 95% of the tumor samples contained telomerase activity (3-924 U/2 micrograms protein). The results obtained in this study indicated that telomerase should be a useful diagnostic marker for a variety of dog tumors, and it may serve as a target for antitumor chemotherapy.
Drosophila cell cycle under arrest: uncapped telomeres plead guilty.
Cenci, Giovanni
2009-04-01
Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.
Kawashima, Motoko; Maida, Yoshiko; Kamoi, Mizuka; Ogawa, Yoko; Shimmura, Shigeto; Masutomi, Kenkichi; Tsubota, Kazuo
2011-01-01
Purpose Indicators of aging such as disruption of telomeric function due to shortening may be more frequent in dysfunctional lacrimal gland. The aims of this study were to 1) determine the viability of quantitative fluorescence in situ hybridization of telomeres (telo-FISH) for the assessment of telomere length in lacrimal gland in Sjögren and non- Sjögren syndrome patients; and 2) investigate the relationship between progenitor cell markers and telomere length in both groups. Methods Quantitative fluorescence in situ hybridization with a peptide nucleic acid probe complementary to the telomere repeat sequence was performed on frozen sections from human lacrimal gland tissues. The mean fluorescence intensity of telomere spots was automatically quantified by image analysis as relative telomere length in lacrimal gland epithelial cells. Immunostaining for p63, nucleostemin, ATP-binding cassette, sub-family G, member 2 (ABCG2), and nestin was also performed. Results Telomere intensity in the Sjögren syndrome group (6,785.0±455) was significantly lower than that in the non-Sjögren syndrome group (7,494.7±477; p=0.02). Among the samples from the non-Sjögren syndrome group, immunostaining revealed that p63 was expressed in 1–3 acinar cells in each acinar unit and continuously in the basal layer of duct cells. In contrast, in the Sjögren syndrome group, p63 and nucleostemin showed a lower level of expression. ABCG2 was expressed in acinar cells in both sjogren and non-Sjogren syndrome. Conclusions The results of this study indicate that 1) telo-FISH is a viable method of assessing telomere length in lacrimal gland, and 2) telomere length in Sjögren syndrome is shorter and associated with lower levels of expression of p63 and nucleostemin than in non-Sjögren syndrome. PMID:21655359
Telomere Dysfunction Induced Foci (TIF) Analysis.
Mender, Ilgen; Shay, Jerry W
2015-11-20
Telomerase maintains telomeric DNA in eukaryotes during early developments, ~90% of cancer cells and some proliferative stem like cells. Telomeric repeats at the end of chromosomes are associated with the shelterin complex. This complex consists of TRF1, TRF2, Rap1, TIN2, TPP1, POT1 which protect DNA from being recognized as DNA double-stranded breaks. Critically short telomeres or impaired shelterin proteins can cause telomere dysfunction, which eventually induces DNA damage responses at the telomeres. DNA damage responses can be identified by antibodies to 53BP1, gammaH2AX, Rad17, ATM, and Mre11. DNA damage foci at uncapped telomeres are referred to as Telomere dysfunction-Induced Foci (TIFs) (de Lange, 2005; Takai et al. , 2003). The TIF assay is based on the co-localization detection of DNA damage by an antibody against DNA damage markers, such as gamma-H2AX, and telomeres using an antibody against one of the shelterin proteins such as TRF2 (Takai et al. , 2003; de Lange, 2002; Karlseder et al. , 1999). The method we describe here can be used in normal human and cancer cells. Other commonly used methods-Telomere Restriction Fragment (TRF) Analysis (Mender and Shay, 2015b) and Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015a)- in telomere biology can be found by clicking on the indicated links.
Ye, Jing; Lenain, Christelle; Bauwens, Serge; Rizzo, Angela; Saint-Léger, Adelaïde; Poulet, Anaïs; Benarroch, Delphine; Magdinier, Frédérique; Morere, Julia; Amiard, Simon; Verhoeyen, Els; Britton, Sébastien; Calsou, Patrick; Salles, Bernard; Bizard, Anna; Nadal, Marc; Salvati, Erica; Sabatier, Laure; Wu, Yunlin; Biroccio, Annamaria; Londoño-Vallejo, Arturo; Giraud-Panis, Marie-Josèphe; Gilson, Eric
2010-07-23
Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres. Copyright 2010 Elsevier Inc. All rights reserved.
Break-induced replication and recombinational telomere elongation in yeast.
McEachern, Michael J; Haber, James E
2006-01-01
When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.
Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea).
Kulemzina, Anastasia I; Proskuryakova, Anastasia A; Beklemisheva, Violetta R; Lemskaya, Natalia A; Perelman, Polina L; Graphodatsky, Alexander S
2016-01-01
Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies. © 2016 S. Karger AG, Basel.
Rad59-Facilitated Acquisition of Y′ Elements by Short Telomeres Delays the Onset of Senescence
Churikov, Dmitri; Charifi, Ferose; Simon, Marie-Noëlle; Géli, Vincent
2014-01-01
Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with internal Rap1-bound TG1–3-like tracts present between subtelomeric X and Y′ elements, which is followed by BIR-mediated non-reciprocal translocation of Y′ element and terminal TG1–3 repeats from the donor end onto the shortened telomere. We found that choice of the Y′ donor was not random, since both engineered telomere VII-L and native VI-R acquired Y′ elements from partially overlapping sets of specific chromosome ends. Although short telomere repair was associated with transient delay in cell divisions, Y′ translocation on native telomeres did not require Mec1-dependent checkpoint. Furthermore, the homeologous pairing between the terminal TG1–3 repeats at VII-L and internal repeats on other chromosome ends was largely independent of Rad51, but instead it was facilitated by Rad59 that stimulates Rad52 strand annealing activity. Therefore, Y′ translocation events taking place during presenescence are genetically separable from Rad51-dependent Y′ amplification process that occurs later during type I survivor formation. We show that Rad59-facilitated Y′ translocations on X-only telomeres delay the onset of senescence while preparing ground for type I survivor formation. PMID:25375789
Hering, Sandra; Brundirs, Nicola; Kuhlisch, Eberhard; Edelmann, Jeanett; Plate, Ines; Benecke, Mark; Van, Pham Hung; Michael, Matthias; Szibor, Reinhard
2004-12-01
The hypervariable tetranucleotide STR polymorphism DXS10011 is a powerful marker for forensic purposes. Investigation of this STR led to an allele nomenclature which is in consensus with the ISFG recommendations. DXS10011 is located at Xq28 and genetically closely linked to DXS7423 and DXS8377 but is unlinked to HPRTB and more distant X-chromosomal STRs. DXS10011 is a very complex marker exhibiting some structural variants within alleles of identical length. Two types of repeat structure (regular and inter-alleles) are known and described as types A and B. Two SNPs which are in strong linkage disequilibrium to the different sequence types were found in the repeat flanking region. The type A sequence consists of a long stretch of uninterrupted homogenous repeats which is highly susceptible to slippage mutation during male meiosis.
Mlinarec, Jelena; Chester, Mike; Siljak-Yakovlev, Sonja; Papes, Drazena; Leitch, Andrew R; Besendorfer, Visnja
2009-01-01
The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.
2014-01-01
Background The combination of classical cytogenetics with molecular techniques represents a powerful approach for the comparative analysis of the genome, providing data for the systematic identification of chromosomal homologies among species and insights into patterns of chromosomal evolution within phylogenetically related groups. Here, we present cytogenetic data on four species of Neotropical treefrogs of the genus Phyllomedusa (P. vaillantii, P. tarsius, P. distincta, and P. bahiana), collected in Brazil and Ecuador, with the aim of contributing to the understanding of the chromosomal diversification of this genus. Results With the exception of P. tarsius, which presented three telocentric pairs, all the species analyzed had conservative karyotypic features. Heterochromatic patterns in the genomes of these species revealed by C-banding and fluorochrome staining indicated the presence of a large number of non-centromeric blocks. Using the Ag-NOR method and FISH with an rDNA 28S probe, we detected NOR in the pericentromeric region of the short arm of pair 7 in P. vaillantii, pair 1 in P. tarsius, chromosomes 1 and 9 in P. distincta, and in chromosome 9 in P. bahiana, in addition to the presence of NOR in one homologue of chromosome pair 10 in some individuals of this species. As expected, the telomeric probe detected the terminal regions of the chromosomes of these four species, although it also detected Interstitial Telomeric Sequences (ITS) in some chromosomes of the P. vaillantii, P. distincta and P. bahiana karyotypes. Conclusion A number of conservative chromosomal structures permitted the recognition of karyotypic homologies. The data indicate that the presence of a NOR-bearing chromosome in pair 9 is the plesiomorphic condition in the P. burmeisteri group. The interspecific and intraspecific variation in the number and location of rDNA sites reflects the rapid rate of evolution of this character in Phyllomedusa. The ITS detected in this study does not appear to be a remnant of structural chromosome rearrangements. Telomeric repeats were frequently found in association with heterochromatin regions, primarily in the centromeres, which suggests that (TTAGGG)n repeats might be an important component of this heterochromatin. We propose that the ITSs originated independently during the chromosomal evolution of these species and may provide important insights into the role of these repeats in vertebrate karyotype diversification. PMID:24602295
Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y
1997-02-01
Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.
An, Na; Fleming, Aaron M.; Middleton, Eric G.; Burrows, Cynthia J.
2014-01-01
Human telomeric DNA consists of tandem repeats of the sequence 5′-TTAGGG-3′ that can fold into various G-quadruplexes, including the hybrid, basket, and propeller folds. In this report, we demonstrate use of the α-hemolysin ion channel to analyze these subtle topological changes at a nanometer scale by providing structure-dependent electrical signatures through DNA–protein interactions. Whereas the dimensions of hybrid and basket folds allowed them to enter the protein vestibule, the propeller fold exceeds the size of the latch region, producing only brief collisions. After attaching a 25-mer poly-2′-deoxyadenosine extension to these structures, unraveling kinetics also were evaluated. Both the locations where the unfolding processes occur and the molecular shapes of the G-quadruplexes play important roles in determining their unfolding profiles. These results provide insights into the application of α-hemolysin as a molecular sieve to differentiate nanostructures as well as the potential technical hurdles DNA secondary structures may present to nanopore technology. PMID:25225404
2006-04-01
for Specific Aim #3 have yet been initiated, and are proceeding on schedule. The PhD candidate has completed her educational goals. 13 Appendix A ... LEVELS OF TELOMERE PROTEIN MRNAS ARE PREDICTIVE OF TELOMERE CONTENT IN HUMAN BREAST TUMORS Kimberly S. Butler, William C. Hines, Diana Roberts
2013-01-01
Background The predominant mechanism by which human tumors maintain telomere length is via telomerase. In ~10% of tumor samples, however, telomere length is conserved, despite no detectable telomerase activity, in part through activation of the alternative lengthening of telomeres (ALT) pathway. Methods We studied the circular extra-chromosomal telomeric repeat (ECTR), an ALT hallmark, and telomerase activity in 24 chronic myeloid leukemia (CML) patients in chronic phase (CP). Results We identified the presence of ECTR in primary leukemia cells from some of these samples, which indicates the possible involvement of an ALT mechanism. Moreover, we found that some samples exhibited both circular ECTR and telomerase activities, suggesting that both mechanisms can contribute to the onset of CML. Conclusion We propose that ALT or the combined activities of ALT and telomerase might be required for the early stages of leukemogenesis. These findings shed new light into the oncogenic pathways responsible for the maintenance of telomere length in leukemia, which will ultimately determine the effectiveness of anti-telomerase-based treatment protocols. PMID:23547895
Organisation of the plant genome in chromosomes.
Heslop-Harrison, J S Pat; Schwarzacher, Trude
2011-04-01
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Carlson, M; Celenza, J L; Eng, F J
1985-01-01
The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres. Images PMID:3018485
Stuart, Jeremy R; Haley, Kevin J; Swedzinski, Douglas; Lockner, Samuel; Kocian, Paul E; Merriman, Peter J; Simmons, Michael J
2002-01-01
P elements inserted at the left end of the Drosophila X chromosome were isolated genetically from wild-type P strains. Stocks carrying these elements were tested for repression of P-strain-induced gonadal dysgenesis in females and for repression of transposase-catalyzed P-element excision in males and females. Both traits were repressed by stocks carrying either complete or incomplete P elements inserted near the telomere of the X chromosome in cytological region 1A, but not by stocks carrying only nontelomeric X-linked P elements. All three of the telomeric P elements that were analyzed at the molecular level were inserted in one of the 1.8-kb telomere-associated sequence (TAS) repeats near the end of the X chromosome. Stocks with these telomeric P elements strongly repressed P-element excision induced in the male germline by a P strain or by the transposase-producing transgenes H(hsp/CP)2, H(hsp/CP)3, a combination of these two transgenes, and P(ry(+), delta2-3)99B. For H(hsp/CP)2 and P(ry(+), delta2-3)99B, the repression was also effective when the flies were subjected to heat-shock treatments. However, these stocks did not repress the somatic transposase activity of P(ry(+), delta2-3)99B. Repression of transposase activity in the germline required maternal transmission of the telomeric P elements themselves. Paternal transmission of these elements, or maternal transmission of the cytoplasm from carriers, both were insufficient to repress transposase activity. Collectively, these findings indicate that the regulatory abilities of telomeric P elements are similar to those of the P cytotype. PMID:12524339
Kasielski, Marek; Eusebio, Makandjou-Ola; Pietruczuk, Mirosława; Nowak, Dariusz
2016-07-14
Repeated nucleotide sequences combined with proteins called telomeres cover chromosome ends and dictate cells lifespan. Many factors can modify telomere length, among them are: nutrition and smoking habits, physical activities and socioeconomic status measured by education level. The aim of the study was to determine the influence of above mentioned factors on peripheral blood mononuclear cells telomere length. Study included 28 subjects (seven male and 21 female, age 18-65 years.), smokers and non-smokers without any serious health problems in past and present. Following a basic medical examination, patients completed the food frequency questionnaire with 17 foods and beverages most common groups and gave blood for testing. PBMC telomere length were measured with qualitative real-time Polymerase Chain Reaction (rtPCR) method and expressed as a T/S ratio. Among nine food types (cereal, fruits, vegetables, diary, red meat, poultry, fish, sweets and salty snacks) and eight beverages (juices, coffee, tea, mineral water, alcoholic- and sweetened carbonated beverages) only intake of red meat was related to T/S ratio. Individuals with increased consumption of red meat have had higher T/S ratio and the strongest significant differences were observed between consumer groups: "never" and "1-2 daily" (p = 0.02). Smoking habits, physical activity, LDL and HDL concentrations, and education level were not related to telomere length, directly or as a covariates. Unexpected correlation of telomere length with the frequency of consumption of red meat indicates the need for further in-depth research and may undermine some accepted concepts of adverse effects of this diet on the health status and life longevity.
Fortin, F; Beaulieu Bergeron, M; Fetni, R; Lemieux, N
2009-01-01
Human telomeres play a major role in stabilizing chromosome ends and preventing fusions. Chromosomes bearing a broken end are rescued by the acquisition of a new telomeric cap without any subtelomeric sequences being present at the breakpoint, a process referred to as chromosome healing. Conversely, a loss of telomeric function or integrity can lead to the presence of interstitial telomeres at the junction site in translocations or ring chromosomes. In order to determine the frequency at which interstitial telomeres or chromosome healing events are observed in target chromosome abnormalities, we conducted a retrospective FISH study using pan-telomeric and chromosome-specific subtelomeric probes on archival material from 40 cases of terminal deletions, translocations or ring chromosomes. Of the 19 terminal deletions investigated, 17 were negative for the subtelomeric probe specific to the deleted arm despite being positive for the pan-telomeric probe. These 17 cases were thus considered as having been rescued through chromosome healing, suggesting that this process is frequent in terminal deletions. In addition, as 2 of these cases were inherited from a parent bearing the same deletion, chromosomes healed by this process are thus stable through mitosis and meiosis. Regarding the 13 cases of translocations and 8 ring chromosomes, 4 and 2 cases respectively demonstrated pan-telomeric sequences at the interstitial junction point. Furthermore, 2 cases of translocations and 1 ring chromosome had both interstitial pan-telomeres and subtelomeres, whereas 2 other cases of ring chromosomes and 1 case of translocation only showed interstitial subtelomeres. Therefore, interstitial (sub)telomeric sequences in translocations and ring chromosomes are more common than previously thought, as we found a frequency of 43% in this study. Moreover, our results illustrate the necessity of performing FISH with both subtelomeric and pan-telomeric probes when investigating these rearrangements, as the breakpoints can be either in the distal part of the pan-telomeres, or in between the 2 types of sequences. Copyright 2009 S. Karger AG, Basel.
Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis
Le Balc’h, Eric; Grandin, Nathalie; Demattei, Marie-Véronique; Guyétant, Serge; Tallet, Anne; Ouaissi, Mehdi; Lecomte, Thierry
2017-01-01
All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor. PMID:28850092
Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis.
Balc'h, Eric Le; Grandin, Nathalie; Demattei, Marie-Véronique; Guyétant, Serge; Tallet, Anne; Pagès, Jean-Christophe; Ouaissi, Mehdi; Lecomte, Thierry; Charbonneau, Michel
2017-08-29
All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.
Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng
2015-09-25
Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in Cucumis species. Besides, the significant correlation was found between gene density along chromosome and GISH band intensity in C. sativus and C. melo. In summary, comparative cytogenetic mapping of major satellites and GISH revealed the distinct differentiation of chromosome structure during species formation. The evolution of repetitive sequences was the main force for the divergence of Cucumis species from common ancestor.
Telomeric repeat-containing RNA (TERRA) related to polycystic ovary syndrome (PCOS).
Wang, Caiqin; Shen, Fengxian; Zhu, Yuning; Fang, Yuying; Lu, Shiming
2017-04-01
Telomeric repeat-containing RNA (TERRA) participates in the regulation of telomere length, and leucocyte telomere length (LTL) plays an important role in the pathophysiology of polycystic ovary syndrome (PCOS), but little is known about the role of TERRA in PCOS. To evaluate the role of TERRA and peripheral blood LTL in PCOS. Forty women with PCOS and 35 healthy women without PCOS were recruited. A prospective case-control study was performed. RNA fluorescence in situ hybridization (FISH) was used to detect TERRA expression in peripheral blood leucocyte. Quantitative PCR was used to measure TERRA expression and the mean LTL in the PCOS and control groups. We analysed the association between related clinical parameters and the age-adjusted ratio of the telomere repeat length (T/S ratio) or TERRA. Telomeric repeat-containing RNA was expressed in human peripheral blood leucocytes, and the signal was abolished after culture with RNase A. The age-adjusted LTLs were significantly longer in the PCOS group than in the control group (P < 0·01). The age-adjusted TERRA level was significantly lower in the PCOS group than in the control group (P < 0·01). Testosterone (TTE) was related positively to LTL and negatively to TERRA in the PCOS group (r = 0·532, P = 0·002; r = -0·477, P = 0·017). We found TERRA expression in human peripheral blood leucocytes, and LTLs were positively associated with PCOS. TERRA and testosterone play an important role in the LTL regulation in PCOS. © 2016 John Wiley & Sons Ltd.
A heterochromatin domain forms gradually at a new telomere and is dynamic at stable telomeres.
Wang, Jinyu; Eisenstatt, Jessica R; Audry, Julien; Cornelius, Kristen; Shaughnessy, Matthew; Berkner, Kathleen L; Runge, Kurt W
2018-05-21
Heterochromatin domains play important roles in chromosome biology, organismal development and aging, including centromere function, mammalian female X-chromosome inactivation and senescence-associated heterochromatin foci. In the fission yeast Schizosaccharomyces pombe and metazoans, heterochromatin contains histone H3 that is dimethylated at lysine 9. While factors required for heterochromatin have been identified, the dynamics of heterochromatin formation are poorly understood. Telomeres convert adjacent chromatin into heterochromatin. To form a new heterochromatic region in S. pombe , an inducible DNA double-strand break (DSB) was engineered next to 48 bp of telomere repeats in euchromatin, which caused formation of a new telomere and the establishment and gradual spreading of a new heterochromatin domain. However, spreading was dynamic even after the telomere had reached its stable length, with reporter genes within the heterochromatin domain showing variegated expression. The system also revealed the presence of repeats located near the boundaries of euchromatin and heterochromatin that are oriented to allow the efficient healing of a euchromatic DSB to cap the chromosome end with a new telomere. Telomere formation in S. pombe therefore reveals novel aspects of heterochromatin dynamics and failsafe mechanisms to repair subtelomeric breaks, with implications for similar processes in metazoan genomes. Copyright © 2018 Wang et al.
Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators
Scheibe, Marion; Arnoult, Nausica; Kappei, Dennis; Buchholz, Frank; Decottignies, Anabelle; Butter, Falk; Mann, Matthias
2013-01-01
Telomeres are actively transcribed into telomeric repeat-containing RNA (TERRA), which has been implicated in the regulation of telomere length and heterochromatin formation. Here, we applied quantitative mass spectrometry (MS)–based proteomics to obtain a high-confidence interactome of TERRA. Using SILAC-labeled nuclear cell lysates in an RNA pull-down experiment and two different salt conditions, we distinguished 115 proteins binding specifically to TERRA out of a large set of background binders. While TERRA binders identified in two previous studies showed little overlap, using quantitative mass spectrometry we obtained many candidates reported in these two studies. To test whether novel candidates found here are involved in TERRA regulation, we performed an esiRNA-based interference analysis for 15 of them. Knockdown of 10 genes encoding candidate proteins significantly affected total cellular levels of TERRA, and RNAi of five candidates perturbed TERRA recruitment to telomeres. Notably, depletion of SRRT/ARS2, involved in miRNA processing, up-regulated both total and telomere-bound TERRA. Conversely, knockdown of MORF4L2, a component of the NuA4 histone acetyltransferase complex, reduced TERRA levels both globally and for telomere-bound TERRA. We thus identified new proteins involved in the homeostasis and telomeric abundance of TERRA, extending our knowledge of TERRA regulation. PMID:23921659
Rackwitz, Jenny; Bald, Ilko
2018-03-26
During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (<20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transcription of tandemly repetitive DNA: functional roles.
Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco
2015-09-01
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Telomete length in peripheral blood mononuclear cells is associated with folate status in men
USDA-ARS?s Scientific Manuscript database
Human chromosomes are capped by tandem repeats of DNA and associated proteins termed telomeres. The length of the telomeres is reduced with increasing cell divisions except when the enzyme telomerase is active as seen in stem cells and germ cells. Telomere dysfunction has been associated with deve...
Puttagunta, Radhika; Gordon, Laurie A.; Meyer, Gary E.; Kapfhamer, David; Lamerdin, Jane E.; Kantheti, Prameela; Portman, Kathleen M.; Chung, Wendy K.; Jenne, Dieter E.; Olsen, Anne S.; Burmeister, Margit
2000-01-01
A cosmid/bacterial artificial chromosome (BAC) contiguous (contig) map of human chromosome (HSA) 19p13.3 has been constructed, and over 50 genes have been localized to the contig. Genes and anonymous ESTs from ≈4000 kb of human 19p13.3 were placed on the central mouse chromosome 10 map by genetic mapping and pulsed-field gel electrophoresis (PFGE) analysis. A region of ∼2500 kb of HSA 19p13.3 is collinear to mouse chromosome (MMU) 10. In contrast, the adjacent ≈1200 kb are inverted. Two genes are located in a 50-kb region after the inversion on MMU 10, followed by a region of homology to mouse chromosome 17. The synteny breakpoint and one of the inversion breakpoints has been localized to sequenced regions in human <5 kb in size. Both breakpoints are rich in simple tandem repeats, including (TCTG)n, (CT)n, and (GTCTCT)n, suggesting that simple repeat sequences may be involved in chromosome breaks during evolution. The overall size of the region in mouse is smaller, although no large regions are missing. Comparing the physical maps to the genetic maps showed that in contrast to the higher-than-average rate of genetic recombination in gene-rich telomeric region on HSA 19p13.3, the average rate of recombination is lower than expected in the homologous mouse region. This might indicate that a hot spot of recombination may have been lost in mouse or gained in human during evolution, or that the position of sequences along the chromosome (telomeric compared to the middle of a chromosome) is important for recombination rates. PMID:10984455
Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell
Procházková Schrumpfová, Petra; Schořová, Šárka; Fajkus, Jiří
2016-01-01
Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms. PMID:27446102
Compartmentalization of the yeast meiotic nucleus revealed by analysis of ectopic recombination.
Schlecht, Hélène B; Lichten, Michael; Goldman, Alastair S H
2004-11-01
As yeast cells enter meiosis, chromosomes move from a centromere-clustered (Rabl) to a telomere-clustered (bouquet) configuration and then to states of progressive homolog pairing where telomeres are more dispersed. It is uncertain at which stage of this process sequences commit to recombine with each other. Previous analyses using recombination between dispersed homologous sequences (ectopic recombination) support the view that, on average, homologs are aligned end to end by the time of commitment to recombination. We have undertaken further analyses incorporating new inserts, chromosome rearrangements, an alternate mode of recombination initiation, and mutants that disrupt nuclear structure or telomere metabolism. Our findings support previous conclusions and reveal that distance from the nearest telomere is an important parameter influencing recombination between dispersed sequences. In general, the farther dispersed sequences are from their nearest telomere, the less likely they are to engage in ectopic recombination. Neither the mode of initiating recombination nor the formation of the bouquet appears to affect this relationship. We suggest that aspects of telomere localization and behavior influence the organization and mobility of chromosomes along their entire length, during a critical period of meiosis I prophase that encompasses the homology search.
Chen, Xia; Liu, Liu; Chen, Yong; Yang, Yuting; Yang, Chao-Yie; Guo, Tianyue; Lei, Ming; Sun, Haiying; Wang, Shaomeng
2018-05-10
Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (Apollo TBM ). We found conformational control of the C terminal residues of Apollo TBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic ( 34 ) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.
Sadhukhan, Ratan; Chowdhury, Priyanka; Ghosh, Sourav; Ghosh, Utpal
2018-06-01
Telomere DNA can form specialized nucleoprotein structure with telomere-associated proteins to hide free DNA ends or G-quadruplex structures under certain conditions especially in presence of G-quadruplex ligand. Telomere DNA is transcribed to form non-coding telomere repeat-containing RNA (TERRA) whose biogenesis and function is poorly understood. Our aim was to find the role of telomere-associated proteins and telomere structures in TERRA transcription. We silenced four [two shelterin (TRF1, TRF2) and two non-shelterin (PARP-1, SLX4)] telomere-associated genes using siRNA and verified depletion in protein level. Knocking down of one gene modulated expression of other telomere-associated genes and increased TERRA from 10q, 15q, XpYp and XqYq chromosomes in A549 cells. Telomere was destabilized or damaged by G-quadruplex ligand pyridostatin (PDS) and bleomycin. Telomere dysfunction-induced foci (TIFs) were observed for each case of depletion of proteins, treatment with PDS or bleomycin. TERRA level was elevated by PDS and bleomycin treatment alone or in combination with depletion of telomere-associated proteins.
Weischer, Maren; Bojesen, Stig E; Nordestgaard, Børge G
2014-03-01
Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first examination, short telomere length was associated with increased age (P for trend across quartiles = 3 × 10(-77)), current smoking (P = 8 × 10(-3)), increased body mass index (P = 7 × 10(-14)), physical inactivity (P = 4 × 10(-17)), but not with increased alcohol intake (P = 0.10). At the second examination 10 years later, 56% of participants had lost and 44% gained telomere length with a mean loss of 193 basepairs. Change in leukocyte telomere length during 10 years was associated inversely with baseline telomere length (P<1 × 10(-300)) and age at baseline (P = 1 × 10(-27)), but not with baseline or 10-year inter-observational tobacco consumption, body weight, physical activity, or alcohol intake. Prospectively during a further 10 years follow-up after the second examination, quartiles of telomere length change did not associate with risk of all-cause mortality, cancer, chronic obstructive pulmonary disease, diabetes mellitus, ischemic cerebrovascular disease, or ischemic heart disease. In conclusion, smoking, increased body weight, and physical inactivity were associated with short telomere length cross-sectionally, but not with telomere length change during 10 years observation, and alcohol intake was associated with neither. Also, change in telomere length did not associate prospectively with mortality or morbidity in the general population.
Weischer, Maren; Bojesen, Stig E.; Nordestgaard, Børge G.
2014-01-01
Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first examination, short telomere length was associated with increased age (P for trend across quartiles = 3×10−77), current smoking (P = 8×10−3), increased body mass index (P = 7×10−14), physical inactivity (P = 4×10−17), but not with increased alcohol intake (P = 0.10). At the second examination 10 years later, 56% of participants had lost and 44% gained telomere length with a mean loss of 193 basepairs. Change in leukocyte telomere length during 10 years was associated inversely with baseline telomere length (P<1×10−300) and age at baseline (P = 1×10−27), but not with baseline or 10-year inter-observational tobacco consumption, body weight, physical activity, or alcohol intake. Prospectively during a further 10 years follow-up after the second examination, quartiles of telomere length change did not associate with risk of all-cause mortality, cancer, chronic obstructive pulmonary disease, diabetes mellitus, ischemic cerebrovascular disease, or ischemic heart disease. In conclusion, smoking, increased body weight, and physical inactivity were associated with short telomere length cross-sectionally, but not with telomere length change during 10 years observation, and alcohol intake was associated with neither. Also, change in telomere length did not associate prospectively with mortality or morbidity in the general population. PMID:24625632
Amplification of telomeric arrays via rolling-circle mechanism.
Nosek, Jozef; Rycovska, Adriana; Makhov, Alexander M; Griffith, Jack D; Tomaska, Lubomir
2005-03-18
Alternative (telomerase-independent) lengthening of telomeres mediated through homologous recombination is often accompanied by a generation of extrachromosomal telomeric circles (t-circles), whose role in direct promotion of recombinational telomere elongation has been recently demonstrated. Here we present evidence that t-circles in a natural telomerase-deficient system of mitochondria of the yeast Candida parapsilosis replicate independently of the linear chromosome via a rolling-circle mechanism. This is supported by an observation of (i) single-stranded DNA consisting of concatameric arrays of telomeric sequence, (ii) lasso-shaped molecules representing rolling-circle intermediates, and (iii) preferential incorporation of deoxyribonucleotides into telomeric fragments and t-circles. Analysis of naturally occurring variant t-circles revealed conserved motifs with potential function in driving the rolling-circle replication. These data indicate that extrachromosomal t-circles observed in a wide variety of organisms, including yeasts, plants, Xenopus laevis, and certain human cell lines, may represent independent replicons generating telomeric sequences and, thus, actively participating in telomere dynamics. Moreover, because of the promiscuous occurrence of t-circles across phyla, the results from yeast mitochondria have implications related to the primordial system of telomere maintenance, providing a paradigm for evolution of telomeres in nuclei of early eukaryotes.
Izgi, Ahu; Gunal, Armagan; Yalcin, Serap; Gunduz, Ufuk
2014-09-01
The ends of chromosoms, telomeres are bound with a number of proteins which protect and stabilize telomeres against degredation, end to end fusion and aberrant recombinations. Telomeric DNA is bound of two groups of proteins, which are double-stranded telomeric DNA bindings proteins, and single stranded telomeric binding proteins. Among telomere binding proteins, protections of telomere 1 protein is a single stranded telomere binding proteins and suggested to be a significant player for telomere elongation and has an association with an enzyme called as telomerase which is an intrinsic reverse transcriptase. Telomerase synthesizes hexameric telomeric repeats onto the chromosomes thereby compansating telomere loss in immortal cells, such as tumor cells, whereas telomeres are shorthened with each division in normal cells. PCR-based TRAP (telomeric repeat amplification protocol) assay is a very sensitive assay for the detection of enzymatic activity of telomerase even if a few numbers of cancerous cells are available. The association between telomerase activity and hPOT1 expression in colorectal cancer is still unclear. Protein extraction was performed from specimens of matched normal and colorectal cancer specimens. Protein concentrations were determined by Bradford assay. Optimized protein concentrations were used for TRAP Assay. TRAP products were seperated by vertical gel electrophoresis on 12.5% polyacrylamide gels and visualized by silver staining. Gene expression of hPOT1 was determined by qPCR analysis. The results demonstrated that all tumor tissues were telomerase positive whereas all corresponding normal tissue was telomerase negative. Among clinicopathological findings, telomerase activity was found to be associated with stage, histology, localization, distant metastasis and lymph node metastasis of tumor in the current study. Although all of the clinicopathological findings differed in the expression of hPOT1 compared to normal tissues, they did not differ from each other significantly, except side of tumor and lymph node metastasis. Telomerase activity and hPOT1 gene expression may serve as a promising tumor marker for colorectal cancer and there is a close association between the enzymatic activty of telomerase and the expression of human protection of telomere 1 gene. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Single-Stranded Condensation Stochastically Blocks G-Quadruplex Assembly in Human Telomeric RNA.
Gutiérrez, Irene; Garavís, Miguel; de Lorenzo, Sara; Villasante, Alfredo; González, Carlos; Arias-Gonzalez, J Ricardo
2018-05-17
TERRA is an RNA molecule transcribed from human subtelomeric regions toward chromosome ends potentially involved in regulation of heterochromatin stability, semiconservative replication, and telomerase inhibition, among others. TERRA contains tandem repeats of the sequence GGGUUA, with a strong tendency to fold into a four-stranded arrangement known as a parallel G-quadruplex. Here, we demonstrate by using single-molecule force spectroscopy that this potential is limited by the inherent capacity of RNA to self-associate randomly and further condense into entropically more favorable structures. We stretched RNA constructions with more than four and less than eight hexanucleotide repeats, thus unable to form several G-quadruplexes in tandem, flanked by non-G-rich overhangs of random sequence by optical tweezers on a one by one basis. We found that condensed RNA stochastically blocks G-quadruplex folding pathways with a near 20% probability, a behavior that is not found in DNA analogous molecules.
Figueroa, R; Lindenmaier, H; Hergenhahn, M; Nielsen, K V; Boukamp, P
2000-06-01
The life span of normal fibroblasts in vitro (Hayflick limit) depends on donor age, and telomere shortening has been proposed as a potential mechanism. By quantitative fluorescence in situ hybridization and Southern blot analysis, we show progressive telomere loss to about 5 kb mean telomere restriction fragment length in fibroblasts from two adult donors within 40 population doublings, whereas in fibroblasts from two infant donors, telomere erosion is reduced, leaving a mean telomere restriction fragment length of approximately 7 kb at senescence (after approximately 60 population doublings). Aging of fibroblasts from both infant and adult donors was not accompanied by chromosomal abnormalities but was correlated with increased telomere repeat-binding factor 2 expression at both the protein and transcriptional level.
Demarse, Neil A.; Ponnusamy, Suriyan; Spicer, Eleanor K.; Apohan, Elif; Baatz, John E.; Ogretmen, Besim; Davies, Christopher
2009-01-01
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel shift assays, we show that recombinant GAPDH binds directly with high affinity (Kd = 45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats and that nucleotides T1, G5 and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA: GAPDH), and GAPDH appears to form a high-molecular weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition, and this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells. PMID:19800890
Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe.
Margalef, Pol; Kotsantis, Panagiotis; Borel, Valerie; Bellelli, Roberto; Panier, Stephanie; Boulton, Simon J
2018-01-25
Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 -/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Conformation and Stability of Intramolecular Telomeric G-Quadruplexes: Sequence Effects in the Loops
Sattin, Giovanna; Artese, Anna; Nadai, Matteo; Costa, Giosuè; Parrotta, Lucia; Alcaro, Stefano; Palumbo, Manlio; Richter, Sara N.
2013-01-01
Telomeres are guanine-rich sequences that protect the ends of chromosomes. These regions can fold into G-quadruplex structures and their stabilization by G-quadruplex ligands has been employed as an anticancer strategy. Genetic analysis in human telomeres revealed extensive allelic variation restricted to loop bases, indicating that the variant telomeric sequences maintain the ability to fold into G-quadruplex. To assess the effect of mutations in loop bases on G-quadruplex folding and stability, we performed a comprehensive analysis of mutant telomeric sequences by spectroscopic techniques, molecular dynamics simulations and gel electrophoresis. We found that when the first position in the loop was mutated from T to C or A the resulting structure adopted a less stable antiparallel topology; when the second position was mutated to C or A, lower thermal stability and no evident conformational change were observed; in contrast, substitution of the third position from A to C induced a more stable and original hybrid conformation, while mutation to T did not significantly affect G-quadruplex topology and stability. Our results indicate that allelic variations generate G-quadruplex telomeric structures with variable conformation and stability. This aspect needs to be taken into account when designing new potential anticancer molecules. PMID:24367632
Petenzi, Michele; Verga, Daniela; Largy, Eric; Hamon, Florian; Doria, Filippo; Teulade-Fichou, Marie-Paule; Guédin, Aurore; Mergny, Jean-Louis; Mella, Mariella; Freccero, Mauro
2012-11-05
We report herein a solvent-free and microwaved-assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4-oxadiazole moieties (1-7). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4-FID) and CD spectroscopy. Among the G-quadruplexes considered, attention was focused on telomeric repeats together with the proto-oncogenic c-kit sequences and the c-myc oncogene promoter. Compound 1, and to a lesser extent 2 and 5, preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole (TOxaPy), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taddei, Angela; Schober, Heiko; Gasser, Susan M.
2010-01-01
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704
Koroleva, A G; Evtushenko, E V; Maximova, N V; Vershinin, A V; Sintnikova, T Y; Kirilchik, S V
2015-03-01
The structure of telomeric repeat (TTAGGG)n was determined and the length of telomeric DNA (tDNA) was measured in three species of gastropods from the family Benedictiidae that are endemic to Lake Baikal. Fluorescence in situ hybridization (FISH) confirmed the localization of a telomeric repeat at the chromosome ends. The sizes of tDNA in "giant" eurybathic, psammo-pelobiontic species Benedictia fragilis and shallow water litho-psammobiontic species B. baicalensis with medium shell sizes were similar (16 ± 2.9 and 15 ± 2.1 kb, respectively), but they had a greater length than that of the shallow water spongio-litobiontic species Kobeltocochlea martensiana with small shells (10.5 ± 1.5 kb). We discuss tendencies in age-related changes in tDNA length in snails and a possible mechanism for maintaining tDNA size in ontogeny.
NASA Astrophysics Data System (ADS)
Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping
2014-01-01
As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an ``elongate and capture'' procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an ``elongate and capture'' procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis. Electronic supplementary information (ESI) available: TEM images of individual MB@Au NPs, results of dynamic light scattering analysis and extinction spectrum obtained using colorimetry detection. See DOI: 10.1039/c3nr04942f
NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis.
Zhou, Jia; Chan, Jany; Lambelé, Marie; Yusufzai, Timur; Stumpff, Jason; Opresko, Patricia L; Thali, Markus; Wallace, Susan S
2017-08-29
Oxidative damage to telomere DNA compromises telomere integrity. We recently reported that the DNA glycosylase NEIL3 preferentially repairs oxidative lesions in telomere sequences in vitro. Here, we show that loss of NEIL3 causes anaphase DNA bridging because of telomere dysfunction. NEIL3 expression increases during S phase and reaches maximal levels in late S/G2. NEIL3 co-localizes with TRF2 and associates with telomeres during S phase, and this association increases upon oxidative stress. Mechanistic studies reveal that NEIL3 binds to single-stranded DNA via its intrinsically disordered C terminus in a telomere-sequence-independent manner. Moreover, NEIL3 is recruited to telomeres through its interaction with TRF1, and this interaction enhances the enzymatic activity of purified NEIL3. Finally, we show that NEIL3 interacts with AP Endonuclease 1 (APE1) and the long-patch base excision repair proteins PCNA and FEN1. Taken together, we propose that NEIL3 protects genome stability through targeted repair of oxidative damage in telomeres during S/G2 phase. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Cicconi, Alessandro; Micheli, Emanuela; Vernì, Fiammetta; Jackson, Alison; Gradilla, Ana Citlali; Cipressa, Francesca; Raimondo, Domenico; Bosso, Giuseppe; Wakefield, James G.; Ciapponi, Laura; Cenci, Giovanni; Gatti, Maurizio
2017-01-01
Abstract Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin. PMID:27940556
Bystander effects in radiation-induced genomic instability
NASA Technical Reports Server (NTRS)
Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian
2002-01-01
Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.
Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin
Bandaria, Jigar N.; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet
2016-01-01
SUMMARY Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, and not by DNA methylation, histone deacetylation or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres become more accessible to telomere-associated proteins and accumulate DDR signals. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633
Hatakeyama, Hitoshi; Yamazaki, Hiromi; Nakamura, Ken-Ichi; Izumiyama-Shimomura, Naotaka; Aida, Junko; Suzuki, Hiroetsu; Tsuchida, Shuichi; Matsuura, Masaaki; Takubo, Kaiyo; Ishikawa, Naoshi
2016-01-01
Telomere shortening occurs when cells divide, both in vitro and in vivo. On the other hand, telomerase is able to maintain telomere length in cells by adding TTAGGG repeats to the ends of telomeres. However, the interrelationships existing among telomere length, telomerase activity and growth in vertebrates remain to be clarified. In the present study we measured telomere length (terminal restriction fragment length), telomerase activity and body growth of Oryzias latipes from the embryo stage until senescence. During the rapid growth stage (age 0–7 months), telomeres shortened in parallel with decreasing telomerase activity. Then, during adolescence (age 7 months – 1 year), telomeres lengthened quickly as growth slowed and telomerase activity increased. In the adult stage (age 1–4 years) characterized by little growth, telomerase activity decreased gradually and telomeres shortened. Our data indicate that telomere attrition and restoration are linked to growth and telomerase activity, and suggest that critical loss of telomere homeostasis is associated with mortality in this animal. PMID:26789258
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C
2015-11-26
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.
Counter, C M; Avilion, A A; LeFeuvre, C E; Stewart, N G; Greider, C W; Harley, C B; Bacchetti, S
1992-01-01
Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization. Images PMID:1582420
TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends
Pfeiffer, Verena; Lingner, Joachim
2012-01-01
The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities. PMID:22719262
Macas, Jiří; Neumann, Pavel; Navrátilová, Alice
2007-01-01
Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining. PMID:18031571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchman, A.R.; Kimmerly, W.J.; Rine, J.
