Sample records for temperate grass species

  1. Grass pollen allergens globally: the contribution of subtropical grasses to burden of allergic respiratory diseases.

    PubMed

    Davies, J M

    2014-06-01

    Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both

  2. Alignment of the Genomes of Brachypodium distachyon and Temperate Cereals and Grasses Using Bacterial Artificial Chromosome Landing With Fluorescence in Situ Hybridization

    PubMed Central

    Hasterok, Robert; Marasek, Agnieszka; Donnison, Iain S.; Armstead, Ian; Thomas, Ann; King, Ian P.; Wolny, Elzbieta; Idziak, Dominika; Draper, John; Jenkins, Glyn

    2006-01-01

    As part of an initiative to develop Brachypodium distachyon as a genomic “bridge” species between rice and the temperate cereals and grasses, a BAC library has been constructed for the two diploid (2n = 2x = 10) genotypes, ABR1 and ABR5. The library consists of 9100 clones, with an approximate average insert size of 88 kb, representing 2.22 genome equivalents. To validate the usefulness of this species for comparative genomics and gene discovery in its larger genome relatives, the library was screened by PCR using primers designed on previously mapped rice and Poaceae sequences. Screening indicated a degree of synteny between these species and B. distachyon, which was confirmed by fluorescent in situ hybridization of the marker-selected BACs (BAC landing) to the 10 chromosome arms of the karyotype, with most of the BACs hybridizing as single loci on known chromosomes. Contiguous BACs colocalized on individual chromosomes, thereby confirming the conservation of genome synteny and proving that B. distachyon has utility as a temperate grass model species alternative to rice. PMID:16489232

  3. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization.

    PubMed

    Hasterok, Robert; Marasek, Agnieszka; Donnison, Iain S; Armstead, Ian; Thomas, Ann; King, Ian P; Wolny, Elzbieta; Idziak, Dominika; Draper, John; Jenkins, Glyn

    2006-05-01

    As part of an initiative to develop Brachypodium distachyon as a genomic "bridge" species between rice and the temperate cereals and grasses, a BAC library has been constructed for the two diploid (2n = 2x = 10) genotypes, ABR1 and ABR5. The library consists of 9100 clones, with an approximate average insert size of 88 kb, representing 2.22 genome equivalents. To validate the usefulness of this species for comparative genomics and gene discovery in its larger genome relatives, the library was screened by PCR using primers designed on previously mapped rice and Poaceae sequences. Screening indicated a degree of synteny between these species and B. distachyon, which was confirmed by fluorescent in situ hybridization of the marker-selected BACs (BAC landing) to the 10 chromosome arms of the karyotype, with most of the BACs hybridizing as single loci on known chromosomes. Contiguous BACs colocalized on individual chromosomes, thereby confirming the conservation of genome synteny and proving that B. distachyon has utility as a temperate grass model species alternative to rice.

  4. Subtropical grass pollen allergens are important for allergic respiratory diseases in subtropical regions

    PubMed Central

    2012-01-01

    Background Grass pollen allergens are a major cause of allergic respiratory disease but traditionally prescribing practice for grass pollen allergen-specific immunotherapy has favoured pollen extracts of temperate grasses. Here we aim to compare allergy to subtropical and temperate grass pollens in patients with allergic rhinitis from a subtropical region of Australia. Methods Sensitization to pollen extracts of the subtropical Bahia grass (Paspalum notatum), Johnson grass (Sorghum halepense) and Bermuda grass (Cynodon dactylon) as well as the temperate Ryegrass (Lolium perenne) were measured by skin prick in 233 subjects from Brisbane. Grass pollen-specific IgE reactivity was tested by ELISA and cross-inhibition ELISA. Results Patients with grass pollen allergy from a subtropical region showed higher skin prick diameters with subtropical Bahia grass and Bermuda grass pollens than with Johnson grass and Ryegrass pollens. IgE reactivity was higher with pollen of Bahia grass than Bermuda grass, Johnson grass and Ryegrass. Patients showed asymmetric cross-inhibition of IgE reactivity with subtropical grass pollens that was not blocked by temperate grass pollen allergens indicating the presence of species-specific IgE binding sites of subtropical grass pollen allergens that are not represented in temperate grass pollens. Conclusions Subtropical grass pollens are more important allergen sources than temperate grass pollens for patients from a subtropical region. Targeting allergen-specific immunotherapy to subtropical grass pollen allergens in patients with allergic rhinitis in subtropical regions could improve treatment efficacy thereby reducing the burden of allergic rhinitis and asthma. PMID:22409901

  5. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

    PubMed

    Tian, Qiuying; Liu, Nana; Bai, Wenming; Li, Linghao; Chen, Jiquan; Reich, Peter B; Yu, Qiang; Guo, Dali; Smith, Melinda D; Knapp, Alan K; Cheng, Weixin; Lu, Peng; Gao, Yan; Yang, An; Wang, Tianzuo; Li, Xin; Wang, Zhengwen; Ma, Yibing; Han, Xingguo; Zhang, Wen-Hao

    2016-01-01

    Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.

  6. Stripe smuts of grasses: one lineage or high levels of polyphyly?

    USDA-ARS?s Scientific Manuscript database

    Stripe smut of grasses, Ustilago striiformis s.l., is caused by a complex of smut fungi widely distributed over temperate and subtropical regions. The disease results in the shredding and death of leaf tissue following the rupture of elongated sori. Nearly 100 different grass species in more than 30...

  7. A novel grass hybrid to reduce flood generation in temperate regions

    PubMed Central

    Macleod, Christopher (Kit) J. A.; Humphreys, Mike W.; Whalley, W. Richard; Turner, Lesley; Binley, Andrew; Watts, Chris W.; Skøt, Leif; Joynes, Adrian; Hawkins, Sarah; King, Ian P.; O'Donovan, Sally; Haygarth, Phil M.

    2013-01-01

    We report on the evaluation of a novel grass hybrid that provides efficient forage production and could help mitigate flooding. Perennial ryegrass (Lolium perenne) is the grass species of choice for most farmers, but lacks resilience against extremes of climate. We hybridised L. perenne onto a closely related and more stress-resistant grass species, meadow fescue Festuca pratensis. We demonstrate that the L. perenne × F. pratensis cultivar can reduce runoff during the events by 51% compared to a leading UK nationally recommended L. perenne cultivar and by 43% compared to F. pratensis over a two year field experiment. We present evidence that the reduced runoff from this Festulolium cultivar was due to intense initial root growth followed by rapid senescence, especially at depth. Hybrid grasses of this type show potential for reducing the likelihood of flooding, whilst providing food production under conditions of changing climate. PMID:23619058

  8. Exploiting the Brachypodium Tool Box in cereal and grass research

    USDA-ARS?s Scientific Manuscript database

    It is now a decade since Brachypodium distachyon was suggested as a model species for temperate grasses and cereals. Since then transformation protocols, large expressed sequence tag (EST) populations, tools for forward and reverse genetic screens, highly refined cytogenetic probes, germplasm coll...

  9. Variable effects of fungal endophyte-infected grasses on the performance of pestiferous aphids

    USDA-ARS?s Scientific Manuscript database

    The extent of fungal endophyte (Neotyphodium) based antibiosis resistance in temperate grasses (Lolium spp., Hordeum spp.) to five pestiferous aphid species (Rhopalosiphum padi (L.), Diuraphis noxia (Kurdjumov), Schizaphis graminum (Rondani), Metopolophium dirhodum (Walker), Aploneura lentisci (Pass...

  10. Assessing impacts of introduced aquatic species: Grass carp in large systems

    NASA Astrophysics Data System (ADS)

    Bain, Mark B.