1988-01-01
Two DNA-binding factors from Saccharomyces cerevisiae have been characterized, GRFI (general regulatory factor I) and ABFI (ARS-binding factor I), that recognize specific sequences within diverse genetic elements. GRFI bound to sequences at the negative regulatory elements (silencers) of the silent mating type loci HML E and HMR E and to the upstream activating sequence (UAS) required for transcription of the MAT ..cap alpha.. genes. A putative conserved UAS located at genes involved in translation (RPG box) was also recognized by GRFI. In addition, GRFI bound with high affinity to sequences within the (C/sub 1-3/A)-repeat region at yeast telomeres. Binding sitesmore » for GRFI with the highest affinity appeared to be of the form 5'-(A/G)(A/C)ACCCAN NCA(T/C)(T/C)-3', where N is any nucleotide. ABFI-binding sites were located next to autonomously replicating sequences (ARSs) at controlling elements of the silent mating type loci HMR E, HMR I, and HML I and were associated with ARS1, ARS2, and the 2..mu..m plasmid ARS. Two tandem ABFI binding sites were found between the HIS3 and DED1 genes, several kilobase pairs from any ARS, indicating that ABFI-binding sites are not restricted to ARSs. The sequences recognized by AFBI showed partial dyad-symmetry and appeared to be variations of the consensus 5'-TATCATTNNNNACGA-3'. GRFI and ABFI were both abundant DNA-binding factors and did not appear to be encoded by the SIR genes, whose product are required for repression of the silent mating type loci. Together, these results indicate that both GRFI and ABFI play multiple roles within the cell.« less
Shalev, I; Moffitt, T E; Sugden, K; Williams, B; Houts, R M; Danese, A; Mill, J; Arseneault, L; Caspi, A
2013-05-01
There is increasing interest in discovering mechanisms that mediate the effects of childhood stress on late-life disease morbidity and mortality. Previous studies have suggested one potential mechanism linking stress to cellular aging, disease and mortality in humans: telomere erosion. We examined telomere erosion in relation to children's exposure to violence, a salient early-life stressor, which has known long-term consequences for well-being and is a major public-health and social-welfare problem. In the first prospective-longitudinal study with repeated telomere measurements in children while they experienced stress, we tested the hypothesis that childhood violence exposure would accelerate telomere erosion from age 5 to age 10 years. Violence was assessed as exposure to maternal domestic violence, frequent bullying victimization and physical maltreatment by an adult. Participants were 236 children (49% females; 42% with one or more violence exposures) recruited from the Environmental-Risk Longitudinal Twin Study, a nationally representative 1994-1995 birth cohort. Each child's mean relative telomere length was measured simultaneously in baseline and follow-up DNA samples, using the quantitative PCR method for T/S ratio (the ratio of telomere repeat copy numbers to single-copy gene numbers). Compared with their counterparts, the children who experienced two or more kinds of violence exposure showed significantly more telomere erosion between age-5 baseline and age-10 follow-up measurements, even after adjusting for sex, socioeconomic status and body mass index (B=-0.052, s.e.=0.021, P=0.015). This finding provides support for a mechanism linking cumulative childhood stress to telomere maintenance, observed already at a young age, with potential impact for life-long health.
Avogaro, Laura; Querido, Emmanuelle; Dalachi, Myriam; Jantsch, Michael F; Chartrand, Pascal; Cusanelli, Emilio
2018-04-16
Telomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. While TERRA RNAs are predominantly nuclear and localize at telomeres, little is known about the dynamics and function of TERRA molecules expressed from individual telomeres. Herein, we developed an assay to image endogenous TERRA molecules expressed from a single telomere in living human cancer cells. We show that single-telomere TERRA can be detected as TERRA RNA single particles which freely diffuse within the nucleus. Furthermore, TERRA molecules aggregate forming TERRA clusters. Three-dimensional size distribution and single particle tracking analyses revealed distinct sizes and dynamics for TERRA RNA single particles and clusters. Simultaneous time lapse confocal imaging of TERRA particles and telomeres showed that TERRA clusters transiently co-localize with telomeres. Finally, we used chemically modified antisense oligonucleotides to deplete TERRA molecules expressed from a single telomere. Single-telomere TERRA depletion resulted in increased DNA damage at telomeres and elsewhere in the genome. These results suggest that single-telomere TERRA transcripts participate in the maintenance of genomic integrity in human cancer cells.
On the chromatin structure of eukaryotic telomeres
Vaquero-Sedas, María I
2011-01-01
Telomeres prevent chromosome fusions and degradation by exonucleases and are implicated in DNA repair, homologous recombination, chromosome pairing and segregation. All these functions of telomeres require the integrity of their chromatin structure, which has been traditionally considered as heterochromatic. In agreement with this idea, different studies have reported that telomeres associate with heterochromatic marks. However, these studies addressed simultaneously the chromatin structures of telomeres and subtelomeric regions or the chromatin structure of telomeres and Interstitial Telomeric Sequences (ITSs). The independent analysis of Arabidopsis telomeres, subtelomeric regions and ITSs has allowed the discovery of euchromatic telomeres. In Arabidopsis, whereas subtelomeric regions and ITSs associate with heterochromatic marks, telomeres exhibit euchromatic features. We think that this scenario could be found in other model systems if the chromatin organizations of telomeres, subtelomeric regions and ITSs are independently analyzed. PMID:21822057
Mizutani, Yuichi; Niizuma, Yasuaki; Yoda, Ken
2016-01-01
Telomeres are nucleotide sequences located at the ends of chromosomes that promote genome stability. Changes in telomere length (dynamics) are related to fitness or life expectancy, and telomere dynamics during the development phase are likely to be affected by growth and stress factors. Here, we examined telomere dynamics of black-tailed gull chicks (Larus crassirostris) in nests with and without siblings. We found that the initial telomere lengths of singletons at hatching were longer than those of siblings, indicating that singletons are higher-quality chicks than siblings in terms of telomere length. Other factors likely affecting individual quality (i.e., sex, laying date, laying order of eggs, and clutch size) were not related to telomere lengths. Within broods, initial telomere lengths were longer in older chicks than in younger chicks, suggesting that maternal effects, which vary with laying sequence, influence the initial lengths. Additionally, telomeres of chicks with a sibling showed more attrition between hatching and fledging than those of singleton chicks, suggesting that being raised with siblings can cause a sustained competitive environment that leads to telomere loss. High growth rates were associated with a low degree of telomere shortening observed in older siblings, perhaps because slower growth reflects higher food stress and/or higher aerobic metabolism from increased begging effort. Our results show that developmental telomere attrition was an inevitable consequence in two-chick nests in the pre- and post-hatching microenvironments due to the combination of social stress within the nest and maternal effects. The results of our study shed light on telomere dynamics in early life, which may represent an important physiological undercurrent of life-history traits. PMID:27902754
A New Approach to Dissect Nuclear Organization: TALE-Mediated Genome Visualization (TGV).
Miyanari, Yusuke
2016-01-01
Spatiotemporal organization of chromatin within the nucleus has so far remained elusive. Live visualization of nuclear remodeling could be a promising approach to understand its functional relevance in genome functions and mechanisms regulating genome architecture. Recent technological advances in live imaging of chromosomes begun to explore the biological roles of the movement of the chromatin within the nucleus. Here I describe a new technique, called TALE-mediated genome visualization (TGV), which allows us to visualize endogenous repetitive sequence including centromeric, pericentromeric, and telomeric repeats in living cells.
DNA Repair at Telomeres: Keeping the Ends Intact
Webb, Christopher J.; Wu, Yun; Zakian, Virginia A.
2013-01-01
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3′ single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure. PMID:23732473
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.
Castle, John C; Biery, Matthew; Bouzek, Heather; Xie, Tao; Chen, Ronghua; Misura, Kira; Jackson, Stuart; Armour, Christopher D; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K
2010-04-16
DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing
2010-01-01
Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads. PMID:20398377
Sharma, G G; Sharma, T
1998-01-01
The Mus terricolor complex displays a stable homozygous arrangement of autosomal heterochromatin variations in the form of accretion of definitive autosomal short arms among three nonoverlapping populations, in concert with an expeditious evolutionary differentiation into three chromosomal species: M. terricolor I, II, and III. In contrast to the highly conservative M. musculus-like chromosomes in the coexisting sibling species, M. booduga, reshuffling and differentiation of centric heterochromatin has occurred in harmony with a revision of centric configurations, resulting in acrocentric and submetacentric autosomes. The chromosomal distribution of the prevalent vertebrate telomeric sequence (TTAGGG)n was examined by fluorescence in situ hybridization to metaphase cells of M. terricolor I, II, and III. An unusual centric organization of internal telomeric sequences was detected in all the submetacentric and acrocentric autosomes. An auxiliary role of these presumably fragile, recombinogenic telomeric sequences in the evolutionary revision of centric configurations in the terricolor complex is hypothesized.
Genomic Organization of the Drosophila Telomere RetrotransposableElements
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, J.A.; DeBaryshe, P.G.; Traverse, K.L.
2006-10-16
The emerging sequence of the heterochromatic portion of the Drosophila melanogaster genome, with the most recent update of euchromatic sequence, gives the first genome-wide view of the chromosomal distribution of the telomeric retrotransposons, HeT-A, TART, and Tahre. As expected, these elements are entirely excluded from euchromatin, although sequence fragments of HeT-A and TART 3 untranslated regions are found in nontelomeric heterochromatin on the Y chromosome. The proximal ends of HeT-A/TART arrays appear to be a transition zone because only here do other transposable elements mix in the array. The sharp distinction between the distribution of telomeric elements and that ofmore » other transposable elements suggests that chromatin structure is important in telomere element localization. Measurements reported here show (1) D. melanogaster telomeres are very long, in the size range reported for inbred mouse strains (averaging 46 kb per chromosome end in Drosophila stock 2057). As in organisms with telomerase, their length varies depending on genotype. There is also slight under-replication in polytene nuclei. (2) Surprisingly, the relationship between the number of HeT-A and TART elements is not stochastic but is strongly correlated across stocks, supporting the idea that the two elements are interdependent. Although currently assembled portions of the HeT-A/TART arrays are from the most-proximal part of long arrays, {approx}61% of the total HeT-A sequence in these regions consists of intact, potentially active elements with little evidence of sequence decay, making it likely that the content of the telomere arrays turns over more extensively than has been thought.« less
Benevenuto, Juliana; Peters, Leila P.; Carvalho, Giselle; Palhares, Alessandra; Quecine, Maria C.; Nunes, Filipe R. S.; Kmit, Maria C. P.; Wai, Alvan; Hausner, Georg; Aitken, Karen S.; Berkman, Paul J.; Fraser, James A.; Moolhuijzen, Paula M.; Coutinho, Luiz L.; Creste, Silvana; Vieira, Maria L. C.; Kitajima, João P.; Monteiro-Vitorello, Claudia B.
2015-01-01
Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions. PMID:26065709
Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao
2017-01-01
Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301
Growing old, yet staying young: The role of telomeres in bats' exceptional longevity.
Foley, Nicole M; Hughes, Graham M; Huang, Zixia; Clarke, Michael; Jebb, David; Whelan, Conor V; Petit, Eric J; Touzalin, Frédéric; Farcy, Olivier; Jones, Gareth; Ransome, Roger D; Kacprzyk, Joanna; O'Connell, Mary J; Kerth, Gerald; Rebelo, Hugo; Rodrigues, Luísa; Puechmaille, Sébastien J; Teeling, Emma C
2018-02-01
Understanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span. Bats are the longest-lived mammals for their size, but it is unknown whether their telomeres shorten. Using >60 years of cumulative mark-recapture field data, we show that telomeres shorten with age in Rhinolophus ferrumequinum and Miniopterus schreibersii , but not in the bat genus with greatest longevity, Myotis . As in humans, telomerase is not expressed in Myotis myotis blood or fibroblasts. Selection tests on telomere maintenance genes show that ATM and SETX , which repair and prevent DNA damage, potentially mediate telomere dynamics in Myotis bats. Twenty-one telomere maintenance genes are differentially expressed in Myotis , of which 14 are enriched for DNA repair, and 5 for alternative telomere-lengthening mechanisms. We demonstrate how telomeres, telomerase, and DNA repair genes have contributed to the evolution of exceptional longevity in Myotis bats, advancing our understanding of healthy aging.
Telomere Damage Response and Low-Grade Inflammation.
Wang, Lihui; Yu, Xianhua; Liu, Jun-Ping
2017-01-01
Telomeres at the ends of chromosomes safeguard genome integrity and stability in human nucleated cells. However, telomere repeats shed off during cell proliferation and other stress responses. Our recent studies show that telomere attrition induces not only epithelial stem cell senescence but also low-grade inflammation in the lungs. The senescence-associated low-grade inflammation (SALI) is characteristic of alveolar stem cell replicative senescence, increased proinflammatory and anti-inflammatory cytokines, infiltrated immune cells, and spillover effects. To date, the mechanisms underlying SALI remain unclear. Investigations demonstrate that senescent epithelial stem cells with telomere erosion are not the source of secreted cytokines, containing no significant increase in expression of the genes coding for increased cytokines, suggesting an alternative senescence-associated secretory phenotype (A-SASP). Given that telomere loss results in significant alterations in the genomes and accumulations of the cleaved telomeric DNA in the cells and milieu externe, we conclude that telomere position effects (TPEs) on gene expression and damage-associated molecular patterns (DAMPs) in antigen presentation are involved in A-SASP and SALI in response to telomere damage in mammals.
Telomere length in bipolar disorder and lithium response.
Squassina, Alessio; Pisanu, Claudia; Corbett, Nathan; Alda, Martin
2017-06-01
Telomeres consist of exanucleotide tandem repeats and proteins complexes at the end of chromosome ends. Telomeres shorten at each cell division, and as such telomere length is a marker of cellular age. Accelerated telomere shortening and cell senescence have been associated with a number of chronic medical conditions, including psychiatric disorders, where increased prevalence of age-related disorders and shorter telomere length have been reported. Shorter telomeres in psychiatric patients are thought to be the consequence of allostatic load, consisting in the overactivation of allostatic systems due to chronic exposure to severe medical conditions and failure to adapt to chronic stressful stimuli. Most of the studies on telomere length in psychiatry have focused on major depressive disorder, but recent findings have shown shorter leukocyte telomere length in bipolar disorder patients and suggested that lithium may counteract telomeres shortening. These findings provided new insights into the pathophysiology of bipolar disorder and the mechanism of action of lithium. In this review we will present findings from the literature on telomere length in bipolar disorder, with a specific focus on lithium. We will also discuss advances and limitations of published work as well as methodological issues and potential confounding factors that should be taken into account when designing research protocols to study telomere length. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Does telomere elongation lead to a longer lifespan if cancer is considered?
NASA Astrophysics Data System (ADS)
Masa, Michael; Cebrat, Stanisław; Stauffer, Dietrich
2006-05-01
As cell proliferation is limited due to the loss of telomere repeats in DNA of normal somatic cells during division, telomere attrition can possibly play an important role in determining the maximum life span of organisms as well as contribute to the process of biological ageing. With computer simulations of cell culture development in organisms, which consist of tissues of normal somatic cells with finite growth, we obtain an increase of life span and life expectancy for longer telomeric DNA in the zygote. By additionally considering a two-mutation model for carcinogenesis and indefinite proliferation by the activation of telomerase, we demonstrate that the risk of dying due to cancer can outweigh the positive effect of longer telomeres on the longevity.
Mills, W; Critcher, R; Lee, C; Farr, C J
1999-05-01
A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.
Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1.
Tan, Rong; Nakajima, Satoshi; Wang, Qun; Sun, Hongxiang; Xue, Jing; Wu, Jian; Hellwig, Sabine; Zeng, Xuemei; Yates, Nathan A; Smithgall, Thomas E; Lei, Ming; Jiang, Yu; Levine, Arthur S; Su, Bing; Lan, Li
2017-03-02
Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1. Copyright © 2017 Elsevier Inc. All rights reserved.
Ducray, C; Pommier, J P; Martins, L; Boussin, F D; Sabatier, L
1999-07-22
Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.
Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping
2014-01-01
As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an "elongate and capture" procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.
Gilbert-Girard, Shella; Gravel, Annie; Artusi, Sara; Richter, Sara N; Wallaschek, Nina; Kaufer, Benedikt B; Flamand, Louis
2017-07-15
Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency ( P < 0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A. IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6A. This study is the first of its kind and suggests that telomerase activity is essential to restore a functional telomere of adequate length following HHV-6A integration. Copyright © 2017 American Society for Microbiology.
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...
2015-11-11
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Tumour-cell apoptosis after cisplatin treatment is not telomere dependent.
Jeyapalan, Jessie C; Saretzki, Gabriele; Leake, Alan; Tilby, Michael J; von Zglinicki, Thomas
2006-06-01
Cisplatin is a major chemotherapeutic agent, especially for the treatment of neuroblastoma. Telomeres with their sequence (TTAGGG)n are probable targets for cisplatin intrastrand cross-linking, but the role of telomeres in mediating cisplatin cytotoxicity is not clear. After exposure to cisplatin as single dose or continuous treatment, we found no loss of telomeres in either SHSY5Y neuroblastoma cells (telomere length, approximately 4 kbp), HeLa 229 cells (telomere length, 20 kbp) or in the acute lymphoblastic T cell line 1301 (telomere length, approximately 80 kbp). There was no induction of telomeric single strand breaks, telomeric overhangs were not degraded and telomerase activity was down-regulated only after massive onset of apoptosis. In contrast, cisplatin induced a delayed formation of DNA strand breaks and induced DNA damage foci containing gamma-H2A.X at nontelomeric sites. Interstitial DNA damage appears to be more important than telomere loss or telomeric damage as inducer of the signal pathway towards apoptosis and/or growth arrest in cisplatin-treated tumour cells.
Telomeric attrition with age and temperature in Eastern mosquitofish ( Gambusia holbrooki)
NASA Astrophysics Data System (ADS)
Rollings, Nicky; Miller, Emily; Olsson, Mats
2014-03-01
Telomeric attrition has repeatedly been found to correlate with the ageing of organisms; however, recent research is increasingly showing that the determinants of attrition dynamics are not well understood. This study examined the relative telomere lengths in Eastern mosquitofish, Gambusia holbrooki, kept at different temperatures and at different ages. Newly born fry were randomly selected for one of four treatment groups: 20, 30, 20-30, and 30-20 °C, where the third and fourth treatment groups were gradually changed from their starting temperature to their final temperature between days 10 and 14. Telomere length was measured, and it was found that length decreased with age and that fish exposed to the 20 °C treatment had significantly shorter telomeres than those that received the 30-20 °C treatment. Telomeric attrition with age agrees with results previously found in studies of telomeres; however, the variation in attrition with temperature was not simply predictable and may be the synergistic effects of temperature and some other factor.
The roles of telomeres and telomerase in cellular immortalization and the development of cancer.
Klingelhutz, A J
1999-01-01
Normal human cells have a limited lifespan in culture called the Hayflick limit. Recent studies have indicated that telomere shortening is one of the important meters utilized by cells to determine the Hayflick limit, and that activation of a mechanism to maintain telomere length is essential for cells to become immortal. It is generally believed that cells must have a means to maintain telomeres in order to progress to malignancy. Most cancers do this by activating an enzyme called telomerase which adds telomeric repeats to the telomere ends. Recently, expression of this enzyme has been shown to extend the lifespan of cells. This review discusses the research that led to the discovery of telomerase, the characteristics of telomerase complex, and how recent and future advances in the telomerase field may lead to better diagnostic and treatment protocols for many different cancer types.
Touzot, Fabien; Callebaut, Isabelle; Soulier, Jean; Gaillard, Laetitia; Azerrad, Chantal; Durandy, Anne; Fischer, Alain; de Villartay, Jean-Pierre; Revy, Patrick
2010-01-01
Telomeres, the protein–DNA complexes at the ends of linear chromosomes, are protected and regulated by the shelterin molecules, the telomerase complex, and other accessory factors, among which is Apollo, a DNA repair factor of the β-lactamase/β-CASP family. Impaired telomere protection in humans causes dyskeratosis congenita and Hoyeraal–Hreidarsson (HH) syndrome, characterized by premature aging, bone marrow failure, and immunodeficiency. We identified a unique Apollo splice variant (designated Apollo-Δ) in fibroblasts from a patient with HH syndrome. Apollo-Δ generates a dominant negative form of Apollo lacking the telomeric repeat-binding factor homology (TRFH)-binding motif (TBM) required for interaction with the shelterin TRF2 at telomeres. Apollo-Δ hampers the proper replication of telomeres, leading to major telomeric dysfunction and cellular senescence, but maintains its DNA interstrand cross-link repair function in the whole genome. These results identify Apollo as a crucial actor in telomere maintenance in vivo, independent of its function as a general DNA repair factor. PMID:20479256
Touzot, Fabien; Callebaut, Isabelle; Soulier, Jean; Gaillard, Laetitia; Azerrad, Chantal; Durandy, Anne; Fischer, Alain; de Villartay, Jean-Pierre; Revy, Patrick
2010-06-01
Telomeres, the protein-DNA complexes at the ends of linear chromosomes, are protected and regulated by the shelterin molecules, the telomerase complex, and other accessory factors, among which is Apollo, a DNA repair factor of the beta-lactamase/beta-CASP family. Impaired telomere protection in humans causes dyskeratosis congenita and Hoyeraal-Hreidarsson (HH) syndrome, characterized by premature aging, bone marrow failure, and immunodeficiency. We identified a unique Apollo splice variant (designated Apollo-Delta) in fibroblasts from a patient with HH syndrome. Apollo-Delta generates a dominant negative form of Apollo lacking the telomeric repeat-binding factor homology (TRFH)-binding motif (TBM) required for interaction with the shelterin TRF2 at telomeres. Apollo-Delta hampers the proper replication of telomeres, leading to major telomeric dysfunction and cellular senescence, but maintains its DNA interstrand cross-link repair function in the whole genome. These results identify Apollo as a crucial actor in telomere maintenance in vivo, independent of its function as a general DNA repair factor.
Single-molecule analysis of DNA cross-links using nanopore technology
NASA Astrophysics Data System (ADS)
Wolna, Anna H.
The alpha-hemolysin (alpha-HL) protein ion channel is a potential next-generation sequencing platform that has been extensively used to study nucleic acids at a single-molecule level. After applying a potential across a lipid bilayer, the imbedded alpha-HL allows monitoring of the duration and current levels of DNA translocation and immobilization. Because this method does not require DNA amplification prior to sequencing, all the DNA damage present in the cell at any given time will be present during the sequencing experiment. The goal of this research is to determine if these damage sites give distinguishable current levels beyond those observed for the canonical nucleobases. Because DNA cross-links are one of the most prevalent types of DNA damage occurring in vivo, the blockage current levels were determined for thymine-dimers, guanine(C8)-thymine(N3) cross-links and platinum adducts. All of these cross-links give a different blockage current level compared to the undamaged strands when immobilized in the ion channel, and they all can easily translocate across the alpha-HL channel. Additionally, the alpha-HL nanopore technique presents a unique opportunity to study the effects of DNA cross-links, such as thymine-dimers, on the secondary structure of DNA G-quadruplexes folded from the human telomere sequence. Using this single-molecule nanopore technique we can detect subtle structural differences that cannot be easily addressed using conventional methods. The human telomere plays crucial roles in maintaining genome stability. In the presence of suitable cations, the repetitive 5'-TTAGGG human telomere sequence can fold into G-quadruplexes that adopt the hybrid fold in vivo. The telomere sequence is hypersensitive to UV-induced thymine-dimer (T=T) formation, and yet the presence of thymine dimers does not cause telomere shortening. The potential structural disruption and thermodynamic stability of the T=T-containing natural telomere sequences were studied to understand how this damage is tolerated in telomeric DNA. The alpha-HL experiments determined that T=Ts disrupt double-chain reversal loop formation but are well tolerated in edgewise and diagonal loops of the hybrid G-quadruplexes. These studies demonstrated the power of the alpha-HL ion channel to analyze DNA modifications and secondary structures at a single-molecule level.
Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.
Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A
2013-04-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.
Germline Mutations of Regulator of Telomere Elongation Helicase 1, RTEL1, In Dyskeratosis Congenita
Ballew, Bari J.; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P.; Savage, Sharon A.
2013-01-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. Additionally, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC. PMID:23329068
Marzullo, Marta; Raffa, Grazia D.; Morciano, Patrizia; Raimondo, Domenico; Burla, Romina; Saggio, Isabella; Gatti, Maurizio
2015-01-01
Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping. PMID:26110638
TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA.
Flynn, Rachel Litman; Centore, Richard C; O'Sullivan, Roderick J; Rai, Rekha; Tse, Alice; Songyang, Zhou; Chang, Sandy; Karlseder, Jan; Zou, Lee
2011-03-24
Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.
Fanconi anemia proteins in telomere maintenance.
Sarkar, Jaya; Liu, Yie
2016-07-01
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell. Published by Elsevier B.V.
Zhu, Zhixuan; Gui, Songtao; Jin, Jing; Yi, Rong; Wu, Zhihua; Qian, Qian; Ding, Yi
2016-09-01
Centromeres on eukaryotic chromosomes consist of large arrays of DNA repeats that undergo very rapid evolution. Nelumbo nucifera Gaertn. (sacred lotus) is a phylogenetic relict and an aquatic perennial basal eudicot. Studies concerning the centromeres of this basal eudicot species could provide ancient evolutionary perspectives. In this study, we characterized the centromeric marker protein NnCenH3 (sacred lotus centromere-specific histone H3 variant), and used a chromatin immunoprecipitation (ChIP)-based technique to recover the NnCenH3 nucleosome-associated sequences of sacred lotus. The properties of the centromere-binding protein and DNA sequences revealed notable divergence between sacred lotus and other flowering plants, including the following factors: (i) an NnCenH3 alternative splicing variant comprising only a partial centromere-targeting domain, (ii) active genes with low transcription levels in the NnCenH3 nucleosomal regions, and (iii) the prevalence of the Ty1/copia class of long terminal repeat (LTR) retrotransposons in the centromeres of sacred lotus chromosomes. In addition, the dynamic natures of the centromeric region showed that some of the centromeric repeat DNA sequences originated from telomeric repeats, and a pair of centromeres on the dicentric chromosome 1 was inactive in the metaphase cells of sacred lotus. Our characterization of the properties of centromeric DNA structure within the sacred lotus genome describes a centromeric profile in ancient basal eudicots and might provide evidence of the origins and evolution of centromeres. Furthermore, the identification of centromeric DNA sequences is of great significance for the assembly of the sacred lotus genome. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Ng, Laura J.; Cropley, Jennifer E.; Pickett, Hilda A.; Reddel, Roger R.; Suter, Catherine M.
2009-01-01
Tumours and immortalized cells avoid telomere attrition by using either the ribonucleoprotein enzyme telomerase or a recombination-based alternative lengthening of telomeres (ALT) mechanism. Available evidence from mice suggests that the epigenetic state of the telomere may influence the mechanism of telomere maintenance, but this has not been directly tested in human cancer. Here we investigated cytosine methylation directly adjacent to the telomere as a marker of the telomere's epigenetic state in a panel of human cell lines. We find that while ALT cells show highly heterogeneous patterns of subtelomeric methylation, subtelomeric regions in telomerase-positive cells invariably show denser methylation than normal cells, being almost completely methylated. When compared to matched normal and ALT cells, telomerase-positive cells also exhibit reduced levels of the telomeric repeat-containing-RNA (TERRA), whose transcription originates in the subtelomere. Our results are consistent with the notion that TERRA may inhibit telomerase: the heavy cytosine methylation we observe in telomerase-positive cells may reflect selection for TERRA silencing in order to facilitate telomerase activity at the telomere. These data suggest that the epigenetic differences between telomerase-positive and ALT cells may underlie the mechanism of telomere maintenance in human tumorigenesis and highlight the broad reaching consequences of epigenetic dysregulation in cancer. PMID:19129228
Hawkins, Charlene
2014-01-01
The Est1 (ever shorter telomeres 1) protein is an essential component of yeast telomerase, a ribonucleoprotein complex that restores the repetitive sequences at chromosome ends (telomeres) that would otherwise be lost during DNA replication. Previous work has shown that the telomerase RNA component (TLC1) transits through the cytoplasm during telomerase biogenesis, but mechanisms of protein import have not been addressed. Here we identify three nuclear localization sequences (NLSs) in Est1p. Mutation of the most N-terminal NLS in the context of full-length Est1p reduces Est1p nuclear localization and causes telomere shortening—phenotypes that are rescued by fusion with the NLS from the simian virus 40 (SV40) large-T antigen. In contrast to that of the TLC1 RNA, Est1p nuclear import is facilitated by Srp1p, the yeast homolog of importin α. The reduction in telomere length observed at the semipermissive temperature in a srp1 mutant strain is rescued by increased Est1p expression, consistent with a defect in Est1p nuclear import. These studies suggest that at least two nuclear import pathways are required to achieve normal telomere length homeostasis in yeast. PMID:24906415
Jenkins, Frank J; Kerr, Charles M; Fouquerel, Elise; Bovbjerg, Dana H; Opresko, Patricia L
2017-07-10
There are several different techniques for measuring telomere length, each with their own advantages and disadvantages. The traditional approach, Telomere Restriction Fragment (TRF) analysis, utilizes a DNA hybridization technique whereby genomic DNA samples are digested with restriction enzymes, leaving behind telomere DNA repeats and some sub-telomeric DNA. These are separated by agarose gel electrophoresis, transferred to a filter membrane and hybridized to oligonucleotide probes tagged with either chemiluminescence or radioactivity to visualize telomere restriction fragments. This approach, while requiring a larger quantity of DNA than other techniques such as PCR, can measure the telomere length distribution of a population of cells and allows measurement expressed in absolute kilobases. This manuscript demonstrates a modified DNA hybridization procedure for determining telomere length. Genomic DNA is first digested with restriction enzymes (that do not cut telomeres) and separated by agarose gel electrophoresis. The gel is then dried and the DNA is denatured and hybridized in situ to a radiolabeled oligonucleotide probe. This in situ hybridization avoids loss of telomere DNA and improves signal intensity. Following hybridization, the gels are imaged utilizing phosphor screens and the telomere length is quantified using a graphing program. This procedure was developed by the laboratories of Drs. Woodring Wright and Jerry Shay at the University of Texas Southwestern 1 , 2 . Here, we present a detailed description of this procedure, with some modifications.
High-throughput single-molecule telomere characterization.
McCaffrey, Jennifer; Young, Eleanor; Lassahn, Katy; Sibert, Justin; Pastor, Steven; Riethman, Harold; Xiao, Ming
2017-11-01
We have developed a novel method that enables global subtelomere and haplotype-resolved analysis of telomere lengths at the single-molecule level. An in vitro CRISPR/Cas9 RNA-directed nickase system directs the specific labeling of human (TTAGGG)n DNA tracts in genomes that have also been barcoded using a separate nickase enzyme that recognizes a 7-bp motif genome-wide. High-throughput imaging and analysis of large DNA single molecules from genomes labeled in this fashion using a nanochannel array system permits mapping through subtelomere repeat element (SRE) regions to unique chromosomal DNA while simultaneously measuring the (TTAGGG)n tract length at the end of each large telomere-terminal DNA segment. The methodology also permits subtelomere and haplotype-resolved analyses of SRE organization and variation, providing a window into the population dynamics and potential functions of these complex and structurally variant telomere-adjacent DNA regions. At its current stage of development, the assay can be used to identify and characterize telomere length distributions of 30-35 discrete telomeres simultaneously and accurately. The assay's utility is demonstrated using early versus late passage and senescent human diploid fibroblasts, documenting the anticipated telomere attrition on a global telomere-by-telomere basis as well as identifying subtelomere-specific biases for critically short telomeres. Similarly, we present the first global single-telomere-resolved analyses of two cancer cell lines. © 2017 McCaffrey et al.; Published by Cold Spring Harbor Laboratory Press.
Telomere maintenance through recruitment of internal genomic regions.
Seo, Beomseok; Kim, Chuna; Hills, Mark; Sung, Sanghyun; Kim, Hyesook; Kim, Eunkyeong; Lim, Daisy S; Oh, Hyun-Seok; Choi, Rachael Mi Jung; Chun, Jongsik; Shim, Jaegal; Lee, Junho
2015-09-18
Cells surviving crisis are often tumorigenic and their telomeres are commonly maintained through the reactivation of telomerase. However, surviving cells occasionally activate a recombination-based mechanism called alternative lengthening of telomeres (ALT). Here we establish stably maintained survivors in telomerase-deleted Caenorhabditis elegans that escape from sterility by activating ALT. ALT survivors trans-duplicate an internal genomic region, which is already cis-duplicated to chromosome ends, across the telomeres of all chromosomes. These 'Template for ALT' (TALT) regions consist of a block of genomic DNA flanked by telomere-like sequences, and are different between two genetic background. We establish a model that an ancestral duplication of a donor TALT region to a proximal telomere region forms a genomic reservoir ready to be incorporated into telomeres on ALT activation.
Martinez, Pablo A; Boeris, Juan M; Sánchez, Julieta; Pastori, María C; Bolzán, Alejandro D; Ledesma, Mario A
2009-12-01
We describe for the first time the karyotypes of two species of Cryptodiran turtles from Argentina, namely, Trachemys dorbigni (Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudinidae). The karyotype of T. dorbigni (2n = 50) consists of 13 pairs of macrochromosomes and 12 pairs of microchromosomes, whereas the karyotype of C. donosobarrosi (2n = 52) consists of 11 pairs of macrochromosomes and 15 pairs of microchromosomes. Fluorescence in situ hybridization (FISH) with a (TTAGGG)n telomeric probe showed that the chromosomes of these species have four telomeric signals, two at each end, indicating that none of the chromosomes of T. dorbigni and C. donosobarrosi are telocentric. The fact that no interstitial telomeric signals were observed after FISH, suggests that interstitial telomeric sequences did not have a major role in the chromosomal evolution of these species. Additional data will be needed to elucidate if interstitial telomeric sequences have a major role in the karyotypic evolution of Testudines.
Stuart, Bridget D.; Choi, Jungmin; Zaidi, Samir; Xing, Chao; Holohan, Brody; Chen, Rui; Choi, Mihwa; Dharwadkar, Pooja; Torres, Fernando; Girod, Carlos E.; Weissler, Jonathan; Fitzgerald, John; Kershaw, Corey; Klesney-Tait, Julia; Mageto, Yolanda; Shay, Jerry W.; Ji, Weizhen; Bilguvar, Kaya; Mane, Shrikant; Lifton, Richard P.; Garcia, Christine Kim
2015-01-01
Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial pulmonary fibrosis kindreds. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no prior connection to telomere biology or disease, with five novel heterozygous damaging mutations in unrelated cases and none in controls (P-value = 1.3 × 10−8); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more novel damaging and missense variants at conserved residues in cases than controls (P = 1.6 × 10−6). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths and epigenetic inheritance of short telomeres was seen in family members. Together these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction. PMID:25848748
Stuart, Bridget D; Choi, Jungmin; Zaidi, Samir; Xing, Chao; Holohan, Brody; Chen, Rui; Choi, Mihwa; Dharwadkar, Pooja; Torres, Fernando; Girod, Carlos E; Weissler, Jonathan; Fitzgerald, John; Kershaw, Corey; Klesney-Tait, Julia; Mageto, Yolanda; Shay, Jerry W; Ji, Weizhen; Bilguvar, Kaya; Mane, Shrikant; Lifton, Richard P; Garcia, Christine Kim
2015-05-01
Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial kindreds with pulmonary fibrosis. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no previous connection to telomere biology or disease, with five new heterozygous damaging mutations in unrelated cases and none in controls (P = 1.3 × 10(-8)); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more new damaging and missense variants at conserved residues in cases than in controls (P = 1.6 × 10(-6)). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths, and we observed epigenetic inheritance of short telomeres in family members. Together, these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction.
Karyotype Analysis of Four Vicia Species using In Situ Hybridization with Repetitive Sequences
NAVRÁTILOVÁ, ALICE; NEUMANN, PAVEL; MACAS, JIŘÍ
2003-01-01
Mitotic chromosomes of four Vicia species (V. sativa, V. grandiflora, V. pannonica and V. narbonensis) were subjected to in situ hybridization with probes derived from conserved plant repetitive DNA sequences (18S–25S and 5S rDNA, telomeres) and genus‐specific satellite repeats (VicTR‐A and VicTR‐B). Numbers and positions of hybridization signals provided cytogenetic landmarks suitable for unambiguous identification of all chromosomes, and establishment of the karyotypes. The VicTR‐A and ‐B sequences, in particular, produced highly informative banding patterns that alone were sufficient for discrimination of all chromosomes. However, these patterns were not conserved among species and thus could not be employed for identification of homologous chromosomes. This fact, together with observed variations in positions and numbers of rDNA loci, suggests considerable divergence between karyotypes of the species studied. PMID:12770847
Coordinated DNA dynamics during the human telomerase catalytic cycle
NASA Astrophysics Data System (ADS)
Parks, Joseph W.; Stone, Michael D.
2014-06-01
The human telomerase reverse transcriptase (hTERT) utilizes a template within the integral RNA subunit (hTR) to direct extension of telomeres. Telomerase exhibits repeat addition processivity (RAP) and must therefore translocate the nascent DNA product into a new RNA:DNA hybrid register to prime each round of telomere repeat synthesis. Here, we use single-molecule FRET and nuclease protection assays to monitor telomere DNA structure and dynamics during the telomerase catalytic cycle. DNA translocation during RAP proceeds through a previously uncharacterized kinetic substep during which the 3‧-end of the DNA substrate base pairs downstream within the hTR template. The rate constant for DNA primer realignment reveals this step is not rate limiting for RAP, suggesting a second slow conformational change repositions the RNA:DNA hybrid into the telomerase active site and drives the extrusion of the 5‧-end of the DNA primer out of the enzyme complex.
Yeast hnRNP-related proteins contribute to the maintenance of telomeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee-Soety, Julia Y., E-mail: jlee04@sju.edu; Jones, Jennifer; MacGibeny, Margaret A.
Highlights: Black-Right-Pointing-Pointer Yeast hnRNP-related proteins are able to prevent faster senescence in telomerase-null cells. Black-Right-Pointing-Pointer The conserved RRMs in Npl3 are important for telomere maintenance. Black-Right-Pointing-Pointer Human hnRNP A1 is unable to complement the lack of NPL3 in yeast. Black-Right-Pointing-Pointer Npl3 and Cbc2 may work as telomere capping proteins. -- Abstract: Telomeres protect the ends of linear chromosomes, which if eroded to a critical length can become uncapped and lead to replicative senescence. Telomerase maintains telomere length in some cells, but inappropriate expression facilitates the immortality of cancer cells. Recently, proteins involved in RNA processing and ribosome assembly, such asmore » hnRNP (heterogeneous nuclear ribonucleoprotein) A1, have been found to participate in telomere maintenance in mammals. The Saccharomyces cerevisiae protein Npl3 shares significant amino acid sequence similarities with hnRNP A1. We found that deleting NPL3 accelerated the senescence of telomerase null cells. The highly conserved RNA recognition motifs (RRM) in Npl3 appear to be important for preventing faster senescence. Npl3 preferentially binds telomere sequences in vitro, suggesting that Npl3 may affect telomeres directly. Despite similarities between the two proteins, human hnRNP A1 is unable to complement the lack of Npl3 to rescue accelerated senescence in tlc1 npl3 cells. Deletion of CBC2, which encodes another hnRNP-related protein that associates with Npl3, also accelerates senescence. Potential mechanisms by which hnRNP-related proteins maintain telomeres are discussed.« less
Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants
Uchida, Tetsuya; Ishihara, Naoto; Zenitani, Hiroyuki; Hiratsu, Keiichiro; Kinashi, Haruyasu
2004-01-01
Streptomyces linear chromosomes display various types of rearrangements after telomere deletion, including circularization, arm replacement, and amplification. We analyzed the new chromosomal deletion mutants Streptomyces griseus 301-22-L and 301-22-M. In these mutants, chromosomal arm replacement resulted in long terminal inverted repeats (TIRs) at both ends; different sizes were deleted again and recombined inside the TIRs, resulting in a circular chromosome with an extremely large palindrome. Short palindromic sequences were found in parent strain 2247, and these sequences might have played a role in the formation of this unique structure. Dynamic structural changes of Streptomyces linear chromosomes shown by this and previous studies revealed extraordinary strategies of members of this genus to keep a functional chromosome, even if it is linear or circular. PMID:15150216
ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2
Picco, Vincent; Coste, Isabelle; Giraud-Panis, Marie-Josèphe; Renno, Toufic; Gilson, Eric; Pagès, Gilles
2016-01-01
Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation. PMID:27366950
Lescasse, Rachel; Pobiega, Sabrina; Callebaut, Isabelle; Marcand, Stéphane
2013-03-20
In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.
Tichy, Elisia D; Sidibe, David K; Tierney, Matthew T; Stec, Michael J; Sharifi-Sanjani, Maryam; Hosalkar, Harish; Mubarak, Scott; Johnson, F Brad; Sacco, Alessandra; Mourkioti, Foteini
2017-10-10
Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Snail1 transcription factor controls telomere transcription and integrity
Mazzolini, Rocco; Gonzàlez, Núria; Garcia-Garijo, Andrea; Millanes-Romero, Alba; Peiró, Sandra; Smith, Susan
2018-01-01
Abstract Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes. PMID:29059385
CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation.
Kim, Hyojung; Ham, Sangwoo; Jo, Minkyung; Lee, Gum Hwa; Lee, Yun-Song; Shin, Joo-Ho; Lee, Yunjong
2017-10-03
Aging is considered the major risk factor for neurodegenerative diseases including Parkinson's disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leading to retardation of cell proliferation. Instant deletion of telomere in SH-SY5Y cells impaired mitochondrial function with diminished mitochondrial respiration and cell viability. Supporting the pathological relevance of cell aging by CRISPR-Cas9 mediated telomere removal, alterations were observed in the levels of PD-associated proteins including PTEN-induced putative kinase 1, peroxisome proliferator-activated receptor γ coactivator 1-α, nuclear respiratory factor 1, parkin, and aminoacyl tRNA synthetase complex interacting multifunctional protein 2. Significantly, α-synuclein expression in the background of telomere removal led to the enhancement of protein aggregation, suggesting positive feed-forward interaction between aging and PD pathogenesis. Collectively, our results demonstrate that CRISPR-Cas9 can be used to efficiently model cellular aging and PD.
Assessment of Telomere Length, Phenotype, and DNA Content
Kelesidis, Theodoros; Schmid, Ingrid
2017-01-01
Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113
Assessment of Telomere Length, Phenotype, and DNA Content.
Kelesidis, Theodoros; Schmid, Ingrid
2017-01-05
Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G 0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
The binding modes of carbazole derivatives with telomere G-quadruplex
NASA Astrophysics Data System (ADS)
Zhang, Xiu-feng; Zhang, Hui-juan; Xiang, Jun-feng; Li, Qian; Yang, Qian-fan; Shang, Qian; Zhang, Yan-xia; Tang, Ya-lin
2010-10-01
It is reported that carbazole derivatives can stabilize G-quadruplex DNA structure formed by human telomeric sequence, and therefore, they have the potential to serve as anti-cancer agents. In this present study, in order to further explore the binding mode between carbazole derivatives and G-quadruplex formed by human telomeric sequence, two carbazole iodides (BMVEC, MVEC) molecules were synthesized and used to investigate the interaction with the human telomeric parallel and antiparallel G-quadruplex structures by NMR, CD and molecular modeling study. Interestingly, it is the pivotal the cationic charge pendant groups of pyridinium rings of carbazole that plays an essential role in the stabilizing and binding mode of the human telomeric sequences G-quadruplex structure. It was found that BMVEC with two cationic charge pendant groups of pyridinium rings of 9-ethylcarbazole cannot only stabilize parallel G-quadruple of Hum6 by groove binding and G-tetrad stacking modes and antiparallel G-quadruplex of Hum22 by groove binding, but also induce the formation of mixed G-quadruplex of Hum22. While MVEC with one cationic charge pendant groups of pyridinium ring only can bind with the parallel G-quadruplex of Hum6 by the stacking onto the G4 G-tetrad and could not interact with the G-quadruplex of Hum22.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Nils; Scherthan, Harry
The telomere binding proteins TRF1 and TRF2 maintain and protect chromosome ends and confer karyotypic stability. Chromosome evolution in the genus Muntiacus is characterized by numerous tandem (end-to-end) fusions. To study TRF1 and TRF2 telomere binding proteins in Muntiacus species, we isolated and characterized the TERF1 and -2 genes from Indian muntjac (Muntiacus muntjak vaginalis; 2n = 6 female) and from Chinese muntjac (Muntiacus reveesi; 2n = 46). Expression analysis revealed that both genes are ubiquitously expressed and sequence analysis identified several transcript variants of both TERF genes. Control experiments disclosed a novel testis-specific splice variant of TERF1 in humanmore » testes. Amino acid sequence comparisons demonstrate that Muntiacus TRF1 and in particular TRF2 are highly conserved between muntjac and human. In vivo TRF2-GFP and immuno-staining studies in muntjac cell lines revealed telomeric TRF2 localization, while deletion of the DNA binding domain abrogated this localization, suggesting muntjac TRF2 represents a functional telomere protein. Finally, expression analysis of a set of telomere-related genes revealed their presence in muntjac fibroblasts and testis tissue, which suggests the presence of a conserved telomere complex in muntjacs. However, a deviation from the common theme was noted for the TERT gene, encoding the catalytic subunit of telomerase; TERT expression could not be detected in Indian or Chinese muntjac cDNA or genomic DNA using a series of conserved primers, while TRAP assay revealed functional telomerase in Chinese muntjac testis tissues. This suggests muntjacs may harbor a diverged telomerase sequence.« less
Drosophila: Retrotransposons Making up Telomeres.
Casacuberta, Elena
2017-07-19
Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.
Barbosa, Patrícia; de Oliveira, Luiz Antonio; Pucci, Marcela Baer; Santos, Mateus Henrique; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo; Nogaroto, Viviane; de Almeida, Mara Cristina; Artoni, Roberto Ferreira
2015-02-01
Most part of the eukaryotic genome is composed of repeated sequences or multiple copies of DNA, which were considered as "junk DNA", and may be associated to the heterochromatin. In this study, three populations of Astyanax aff. scabripinnis from Brazilian rivers of Guaratinguetá and Pindamonhangaba (São Paulo) and a population from Maringá (Paraná) were analyzed concerning the localization of the nucleolar organizer regions (Ag-NORs), the As51 satellite DNA, the 18S ribosomal DNA (rDNA), and the 5S rDNA. Repeated sequences were also isolated and identified by the Cot - 1 method, which indicated similarity (90%) with the LINE UnaL2 retrotransposon. The fluorescence in situ hybridization (FISH) showed the retrotransposon dispersed and more concentrated markers in centromeric and telomeric chromosomal regions. These sequences were co-localized and interspaced with 18S and 5S rDNA and As51, confirmed by fiber-FISH essay. The B chromosome found in these populations pointed to a conspicuous hybridization with LINE probe, which is also co-located in As51 sequences. The NORs were active at unique sites of a homologous pair in the three populations. There were no evidences that transposable elements and repetitive DNA had influence in the transcriptional regulation of ribosomal genes in our analyses.
Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi
2002-01-01
Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346
Unraveling secrets of telomeres: one molecule at a time
Lin, Jiangguo; Kaur, Parminder; Countryman, Preston; Opresko, Patricia L.; Wang, Hong
2016-01-01
Telomeres play important roles in maintaining the stability of linear chromosomes. Telomere maintenance involves dynamic actions of multiple proteins interacting with long repetitive sequences and complex dynamic DNA structures, such as G-quadruplexes, T-loops and t-circles. Given the heterogeneity and complexity of telomeres, single-molecule approaches are essential to fully understand the structure-function relationships that govern telomere maintenance. In this review, we present a brief overview of the principles of single-molecule imaging and manipulation techniques. We then highlight results obtained from applying these single-molecule techniques for studying structure, dynamics and functions of G-quadruplexes, telomerase, and shelterin proteins. PMID:24569170
Wallgren, Marcus; Mohammad, Jani B.; Yan, Kok-Phen; Pourbozorgi-Langroudi, Parham; Ebrahimi, Mahsa; Sabouri, Nasim
2016-01-01
Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such candidate helicase is Pfh1, an evolutionarily conserved Pif1 homolog. Here, we addressed whether putative G4 sequences in S. pombe can adopt G4 structures and, if so, whether Pfh1 can resolve them. We tested two G4 sequences, derived from S. pombe ribosomal and telomeric DNA regions, and demonstrated that they form inter- and intramolecular G4 structures, respectively. Also, Pfh1 was enriched in vivo at the ribosomal G4 DNA and telomeric sites. The nuclear isoform of Pfh1 (nPfh1) unwound both types of structure, and although the G4-stabilizing compound Phen-DC3 significantly enhanced their stability, nPfh1 still resolved them efficiently. However, stable G4 structures significantly inhibited adenosine triphosphate hydrolysis by nPfh1. Because ribosomal and telomeric DNA contain putative G4 regions conserved from yeasts to humans, our studies support the important role of G4 structure formation in these regions and provide further evidence for a conserved role for Pif1 helicases in resolving G4 structures. PMID:27185885
Epigenetic features of human telomeres.
Cubiles, María D; Barroso, Sonia; Vaquero-Sedas, María I; Enguix, Alicia; Aguilera, Andrés; Vega-Palas, Miguel A
2018-03-16
Although subtelomeric regions in humans are heterochromatic, the epigenetic nature of human telomeres remains controversial. This controversy might have been influenced by the confounding effect of subtelomeric regions and interstitial telomeric sequences (ITSs) on telomeric chromatin structure analyses. In addition, different human cell lines might carry diverse epigenetic marks at telomeres. We have developed a reliable procedure to study the chromatin structure of human telomeres independently of subtelomeres and ITSs. This procedure is based on the statistical analysis of multiple ChIP-seq experiments. We have found that human telomeres are not enriched in the heterochromatic H3K9me3 mark in most of the common laboratory cell lines, including embryonic stem cells. Instead, they are labeled with H4K20me1 and H3K27ac, which might be established by p300. These results together with previously published data argue that subtelomeric heterochromatin might control human telomere functions. Interestingly, U2OS cells that exhibit alternative lengthening of telomeres have heterochromatic levels of H3K9me3 in their telomeres.
Telomeres and mechanisms of Robertsonian fusion.
Slijepcevic, P
1998-05-01
The Robertsonian (Rb) fusion, a chromosome rearrangement involving centric fusion of two acro-(telo)centric chromosomes to form a single metacentric, is one of the most frequent events in mammalian karyotype evolution. Since one of the functions of telomeres is to preserve chromosome integrity, a prerequisite for the formation of Rb fusions should be either telomere loss or telomere inactivation. Possible mechanisms underlying the formation of various types of Rb fusion are discussed here. For example, Rb fusion in wild mice involves complete loss of p-arm telomeres by chromosome breakage within minor satellite sequences. By contrast, interstitial telomeric sites are found in the pericentromeric regions of chromosomes originating from a number of vertebrate species, suggesting the occurrence of Rb-like fusion without loss of telomeres, a possibility consistent with some form of telomere inactivation. Finally, a recent study suggests that telomere shortening induced by the deletion of the telomerase RNA gene in the mouse germ-line leads to telomere loss and high frequencies of Rb fusion in mouse somatic cells. Thus, at least three mechanisms in mammalian cells lead to the formation of Rb fusions.
Epigenetic features of human telomeres
Cubiles, María D; Barroso, Sonia; Vaquero-Sedas, María I; Enguix, Alicia; Aguilera, Andrés; Vega-Palas, Miguel A
2018-01-01
Abstract Although subtelomeric regions in humans are heterochromatic, the epigenetic nature of human telomeres remains controversial. This controversy might have been influenced by the confounding effect of subtelomeric regions and interstitial telomeric sequences (ITSs) on telomeric chromatin structure analyses. In addition, different human cell lines might carry diverse epigenetic marks at telomeres. We have developed a reliable procedure to study the chromatin structure of human telomeres independently of subtelomeres and ITSs. This procedure is based on the statistical analysis of multiple ChIP-seq experiments. We have found that human telomeres are not enriched in the heterochromatic H3K9me3 mark in most of the common laboratory cell lines, including embryonic stem cells. Instead, they are labeled with H4K20me1 and H3K27ac, which might be established by p300. These results together with previously published data argue that subtelomeric heterochromatin might control human telomere functions. Interestingly, U2OS cells that exhibit alternative lengthening of telomeres have heterochromatic levels of H3K9me3 in their telomeres. PMID:29361030
Variants in TERT influencing telomere length are associated with paranoid schizophrenia risk.
Rao, Shuquan; Ye, Ning; Hu, Huiling; Shen, Yan; Xu, Qi
2016-04-01
Schizophrenia is one of the most severe psychiatric disorders, with a high heritability of up to 80%. Several studies have reported telomere dysfunction in schizophrenia, and common variants in the telomerase reverse transcriptase (TERT) gene. TERT is a key component of the telomerase complex that maintains telomere length by addition of telomere repeats to telomere ends, and has repeatedly shown association with mean lymphocyte telomere length (LTL). Thus, we hypothesized that TERT may be a novel susceptibility gene for schizophrenia. Using a Taqman protocol, we genotyped eight tag SNPs from the TERT locus in 1,072 patients with paranoid schizophrenia and 1,284 control subjects from a Chinese Han population. We also measured mean LTL in 98 cases and 109 controls using a quantitative PCR-based technique. Chi-square tests showed that two SNPs, rs2075786 (P = 0.0009, OR = 0.76, 95%CI = 0.65-0.90) and rs4975605 (P = 0.0026, OR = 0.73, 95%CI = 0.60-0.90), were associated with a protective effect, while rs10069690 was associated with risk of paranoid schizophrenia (P = 0.0044, OR = 1.23, 95%CI = 1.07-1.42). Additionally, the rs2736118-rs2075786 haplotype showed significant association with paranoid schizophrenia (P = 0.0013). Moreover, mean LTL correlated with rs2075786 genotypes was significantly shorter in the patient group than the control group. The present results suggest that the TERT gene may be a novel candidate involved in the development of paranoid schizophrenia. © 2016 Wiley Periodicals, Inc.
Adilardi, Renzo Sebastián; Ojanguren-Affilastro, Andrés Alejandro; Mattoni, Camilo Iván; Mola, Liliana María
2015-08-01
All cytogenetically studied scorpions present male achiasmatic meiosis and lack heteromorphic sex chromosomes. In contrast, information about female meiosis in scorpions is scarce due to the difficulty of finding meiotic cells. The genus Zabius includes three described species and no chromosome studies have been performed on it until now. We analyzed the constitutive heterochromatin distribution, NORs and telomeric sequences in mitosis and meiosis of males and females of different populations of Zabius fuscus. All specimens presented 2n = 18 holokinetic chromosomes that gradually decreased in size. Male meiosis presented nine bivalents and a polymorphism for one reciprocal translocation in one population. Telomeric signals were detected at every terminal region, confirming also the presence of a (TTAGG) n motif in Buthidae. Constitutive heterochromatin was found in three chromosome pairs at a terminal region; moreover, NORs were embedded in the heterochromatic region of the largest pair. Chromosome size and landmarks allowed us to propose the chromosomes involved in the rearrangement. In four females, cells at different prophase I stages were analyzed. We describe a diffuse stage and the presence of ring-shaped bivalents. We discuss the possible origin of these bivalents in the framework of chiasmatic or achiasmatic female meiosis. These results contribute to increase the scarce evidence of female meiosis in scorpions and raise new questions about its mechanism.
Wood, Michael L; Royle, Nicola J
2017-07-12
Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.
Telomere length and early severe social deprivation: linking early adversity and cellular aging
Drury, SS; Theall, K; Gleason, MM; Smyke, AT; De Vivo, I; Wong, JYY; Fox, NA; Zeanah, CH; Nelson, CA
2012-01-01
Accelerated telomere length attrition has been associated with psychological stress and early adversity in adults; however, no studies have examined whether telomere length in childhood is associated with early experiences. The Bucharest Early Intervention Project is a unique randomized controlled trial of foster care placement compared with continued care in institutions. As a result of the study design, participants were exposed to a quantified range of time in institutional care, and represented an ideal population in which to examine the association between a specific early adversity, institutional care and telomere length. We examined the association between average relative telomere length, telomere repeat copy number to single gene copy number (T/S) ratio and exposure to institutional care quantified as the percent of time at baseline (mean age 22 months) and at 54 months of age that each child lived in the institution. A significant negative correlation between T/S ratio and percentage of time was observed. Children with greater exposure to institutional care had significantly shorter relative telomere length in middle childhood. Gender modified this main effect. The percentage of time in institutional care at baseline significantly predicted telomere length in females, whereas the percentage of institutional care at 54 months was strongly predictive of telomere length in males. This is the first study to demonstrate an association between telomere length and institutionalization, the first study to find an association between adversity and telomere length in children, and contributes to the growing literature linking telomere length and early adversity. PMID:21577215
Telomere biology and telomerase mutations in cirrhotic patients with hepatocellular carcinoma
Alves-Paiva, Raquel M.; Podlevsky, Joshua D.; Logeswaran, Dhenugen; Santana, Barbara A.; Teixeira, Andreza C.; Chen, Julian J.-L.; Calado, Rodrigo T.; Martinelli, Ana L. C.
2017-01-01
Telomeres are repetitive DNA sequences at linear chromosome termini, protecting chromosomes against end-to-end fusion and damage, providing chromosomal stability. Telomeres shorten with mitotic cellular division, but are maintained in cells with high proliferative capacity by telomerase. Loss-of-function mutations in telomere-maintenance genes are genetic risk factors for cirrhosis development in humans and murine models. Telomerase deficiency provokes accelerated telomere shortening and dysfunction, facilitating genomic instability and oncogenesis. Here we examined whether telomerase mutations and telomere shortening were associated with hepatocellular carcinoma (HCC) secondary to cirrhosis. Telomere length of peripheral blood leukocytes was measured by Southern blot and qPCR in 120 patients with HCC associated with cirrhosis and 261 healthy subjects. HCC patients were screened for telomerase gene variants (in TERT and TERC) by Sanger sequencing. Age-adjusted telomere length was comparable between HCC patients and healthy subjects by both Southern blot and qPCR. Four non-synonymous TERT heterozygous variants were identified in four unrelated patients, resulting in a significantly higher mutation carrier frequency (3.3%) in patients as compared to controls (p = 0.02). Three of the four variants (T726M, A1062T, and V1090M) were previously observed in patients with other telomere diseases (severe aplastic anemia, acute myeloid leukemia, and cirrhosis). A novel TERT variant, A243V, was identified in a 65-year-old male with advanced HCC and cirrhosis secondary to chronic hepatitis C virus (HCV) and alcohol ingestion, but direct assay measurements in vitro did not detect modulation of telomerase enzymatic activity or processivity. In summary, constitutional variants resulting in amino acid changes in the telomerase reverse transcriptase were found in a small proportion of patients with cirrhosis-associated HCC. PMID:28813500
TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase
NASA Astrophysics Data System (ADS)
Xin, Huawei; Liu, Dan; Wan, Ma; Safari, Amin; Kim, Hyeung; Sun, Wen; O'Connor, Matthew S.; Songyang, Zhou
2007-02-01
Telomere dysfunction may result in chromosomal abnormalities, DNA damage responses, and even cancer. Early studies in lower organisms have helped to establish the crucial role of telomerase and telomeric proteins in maintaining telomere length and protecting telomere ends. In Oxytricha nova, telomere G-overhangs are protected by the TEBP-α/β heterodimer. Human telomeres contain duplex telomeric repeats with 3' single-stranded G-overhangs, and may fold into a t-loop structure that helps to shield them from being recognized as DNA breaks. Additionally, the TEBP-α homologue, POT1, which binds telomeric single-stranded DNA (ssDNA), associates with multiple telomeric proteins (for example, TPP1, TIN2, TRF1, TRF2 and RAP1) to form the six-protein telosome/shelterin and other subcomplexes. These telomeric protein complexes in turn interact with diverse pathways to form the telomere interactome for telomere maintenance. However, the mechanisms by which the POT1-containing telosome communicates with telomerase to regulate telomeres remain to be elucidated. Here we demonstrate that TPP1 is a putative mammalian homologue of TEBP-β and contains a predicted amino-terminal oligonucleotide/oligosaccharide binding (OB) fold. TPP1-POT1 association enhanced POT1 affinity for telomeric ssDNA. In addition, the TPP1 OB fold, as well as POT1-TPP1 binding, seemed critical for POT1-mediated telomere-length control and telomere-end protection in human cells. Disruption of POT1-TPP1 interaction by dominant negative TPP1 expression or RNA interference (RNAi) resulted in telomere-length alteration and DNA damage responses. Furthermore, we offer evidence that TPP1 associates with the telomerase in a TPP1-OB-fold-dependent manner, providing a physical link between telomerase and the telosome/shelterin complex. Our findings highlight the critical role of TPP1 in telomere maintenance, and support a yin-yang model in which TPP1 and POT1 function as a unit to protect human telomeres, by both positively and negatively regulating telomerase access to telomere DNA.
Le Guen, Tangui; Jullien, Laurent; Touzot, Fabien; Schertzer, Michael; Gaillard, Laetitia; Perderiset, Mylène; Carpentier, Wassila; Nitschke, Patrick; Picard, Capucine; Couillault, Gérard; Soulier, Jean; Fischer, Alain; Callebaut, Isabelle; Jabado, Nada; Londono-Vallejo, Arturo; de Villartay, Jean-Pierre; Revy, Patrick
2013-08-15
Hoyeraal-Hreidarsson syndrome (HHS), a severe variant of dyskeratosis congenita (DC), is characterized by early onset bone marrow failure, immunodeficiency and developmental defects. Several factors involved in telomere length maintenance and/or protection are defective in HHS/DC, underlining the relationship between telomere dysfunction and these diseases. By combining whole-genome linkage analysis and exome sequencing, we identified compound heterozygous RTEL1 (regulator of telomere elongation helicase 1) mutations in three patients with HHS from two unrelated families. RTEL1 is a DNA helicase that participates in DNA replication, DNA repair and telomere integrity. We show that, in addition to short telomeres, RTEL1-deficient cells from patients exhibit hallmarks of genome instability, including spontaneous DNA damage, anaphase bridges and telomeric aberrations. Collectively, these results identify RTEL1 as a novel HHS-causing gene and highlight its role as a genomic caretaker in humans.
Vembar, Shruthi Sridhar; Seetin, Matthew; Lambert, Christine; Nattestad, Maria; Schatz, Michael C.; Baybayan, Primo; Scherf, Artur; Smith, Melissa Laird
2016-01-01
The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [∼80.6% (A + T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, we performed amplification-free, single molecule, real-time sequencing of P. falciparum genomic DNA and generated reads of average length 12 kb, with 50% of the reads between 15.5 and 50 kb in length. Next, using the Hierarchical Genome Assembly Process, we assembled the P. falciparum genome de novo and successfully compiled all 14 nuclear chromosomes telomere-to-telomere. We also accurately resolved centromeres [∼90–99% (A + T)] and subtelomeric regions and identified large insertions and duplications that add extra var and rifin genes to the genome, along with smaller structural variants such as homopolymer tract expansions. Overall, we show that amplification-free, long-read sequencing combined with de novo assembly overcomes major challenges inherent to studying the P. falciparum genome. Indeed, this technology may not only identify the polymorphic and repetitive subtelomeric sequences of parasite populations from endemic areas but may also evaluate structural variation linked to virulence, drug resistance and disease transmission. PMID:27345719
Rare variants in RTEL1 are associated with familial interstitial pneumonia.
Cogan, Joy D; Kropski, Jonathan A; Zhao, Min; Mitchell, Daphne B; Rives, Lynette; Markin, Cheryl; Garnett, Errine T; Montgomery, Keri H; Mason, Wendi R; McKean, David F; Powers, Julia; Murphy, Elissa; Olson, Lana M; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R; Lancaster, Lisa H; Steele, Mark P; Brown, Kevin K; Schwarz, Marvin I; Fingerlin, Tasha E; Schwartz, David A; Lawson, William E; Loyd, James E; Zhao, Zhongming; Phillips, John A; Blackwell, Timothy S
2015-03-15
Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.
Evaluation of telomere length in human cardiac tissues using cardiac quantitative FISH.
Sharifi-Sanjani, Maryam; Meeker, Alan K; Mourkioti, Foteini
2017-09-01
Telomere length has been correlated with various diseases, including cardiovascular disease and cancer. The use of currently available telomere-length measurement techniques is often restricted by the requirement of a large amount of cells (Southern-based techniques) or the lack of information on individual cells or telomeres (PCR-based methods). Although several methods have been used to measure telomere length in tissues as a whole, the assessment of cell-type-specific telomere length provides valuable information on individual cell types. The development of fluorescence in situ hybridization (FISH) technologies enables the quantification of telomeres in individual chromosomes, but the use of these methods is dependent on the availability of isolated cells, which prevents their use with fixed archival samples. Here we describe an optimized quantitative FISH (Q-FISH) protocol for measuring telomere length that bypasses the previous limitations by avoiding contributions from undesired cell types. We have used this protocol on small paraffin-embedded cardiac-tissue samples. This protocol describes step-by-step procedures for tissue preparation, permeabilization, cardiac-tissue pretreatment and hybridization with a Cy3-labeled telomeric repeat complementing (CCCTAA) 3 peptide nucleic acid (PNA) probe coupled with cardiac-specific antibody staining. We also describe how to quantify telomere length by means of the fluorescence intensity and area of each telomere within individual nuclei. This protocol provides comparative cell-type-specific telomere-length measurements in relatively small human cardiac samples and offers an attractive technique to test hypotheses implicating telomere length in various cardiac pathologies. The current protocol (from tissue collection to image procurement) takes ∼28 h along with three overnight incubations. We anticipate that the protocol could be easily adapted for use on different tissue types.
Human telomerase: biogenesis, trafficking, recruitment, and activation.
Schmidt, Jens C; Cech, Thomas R
2015-06-01
Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species. © 2015 Schmidt and Cech Published by Cold Spring Harbor Laboratory Press.
Raudsepp, T; Christensen, K; Chowdhar, B P
2000-01-01
With the expansion of comparative genome analysis across different mammals, there is an increasing need to have well-defined banded karyotypes for the species chosen for investigation. In this context, the steadily growing gene mapping data in the donkey urgently require a framework whereby alignment/comparison of genetic information can be readily made with equids and other mammalian species. Hence a GTG-banded karyotype of the donkey (Equus asinus; EAS) is presented, along with schematic drawings and nomenclature of the banded chromosomes. In addition, the most characteristic features of individual chromosomes are described and their relative size estimated. Using the FISH approach, the location of nucleolous organizer regions (NORs) and telomeric repeat sequences (TTAGGG) were detected. Where possible, information on asine chromosomes is supplemented with known/likely equine and human homologues. The study thus primarily aims to provide an appropriate cytogenetic basis for the donkey chromosomes, so that research focused on gene mapping and comparative genomics in this species can be reported under a common format.
Willwand, K; Baldauf, A Q; Deleu, L; Mumtsidu, E; Costello, E; Beard, P; Rommelaere, J
1997-10-01
The right-end telomere of replicative form (RF) DNA of the autonomous parvovirus minute virus of mice (MVM) consists of a sequence that is self-complementary except for a three nucleotide loop around the axis of symmetry and an interior bulge of three unpaired nucleotides on one strand (designated the right-end 'bubble'). This right-end inverted repeat can exist in the form of a folded-back strand (hairpin conformation) or in an extended form, base-paired to a copy strand (duplex conformation). We recently reported that the right-end telomere is processed in an A9 cell extract supplemented with the MVM nonstructural protein NS1. This processing is shown here to result from the NS1-dependent nicking of the complementary strand at a unique position 21 nt inboard of the folded-back genomic 5' end. DNA species terminating in duplex or hairpin configurations, or in a mutated structure that has lost the right-end bulge, are all cleaved in the presence of NS1, indicating that features distinguishing these structures are not prerequisites for nicking under the in vitro conditions tested. Cleavage of the hairpin structure is followed by strand-displacement synthesis, generating the right-end duplex conformation, while processing of the duplex structure leads to the release of free right-end telomeres. In the majority of molecules, displacement synthesis at the right terminus stops a few nucleotides before reaching the end of the template strand, possibly due to NS1 which is covalently bound to this end. A fraction of the right-end duplex product undergoes melting and re-folding into hairpin structures (formation of a 'rabbit-ear' structure).
Dobson, Deborah E; Scholtes, Luella D; Myler, Peter J; Turco, Salvatore J; Beverley, Stephen M
2006-04-01
Stage-specific modifications to the abundant surface lipophosphoglycan (LPG) adhesin of Leishmania play critical roles in binding and release of the parasite during its infectious cycle in the sand fly, and control the ability of different fly species to transmit different parasite strains and species. In Leishmania major Friedlin V1, binding to a sand fly midgut lectin is mediated by side chain galactosyl (scGal) modifications of the LPG phosphoglycan (PG) repeats, while release occurs following arabinose-capping of scGals. Previously we identified a family of six SCG genes encoding PG scbeta-galactosyltransferases, and here we show that the extended SCG gene family (now termed SCG/L/R) encompasses 14 members in three subfamilies (SCG, SCGL and SCGR). Northern blot and RT-PCR analyses suggest that most of the SCG/L/R genes are expressed, with distinct patterns during the infectious cycle. The six SCGR subfamily genes are clustered and interspersed with the two SCA genes responsible for developmentally regulated arabinosylation of PG scGals; relationships amongst the SCGR revealed clear evidence of extensive gene conversion. In contrast, the seven SCG 'core' family members are localized adjacent to telomeres. These telomeres share varying amounts of sequence upstream and/or downstream of the SCG ORFs, again providing evidence of past gene conversions. Multiple SCG1-7 RNAs were expressed simultaneously within parasite populations. Potentially, telomeric localization of SCG genes may function primarily to facilitate gene conversion and the elaboration of functional evolutionary diversity in the degree of PG sc-galactosylation observed in other strains of L. major.
Liti, Gianni; Haricharan, Svasti; Cubillos, Francisco A; Tierney, Anna L; Sharp, Sarah; Bertuch, Alison A; Parts, Leopold; Bailes, Elizabeth; Louis, Edward J
2009-09-01
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres.
Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast
Liti, Gianni; Haricharan, Svasti; Cubillos, Francisco A.; Tierney, Anna L.; Sharp, Sarah; Bertuch, Alison A.; Parts, Leopold; Bailes, Elizabeth; Louis, Edward J.
2009-01-01
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres. PMID:19763176
Snail1 transcription factor controls telomere transcription and integrity.
Mazzolini, Rocco; Gonzàlez, Núria; Garcia-Garijo, Andrea; Millanes-Romero, Alba; Peiró, Sandra; Smith, Susan; García de Herreros, Antonio; Canudas, Sílvia
2018-01-09
Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ageing and the telomere connection: An intimate relationship with inflammation.
Zhang, Jingwen; Rane, Grishma; Dai, Xiaoyun; Shanmugam, Muthu K; Arfuso, Frank; Samy, Ramar Perumal; Lai, Mitchell Kim Peng; Kappei, Dennis; Kumar, Alan Prem; Sethi, Gautam
2016-01-01
Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are also associated with hyperactivity of the transcription factor NF-κB and overexpression of inflammatory cytokines such as TNF-α, IL-6, and IFN-γ in circulating macrophages. Interestingly, telomerase, a reverse transcriptase that elongates telomeres, is involved in modulating NF-κB activity. Furthermore, inflammation and oxidative stress are implicated as pre-disease mechanisms for chronic diseases of ageing such as neurodegenerative diseases, cardiovascular disease, and cancer. To date, inflammation and telomere shortening have mostly been studied individually in terms of ageing and the associated disease phenotype. However, the interdependent nature of the two demands a more synergistic approach in understanding the ageing process itself and for developing new therapeutic approaches. In this review, we aim to summarize the intricate association between the various inflammatory molecules and telomeres that together contribute to the ageing process and related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Feng, Wendu; Yu, Decai; Li, Binghua; Luo, Ou-Yang; Xu, Tiancheng; Cao, Yajuan; Ding, Yitao
2017-04-30
In the present study, we used a small series of highly defined patients, where we had matched timed peripheral blood samples (PBS), as well as paired liver biopsies obtained during collection of blood samples from patients with diagnosed hepatocellular carcinoma (HCC) and compared the correlation between the changes of telomere lengths in these defined samples. Patients included had either HCC alone or in conjunction with either pre-existing hepatitis B virus (HBV) or hepatitis C virus (HCV) infection. PCR-based assay incorporating primers to the telomeric hexamer repeats to polymerize and detect telomeric DNA was used. The average telomere length for each independent assessment was measured by seeing the differences in the intensity of the sample's telomere signal (T) to the signal from a single-copy gene (S-, β-globin) to estimate the standard ratio. Our results provide the first convincing evidence that PBS may be utilized to assay telomere shortening as a predictor for disease persistence in HCC resulting after HBV or HCV infection, but not in non-infectious cause-stimulated HCC. These findings provide incipient opportunity to develop telomere length assessment as a biomarker tool for prediction of HCC in patients with HBV or HCV infection, as well as to gauge responses to chemotherapy and other treatment modalities. © 2017 The Author(s).
Barkovskaya, M Sh; Bogomolov, A G; Knauer, N Yu; Rubtsov, N B; Kozlov, V A
2017-04-01
Telomere length is an important indicator of proliferative cell history and potential. Decreasing telomere length in the cells of an immune system can indicate immune aging in immune-mediated and chronic inflammatory diseases. Quantitative fluorescent in situ hybridization (Q-FISH) of a labeled (C 3 TA[Formula: see text] peptide nucleic acid probe onto fixed metaphase cells followed by digital image microscopy allows the evaluation of telomere length in the arms of individual chromosomes. Computer-assisted analysis of microscopic images can provide quantitative information on the number of telomeric repeats in individual telomeres. We developed new software to estimate telomere length. The MeTeLen software contains new options that can be used to solve some Q-FISH and microscopy problems, including correction of irregular light effects and elimination of background fluorescence. The identification and description of chromosomes and chromosome regions are essential to the Q-FISH technique. To improve the quality of cytogenetic analysis after Q-FISH, we optimized the temperature and time of DNA-denaturation to get better DAPI-banding of metaphase chromosomes. MeTeLen was tested by comparing telomere length estimations for sister chromatids, background fluorescence estimations, and correction of nonuniform light effects. The application of the developed software for analysis of telomere length in patients with rheumatoid arthritis was demonstrated.
NASA Technical Reports Server (NTRS)
Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.
2017-01-01
DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.
Gong, Yi; de Lange, Titia
2010-11-12
We previously proposed that POT1 prevents ATR signaling at telomeres by excluding RPA from the single-stranded TTAGGG repeats. Here, we use a Shld1-stabilized degron-POT1a fusion (DD-POT1a) to study the telomeric ATR kinase response. In the absence of Shld1, DD-POT1a degradation resulted in rapid and reversible activation of the ATR pathway in G1 and S/G2. ATR signaling was abrogated by shRNAs to ATR and TopBP1, but shRNAs to the ATM kinase or DNA-PKcs did not affect the telomere damage response. Importantly, ATR signaling in G1 and S/G2 was reduced by shRNAs to RPA. In S/G2, RPA was readily detectable at dysfunctional telomeres, and both POT1a and POT1b were required to exclude RPA and prevent ATR activation. In G1, the accumulation of RPA at dysfunctional telomeres was strikingly less, and POT1a was sufficient to repress ATR signaling. These results support an RPA exclusion model for the repression of ATR signaling at telomeres. Copyright © 2010 Elsevier Inc. All rights reserved.
Chastain, Megan; Zhou, Qing; Shiva, Olga; Fadri-Moskwik, Maria; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Ye, Ping; Chai, Weihang
2016-08-02
The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael
2016-06-01
Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length.
Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
Morrish, Tammy A; Garcia-Perez, José Luis; Stamato, Thomas D; Taccioli, Guillermo E; Sekiguchi, JoAnn; Moran, John V
2007-03-08
Long interspersed element-1 (LINE-1 or L1) elements are abundant, non-long-terminal-repeat (non-LTR) retrotransposons that comprise approximately 17% of human DNA. The average human genome contains approximately 80-100 retrotransposition-competent L1s (ref. 2), and they mobilize by a process that uses both the L1 endonuclease and reverse transcriptase, termed target-site primed reverse transcription. We have previously reported an efficient, endonuclease-independent L1 retrotransposition pathway (EN(i)) in certain Chinese hamster ovary (CHO) cell lines that are defective in the non-homologous end-joining (NHEJ) pathway of DNA double-strand-break repair. Here we have characterized EN(i) retrotransposition events generated in V3 CHO cells, which are deficient in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and have both dysfunctional telomeres and an NHEJ defect. Notably, approximately 30% of EN(i) retrotransposition events insert in an orientation-specific manner adjacent to a perfect telomere repeat (5'-TTAGGG-3'). Similar insertions were not detected among EN(i) retrotransposition events generated in controls or in XR-1 CHO cells deficient for XRCC4, an NHEJ factor that is required for DNA ligation but has no known function in telomere maintenance. Furthermore, transient expression of a dominant-negative allele of human TRF2 (also called TERF2) in XRCC4-deficient XR-1 cells, which disrupts telomere capping, enables telomere-associated EN(i) retrotransposition events. These data indicate that L1s containing a disabled endonuclease can use dysfunctional telomeres as an integration substrate. The findings highlight similarities between the mechanism of EN(i) retrotransposition and the action of telomerase, because both processes can use a 3' OH for priming reverse transcription at either internal DNA lesions or chromosome ends. Thus, we propose that EN(i) retrotransposition is an ancestral mechanism of RNA-mediated DNA repair associated with non-LTR retrotransposons that may have been used before the acquisition of an endonuclease domain.
Arabidopsis thaliana telomeres exhibit euchromatic features
Vaquero-Sedas, María I.; Gámez-Arjona, Francisco M.; Vega-Palas, Miguel A.
2011-01-01
Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K92Me and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K92Me or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation. PMID:21071395
Rare Variants in RTEL1 Are Associated with Familial Interstitial Pneumonia
Cogan, Joy D.; Zhao, Min; Mitchell, Daphne B.; Rives, Lynette; Markin, Cheryl; Garnett, Errine T.; Montgomery, Keri H.; Mason, Wendi R.; McKean, David F.; Powers, Julia; Murphy, Elissa; Olson, Lana M.; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R.; Lancaster, Lisa H.; Steele, Mark P.; Brown, Kevin K.; Schwarz, Marvin I.; Fingerlin, Tasha E.; Schwartz, David A.; Lawson, William E.; Loyd, James E.; Zhao, Zhongming; Phillips, John A.; Blackwell, Timothy S.
2015-01-01
Rationale: Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. Objectives: To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Methods: Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. Measurements and Main Results: We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Conclusions: Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis. PMID:25607374
Williams, Kevin R; Doak, Thomas G; Herrick, Glenn
2002-01-01
Background Ciliates employ massive chromatid breakage and de novo telomere formation during generation of the somatic macronucleus. Positions flanking the 81-MAC locus are reproducibly cut. But those flanking the Common Region are proposed to often escape cutting, generating three nested macronuclear chromosomes, two retaining "arms" still appended to the Common Region. Arm-distal positions must differ (in cis) from the Common Region flanks. Results The Common-Region-flanking positions also differ from the arm-distal positions in that they are "multi-TAS" regions: anchored PCR shows heterogeneous patterns of telomere addition sites, but arm-distal sites do not. The multi-TAS patterns are reproducible, but are sensitive to the sequence of the allele being processed. Thus, random degradation following chromatid cutting does not create this heterogeneity; these telomere addition sites also must be dictated by cis-acting sequences. Conclusions Most ciliates show such micro-heterogeneity in the precise positions of telomere addition sites. Telomerase is believed to be tightly associated with, and act in concert with, the chromatid-cutting nuclease: heterogeneity must be the result of intervening erosion activity. Our "weak-sites" hypothesis explains the correlation between alternative chromatid cutting at the Common Region boundaries and their multi-TAS character: when the chromatid-breakage machine encounters either a weak binding site or a weak cut site at these regions, then telomerase dissociates prematurely, leaving the new end subject to erosion by an exonuclease, which pauses at cis-acting sequences; telomerase eventually heals these resected termini. Finally, we observe TAS positioning influenced by trans-allelic interactions, reminiscent of transvection. PMID:12199911
The coherence of synthetic telomeres.
Acevedo, O L; Dickinson, L A; Macke, T J; Thomas, C A
1991-01-01
The chromosomal telomeres of Oxytricha were synthesized and their ability to cohere examined on non-denaturing acrylamide gels containing the stabilizing cation K+. At least 5 different mobility species were observed, in addition to that of the monomeric telomere. By cohering synthetic telomeres containing different lengths of subtelomeric DNA, we showed that each of the different mobility species was a dimer of two telomeres. Since the different mobility species did not differ in numbers or sequences of nucleotides, they must correspond to different molecular shapes probably caused by different degrees of bending of the dimer. Paradoxically, telomeres with longer subtelomeric stems cohered more efficiently. In the presence of K+, solutions had to be heated to over 90 degrees before the telomeres separated. Various synthetic constructs, restriction endonuclease and dimethyl sulfate protection experiments showed that the only nucleotides involved in the cohered structures were the 16 base 'tails' of sequence 3'G4T4G4T4. Extension of this motif was actually inimical to coherence. Oligomers containing 2 G4T4 motifs protected their GN7 positions by forming dimers, those with 5 G4T4 could do so by internal folding, but the 3' terminal group of G4 was left unprotected. This suggests that only four groups of G4 are necessary for the cohered structure. Single-chain specific nuclease, S1, as well as osmium tetroxide, which oxidizes the thymine residues of single chains, reacted less efficiently with the cohered structures. Synthetic telomeres containing inosine replacing guanosine were not observed to cohere, indicating that the C2-NH2 is strongly stabilizing. The cohered structures appear to be unusually compact and sturdy units in which four G4 blocks form quadruplexes stabilized by K+. A new model for the cohered structure is presented. Images PMID:1648206
Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Scott, Caroline; Mitson, Matthew; Taylor, Stephen; Higgs, Douglas R.; Gibbons, Richard J.
2015-01-01
Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replication fork stalling, a known trigger for HR and loss of MRN from telomeres. A G-quadruplex stabilizer partially reverses the effect of ATRX, inferring ATRX may normally facilitate replication through these sequences that, if they persist, promote ALT. We propose that defective telomere chromatinization through loss of ATRX promotes the persistence of aberrant DNA secondary structures, which in turn present a barrier to DNA replication, leading to replication fork stalling, collapse, HR and subsequent recombination-mediated telomere synthesis in ALT cancers. PMID:26143912
Relationship between interpersonal sensitivity and leukocyte telomere length.
Suzuki, Akihito; Matsumoto, Yoshihiko; Enokido, Masanori; Shirata, Toshinori; Goto, Kaoru; Otani, Koichi
2017-10-10
Telomeres are repetitive DNA sequences located at the ends of chromosomes, and telomere length represents a biological marker for cellular aging. Interpersonal sensitivity, excessive sensitivity to the behavior and feelings of others, is one of the vulnerable factors to depression. In the present study, we examined the effect of interpersonal sensitivity on telomere length in healthy subjects. The subjects were 159 unrelated healthy Japanese volunteers. Mean age ± SD (range) of the subjects was 42.3 ± 7.8 (30-61) years. Interpersonal sensitivity was assessed by the Japanese version of the Interpersonal Sensitivity Measure (IPSM). Leukocyte telomere length was determined by a quantitative real-time PCR method. Higher scores of the total IPSM were significantly (β = -0.163, p = 0.038) related to shorter telomere length. In the sub-scale analysis, higher scores of timidity were significantly (β = -0.220, p = 0.044) associated with shorter telomere length. The present study suggests that subjects with higher interpersonal sensitivity have shorter leukocyte telomere length, implying that interpersonal sensitivity has an impact on cellular aging.