    1993-03-01

    Introduced species have created environmental benefits and unanticipated disasters so a priori assessments of species introductions are needed for environmental management. A checklist for assessing impacts of introduced species was developed from studies of introduced species and recommendations for planning introductions. Sterile, triploid grass carp ( Ctenopharyngodon idella) are just beginning to be used as a biocontrol agent for the management of aquatic vegetation in open waterways. Potential impacts of grass carp in open systems were identified by reviewing grass carp biology relative to the impact assessment checklist. The potential consequences of introduced grass carp were reviewed for one case study. The case study demonstrated that conclusions about potential impacts and monitoring needs can be made despite incomplete information and uncertainty. Indicators of environmental impact and vulnerability of host systems were grouped into six categories: population control, hybridization, diseases and parasites, habitat alterations, biological effects, and management issues. Triploid grass carp can significantly alter habitat and biological resources through the secondary effects of reductions in aquatic vegetation. Potential impacts and significant uncertainties involve fish dispersions from plant control areas, inability to control vegetation loss, loss of diverse plant communities and their dependent species, and conflicts with human use of the water resource. Adequate knowledge existed to assess most potential consequences of releasing large numbers of triploid grass carp in Guntersville Reservoir, Alabama. However, the assessment of potential impacts indicated that moderate, incremental stockings combined with monitoring of vegetation and biological resources are necessary to control the effects of grass carp and achieve desirable, intermediate plant densities.

  11. Variation in Soil Microbial Community Structure Associated with Different Legume Species Is Greater than that Associated with Different Grass Species

    PubMed Central

    Zhou, Yang; Zhu, Honghui; Fu, Shenglei; Yao, Qing

    2017-01-01

    Plants are the essential factors shaping soil microbial community (SMC) structure. When most studies focus on the difference in the SMC structure associated different plant species, the variation in the SMC structure associated with phylogenetically close species is less investigated. Legume (Fabaceae) and grass (Poaceae) are functionally important plant groups; however, their influences on the SMC structure are seldom compared, and the variation in the SMC structure among legume or grass species is largely unknown. In this study, we grew three legume species vs. three grass species in mesocosms, and monitored the soil chemical property, quantified the abundance of bacteria and fungi. The SMC structure was also characterized using PCR-DGGE and Miseq sequencing. Results showed that legume and grass differentially affected soil pH, dissolved organic C, total N content, and available P content, and that legume enriched fungi more greatly than grass. Both DGGE profiling and Miseq-sequencing indicated that the bacterial diversity associated with legume was higher than that associated with grass. When legume increased the abundance of Verrucomicrobia, grass decreased it, and furthermore, linear discriminant analysis identified some group-specific microbial taxa as potential biomarkers of legume or grass. These data suggest that legume and grass differentially select for the SMC. More importantly, clustering analysis based on both DGGE profiling and Miseq-sequencing demonstrated that the variation in the SMC structure associated with three legume species was greater than that associated with three grass species. PMID:28620371

  12. Soil nitrogen mineralization not affected by grass species traits

    Treesearch

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  13. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems.

    PubMed

    Wellstein, Camilla; Poschlod, Peter; Gohlke, Andreas; Chelli, Stefano; Campetella, Giandiego; Rosbakh, Sergey; Canullo, Roberto; Kreyling, Jürgen; Jentsch, Anke; Beierkuhnlein, Carl

    2017-06-01

    Here, we conducted a meta-analysis of experimental drought manipulation studies using rainout shelters in five sites of natural grassland ecosystems of Europe. The single studies assess the effects of extreme drought on the intraspecific variation of the specific leaf area (SLA), a proxy of plant growth. We evaluate and compare the effect size of the SLA response for the functional groups of forbs and grasses in temperate and sub-Mediterranean systems. We hypothesized that the functional groups of grasses and forbs from temperate grassland systems have different strategies in short-term drought response, measured as adjustment of SLA, with SLA-reduction in grasses and SLA-maintenance in forbs. Second, we hypothesized that grasses and forbs from sub-Mediterranean systems do not differ in their drought response as both groups maintain their SLA. We found a significant decrease of SLA in grasses of the temperate systems in response to drought while SLA of forbs showed no significant response. Lower SLA is associated with enhanced water-use efficiency under water stress and thus can be seen as a strategy of phenotypic adjustment. By contrast, in the sub-Mediterranean systems, grasses significantly increased their SLA in the drought treatment. This result points towards a better growth performance of these grasses, which is most likely related to their strategy to allocate resources to belowground parts. The observed SLA reduction of forbs is most likely a direct drought response given that competitive effect of grasses is unlikely due to the scanty vegetation cover. We point out that phenotypic adjustment is an important driver of short-term functional plant response to climatic extremes such as drought. Differential reactions of functional groups have to be interpreted against the background of the group's evolutionary configuration that can differ between climatic zones. © 2017 John Wiley & Sons Ltd.

  14. The difference between temperate and tropical saltwater species' acute sensitivity to chemicals is relatively small.

    PubMed

    Wang, Zhen; Kwok, Kevin W H; Lui, Gilbert C S; Zhou, Guang-Jie; Lee, Jae-Seong; Lam, Michael H W; Leung, Kenneth M Y

    2014-06-01

    Due to a lack of saltwater toxicity data in tropical regions, toxicity data generated from temperate or cold water species endemic to North America and Europe are often adopted to derive water quality guidelines (WQG) for protecting tropical saltwater species. If chemical toxicity to most saltwater organisms increases with water temperature, the use of temperate species data and associated WQG may result in under-protection to tropical species. Given the differences in species composition and environmental attributes between tropical and temperate saltwater ecosystems, there are conceivable uncertainties in such 'temperate-to-tropic' extrapolations. This study aims to compare temperate and tropical saltwater species' acute sensitivity to 11 chemicals through a comprehensive meta-analysis, by comparing species sensitivity distributions (SSDs) between the two groups. A 10 percentile hazardous concentration (HC10) is derived from each SSD, and then a temperate-to-tropic HC10 ratio is computed for each chemical. Our results demonstrate that temperate and tropical saltwater species display significantly different sensitivity towards all test chemicals except cadmium, although such differences are small with the HC10 ratios ranging from 0.094 (un-ionised ammonia) to 2.190 (pentachlorophenol) only. Temperate species are more sensitive to un-ionised ammonia, chromium, lead, nickel and tributyltin, whereas tropical species are more sensitive to copper, mercury, zinc, phenol and pentachlorophenol. Through comparison of a limited number of taxon-specific SSDs, we observe that there is a general decline in chemical sensitivity from algae to crustaceans, molluscs and then fishes. Following a statistical analysis of the results, we recommend an extrapolation factor of two for deriving tropical WQG from temperate information. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor.

    PubMed

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben; Paina, Cristiana; Rudi, Heidi; Rognli, Odd-Arne; Fjellheim, Siri; Sandve, Simen R

    2013-09-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures of positive selection were significantly stronger in LTI trees after the rice and Pooideae split but before the Brachypodium divergence (P < 0.05). Genome-wide heterogeneity in substitution rates was also observed, reflecting divergent genome evolution processes within these grasses. Our results provide evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. New chloroplast microsatellite markers suitable for assessing genetic diversity of Lolium perenne and other related grass species

    PubMed Central

    Diekmann, Kerstin; Hodkinson, Trevor R.; Barth, Susanne

    2012-01-01

    Background and Aims Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne ‘Cashel’. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Methods Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. Key Results All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A8 mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. Conclusions The new markers are a valuable tool for plant breeding companies, seed testing

  17. New chloroplast microsatellite markers suitable for assessing genetic diversity of Lolium perenne and other related grass species.

    PubMed

    Diekmann, Kerstin; Hodkinson, Trevor R; Barth, Susanne

    2012-11-01

    Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne 'Cashel'. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A(8) mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to

  18. Endophytic Epichloë species and their grass hosts: from evolution to applications.

    PubMed

    Saikkonen, Kari; Young, Carolyn A; Helander, Marjo; Schardl, Christopher L

    2016-04-01

    The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.