Knecht, Hans; Mai, Sabine
2017-06-27
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is expressed in germinal-center-derived, mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells in classical EBV-positive Hodgkin's lymphoma (cHL). LMP1 expression in EBV-negative H-cell lines results in a significantly increased number of RS cells. In a conditional, germinal-center-derived B-cell in vitro system, LMP1 reversibly down-regulates the shelterin proteins, telomeric repeat binding factor (TRF)1, TRF2, and protection of telomeres (POT)1. This down-regulation is associated with progressive 3D shelterin disruption, resulting in telomere dysfunction, progression of complex chromosomal rearrangements, and multinuclearity. TRF2 appears to be the key player. Thus, we hypothesize that the 3D interaction of telomeres and TRF2 is disrupted in H cells, and directly associated with the formation of H and RS cells. Using quantitative 3D co-immuno-TRF2-telomere fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) applied to monolayers of primary H and RS cells, we demonstrate TRF2-telomere dysfunction in EBV-positive cHL. However, in EBV-negative cHL a second molecular mechanism characterized by massive up-regulation of TRF2, but attrition of telomere signals, is also identified. These facts point towards a shelterin-related pathogenesis of cHL, where two molecularly disparate mechanisms converge at the level of 3D Telomere-TRF2 interactions, leading to the formation of RS cells.
Parallel telomere shortening in multiple body tissues owing to malaria infection.
Asghar, Muhammad; Palinauskas, Vaidas; Zaghdoudi-Allan, Nadège; Valkiūnas, Gediminas; Mukhin, Andrey; Platonova, Elena; Färnert, Anna; Bensch, Staffan; Hasselquist, Dennis
2016-08-17
Several studies have shown associations between shorter telomere length in blood and weakened immune function, susceptibility to infections, and increased risk of morbidity and mortality. Recently, we have shown that malaria accelerates telomere attrition in blood cells and shortens lifespan in birds. However, the impact of infections on telomere attrition in different body tissues within an individual is unknown. Here, we tested whether malarial infection leads to parallel telomere shortening in blood and tissue samples from different organs. We experimentally infected siskins (Spinus spinus) with the avian malaria parasite Plasmodium ashfordi, and used real-time quantitative polymerase chain reaction (PCR) to measure telomere length in control and experimentally infected siskins. We found that experimentally infected birds showed faster telomere attrition in blood over the course of infection compared with control individuals (repeatedly measured over 105 days post-infection (DPI)). Shorter telomeres were also found in the tissue of all six major organs investigated (liver, lungs, spleen, heart, kidney, and brain) in infected birds compared with controls at 105 DPI. To the best of our knowledge, this is the first study showing that an infectious disease results in synchronous telomere shortening in the blood and tissue cells of internal organs within individuals, implying that the infection induces systemic stress. Our results have far-reaching implications for understanding how the short-term effects of an infection can translate into long-term costs, such as organ dysfunction, degenerative diseases, and ageing. © 2016 The Author(s).
Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma
Shi, Jianxin; Yang, Xiaohong R.; Ballew, Bari; Rotunno, Melissa; Calista, Donato; Fargnoli, Maria Concetta; Ghiorzo, Paola; Paillerets, Brigitte Bressac-de; Nagore, Eduardo; Avril, Marie Francoise; Caporaso, Neil E.; McMaster, Mary L.; Cullen, Michael; Wang, Zhaoming; Zhang, Xijun; Bruno, William; Pastorino, Lorenza; Queirolo, Paola; Banuls-Roca, Jose; Garcia-Casado, Zaida; Vaysse, Amaury; Mohamdi, Hamida; Riazalhosseini, Yasser; Foglio, Mario; Jouenne, Fanélie; Hua, Xing; Hyland, Paula L.; Yin, Jinhu; Vallabhaneni, Haritha; Chai, Weihang; Minghetti, Paola; Pellegrini, Cristina; Ravichandran, Sarangan; Eggermont, Alexander; Lathrop, Mark; Peris, Ketty; Scarra, Giovanna Bianchi; Landi, Giorgio; Savage, Sharon A.; Sampson, Joshua N.; He, Ji; Yeager, Meredith; Goldin, Lynn R.; Demenais, Florence; Chanock, Stephen J.; Tucker, Margaret A.; Goldstein, Alisa M.; Liu, Yie; Landi, Maria Teresa
2014-01-01
Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin POT1 gene (g.7:124493086 C>T, Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere length and elevated fragile telomeres suggesting that this variant perturbs telomere maintenance. Two additional rare POT1 variants were identified in all cases sequenced in two other Italian families, yielding a frequency of POT1 variants comparable to that of CDKN2A mutations in this population. These variants were not found in public databases or in 2,038 genotyped Italian controls. We also identified two rare recurrent POT1 variants in American and French familial melanoma cases. Our findings suggest that POT1 is a major susceptibility gene for familial melanoma in several populations. PMID:24686846
Manna, Sudeshna; Panse, Cornelia H; Sontakke, Vyankat A; Sangamesh, Sarangamath; Srivatsan, Seergazhi G
2017-08-17
The development of biophysical systems that enable an understanding of the structure and ligand-binding properties of G-quadruplex (GQ)-forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ-directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H-Telo) DNA and RNA repeats in a cell-like confined environment by using conformation-sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2-ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2'-deoxy and ribonucleoside probes, composed of a 5-benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H-Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H-Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy-to-handle RMs could provide new opportunities to study and devise screening-compatible assays in a cell-like environment to discover GQ binders of clinical potential. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei
2015-04-18
Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions of repetitive elements in radish were estimated and satellite repeats were the most dominating elements. Fine karyotyping analysis was established which allow us to easily identify each individual somatic metaphase chromosome. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of satellite and centromere-specific retrotransposon at centromeres. Our study provides a valuable basis for future genomic studies in radish.
Westin, Erik R; Aykin-Burns, Nukhet; Buckingham, Erin M; Spitz, Douglas R; Goldman, Frederick D; Klingelhutz, Aloysius J
2011-03-15
Telomere attrition is a natural process that occurs due to inadequate telomere maintenance. Once at a critically short threshold, telomeres signal growth arrest, leading to senescence. Telomeres can be elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Mutations in genes for telomere binding proteins or components of telomerase give rise to the premature aging disorder dyskeratosis congenita (DC), which is characterized by extremely short telomeres and an aging phenotype. The current study demonstrates that DC cells signal a DNA damage response through p53 and its downstream mediator, p21(WAF/CIP), which is accompanied by an elevation in steady-state levels of superoxide and percent glutathione disulfide, both indicators of oxidative stress. Poor proliferation of DC cells can be partially overcome by reducing O(2) tension from 21% to 4%. Further, restoring telomerase activity or inhibiting p53 or p21(WAF/CIP) significantly mitigated growth inhibition as well as caused a significant decrease in steady-state levels of superoxide. Our results support a model in which telomerase insufficiency in DC leads to p21(WAF/CIP) signaling, via p53, to cause increased steady-state levels of superoxide, metabolic oxidative stress, and senescence.
Tsukamoto, Mariko; Yamashita, Kentaro; Miyazaki, Toshiko; Shinohara, Miki; Shinohara, Akira
2003-01-01
In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination between inverted repeats. We also analyzed the effect of the rad52-329 mutant on telomere recombination. Yeast cells lacking telomerase maintain telomere length by recombination. The rad52-329 mutant is deficient in RAD51-dependent telomere recombination, but is proficient in RAD51-independent telomere recombination. In addition, we examined the roles of other recombination genes in the telomere recombination. The RAD51-independent recombination in the rad52-329 mutant is promoted by a paralogue of Rad52, Rad59. All components of the Rad50-Mre11-Xrs2 complex are also important, but not essential, for RAD51-independent telomere recombination. Interestingly, RAD51 inhibits the RAD51-independent, RAD52-dependent telomere recombination. These findings indicate that Rad52 itself, and more precisely its N-terminal DNA-binding domain, promote an essential reaction in recombination in the absence of RAD51. PMID:14704160
Wolkowitz, Owen M.; Mellon, Synthia H.; Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Su, Yali; Reus, Victor I.; Rosser, Rebecca; Burke, Heather M.; Kupferman, Eve; Compagnone, Mariana; Nelson, J. Craig; Blackburn, Elizabeth H.
2011-01-01
Background Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of “accelerated aging” in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD), whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation. Methodology Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio) and inflammation (IL-6). Analyses were controlled for age and sex. Principal Findings The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05). Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration) was 281 base pairs shorter than that in controls (p<0.05), corresponding to approximately seven years of “accelerated cell aging.” Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01) and in the controls (p<0.05) and with inflammation in the depressed subjects (p<0.05). Conclusions These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is not an intrinsic feature. Rather, telomere shortening may progress in proportion to lifetime depression exposure. PMID:21448457
Dysregulation of H/ACA ribonucleoprotein components in chronic lymphocytic leukemia.
Dos Santos, Patricia Carolina; Panero, Julieta; Stanganelli, Carmen; Palau Nagore, Virginia; Stella, Flavia; Bezares, Raimundo; Slavutsky, Irma
2017-01-01
Telomeres are protective repeats of TTAGGG sequences located at the end of human chromosomes. They are essential to maintain chromosomal integrity and genome stability. Telomerase is a ribonucleoprotein complex containing an internal RNA template (hTR) and a catalytic subunit (hTERT). The human hTR gene consists of three major domains; among them the H/ACA domain is essential for telomere biogenesis. H/ACA ribonucleoprotein (RNP) complex is composed of four evolutionary conserved proteins, including dyskerin (encoded by DKC1 gene), NOP10, NHP2 and GAR1. In this study, we have evaluated the expression profile of the H/ACA RNP complex genes: DKC1, NOP10, NHP2 and GAR1, as well as hTERT and hTR mRNA levels, in patients with chronic lymphocytic leukemia (CLL). Results were correlated with the number and type of genetic alteration detected by conventional cytogenetics and FISH (fluorescence in situ hybridization), IGHV (immunoglobulin heavy chain variable region) mutational status, telomere length (TL) and clinico-pathological characteristics of patients. Our results showed significant decreased expression of GAR1, NOP10, DKC1 and hTR, as well as increased mRNA levels of hTERT in patients compared to controls (p≤0.04). A positive correlation between the expression of GAR1-NHP2, GAR1-NOP10, and NOP10-NHP2 (p<0.0001), were observed. The analysis taking into account prognostic factors showed a significant increased expression of hTERT gene in unmutated-IGHV cases compared to mutated-CLL patients (p = 0.0185). The comparisons among FISH groups exhibited increased expression of DKC1 in cases with two or more alterations with respect to no abnormalities, trisomy 12 and del13q14, and of NHP2 and NOP10 compared to those with del13q14 (p = 0.03). The analysis according to TL showed a significant increased expression of hTERT (p = 0.0074) and DKC1 (p = 0.0036) in patients with short telomeres compared to those with long TL. No association between gene expression and clinical parameters was found. Our results suggest a role for these telomere associated genes in genomic instability and telomere dysfunction in CLL.
Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.
Sharma, S; Raina, S N
2005-01-01
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive". Copyright 2005 S. Karger AG, Basel.
Bohlen, Jörg; Šlechtová, Vendula; Altmanová, Marie; Pelikánová, Šárka; Ráb, Petr
2018-01-01
Polyploidization has played an important role in the evolution of vertebrates, particularly at the base of Teleostei–an enormously successful ray-finned fish group with additional genome doublings on lower taxonomic levels. The investigation of post-polyploid genome dynamics might provide important clues about the evolution and ecology of respective species and can help to decipher the role of polyploidy per se on speciation. Few studies have attempted to investigate the dynamics of repetitive DNA sequences in the post-polyploid genome using molecular cytogenetic tools in fishes, though recent efforts demonstrated their usefulness. The demonstrably monophyletic freshwater loach family Botiidae, branching to evolutionary diploid and tetraploid lineages separated >25 Mya, offers a suited model group for comparing the long-term repetitive DNA evolution. For this, we integrated phylogenetic analyses with cytogenetical survey involving Giemsa- and Chromomycin A3 (CMA3)/DAPI stainings and fluorescence in situ hybridization with 5S/45S rDNA, U2 snDNA and telomeric probes in representative sample of 12 botiid species. The karyotypes of all diploids were composed of 2n = 50 chromosomes, while majority of tetraploids had 2n = 4x = 100, with only subtle interspecific karyotype differences. The exceptional karyotype of Botia dario (2n = 4x = 96) suggested centric fusions behind the 2n reduction. Variable patterns of FISH signals revealed cases of intraspecific polymorphisms, rDNA amplification, variable degree of correspondence with CMA3+ sites and almost no phylogenetic signal. In tetraploids, either additivity or loci gain/loss was recorded. Despite absence of classical interstitial telomeric sites, large blocks of interspersed rDNA/telomeric regions were found in diploids only. We uncovered different molecular drives of studied repetitive DNA classes within botiid genomes as well as the advanced stage of the re-diploidization process in tetraploids. Our results may contribute to link genomic approach with molecular cytogenetic analyses in addressing the origin and mechanism of this polyploidization event. PMID:29590207
Jankowitsch, Frank; Schwarz, Julia; Rückert, Christian; Gust, Bertolt; Szczepanowski, Rafael; Blom, Jochen; Pelzer, Stefan; Kalinowski, Jörn
2012-01-01
Streptomyces davawensis JCM 4913 synthesizes the antibiotic roseoflavin, a structural riboflavin (vitamin B2) analog. Here, we report the 9,466,619-bp linear chromosome of S. davawensis JCM 4913 and a 89,331-bp linear plasmid. The sequence has an average G+C content of 70.58% and contains six rRNA operons (16S-23S-5S) and 69 tRNA genes. The 8,616 predicted protein-coding sequences include 32 clusters coding for secondary metabolites, several of which are unique to S. davawensis. The chromosome contains long terminal inverted repeats of 33,255 bp each and atypical telomeres. Sequence analysis with regard to riboflavin biosynthesis revealed three different patterns of gene organization in Streptomyces species. Heterologous expression of a set of genes present on a subgenomic fragment of S. davawensis resulted in the production of roseoflavin by the host Streptomyces coelicolor M1152. Phylogenetic analysis revealed that S. davawensis is a close relative of Streptomyces cinnabarinus, and much to our surprise, we found that the latter bacterium is a roseoflavin producer as well. PMID:23043000
Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes
Rollings, Nicky; Uhrig, Emily J.; Krohmer, Randolph W.; Waye, Heather L.; Mason, Robert T.; Olsson, Mats; Whittington, Camilla M.
2017-01-01
Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis. We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species. PMID:28381620
Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes.
Rollings, Nicky; Uhrig, Emily J; Krohmer, Randolph W; Waye, Heather L; Mason, Robert T; Olsson, Mats; Whittington, Camilla M; Friesen, Christopher R
2017-04-12
Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species. © 2017 The Author(s).
Human telomeric DNA: G-quadruplex, i-motif and Watson–Crick double helix
Phan, Anh Tuân; Mergny, Jean-Louis
2002-01-01
Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson–Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C·C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[AGGG(TTAGGG)3] and d[(CCCTAA)3CCCT], we defined which structures existed and which would be the predominant species under a variety of experimental conditions. Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form. However, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex. We also present kinetic and thermodynamic data for duplex association and for G-quadruplex/i-motif unfolding. PMID:12409451
Puterman, Eli; Gunderson, Erica P.; Chan, Cheeling; Hou, Lifang; Carnethon, Mercedes
2017-01-01
Objective Having experienced 2–3 births is associated with reduced mortality versus women with <2 or ≥4 births. The effect of 2–3 births on lifespan may be associated with delayed cellular aging. We hypothesized telomere length, a marker of cellular aging, would be longer in women who had 2–3 pregnancies. Methods Leukocyte telomere length was measured using quantitative real-time polymerase chain reaction in 620 women in CARDIA at the year 15 and 20 exams, expressed as the ratio of telomere repeat copy number to single-copy gene copy number (T/S). Number of pregnancies at the time of telomere length measurement was obtained (mean age = 41±0.1 years, average gravidity = 2.64±0.1 pregnancies). Participants were divided into 4 groups by number of pregnancies: 0, 1, 2–3, and ≥4, to test for differences in telomere length by gravidity group. Results The mean and SD for telomere length was 0.98 ± 0.20 T/S in the whole cohort. There were no differences in mean telomere length between groups; 0.98±0.02 T/S in women with 0 pregnancies, 1.01±0.02 T/S in women with 1 pregnancy, 0.97±0.01 T/S in women with 2–3 pregnancies, and 0.99±0.02 T/S in women with ≥4 pregnancies (p = 0.51). We defined high-risk (shorter) telomere length as ≤25th percentile, and low-risk (longer) telomere length as ≥75 percentile. There were no differences in the prevalence of high-risk or low-risk telomere length between gravidity groups. Conclusions Gravidity was not associated with telomere length in early middle age; the protective association of 2–3 births may act through other mechanisms. PMID:29049398
Knecht, Hans; Johnson, Nathalie A; Haliotis, Tina; Lichtensztejn, Daniel; Mai, Sabine
2017-07-01
In classical Hodgkin's lymphoma (cHL), specific changes in the 3D telomere organization cause progression from mononuclear Hodgkin cells (H) to multinucleated Reed-Sternberg cells (RS). In a post-germinal center B-cell in vitro model, permanent latent membrane protein 1 (LMP1) expression, as observed in Epstein-Barr virus (EBV)-associated cHL, results in multinuclearity and complex chromosomal aberrations through downregulation of key element of the shelterin complex, the telomere repeat binding factor 2 (TRF2). Thus, we hypothesized that the three-dimensional (3D) telomere-TRF2 interaction was progressively disturbed during transition from H to RS cells. To this end, we developed and applied for the first time a combined quantitative 3D TRF2-telomere immune fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) technique to monolayers of primary H and RS cells, and adjacent benign internal control lymphocytes of lymph node biopsy suspensions from diagnostic lymph node biopsies of 14 patients with cHL. We show that H and RS cells are characterized by two distinct patterns of disruption of 3D telomere-TRF2 interaction. Disruption pattern A is defined by massive attrition of telomere signals and a considerable increase of TRF2 signals not associated with telomeres. This pattern is restricted to EBV-negative cHL. Disruption pattern B is defined by telomere de-protection due to an impressive loss of TRF2 signals, physically linked to telomeres. This pattern is typical of, but is not restricted to, LMP1+EBV-associated cHL. In the disruption pattern B group, so-called 'ghost' end-stage RS cells, void of both TRF2 and telomere signals, were identified, whether or not associated with EBV. Our findings demonstrate that two molecularly disparate mechanisms converge on the level of 3D telomere-TRF2 interaction in the formation of RS cells.
Lane-Cordova, Abbi D; Puterman, Eli; Gunderson, Erica P; Chan, Cheeling; Hou, Lifang; Carnethon, Mercedes
2017-01-01
Having experienced 2-3 births is associated with reduced mortality versus women with <2 or ≥4 births. The effect of 2-3 births on lifespan may be associated with delayed cellular aging. We hypothesized telomere length, a marker of cellular aging, would be longer in women who had 2-3 pregnancies. Leukocyte telomere length was measured using quantitative real-time polymerase chain reaction in 620 women in CARDIA at the year 15 and 20 exams, expressed as the ratio of telomere repeat copy number to single-copy gene copy number (T/S). Number of pregnancies at the time of telomere length measurement was obtained (mean age = 41±0.1 years, average gravidity = 2.64±0.1 pregnancies). Participants were divided into 4 groups by number of pregnancies: 0, 1, 2-3, and ≥4, to test for differences in telomere length by gravidity group. The mean and SD for telomere length was 0.98 ± 0.20 T/S in the whole cohort. There were no differences in mean telomere length between groups; 0.98±0.02 T/S in women with 0 pregnancies, 1.01±0.02 T/S in women with 1 pregnancy, 0.97±0.01 T/S in women with 2-3 pregnancies, and 0.99±0.02 T/S in women with ≥4 pregnancies (p = 0.51). We defined high-risk (shorter) telomere length as ≤25th percentile, and low-risk (longer) telomere length as ≥75 percentile. There were no differences in the prevalence of high-risk or low-risk telomere length between gravidity groups. Gravidity was not associated with telomere length in early middle age; the protective association of 2-3 births may act through other mechanisms.
Behaviour of telomere and telomerase during aging and regeneration in zebrafish.
Anchelin, Monique; Murcia, Laura; Alcaraz-Pérez, Francisca; García-Navarro, Esther M; Cayuela, María L
2011-02-09
Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.
Jia, Pingping; Chai, Weihang
2018-05-01
Genome instability gives rise to cancer. MLH1, commonly known for its important role in mismatch repair (MMR), DNA damage signaling and double-strand break (DSB) repair, safeguards genome stability. Recently we have reported a novel role of MLH1 in preventing aberrant formation of interstitial telomeric sequences (ITSs) at intra-chromosomal regions. Deficiency in MLH1, in particular its N-terminus, leads to an increase of ITSs. Here, we identify that the ATPase activity in the MLH1 N-terminal domain is important for suppressing the formation of ITSs. The ATPase activity is also needed for recruiting MLH1 to DSBs. Moreover, defective ATPase activity of MLH1 causes an increase in micronuclei formation. Our results highlight the crucial role of MLH1's ATPase domain in preventing the aberrant formation of telomeric sequences at the intra-chromosomal regions and preserving genome stability. Copyright © 2018 Elsevier B.V. All rights reserved.
Training Performed Above Lactate Threshold Decreases p53 and Shelterin Expression in Mice.
de Carvalho Cunha, Verusca Najara; Dos Santos Rosa, Thiago; Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Deus, Lysleine Alves; Simoes, Herbert Gustavo; de Andrade, Rosangela Vieira
2018-06-26
Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor ( Chk2 and p53 , respectively), shelterin telomere repeat binding 1 and 2 ( Trf1 / Trf2 ), DNA repair ( Xrcc5 ), telomerase reverse transcriptase ( mTERT ) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training. © Georg Thieme Verlag KG Stuttgart · New York.
X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues
Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan; ...
2016-06-02
We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less
X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan
We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less
If the cap fits, wear it: an overview of telomeric structures over evolution.
Fulcher, Nick; Derboven, Elisa; Valuchova, Sona; Riha, Karel
2014-03-01
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Construction of trypanosome artificial mini-chromosomes.
Lee, M G; E, Y; Axelrod, N
1995-01-01
We report the preparation of two linear constructs which, when transformed into the procyclic form of Trypanosoma brucei, become stably inherited artificial mini-chromosomes. Both of the two constructs, one of 10 kb and the other of 13 kb, contain a T.brucei PARP promoter driving a chloramphenicol acetyltransferase (CAT) gene. In the 10 kb construct the CAT gene is followed by one hygromycin phosphotransferase (Hph) gene, and in the 13 kb construct the CAT gene is followed by three tandemly linked Hph genes. At each end of these linear molecules are telomere repeats and subtelomeric sequences. Electroporation of these linear DNA constructs into the procyclic form of T.brucei generated hygromycin-B resistant cell lines. In these cell lines, the input DNA remained linear and bounded by the telomere ends, but it increased in size. In the cell lines generated by the 10 kb construct, the input DNA increased in size to 20-50 kb. In the cell lines generated by the 13 kb constructs, two sizes of linear DNAs containing the input plasmid were detected: one of 40-50 kb and the other of 150 kb. The increase in size was not the result of in vivo tandem repetitions of the input plasmid, but represented the addition of new sequences. These Hph containing linear DNA molecules were maintained stably in cell lines for at least 20 generations in the absence of drug selection and were subsequently referred to as trypanosome artificial mini-chromosomes, or TACs. Images PMID:8532534
The miR-590/Acvr2a/Terf1 Axis Regulates Telomere Elongation and Pluripotency of Mouse iPSCs.
Liu, Qidong; Wang, Guiying; Lyu, Yao; Bai, Mingliang; Jiapaer, Zeyidan; Jia, Wenwen; Han, Tong; Weng, Rong; Yang, Yiwei; Yu, Yangyang; Kang, Jiuhong
2018-06-06
During reprogramming, telomere re-elongation is important for pluripotency acquisition and ensures the high quality of induced pluripotent stem cells (iPSCs), but the regulatory mechanism remains largely unknown. Our study showed that fully reprogrammed mature iPSCs or mouse embryonic stem cells expressed higher levels of miR-590-3p and miR-590-5p than pre-iPSCs. Ectopic expression of either miR-590-3p or miR-590-5p in pre-iPSCs improved telomere elongation and pluripotency. Activin receptor II A (Acvr2a) is the downstream target and mediates the function of miR-590. Downregulation of Acvr2a promoted telomere elongation and pluripotency. Overexpression of miR-590 or inhibition of ACTIVIN signaling increased telomeric repeat binding factor 1 (Terf1) expression. The p-SMAD2 showed increased binding to the Terf1 promoter in pre-iPSCs compared with mature iPSCs. Downregulation of Terf1 blocked miR-590- or shAcvr2a-mediated promotion of telomere elongation and pluripotency in pre-iPSCs. This study elucidated the role of the miR-590/Acvr2a/Terf1 signaling pathway in modulating telomere elongation and pluripotency in pre-iPSCs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Fission yeast Ccq1 is a modulator of telomerase activity
Armstrong, Christine A; Moiseeva, Vera; Collopy, Laura C; Pearson, Siân R; Ullah, Tomalika R; Xi, Shidong T; Martin, Jennifer; Subramaniam, Shaan; Marelli, Sara; Amelina, Hanna
2018-01-01
Abstract Shelterin, the telomeric protein complex, plays a crucial role in telomere homeostasis. In fission yeast, telomerase is recruited to chromosome ends by the shelterin component Tpz1 and its binding partner Ccq1, where telomerase binds to the 3′ overhang to add telomeric repeats. Recruitment is initiated by the interaction of Ccq1 with the telomerase subunit Est1. However, how telomerase is released following elongation remains to be established. Here, we show that Ccq1 also has a role in the suppression of telomere elongation, when coupled with the Clr4 histone H3 methyl-transferase complex and the Clr3 histone deacetylase and nucleosome remodelling complex, SHREC. We have dissected the functions of Ccq1 by establishing a Ccq1-Est1 fusion system, which bypasses the telomerase recruitment step. We demonstrate that Ccq1 forms two distinct complexes for positive and negative telomerase regulation, with Est1 and Clr3 respectively. The negative form of Ccq1 promotes dissociation of Ccq1-telomerase from Tpz1, thereby restricting local telomerase activity. The Clr4 complex also has a negative regulation activity with Ccq1, independently of SHREC. Thus, we propose a model in which Ccq1-Est1 recruits telomerase to mediate telomere extension, whilst elongated telomeric DNA recruits Ccq1 with the chromatin-remodelling complexes, which in turn releases telomerase from the telomere. PMID:29216371
Telomere Length, Current Perceived Stress, and Urinary Stress Hormones in Women
Parks, Christine G.; Miller, Diane B.; McCanlies, Erin C.; Cawthon, Richard M.; Andrew, Michael E.; DeRoo, Lisa A.; Sandler, Dale P.
2009-01-01
Telomeres are repetitive DNA sequences that cap and protect the ends of chromosomes; critically short telomeres may lead to cellular senescence or carcinogenic transformation. Previous findings suggest a link between psychosocial stress, shorter telomeres, and chronic disease risk. This cross-sectional study examined relative telomere length in relation to perceived stress and urinary stress hormones in a sample of participants (n = 647) in the National Institute of Environmental Health Sciences Sister Study, a cohort of women ages 35 to 74 years who have a sister with breast cancer. Average leukocyte telomere length was determined by quantitative PCR. Current stress was assessed using the Perceived Stress Scale and creatinine-adjusted neuroendocrine hormones in first morning urines. Linear regression models estimated differences in telomere length base pairs (bp) associated with stress measures adjusted for age, race, smoking, and obesity. Women with higher perceived stress had somewhat shorter telomeres [adjusted difference of −129bp for being at or above moderate stress levels; 95% confidence interval (CI), −292 to 33], but telomere length did not decrease monotonically with higher stress levels. Shorter telomeres were independently associated with increasing age (−27bp/year), obesity, and current smoking. Significant stress-related differences in telomere length were seen in women ages 55 years and older (−289bp; 95% CI, −519 to −59), those with recent major losses (−420bp; 95% CI, −814 to −27), and those with above-average urinary catecholamines (e.g., epinephrine: −484bp; 95% CI, −709 to −259). Although current perceived stress was only modestly associated with shorter telomeres in this broad sample of women, our findings suggest the effect of stress on telomere length may vary depending on neuroendocrine responsiveness, external stressors, and age. PMID:19190150
Telomeres, Reproductive Aging, and Genomic Instability During Early Development.
Keefe, David L
2016-12-01
Implantation rate decreases and miscarriage rate increases with advancing maternal age. The oocyte must be the locus of reproductive aging because donation of oocytes from younger to older women abrogates the effects of aging on fecundity. Nuclear transfer experiments in a mouse model of reproductive aging show that the reproductive aging phenotype segregates with the nucleus rather than the cytoplasm. A number of factors within the nucleus have been hypothesized to mediate reproductive aging, including disruption of cohesions, reduced chiasma, aneuploidy, disrupted meiotic spindles, and DNA damage caused by chronic exposure to reactive oxygen species. We have proposed telomere attrition as a parsimonious way to explain these diverse effects of aging on oocyte function. Telomeres are repetitive sequences of DNA and associated proteins, which form a loop (t loop) at chromosome ends. Telomeres prevent the blunt end of DNA from triggering a DNA damage response. Previously, we showed that experimental telomere shortening phenocopies reproductive aging in mice. Telomere shortening causes reduced synapsis and chiasma, chromosome fusions, embryo arrest and fragmentation, and abnormal meiotic spindles. Telomere length of polar bodies predicts the fragmentation of human embryos. Telomerase, the reverse transcriptase capable of reconstituting shortened telomeres, is only minimally active in oocytes and preimplantation embryos. Intriguingly, during the first cell cycles following activation, telomeres robustly elongate via a DNA double-strand break mechanism called alternative lengthening of telomeres (ALTs). Alternative lengthening of telomere takes place even in telomerase-null mice. This mechanism of telomere elongation previously had been found only in cancer cells lacking telomerase activity. We propose that ALT elongates telomeres across generations but does so at the cost of extensive genomic instability in preimplantation embryos. © The Author(s) 2016.
Meyer, E; Butler, A; Dubrana, K; Duharcourt, S; Caron, F
1997-01-01
In ciliates, the germ line genome is extensively rearranged during the development of the somatic macronucleus from a mitotic product of the zygotic nucleus. Germ line chromosomes are fragmented in specific regions, and a large number of internal sequence elements are eliminated. It was previously shown that transformation of the vegetative macronucleus of Paramecium primaurelia with a plasmid containing a subtelomeric surface antigen gene can affect the processing of the homologous germ line genomic region during development of a new macronucleus in sexual progeny of transformed clones. The gene and telomere-proximal flanking sequences are deleted from the new macronuclear genome, although the germ line genome remains wild type. Here we show that plasmids containing nonoverlapping segments of the same genomic region are able to induce similar terminal deletions; the locations of deletion end points depend on the particular sequence used. Transformation of the maternal macronucleus with a sequence internal to a macronuclear chromosome also causes the occurrence of internal deletions between short direct repeats composed of alternating thymines and adenines. The epigenetic influence of maternal macronuclear sequences on developmental rearrangements of the zygotic genome thus appears to be both sequence specific and general, suggesting that this trans-nucleus effect is mediated by pairing of homologous sequences. PMID:9199294
NASA Astrophysics Data System (ADS)
Qi, Yingying; Li, Li; Li, Baoxin
2009-09-01
A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV-vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10 -13 to 4.5 × 10 -6 mol/L. The detection limit (3 σ) of this method has decreased to pico-molar level.
Telomere length in Chernobyl accident recovery workers in the late period after the disaster.
Reste, Jelena; Zvigule, Gunda; Zvagule, Tija; Kurjane, Natalja; Eglite, Maija; Gabruseva, Natalija; Berzina, Dace; Plonis, Juris; Miklasevics, Edvins
2014-11-01
The outcome of the Chernobyl nuclear power plant (CNPP) accident was that a huge number of people were exposed to ionizing radiation. Previous studies of CNPP clean-up workers from Latvia revealed a high occurrence of age-associated degenerative diseases and cancer in young adults, as well as a high mortality as a result of cardiovascular disorders at age 45-54 years. DNA tandem repeats that cap chromosome ends, known as telomeres, are sensitive to oxidative damage and exposure to ionizing radiation. Telomeres are important in aging processes and carcinogenesis. The aim of this study was to investigate the long-term effect of protracted ionizing radiation exposure on telomere length in CNPP clean-up workers. Relative telomere length (RTL) was measured in peripheral blood leukocytes of 595 CNPP clean-up workers and 236 gender- and age-matched controls using real-time quantitative polymerase chain reaction (q-PCR). Close attention was paid to participation year and tasks performed during the worker's stay in Chernobyl, health status, and RTL differences between subgroups. Telomere shortening was not found in CNPP clean-up workers; on the contrary, their RTL was slightly greater than in controls (P = 0.001). Longer telomeres were found in people who worked during 1986, in those undertaking 'dirty' tasks (digging and deactivation), and in people with cancer. Shorter telomeres appeared frequently in those with cataract, osteoporosis, atherosclerosis, or coronary heart disease. We conclude that the longer telomeres revealed in people more heavily exposed to ionizing radiation probably indicate activation of telomerase as a chromosome healing mechanism following damage, and reflect defects in telomerase regulation that could potentiate carcinogenesis. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Telomere length in Chernobyl accident recovery workers in the late period after the disaster
Reste, Jelena; Zvigule, Gunda; Zvagule, Tija; Kurjane, Natalja; Eglite, Maija; Gabruseva, Natalija; Berzina, Dace; Plonis, Juris; Miklasevics, Edvins
2014-01-01
The outcome of the Chernobyl nuclear power plant (CNPP) accident was that a huge number of people were exposed to ionizing radiation. Previous studies of CNPP clean-up workers from Latvia revealed a high occurrence of age-associated degenerative diseases and cancer in young adults, as well as a high mortality as a result of cardiovascular disorders at age 45–54 years. DNA tandem repeats that cap chromosome ends, known as telomeres, are sensitive to oxidative damage and exposure to ionizing radiation. Telomeres are important in aging processes and carcinogenesis. The aim of this study was to investigate the long-term effect of protracted ionizing radiation exposure on telomere length in CNPP clean-up workers. Relative telomere length (RTL) was measured in peripheral blood leukocytes of 595 CNPP clean-up workers and 236 gender- and age-matched controls using real-time quantitative polymerase chain reaction (q-PCR). Close attention was paid to participation year and tasks performed during the worker's stay in Chernobyl, health status, and RTL differences between subgroups. Telomere shortening was not found in CNPP clean-up workers; on the contrary, their RTL was slightly greater than in controls (P = 0.001). Longer telomeres were found in people who worked during 1986, in those undertaking ‘dirty’ tasks (digging and deactivation), and in people with cancer. Shorter telomeres appeared frequently in those with cataract, osteoporosis, atherosclerosis, or coronary heart disease. We conclude that the longer telomeres revealed in people more heavily exposed to ionizing radiation probably indicate activation of telomerase as a chromosome healing mechanism following damage, and reflect defects in telomerase regulation that could potentiate carcinogenesis. PMID:25015931
Smith, David Roy; Kayal, Ehsan; Yanagihara, Angel A; Collins, Allen G; Pirro, Stacy; Keeling, Patrick J
2012-01-01
Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5' end of nad2), providing evidence for a gene conversion-based model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Gyoyeon; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon; Lee, Hansol
The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Ptmore » conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.« less
A Smart DNA Tweezer for Detection of Human Telomerase Activity.
Xu, Xiaowen; Wang, Lei; Li, Kan; Huang, Qihong; Jiang, Wei
2018-03-06
Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG) n . TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold-mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/μL for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and ≥5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.
Lee, Hye Won; Park, Tae In; Jang, Se Young; Park, Soo Young; Park, Won-Jin; Jung, Soo-Jung; Lee, Jae-Ho
2017-02-01
Promoter mutations in telomerase reverse transcriptase (TERT) and telomere length have been studied in various tumors. In the present study, the frequency and clinical characteristics of TERT promoter mutation and telomere length were studied in hepatocellular carcinoma (HCC). TERT promoter mutation and telomere length were analyzed in 162 tumor samples of the patients with HCC by sequencing and real-time PCR, respectively. The TERT promoter mutation rate was 28.8% (46/160) in HCC and was associated with males (P = 0.027). The telomere length was not significantly different in the presence of a TERT promoter mutation but was shorter in high-grade tumor stages (P = 0.048). Survival analyses showed that poor overall survival was associated with longer telomere length (P = 0.013). However, the TERT promoter mutation did not have a prognostic value for HCC. Multivariate survival analyses demonstrated that the telomere length was an independent prognostic marker for poor overall survival (hazard ratio = 1.75, 95% confidence interval: 1.046-2.913, P = 0.033). These data demonstrated that TERT promoter mutation is a frequent event in HCC; however, telomere length, but not the presence of a TERT promoter mutation, might have potential value as a prognostic indicator of HCC.
Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V
2006-10-15
The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.
Song, B K; Pan, M Z; Lau, Y L; Wan, K L
2014-07-29
Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.
A Pooled Sequencing Approach Identifies a Candidate Meiotic Driver in Drosophila
Wei, Kevin H.-C.; Reddy, Hemakumar M.; Rathnam, Chandramouli; Lee, Jimin; Lin, Deanna; Ji, Shuqing; Mason, James M.; Clark, Andrew G.; Barbash, Daniel A.
2017-01-01
Meiotic drive occurs when a selfish element increases its transmission frequency above the Mendelian ratio by hijacking the asymmetric divisions of female meiosis. Meiotic drive causes genomic conflict and potentially has a major impact on genome evolution, but only a few drive loci of large effect have been described. New methods to reliably detect meiotic drive are therefore needed, particularly for discovering moderate-strength drivers that are likely to be more prevalent in natural populations than strong drivers. Here, we report an efficient method that uses sequencing of large pools of backcross (BC1) progeny to test for deviations from Mendelian segregation genome-wide with single-nucleotide polymorphisms (SNPs) that distinguish the parental strains. We show that meiotic drive can be detected by a characteristic pattern of decay in distortion of SNP frequencies, caused by recombination unlinking the driver from distal loci. We further show that control crosses allow allele-frequency distortion caused by meiotic drive to be distinguished from distortion resulting from developmental effects. We used this approach to test whether chromosomes with extreme telomere-length differences segregate at Mendelian ratios, as telomeric regions are a potential hotspot for meiotic drive due to their roles in meiotic segregation and multiple observations of high rates of telomere sequence evolution. Using four different pairings of long and short telomere strains, we find no evidence that extreme telomere-length variation causes meiotic drive in Drosophila. However, we identify one candidate meiotic driver in a centromere-linked region that shows an ∼8% increase in transmission frequency, corresponding to a ∼54:46 segregation ratio. Our results show that candidate meiotic drivers of moderate strength can be readily detected and localized in pools of BC1 progeny. PMID:28258181
Cardiac telomere length in heart development, function, and disease.
Booth, S A; Charchar, F J
2017-07-01
Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.
Knecht, Hans; Mai, Sabine
2017-01-01
The 3D nuclear architecture is closely related to cellular functions and chromosomes are organized in distinct territories. Quantitative 3D telomere FISH analysis (3D Q-FISH) and 3D super-resolution imaging (3D-SIM) at a resolution up to 80 nm as well as the recently developed combined quantitative 3D TRF2-telomere immune FISH technique (3D TRF2/Telo-Q-FISH) have substantially contributed to elucidate molecular pathogenic mechanisms of hematological diseases. Here we report the methods we applied to uncover major molecular steps involved in the pathogenesis of EBV-associated Hodgkin's lymphoma. These methods allowed us to identify the EBV-encoded oncoprotein LMP1 as a key element in the formation of Hodgkin (H-cell) and multinucleated Reed-Sternberg cells (RS-cell), the diagnostic tumor cell of classical Hodgkin's lymphoma (cHL). LMP1 mediates multinuclearity through downregulation of shelterin proteins, in particular telomere repeat binding factor 2 (TRF2).
Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R
2010-12-01
Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.
Telomere elongation in immortal human cells without detectable telomerase activity.
Bryan, T M; Englezou, A; Gupta, J; Bacchetti, S; Reddel, R R
1995-01-01
Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism. Images PMID:7556065
Telomere elongation in immortal human cells without detectable telomerase activity.
Bryan, T M; Englezou, A; Gupta, J; Bacchetti, S; Reddel, R R
1995-09-01
Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism.
NASA Astrophysics Data System (ADS)
Qu, Fei; Chen, Zeqiu; You, Jinmao; Song, Cuihua
2018-05-01
Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700 nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22 nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.
Live-cell imaging of budding yeast telomerase RNA and TERRA.
Laprade, Hadrien; Lalonde, Maxime; Guérit, David; Chartrand, Pascal
2017-02-01
In most eukaryotes, the ribonucleoprotein complex telomerase is responsible for maintaining telomere length. In recent years, single-cell microscopy techniques such as fluorescent in situ hybridization and live-cell imaging have been developed to image the RNA subunit of the telomerase holoenzyme. These techniques are now becoming important tools for the study of telomerase biogenesis, its association with telomeres and its regulation. Here, we present detailed protocols for live-cell imaging of the Saccharomyces cerevisiae telomerase RNA subunit, called TLC1, and also of the non-coding telomeric repeat-containing RNA TERRA. We describe the approach used for genomic integration of MS2 stem-loops in these transcripts, and provide information for optimal live-cell imaging of these non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Kretschmer, Rafael; Bertocchi, Natasha Avila; Degrandi, Tiago Marafiga; de Oliveira, Edivaldo Herculano Corrêa; Cioffi, Marcelo de Bello; Garnero, Analía del Valle; Gunski, Ricardo José
2017-01-01
Birds are characterized by a low proportion of repetitive DNA in their genome when compared to other vertebrates. Among birds, species belonging to Piciformes order, such as woodpeckers, show a relatively higher amount of these sequences. The aim of this study was to analyze the distribution of different classes of repetitive DNA—including microsatellites, telomere sequences and 18S rDNA—in the karyotype of three Picidae species (Aves, Piciformes)—Colaptes melanochloros (2n = 84), Colaptes campestris (2n = 84) and Melanerpes candidus (2n = 64)–by means of fluorescence in situ hybridization. Clusters of 18S rDNA were found in one microchromosome pair in each of the three species, coinciding to a region of (CGG)10 sequence accumulation. Interstitial telomeric sequences were found in some macrochromosomes pairs, indicating possible regions of fusions, which can be related to variation of diploid number in the family. Only one, from the 11 different microsatellite sequences used, did not produce any signals. Both species of genus Colaptes showed a similar distribution of microsatellite sequences, with some difference when compared to M. candidus. Microsatellites were found preferentially in the centromeric and telomeric regions of micro and macrochromosomes. However, some sequences produced patterns of interstitial bands in the Z chromosome, which corresponds to the largest element of the karyotype in all three species. This was not observed in the W chromosome of Colaptes melanochloros, which is heterochromatic in most of its length, but was not hybridized by any of the sequences used. These results highlight the importance of microsatellite sequences in differentiation of sex chromosomes, and the accumulation of these sequences is probably responsible for the enlargement of the Z chromosome. PMID:28081238
CUMULATIVE PM2.5 EXPOSURE AND TELOMERE LENGTH IN WORKERS EXPOSED TO WELDING FUMES
Wong, Jason Y. Y.; De Vivo, Immaculata; Lin, Xihong; Christiani, David C.
2014-01-01
Telomeres are genomic structures that reflect both mitotic history and biochemical trauma to the genome. Metals inherent in fine particulate matter (PM2.5) were shown to be genotoxic via oxidative damage. However, few studies investigated the induction time of cumulative PM2.5 exposure on telomere length in a longitudinal setting. Therefore, the purpose of this study was to assess the association between occupational PM2.5 exposure in various time windows and telomere length. The study population consisted of 48 boilermakers and the follow-up period was 8 yr. The main exposures were cumulative occupational PM2.5 in the month, year, and career prior to each blood draw, assessed via work history questionnaires and area air measures. Repeated telomere length measurements from leukocytes were assessed via real-time quantitative polymerase chain reaction (qPCR). Analysis was performed using linear mixed models controlling for confounders and white blood cell differentials. Cumulative PM2.5 exposure was treated continuously and categorized into quartiles, in separate analyses. At any follow-up time, for each milligram per cubic meter per hour increase in cumulative PM2.5 exposure in the prior month, there was a statistically significant decrease in relative telomere length of −0.04 units. When categorizing the exposure into quartiles, there was a significant negative association between telomere length and highest quartile of cumulative PM2.5 exposure in the prior month (−0.16). These findings suggest that genomic trauma to leukocyte telomeres was more consistent with recent occupational PM2.5 exposure, as opposed to cumulative exposure extending into the distant past. PMID:24627998
Aubert, Geraldine; Strauss, Kevin A; Lansdorp, Peter M; Rider, Nicholas L
2017-10-01
Mutations in the long noncoding RNA RNase component of the mitochondrial RNA processing endoribonuclease (RMRP) give rise to the autosomal recessive condition cartilage-hair hypoplasia (CHH). The CHH disease phenotype has some overlap with dyskeratosis congenita, a well-known "telomere disorder." RMRP binds the telomerase reverse transcriptase (catalytic subunit) in some cell lines, raising the possibility that RMRP might play a role in telomere biology. We sought to determine whether a telomere phenotype is present in immune cells from patients with CHH and explore mechanisms underlying these observations. We assessed proliferative capacity and telomere length using flow-fluorescence in situ hybridization (in situ hybridization and flow cytometry) of primary lymphocytes from patients with CHH, carrier relatives, and control subjects. The role of telomerase holoenzyme components in gene expression and activity were assessed by using quantitative PCR and the telomere repeat amplification protocol from PBMCs and enriched lymphocyte cultures. Lymphocyte cultures from patients with CHH display growth defects in vitro, which is consistent with an immune deficiency cellular phenotype. Here we show that telomere length and telomerase activity are impaired in primary lymphocyte subsets from patients with CHH. Notably, telomerase activity is affected in a gene dose-dependent manner when comparing heterozygote RMRP carriers with patients with CHH. Telomerase deficiency in patients with CHH is not mediated by abnormal telomerase gene transcript levels relative to those of endogenous genes. These findings suggest that telomere deficiency is implicated in the CHH disease phenotype through an as yet unidentified mechanism. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers
Udugama, Maheshi; Sanij, Elaine; Voon, Hsiao P. J.; Son, Jinbae; Hii, Linda; Henson, Jeremy D.; Chan, F. Lyn; Chang, Fiona T. M.; Liu, Yumei; Pearson, Richard B.; Kalitsis, Paul; Mann, Jeffrey R.; Collas, Philippe; Hannan, Ross D.; Wong, Lee H.
2018-01-01
ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers. PMID:29669917
Sarri, Catherine; Douzgou, Sofia; Gyftodimou, Yolanda; Tümer, Zeynep; Ravn, Kirstine; Pasparaki, Angela; Sarafidou, Theologia; Kontos, Harry; Kokotas, Haris; Karadima, Georgia; Grigoriadou, Maria; Pandelia, Effie; Theodorou, Virginia; Moschonas, Nicholas K; Petersen, Michael B
2011-11-01
We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited non-acrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is, to our knowledge, the third report of a 10qs chromosome. The phenotype observed in the proband prompted a search for a structural rearrangement of chromosome 10q. By microsatellite analysis we observed a 4 Mb deletion on the long arm of chromosome 10, approximately 145 kb from the telomere. FISH and array CGH analyses revealed a complex rearrangement involving in range from the centromere to the telomere: A 9.64 Mb 10q26.11-q26.2 duplication, a 1.3 Mb region with no copy number change, followed by a 5.62 Mb 10q26.2-q26.3 deletion and a translocation of satellite material. The homology between the repeat sequences at 10q subtelomere region and the sequences on the acrocentric short arms may explain the origin of the rearrangement and it is likely that the submicroscopic microdeletion and microduplication are responsible for the abnormal phenotype in our patient. The patient presented here, with a 15-year follow-up, manifests a distinct phenotype different from the 10q26 pure distal monosomy and trisomy syndromes. Copyright © 2011 Wiley Periodicals, Inc.
Yim, Young-Sun; Davis, Georgia L.; Duru, Ngozi A.; Musket, Theresa A.; Linton, Eric W.; Messing, Joachim W.; McMullen, Michael D.; Soderlund, Carol A.; Polacco, Mary L.; Gardiner, Jack M.; Coe, Edward H.
2002-01-01
Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage λ. The results indicate that the libraries are of high quality with low contamination by organellar and λ-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6× coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 × Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 ± 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction. PMID:12481051
Non-equilibrium forces drive the anomalous diffusion of telomeres in the nucleus of mammalian cells
NASA Astrophysics Data System (ADS)
Stadler, Lorenz; Weiss, Matthias
2017-11-01
Telomeres are vital nucleotide sequences at both ends of each chromosome, and their motion reports on the local dynamics of decondensed chromatin in the nucleus of interphase cells. Here, we show that the previously reported subdiffusive motion of telomeres is driven by non-equilibrium cytoskeletal forces. In particular, breaking down microtubules leads to a significantly reduced generalized diffusion coefficient of telomeres. This translates into a markedly reduced effective temperature in the stochastic forces that govern the telomeres’ random walk. Moreover, telomere motion in cells that lack microtubules is well described by the monomer dynamics of a Rouse polymer that is embeddded in a viscoelastic medium. In contrast, active cytoskeletal forces in untreated cells override the environment’s elastic contributions, resulting in the well-known scaling for conventional Rouse dynamics in viscous media. Our data highlight that even subdiffusive motion in cells in most cases may not be a simple thermal transport process but rather is driven by non-equilibrium events.
Constitutional Mutations in RTEL1 Cause Severe Dyskeratosis Congenita
Walne, Amanda J.; Vulliamy, Tom; Kirwan, Michael; Plagnol, Vincent; Dokal, Inderjeet
2013-01-01
Dyskeratosis congenita (DC) and its phenotypically severe variant, Hoyeraal-Hreidarsson syndrome (HHS), are multisystem bone-marrow-failure syndromes in which the principal pathology is defective telomere maintenance. The genetic basis of many cases of DC and HHS remains unknown. Using whole-exome sequencing, we identified biallelic mutations in RTEL1, encoding a helicase essential for telomere maintenance and regulation of homologous recombination, in an individual with familial HHS. Additional screening of RTEL1 identified biallelic mutations in 6/23 index cases with HHS but none in 102 DC or DC-like cases. All 11 mutations in ten HHS individuals from seven families segregated in an autosomal-recessive manner, and telomere lengths were significantly shorter in cases than in controls (p = 0.0003). This group had significantly higher levels of telomeric circles, produced as a consequence of incorrect processing of telomere ends, than did controls (p = 0.0148). These biallelic RTEL1 mutations are responsible for a major subgroup (∼29%) of HHS. Our studies show that cells harboring these mutations have significant defects in telomere maintenance, but not in homologous recombination, and that incorrect resolution of T-loops is a mechanism for telomere shortening and disease causation in humans. They also demonstrate the severe multisystem consequences of its dysfunction. PMID:23453664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deidda, G.; Grisanti, P.; Vigneti, E.
1994-09-01
The gene for facioscapulohumeral muscular dystrophy (FSHD) has been localized by linkage analysis to the 4q35 region. The most telomeric p13E-11 prove has been shown to detect 4q35 DNA rearrangements in both sporadic and familial cases of the disease. With the aim of constructing a detailed physical map of the 4q35 region and searching for the mutant gene, we used p13E-11 probe to isolate cosmid clones from a human genomic library in a pCos-EMBL 2 vector. Two positive clones were isolated, clones 3 and 5, which partially overlap and carry human genomic inserts of 42 and 45 kb, respectively. Themore » cosmids share a common region containing the p13E-11 region and a stretch of KpnI units consisting of 3.2 kb tandemly repeated sequences (about 10). The restriction maps were constructed using the following enzymes: Bam HI, BgIII, Eco RI, EcoRV, KpnI and Sfi I. Clone 3 extends 4 kb upstream of C5 and stops within the Kpn repeats. Clone 5 extends 4 kb downstream from the Kpn repeats and it presents an additional EcoRI site. Clone 5 contains a stretch of Kpn sequences of nearly 32 kb, corresponding to 10 Kpn repeats; clone 3 contains a stretch of 29 kb corresponding to 9 Kpn repeats, as determined by PFGE analysis of partial digestion of the clones. Clone 5 seems to contain the entire Eco RI region prone to rearrangements in FSHD patients. From clone 5 several subclones were obtained, from the Kpn region and from the region spanning from the last Kpn repeat to the cloning site. No single copy sequences were detected. Subclones from the 3{prime} end region contain beta-satellite or Sau3A-like sequences. In situ hybridization with the whole C5 cosmid shows hybridization signals at the tip of chromosome 4 (4q35) and chromosome 10 (10q26), in the pericentromeric region of chromosome 1 (1q12) and in the p12 region of the acrocentric chromosomes (chr. 21, 22, 13, 14, 15).« less
Tera, Masayuki; Iida, Keisuke; Shin-ya, Kazuo; Nagasawa, Kazuo
2009-01-01
Guanine-rich DNA sequences form unique three-dimensional conformation known as G-quadruplexes (G-q). G-q structures have been found in telomere and in some oncogene promoter. Recently, it was suggested that G-q showed some biological activities including telomere shortening and transcriptional regulation. In this paper, we synthesized selective G-q binders and evaluated of their biological activities.
Shammas, Masood A; Qazi, Aamer; Batchu, Ramesh B; Bertheau, Robert C; Wong, Jason Y Y; Rao, Manjula Y; Prasad, Madhu; Chanda, Diptiman; Ponnazhagan, Selvarangan; Anderson, Kenneth C; Steffes, Christopher P; Munshi, Nikhil C; De Vivo, Immaculata; Beer, David G; Gryaznov, Sergei; Weaver, Donald W; Goyal, Raj K
2008-08-01
The aims of this study were to investigate telomere function in normal and Barrett's esophageal adenocarcinoma (BEAC) cells purified by laser capture microdissection and to evaluate the effect of telomerase inhibition in cancer cells in vitro and in vivo. Epithelial cells were purified from surgically resected esophagi. Telomerase activity was measured by modified telomeric repeat amplification protocol and telomere length was determined by real-time PCR assay. To evaluate the effect of telomerase inhibition, adenocarcinoma cell lines were continuously treated with a specific telomerase inhibitor (GRN163L) and live cell number was determined weekly. Apoptosis was evaluated by Annexin labeling and senescence by beta-galactosidase staining. For in vivo studies, severe combined immunodeficient mice were s.c. inoculated with adenocarcinoma cells and following appearance of palpable tumors, injected i.p. with saline or GRN163L. Telomerase activity was significantly elevated whereas telomeres were shorter in BEAC cells relative to normal esophageal epithelial cells. The treatment of adenocarcinoma cells with telomerase inhibitor, GRN163L, led to loss of telomerase activity, reduction in telomere length, and growth arrest through induction of both the senescence and apoptosis. GRN163L-induced cell death could also be expedited by addition of the chemotherapeutic agents doxorubicin and ritonavir. Finally, the treatment with GRN163L led to a significant reduction in tumor volume in a subcutaneous tumor model. We show that telomerase activity is significantly elevated whereas telomeres are shorter in BEAC and suppression of telomerase inhibits proliferation of adenocarcinoma cells both in vitro and in vivo.
Physical Activity, Physical Fitness and Leukocyte Telomere Length: the Cardiovascular Health Study.
Soares-Miranda, Luisa; Imamura, Fumiaki; Siscovick, David; Jenny, Nancy Swords; Fitzpatrick, Annette L; Mozaffarian, Dariush
2015-01-01
Introduction The influence of physical activity (PA) and physical fitness (PF) at older ages on changes in telomere length (TL), repetitive DNA sequences that may mark biologic aging, is not well-established. Few prior studies have been conducted in older adults, these were mainly cross-sectional, and few evaluated PF. Methods We investigated cross-sectional and prospective associations of PA and PF with leukocyte TL among 582 older adults (age 73±5 y at baseline) in the Cardiovascular Health Study, having serial TL measures and PA and PF assessed multiple times. Cross-sectional associations were assessed using multivariable repeated-measures regression, in which cumulatively averaged PA and PF measures were related to TL. Longitudinal analyses assessed cumulatively averaged PA and PF against later changes in TL; and changes in cumulatively averaged PA and PF against changes in TL. Results Cross-sectionally, greater walking distance and chair test performance, but not other PA and PF measures, were each associated with longer TL (p-trend=0.007, 0.04 respectively). In longitudinal analyses, no significant associations of baseline PA and PF with change in TL were observed. In contrast, changes in leisure-time activity and chair test performance were each inversely associated with changes in TL. Conclusions Cross-sectional analyses suggest that greater PA and PF are associated with longer TL. Prospective analyses show that changes in PA and PF are associated with differences in changes in TL. Even later in life, changes in certain PA and PF measures are associated with changes in TL, suggesting that leisure-time activity and fitness could reduce leukocyte telomere attrition among older adults. PMID:26083773
G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding
Ray, Sujay; Bandaria, Jigar N.; Qureshi, Mohammad H.; Yildiz, Ahmet; Balci, Hamza
2014-01-01
Human telomeres terminate with a single-stranded 3′ G overhang, which can be recognized as a DNA damage site by replication protein A (RPA). The protection of telomeres (POT1)/POT1-interacting protein 1 (TPP1) heterodimer binds specifically to single-stranded telomeric DNA (ssTEL) and protects G overhangs against RPA binding. The G overhang spontaneously folds into various G-quadruplex (GQ) conformations. It remains unclear whether GQ formation affects the ability of POT1/TPP1 to compete against RPA to access ssTEL. Using single-molecule Förster resonance energy transfer, we showed that POT1 stably loads to a minimal DNA sequence adjacent to a folded GQ. At 150 mM K+, POT1 loading unfolds the antiparallel GQ, as the parallel conformation remains folded. POT1/TPP1 loading blocks RPA’s access to both folded and unfolded telomeres by two orders of magnitude. This protection is not observed at 150 mM Na+, in which ssTEL forms only a less-stable antiparallel GQ. These results suggest that GQ formation of telomeric overhangs may contribute to suppression of DNA damage signals. PMID:24516170
The cohering telomeres of Oxytricha.
Oka, Y; Thomas, C A
1987-01-01
We have studied the process by which purified Oxytricha macronuclear DNA associates with itself to form large aggregates. The various macronuclear DNA molecules all have the same terminal or telomeric DNA sequences that are shown below. 5' C4A4C4A4C4--mean length----G4T4G4T4G4T4G4T4G4 G4T4G4T4G4T4G4T4G4-----2.4 kb------C4A4C4A4C4. When incubated at high concentrations, these telomeric sequences cohere with one another to form an unusual structure--one that is quite different from any DNA structure so far described. The evidence for this is the following: 1) These sequences cohere albeit slowly, in the presence of relatively high concentrations of Na+, and no other cation tested. This contrasts with the rapid coherence of complementary single-chain terminals of normal DNA (sticky ends) which occurs in the presence of any cation tested. 2) If the cohered form is transferred into buffers containing a special cation, K+, it becomes much more resistant to dissociation by heating. We estimate that K+ increases the thermal stability by 25 degrees or more. The only precedent known (to us) for a cation-specific stabilization is that seen in the quadruplex structure formed by poly I. The thermal stability of double helical macronuclear DNA depends on the cation concentration, but not the cation type. Limited treatment with specific nucleases show that the 3' and 5'-ended strands are essential for the formation of the cohering structure. Once in the cohered form, the telomeric sequences are protected from the action of nucleases. Coherence is inhibited by specific, but not by non-specific, synthetic oligomers, and by short telomeric fragments with or without their terminal single chains. We conclude that the coherence occurs by the formation of a novel condensed structure that involves the terminal nucleotides in three or four chains. Images PMID:3120149
Guerrini, A M; Ascenzioni, F; Tribioli, C; Donini, P
1985-01-01
Linear plasmids were constructed by adding telomeres prepared from Tetrahymena pyriformis rDNA to a circular hybrid Escherichia coli-yeast vector and transforming Saccharomyces cerevisiae. The parental vector contained the entire 2 mu yeast circle and the LEU gene from S. cerevisiae. Three transformed clones were shown to contain linear plasmids which were characterized by restriction analysis and shown to be rearranged versions of the desired linear plasmids. The plasmids obtained were imperfect palindromes: part of the parental vector was present in duplicated form, part as unique sequences and part was absent. The sequences that had been lost included a large portion of the 2 mu circle. The telomeres were approximately 450 bp longer than those of T. pyriformis. DNA prepared from transformed S. cerevisiae clones was used to transform Schizosaccharomyces pombe. The transformed S. pombe clones contained linear plasmids identical in structure to their linear parents in S. cerevisiae. No structural re-arrangements or integration into S. pombe was observed. Little or no telomere growth had occurred after transfer from S. cerevisiae to S. pombe. A model is proposed to explain the genesis of the plasmids. Images Fig. 1. Fig. 2. Fig. 4. PMID:3896773
Reactivation of Chromosomally Integrated Human Herpesvirus-6 by Telomeric Circle Formation
Prusty, Bhupesh K.; Krohne, George; Rudel, Thomas
2013-01-01
More than 95% of the human population is infected with human herpesvirus-6 (HHV-6) during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6). In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle) formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR). Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation. PMID:24367281
Insights into the RNA quadruplex binding specificity of DDX21.
McRae, Ewan K S; Davidson, David E; Dupas, Steven J; McKenna, Sean A
2018-06-12
Guanine quadruplexes can form in both DNA and RNA and influence many biological processes through various protein interactions. The DEAD-box RNA helicase protein DDX21 has been shown to bind and remodel RNA quadruplexes but little is known about its specificity for different quadruplex species. Previous reports have suggested DDX21 may interact with telomeric repeat containing RNA quadruplex (TERRA), an integral component of the telomere that contributes to telomeric heterochromatin formation and telomere length regulation. Here we report that the C-terminus of DDX21 specifically binds to TERRA. We use, for the first time, 2D saturation transfer difference NMR to map the protein binding site on a ribonucleic acid species and show that the quadruplex binding domain of DDX21 interacts primarily with the phosphoribose backbone of quadruplexes. Furthermore, by mutating the 2'OH of loop nucleotides we can drastically reduce DDX21's affinity for quadruplex, indicating that the recognition of quadruplex and specificity for TERRA is mediated by interactions with the 2'OH of loop nucleotides. Copyright © 2018. Published by Elsevier B.V.
Constitutional mutations in RTEL1 cause severe dyskeratosis congenita.
Walne, Amanda J; Vulliamy, Tom; Kirwan, Michael; Plagnol, Vincent; Dokal, Inderjeet
2013-03-07
Dyskeratosis congenita (DC) and its phenotypically severe variant, Hoyeraal-Hreidarsson syndrome (HHS), are multisystem bone-marrow-failure syndromes in which the principal pathology is defective telomere maintenance. The genetic basis of many cases of DC and HHS remains unknown. Using whole-exome sequencing, we identified biallelic mutations in RTEL1, encoding a helicase essential for telomere maintenance and regulation of homologous recombination, in an individual with familial HHS. Additional screening of RTEL1 identified biallelic mutations in 6/23 index cases with HHS but none in 102 DC or DC-like cases. All 11 mutations in ten HHS individuals from seven families segregated in an autosomal-recessive manner, and telomere lengths were significantly shorter in cases than in controls (p = 0.0003). This group had significantly higher levels of telomeric circles, produced as a consequence of incorrect processing of telomere ends, than did controls (p = 0.0148). These biallelic RTEL1 mutations are responsible for a major subgroup (∼29%) of HHS. Our studies show that cells harboring these mutations have significant defects in telomere maintenance, but not in homologous recombination, and that incorrect resolution of T-loops is a mechanism for telomere shortening and disease causation in humans. They also demonstrate the severe multisystem consequences of its dysfunction. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin
2018-01-01
Abstract Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG)n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs. PMID:29675138
Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin
2018-01-01
Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG) n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs.
Variable TERRA abundance and stability in cervical cancer cells.
Oh, Bong-Kyeong; Keo, Ponnarath; Bae, Jaeman; Ko, Jung Hwa; Choi, Joong Sub
2017-06-01
Telomeres are transcribed into long non-coding RNA, referred to as telomeric repeat-containing RNA (TERRA), which plays important roles in maintaining telomere integrity and heterochromatin formation. TERRA has been well characterized in HeLa cells, a type of cervical cancer cell. However, TERRA abundance and stability have not been examined in other cervical cancer cells, at least to the best of our knowledge. Thus, in this study, we measured TERRA levels and stability, as well as telomere length in 6 cervical cancer cell lines, HeLa, SiHa, CaSki, HeLa S3, C-33A and SNU-17. We also examined the association between the TERRA level and its stability and telomere length. We found that the TERRA level was several fold greater in the SiHa, CaSki, HeLa S3, C-33A and SNU-17 cells, than in the HeLa cells. An RNA stability assay of actinomycin D-treated cells revealed that TERRA had a short half-life of ~4 h in HeLa cells, which was consistent with previous studies, but was more stable with a longer half-life (>8 h) in the other 5 cell lines. Telomere length varied from 4 to 9 kb in the cells and did not correlate significantly with the TERRA level. On the whole, our data indicate that TERRA abundance and stability vary between different types of cervical cancer cells. TERRA degrades rapidly in HeLa cells, but is maintained stably in other cervical cancer cells that accumulate higher levels of TERRA. TERRA abundance is associated with the stability of RNA in cervical cancer cells, but is unlikely associated with telomere length.
Meningiomas, dicentric chromosomes, gliomas, and telomerase activity.
Carroll, T; Maltby, E; Brock, I; Royds, J; Timperley, W; Jellinek, D
1999-08-01
Lack of telomere maintenance during cell replication leads to telomere erosion and loss of function. This can result in telomere associations which probably cause the dicentric chromosomes seen in some tumour cells. One mechanism of telomere maintenance in dividing cells is the action of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening during cell division. Over 90 per cent of extracranial malignant neoplasms have been found to have telomerase activity. This study sought to determine if there was a relationship between absence of telomerase activity and presence of dicentric chromosomes in meningiomas and to what extent the other main group of central nervous system tumours, the gliomas, expressed telomerase activity. Telomerase activity was measured on 25 meningiomas and 29 gliomas. Four of the meningiomas were atypical variants and 11 were positive for dicentric chromosomes. Twenty-five of 29 gliomas were glioblastoma multiforme tumours. Measures were taken to ensure absence of false positives due to primer-dimer interaction and false negatives due to protein degradation or the presence of Taq polymerase inhibitors. All 25 meningiomas and the four low-grade gliomas (WHO grade II) were telomerase activity-negative. Seven (28 per cent) of the 25 glioblastoma multiforme tumours showed telomerase activity. The absence of telomerase activity in meningiomas and the high frequency of telomere associations support the hypothesis that these tumours are benign, transformed but pre-crisis. The relatively low frequency of telomerase activity in the malignant glioblastoma multiforme suggests that most of these tumours may have other mechanisms of telomere maintenance and that the potentially therapeutic telomerase inhibitors will not be of great value in the future management of the majority of patients suffering from these tumours. Copyright 1999 John Wiley & Sons, Ltd.
Telomere Fragment Induced Amnion Cell Senescence: A Contributor to Parturition?
Polettini, Jossimara; Behnia, Faranak; Taylor, Brandie D.; Saade, George R.; Taylor, Robert N.; Menon, Ramkumar
2015-01-01
Oxidative stress (OS)-induced senescence of the amniochorion has been associated with parturition at term. We investigated whether telomere fragments shed into the amniotic fluid (AF) correlated with labor status and tested if exogenous telomere fragments (T-oligos) could induce human and murine amnion cell senescence. In a cross-sectional clinical study, AF telomere fragment concentrations quantitated by a validated real-time PCR assay were higher in women in labor at term compared to those not in labor. In vitro treatment of primary human amnion epithelial cells with 40 μM T-oligos ([TTAGGG]2) that mimic telomere fragments, activated p38MAPK, produced senescence-associated (SA) β-gal staining and increased interleukin (IL)-6 and IL-8 production compared to cells treated with complementary DNA sequences (Cont-oligos, [AATCCC]2). T-oligos injected into the uteri of pregnant CD1 mice on day 14 of gestation, led to increased p38MAPK, SA-β-gal (SA β-gal) staining in murine amniotic sacs and higher AF IL-8 levels on day 18, compared to saline treated controls. In summary, term labor AF samples had higher telomere fragments than term not in labor AF. In vitro and in situ telomere fragments increased human and murine amnion p38MAPK, senescence and inflammatory cytokines. We propose that telomere fragments released from senescent fetal cells are indicative of fetal cell aging. Based on our data, these telomere fragments cause oxidative stress associated damages to the term amniotic sac and force them to release other DAMPS, which, in turn, provide a sterile immune response that may be one of the many inflammatory signals required to initiate parturition at term. PMID:26397719
Jeyapalan, Jennie N; Mendez-Bermudez, Aaron; Zaffaroni, Nadia; Dubrova, Yuri E; Royle, Nicola J
2008-06-01
Immortalized and cancer cells maintain their telomeres by activation of a telomere maintenance mechanism (TMM). In approximately 85% of cancers telomerase is activated (TA) but in some tumours, in particular sarcomas, an alternative lengthening of telomeres (ALT) pathway is used. Liposarcomas are the most common soft-tissue sarcoma in adults and they activate ALT or telomerase with equal frequency, however no TMM has been identified in approximately 50% of liposarcomas. In our study, we have shown that instability at the minisatellite MS32, usually associated with ALT activation, aids the identification of liposarcomas that have recombination-like activity at telomeres in absence of ALT associated PML-bodies (APBs). Furthermore, using single molecule telomere analysis, we have detected complex telomere mutations directly in ALT positive liposarcomas and interestingly in some liposarcomas with an unknown TMM but high MS32 instability. We have shown by sequence analysis that some of these complex telomere mutations must arise by an inter-molecular recombination-like process rather than by deletion caused by t-loop excision or by unequal telomere-sister-chromatid-exchange (T-SCE), which is known to be elevated in ALT cell lines. Preliminary evidence also suggests that inter-molecular recombination events may be processed differently in liposarcomas with APBs compared to those without. In conclusion, we have shown for the first time, that some telomerase negative liposarcomas without APBs have other features associated with ALT, indicating that the incidence of ALT in these tumours has previously been under-estimated. This has major implications for the use of cancer treatments targeted at TMMs. (c) 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polonskaya, Zhanna; Benham, Craig J.; Hearing, Janet
The minimal replicator of the Epstein-Barr virus (EBV) latent cycle origin of DNA replication oriP is composed of two binding sites for the Epstein-Barr virus nuclear antigen-1 (EBNA-1) and flanking inverted repeats that bind the telomere repeat binding factor TRF2. Although not required for minimal replicator activity, additional binding sites for EBNA-1 and TRF2 and one or more auxiliary elements located to the right of the EBNA-1/TRF2 sites are required for the efficient replication of oriP plasmids. Another region of oriP that is predicted to be destabilized by DNA supercoiling is shown here to be an important functional component ofmore » oriP. The ability of DNA fragments of unrelated sequence and possessing supercoiled-induced DNA duplex destabilized (SIDD) structures, but not fragments characterized by helically stable DNA, to substitute for this component of oriP demonstrates a role for the SIDD region in the initiation of oriP-plasmid DNA replication.« less
Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S
2016-05-01
Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P < 0.0001 and P = 0.0078, respectively. There were no statistically significant differences in the numbers of telomere aggregates or the nuclear volumes between the tumor and normal epithelial cells. Secondary analyses examined the effects of age on 3D telomere architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture between the ESCC and normal epithelial tissues. However, there were no differences observed between the young and old patients. © 2015 International Society for Diseases of the Esophagus.
Extended clinical and genetic spectrum associated with biallelic RTEL1 mutations.
Touzot, Fabien; Kermasson, Laetitia; Jullien, Laurent; Moshous, Despina; Ménard, Christelle; Ikincioğullari, Aydan; Doğu, Figen; Sari, Sinan; Giacobbi-Milet, Vannina; Etzioni, Amos; Soulier, Jean; Londono-Vallejo, Arturo; Fischer, Alain; Callebaut, Isabelle; de Villartay, Jean-Pierre; Leblanc, Thierry; Kannengiesser, Caroline; Revy, Patrick
2016-11-29
Telomeres are repetitive hexameric sequences located at the end of linear chromosomes. They adopt a lariat-like structure, the T-loop, to prevent them from being recognized as DNA breaks by the DNA repair machinery. RTEL1 is a DNA helicase required for proper telomere replication and stability. In particular, it has been postulated that RTEL1 is involved in the opening of the T-loop during telomere replication to avoid sudden telomere deletion and telomere circle (T-circle) formation. In humans, biallelic RTEL1 mutations cause Hoyeraal-Hreidarsson syndrome (HH), a rare and severe telomere biology disorder characterized by intrauterine growth retardation, bone marrow failure, microcephaly and/or cerebellar hypoplasia, and immunodeficiency. To date, 18 different RTEL1 mutations have been described in 19 cases of HH with short telomeres. The impaired T-loop resolution has been proposed to be a major cause of telomere shortening in RTEL1 deficiency. However, the biological and clinical consequences of this disorder remain incompletely documented. Here, we describe 4 new patients harboring biallelic RTEL1 mutations, including 2 novel missense mutations located in the C-terminal end of RTEL1 (p.Cys1268Arg and p.Val1294Phe). Clinical characteristics from these 4 patients were collected as those from 4 other RTEL1-deficient patients previously reported. In addition, we assessed whether T-circles, the product of improper T-loop resolution, were detected in our RTEL1-deficient patients. Overall, our study broadens and refines the clinical and biological spectrum of human RTEL1 deficiency.
Extended clinical and genetic spectrum associated with biallelic RTEL1 mutations
Kermasson, Laetitia; Jullien, Laurent; Moshous, Despina; Ménard, Christelle; Ikincioğullari, Aydan; Doğu, Figen; Sari, Sinan; Giacobbi-Milet, Vannina; Etzioni, Amos; Soulier, Jean; Londono-Vallejo, Arturo; Fischer, Alain; Callebaut, Isabelle; de Villartay, Jean-Pierre; Leblanc, Thierry; Kannengiesser, Caroline; Revy, Patrick
2016-01-01
Telomeres are repetitive hexameric sequences located at the end of linear chromosomes. They adopt a lariat-like structure, the T-loop, to prevent them from being recognized as DNA breaks by the DNA repair machinery. RTEL1 is a DNA helicase required for proper telomere replication and stability. In particular, it has been postulated that RTEL1 is involved in the opening of the T-loop during telomere replication to avoid sudden telomere deletion and telomere circle (T-circle) formation. In humans, biallelic RTEL1 mutations cause Hoyeraal-Hreidarsson syndrome (HH), a rare and severe telomere biology disorder characterized by intrauterine growth retardation, bone marrow failure, microcephaly and/or cerebellar hypoplasia, and immunodeficiency. To date, 18 different RTEL1 mutations have been described in 19 cases of HH with short telomeres. The impaired T-loop resolution has been proposed to be a major cause of telomere shortening in RTEL1 deficiency. However, the biological and clinical consequences of this disorder remain incompletely documented. Here, we describe 4 new patients harboring biallelic RTEL1 mutations, including 2 novel missense mutations located in the C-terminal end of RTEL1 (p.Cys1268Arg and p.Val1294Phe). Clinical characteristics from these 4 patients were collected as those from 4 other RTEL1-deficient patients previously reported. In addition, we assessed whether T-circles, the product of improper T-loop resolution, were detected in our RTEL1-deficient patients. Overall, our study broadens and refines the clinical and biological spectrum of human RTEL1 deficiency. PMID:29296694
Buczek, Pawel; Horvath, Martin P.
2010-01-01
The Oxytricha nova telomere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (ΔH), entropy (ΔS), and dissociation constant (KD-DNA) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T2G4), d(T4G4), d(G3T4G4), and d(G4T4G4) each formed monovalent protein complexes. In the case of d(T4G4T4G4), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity “A site” has a dissociation constant, KD-DNA(A)=13(±4) nM, while the low-affinity “B site” is characterized by KD-DNA(B)=5600(±600) nM at 25 °C. Nucleotide substitution variants verified that the A site corresponds principally with the 3′-terminal portion of d(T4G4T4G4). The relative contributions of entropy (ΔS) and enthalpy (ΔH) for binding reactions were DNA length-dependent as was heat capacity (ΔCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA–protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology. PMID:16678852
Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability.
Safa, Layal; Delagoutte, Emmanuelle; Petruseva, Irina; Alberti, Patrizia; Lavrik, Olga; Riou, Jean-François; Saintomé, Carole
2014-08-01
Replication protein A (RPA) is a single-stranded DNA binding protein that plays an essential role in telomere maintenance. RPA binds to and unfolds G-quadruplex (G4) structures formed in telomeric DNA, thus facilitating lagging strand DNA replication and telomerase activity. To investigate the effect of G4 stability on the interactions with human RPA (hRPA), we used a combination of biochemical and biophysical approaches. Our data revealed an inverse relationship between G4 stability and ability of hRPA to bind to telomeric DNA; notably small G4 ligands that enhance G4 stability strongly impaired G4 unfolding by hRPA. To gain more insight into the mechanism of binding and unfolding of telomeric G4 structures by RPA, we carried out photo-crosslinking experiments to elucidate the spatial arrangement of the RPA subunits along the DNA strands. Our results showed that RPA1 and RPA2 are arranged from 5' to 3' along the unfolded telomeric G4, as already described for unstructured single-stranded DNA, while no contact is possible with RPA3 on this short oligonucleotide. In addition, these data are compatible with a 5' to 3' directionality in G4 unfolding by hRPA. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.
Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno
2015-08-01
Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.
The Hmr and Lhr Hybrid Incompatibility Genes Suppress a Broad Range of Heterochromatic Repeats
Satyaki, P. R. V.; Cuykendall, Tawny N.; Wei, Kevin H-C.; Brideau, Nicholas J.; Kwak, Hojoong; Aruna, S.; Ferree, Patrick M.; Ji, Shuqing; Barbash, Daniel A.
2014-01-01
Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background. PMID:24651406
Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H; Yang, Rui; Killela, Patrick J; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Liang, Junbo; Wang, Sizhen; Jiao, Yuchen; Yan, Hai; Tao, Hou-Quan
2015-05-01
Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter region in human cancers. Large scale studies of these mutations in multiple tumour types are limited, in particular in Asian populations. This study aimed to: analyse TERT promoter mutations in multiple tumour types in a large Chinese patient cohort, investigate novel tumour types and assess the functional significance of the mutations. TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumour types and 799 tumour tissues from Chinese cancer patients. Thymic epithelial tumours, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), telomerase activity by the telomeric repeat amplification protocol (TRAP) assay and promoter activity by the luciferase reporter assay. TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%) and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in gastrointestinal stromal tumour (GIST), thymic epithelial tumours, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. TERT promoter mutations are frequent in multiple tumour types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumourigenesis, making them potential therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kehrer-Sawatzki, Hildegard; Schreiner, Bettina; Tänzer, Simone; Platzer, Matthias; Müller, Stefan; Hameister, Horst
2002-01-01
A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2–39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes. PMID:12094327
Grandin, Nathalie; Charbonneau, Michel
2007-01-01
Saccharomyces cerevisiae telomerase-negative cells undergo homologous recombination on subtelomeric or TG1–3 telomeric sequences, thus allowing Type I or Type II post-senescence survival, respectively. Here, we find that the DNA damage sensors, Mec1, Mec3 and Rad24 control Type II recombination, while the Rad9 adaptor protein and the Rad53 and Chk1 effector kinases have no effect on survivor type selection. Therefore, the Mec1 and Mec3 checkpoint complexes control telomeric recombination independently of their roles in generating and amplifying the Mec1-Rad53-Chk1 kinase cascade. rfa1-t11 mutant cells, bearing a mutation in Replication Protein A (RPA) conferring a defect in recruiting Mec1-Ddc2, were also deficient in both types of telomeric recombination. Importantly, expression of an Rfa1-t11-Ddc2 hybrid fusion protein restored checkpoint-dependent arrest, but did not rescue defective telomeric recombination. Therefore, the Rfa1-t11-associated defect in telomeric recombination is not solely due to its failure to recruit Mec1. We have also isolated novel alleles of RFA1 that were deficient in Type I but not in Type II recombination and proficient in checkpoint control. Therefore, the checkpoint and recombination functions of RPA can be genetically separated, as can the RPA-mediated control of the two types of telomeric recombination. PMID:17202155
Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek
Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA,more » which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.« less
Identification of Telomerase Components and Telomerase Regulating Factors in Yeast
1998-07-01
subunit of telomerase in S. cerevisiae is encoded by TLCJ (7). Recently , through sequence comparison with the telomerase catalytic 6 subunit from Euplotes...length maintenance has been unclear, although very recent data has shown that Ku80p can be found specifically associated with telomeric DNA in vivo...chromatin structure. It has been recently observed that loss of either YKU80 or HDF1 results in altered telomere end structure, such that there appears to
Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?
Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo
2017-04-15
Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.
Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P.; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina
2012-01-01
Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies. PMID:22387016
Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu
2016-07-19
The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.
Advances in the detection of telomerase activity using isothermal amplification
Zhang, Xiaojin; Lou, Xiaoding; Xia, Fan
2017-01-01
Telomerase plays a significantly important role in keeping the telomere length of a chromosome. Telomerase overexpresses in nearly all tumor cells, suggesting that telomerase could be not only a promising biomarker but also a potential therapeutic target for cancers. Therefore, numerous efforts focusing on the detection of telomerase activity have been reported from polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assays to PCR-free assays such as isothermal amplification in recent decade. In this review, we highlight the strategies for the detection of telomerase activity using isothermal amplification and discuss some of the challenges in designing future telomerase assays as well. PMID:28638472
Pontvianne, Frédéric; Carpentier, Marie-Christine; Durut, Nathalie; Pavlištová, Veronika; Jaške, Karin; Schořová, Šárka; Parrinello, Hugues; Rohmer, Marine; Pikaard, Craig S; Fojtová, Miloslava; Fajkus, Jiří; Saez-Vasquez, Julio
2017-01-01
The nucleolus is the site of ribosomal RNA (rRNA) gene transcription, rRNA processing and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli by Fluorescence Activated Cell Sorting (FACS) and identified Nucleolus-Associated Chromatin Domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein, NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions and mostly inactive protein-coding genes. However, NADs also include active ribosomal RNA genes, and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance. PMID:27477271
Sex differences in telomeres and lifespan in Soay sheep: From the beginning to the end.
Dantzer, Ben; Garratt, Michael
2017-06-01
There is tremendous diversity in ageing rates and lifespan not only among taxa but within species, and particularly between the sexes. Women often live longer than men, and considerable research on this topic has revealed some of the potential biological, psychological and cultural causes of sex differences in human ageing and lifespan. However, sex differences in lifespan are widespread in nonhuman animals suggesting biology plays a prominent role in variation in ageing and lifespan. Recently, evolutionary biologists have borrowed techniques from biomedicine to identify whether similar mechanisms causing or contributing to variation in ageing and lifespan in humans and laboratory animals also operate in wild animals. Telomeres are repetitive noncoding DNA sequences capping the ends of chromosomes that are important for chromosomal stability but that can shorten during normal cell division and exposure to stress. Telomere shortening is hypothesized to directly contribute to the ageing process as once telomeres shorten to some length, the cells stop dividing and die. Men tend to have shorter telomeres and faster rates of telomere attrition with age than women, suggesting one possible biological cause of sex differences in lifespan. In this issue of Molecular Ecology, Watson et al. () show that telomere lengths in wild Soay sheep are similar between females and males near the beginning of life but quickly diverge with age because males but not females showed reduced telomere lengths at older ages. The authors further show that some of the observed sex difference in telomere lengths in old age may be due to male investment in horn growth earlier in life, suggesting that sexually dimorphic allocation to traits involved in sexual selection might underlie sex differences in telomere attrition. This study provides a rare example of how biological mechanisms potentially contributing to sex differences in lifespan in humans may also operate in free-living animals. However, future studies using a longitudinal approach are necessary to confirm these observations and identify the ultimate and proximate causes of any sex differences in telomere lengths. Collaborations between evolutionary biologists and gerontologists are especially needed to identify whether telomere lengths have a causal role in ageing, particularly in natural conditions, and whether this directly contributes to sex differences in lifespan. © 2017 John Wiley & Sons Ltd.