  19. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  20. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.

    PubMed

    Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong

    2017-11-01

    Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests

  1. Temperate pine barrens and tropical rain forests are both rich in undescribed fungi.

    PubMed

    Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning

    2014-01-01

    Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species.

  2. Temperate Pine Barrens and Tropical Rain Forests Are Both Rich in Undescribed Fungi

    PubMed Central

    Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning

    2014-01-01

    Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species. PMID:25072783

  3. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe.

    PubMed

    Fang, Ying; Xun, Fen; Bai, Wenming; Zhang, Wenhao; Li, Linghao

    2012-01-01

    Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness. Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP) in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration. Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the changes in species richness in semiarid temperate steppe of northern China under N

  4. Sarocladium spinificis, a new endophytic species from the coastal grass Spinifex littoreus in Taiwan.

    PubMed

    Yeh, Yu-Hung; Kirschner, Roland

    2014-12-01

    Sarocladium species are frequently associated with grasses as saprobes, parasites, and mutualistic endophytes. A species of Sarocladium (anamorphic Hypocreales) was isolated as endophytic fungus from the coastal grass Spinifex littoreus (Poaceae). According to characterization by LSU and ITS rDNA sequences and culture morphology and micromorphology, the species differed from the species hitherto described in Sarocladium. A key to the known species of Sarocladium is given. Sarocladium spinificis is proposed as a new species. LSU rDNA sequences and conidiophore branching and conidium size are useful characters for distinguishing between species of Sarocladium.

  5. Relevance of Allergenic Sensitization to Cynodon dactylon and Phragmites communis: Cross-reactivity With Pooideae Grasses.

    PubMed

    López-Matas, M A; Moya, R; Cardona, V; Valero, A; Gaig, P; Malet, A; Viñas, M; García-Moral, A; Labrador, M; Alcoceba, E; Ibero, M; Carnés, J

    The homologous group of sweet grasses belongs to the Pooideae subfamily, but grass pollen species from other subfamilies can also cause allergy, such as Cynodon dactylon (Chloridoideae) and Phragmites communis (Arundinoideae). C dactylon and P communis have not been included in the sweet grasses homologous group because of their low cross-reactivity with other grasses. The aims of this study were to investigate the profile of sensitization to C dactylon and P communis in patients sensitized to grasses and to analyze cross-reactivity between these 2 species and temperate grasses. Patients were skin prick tested with a grass mixture (GM). Specific IgE to GM, C dactylon, P communis, Cyn d 1, and Phl p 1 was measured by ImmunoCAP. A pool of sera was used for the immunoblot assays. Cross-reactivity was studied by ELISA and immunoblot inhibition. Thirty patients had sIgE to GM. Twenty-four (80%) had positive results for C dactylon, 27 (90%) for P communis, 22 (73.3%) for nCyn d 1, and 92.9% for rPhl p 1. Bands were detected in the 3 extracts by immunoblot. Inhibition of GM was not observed with C dactylon or P communis by immunoblot or ELISA inhibition. When C dactylon or P communis were used in the solid phase, GM produced almost complete inhibition. Eighty percent of patients sensitized to grasses were also sensitized to C dactylon and 90% were sensitized to P communis. Sensitization to these species seems to be induced by allergens different to those in sweet grasses.

  6. The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics1[C][W

    PubMed Central

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-01-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232

  7. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L.

    USDA-ARS?s Scientific Manuscript database

    The wild grass Brachypodium distachyon (Brachypodium) is a new model system for temperate cereals, but its potential for studying interactions between grasses and their pathogens remains underexploited. Leaf rust caused by members of the fungal genus Puccinia is a major disease affecting temperate c...

  8. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest.

    PubMed

    Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico

    2012-11-05

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.

  9. Optimal prescribed burn frequency to manage foundation California perennial grass species and enhance native flora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, Tina M.; Espeland, Erin K.; Paterson, Lisa E.

    Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except in a few instances. We studied the use of late-spring prescribed burns over a span of 11 years where the perennial grass Poa secunda was the foundation species, with four additional years of measurements after the final burn. We also evaluated burn effects on P. secunda, the rare native annual forb Amsinckia grandiflora and local native and exotic species. Annual burning maintained P. secunda number, resulted in significant expansion, the lowest thatch and exotic grass cover,more » the highest percentage of bare ground, but also the lowest native forb and highest exotic forb cover. Burning approximately every 3 years maintained a lower number of P. secunda plants, allowed for expansion, and resulted in the highest native forb cover with a low exotic grass cover. Burning approximately every 5 years and the control (burned once from a wildfire) resulted in a decline in P. secunda number, the highest exotic grass and thatch cover and the lowest percentage of bare ground. P. secunda numbers were maintained up to 4 years after the final burn. And while local native forbs benefited from burning approximately every 3 years, planted A. grandiflora performed best in the control treatment. A. grandiflora did not occur naturally at the site; therefore, no seed bank was present to provide across-year protection from the effects of the burns. Thus, perennial grass species management must also consider other native species life history and phenology to enhance native flora diversity.« less

  10. Optimal prescribed burn frequency to manage foundation California perennial grass species and enhance native flora

    DOE PAGES

    Carlsen, Tina M.; Espeland, Erin K.; Paterson, Lisa E.; ...

    2017-06-06

    Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except in a few instances. We studied the use of late-spring prescribed burns over a span of 11 years where the perennial grass Poa secunda was the foundation species, with four additional years of measurements after the final burn. We also evaluated burn effects on P. secunda, the rare native annual forb Amsinckia grandiflora and local native and exotic species. Annual burning maintained P. secunda number, resulted in significant expansion, the lowest thatch and exotic grass cover,more » the highest percentage of bare ground, but also the lowest native forb and highest exotic forb cover. Burning approximately every 3 years maintained a lower number of P. secunda plants, allowed for expansion, and resulted in the highest native forb cover with a low exotic grass cover. Burning approximately every 5 years and the control (burned once from a wildfire) resulted in a decline in P. secunda number, the highest exotic grass and thatch cover and the lowest percentage of bare ground. P. secunda numbers were maintained up to 4 years after the final burn. And while local native forbs benefited from burning approximately every 3 years, planted A. grandiflora performed best in the control treatment. A. grandiflora did not occur naturally at the site; therefore, no seed bank was present to provide across-year protection from the effects of the burns. Thus, perennial grass species management must also consider other native species life history and phenology to enhance native flora diversity.« less

  11. Pollutant tracking for 3 Western North Atlantic sea grasses by remote sensing: Preliminary diminishing white light responses of Thalassia testudinum, Halodule wrightii, and Zostera marina.

    PubMed

    Thorhaug, Anitra; Berlyn, Graeme P; Poulos, Helen M; Goodale, Uromi M

    2015-08-15

    Sea grasses are foundation species for estuarine ecosystems. The available light for sea grasses diminishes rapidly during pollutant spills, effluent releases, disturbances such as intense riverine input, and tidal changes. We studied how sea grasses' remote-sensing signatures and light-capturing ability respond to short term light alterations. In vivo responses were measured over the entire visible-light spectra to diminishing white-light on whole-living-plants' spectral reflectance, including 6h of full oceanic-light fluences from 10% to 100%. We analyzed differences by various reflectance indices. We compared the sea grasses species responses of tropical vs. temperate and intertidals (Halodule wrightii, and Zostera marina) vs. subtidal (Thalassia testudinum). Reflectance diminished with decreasing light intensity that coincided with greater accessory pigment stimulation (anthocyanin, carotenoids, xanthins). Chlorophyll a and Chlorophyll b differed significantly among species (Thalassia vs. Halodule). Photosynthetic efficiency diminished at high light intensities. The NDVI index was inadequate to perceive these differences. Our results demonstrate the leaf-level utility of data to remote sensing for mapping sea grass and sea grass stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  13. The draft genome of the C3 panicoid grass species Dichanthelium oligosanthes.