Smearman, Erica L; Yu, Tianyi; Brody, Gene H
2016-02-01
Parent-child relationships with high conflict and low warmth and support are associated with later adverse behavioral and physiological child outcomes. These outcomes include shorter telomere lengths, the repetitive sequences at the ends of chromosomes that have been utilized as a biomarker for chronic stress. Our research group furthered this by exploring telomere length outcomes following a family-based prevention program and identified reduced telomere shortening 5 years post intervention among those originally exposed to nonsupportive parenting and randomized to the intervention condition. However, not all individuals respond equally, and a growing literature suggests genetic sensitivity to one's environment, with variations in the oxytocin receptor gene (OXTR) potentially influencing this sensitivity. We utilized data from African American youths (mean age 17) randomized to intervention (n = 100) or control condition (n = 91) with baseline assessments of genetic status and nonsupportive parenting, and 5-year follow-up assessments of telomere length. We found a significant three-way interaction between nonsupportive parenting, intervention condition, and OXTR rs53576 genotype. OXTR GG individuals, who are suggested to be more sensitive to their social environment, exhibited significantly more variability, evidencing the shortest telomeres when exposed to nonsupportive parenting and randomized to the control condition, and similar telomere lengths to non at-risk groups when randomized to the intervention. In contrast, those with the A allele showed no statistical difference in telomere lengths across parental and intervention conditions. Subsequent analyses suggest that these findings may be mediated through chronic anger, whereby GG individuals exposed to nonsupportive parenting and randomized to the control condition had a greater increase in chronic anger by study follow-up, compared to those in the intervention, and this change associated with greater telomere shortening. These findings highlight the importance of individual differences and potential role of genetic status in moderating the relationship between environmental contexts and biological outcomes.
Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms
Marsh, Judith C. W.; Gutierrez-Rodrigues, Fernanda; Cooper, James; Jiang, Jie; Gandhi, Shreyans; Kajigaya, Sachiko; Feng, Xingmin; Ibanez, Maria del Pilar F.; Donaires, Flávia S.; Lopes da Silva, João P.; Li, Zejuan; Das, Soma; Ibanez, Maria; Smith, Alexander E.; Lea, Nicholas; Best, Steven; Ireland, Robin; Kulasekararaj, Austin G.; McLornan, Donal P.; Pagliuca, Anthony; Callebaut, Isabelle; Young, Neal S.; Calado, Rodrigo T.; Townsley, Danielle M.
2018-01-01
Biallelic germline mutations in RTEL1 (regulator of telomere elongation helicase 1) result in pathologic telomere erosion and cause dyskeratosis congenita. However, the role of RTEL1 mutations in other bone marrow failure (BMF) syndromes and myeloid neoplasms, and the contribution of monoallelic RTEL1 mutations to disease development are not well defined. We screened 516 patients for germline mutations in telomere-associated genes by next-generation sequencing in 2 independent cohorts; one constituting unselected patients with idiopathic BMF, unexplained cytopenia, or myeloid neoplasms (n = 457) and a second cohort comprising selected patients on the basis of the suspicion of constitutional/familial BMF (n = 59). Twenty-three RTEL1 variants were identified in 27 unrelated patients from both cohorts: 7 variants were likely pathogenic, 13 were of uncertain significance, and 3 were likely benign. Likely pathogenic RTEL1 variants were identified in 9 unrelated patients (7 heterozygous and 2 biallelic). Most patients were suspected to have constitutional BMF, which included aplastic anemia (AA), unexplained cytopenia, hypoplastic myelodysplastic syndrome, and macrocytosis with hypocellular bone marrow. In the other 18 patients, RTEL1 variants were likely benign or of uncertain significance. Telomeres were short in 21 patients (78%), and 3′ telomeric overhangs were significantly eroded in 4. In summary, heterozygous RTEL1 variants were associated with marrow failure, and telomere length measurement alone may not identify patients with telomere dysfunction carrying RTEL1 variants. Pathogenicity assessment of heterozygous RTEL1 variants relied on a combination of clinical, computational, and functional data required to avoid misinterpretation of common variants. PMID:29344583
Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms.
Marsh, Judith C W; Gutierrez-Rodrigues, Fernanda; Cooper, James; Jiang, Jie; Gandhi, Shreyans; Kajigaya, Sachiko; Feng, Xingmin; Ibanez, Maria Del Pilar F; Donaires, Flávia S; Lopes da Silva, João P; Li, Zejuan; Das, Soma; Ibanez, Maria; Smith, Alexander E; Lea, Nicholas; Best, Steven; Ireland, Robin; Kulasekararaj, Austin G; McLornan, Donal P; Pagliuca, Anthony; Callebaut, Isabelle; Young, Neal S; Calado, Rodrigo T; Townsley, Danielle M; Mufti, Ghulam J
2018-01-09
Biallelic germline mutations in RTEL1 (regulator of telomere elongation helicase 1) result in pathologic telomere erosion and cause dyskeratosis congenita. However, the role of RTEL1 mutations in other bone marrow failure (BMF) syndromes and myeloid neoplasms, and the contribution of monoallelic RTEL1 mutations to disease development are not well defined. We screened 516 patients for germline mutations in telomere-associated genes by next-generation sequencing in 2 independent cohorts; one constituting unselected patients with idiopathic BMF, unexplained cytopenia, or myeloid neoplasms (n = 457) and a second cohort comprising selected patients on the basis of the suspicion of constitutional/familial BMF (n = 59). Twenty-three RTEL1 variants were identified in 27 unrelated patients from both cohorts: 7 variants were likely pathogenic, 13 were of uncertain significance, and 3 were likely benign. Likely pathogenic RTEL1 variants were identified in 9 unrelated patients (7 heterozygous and 2 biallelic). Most patients were suspected to have constitutional BMF, which included aplastic anemia (AA), unexplained cytopenia, hypoplastic myelodysplastic syndrome, and macrocytosis with hypocellular bone marrow. In the other 18 patients, RTEL1 variants were likely benign or of uncertain significance. Telomeres were short in 21 patients (78%), and 3' telomeric overhangs were significantly eroded in 4. In summary, heterozygous RTEL1 variants were associated with marrow failure, and telomere length measurement alone may not identify patients with telomere dysfunction carrying RTEL1 variants. Pathogenicity assessment of heterozygous RTEL1 variants relied on a combination of clinical, computational, and functional data required to avoid misinterpretation of common variants.
Buczek, Pawel; Horvath, Martin P
2006-06-23
The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.
The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.
Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C
2015-01-01
Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes. © 2016 S. Karger AG, Basel.
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
Jiang, Jiansen; Chan, Henry; Cash, Darian D.; ...
2015-10-15
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiansen; Chan, Henry; Cash, Darian D.
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
NASA Technical Reports Server (NTRS)
Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.
2015-01-01
In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long--term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety--like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long--term effects of UVPS. Here, we measured methylation of brain--derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non--stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally--relevant brain regions, which may have linkages to the phenotypic outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela
Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA.more » None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.« less
NASA Astrophysics Data System (ADS)
Arndt, Peter F.; Hwa, Terence; Petrov, Dmitri A.
2005-06-01
This study presents the first global, 1 Mbp level analysis of patterns of nucleotide substitutions along the human lineage. The study is based on the analysis of a large amount of repetitive elements deposited into the human genome since the mammalian radiation, yielding a number of results that would have been difficult to obtain using the more conventional comparative method of analysis. This analysis revealed substantial and consistent variability of rates of substitution, with the variability ranging up to 2-fold among different regions. The rates of substitutions of C or G nucleotides with A or T nucleotides vary much more sharply than the reverse rates suggesting that much of that variation is due to differences in mutation rates rather than in the probabilities of fixation of C/G vs. A/T nucleotides across the genome. For all types of substitution we observe substantially more hotspots than coldspots, with hotspots showing substantial clustering over tens of Mbp's. Our analysis revealed that GC-content of surrounding sequences is the best predictor of the rates of substitution. The pattern of substitution appears very different near telomeres compared to the rest of the genome and cannot be explained by the genome-wide correlations of the substitution rates with GC content or exon density. The telomere pattern of substitution is consistent with natural selection or biased gene conversion acting to increase the GC-content of the sequences that are within 10-15 Mbp away from the telomere.
Telomerase and its extracurricular activities.
Jaiswal, Rishi Kumar; Kumar, Pramod; Yadava, Pramod Kumar
2013-12-01
The classical activity of telomerase is to synthesize telomeric repeats and thus maintain telomere length, which in turn ensures chromosome stability and cellular proliferation. However, there is growing evidence that implicates telomerase in many other functions that are independent of TERC being used as its template. Telomerase has an RNA-dependent RNA polymerase (RdRP) activity in the mitochondria. Other than viral RdRPs, it is the only RNA-dependent RNA polymerase that has been identified in mammals. It also plays a role in the Wnt signaling pathway by acting as a transcriptional modulator. Telomerase acts as a reverse transcriptase independent of its core subunit, TERC. Studies indicate that telomerase is also involved in apoptosis and DNA repair.
Śliwińska-Jewsiewicka, A; Kuciński, M; Kirtiklis, L; Dobosz, S; Ocalewicz, K; Jankun, Malgorzata
2015-08-01
Brook trout Salvelinus fontinalis (Mitchill, 1814) chromosomes have been analyzed using conventional and molecular cytogenetic techniques enabling characteristics and chromosomal location of heterochromatin, nucleolus organizer regions (NORs), ribosomal RNA-encoding genes and telomeric DNA sequences. The C-banding and chromosome digestion with the restriction endonucleases demonstrated distribution and heterogeneity of the heterochromatin in the brook trout genome. DNA sequences of the ribosomal RNA genes, namely the nucleolus-forming 28S (major) and non-nucleolus-forming 5S (minor) rDNAs, were physically mapped using fluorescence in situ hybridization (FISH) and primed in situ labelling. The minor rDNA locus was located on the subtelo-acrocentric chromosome pair No. 9, whereas the major rDNA loci were dispersed on 14 chromosome pairs, showing a considerable inter-individual variation in the number and location. The major and minor rDNA loci were located at different chromosomes. Multichromosomal location (3-6 sites) of the NORs was demonstrated by silver nitrate (AgNO3) impregnation. All Ag-positive i.e. active NORs corresponded to the GC-rich blocks of heterochromatin. FISH with telomeric probe showed the presence of the interstitial telomeric site (ITS) adjacent to the NOR/28S rDNA site on the chromosome 11. This ITS was presumably remnant of the chromosome rearrangement(s) leading to the genomic redistribution of the rDNA sequences. Comparative analysis of the cytogenetic data among several related salmonid species confirmed huge variation in the number and the chromosomal location of rRNA gene clusters in the Salvelinus genome.
Gabelica, Valérie; Maeda, Ryuichi; Fujimoto, Takeshi; Yaku, Hidenobu; Murashima, Takashi; Sugimoto, Naoki; Miyoshi, Daisuke
2013-08-20
Thioflavin T (ThT), a typical probe for protein fibrils, also binds human telomeric G-quadruplexes with a fluorescent light-up signal change and high specificity against DNA duplexes. Cell penetration and low cytotoxicity of fibril probes having been widely established, modifying ThT and other fibril probes is an attractive means of generating new G-quadruplex ligands. Thus, elucidating the binding mechanism is important for the design of new drugs and fluorescent probes based on ThT. Here, we investigated the binding mechanism of ThT with several variants of the human telomeric sequence in the presence of monovalent cations. Fluorescence titrations and electrospray ionization mass spectrometry (ESI-MS) analyses demonstrated that each G-quadruplex unit cooperatively binds to several ThT molecules. ThT brightly fluoresces when a single ligand is bound to the G-quadruplex and is quenched as ligand binding stoichiometry increases. Both the light-up signal and the dissociation constants are exquisitely sensitive to the base sequence and to the G-quadruplex structure. These results are crucial for the sensible design and interpretation of G-quadruplex detection assays using fluorescent ligands in general and ThT in particular.
Tsai, Hsiu-Hui; Huang, Chih-Hung; Tessmer, Ingrid; Erie, Dorothy A.; Chen, Carton W.
2011-01-01
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA. PMID:21109537
Matoba, Hideyuki; Mizutani, Takayuki; Nagano, Katsuya; Hoshi, Yoshikazu; Uchiyama, Hiroshi
2007-12-01
In this study, in addition to the karyotype analysis, the chromosomal distributions of 5 S and 18 S rDNAs, and the Arabidopsis-type (T3AG3) telomeric sequences were detected by means of fluorescence in situ hybridization (FISH) to promote the information of chromosomal organization and evolution in the cultivated lettuce and its wild relatives, L. sativa, L. serriola, L. saligna and L. virosa. The karyotype analysis revealed the dissimilarity between L. virosa and the remaining species. In all four Lactuca species studied, one 5 S rDNA and two 18 S rDNA loci were detected. The simultaneous FISH of 5 S and 18 S rDNAs revealed that both rDNA loci of L. sativa, L. serriola and L. saligna were identical, however, that of L. virosa was different from the other species. These analyses indicate the closer relationships between L. sativa/L. serriola and L. saligna rather than L. virosa. Arabidopsis-type telomeric sequences were detected at both ends of their chromatids of all chromosomes not in the other regions. This observation suggests the lack of telomere-mediated chromosomal rearrangements among the Lactuca chromosomes.
Guo, Yaqiong; Tang, Kevin; Rowe, Lori A; Li, Na; Roellig, Dawn M; Knipe, Kristine; Frace, Michael; Yang, Chunfu; Feng, Yaoyu; Xiao, Lihua
2015-04-18
Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis-associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome. Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45-767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5' and 3' ends of chromosome 6 and the gp60 region, largely the result of genetic recombination. The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to host expansion in C. parvum.
Dimensions of religious involvement and leukocyte telomere length.
Hill, Terrence D; Ellison, Christopher G; Burdette, Amy M; Taylor, John; Friedman, Katherine L
2016-08-01
Although numerous studies suggest that religious involvement is associated with a wide range of favorable health outcomes, it is unclear whether this general pattern extends to cellular aging. In this paper, we tested whether leukocyte telomere length varies according to several dimensions of religious involvement. We used cross-sectional data from the Nashville Stress and Health Study (2011-2014), a large probability sample of 1252 black and white adults aged 22 to 69 living in Davidson County, TN, USA. Leukocyte telomere length was measured using the monochrome multiplex quantitative polymerase chain reaction method with albumin as the single-copy reference sequence. Dimensions of religious involvement included religiosity, religious support, and religious coping. Our multivariate analyses showed that religiosity (an index of religious attendance, prayer frequency, and religious identity) was positively associated with leukocyte telomere length, even with adjustments for religious support, religious coping, age, gender, race, education, employment status, income, financial strain, stressful life events, marital status, family support, friend support, depressive symptoms, smoking, heavy drinking, and allostatic load. Unlike religiosity, religious support and religious coping were unrelated to leukocyte telomere length across models. Depressive symptoms, smoking, heavy drinking, and allostatic load failed to explain any of the association between religiosity and telomere length. To our knowledge, this is the first population-based study to link religious involvement and cellular aging. Although our data suggest that adults who frequently attend religious services, pray with regularity, and consider themselves to be religious tend to exhibit longer telomeres than those who attend and pray less frequently and do not consider themselves to be religious, additional research is needed to establish the mechanisms underlying this association. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salonen, E M; Miettinen, A; Walle, T K; Koskenmies, S; Kere, J; Julkunen, H
2004-10-01
To investigate the prevalence and diagnostic significance of antibodies against telomeric DNA in systemic lupus erythematosus (SLE) and other autoimmune rheumatic diseases, and to make comparisons with five conventional anti-DNA or anti-nuclear antibody (ANA) assays. Antibodies to telomeres, which are highly repetitive sequences of DNA (TTAGGG/CCCTAA) at the end of eukaryotic chromosomes, were measured by an enzyme linked immunosorbent assay (ELISA) in 305 patients with SLE and 125 patients with other autoimmune rheumatic diseases (78 rheumatoid arthritis, 32 primary Sjögren's syndrome, eight mixed connective tissue disease, seven miscellaneous rheumatic diseases). Other assays used were two commercial ELISA assays for anti-dsDNA using calf thymus as antigen, Crithidialuciliae immunofluorescence, and radioimmunoassay (RIA) for anti-dsDNA and immunofluorescence using Hep-2 cells for ANA. The prevalence of anti-telomere in SLE was 60%, v 5% in rheumatoid arthritis and 18% in other autoimmune rheumatic diseases. Specificity of anti-telomere for SLE was 91%; positive and negative predictive values were 95% and 46%, respectively. For anti-dsDNA by two ELISA assays using calf thymus as antigen, sensitivities were 69% and 29% and specificities 66% and 96%, respectively. Other anti-dsDNA assays had low sensitivities (RIA 43%, Crithidia immunofluorescence 13%). The association of anti-telomere with a history of nephritis in patients with SLE was stronger (p = 0.005) than by any other assay (p = 0.006-0.999). The correlations between the different assays were good (p<0.001 for all comparisons). The new ELISA for anti-telomere antibodies using standardised human dsDNA as antigen is a sensitive and highly specific test for SLE.
Bugno-Poniewierska, Monika; Solek, Przemysław; Wronski, Mariusz; Potocki, Leszek; Jezewska-Witkowska, Grażyna; Wnuk, Maciej
2014-12-01
The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects. © 2014 The Authors.
Pontvianne, Frédéric; Carpentier, Marie-Christine; Durut, Nathalie; Pavlištová, Veronika; Jaške, Karin; Schořová, Šárka; Parrinello, Hugues; Rohmer, Marine; Pikaard, Craig S; Fojtová, Miloslava; Fajkus, Jiří; Sáez-Vásquez, Julio
2016-08-09
The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A mechanistic understanding of ageing revealed by studying the young.
Crespi, Erica J
2012-03-01
A main focus within biomedical research is to understand how adverse environmental conditions experienced during early development affects lifelong health (Barker 1992). Within this context, extensive research in rodent models and humans has shown that intrauterine growth retardation (IUGR) caused by nutrient restriction during early development is often followed by post-natal 'catch-up' growth when access to food resources improves. However, this accelerated growth rate seems to come at a cost, as metabolic and endocrine processes that are programmed during this time cause later-life onset of diseases such as obesity, insulin resistance and cardiovascular disease (reviewed in Crespi & Denver 2005). In this issue Molecular Ecology, Geiger et al. (2012) asked what are the costs of catch-up growth in nutrient-restricted king penguin chicks (Fig. 1) by measuring lengths of telomeres, the protective DNA sequences at the end of chromosomes, before and after catch-up growth, as the amount and rate of telomere sequence loss over time has been associated with reduced lifespan in both model and nonmodel organisms (see reviews of Costantini et al. 2010; Haussmann & Marchetto 2010). Geiger et al. (2011) found that chicks entering the post-winter growth season at a smaller size exhibited increased growth rates (i.e. catch-up growth) at the cost of increased oxidative stress and reduced telomere lengths compared with the chicks entering the growth period at a larger size. Furthermore, chicks that did not survive had drastically shorter telomere lengths and reduced antioxidant capacities at the beginning of the growth period than all other chicks, thereby directly associating telomere length to mortality. These results suggest that while catch-up growth allows smaller chicks to head off into the world on equal footing with chicks that hatched at a larger size, it likely comes at the cost of a shortened lifespan. Thus, this study provides a mechanism that supports the antagonistic pleiotropy theory of senescence (Promislow 2004). © 2012 Blackwell Publishing Ltd.
Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones.
Dantzer, Ben; Fletcher, Quinn E
2015-11-01
Research on the physiological causes of senescence aim to identify common physiological mechanisms that explain age-related declines in fitness across taxonomic groups. Telomeres are repetitive nucleotide sequences found on the ends of eukaryotic chromosomes. Past research indicates that telomere attrition is strongly correlated with inter-specific rates of aging, though these studies cannot distinguish whether telomere attrition is a cause or consequence of the aging process. We extend previous research on this topic by incorporating recent studies to test the hypothesis that telomeres shorten more slowly with age in slow-aging animals than in fast-aging ones. We assembled all studies that have quantified cross-sectional (i.e. between-individual) telomere rates of change (TROC) over the lifespans of wild animals. This included 22 estimates reflecting absolute TROC (TROCabs, bp/yr, primarily measured using the terminal restriction fragment length method), and 10 estimates reflecting relative TROC (TROCrel, relative telomere length/yr, measured using qPCR), from five classes (Aves, Mammalia, Bivalvia, Reptilia, and Actinopterygii). In 14 bird species, we correlated between-individual (i.e. cross-sectional) TROCabs estimates with both maximum lifespan and a phylogenetically-corrected principle component axis (pcPC1) that reflected the slow-fast axis of life-history variation. Bird species characterized by faster life-histories and shorter maximum lifespans had faster TROCabs. In nine studies, both between-individual and within-individual TROC estimates were available (n=8 for TROCabs, n=1 for TROCrel). Within-individual TROC estimates were generally greater than between-individual TROC estimates, which is indicative of selective disappearance of individuals with shorter telomeres. However, the difference between within- and between-individual TROC estimates was only significant in two out of nine studies. The relationship between within-individual TROCabs and maximum lifespan did not differ from the relationship of between-individual TROCabs and maximum lifespan. Overall, our results provide additional support for the hypothesis that TROC is correlated with inter-specific rates of aging and complement the intra-specific research that also find relationships between telomere attrition and components of fitness. Copyright © 2015 Elsevier Inc. All rights reserved.
Structure and function of the N-terminal domain of the yeast telomerase reverse transcriptase
Petrova, Olga A; Mantsyzov, Alexey B; Rodina, Elena V; Efimov, Sergey V; Hackenberg, Claudia; Hakanpää, Johanna; Klochkov, Vladimir V; Lebedev, Andrej A; Chugunova, Anastasia A; Malyavko, Alexander N; Zatsepin, Timofei S; Mishin, Alexey V; Zvereva, Maria I
2018-01-01
Abstract The elongation of single-stranded DNA repeats at the 3′-ends of chromosomes by telomerase is a key process in maintaining genome integrity in eukaryotes. Abnormal activation of telomerase leads to uncontrolled cell division, whereas its down-regulation is attributed to ageing and several pathologies related to early cell death. Telomerase function is based on the dynamic interactions of its catalytic subunit (TERT) with nucleic acids—telomerase RNA, telomeric DNA and the DNA/RNA heteroduplex. Here, we present the crystallographic and NMR structures of the N-terminal (TEN) domain of TERT from the thermotolerant yeast Hansenula polymorpha and demonstrate the structural conservation of the core motif in evolutionarily divergent organisms. We identify the TEN residues that are involved in interactions with the telomerase RNA and in the recognition of the ‘fork’ at the distal end of the DNA product/RNA template heteroduplex. We propose that the TEN domain assists telomerase biological function and is involved in restricting the size of the heteroduplex during telomere repeat synthesis. PMID:29294091
Willeit, Peter; Raschenberger, Julia; Heydon, Emma E; Tsimikas, Sotirios; Haun, Margot; Mayr, Agnes; Weger, Siegfried; Witztum, Joseph L; Butterworth, Adam S; Willeit, Johann; Kronenberg, Florian; Kiechl, Stefan
2014-01-01
Short telomeres have been linked to various age-related diseases. We aimed to assess the association of telomere length with incident type 2 diabetes mellitus (T2DM) in prospective cohort studies. Leucocyte relative telomere length (RTL) was measured using quantitative polymerase chain reaction in 684 participants of the prospective population-based Bruneck Study (1995 baseline), with repeat RTL measurements performed in 2005 (n = 558) and 2010 (n = 479). Hazard ratios for T2DM were calculated across quartiles of baseline RTL using Cox regression models adjusted for age, sex, body-mass index, smoking, socio-economic status, physical activity, alcohol consumption, high-density lipoprotein cholesterol, log high-sensitivity C-reactive protein, and waist-hip ratio. Separate analyses corrected hazard ratios for within-person variability using multivariate regression calibration of repeated measurements. To contextualise findings, we systematically sought PubMed, Web of Science and EMBASE for relevant articles and pooled results using random-effects meta-analysis. Over 15 years of follow-up, 44 out of 606 participants free of diabetes at baseline developed incident T2DM. The adjusted hazard ratio for T2DM comparing the bottom vs. the top quartile of baseline RTL (i.e. shortest vs. longest) was 2.00 (95% confidence interval: 0.90 to 4.49; P = 0.091), and 2.31 comparing the bottom quartile vs. the remainder (1.21 to 4.41; P = 0.011). The corresponding hazard ratios corrected for within-person RTL variability were 3.22 (1.27 to 8.14; P = 0.014) and 2.86 (1.45 to 5.65; P = 0.003). In a random-effects meta-analysis of three prospective cohort studies involving 6,991 participants and 2,011 incident T2DM events, the pooled relative risk was 1.31 (1.07 to 1.60; P = 0.010; I2 = 69%). Low RTL is independently associated with the risk of incident T2DM. To avoid regression dilution biases in observed associations of RTL with disease risk, future studies should implement methods correcting for within-person variability in RTL. The causal role of short telomeres in T2DM development remains to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jamy C.
Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) thatmore » binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in euchromatin. Remarkably, human euchromatin and fly heterochromatin share similar features; such as repeated DNA content, intron lengths and open reading frame sizes. Human cells likely stabilize their DNA content via mechanisms and factors similar to those in Drosophila heterochromatin. Furthermore, my thesis work raises implications for H3K9me and chromatin functions in complex-DNA genome stability, repeated DNA homogenization by molecular drive, and in genome reorganization through evolution.« less
2013-01-01
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications. PMID:24359668
Chromosomal distribution of microsatellite repeats in Amazon cichlids genome (Pisces, Cichlidae)
Schneider, Carlos Henrique; Gross, Maria Claudia; Terencio, Maria Leandra; de Tavares, Édika Sabrina Girão Mitozo; Martins, Cesar; Feldberg, Eliana
2015-01-01
Abstract Fish of the family Cichlidae are recognized as an excellent model for evolutionary studies because of their morphological and behavioral adaptations to a wide diversity of explored ecological niches. In addition, the family has a dynamic genome with variable structure, composition and karyotype organization. Microsatellites represent the most dynamic genomic component and a better understanding of their organization may help clarify the role of repetitive DNA elements in the mechanisms of chromosomal evolution. Thus, in this study, microsatellite sequences were mapped in the chromosomes of Cichla monoculus Agassiz, 1831, Pterophyllum scalare Schultze, 1823, and Symphysodon discus Heckel, 1840. Four microsatellites demonstrated positive results in the genome of Cichla monoculus and Symphysodon discus, and five demonstrated positive results in the genome of Pterophyllum scalare. In most cases, the microsatellite was dispersed in the chromosome with conspicuous markings in the centromeric or telomeric regions, which suggests that sequences contribute to chromosome structure and may have played a role in the evolution of this fish family. The comparative genome mapping data presented here provide novel information on the structure and organization of the repetitive DNA region of the cichlid genome and contribute to a better understanding of this fish family’s genome. PMID:26753076
An Enzyme-Catalyzed Multistep DNA Refolding Mechanism in Hairpin Telomere Formation
Shi, Ke; Huang, Wai Mun; Aihara, Hideki
2013-01-01
Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions. PMID:23382649
Telomeres and NextGen CO-FISH: Directional Genomic Hybridization (Telo-dGH™).
McKenna, Miles J; Robinson, Erin; Goodwin, Edwin H; Cornforth, Michael N; Bailey, Susan M
2017-01-01
The cytogenomics-based methodology of Directional Genomic Hybridization (dGH™) emerged from the concept of strand-specific hybridization, first made possible by Chromosome Orientation FISH (CO-FISH), the utility of which was demonstrated in a variety of early applications, often involving telomeres. Similar to standard whole chromosome painting (FISH), dGH™ is capable of identifying inter-chromosomal rearrangements (translocations between chromosomes), but its distinctive strength stems from its ability to detect intra-chromosomal rearrangements (inversions within chromosomes), and to do so at higher resolution than previously possible. dGH™ brings together the strand specificity and directionality of CO-FISH with sophisticated bioinformatics-based oligonucleotide probe design to unique sequences. dGH™ serves not only as a powerful discovery tool-capable of interrogating the entire genome at the megabase level-it can also be used for high-resolution targeted detection of known inversions, a valuable attribute in both research and clinical settings. Detection of chromosomal inversions, particularly small ones, poses a formidable challenge for more traditional cytogenetic approaches, especially when they occur near the ends or telomeric regions. Here, we describe Telo-dGH™, a strand-specific scheme that utilizes dGH™ in combination with telomere CO-FISH to differentiate between terminal exchange events, specifically terminal inversions, and an altogether different form of genetic recombination that often occurs near the telomere, namely sister chromatid exchange (SCE).
Cyclo[n]pyrroles: Size and Site Specific Binding to G-Quadruplexes
Baker, Erin Shammel; Lee, Jeong T.
2014-01-01
Inhibiting the enzyme telomerase by stabilizing the G-quadruplex has potential in anticancer drug design. Diprotonated cyclo[n]pyrroles represent a set of expanded porphyrin analogues with structures similar to telomestatin, a natural product known to bind to and stabilize G-quadruplexes. As a first step towards testing whether cyclo[n]pyrroles display a similar function, a series of diprotonated cyclo[n]pyrroles (where n = 6, 7 and 8) was each added to the human telomere repeat sequence d(T2AG3)4 and examined with mass spectrometry, ion mobility and molecular dynamics calculations. Nano-ESI-MS indicated that the smaller the cyclo[n]pyrrole, the stronger it binds to the telomeric sequence. It was also found that cyclo[6]pyrrole bound to d(T2AG3)4 better than octaethylporphyrin, a finding rationalized by cyclo[6]pyrrole having a +2 charge, while octaethylporphyrin bears no charge. Ion mobility measurements were used to measure the collision cross section of each d(T2AG3)4/cyclo[n]pyrrole complex. Only one peak was observed in the arrival time distributions for all complexes and the experimental cross sections indicated that only structures with d(T2AG3)4 in an antiparallel G-quadruplex arrangement and each cyclo[n]pyrrole externally stacked below the G-quartets occur under these experimental conditions. When the cyclo[n]pyrroles were intercalated or nonspecifically bound to the quadruplex or if different conformations than antiparallel were considered for d(T2AG3)4, the theoretical cross sections did not match experiment. On this basis, it is inferred that 1) external stacking represents the dominant binding mode for the interaction of cyclo[n]pyrroles with d(T2AG3)4 and 2) the overall size and charge of the cyclo[n]pyrroles play important roles in defining the binding strength. PMID:16492050
Gomes, Nuno M.V.; Shay, Jerry W.; Wright, Woodring E.
2010-01-01
In this review we present critical overview of some of the available literature on the fundamental biology of telomeres and telomerase in Metazoan. With the exception of Nematodes and Arthropods, the (TTAGGG)n sequence is conserved in most Metazoa. Available data shows that telomerase-based end maintenance is a very ancient mechanism in unicellular and multicellular organisms. In invertebrates, fish, amphibian, and reptiles persistent telomerase activity in somatic tissues might allow the maintenance of the extensive regenerative potentials of these species. Telomerase repression among birds and many mammals suggests that, as humans, they may use replicative aging as a tumor protection mechanism. PMID:20655915
Association between maternal symptoms of sleep disordered breathing and fetal telomere length.
Salihu, Hamisu M; King, Lindsey; Patel, Priyanshi; Paothong, Arnut; Pradhan, Anupam; Louis, Judette; Naik, Eknath; Marty, Phillip J; Whiteman, Valerie
2015-04-01
Our investigation aims to assess the impact of symptoms of maternal sleep-disordered breathing, specifically sleep apnea risk and daytime sleepiness, on fetal leukocyte telomere length. Pregnant women were recruited upon hospital delivery admission. Sleep exposure outcomes were measured using the Berlin Questionnaire to quantify sleep apnea and the Epworth Sleepiness Scale to measure daytime sleepiness. Participants were classified as "High Risk" or "Low Risk" for sleep apnea based on responses to the Berlin, while "Normal" or "Abnormal" daytime sleepiness was determined based on responses to the Epworth. Neonatal umbilical cord blood samples (N = 67) were collected and genomic DNA was isolated from cord blood leukocytes using Quantitative PCR. A ratio of relative telomere length was derived by telomere repeat copy number and single copy gene copy number (T/S ratio) and used to compare telomere lengths. Bootstrap and ANOVA statistical procedures were employed. On the Berlin, 68.7% of participants were classified as Low Risk while 31.3% were classified as High Risk for sleep apnea. According to the Epworth scale, 80.6% were determined to have Normal daytime sleepiness, and 19.4% were found to have Abnormal daytime sleepiness. The T/S ratio among pregnant women at High Risk for sleep apnea was significantly shorter than for those at Low Risk (P value < 0.05), and the T/S ratio among habitual snorers was significantly shorter than among non-habitual snorers (P value < 0.05). Although those with Normal Sleepiness had a longer T/S ratio than those with Abnormal Sleepiness, the difference was not statistically significant. Our results provide the first evidence demonstrating shortened telomere length among fetuses exposed to maternal symptoms of sleep disordered breathing during pregnancy, and suggest sleep disordered breathing as a possible mechanism of accelerated chromosomal aging. © 2015 Associated Professional Sleep Societies, LLC.
Satoh, Mamoru; Nasu, Takahito; Takahashi, Yuji; Osaki, Takuya; Hitomi, Sho; Morino, Yoshihiro; Nakamura, Motoyuki
2017-08-01
Telomeric repeat binding factor (TRF) 2 (TRF2) plays an important role in telomere maintenance. miR-23a may directly inhibit TRF2 expression, thereby, inducing telomere shortening and cellular senescence. The present study aimed to determine whether miR-23a and TRF2 are expressed in patients with coronary artery disease (CAD), and whether pitavastatin might affect these levels. The present study included 104 patients with CAD and 50 controls. Patients with CAD were randomly divided into two subgroups (a moderate lipid lowering therapy (LLT) group and an aggressive LLT group). Peripheral blood mononuclear cells (PBMCs) were taken from patients with CAD and from controls at baseline and after 12 months. Levels of miR-23a were higher in the CAD group than in the controls. Levels of TRF2 protein were lower in the CAD group than in the controls. Our randomized clinical study showed that aggressive LLT decreased miR-23a and increased TRF2 levels, whereas moderate LLT generated no change in these levels. Our transfected cell model showed that miR-23a controlled TRF2 expression. After a mean follow-up of 339 days, cardiovascular events were associated with high miR-23a , low TRF2 or low relative telomere length. Multivariate analysis showed that levels of miR-23a (RR: 4.9, 95% CI: 1.9-14.3) were a strong predictor of cardiovascular events after adjustment for baseline characteristics. In conclusion, elevated levels of miR-23a play an important role in coronary atherosclerosis via down-regulated TRF2, and may provide important prognostic information in patients with CAD. Additionally, aggressive LLT may prevent telomere erosion via down-regulated miR-23a . © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
[What gene and chromosomes say about the origin and evolution of insects and other arthropods].
Lukhtanov, V A; Kuznetsova, V G
2010-09-01
At the turn of the 21st century, the use of molecular and molecular cytogenetic methods led to revolutionary advances in systematics of insects and other arthropods. Analysis of nuclear and mitochondrial genes, as well as investigation of structural rearrangements in the mitochondrial chromosome convincingly supported the Pancrustacea hypothesis, according to which insects originated directly from crustaceans, whereas myriapods are not closely related to them. The presence of the specific telomeric motif TTAGG confirmed the monophyletic origin of arthropods (Arthropoda) and the assignment of tongue worms (Pentastomida) to this type. Several different types of telomeric sequences have been found within the class of insects. Investigation of the molecular organization of these sequences may shed light on the relationships between the orders Diptera, Siphonaptera, and Mecoptera and on the origin of such enigmatic groups as the orders Strepsiptera, Zoraptera and suborder Coleorrhyncha.
Goldfarb, Ilona Telefus; Adeli, Sharareh; Berk, Tucker; Phillippe, Mark
2018-05-01
While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.
The effects of DNA supercoiling on G-quadruplex formation.
Sekibo, Doreen A T; Fox, Keith R
2017-12-01
Guanine-rich DNAs can fold into four-stranded structures that contain stacks of G-quartets. Bioinformatics studies have revealed that G-rich sequences with the potential to adopt these structures are unevenly distributed throughout genomes, and are especially found in gene promoter regions. With the exception of the single-stranded telomeric DNA, all genomic G-rich sequences will always be present along with their C-rich complements, and quadruplex formation will be in competition with the corresponding Watson-Crick duplex. Quadruplex formation must therefore first require local dissociation (melting) of the duplex strands. Since negative supercoiling is known to facilitate the formation of alternative DNA structures, we have investigated G-quadruplex formation within negatively supercoiled DNA plasmids. Plasmids containing multiple copies of (G3T)n and (G3T4)n repeats, were probed with dimethylsulphate, potassium permanganate and S1 nuclease. While dimethylsulphate footprinting revealed some evidence for G-quadruplex formation in (G3T)n sequences, this was not affected by supercoiling, and permanganate failed to detect exposed thymines in the loop regions. (G3T4)n sequences were not protected from DMS and showed no reaction with permanganate. Similarly, both S1 nuclease and 2D gel electrophoresis of DNA topoisomers did not detect any supercoil-dependent structural transitions. These results suggest that negative supercoiling alone is not sufficient to drive G-quadruplex formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Li, Jiaoyuan; Chang, Jiang; Tian, Jianbo; Ke, Juntao; Zhu, Ying; Yang, Yang; Gong, Yajie; Zou, Danyi; Peng, Xiating; Yang, Nan; Mei, Shufang; Wang, Xiaoyang; Cheng, Liming; Hu, Weiguo; Gong, Jing; Zhong, Rong; Miao, Xiaoping
2018-06-11
Telomere dysfunction triggers cellular senescence and constitutes a driving force for cancer initiation. Genetic variants in genes involved in telomere maintenance may contribute to colorectal cancer (CRC) susceptibility. In this study, we firstly captured germline mutations in 192 CRC patients by sequencing the coding regions of 13 core components implicated in telomere biology. Five potential functional variants were then genotyped and assessed in a case-control set with 3,761 CRC cases and 3,839 healthy controls. The promising association was replicated in additional 6,765 cases and 6,906 controls. Functional experiments were used to further clarify the potential function of the significant variant and uncover the underlying mechanism in CRC development. The two-stage association studies showed that a rare missense variant rs149418249 (c.C1520T, p.P507L) in the 11th exon of TPP1 (also known as ACD, gene ID 65057) was significantly associated with CRC risk with the ORs being 2.90 (95% CI:1.04-8.07, P=0.041), 2.50 (95% CI:1.04-6.04, P=0.042), and 2.66 (95%CI:1.36-5.18, P=0.004) in discovery, replication, and the combined samples, respectively. Further functional annotation indicated that the TPP1 P507L substitution interrupted TPP1-TIN2 interaction, impaired telomerase processivity, and shortened telomere length, which subsequently facilitated cell proliferation and promoted CRC development. A rare variant P507L in TPP1 confers increased risk of CRC through interrupting TPP1-TIN2 interaction, impairing telomerase processivity, and shrinking telomere length. These findings emphasize the important role of telomere dysfunction in CRC development, and provide new insights about the prevention of this type of cancer. Copyright ©2018, American Association for Cancer Research.
Carrillo, Jaime; Calvete, Oriol; Pintado-Berninches, Laura; Manguan-García, Cristina; Sevilla Navarro, Julian; Arias-Salgado, Elena G; Sastre, Leandro; Guenechea, Guillermo; López Granados, Eduardo; de Villartay, Jean-Pierre; Revy, Patrick; Benitez, Javier; Perona, Rosario
2017-05-15
NHEJ1-patients develop severe progressive lymphocytopenia and premature aging of hematopoietic stem cells (HSCs) at a young age. Here we show a patient with a homozygous-NHEJ1 mutation identified by whole exome-sequencing that developed severe pancytopenia and bone marrow aplasia correlating with the presence of short telomeres. The mutation resulted in a truncated protein. In an attempt to identify the mechanism behind the short telomere phenotype found in the NHEJ1-patient we downregulated NHEJ1 expression in 293T and CD34+cells. This downregulation resulted in reduced telomerase activity and decreased expression of several telomerase/shelterin genes. Interestingly, cell lines derived from two other NHEJ1-deficient patients with different mutations also showed increased p21 expression, inhibition in expression of several telomerase complex genes and shortened telomeres. Decrease in expression of telomerase/shelterin genes did not occur when we inhibited expression of other NHEJ genes mutated in SCID patients: DNA-PK, Artemis or LigaseIV. Because premature aging of HSCs is observed only in NHEJ1 patients, we propose that is the result of senescence induced by decreased expression of telomerase/shelterin genes that lead to an inhibition of telomerase activity. Previous reports failed to find this connection because of the use of patient´s cells immortalized by TERT expression or recombined telomeres by ALT pathway. In summary, defective regulation of telomere biology together with defective V(D)J recombination can negatively impact on the evolution of the disease in these patients. Identification of telomere shortening is important since it may open new therapeutic interventions for these patients by treatments aimed to recover the expression of telomerase genes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jia; Yu, Eun Young; Yang, Yuting
2010-09-02
In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N-Rpa3-like complex. In both structures, the OB folds of the twomore » components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix-turn-helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N-Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N-Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1-Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3' overhangs that works in parallel with or instead of the well-characterized POT1-TPP1/TEBP{alpha}-{beta} complex.« less
Awada, Z; Sleiman, F; Mailhac, A; Mouneimne, Y; Tamim, H; Zgheib, N K
2018-04-12
The aim of this study was to evaluate the potential association of urinary Bisphenol A (BPA) levels with estrogen receptor alpha (ESR1) promoter % methylation and relative telomere length in a sample of 482 participants. Urinary BPA concentration was measured using organic phase extraction followed by high performance liquid chromatography mass spectroscopy. Peripheral blood ESR1 promoter % methylation and relative telomere length were measured using direct bisulfite sequencing and real-time polymerase chain reaction, respectively. The mean ± SD urinary BPA concentration adjusted for urinary creatinine was 2.90 ± 4.81 (μg/g creatinine) with a median of 1.86 μg/g creatinine (min-max:
Cavalcante, Manoella Gemaque; Bastos, Carlos Eduardo Matos Carvalho; Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; Vicari, Marcelo Ricardo; Noronha, Renata Coelho Rodrigues
2018-01-01
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26–68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26–28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae. PMID:29813087
Cavalcante, Manoella Gemaque; Bastos, Carlos Eduardo Matos Carvalho; Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; Vicari, Marcelo Ricardo; Noronha, Renata Coelho Rodrigues
2018-01-01
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26-68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26-28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae.
Tian, Yao; Smith, David Roy
2016-05-01
Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Nonin, S; Phan, A T; Leroy, J L
1997-09-15
Repetitive cytosine-rich DNA sequences have been identified in telomeres and centromeres of eukaryotic chromosomes. These sequences play a role in maintaining chromosome stability during replication and may be involved in chromosome pairing during meiosis. The C-rich repeats can fold into an 'i-motif' structure, in which two parallel-stranded duplexes with hemiprotonated C.C+ pairs are intercalated. Previous NMR studies of naturally occurring repeats have produced poor NMR spectra. This led us to investigate oligonucleotides, based on natural sequences, to produce higher quality spectra and thus provide further information as to the structure and possible biological function of the i-motif. NMR spectroscopy has shown that d(5mCCTTTACC) forms an i-motif dimer of symmetry-related and intercalated folded strands. The high-definition structure is computed on the basis of the build-up rates of 29 intraresidue and 35 interresidue nuclear Overhauser effect (NOE) connectivities. The i-motif core includes intercalated interstrand C.C+ pairs stacked in the order 2*.8/1.7*/1*.7/2.8* (where one strand is distinguished by an asterisk and the numbers relate to the base positions within the repeat). The TTTA sequences form two loops which span the two wide grooves on opposite sides of the i-motif core; the i-motif core is extended at both ends by the stacking of A6 onto C2.C8+. The lifetimes of pairs C2.C8+ and 5mC1.C7+ are 1 ms and 1 s, respectively, at 15 degrees C. Anomalous exchange properties of the T3 imino proton indicate hydrogen bonding to A6 N7 via a water bridge. The d(5mCCTTTTCC) deoxyoligonucleotide, in which position 6 is occupied by a thymidine instead of an adenine, also forms a symmetric i-motif dimer. However, in this structure the two TTTT loops are located on the same side of the i-motif core and the C.C+ pairs are formed by equivalent cytidines stacked in the order 8*.8/1.1*/7*.7/2.2*. Oligodeoxynucleotides containing two C-rich repeats can fold and dimerize into an i-motif. The change of folding topology resulting from the substitution of a single nucleoside emphasizes the influence of the loop residues on the i-motif structure formed by two folded strands.
Crystal structure of four-stranded Oxytricha telomeric DNA
NASA Technical Reports Server (NTRS)
Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.
1992-01-01
The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.
Romi, Erez; Baran, Nava; Gantman, Marina; Shmoish, Michael; Min, Bosun; Collins, Kathleen; Manor, Haim
2007-05-22
Telomerase is a cellular reverse transcriptase, which utilizes an integral RNA template to extend single-stranded telomeric DNA. We used site-specific photocrosslinking to map interactions between DNA primers and the catalytic protein subunit (tTERT) of Tetrahymena thermophila telomerase in functional enzyme complexes. Our assays reveal contact of the single-stranded DNA adjacent to the primer-template hybrid and tTERT residue W187 at the periphery of the N-terminal domain. This contact was detected in complexes with three different registers of template in the active site, suggesting that it is maintained throughout synthesis of a complete telomeric repeat. Substitution of nearby residue Q168, but not W187, alters the K(m) for primer elongation, implying that it plays a role in the DNA recognition. These findings are the first to directly demonstrate the physical location of TERT-DNA contacts in catalytically active telomerase and to identify amino acid determinants of DNA binding affinity. Our data also suggest a movement of the TERT active site relative to the template-adjacent single-stranded DNA binding site within a cycle of repeat synthesis.
Xu, Yiyi; Lindh, Christian H; Jönsson, Bo A G; Broberg, Karin; Albin, Maria
2018-03-27
Asphalt workers are exposed to polyaromatic hydrocarbons (PAHs) from hot mix asphalt via both inhalation and dermal absorption. The use of crumb rubber modified (CRM) asphalt may result in higher exposure to PAHs and more adverse effects. Our aim is to assess occupational exposure to PAHs from conventional and CRM asphalt paving by measuring PAH metabolites in urine, and to investigate the effects on mitochondrial DNA copy number (mtDNAcn) and telomere length. We recruited 116 workers paving conventional asphalt, 51 workers paving CRM asphalt and 100 controls in Sweden, all males. A repeated-measures analysis included 31 workers paving both types of asphalt. Urine and blood samples were collected pre-working on Monday morning and post-working on Thursday afternoon after 4 days working. PAH metabolites: 1-hydroxypyrene (1-OH-PYR) and 2-hydroxyphenanthrene (2-OH-PH) were measured in urine by LC-MS/MS. Relative mtDNAcn and telomere length were measured by quantitative PCR. Conventional and CRM asphalt workers showed higher 1-OH-PYR and 2-OH-PH than controls (p < 0.001 for all). Relative mtDNAcn were 0.21 units (p < 0.001) higher in conventional asphalt workers and 0.13 units (p = 0.010) higher in CRM asphalt workers compared to controls. Relative telomere length did not differ across occupational groups, but it was positively associated with increment of 2-OH-PH (β = 0.075, p = 0.037) in asphalt workers. The repeated-measures analysis showed no difference in either increment of 1-OH-PYP, or changes in effect biomarkers (mtDNAcn or telomere length) between paving with conventional and CRM asphalt. Increment of 2-OH-PH was smaller after paving with CRM asphalt. Road asphalt paving in open areas resulted in PAHs exposure, as shown by elevation of PAH metabolites in urine. Asphalt workers may experience oxidative stress, evidenced by alternation in mtDNAcn; however the effects could not be fully explained by exposure to PAHs from the asphalt mixture.
Gilley, D; Preer, J R; Aufderheide, K J; Polisky, B
1988-01-01
Paramecium tetraurelia can be transformed by microinjection of cloned serotype A gene sequences into the macronucleus. Transformants are detected by their ability to express serotype A surface antigen from the injected templates. After injection, the DNA is converted from a supercoiled form to a linear form by cleavage at nonrandom sites. The linear form appears to replicate autonomously as a unit-length molecule and is present in transformants at high copy number. The injected DNA is further processed by the addition of paramecium-type telomeric sequences to the termini of the linear DNA. To examine the fate of injected linear DNA molecules, plasmid pSA14SB DNA containing the A gene was cleaved into two linear pieces, a 14-kilobase (kb) piece containing the A gene and flanking sequences and a 2.2-kb piece consisting of the procaryotic vector. In transformants expressing the A gene, we observed that two linear DNA species were present which correspond to the two species injected. Both species had Paramecium telomerelike sequences added to their termini. For the 2.2-kb DNA, we show that the site of addition of the telomerelike sequences is directly at one terminus and within one nucleotide of the other terminus. These results indicate that injected procaryotic DNA is capable of autonomous replication in Paramecium macronuclei and that telomeric addition in the macronucleus does not require specific recognition sequences. Images PMID:3211128
Distal 22q11.2 microduplication encompassing the BCR gene.
Descartes, Maria; Franklin, Judy; Diaz de Ståhl, Teresita; Piotrowski, Arkadiusz; Bruder, Carl E G; Dumanski, Jan P; Carroll, Andrew J; Mikhail, Fady M
2008-12-01
Chromosome 22 band q11.2 has been recognized to be highly susceptible to subtle microdeletions and microduplications, which have been attributed to the presence of several large segmental duplications; also known as low copy repeats (LCRs). These LCRs function as mediators of non-allelic homologous recombination (NAHR), which results in these chromosomal rearrangements as a result of unequal crossover. The four centromeric LCRs at proximal 22q11.2 have been previously implicated in recurrent chromosomal rearrangements including the DiGeorge/Velocardiofacial syndrome (DG/VCFs) microdeletion and its reciprocal microduplication. Recently, we and others have demonstrated that the four telomeric LCRs at distal 22q11.2 are causally implicated in a newly recognized recurrent distal 22q11.2 microdeletion syndrome in the region immediately telomeric to the DG/VCFs typically deleted region. Here we report on the clinical, cytogenetic, and array CGH studies of a 4.5-year-old girl with history of failure to thrive, developmental delay (DD), and relative macrocephaly. She carries a paternally inherited approximately 2.1 Mb microduplication at distal 22q11.2, which spans approximately 34 annotated genes, and is flanked by two of the four telomeric 22q11.2 LCRs. We conclude that the four telomeric LCRs at distal 22q11.2 can mediate both deletions and duplications in this genomic region. Both deletions and duplication of this region present with subtle clinical features including mild to moderate mental retardation, DD, and mild dysmorphic features. Copyright (c) 2008 Wiley-Liss, Inc.
Xu, Xiaofei; Chen, Xinxia; Zhang, Xiruo; Liu, Yixun; Wang, Zhao; Wang, Peng; Du, Yanzhi; Qin, Yingying; Chen, Zi-Jiang
2017-01-01
Are telomere length and telomerase activity associated with biochemical primary ovarian insufficiency (POI)? Shortened telomere length and diminished telomerase activity were associated with biochemical POI. POI is a result of pathological reproductive aging and encompasses occult, biochemical and overt stages. Studies have indicated telomere length as a biomarker for biological aging. A total of 120 patients with biochemical POI and 279 control women were recruited by the Center for Reproductive Medicine of Shandong University. Telomere length in peripheral blood leukocytes (LTL) and granulosa cells (GTL) was measured using a modified Quantitative Polymerase Chain Reaction technique. The relative telomerase activity (RTA) in granulosa cells was detected using a modified quantitative-telomeric repeat amplification protocol assay. After adjusting for age, patients with biochemical POI (n = 120) exhibited significantly shorter LTLs (0.75 ± 0.09 vs 1.79 ± 0.12, P < 0.001; OR = 0.54, 95% CI = 0.43-0.68) and GTLs (0.78 ± 0.09 vs 1.90 ± 0.23, P < 0.001; OR = 0.54, 95% CI = 0.41-0.70) than the controls (n = 279 for LTLs; n = 90 for GTLs). Significantly diminished RTAs in granulosa cells were detected in patients with biochemical POI (n = 31) compared with the controls (n = 38) (1.57 ± 0.59 vs 4.63 ± 0.93, P = 0.025; OR = 0.84, 95% CI = 0.72-0.98). N/A. The cross-sectional nature of this study might have its limit in telomere length as well as telomerase activity along with the progressing decline in ovarian function. These findings suggest that telomere length and telomerase activity may be considered as indicators for progression of ovarian decline. This research was supported by the National Basic Research Program of China (973 Program) (2012CB944700), Science research foundation item of no-earnings health vocation (201402004) and the National Natural Science Foundation of China (31471352, 81270662, 81471509, 81300461, 81522018). The authors have no potential conflict of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Machado, Milla de Andrade; Cardoso, Adauto Lima; Milhomem-Paixão, Susana Suely Rodrigues; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko
2017-10-01
Gymnotus coatesi is a small and rare species of banded knife fish that was originally described by LaMonte in 1935, found along the main stretch of the Amazon River. There is no described cytogenetic data on this species. We analyzed the karyotype of five specimens of G. coatesi collected from Cururutuia Stream in Bragança, Pará, Brazil. The obtained diploid number is 50 and the karyotypic formula is 24 m/sm +26 st/a. The constitutive heterochromatin is DAPI positive and distributed mainly in the centromeric and pericentromeric regions of the chromosomes. Ag-nucleolus organizer regions staining showed nine active sites. The 5S rDNA probe hybridized chromosome pair 17 in the interstitial part of the long arm. Fluorescence in situ hybridization (FISH) with telomeric probes revealed signals only at terminal regions of the chromosomes. The 18S rDNA probe hybridized to 21 sites, and these signals colocalized with the telomeric sequences. This relatively high number of 18S rDNA sites may reflect gene duplication mediated by transposable elements. These results indicate that although the diploid number of G. coatesi is within the range previously observed for other members of the genus, various karyotypic characteristics distinguish G. coatesi from the other species of the genus and members of the Gymnotiform order.
Multiple determinants controlling activation of yeast replication origins late in S phase.
Friedman, K L; Diller, J D; Ferguson, B M; Nyland, S V; Brewer, B J; Fangman, W L
1996-07-01
Analysis of a 131-kb segment of the left arm of yeast chromosome XIV beginning 157 kb from the telomere reveals four highly active origins of replication that initiate replication late in S phase. Previous work has shown that telomeres act as determinants for late origin activation. However, at least two of the chromosome XIV origins maintain their late activation time when located on large circular plasmids, indicating that late replication is independent of telomeres. Analysis of the replication time of plasmid derivatives containing varying amounts of chromosome XIV DNA show that a minimum of three chromosomal elements, distinct from each tested origin, contribute to late activation time. These late determinants are functionally equivalent, because duplication of one set of contributing sequences can compensate for the removal of another set. Furthermore, insertion of an origin that is normally early activated into this domain results in a shift to late activation, suggesting that the chromosome XIV origins are not unique in their ability to respond to the late determinants.
Genome-wide Control of Heterochromatin Replication by the Telomere Capping Protein TRF2.
Mendez-Bermudez, Aaron; Lototska, Liudmyla; Bauwens, Serge; Giraud-Panis, Marie-Josèphe; Croce, Olivier; Jamet, Karine; Irizar, Agurtzane; Mowinckel, Macarena; Koundrioukoff, Stephane; Nottet, Nicolas; Almouzni, Genevieve; Teulade-Fichou, Mare-Paule; Schertzer, Michael; Perderiset, Mylène; Londoño-Vallejo, Arturo; Debatisse, Michelle; Gilson, Eric; Ye, Jing
2018-05-03
Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Jullien, Laurent; Kannengiesser, Caroline; Kermasson, Laetitia; Cormier-Daire, Valérie; Leblanc, Thierry; Soulier, Jean; Londono-Vallejo, Arturo; de Villartay, Jean-Pierre; Callebaut, Isabelle; Revy, Patrick
2016-05-01
The DNA helicase RTEL1 participates in telomere maintenance and genome stability. Biallelic mutations in the RTEL1 gene account for the severe telomere biology disorder characteristic of the Hoyeraal-Hreidarsson syndrome (HH). Here, we report a HH patient (P4) carrying two novel compound heterozygous mutations in RTEL1: a premature stop codon (c.949A>T, p.Lys317*) and an intronic deletion leading to an exon skipping and an in-frame deletion of 25 amino-acids (p.Ile398_Lys422). P4's cells exhibit short and dysfunctional telomeres similarly to other RTEL1-deficient patients. 3D structure predictions indicated that the p.Ile398_Lys422 deletion affects a part of the helicase ARCH domain, which lines the pore formed with the core HD and the iron-sulfur cluster domains and is highly specific of sequences from the eukaryotic XPD family members. © 2016 WILEY PERIODICALS, INC.
Refinement of 1p36 alterations not involving PRDM16 in myeloid and lymphoid malignancies.
Duhoux, Francois P; Ameye, Geneviève; Lambot, Virginie; Herens, Christian; Lambert, Frédéric; Raynaud, Sophie; Wlodarska, Iwona; Michaux, Lucienne; Roche-Lestienne, Catherine; Labis, Elise; Taviaux, Sylvie; Chapiro, Elise; Nguyen-Khac, Florence; Khac, Florence Nguyen; Struski, Stéphanie; Dobbelstein, Sophie; Dastugue, Nicole; Lippert, Eric; Speleman, Frank; Van Roy, Nadine; De Weer, An; Rack, Katrina; Talmant, Pascaline; Richebourg, Steven; Mugneret, Francine; Tigaud, Isabelle; Mozziconacci, Marie-Joëlle; Laibe, Sophy; Nadal, Nathalie; Terré, Christine; Libouton, Jeanne-Marie; Decottignies, Anabelle; Vikkula, Miikka; Poirel, Hélène A
2011-01-01
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis.
Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies
Duhoux, Francois P.; Ameye, Geneviève; Lambot, Virginie; Herens, Christian; Lambert, Frédéric; Raynaud, Sophie; Wlodarska, Iwona; Michaux, Lucienne; Roche-Lestienne, Catherine; Labis, Elise; Taviaux, Sylvie; Chapiro, Elise; Khac, Florence Nguyen; Struski, Stéphanie; Dobbelstein, Sophie; Dastugue, Nicole; Lippert, Eric; Speleman, Frank; Van Roy, Nadine; De Weer, An; Rack, Katrina; Talmant, Pascaline; Richebourg, Steven; Mugneret, Francine; Tigaud, Isabelle; Mozziconacci, Marie-Joëlle; Laibe, Sophy; Nadal, Nathalie; Terré, Christine; Libouton, Jeanne-Marie; Decottignies, Anabelle; Vikkula, Miikka; Poirel, Hélène A.
2011-01-01
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis. PMID:22039459
NASA Astrophysics Data System (ADS)
Cheng, Rui; Xu, Jing; Zhang, Xiafei; Shi, Zhilu; Zhang, Qi; Jin, Yan
2017-03-01
Herein, the conformational switch of G-rich oligonucleotide (GDNA) demonstrated the obvious functional switch of GDNA which was found to significantly affect the fluorescence of the in-situ synthesized DNA/silver nanocluster (DNA-AgNC) in homogeneous solution. We envisioned that the allosteric interaction between GDNA and DNA-AgNC would be possible to be used for screening telomere-binding ligands. A unimolecular probe (12C5TG) is ingeniously designed consisting of three contiguous DNA elements: G-rich telomeric DNA (GDNA) as molecular recognition sequence, T-rich DNA as linker and C-rich DNA as template of DNA-AgNC. The quantum yield and stability of 12C5TG-AgNC is greatly improved because the nearby deoxyguanosines tended to protect DNA/AgNC against oxidation. However, in the presence of ligands, the formation of G-quadruplex obviously quenched the fluorescence of DNA-AgNC. By taking full advantage of intramolecular allosteric effect, telomere-binding ligands were selectively and label-free screened by using deoxyguanines and G-quadruplex as natural fluorescence enhancer and quencher of DNA-AgNC respectively. Therefore, the functional switching of G-rich structure offers a cost-effective, facile and reliable way to screen drugs, which holds a great potential in bioanalysis as well.
Isolation of candidate genes of Friedreich`s ataxia on chromosome 9q13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montermini, L.; Zara, F.; Pandolfo, M.
1994-09-01
Friedreich`s ataxia (FRDA) is an autosomal recessive degenerative disease involving the central and peripheral nervous system and the heart. The mutated gene in FRDA has recently been localized within a 450 Kb interval on chromosome 9q13 between the markers D9S202/FR1/FR8. We have been able to confirm such localization for the disease gene by analysis of extended haplotype in consanguineous families. Cases of loss of marker homozygosity, which are likely to be due to ancient recombinations, have been found to involve D9S110, D9S15, and D9S111 on the telomeric side, and FR5 on the centromeric side, while homozygosity was always found formore » a core haplotype including D9S5, FD1, and D9S202. We constructed a YAC contig spanning the region between the telomeric markers and FR5, and cosmids have been obtained from the YACs. In order to isolate transcribed sequences from the FRDA candidate region we are utilizing a combination of approaches, including hybridization of YACs and cosmids to an arrayed human heart cDNA library, cDNA direct selection, and exon amplification. A transcribed sequence near the telomeric end of the region has been isolated by cDNA direct selection using pooled cosmids as genomic template and primary human heart, muscle, brain, liver and placenta cDNAs as cDNA source. We have shown this sequence to be the human equivalent of ZO-2, a tight junction protein previously described in the dog. No mutations of this gene have been found in FRDA subjects. Additional cDNA have recently been isolated and they are currently being evaluated.« less
Exceptionally high levels of recombination across the honey bee genome.
Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E
2006-11-01
The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.
RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility
Frizzell, Aisling; Nguyen, Jennifer H.G.; Petalcorin, Mark I.R.; Turner, Katherine D.; Boulton, Simon J.; Freudenreich, Catherine H.; Lahue, Robert S.
2018-01-01
SUMMARY Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG·CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG·CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. PMID:24561255
RTEL1 inhibits trinucleotide repeat expansions and fragility.
Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S
2014-03-13
Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Dental X-ray exposure and Alzheimer's disease: a hypothetical etiological association.
Rodgers, Caroline C
2011-07-01
Despite the fact that Alzheimer's disease was identified more than 100 years ago, its cause remains elusive. Although the chance of developing Alzheimer's disease increases with age, it is not a natural consequence of aging. This article proposes that dental X-rays can damage microglia telomeres - the structures at the end of chromosomes that determine how many times cells divide before they die - causing them to age prematurely. Degenerated microglia lose their neuroprotective properties, resulting in the formation of neurofibrillary tau tangles and consequently, the neuronal death that causes Alzheimer's dementia. The hypothesis that Alzheimer's is caused specifically by microglia telomere damage would explain the delay of one decade or longer between the presence of Alzheimer's brain pathology and symptoms; telomere damage would not cause any change in microglial function, it would just reset the countdown clock so that senescence and apoptosis occurred earlier than they would have without the environmental insult. Once microglia telomere damage causes premature aging and death, the adjacent neurons are deprived of the physical support, maintenance and nourishment they require to survive. This sequence of events would explain why therapies and vaccines that eliminate amyloid plaques have been unsuccessful in stopping dementia. Regardless of whether clearing plaques is beneficial or harmful - which remains a subject of debate - it does not address the failing microglia population. If microglia telomere damage is causing Alzheimer's disease, self-donated bone marrow or dental pulp stem cell transplants could give rise to new microglia populations that would maintain neuronal health while the original resident microglia population died. Copyright © 2011 Elsevier Ltd. All rights reserved.
Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase.
Takahashi, Shuntaro; Brazier, John A; Sugimoto, Naoki
2017-09-05
Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.
Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase
Takahashi, Shuntaro; Brazier, John A.; Sugimoto, Naoki
2017-01-01
Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases. PMID:28827350
2015-01-01
Guanine-rich oligonucleotides can adopt noncanonical tertiary structures known as G-quadruplexes, which can exist in different forms depending on experimental conditions. High-resolution structural methods, such as X-ray crystallography and NMR spectroscopy, have been of limited usefulness in resolving the inherent structural polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous nature of, currently available high-resolution structural data, in turn, has severely hindered investigations into the nature of these structures and their interactions with small-molecule inhibitors. We have used molecular dynamics in conjunction with hydrodynamic bead modeling to study the structures of the human telomeric G-quadruplex-forming sequences at the atomic level. We demonstrated that molecular dynamics can reproduce experimental hydrodynamic measurements and thus can be a powerful tool in the structural study of existing G-quadruplex sequences or in the prediction of new G-quadruplex structures. PMID:24779348
Dressen, Amy; Abbas, Alexander R; Cabanski, Christopher; Reeder, Janina; Ramalingam, Thirumalai R; Neighbors, Margaret; Bhangale, Tushar R; Brauer, Matthew J; Hunkapiller, Julie; Reeder, Jens; Mukhyala, Kiran; Cuenco, Karen; Tom, Jennifer; Cowgill, Amy; Vogel, Jan; Forrest, William F; Collard, Harold R; Wolters, Paul J; Kropski, Jonathan A; Lancaster, Lisa H; Blackwell, Timothy S; Arron, Joseph R; Yaspan, Brian L
2018-06-08
Idiopathic pulmonary fibrosis (IPF) risk has a strong genetic component. Studies have implicated variations at several loci, including TERT, surfactant genes, and a single nucleotide polymorphism at chr11p15 (rs35705950) in the intergenic region between TOLLIP and MUC5B. Patients with IPF who have risk alleles at rs35705950 have longer survival from the time of IPF diagnosis than do patients homozygous for the non-risk allele, whereas patients with shorter telomeres have shorter survival times. We aimed to assess whether rare protein-altering variants in genes regulating telomere length are enriched in patients with IPF homozygous for the non-risk alleles at rs35705950. Between Nov 1, 2014, and Nov 1, 2016, we assessed blood samples from patients aged 40 years or older and of European ancestry with sporadic IPF from three international phase 3 clinical trials (INSPIRE, CAPACITY, ASCEND), one phase 2 study (RIFF), and US-based observational studies (Vanderbilt Clinical Interstitial Lung Disease Registry and the UCSF Interstitial Lung Disease Clinic registry cohorts) at the Broad Institute (Cambridge, MA, USA) and Human Longevity (San Diego, CA, USA). We also assessed blood samples from non-IPF controls in several clinical trials. We did whole-genome sequencing to assess telomere length and identify rare protein-altering variants, stratified by rs35705950 genotype. We also assessed rare functional variation in TERT exons and compared telomere length and disease progression across genotypes. We assessed samples from 1510 patients with IPF and 1874 non-IPF controls. 30 (3%) of 1046 patients with an rs35705950 risk allele had a rare protein-altering variant in TERT compared with 34 (7%) of 464 non-risk allele carriers (odds ratio 0·40 [95% CI 0·24-0·66], p=0·00039). Subsequent analyses identified enrichment of rare protein-altering variants in PARN and RTEL1, and rare variation in TERC in patients with IPF compared with controls. We expanded our study population to provide a more accurate estimation of rare variant frequency in these four loci, and to calculate telomere length. The proportion of patients with at least one rare variant in TERT, PARN, TERC, or RTEL1 was higher in patients with IPF than in controls (149 [9%] of 1739 patients vs 205 [2%] of 8645 controls, p=2·44 × 10 -8 ). Patients with IPF who had a variant in any of the four identified telomerase component genes had telomeres that were 3·69-16·10% shorter than patients without a variant in any of the four genes and had an earlier mean age of disease onset than patients without one or more variants (65·1 years [SD 7·8] vs 67·1 years [7·9], p=0·004). In the placebo arms of clinical trials, shorter telomeres were significantly associated with faster disease progression (1·7% predicted forced vital capacity per kb per year, p=0·002). Pirfenidone had treatment benefit regardless of telomere length (p=4·24 × 10 -8 for telomere length lower than the median, p=0·0044 for telomere length greater than the median). Rare protein-altering variants in TERT, PARN, TERC, and RTEL1 are enriched in patients with IPF compared with controls, and, in the case of TERT, particularly in individuals without a risk allele at the rs35705950 locus. This suggests that multiple genetic factors contribute to sporadic IPF, which might implicate distinct mechanisms of pathogenesis and disease progression. Genentech, National Institutes of Health, Francis Family Foundation, Pulmonary Fibrosis Foundation, Nina Ireland Program for Lung Health, US Department of Veterans Affairs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Xiaoli; Velez, Juan Carlos; Barbosa, Clarita; Pepper, Micah; Andrade, Asterio; Stoner, Lee; De Vivo, Immaculata; Gelaye, Bizu; Williams, Michelle A
2015-01-01
Telomere length (TL), the length of repeated DNA sequence that forms protective caps at the end of chromosomes, has emerged as a novel biomarker of cell aging and oxidative stress. There is increasing research exploring the associations of smoking and perceived stress with TL, and the results are inconsistent. This study aimed to examine whether smoking and perceived stress were associated with shortened salivary TL among primary caregivers of children with disabilities. Using a quantitative polymerase chain reaction method, salivary TL was assessed among 89 caregivers aged 19-69 years (87% were women) who took care of disabled children in the Patagonia Region, Chile. Interviewer-administered questionnaires were used to collect information on sociodemographic and lifestyle factors. The 14-item Perceived Stress Scale was used to assess perceived stress. Mean relative TL was 0.92 (standard error = 0.03). Smokers had age-adjusted mean TL that was 0.07 units lower (β = -0.07, standard error = 0.03; p = 0.012) than non-smokers. Smokers were 2.17 times more likely to have shorter TL ( < 0.73, the lowest quartile of TL) than non-smokers (odds ratio = 3.17; 95% confidence interval = 1.05-9.52) with adjustment for age and perceived stress. Caregivers with higher perceived stress were 2.13 times more likely to have shorter TL (odds ratio = 3.13; 95% confidence interval = 1.03-9.55) than caregivers with lower perceived stress after adjustment for age and smoking. This study provides the first evidence of strong associations between smoking and perceived stress and shortened salivary TL among caregivers of children with disabilities. Larger studies with detailed information on smoking status are warranted to confirm our findings.
Chen, Xiaoli; Velez, Juan Carlos; Barbosa, Clarita; Pepper, Micah; Andrade, Asterio; Stoner, Lee; De Vivo, Immaculata; Gelaye, Bizu; Williams, Michelle A.
2014-01-01
Telomere length (TL), the length of repeated DNA sequence that forms protective caps at the end of chromosomes, has emerged as a novel biomarker of cell aging and oxidative stress. There is increasing research exploring the associations of smoking and perceived stress with TL, and the results are inconsistent. This study aimed to examine whether smoking and perceived stress were associated with shortened salivary TL among primary caregivers of children with disabilities. Using a quantitative polymerase chain reaction method, salivary TL was assessed among 89 caregivers aged 19–69 years (87% were women) who took care of disabled children in the Patagonia Region, Chile. Interviewer-administered questionnaires were used to collect information on sociodemographic and lifestyle behaviors. The 14-item Perceived Stress Scale was used to assess perceived stress. Mean relative TL was 0.92 (standard error=0.03). Smokers had age-adjusted mean TL that was 0.07 units lower (beta=−0.07, standard error=0.03; p=0.012) than non-smokers. Smokers were 2.17 times more likely to have shorter TL (<0.73, the lowest quartile of TL) than non-smokers (odds ratio =3.17; 95% confidence interval=1.05–9.52) with adjustment for age and perceived stress. Caregivers with higher perceived stress were 2.13 times more likely to have shorter TL (odds ratio=3.13; 95% confidence interval=1.03–9.55) than caregivers with lower perceived stress after adjustment for age and smoking. This study provides the first evidence of strong associations between smoking and perceived stress and shortened salivary TL among caregivers of children with disabilities. Larger studies with detailed information on smoking status are warranted to confirm our findings. PMID:25256607
Occupational stress of anesthesia: Effects on aging.
Zanaty, Ola M; El Metainy, Shahira; Abdelmaksoud, Rania; Demerdash, Hala; Aliaa, Doaa Abo; El Wafa, Heba Abo
2017-06-01
Anesthesiology has been identified as a stressful specialty. Chronic psychological stress may lead to biological aging and skin aging. The primary outcome was to measure physical health and emotional well-being. Secondary outcomes include skin aging analysis, telomere shortening in anesthetists. This is a prospective observational study. University of Alexandria. Study was carried out on 366 ASA I-II physicians 30-50yr. Physicians were categorized into two equal groups, Group A (183) were anesthesia physicians and Group B (183) were physicians in less stressful specialties (laboratory specialties). Subgroup analysis was performed comparing 10years' intervals from (30-40) and from (40-50). Physical health and emotional well-being were evaluated. All physicians were exposed to validated assessment scales for the upper face and the lower face for skin aging analysis. Blood sampling were drowned from all physicians during their working hours for analysis of telomere length, markers of oxidative stress. The two studied groups showed comparable demographic data and years of work. Physical health score and emotional health score showed higher values in Group A than Group B. Upper and lower face aesthetic unit summary score showed higher values in Group A than Group B. Telomere (TTAGGG) repeats for terminal restriction fragments (TRF) of Group A individuals revealed a significant decrease of TRF compared to Group B (p=0.001*). Biological and skin aging is evident in anesthetists who are chronically exposed to occupational stress, with obvious shorter telomere length, higher lower and upper face scores, and free radicals. Copyright © 2017 Elsevier Inc. All rights reserved.
Seeker, Luise A; Ilska, Joanna J; Psifidi, Androniki; Wilbourn, Rachael V; Underwood, Sarah L; Fairlie, Jennifer; Holland, Rebecca; Froy, Hannah; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Nussey, Daniel H; Banos, Georgios
2018-01-01
Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL) to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1) characterize the change in bovine relative leukocyte TL (RLTL) across the lifetime in Holstein Friesian dairy cattle, 2) estimate genetic parameters of RLTL over time and 3) investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08) and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954).
Ilska, Joanna J.; Psifidi, Androniki; Wilbourn, Rachael V.; Underwood, Sarah L.; Fairlie, Jennifer; Holland, Rebecca; Froy, Hannah; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Nussey, Daniel H.; Banos, Georgios
2018-01-01
Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL) to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1) characterize the change in bovine relative leukocyte TL (RLTL) across the lifetime in Holstein Friesian dairy cattle, 2) estimate genetic parameters of RLTL over time and 3) investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05–0.08) and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954). PMID:29438415
Telomeric repeat-binding factor 2: a marker for survival and anti-EGFR efficacy in oral carcinoma
Raybaud, Hélène; Sudaka, Anne; Chamorey, Emmanuel; Brolih, Sanja; Monteverde, Martino; Merlano, Marco; Nigro, Cristiana Lo; Ambrosetti, Damien; Pagès, Gilles
2016-01-01
Oral Squamous Cell Carcinoma (OSCC) is the most common oral cancer worldwide. Treatments including surgery, radio- and chemo-therapies mostly result in debilitating side effects. Thus, a more accurate evaluation of patients at risk of recurrence after radio/chemo treatment is important for preserving their quality of life. We assessed whether the Telomeric Repeat-binding Factor 2 (TERF2) influences tumor aggressiveness and treatment response. TERF2 is over-expressed in many cancers but its correlation to patient outcome remains controversial in OSCC. Our retrospective study on sixty-two patients showed that TERF2 overexpression has a negative impact on survival time. TERF2-dependent survival time was independent of tumor size in a multivariate analysis. In vitro, TERF2 knockdown by RNA interference had no effect on cell proliferation, migration, senescence and apoptosis. Instead, TERF2 knockdown increased the expression of cytokines implicated in inflammation and angiogenesis, except for vascular endothelial growth factor. TERF2 knockdown resulted in a decrease vascularization and growth of xenograft tumors. Finally, response to erlotinib/Tarceva and cetuximab/Erbitux treatment was increased in TRF2 knocked-down cells. Hence, TERF2 may represent an independent marker of survival for OSCC and a predictive marker for cetuximab/Erbitux and erlotinib/Tarceva efficacy. PMID:27329590
Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.
Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong
2017-01-01
Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.
Identification and characterization of a subtelomeric satellite DNA in Callitrichini monkeys.
Araújo, Naiara Pereira; de Lima, Leonardo Gomes; Dias, Guilherme Borges; Kuhn, Gustavo Campos Silva; de Melo, Alan Lane; Yonenaga-Yassuda, Yatiyo; Stanyon, Roscoe; Svartman, Marta
2017-08-01
Repetitive DNAs are abundant fast-evolving components of eukaryotic genomes, which often possess important structural and functional roles. Despite their ubiquity, repetitive DNAs are poorly studied when compared with the genic fraction of genomes. Here, we took advantage of the availability of the sequenced genome of the common marmoset Callithrix jacchus to assess its satellite DNAs (satDNAs) and their distribution in Callitrichini. After clustering analysis of all reads and comparisons by similarity, we identified a satDNA composed by 171 bp motifs, named MarmoSAT, which composes 1.09% of the C. jacchus genome. Fluorescent in situ hybridization on chromosomes of species from the genera Callithrix, Mico and Callimico showed that MarmoSAT had a subtelomeric location. In addition to the common monomeric, we found that MarmoSAT was also organized in higher-order repeats of 338 bp in Callimico goeldii. Our phylogenetic analyses showed that MarmoSAT repeats from C. jacchus lack chromosome-specific features, suggesting exchange events among subterminal regions of non-homologous chromosomes. MarmoSAT is transcribed in several tissues of C. jacchus, with the highest transcription levels in spleen, thymus and heart. The transcription profile and subtelomeric location suggest that MarmoSAT may be involved in the regulation of telomerase and modulation of telomeric chromatin. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Hepatic manifestations of telomere biology disorders.
Patnaik, Mrinal M; Kamath, Patrick S; Simonetto, Douglas A
2018-06-07
A 51-year-old Caucasian male was referred for evaluation of variceal bleeding. Laboratory tests were remarkable for mild thrombocytopenia and moderate alkaline phosphatase elevation. Synthetic liver function was well preserved. Abdominal computed tomography scan revealed moderate splenomegaly, gastric varices, and normal hepatic contour. A transjugular liver biopsy was performed revealing findings of nodular regenerative hyperplasia with no significant fibrosis or necroinflammatory activity. Hepatic venous pressure gradient was elevated at 31 mmHg, consistent with clinically significant portal hypertension. The clinical course was complicated by refractory gastric variceal bleeding requiring a surgical portosystemic shunt. Approximately seven years after the initial presentation, the patient developed progressive dyspnoea and a diagnosis of idiopathic pulmonary fibrosis was made. Contrast-enhanced echocardiogram was not suggestive of hepatopulmonary syndrome or portopulmonary hypertension. Given this new diagnosis a telomere biology disorder was suspected. A flow-fluorescence in situ hybridisation analysis for telomere length assessment revealed telomere lengths below the first percentile in both lymphocytes and granulocytes. Next generation sequencing analysis identified a heterozygous mutation involving the hTERT gene (Histidine983Threonine). The lung disease unfortunately progressed in the subsequent two years, leading to the patient's death nine years after his initial presentation with portal hypertension. During those nine years two brothers also developed idiopathic pulmonary fibrosis. The questions that arise from this case include. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3
Yu, Eun Young; Wang, Feng; Lei, Ming; Lue, Neal F
2008-01-01
Ever shorter telomeres 3 (Est3) is an essential telomerase regulatory subunit thought to be unique to budding yeasts. Here we use multiple sequence alignment and hidden Markov model–hidden Markov model (HMM-HMM) comparison to uncover potential similarities between Est3 and the mammalian telomeric protein Tpp1. Analysis of site-specific mutants of Candida albicans Est3 revealed functional distinctions between residues that are conserved between Est3 and Tpp1 and those that are unique to Est3. Although both types of residues are important for telomere maintenance in vivo, only the former contributes to telomerase activity in vitro and facilitates the association of Est3 with telomerase core components. Consistent with a function in protein-protein interaction, the residues common to Est3 and Tpp1 map to one face of an OB-fold model structure, away from the canonical nucleic acid binding surface. We propose that Est3 and the OB-fold domain of Tpp1 mediate a conserved function in telomerase regulation. PMID:19172753
RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity.
Vannier, Jean-Baptiste; Pavicic-Kaltenbrunner, Visnja; Petalcorin, Mark I R; Ding, Hao; Boulton, Simon J
2012-05-11
T loops and telomeric G-quadruplex (G4) DNA structures pose a potential threat to genome stability and must be dismantled to permit efficient telomere replication. Here we implicate the helicase RTEL1 in the removal of telomeric DNA secondary structures, which is essential for preventing telomere fragility and loss. In the absence of RTEL1, T loops are inappropriately resolved by the SLX4 nuclease complex, resulting in loss of the telomere as a circle. Depleting SLX4 or blocking DNA replication abolished telomere circles (TCs) and rescued telomere loss in RTEL1(-/-) cells but failed to suppress telomere fragility. Conversely, stabilization of telomeric G4-DNA or loss of BLM dramatically enhanced telomere fragility in RTEL1-deficient cells but had no impact on TC formation or telomere loss. We propose that RTEL1 performs two distinct functions at telomeres: it disassembles T loops and also counteracts telomeric G4-DNA structures, which together ensure the dynamics and stability of the telomere. Copyright © 2012 Elsevier Inc. All rights reserved.
Use of telomerase to create bioengineered tissues.
Shay, Jerry W; Wright, Woodring E
2005-12-01
Telomeres are repetitive DNA (TTAGGG) elements at the ends of chromosomes. Telomerase is a ribonucleoprotein complex that catalyzes the addition of telomeric sequences to the ends of chromosomes. The catalytic protein component of telomerase (hTERT) is expressed only in specific germ line cells, proliferative stem cells of renewal tissues, and cancer cells. The expression of hTERT in normal cells reconstitutes telomerase activity and circumvents the induction of senescence. Telomeres shorten with each cell division, eventually leading to senescence (aging), due to incomplete lagging DNA strand synthesis and end-processing events, and because telomerase activity is not detected in most somatic tissues. There are specific tissues and locations in which replicative senescence likely contributes to the decline in human physiological function with increased age and with chronic illnesses. While expressing hTERT in cells results in the maintenance of telomere length and greatly extended life span, blocking replicative aging systemically would be predicted to increase the potential for tumor formation. However, there are many situations in which the transient rejuvenation of cells could be beneficial. Ectopic expression of hTERT has been shown to immortalize human skin keratinocytes, dermal fibroblasts, muscle satellite (stem), and vascular endothelial, myometrial, retinal-pigmented, and breast epithelial cells. In addition, human bronchial, corneal and skin cells expressing hTERT can be used to form organotypic (3D) cultures (bioengineered tissues) that express differentiation-specific proteins, demonstrating that hTERT by itself does not alter normal physiology. The production of hTERT-engineered tissues offers the possibility of producing tissues to treat a variety of chronic diseases and age-related medical conditions that are due to telomere-based replicative senescence.