    PubMed

    Studer, Anthony J; Schnable, James C; Weissmann, Sarit; Kolbe, Allison R; McKain, Michael R; Shao, Ying; Cousins, Asaph B; Kellogg, Elizabeth A; Brutnell, Thomas P

    2016-10-28

    Comparisons between C 3 and C 4 grasses often utilize C 3 species from the subfamilies Ehrhartoideae or Pooideae and C 4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C 3 panicoid grass Dichanthelium oligosanthes from the independent C 4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C 3 and C 4 grasses. We report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C 3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C 4 photosynthesis. The phylogenetic location of D. oligosanthes makes it an ideal C 3 plant for comparative analysis of C 4 evolution in the panicoid grasses. This genome will not only provide a better C 3 species for comparisons with C 4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.

  14. Preferential uptake of soil nitrogen forms by grassland plant species.

    PubMed

    Weigelt, Alexandra; Bol, Roland; Bardgett, Richard D

    2005-02-01

    In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.

  15. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species.

    PubMed

    Wemheuer, F; Wemheuer, B; Kretzschmar, D; Pfeiffer, B; Herzog, S; Daniel, R; Vidal, S

    2016-04-01

    Most plant species are colonized by endophytic bacteria. Despite their importance for plant health and growth, the response of these bacteria to grassland management regimes is still not understood. Hence, we investigated the bacterial community structure in three agricultural important grass species Dactylis glomerata L., Festuca rubra L. and Lolium perenne L. with regard to fertilizer application and different mowing frequencies. For this purpose, above-ground plant material was collected from the Grassland Management Experiment (GrassMan) in Germany in September 2010 and 2011. DNA was extracted from surface-sterilized plant tissue and subjected to 16S rRNA gene PCRs. Endophytic community structures were assessed by denaturing gradient gel electrophoresis (DGGE)-based analysis of obtained PCR products. DGGE fingerprints revealed that fertilizer application significantly altered the endophytic communities in L. perenne and F. rubra but not in D. glomerata. Although no direct effect of mowing was observed, mowing frequencies in combination with fertilizer application had a significant impact on endophyte bacterial community structures. However, this effect was not observed for all three grass species in both years. Therefore, our results showed that management regimes changed the bacterial endophyte communities, but this effect was plant-specific and varied over time. Endophytic bacteria play an important role in plant health and growth. However, studies addressing the influence of grassland management regimes on these bacteria in above-ground plant parts are still missing. In this study, we present first evidence that fertilizer application significantly impacted bacterial community structures in three agricultural important grass species, whereas mowing had only a minor effect. Moreover, this effect was plant-specific and thus not visible for all grass species in each year. Consequently, this study sheds new light into the complex interaction of microbes and

  16. Long-term persistence of seeded grass species: an unwanted side effect of ecological restoration.

    PubMed

    Rydgren, Knut; Auestad, Inger; Hamre, Liv Norunn; Hagen, Dagmar; Rosef, Line; Skjerdal, Gudrun

    2016-07-01

    Spoil heaps are the visible footprint of hydropower production, particularly in vulnerable alpine environments. Speeding up vegetation development by seeding commercial grass species has been a common restoration practice for the last 50 years, but we lack information on whether seeded species decline and allow native plant cover to develop. We visually estimated cover of native vascular plants and five seeded grass species (Agrostis capillaris, Festuca ovina, Festuca rubra, Schedonorus pratensis and Phleum pratense) on eight spoil heaps at different elevations (boreal-alpine zone) in western Norway. Spoil heap vegetation was censused twice (9-20 and 24-36 years after spoil heap construction); the undisturbed surrounding vegetation was also censused on the second occasion. Total cover on the spoil heaps showed some increase, but remained far below that in surrounding areas. Cover of seeded grass species in the surroundings was low (but not negligible), indicating suboptimal establishment ability. Seeded species usually covered less than 20 % of the spoil heaps, and only F. rubra, F. ovina and A. capillaris contributed substantially. Proportional cover indicated better initial establishment by seeded species, but their cover decreased between the censuses on all but the highest located spoil heap. The persistence of seeded grass species is problematic, and despite the decrease in proportional cover, they are likely to persist for decades on spoil heaps, posing a risk of invasion of surrounding areas. We therefore recommend replacing the practice of seeding with more appropriate restoration measures.

  17. Analysis of growth trend changes for 51 temperate tree species using Korea national forest inventory data

    NASA Astrophysics Data System (ADS)

    Park, M.; Moon, M.; Park, J.; Cho, S.; Kim, H. S.

    2016-12-01

    Individual tree growth rates can be affected by various factors such as species, soil fertility, stand development stage, disturbance, and climate etc. To estimate the effect of changes in tree growth rate on the structure and functionality of forest ecosystem in the future, we analyzed the change of species-specific growth trends using the fifth Korea national forest inventory data, which was collected from 2006 to 2010. The ring samples of average tree were collected from nationwide inventory plots and the total number of individual tree ring series was 69,128 covering 185 tree species. Among those, fifty one species with more than 100 tree ring series were used for our analysis. For growth-trend analysis, standardized regional curves of individual species growth were generated from three forest zone in South Korea; subarctic, cool temperate, warm temperate forest zone. Then individual tree ring series was indexed by dividing the growth of the tree by expected growth from standardized regional curves. Then the ratio of all tree ring series were aligned by year and the Spearman's correlation coefficient of each species was calculated. The results show that most of species had increasing growth rates as forests developed after Korean war. For the last thirty years, 67.3% of species including Quercus spp. and Zelkova serrata had positive growth trends, on the other hand, 11.5% of species including Pinus spp. showed negative growth trends probably due to the changes in successional stages in Korean forests and climate change. These trends also vary with climate zone and species. For examples, Pinus densiflora, which showed negative growth trend overall, had steep negative growth trends in boreal and temperate zone, whereas it showed no specific trend in sub-tropical climate zone. Our trend analysis on 51 temperate tree species growth will be essential to predict the temperate forests species change for the this century.

  18. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum L.

    USDA-ARS?s Scientific Manuscript database

    Forage and turf grasses are utilized in diverse environments which exposes them to a variety of abiotic stresses, however very little is known concerning the perception or molecular responses to these various stresses. In the model grass species Lolium temulentum (Lt), a 46 kDa mitogen-activated pro...

  19. The draft genome of the C 3 panicoid grass species Dichanthelium oligosanthes

    DOE PAGES

    Studer, Anthony J.; Schnable, James C.; Weissmann, Sarit; ...

    2016-10-28

    Comparisons between C 3 and C 4 grasses often utilize C 3 species from the subfamilies Ehrhartoideae or Pooideae and C 4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C 3 panicoid grass Dichanthelium oligosanthes from the independent C 4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C 3 and C 4 grasses. Here, wemore » report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C 3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C 4 photosynthesis. In conclusion, the phylogenetic location of D. oligosanthes makes it an ideal C 3 plant for comparative analysis of C 4 evolution in the panicoid grasses. This genome will not only provide a better C 3 species for comparisons with C 4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.« less

  20. The draft genome of the C 3 panicoid grass species Dichanthelium oligosanthes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studer, Anthony J.; Schnable, James C.; Weissmann, Sarit

    Comparisons between C 3 and C 4 grasses often utilize C 3 species from the subfamilies Ehrhartoideae or Pooideae and C 4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C 3 panicoid grass Dichanthelium oligosanthes from the independent C 4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C 3 and C 4 grasses. Here, wemore » report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C 3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C 4 photosynthesis. In conclusion, the phylogenetic location of D. oligosanthes makes it an ideal C 3 plant for comparative analysis of C 4 evolution in the panicoid grasses. This genome will not only provide a better C 3 species for comparisons with C 4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.« less

  1. Comparative life history of the south temperate Cape Penduline Tit (Anthoscopus minutus) and north temperate Remizidae species

    USGS Publications Warehouse

    Lloyd, Penn; Frauenknecht, Bernhard D.; du Plessis, Morné A.; Martin, Thomas E.

    2017-01-01

    We studied the breeding biology of the south temperate Cape Penduline Tit (Anthoscopus minutus) in order to compare its life history traits with those of related north temperate members of the family Remizidae, namely the Eurasian Penduline Tit (Remiz pendulinus) and the Verdin (Auriparus flaviceps). We used this comparison to test key predictions of three hypotheses thought to explain latitudinal variation in life histories among bird species—the seasonality and food limitation hypothesis, nest predation hypothesis and adult mortality hypothesis. Contrary to the general pattern of smaller clutch size and lower adult mortality among south-temperate birds living in less seasonal environments, the Cape Penduline Tit has a clutch size larger than that of the Verdin and similar to that of the Eurasian Penduline Tit, and higher adult mortality than both of the other two species. The most notable difference between the Cape Penduline Tit and the two other species is in parental behavioural strategy, with the former exhibiting bi-parental care at all stages of nesting together with facultative cooperative breeding, whereas the Eurasian Penduline Tit has uni-parental care and the Verdin has a combination of female-only incubation but bi-parental nestling care. Consequently, in comparison to the other two species, the Cape Penduline Tit exhibits greater nest attentiveness during incubation, a similar per-nestling feeding rate and greater post-fledging survival. Its relatively large clutch size, high parental investment and associated high adult mortality in a less seasonal environment are consistent with key predictions of the adult mortality hypothesis but not with key predictions of the seasonality and food limitation hypothesis in explaining life history variation among Remizidae species. These results add to a growing body of evidence of the importance of age-specific mortality in shaping life history evolution.

  2. Impacts of short-term heatwaves on sun-induced chlorophyll fluorescence(SiF) in temperate tree species

    NASA Astrophysics Data System (ADS)

    Wang, F.; Gu, L.; Guha, A.; Han, J.; Warren, J.

    2017-12-01

    The current projections for global climate change forecast an increase in the intensity and frequency of extreme climatic events, such as droughts and short-term heat waves. Understanding the effects of short-term heat wave on photosynthesis process is of critical importance to predict global impacts of extreme weather event on vegetation. The diurnal and seasonal characteristics of SIF emitted from natural vegetation, e.g., forest and crop, have been studied at the ecosystem-scale, regional-scale and global-scale. However, the detailed response of SIF from different plant species under extremely weather event, especially short-term heat wave, have not been reported. The purpose of this study was to study the response of solar-induced chlorophyll fluorescence, gas exchange and continuous fluorescence at leaf scale for different temperate tree species. The short-term heatwave experiment was conducted using plant growth chamber (CMP6050, Conviron Inc., Canada). We developed an advanced spectral fitting method to obtain the plant SIF in the plant growth chamber. We compared SIF variation among different wavelength and chlorophyll difference among four temperate tree species. The diurnal variation of SIF signals at leaf-scales for temperate tree species are different under heat stress. The SIF response at leaf-scales and their difference for four temperate tree species are different during a cycle of short-term heatwave stress. We infer that SIF be used as a measure of heat tolerance for temperate tree species.

  3. Cell wall composition throughout development for the model grass Brachypodium distachyon

    PubMed Central

    Rancour, David M.; Marita, Jane M.; Hatfield, Ronald D.

    2012-01-01

    Temperate perennial grasses are important worldwide as a livestock nutritive energy source and a potential feedstock for lignocellulosic biofuel production. The annual temperate grass Brachypodium distachyon has been championed as a useful model system to facilitate biological research in agriculturally important temperate forage grasses based on phylogenetic relationships. To physically corroborate genetic predictions, we determined the chemical composition profiles of organ-specific cell walls throughout the development of two common diploid accessions of Brachypodium distachyon, Bd21-3 and Bd21. Chemical analysis was performed on cell walls isolated from distinct organs (i.e., leaves, sheaths, stems, and roots) at three developmental stages of (1) 12-day seedling, (2) vegetative-to-reproductive transition, and (3) mature seed fill. In addition, we have included cell wall analysis of embryonic callus used for genetic transformations. Composition of cell walls based on components lignin, hydroxycinnamates, uronosyls, neutral sugars, and protein suggests that Brachypodium distachyon is similar chemically to agriculturally important forage grasses. There were modest compositional differences in hydroxycinnamate profiles between accessions Bd21-3 and Bd21. In addition, when compared to agronomical important C3 grasses, more mature Brachypodium stem cell walls have a relative increase in glucose of 48% and a decrease in lignin of 36%. Though differences exist between Brachypodium and agronomical important C3 grasses, Brachypodium distachyon should be still a useful model system for genetic manipulation of cell wall composition to determine the impact upon functional characteristics such as rumen digestibility or energy conversion efficiency for bioenergy production. PMID:23227028

  4. Indirect effects of an invasive annual grass on seed fates of two native perennial grass species

    Treesearch

    Susan E. Meyer; Katherine T. Merrill; Phil S. Allen; Julie Beckstead; Anna S. Norte

    2014-01-01

    Invasive plants exhibit both direct and indirect negative effects on recruitment of natives following invasion. We examined indirect effects of the invader Bromus tectorum (cheatgrass) on seed fates of two native grass species, Elymus elymoides and Pseudoroegneria spicata, by removing B. tectorum and by adding inoculum of the shared seed pathogen Pyrenophora...

  5. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    PubMed

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  6. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  7. Screening of Balansia epichloe-infected grass species for in situ ergot alkaloids using laser ablation electrospray ionization-mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The Balansia are clavicipitaceous symbiotic species associated with various species of tropical grasses. Laboratory culture procedures established that the Balansia species are often conspecific with grasses in tall fescue pastures that produced ergot alkaloids. However, any effects of hosts on the...

  8. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance.

    PubMed

    Clement, Stephen L; Hu, Jinguo; Stewart, Alan V; Wang, Bingrui; Elberson, Leslie R

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass-endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass-endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more than one insect species. This study quantified the preference and performance of the bird cherry oat-aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) and the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), two important pests of forage and cereal grasses, on Neotyphodium-infected (E+) and uninfected (E-) plants of the wild grass Alpine timothy, Phleum alpinum L. (Poales: Poaceae). The experiments tested for both constitutive and wound-induced resistance in E+ plants to characterize possible plasticity of defense responses by a wild E+ grass. The aphid, R. padi preferred E- over E+ test plants in choice experiments and E+ undamaged test plants constitutively expressed antibiosis resistance to this aphid by suppressing population growth. Prior damage of E+ test plants did not induce higher levels of resistance to R. padi. By contrast, the beetle, O. melanopus showed no preference for E+ or E- test plants and endophyte infection did not adversely affect the survival and development of larvae. These results extend the phenomenon of variable effects of E+ wild grasses on the preference and performance of phytophagous insects. The wild grass- Neotyphodium symbiotum in this study broadens the number of wild E+ grasses available for expanded explorations into the effects of endophyte metabolites on insect herbivory.

  9. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators

    PubMed Central

    Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A.; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  10. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

    PubMed

    AbdElgawad, Hamada; Peshev, Darin; Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  11. Hydration status influences seed fire tolerance in temperate European herbaceous species.