Lovelock, Paul K; Wong, Ee Ming; Sprung, Carl N; Marsh, Anna; Hobson, Karen; French, Juliet D; Southey, Melissa; Sculley, Tom; Pandeya, Nirmala; Brown, Melissa A; Chenevix-Trench, Georgia; Spurdle, Amanda B; McKay, Michael J
2007-09-01
Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting. Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls. Post-irradiation cell viability and micronucleus induction assays of LCLs from individuals carrying pathogenic BRCA1 mutations, unclassified BRCA1 sequence variants or wildtype BRCA1 sequence showed significant phenotypic heterogeneity within each group. Responses were not consistent with predicted functional consequences of known pathogenic or normal sequences. Telomere length was also highly heterogeneous within groups of LCLs carrying pathogenic BRCA1 or BRCA2 mutations, and normal BRCA1 sequences, and was not predictive of mutation status. Given the significant degree of phenotypic heterogeneity of LCLs after gamma-irradiation, and the lack of association with BRCA1 or BRCA2 mutation status, we conclude that the assays evaluated in this study should not be used as a means of differentiating pathogenic and non-pathogenic sequence variants for clinical application. We suggest that a range of normal controls must be included in any functional assays of LCLs to ensure that any observed differences between samples reflect the genotype under investigation rather than generic inter-individual variation.
Telomerase activation by the E6 gene product of human papillomavirus type 16.
Klingelhutz, A J; Foster, S A; McDougall, J K
1996-03-07
Activation of telomerase, a ribonucleoprotein complex that synthesizes telomere repeat sequences, is linked to cell immortalization and is characteristic of most cell lines and tumours. Here we show that expression of the human papillomavirus type 16 (HPV-16) E6 protein activates telomerase in early-passage human keratinocytes and mammary epithelial cells. This activation was observed in cells pre-crisis, that is, before they became immortal, and occurred within one passage of retroviral infection with vectors expressing HPV-16 E6. Studies using HPV-16 E6 mutants showed that there was no correlation between the ability of the mutants to activate telomerase and their ability to target p53 for degradation, suggesting that telomerase activation by HPV-16 E6 is p53 independent. Keratinocytes expressing wild-type HPV-16 E6 have an extended lifespan, but do not become immortal, indicating that telomerase activation and E6-mediate degradation of p53 are insufficient for their immortalization. These results show that telomerase activation is an intrinsic, but insufficient, component of transformation by HPV.
In vivo modification of a maize engineered minichromosome.
Gaeta, Robert T; Masonbrink, Rick E; Zhao, Changzeng; Sanyal, Abhijit; Krishnaswamy, Lakshminarasimhan; Birchler, James A
2013-06-01
Engineered minichromosomes provide efficient platforms for stacking transgenes in crop plants. Methods for modifying these chromosomes in vivo are essential for the development of customizable systems for the removal of selection genes or other sequences and for the addition of new genes. Previous studies have demonstrated that Cre, a site-specific recombinase, could be used to modify lox sites on transgenes on maize minichromosomes; however, these studies demonstrated somatic recombination only, and modified minichromosomes could not be recovered. We describe the recovery of an engineered chromosome composed of little more than a centromere plus transgene that was derived by telomere-mediated truncation. We used the fiber fluorescence in situ hybridization technique and detected a transgene on the minichromosome inserted among stretches of CentC centromere repeats, and this insertion was large enough to suggest a tandem insertion. By crossing the minichromosome to a plant expressing Cre-recombinase, the Bar selection gene was removed, leaving behind a single loxP site. This study demonstrates that engineered chromosomes can be modified in vivo using site-specific recombinases, a demonstration essential to the development of amendable chromosome platforms in plants.
New Stopping Criteria for Segmenting DNA Sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wentian
2001-06-18
We propose a solution on the stopping criterion in segmenting inhomogeneous DNA sequences with complex statistical patterns. This new stopping criterion is based on Bayesian information criterion in the model selection framework. When this criterion is applied to telomere of S.cerevisiae and the complete sequence of E.coli, borders of biologically meaningful units were identified, and a more reasonable number of domains was obtained. We also introduce a measure called segmentation strength which can be used to control the delineation of large domains. The relationship between the average domain size and the threshold of segmentation strength is determined for several genomemore » sequences.« less
Telomeres and telomere dynamics: relevance to cancers of the gastrointestinal tract
Basu, Nivedita; Skinner, Halcyon G.; Litzelman, Kristin; Vanderboom, Russell; Baichoo, Esha; Boardman, Lisa A.
2013-01-01
Summary Aberrations in telomere length and telomere maintenance contribute to cancer development. In this article, we review basic principles of telomere length in normal and tumor tissue and the presence of the two main telomere maintenance pathways as they pertain to GI tract cancer. Peripheral blood telomeres are shorter in patients with many types of GI tract cancers. Telomere length in tumor DNA also appears to shorten early in cancer development. Tumor telomere shortening is often accompanied by telomerase activation to protect genetically damaged DNA from normal cell senescence or apoptosis, allowing immortalized but damaged DNA to persist. Alternative lengthening of telomeres (ALT) is another mechanism used by cancer to maintain telomere length in cancer cells. Telomerase and ALT activators and inhibitors may become important chemopreventive or chemotherapeutic agents as our understanding of telomere biology, specific telomere related phenotypes, and its relationship to carcinogenesis increases. PMID:24161135
Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein.
Daniel, Katrin; Tränkner, Daniel; Wojtasz, Lukasz; Shibuya, Hiroki; Watanabe, Yoshinori; Alsheimer, Manfred; Tóth, Attila
2014-05-22
Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions.
Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein
2014-01-01
Background Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. Results We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. Conclusion CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions. PMID:24885367
Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch
NASA Astrophysics Data System (ADS)
Cragnolini, Tristan; Chakraborty, Debayan; Šponer, Jiří; Derreumaux, Philippe; Pasquali, Samuela; Wales, David J.
2017-10-01
We explore the energy landscape for a four-fold telomere repeat, obtaining interconversion pathways between six experimentally characterised G-quadruplex topologies. The results reveal a multi-funnel system, with a variety of intermediate configurations and misfolded states. This organisation is identified with the intrinsically multi-functional nature of the system, suggesting a new paradigm for the classification of such biomolecules and clarifying issues regarding apparently conflicting experimental results.
Morgan, R Garrett; Ives, Stephen J; Walker, Ashley E; Cawthon, Richard M; Andtbacka, Robert H I; Noyes, Dirk; Lesniewski, Lisa A; Richardson, Russell S; Donato, Anthony J
2014-06-01
Telomere shortening in arteries could lead to telomere uncapping and cellular senescence, which in turn could promote the development of hypertension. To assess the novel role of arterial telomere dysfunction in hypertension, we compared mean telomere length (qPCR), telomere uncapping (serine 139 phosphorylated histone γ-H2A.X (γ-H2) localized to telomeres: ChIP), and tumor suppressor protein p53 (P53)/cyclin-dependent kinase inhibitor 1A (P21)-induced senescence (P53 bound to P21 gene promoter: ChIP) in arteries from 55 age-matched hypertensive and nonhypertensive individuals. Arterial mean telomere length was not different in hypertensive patients compared with nonhypertensive individuals (P = 0.29). Arterial telomere uncapping and P53/P21-induced senescence were two-fold greater in hypertensive patients compared with nonhypertensive individuals (P = 0.04 and P = 0.02, respectively). Arterial mean telomere length was not associated with telomere uncapping or P53/P21-induced senescence (r = -0.02, P = 0.44 and r = 0.01, P = 0.50, respectively), but telomere uncapping was a highly influential covariate for the hypertension group difference in P53/P21-induced senescence (r = 0.62, P < 0.001, η(p)(2) = 0.35). Finally, telomere uncapping was a significant predictor of hypertension status (P = 0.03), whereas mean telomere length was not (P = 0.68). Collectively, these findings demonstrate that arterial telomere uncapping and P53/P21-induced senescence are linked to hypertension independently of mean telomere length, and telomere uncapping influences hypertension status more than mean telomere length.
Morgan, R. Garrett; Ives, Stephen J.; Walker, Ashley E.; Cawthon, Richard M.; Andtbacka, Robert H.I.; Noyes, Dirk; Lesniewski, Lisa A.; Richardson, Russell S.; Donato, Anthony J.
2014-01-01
Objective Telomere shortening in arteries could lead to telomere uncapping and cellular senescence, which in turn could promote the development of hypertension. Methods and results To assess the novel role of arterial telomere dysfunction in hypertension, we compared mean telomere length (qPCR), telomere uncapping (serine 139 phosphorylated histone γ-H2A.X (γ-H2) localized to telomeres: ChIP), and tumor suppressor protein p53 (P53)/cyclin-dependent kinase inhibitor 1A (P21)-induced senescence (P53 bound to P21 gene promoter: ChIP) in arteries from 55 age-matched hypertensive and nonhypertensive individuals. Arterial mean telomere length was not different in hypertensive patients compared with nonhypertensive individuals (P = 0.29). Arterial telomere uncapping and P53/P21- induced senescence were two-fold greater in hypertensive patients compared with nonhypertensive individuals (P = 0.04 and P = 0.02, respectively). Arterial mean telomere length was not associated with telomere uncapping or P53/P21-induced senescence (r=– 0.02, P = 0.44 and r = 0.01, P = 0.50, respectively), but telomere uncapping was a highly influential covariate for the hypertension group difference in P53/P21-induced senescence (r = 0.62, P < 0.001, ηp2 = 0.35). Finally, telomere uncapping was a significant predictor of hypertension status (P = 0.03), whereas mean telomere length was not (P = 0.68). Conclusion Collectively, these findings demonstrate that arterial telomere uncapping and P53/P21-induced senescence are linked to hypertension independently of mean telomere length, and telomere uncapping influences hypertension status more than mean telomere length. PMID:24686009
Telomere correlations during early life in a long-lived seabird.
Schmidt, Jacob E; Sirman, Aubrey E; Kittilson, Jeffrey D; Clark, Mark E; Reed, Wendy L; Heidinger, Britt J
2016-12-01
Telomere dynamics in blood cells have been linked to aging in a variety of organisms. However, whether blood telomeres are correlated with telomeres in other parts of the body is not well known, especially during early life when telomere loss is expected to be most rapid. We investigated this question in Franklin's gulls (Leucophaeus pipixcan) by measuring telomere lengths in blood and several other tissues including: heart, liver, and skeletal muscle at the end of embryonic (n=31) and post-natal development (n=20). In late-stage embryos, blood telomeres were significantly positively correlated with heart and skeletal muscle, but not liver telomeres. However, at the end of post-natal development, there were no significant correlations among blood telomeres and telomeres in any other tissues. In late-stage embryos, heart telomeres were significantly longer than blood, liver, and skeletal muscle telomeres, but at the end of post-natal development telomere lengths did not significantly differ among tissues. These results suggest that blood telomere length is not necessarily indicative of other tissues at all stages of development and highlights the importance of understanding any functional consequences of tissue specific telomere dynamics in early life. Copyright © 2016 Elsevier Inc. All rights reserved.
Sommers, Joshua A.; Banerjee, Taraswi; Hinds, Twila; Wan, Bingbing; Wold, Marc S.; Lei, Ming; Brosh, Robert M.
2014-01-01
Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism. PMID:24895130
Simon, Naomi M; Walton, Zandra E; Bui, Eric; Prescott, Jennifer; Hoge, Elizabeth; Keshaviah, Aparna; Schwarz, Noah; Dryman, Taylor; Ojserkis, Rebecca A; Kovachy, Benjamin; Mischoulon, David; Worthington, John; De Vivo, Immaculata; Fava, Maurizio; Wong, Kwok-Kin
2015-08-01
Leukocyte telomere length (LTL) is a marker of cellular turnover and oxidative stress. Studies suggest major depressive disorder (MDD) is associated with oxidative stress, but examinations of MDD and LTL have yielded mixed results, likely because of differences in measurement methods and unmeasured confounding. This study examined LTL and telomerase activity in 166 individuals with MDD compared to 166 age- and gender-matched matched controls free of any psychiatric disorder, using well-validated assays and clinical assessment methods, and controlling for a range of potential confounders. Subjects aged 18 to 70 were evaluated by trained raters and provided blood for LTL and telomerase activity measurement. LTL was assayed using Southern blot and replicated with qPCR, and telomerase activity was assayed with a repeat amplification protocol using a commercial kit. There was no significant difference in telomere length for individuals with MDD [mean (SD)=9.1 (3.0)kbp] compared to controls [mean(SD)=8.9(2.5)kbp] measured by Southern blot (p=0.65) or by confirmatory qPCR (p=0.91) assays. Controlling for potential confounders did not alter the results. Telomerase activity did not differ by MDD diagnosis overall (p=0.40), but the effect of MDD was significantly modified by gender (t(299)=2.67, p=0.0079) even after controlling for potential confounders, with telomerase activity significantly greater only in males with MDD versus controls. Our well-characterized, well-powered examination of concurrently assessed telomere length and telomerase activity in individuals with clinically significant, chronic MDD and matched controls failed to provide strong evidence of an association of MDD with shorter LTL, while telomerase activity was higher in men with MDD [corrected]. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Hongping; Xi, Jianjun; Sun, Jingjing; Ke, Yunling; Zhang, Jiankang; Shao, Yidan; Jiang, Xiaojie; Pan, Xuwang; Liu, Shourong; Zhuang, Rangxiao
2018-01-01
Non-alcoholic fatty liver disease (NAFLD) is becoming one of the world's most common chronic liver diseases in childhood, yet no therapy is available that has been approved by the food and drug administration (FDA). Previous studies have reported that telomere and telomerase are involved the development and progression of NAFLD. This study was designed to investigate the potential beneficial effects of activated carbon N-acetylcysteine (ACNAC) microcapsules on the development of NAFLD in young rats as well as the underlying mechanism(s) involved. Three-week old male Sprague Dawley rats were given high-fat diet (HFD) with/without ACNAC treatment for 7 consecutive weeks. Liver pathologies were determined by hematoxylin and eosin (H&E) and Oil Red O staining, as well as by changes in biochemical parameters of plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, respectively. Glucose homeostasis was evaluated by the glucose tolerance test and the liver telomere length and activity were measured by real time PCR and telomeric repeat amplification protocol (TRAP). Western blot analysis was performed to determine the expression level of Bcl-2, Bax and Caspase-3. Our results demonstrated that ACNAC supplementation improved liver pathologies of rats that received long-term HFD feeding. ACNAC supplementation prevented HFD-induced telomere shortening and improved telomerase activity. Moreover, in comparison to HFD-fed rats, ACNAC supplementation markedly increased the expression of Bcl-2, but significantly decreased the expression of Bax and Caspase-3 in juvenile rats. Together, these results indicate that ACNAC may be a promising choice for preventing and treating NAFLD among children. PMID:29324774
Robles, Theodore F; Carroll, Judith E; Bai, Sunhye; Reynolds, Bridget M; Esquivel, Stephanie; Repetti, Rena L
2016-01-01
Conceptualizations of links between stress and cellular aging in childhood suggest that accumulating stress predicts shorter leukocyte telomere length (LTL). At the same time, several models suggest that emotional reactivity to stressors may play a key role in predicting cellular aging. Using intensive repeated measures, we tested whether exposure or emotional "reactivity" to conflict and warmth in the family were related to LTL. Children (N=39; 30 target children and 9 siblings) between 8 and 13 years of age completed daily diary questionnaires for 56 consecutive days assessing daily warmth and conflict in the marital and the parent-child dyad, and daily positive and negative mood. To assess exposure to conflict and warmth, diary scale scores were averaged over the 56 days. Mood "reactivity" was operationalized by using multilevel modeling to generate estimates of the slope of warmth or conflict scores (marital and parent-child, separately) predicting same-day mood for each individual child. After diary collection, a blood sample was collected to determine LTL. Among children aged 8-13 years, a stronger association between negative mood and marital conflict, suggesting greater negative mood reactivity to marital conflict, was related to shorter LTL (B=-1.51, p<.01). A stronger association between positive mood and marital affection, suggesting positive mood reactivity, was related to longer LTL (B=1.15, p<.05). These effects were independent of exposure to family and marital conflict and warmth, and positive and negative mood over a two-month period. To our knowledge, these findings, although cross-sectional, represent the first evidence showing that link between children's affective responses and daily family interactions may have implications for telomere length. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nelson, Nya D; Dodson, Lois M; Escudero, Laura; Sukumar, Ann T; Williams, Christopher L; Mihalek, Ivana; Baldan, Alessandro; Baird, Duncan M; Bertuch, Alison A
2018-06-15
TIN2 is central to the shelterin complex, linking the telomeric proteins TRF1 and TRF2 with TPP1/POT1. Mutations in TINF2 , which encodes TIN2, that are found in dyskeratosis congenita (DC) result in very short telomeres and cluster in a region shared by the two TIN2 isoforms, TIN2S (short) and TIN2L (long). Here we show that TIN2L, but not TIN2S, is phosphorylated. TRF2 interacts more with TIN2L than TIN2S, and both the DC cluster and phosphorylation promote this enhanced interaction. The binding of TIN2L, but not TIN2S, is affected by TRF2-F120, which is also required for TRF2's interaction with end processing factors such as Apollo. Conversely, TRF1 interacts more with TIN2S than with TIN2L. A DC-associated mutation further reduces TIN2L-TRF1, but not TIN2S-TRF1, interaction. Cells overexpressing TIN2L or phosphomimetic TIN2L are permissive to telomere elongation, whereas cells overexpressing TIN2S or phosphodead TIN2L are not. Telomere lengths are unchanged in cell lines in which TIN2L expression has been eliminated by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated mutation. These results indicate that TIN2 isoforms are biochemically and functionally distinguishable and that shelterin composition could be fundamentally altered in patients with TINF2 mutations. Copyright © 2018 Nelson et al.
Telomere-driven diseases and telomere-targeting therapies
2017-01-01
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual’s lifetime. Telomere shortening is proposed to be a primary molecular cause of aging. Short telomeres block the proliferative capacity of stem cells, affecting their potential to regenerate tissues, and trigger the development of age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as telomere syndromes, including Hoyeraal-Hreidarsson syndrome, dyskeratosis congenita, pulmonary fibrosis, aplastic anemia, and liver fibrosis. Telomere shortening induces chromosomal instability that, in the absence of functional tumor suppressor genes, can contribute to tumorigenesis. In addition, mutations in telomere length maintenance genes and in shelterin components, the protein complex that protects telomeres, have been found to be associated with different types of cancer. These observations have encouraged the development of therapeutic strategies to treat and prevent telomere-associated diseases, namely aging-related diseases, including cancer. Here we review the molecular mechanisms underlying telomere-driven diseases and highlight recent advances in the preclinical development of telomere-targeted therapies using mouse models. PMID:28254828
The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length
Cook, Daniel E.; Zdraljevic, Stefan; Tanny, Robyn E.; Seo, Beomseok; Riccardi, David D.; Noble, Luke M.; Rockman, Matthew V.; Alkema, Mark J.; Braendle, Christian; Kammenga, Jan E.; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C.
2016-01-01
Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. PMID:27449056
Predictors of telomere content in dragon lizards
NASA Astrophysics Data System (ADS)
Ballen, Cissy; Healey, Mo; Wilson, Mark; Tobler, Michael; Olsson, Mats
2012-08-01
Telomeres shorten as a consequence of DNA replication, in particular in cells with low production of telomerase and perhaps in response to physiological stress from exposure to reactive oxygen species, such as superoxide. This process of telomere attrition is countered by innate antioxidation, such as via the production of superoxide dismutase. We studied the inheritance of telomere length in the Australian painted dragon lizard ( Ctenophorus pictus) and the extent to which telomere length covaries with mass-corrected maternal reproductive investment, which reflects the level of circulating yolk precursor and antioxidant, vitellogenin. Our predictors of offspring telomere length explained 72 % of telomere variation (including interstitial telomeres if such are present). Maternal telomere length and reproductive investment were positively influencing offspring telomere length in our analyses, whereas flow cytometry-estimated superoxide level was negatively impacting offspring telomere length. We suggest that the effects of superoxide on hatchling telomere shortening may be partly balanced by transgenerational effects of vitellogenin antioxidation.
Analysis of the temporal program of replication initiation in yeast chromosomes.
Friedman, K L; Raghuraman, M K; Fangman, W L; Brewer, B J
1995-01-01
The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating regions in the genome, and to begin to analyze the effect that altering the temporal program has on chromosome function.
Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V
2012-09-19
Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.
Pérez-Arnaiz, Cristina; Busto, Natalia; Santolaya, Javier; Leal, José M; Barone, Giampaolo; García, Begoña
2018-03-01
Stabilization of G-quadruplex helices by small ligands has attracted growing attention because they inhibit the activity of the enzyme telomerase, which is overexpressed in >80% cancer cells. TMPyP4, one of the most studied G-quadruplex ligands, is used as a model to show that the ligands can exhibit different binding features with different conformations of a human telomeric specific sequence. UV-Vis, FRET melting Assay, Isothermal Titration Calorimetry, Time-resolved Fluorescence lifetime, T-Jump and Molecular Dynamics. TMPyP4 yields two different complexes with two Tel22 telomeric conformations in the presence of Na + or K + . T-Jump kinetic experiments show that the rates of formation and dissociation of these complexes in the ms time scale differ by one order of magnitude. MD simulations reveal that, in K + buffer, "hybrid 1" conformation yields kinetic constants on interaction with TMPyP4 one order lower than "hybrid 2". The binding involves π-π stacking with external loop bases. For the first time we show that for a particular buffer TMPyP4 interacts in a kinetically different way with the two Tel22 conformations even if the complexes formed are thermodynamically indistinguishable. G-quadruplexes, endowed with technological applications and potential impact on regulation mechanisms, define a new research field. The possibility of building different conformations from same sequence is a complex issue that confers G-quadruplexes very interesting features. The obtaining of reliable kinetic data constitutes an efficient tool to determine reaction mechanisms between conformations and small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Getlekha, Nuntaporn; Molina, Wagner Franco; de Bello Cioffi, Marcelo; Yano, Cassia Fernanda; Maneechot, Nuntiya; Bertollo, Luiz Antonio Carlos; Supiwong, Weerayuth; Tanomtong, Alongklod
2016-04-01
The Dascyllus genus consists of 11 species spread over vast regions of the Indo-Pacific, showing remarkable reductions in the diploid chromosome numbers (2n). The present study analyzed the karyotypes and other chromosomal characteristics of D. trimaculatus (2n = 48; 2st + 46a; NF = 50), D. carneus (2n = 48; 2st + 46a; NF = 50) and D. aruanus (2n = 30; 18m + 2st + 10a; NF = 50) from the Thailand Gulf (Pacific Ocean) and D. melanurus (2n = 48; 2st + 46a; NF = 50) from the Andaman Sea (Indian Ocean), employing conventional cytogenetic analyses and the chromosomal mapping of repetitive DNAs, using 18S and 5S rDNA, telomeric sequences and (CA)15, (GA)15, and (CAA)10 microsatellites as probes. The C-positive heterochromatin was found in the centromeric regions of most chromosomal pairs and 18S rDNA phenotypes were single in all species. However, in D. aruanus (2n = 30), which harbors nine metacentric pairs; the 5S rDNA sites were located in the centromeric region of the shortest one. The mapping of the telomeric sequences in D. aruanus revealed the presence of interstitial telomeric sites (ITS) in the centromeric region of four metacentric pairs, with one of these pairs also displaying an additional ITS in the long arms. Distinct chromosomal markers confirmed the reduction of the 2n by chromosomal fusions, highlighting the precise characterization of these rearrangements by the cytogenetic mapping of the repetitive DNAs.
Bender, Hannah S.; Murchison, Elizabeth P.; Pickett, Hilda A.; Deakin, Janine E.; Strong, Margaret A.; Conlan, Carly; McMillan, Daniel A.; Neumann, Axel A.; Greider, Carol W.; Hannon, Gregory J.; Reddel, Roger R.; Graves, Jennifer A. Marshall.
2012-01-01
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago. PMID:23049977
Imbert, Isabelle; Botto, Jean-Marie; Farra, Claude D; Domloge, Nouha
2012-06-01
Telomere shortening is considered as one of the main characteristics of cellular aging by limiting cellular division. Besides the fundamental advances through the discoveries of telomere and telomerase, which were recognized by a Nobel Prize, telomere protection remains an essential area of research. Recently, it was evidenced that studying the cross-talks between the proteins associated with telomere should provide a better understanding of the mechanistic basis for telomere-associated aging phenotypes. In this review, we discuss the current knowledge on telomere shortening, telomerase activity, and the essential role of telomere binding proteins in telomere stabilization and telomere-end protection. This review highlights the capacity of telomere binding proteins to limit cellular senescence and to maintain skin tissue homeostasis, which is of key importance to reduce accelerated tissue aging. Future studies addressing telomere protection and limitation of DNA damage response in human skin should include investigations on telomere binding proteins. As little is known about the expression of telomere binding proteins in human skin and modulation of their expression with aging, it remains an interesting field of skin research and a key area for future skin protection and anti-aging developments. © 2012 Wiley Periodicals, Inc.
Telomere lengthening early in development.
Liu, Lin; Bailey, Susan M; Okuka, Maja; Muñoz, Purificación; Li, Chao; Zhou, Lingjun; Wu, Chao; Czerwiec, Eva; Sandler, Laurel; Seyfang, Andreas; Blasco, Maria A; Keefe, David L
2007-12-01
Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.
Min, Jaewon; Wright, Woodring E.
2017-01-01
ABSTRACT Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae. Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer. PMID:28760773
González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I
2015-05-12
Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Analysis of sequence repeats of proteins in the PDB.
Mary Rajathei, David; Selvaraj, Samuel
2013-12-01
Internal repeats in protein sequences play a significant role in the evolution of protein structure and function. Applications of different bioinformatics tools help in the identification and characterization of these repeats. In the present study, we analyzed sequence repeats in a non-redundant set of proteins available in the Protein Data Bank (PDB). We used RADAR for detecting internal repeats in a protein, PDBeFOLD for assessing structural similarity, PDBsum for finding functional involvement and Pfam for domain assignment of the repeats in a protein. Through the analysis of sequence repeats, we found that identity of the sequence repeats falls in the range of 20-40% and, the superimposed structures of the most of the sequence repeats maintain similar overall folding. Analysis sequence repeats at the functional level reveals that most of the sequence repeats are involved in the function of the protein through functionally involved residues in the repeat regions. We also found that sequence repeats in single and two domain proteins often contained conserved sequence motifs for the function of the domain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Telomere tracking from birth to adulthood and residential traffic exposure.
Bijnens, Esmée M; Zeegers, Maurice P; Derom, Catherine; Martens, Dries S; Gielen, Marij; Hageman, Geja J; Plusquin, Michelle; Thiery, Evert; Vlietinck, Robert; Nawrot, Tim S
2017-11-21
Telomere attrition is extremely rapid during the first years of life, while lifestyle during adulthood exerts a minor impact. This suggests that early life is an important period in the determination of telomere length. We investigated the importance of the early-life environment on both telomere tracking and adult telomere length. Among 184 twins of the East Flanders Prospective Twin Survey, telomere length in placental tissue and in buccal cells in young adulthood was measured. Residential addresses at birth and in young adulthood were geocoded and residential traffic and greenness exposure was determined. We investigated individual telomere tracking from birth over a 20 year period (mean age (SD), 22.6 (3.1) years) in association with residential exposure to traffic and greenness. Telomere length in placental tissue and in buccal cells in young adulthood correlated positively (r = 0.31, P < 0.0001). Persons with higher placental telomere length at birth were more likely to have a stronger downward shift in telomere ranking over life (P < 0.0001). Maternal residential traffic exposure correlated inversely with telomere length at birth. Independent of birth placental telomere length, telomere ranking between birth and young adulthood was negatively and significantly associated with residential traffic exposure at the birth address, while traffic exposure at the residential address at adult age was not associated with telomere length. Longitudinal evidence of telomere length tracking from birth to adulthood shows inverse associations of residential traffic exposure in association with telomere length at birth as well as accelerated telomere shortening in the first two decades of life.
Break-induced telomere synthesis underlies alternative telomere maintenance
Dilley, Robert L.; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D.; Wondisford, Anne R.; Greenberg, Roger A.
2017-01-01
Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance. PMID:27760120
A quantitative telomeric chromatin isolation protocol identifies different telomeric states
NASA Astrophysics Data System (ADS)
Grolimund, Larissa; Aeby, Eric; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; Lingner, Joachim
2013-11-01
Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein composition of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional telomeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shelterins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease.
The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.
Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C
2016-09-01
Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.
2012-01-01
Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp) of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop) of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp) on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC) and one DC2 (CCCGCCC) and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i) isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii) identifies the replication and conjugation loci of pWTY27 and; (iii) characterizes the binding sequences of the RepA and TraA proteins. PMID:23134842
Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.
Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine
2015-10-01
Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.
The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion
Lozier, Jay N.; Dutra, Amalia; Pak, Evgenia; Zhou, Nan; Zheng, Zhili; Nichols, Timothy C.; Bellinger, Dwight A.; Read, Marjorie; Morgan, Richard A.
2002-01-01
In the Chapel Hill colony of factor VIII-deficient dogs, abnormal sequence (ch8, for canine hemophilia 8, GenBank no. AF361485) follows exons 1–22 in the factor VIII transcript in place of exons 23–26. The canine hemophilia 8 locus (ch8) sequence was found in a 140-kb normal dog genomic DNA bacterial artificial chromosome (BAC) clone that was completely outside the factor VIII gene, but not in BAC clones containing the factor VIII gene. The BAC clone that contained ch8 also contained a homologue of F8A (factor 8 associated) sequence, which participates in a common inversion that causes severe hemophilia A in humans. Fluorescence in situ hybridization analysis indicated that exons 1–26 normally proceed sequentially from telomere to centromere at Xq28, and ch8 is telomeric to the factor VIII gene. The appearance of an “upstream” genomic sequence element (ch8) at the end of the aberrant factor VIII transcript suggested that an inversion of genomic DNA replaced factor VIII exons 22–26 with ch8. The F8A sequence appeared also in overlapping normal BAC clones containing factor VIII sequence. We hypothesized that homologous recombination between copies of canine F8A inside and outside the factor VIII gene had occurred, as in human hemophilia A. High-resolution fluorescent in situ hybridization on hemophilia A dog DNA revealed a pattern consistent with this inversion mechanism. We also identified a HindIII restriction fragment length polymorphism of F8A fragments that distinguished hemophilia A, carrier, and normal dogs' DNA. The Chapel Hill hemophilia A dog colony therefore replicates the factor VIII gene inversion commonly seen in humans with severe hemophilia A. PMID:12242334
Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension.
Porreca, Rosa M; Glousker, Galina; Awad, Aya; Matilla Fernandez, Maria I; Gibaud, Anne; Naucke, Christian; Cohen, Scott B; Bryan, Tracy M; Tzfati, Yehuda; Draskovic, Irena; Londoño-Vallejo, Arturo
2018-05-18
Telomere maintenance protects the cell against genome instability and senescence. Accelerated telomere attrition is a characteristic of premature aging syndromes including Dyskeratosis congenita (DC). Mutations in hRTEL1 are associated with a severe form of DC called Hoyeraal-Hreidarsson syndrome (HHS). HHS patients carry short telomeres and HHS cells display telomere damage. Here we investigated how hRTEL1 contributes to telomere maintenance in human primary as well as tumor cells. Transient depletion of hRTEL1 resulted in rapid telomere shortening only in the context of telomerase-positive cells with very long telomeres and high levels of telomerase. The effect of hRTEL1 on telomere length is telomerase dependent without impacting telomerase biogenesis or targeting of the enzyme to telomeres. Instead, RTEL1 depletion led to a decrease in both G-overhang content and POT1 association with telomeres with limited telomere uncapping. Strikingly, overexpression of POT1 restored telomere length but not the overhang, demonstrating that G-overhang loss is the primary defect caused by RTEL1 depletion. We propose that hRTEL1 contributes to the maintenance of long telomeres by preserving long G-overhangs, thereby facilitating POT1 binding and elongation by telomerase.
Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension
Porreca, Rosa M; Glousker, Galina; Awad, Aya; Matilla Fernandez, Maria I; Gibaud, Anne; Naucke, Christian; Cohen, Scott B; Bryan, Tracy M; Tzfati, Yehuda; Draskovic, Irena; Londoño-Vallejo, Arturo
2018-01-01
Abstract Telomere maintenance protects the cell against genome instability and senescence. Accelerated telomere attrition is a characteristic of premature aging syndromes including Dyskeratosis congenita (DC). Mutations in hRTEL1 are associated with a severe form of DC called Hoyeraal-Hreidarsson syndrome (HHS). HHS patients carry short telomeres and HHS cells display telomere damage. Here we investigated how hRTEL1 contributes to telomere maintenance in human primary as well as tumor cells. Transient depletion of hRTEL1 resulted in rapid telomere shortening only in the context of telomerase-positive cells with very long telomeres and high levels of telomerase. The effect of hRTEL1 on telomere length is telomerase dependent without impacting telomerase biogenesis or targeting of the enzyme to telomeres. Instead, RTEL1 depletion led to a decrease in both G-overhang content and POT1 association with telomeres with limited telomere uncapping. Strikingly, overexpression of POT1 restored telomere length but not the overhang, demonstrating that G-overhang loss is the primary defect caused by RTEL1 depletion. We propose that hRTEL1 contributes to the maintenance of long telomeres by preserving long G-overhangs, thereby facilitating POT1 binding and elongation by telomerase. PMID:29522136
Telomeres, lifestyle, cancer, and aging
Shammas, Masood A.
2012-01-01
Purpose of review There has been growing evidence that lifestyle factors may affect the health and lifespan of an individual by affecting telomere length. The purpose of this review was to highlight the importance of telomeres in human health and aging and to summarize possible lifestyle factors that may affect health and longevity by altering the rate of telomere shortening. Recent findings Recent studies indicate that telomere length, which can be affected by various lifestyle factors, can affect the pace of aging and onset of age-associated diseases. Summary Telomere length shortens with age. Progressive shortening of telomeres leads to senescence, apoptosis, or oncogenic transformation of somatic cells, affecting the health and lifespan of an individual. Shorter telomeres have been associated with increased incidence of diseases and poor survival. The rate of telomere shortening can be either increased or decreased by specific lifestyle factors. Better choice of diet and activities has great potential to reduce the rate of telomere shortening or at least prevent excessive telomere attrition, leading to delayed onset of age-associated diseases and increased lifespan. This review highlights the role of telomeres in aging and describes the lifestyle factors which may affect telomeres, human health, and aging. PMID:21102320
The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome
Pevala, Vladimír; Truban, Dominika; Bauer, Jacob A.; Košťan, Július; Kunová, Nina; Bellová, Jana; Brandstetter, Marlene; Marini, Victoria; Krejčí, Lumír; Tomáška, Ľubomír; Nosek, Jozef; Kutejová, Eva
2016-01-01
To study the mechanisms involved in the maintenance of a linear mitochondrial genome we investigated the biochemical properties of the recombination protein Mgm101 from Candida parapsilosis. We show that CpMgm101 complements defects associated with the Saccharomyces cerevisiae mgm101–1ts mutation and that it is present in both the nucleus and mitochondrial nucleoids of C. parapsilosis. Unlike its S. cerevisiae counterpart, CpMgm101 is associated with the entire nucleoid population and is able to bind to a broad range of DNA substrates in a non-sequence specific manner. CpMgm101 is also able to catalyze strand annealing and D-loop formation. CpMgm101 forms a roughly C-shaped trimer in solution according to SAXS. Electron microscopy of a complex of CpMgm101 with a model mitochondrial telomere revealed homogeneous, ring-shaped structures at the telomeric single-stranded overhangs. The DNA-binding properties of CpMgm101, together with its DNA recombination properties, suggest that it can play a number of possible roles in the replication of the mitochondrial genome and the maintenance of its telomeres. PMID:26743001
de Oliveira, Edivaldo Herculano C.; Tagliarini, Marcella Mergulhão; dos Santos, Michelly S.; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.
2013-01-01
Buteoninae (Falconiformes, Accipitridae) consist of the widely distributed genus Buteo, and several closely related species in a group called “sub-buteonine hawks”, such as Buteogallus, Parabuteo, Asturina, Leucopternis and Busarellus, with unsolved phylogenetic relationships. Diploid number ranges between 2n = 66 and 2n = 68. Only one species, L. albicollis had its karyotype analyzed by molecular cytogenetics. The aim of this study was to present chromosomal analysis of three species of Buteoninae: Rupornis magnirostris, Asturina nitida and Buteogallus meridionallis using fluorescence in situ hybridization (FISH) experiments with telomeric and rDNA probes, as well as whole chromosome probes derived from Gallus gallus and Leucopternis albicollis. The three species analyzed herein showed similar karyotypes, with 2n = 68. Telomeric probes showed some interstitial telomeric sequences, which could be resulted by fusion processes occurred in the chromosomal evolution of the group, including the one found in the tassociation GGA1p/GGA6. In fact, this association was observed in all the three species analyzed in this paper, and also in L. albicollis, suggesting that it represents a cytogenetic signature which reinforces the monophyly of Neotropical buteoninae species. PMID:23922908
Golczyk, Hieronim; Hasterok, Robert; Joachimiak, Andrzej J
2005-02-01
Fluorescence in situ hybridization (FISH) using 25S rDNA, 5S rDNA, and telomere sequences as probes was carried out in the complex permanent heterozygote Rhoeo spathacea. Telomere sites were exclusively terminal. All 10 25S rDNA loci were located distally and appeared transcriptionally active after silver staining. Six distal and 2 interstitial 5S rDNA sites were detected; 2 of the distal sites strictly colocalized with 25S rDNA loci. The 2 intercalary 5S rDNA loci occurred in short arms of 2 chromosomes that conjoined at meiosis. Chromosomes differed as to the amount of AT-rich centric heterochromatin, suggesting involvement of pericentromeric regions in translocations. The possibility of Robertsonian-like rearrangements was discussed. Double target FISH with ribosomal probes along with DAPI fluorescence gave the basis for full chromosome identification in mitosis. The 2 Renner complexes are structurally balanced, both having 5 25S and 4 5S rDNA sites. Centromere clustering, telomere association, a high number of NOR sites, and a strong tendency for formation of joint nucleoli contribute to the preservation of highly polarized Rabl arrangement at interphase. These findings were discussed in relation to meiotic catenation in Rhoeo.
Goglin, Sarah E; Farzaneh-Far, Ramin; Epel, Elissa S; Lin, Jue; Blackburn, Elizabeth H; Whooley, Mary A
2016-01-01
Short telomere length independently predicts mortality in patients with coronary heart disease. Whether 5-year change in telomere length predicts subsequent mortality in patients with coronary heart disease has not been evaluated. In a prospective cohort study of 608 individuals with stable coronary artery disease, we measured leukocyte telomere length at baseline and after five years of follow-up. We divided the sample into tertiles of telomere change: shortened, maintained or lengthened. We used Cox survival models to evaluate 5-year change in telomere length as a predictor of mortality. During an average of 4.2 years follow-up, there were 149 deaths. Change in telomere length was inversely predictive of all-cause mortality. Using the continuous variable of telomere length change, each standard deviation (325 base pair) greater increase in telomere length was associated with a 24% reduction in mortality (HR 0.76, 95% CI 0.61-0.94; p = 0.01), adjusted for age, sex, waist to hip ratio, exercise capacity, LV ejection fraction, serum creatinine, and year 5 telomere length. Mortality occurred in 39% (79/203) of patients who experienced telomere shortening, 22% (45/203) of patients whose telomere length was maintained, and 12% (25/202) of patients who experienced telomere lengthening (p<0.001). As compared with patients whose telomere length was maintained, those who experienced telomere lengthening were 56% less likely to die (HR 0.44, 95% CI, 0.23-0.87). In patients with coronary heart disease, an increase in leukocyte telomere length over 5 years is associated with decreased mortality.
Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants
Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří
2015-01-01
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. PMID:25359579
Recent progress in human telomere RNA structure and function.
Xu, Yan
2018-06-14
Human telomeric DNA is transcribed into telomeric RNA in cells. Telomeric RNA performs the fundamental biological functions such as regulation and protection of chromosome ends. This digest highlights the human telomere RNA G-quadruplex structures, telomere RNA functions, G-quadruplex-binding small molecules, and future prospects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zubko, Elena I; Shackleton, Jennifer L; Zubko, Mikhajlo K
2016-12-01
Measuring telomere length is essential in telomere biology. Southern blot hybridization is the predominant method for measuring telomere length in the genetic model Saccharomyces cerevisiae. We have further developed and refined a telomere PCR approach, which was rarely used previously (mainly in specific telomeric projects), into a robust method allowing direct visualisation of telomere length differences in routine experiments with S. cerevisiae, and showing a strong correlation of results with data obtained by Southern blot hybridization. In this expanded method denoted as ATLAS (A-dvanced T-elomere L-ength A-nalysis in S. cerevisiae), we have introduced: 1) set of new primers annealing with high specificity to telomeric regions on five different chromosomes; 2) new approach for designing reverse telomere primers that is based on the ligation of an adaptor of a fixed size to telomeric ends. ATLAS can be used at the scale of individual assays and high-throughput approaches. This simple, time/cost-effective and reproducible methodology will complement Southern blot hybridization and facilitate further progress in telomere research. Copyright © 2016 Elsevier B.V. All rights reserved.
The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells.
Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang
2017-06-15
Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Do US Black Women Experience Stress-Related Accelerated Biological Aging?
Hicken, Margaret T.; Pearson, Jay A.; Seashols, Sarah J.; Brown, Kelly L.; Cruz, Tracey Dawson
2010-01-01
We hypothesize that black women experience accelerated biological aging in response to repeated or prolonged adaptation to subjective and objective stressors. Drawing on stress physiology and ethnographic, social science, and public health literature, we lay out the rationale for this hypothesis. We also perform a first population-based test of its plausibility, focusing on telomere length, a biomeasure of aging that may be shortened by stressors. Analyzing data from the Study of Women's Health Across the Nation (SWAN), we estimate that at ages 49–55, black women are 7.5 years biologically “older” than white women. Indicators of perceived stress and poverty account for 27% of this difference. Data limitations preclude assessing objective stressors and also result in imprecise estimates, limiting our ability to draw firm inferences. Further investigation of black-white differences in telomere length using large-population-based samples of broad age range and with detailed measures of environmental stressors is merited. PMID:20436780
Maternal telomere length inheritance in the king penguin.
Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S
2015-01-01
Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age.
Nanavaty, Vishal; Sandhu, Ranjodh; Jehi, Sanaa E; Pandya, Unnati M; Li, Bibo
2017-06-02
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A
2007-03-27
A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.