    PubMed

    Ruprecht, E; Lukács, K; Domokos, P; Kuhn, T; Fenesi, A

    2016-03-01

    Prescribed burning is an important management tool in many parts of the world. While natural fires generally occur during the driest and warmest period of the year, prescribed burning is often timed out-of-season, when there is higher soil moisture and lower biomass combustibility. However, fire season may influence seedling recruitment after fire, e.g. through the effect of seed hydration status on fire tolerance. In non-fire-prone temperate regions, anthropogenic fire may occur exclusively in periods outside the growing season with higher soil moisture, which may have negative consequences on seedling recruitment. Fire tolerance of moist and dry seeds of 16 temperate European herbaceous species belonging to four families was assessed using heat treatment of 100 °C for 5 min and subsequent germination trials. Moist seeds of Asteraceae, Poaceae and Brassicaceae had a predominantly negative reaction to the heat treatment, while those of Fabaceae tolerated it or germination was even enhanced. The reaction of dry seeds was completely different, with positive responses in three species of the Fabaceae and fire tolerance in species of other families. Our results point out that hydration status may significantly influence the post-fire germination of seeds. Dry seeds were found to tolerate high heat, while moist seeds were harmed in more than half of the species. This implies that if prescribed burning is applied in temperate grasslands of Europe, it should be timed to dry periods of the dormant season in order to protect seeds from negative effects of fire. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Carbon dynamics in aboveground biomass of co-dominant plant species in a temperate grassland ecosystem: same or different?

    PubMed

    Ostler, Ulrike; Schleip, Inga; Lattanzi, Fernando A; Schnyder, Hans

    2016-04-01

    Understanding the role of individual organisms in whole-ecosystem carbon (C) fluxes is probably the biggest current challenge in C cycle research. Thus, it is unknown whether different plant community members share the same or different residence times in metabolic (τmetab ) and nonmetabolic (i.e. structural) (τnonmetab ) C pools of aboveground biomass and the fraction of fixed C allocated to aboveground nonmetabolic biomass (Anonmetab ). We assessed τmetab , τnonmetab and Anonmetab of co-dominant species from different functional groups (two bunchgrasses, a stoloniferous legume and a rosette dicot) in a temperate grassland community. Continuous, 14-16-d-long (13) C-labeling experiments were performed in September 2006, May 2007 and September 2007. A two-pool compartmental system, with a well-mixed metabolic and a nonmixed nonmetabolic pool, was the simplest biologically meaningful model that fitted the (13) C tracer kinetics in the whole-shoot biomass of all species. In all experimental periods, the species had similar τmetab (5-8 d), whereas τnonmetab ranged from 20 to 58 d (except for one outlier) and Anonmetab from 7 to 45%. Variations in τnonmetab and Anonmetab were not systematically associated with species or experimental periods, but exhibited relationships with leaf life span, particularly in the grasses. Similar pool kinetics of species suggested similar kinetics at the community level. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. The changing role of fire in mediating the relationships among oaks, grasslands, mesic temperate forests, and boreal forests in the Lake States

    Treesearch

    Lee E. Frelich; Peter B. Reich; David W. Peterson

    2017-01-01

    Historically, oak forests and woodlands intergraded with southern boreal forest, temperate mesic forest, and grassland biomes, forming complex fire-mediated relationships in the Great Lakes region of Minnesota, Wisconsin, and Michigan, USA. Variability in fire recurrence intervals allowed oaks to mix with grasses or with mesic forest species in areas with high (2–10 yr...

  14. A synteny-based draft genome sequence of the forage grass Lolium perenne.

    PubMed

    Byrne, Stephen L; Nagy, Istvan; Pfeifer, Matthias; Armstead, Ian; Swain, Suresh; Studer, Bruno; Mayer, Klaus; Campbell, Jacqueline D; Czaban, Adrian; Hentrup, Stephan; Panitz, Frank; Bendixen, Christian; Hedegaard, Jakob; Caccamo, Mario; Asp, Torben

    2015-11-01

    Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28,455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order. The gametophytic self-incompatibility mechanism enables the pistil of a plant to reject self-pollen and therefore promote out-crossing. We have used the sequence assembly to characterize transcriptional changes in the stigma during pollination with both compatible and incompatible pollen. Characterization of the pollen transcriptome identified homologs to pollen allergens from a range of species, many of which were expressed to very high levels in mature pollen grains, and are potentially involved in the self-incompatibility mechanism. The genome sequence provides a valuable resource for future breeding efforts based on genomic prediction, and will accelerate the development of new varieties for more productive grasslands. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  15. Optimal prescribed burn frequency to manage foundation California perennial grass species and enhance native flora

    USDA-ARS?s Scientific Manuscript database

    Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except for in a few instances. We studied the use of late spring prescribed burns over a span of eleven years on experimental plots in which the pere...

  16. [Recovery of Trichostrongylus colubriformis infective larvae from three grass species contaminated in summer].

    PubMed

    Rocha, Raquel A da; Rocha, Gilberto P da; Bricarello, Patrizia A; Amarante, Alessandro F T

    2008-01-01

    The purpose of the experiment was to evaluate infective Trichostrongylus colubriformis larvae (L3) survival in three forage species. Experimental plots, planted with Brachiaria decumbens cv. Australian, Cynodon dactilon cv. Coast-cross, and Panicum maximum cv. Aruana, were used in the study, totaling two plots for each species. Each plot (32.4 m(2)) was divided into 36 subplots (30 x 30 cm) in order to allow six replicates per forage species and per herbage height in each week of material collection. Larval recovery was evaluated from middle summer to middle autumn under the effect of two forage paring heights: low, 5 cm, and high, 30 cm. The paring was carried out immediately before the fecal samples with T. colubriformis eggs, taken from sheep, were deposited on pasture in 05/Feb/2004. Feces and forage collection was performed one, two, four, eight, 12 and 16 weeks after feces deposition in the experimental plots. Forage grass height was measured in each subdivision immediately before the collections. The forage sample was cut, close to the soil, from an area delimited with a circle with a 10 cm radius. The feces were collected from the subplots. The number of infective larvae recovered from pasture was very small in comparison with the amount of larvae produced in cultures maintained in laboratory (maximum 6.7% on Aruana grass with 30 cm). L3 recovery rates from fecal samples were bigger when the feces were deposited on high grass (measuring 30 cm - P<0.05). L3 recovery from pasture and L3 concentration on herbage (L3/Kg dry matter) were similar for both cuts (P>0.05). Among the forage species, the Aruana grass was the one that, in general, harbored the biggest concentrations of infective T. colubriformis larvae.

  17. Brachypodium distachyon. A New Model System for Functional Genomics in Grasses1

    PubMed Central

    Draper, John; Mur, Luis A.J.; Jenkins, Glyn; Ghosh-Biswas, Gadab C.; Bablak, Pauline; Hasterok, Robert; Routledge, Andrew P.M.

    2001-01-01

    A new model for grass functional genomics is described based on Brachypodium distachyon, which in the evolution of the Pooideae diverged just prior to the clade of “core pooid” genera that contain the majority of important temperate cereals and forage grasses. Diploid ecotypes of B. distachyon (2n = 10) have five easily distinguishable chromosomes that display high levels of chiasma formation at meiosis. The B. distachyon nuclear genome was indistinguishable in size from that of Arabidopsis, making it the simplest genome described in grasses to date. B. distachyon is a self-fertile, inbreeding annual with a life cycle of less than 4 months. These features, coupled with its small size (approximately 20 cm at maturity), lack of seed-head shatter, and undemanding growth requirements should make it amenable to high-throughput genetics and mutant screens. Immature embryos exhibited a high capacity for plant regeneration via somatic embryogenesis. Regenerated plants display very low levels of albinism and have normal fertility. A simple transformation system has been developed based on microprojectile bombardment of embryogenic callus and hygromycin selection. Selected B. distachyon ecotypes were resistant to all tested cereal-adapted Blumeria graminis species and cereal brown rusts (Puccinia reconditia). In contrast, different ecotypes displayed resistance or disease symptoms following challenge with the rice blast pathogen (Magnaporthe grisea) and wheat/barley yellow stripe rusts (Puccinia striformis). Despite its small stature, B. distachyon has large seeds that should prove useful for studies on grain filling. Such biological characteristics represent important traits for study in temperate cereals. PMID:11743099

  18. Drought and ozone stress effects on competition among selected prairie grass species and Giant Foxtail

    Treesearch

    Gregory A. Endress; Anton G. Endress; Louis R. Iverson; Louis R. Iverson

    1999-01-01

    Differential responses of species to environmental stress may interfere with restoration of prairie ecosystems or change community structure. The impact of increasing atmospheric ozone (O3) concentrations and/or low water on the growth of Andropogon gerardii Vitm. (big bluestem) and Sorghastrum nutans (L.) Nash (Indian grass), two common warm-season native grasses,...

  19. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species.

    PubMed

    Liese, Rebecca; Lübbe, Torben; Albers, Nora W; Meier, Ina C

    2018-01-01

    Even though the two dominant mycorrhizal associations of temperate tree species differentially couple carbon (C) and nitrogen (N) cycles in temperate forests, systematic differences between the biogeochemical cycles of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree species remain poorly described. A classification according to the mycorrhizal type offers the chance, though, to develop a global frame concept for the prediction of temperate ecosystem responses to environmental change. Focusing on the influence of mycorrhizal types on two key plant processes of biogeochemical cycling (root exudation and N acquisition), we investigated four temperate deciduous tree species per mycorrhizal type in a drought experiment in large mesocosms. We hypothesized that (H1) C loss by root exudation is higher in ECM than in AM trees, (H2) drought leads to higher reductions in root exudation of drought-sensitive ECM trees and (H3) inorganic N uptake is higher in AM than in ECM trees. In contradiction to H2, we found no systematic difference in root exudation between the mycorrhizal types at ample soil moisture, but almost twofold higher exudation in ECM trees when exposed to soil drought. In addition, photosynthetic C cost of root exudation strongly increased by ~10-fold in drought-treated ECM trees, while it only doubled in AM trees, which confirms H1. With respect to H3, we corroborated that AM trees had higher absolute and relative inorganic N acquisition rates than ECM trees, while the organic N uptake did not differ between mycorrhizal types. We conclude that ECM trees are less efficient in inorganic N uptake than AM trees, but ECM trees increase root C release as an adaptive response to dry soil to maintain hydraulic conductivity and/or nutrient availability. These systematic differences in key biogeochemical processes support hints on the key role of the mycorrhizal types in coupling C and N cycles in temperate forests. © The Author 2017. Published by Oxford

  20. An African grassland responds similarly to long-term fertilization to the Park Grass experiment.

    PubMed

    Ward, David; Kirkman, Kevin; Tsvuura, Zivanai

    2017-01-01

    We compared the results of a long-term (65 years) experiment in a South African grassland with the world's longest-running ecological experiment, the Park Grass study at Rothamsted, U.K. The climate is warm and humid in South Africa and cool and temperate in England. The African grassland has been fertilized with two forms of nitrogen applied at four levels, phosphorus and lime in a crossed design in 96 plots. In 1951, about 84% of plant cover consisted of Themeda triandra, Tristachya leucothrix and Setaria nigrirostris. Currently, the dominant species are Panicum maximum, Setaria sphacelata and Eragrostis curvula, making up 71% of total biomass. As in the Park Grass experiment, we found a significant (additive) interaction effect on ANPP of nitrogen and phosphorus, and a (marginally significant) negative correlation between ANPP and species richness. Unlike the Park Grass experiment, there was no correlation between ANPP and species richness when pH was included as a covariate. There was also a significant negative effect of nitrogen amount and nitrogen form and a positive effect of lime on species richness and species diversity. Soil pH had an important effect on species richness. Liming was insufficient to balance the negative effects on species richness of nitrogen fertilization. There was a significant effect of pH on biomass of three abundant species. There were also significant effects of light on the biomass of four species, with only Panicum maximum having a negative response to light. In all of the abundant species, adding total species richness and ANPP to the model increased the amount of variance explained. The biomass of Eragrostis curvula and P. maximum were negatively correlated with species richness while three other abundant species increased with species richness, suggesting that competition and facilitation were active. Consistent with the results from the Park Grass and other long-term fertilization experiments of grasslands, we found a

  1. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species.

    PubMed

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias

    2017-08-01

    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  2. Detrimental and Neutral Effects of a Wild Grass-Fungal Endophyte Symbiotum on Insect Preference and Performance

    PubMed Central

    Clement, Stephen L.; Hu, Jinguo; Stewart, Alan V.; Wang, Bingrui; Elberson, Leslie R.

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass—endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass—endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more than one insect species. This study quantified the preference and performance of the bird cherry oat-aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) and the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), two important pests of forage and cereal grasses, on Neotyphodium-infected (E+) and uninfected (E-) plants of the wild grass Alpine timothy, Phleum alpinum L. (Poales: Poaceae). The experiments tested for both constitutive and wound-induced resistance in E+ plants to characterize possible plasticity of defense responses by a wild E+ grass. The aphid, R. padi preferred E- over E+ test plants in choice experiments and E+ undamaged test plants constitutively expressed antibiosis resistance to this aphid by suppressing population growth. Prior damage of E+ test plants did not induce higher levels of resistance to R. padi. By contrast, the beetle, O. melanopus showed no preference for E+ or E- test plants and endophyte infection did not adversely affect the survival and development of larvae. These results extend the phenomenon of variable effects of E+ wild grasses on the preference and performance of phytophagous insects. The wild grass— Neotyphodium symbiotum in this study broadens the number of wild E+ grasses available for expanded explorations into the effects of endophyte metabolites on insect herbivory. PMID:21867443

  3. Estimating Janka hardness from specific gravity for tropical and temperate species

    Treesearch

    Michael C. Wiemann; David W. Green

    2007-01-01

    Using mean values for basic (green) specific gravity and Janka side hardness for individual species obtained from the world literature, regression equations were developed to predict side hardness from specific gravity. Statistical and graphical methods showed that the hardness–specific gravity relationship is the same for tropical and temperate hardwoods, but that the...

  4. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures?

    PubMed Central

    Veselý, Lukáš; Buřič, Miloš; Kouba, Antonín

    2015-01-01

    The spreading of new crayfish species poses a serious risk for freshwater ecosystems; because they are omnivores they influence more than one level in the trophic chain and they represent a significant part of the benthic biomass. Both the environmental change through global warming and the expansion of the pet trade increase the possibilities of their spreading. We investigated the potential of four “warm water” highly invasive crayfish species to overwinter in the temperate zone, so as to predict whether these species pose a risk for European freshwaters. We used 15 specimens of each of the following species: the red swamp crayfish (Procambarus clarkii), the marbled crayfish (Procambarus fallax f. virginalis), the yabby (Cherax destructor), and the redclaw (Cherax quadricarinatus). Specimens were acclimatized and kept for 6.5 months at temperatures simulating the winter temperature regime of European temperate zone lentic ecosystems. We conclude that the red swamp crayfish, marbled crayfish and yabby have the ability to withstand low winter temperatures relevant for lentic habitats in the European temperate zone, making them a serious invasive threat to freshwater ecosystems. PMID:26572317

  5. Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen.

    PubMed

    Devadas, Rakhesh; Huete, Alfredo R; Vicendese, Don; Erbas, Bircan; Beggs, Paul J; Medek, Danielle; Haberle, Simon G; Newnham, Rewi M; Johnston, Fay H; Jaggard, Alison K; Campbell, Bradley; Burton, Pamela K; Katelaris, Constance H; Newbigin, Ed; Thibaudon, Michel; Davies, Janet M

    2018-08-15

    Allergic diseases, including respiratory conditions of allergic rhinitis (hay fever) and asthma, affect up to 500 million people worldwide. Grass pollen are one major source of aeroallergens globally. Pollen forecast methods are generally site-based and rely on empirical meteorological relationships and/or the use of labour-intensive pollen collection traps that are restricted to sparse sampling locations. The spatial and temporal dynamics of the grass pollen sources themselves, however, have received less attention. Here we utilised a consistent set of MODIS satellite measures of grass cover and seasonal greenness (EVI) over five contrasting urban environments, located in Northern (France) and Southern Hemispheres (Australia), to evaluate their utility for predicting airborne grass pollen concentrations. Strongly seasonal and pronounced pollinating periods, synchronous with satellite measures of grass cover greenness, were found at the higher latitude temperate sites in France (46-50° N. Lat.), with peak pollen activity lagging peak greenness, on average by 2-3weeks. In contrast, the Australian sites (34-38° S. Lat.) displayed pollinating periods that were less synchronous with satellite greenness measures as peak pollen concentrations lagged peak greenness by as much as 4 to 7weeks. The Australian sites exhibited much higher spatial and inter-annual variations compared to the French sites and at the Sydney site, broader and multiple peaks in both pollen concentrations and greenness data coincided with flowering of more diverse grasses including subtropical species. Utilising generalised additive models (GAMs) we found the satellite greenness data of grass cover areas explained 80-90% of airborne grass pollen concentrations across the three French sites (p<0.001) and accounted for 34 to 76% of grass pollen variations over the two sites in Australia (p<0.05). Our results demonstrate the potential of satellite sensing to augment forecast models of grass pollen

  6. [A comparative study on seed germination of 15 grass species in Keeqin Sandyland].

    PubMed

    Liu, Zhimin; Li, Xuehua; Li, Rongping; Jiang, Deming; Cao, Chengyou

    2003-09-01

    A laboratory study was made on the germination characteristics of freshly-collected seeds of grass species at the Wulanaodu area of Keeqin Sandyland in Eastern Inner-Mongolia. Of the 15 species examined, 8 species including Clinelymus dahuricus, Cleistogenes squarrosa, Pappophorum boreale, Spodiopogon sibiricus, Phragmites communis, Chloris virgata, Arundinella hirta, Pennisetum alopecuroides had a germination rate of over 80%, but 4 species including Echinochloa hispidula, Hemarthria compressa, Tragus berteronianus and Setaria viridis had a value of less than 10%. Spodiopogon sibiricus, Eragrostis pilosa, Phragmites communis, Chloris virgata, Clinelymus dahuricus, Pappophorum boreale, Digitaria cilliaris and Cleistogenes squrrosa began to germinate within 1-3 days after the test began, while Setaria viridis, Tragus berteronianus and Hemarthria compressa failed to germinate in a period of more than 10 days. For the species such as Digitaria cilliaris, Echinochloa hispidula, Phragmites communis, Eragrostis pilosa and Spodiopogon sibiricus, their germination period was less than 10 days, while Clinelymus dahuricus and Pappophorum boreale had a germination period of more than 20 days. The days required for half the final germination rate to be reached were: 2 days for Chloris virgata, 3 days for Phragmites communis, 4 days for Spodiopogon sibiricus, 5 days for Clinelymus dahuricus and Cleistogenes squarrosa, 7 days for Arundinella hirta and Pappophorum boreale, and 10 days for Pennisetum alopecuriodes. Compared with the Sheffield region in Britain, the Wulanaodu area of Kerqin Sandyland had a higher proportion of annul grasses with a low germination rate and a longer germination period, and the perennial grasses at the Wulanaodu area had an approximately same germination rate, but a longer germination period. During germination, ruderals showed the potential for risk-sharring, and thus, they had a relatively higher disturbance-resistance capacity.

  7. Variation in phenolic root exudates and rhizosphere carbon cycling among tree species in temperate forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle

    2017-04-01

    Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve

  8. Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species

    PubMed Central

    Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe

    2015-01-01

    Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096

  9. Fusarium graminearum: pathogen or endophyte of North American grasses?

    PubMed

    Lofgren, Lotus A; LeBlanc, Nicholas R; Certano, Amanda K; Nachtigall, Jonny; LaBine, Kathryn M; Riddle, Jakob; Broz, Karen; Dong, Yanhong; Bethan, Bianca; Kafer, Christopher W; Kistler, H Corby

    2018-02-01

    Mycotoxin-producing Fusarium graminearum and related species cause Fusarium head blight on cultivated grasses, such as wheat and barley. However, these Fusarium species may have had a longer evolutionary history with North American grasses than with cultivated crops and may interact with the ancestral hosts in ways which are biochemically distinct. We assayed 25 species of asymptomatic native grasses for the presence of Fusarium species and confirmed infected grasses as hosts using re-inoculation tests. We examined seed from native grasses for the presence of mycotoxin-producing Fusarium species and evaluated the ability of these fungi to produce mycotoxins in both native grass and wheat hosts using biochemical analysis. Mycotoxin-producing Fusarium species were shown to be prevalent in phylogenetically diverse native grasses, colonizing multiple tissue types, including seeds, leaves and inflorescence structures. Artificially inoculated grasses accumulated trichothecenes to a much lesser extent than wheat, and naturally infected grasses showed little to no accumulation. Native North American grasses are commonly inhabited by Fusarium species, but appear to accommodate these toxigenic fungi differently from cultivated crops. This finding highlights how host identity and evolutionary history may influence the outcome of plant-fungal interactions and may inform future efforts in crop improvement. No claim to original US Government works. New Phytologist © 2017 New Phytologist Trust.

  10. Complementary models of tree species-soil relationships in old-growth temperate forests

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    context-dependent tree species-soil relationships occur simultaneouslyinold-grow the temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weather able elements with in organic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed species old-growth temperate forests.

  11. Basalt Weathering, Nutrient Uptake, And Carbon Release By An Exotic And A Native Arizona Grass Species Under Different Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Gallas, G.; Dontsova, K.; Chorover, J.; Hunt, E.; Ravi, S.

    2010-12-01

    During this past summer, the National Science Foundation funded a 10-week Research Experience for Undergraduates (REU) program “Environmental and Earth Systems Research at Biosphere 2”. This program provides undergraduates with an opportunity to conduct guided research in environmental and Earth systems science and has resulted in this work. Biosphere 2 allows for the exploration of complex questions in Earth sciences because of its large scale and the precise control allowed over many experimental elements. The goal of this study was to observe plant-mediated weathering of granular basalt under two temperature conditions. Two grass species were studied, one native to Arizona: Tanglehead, Heteropogan contortus, and one exotic to Arizona: Buffelgrass, Pennisetum ciliar. The grasses were grown in pots located in the Desert and the Savannah Biomes in the Biosphere 2 to take advantage of a 4° C temperature difference. Understanding differences in how native and invasive grasses weather soil and take up nutrients may explain the mechanism behind current invasion of Sonoran Desert by exotic species and help predict response of native and invasive vegetation to expected increase in temperatures. Each biome also contained three replicate “control” pots without vegetation, and mixtures of the two grass species to observe possible competition between the species. Three factors were compared in this study: 1. Temperature: the same species of grass under two different temperature conditions 2. Species: Native Arizonan species vs. a species exotic to Arizona 3. Temporal: How the grasses use resources differently as they grow Leachate samples were collected and analyzed for pH, electrical conductivity, total organic carbon, total nitrogen, inorganic carbon by high temperature combustion coupled with infrared gas analysis; F-, Cl-, Br-, NO3-, NO2-, SO42-, and PO43- by ion chromatography; and cations and metals by ICP-MS. The data trends indicate that plants enhanced

  12. Indirect effects of an invasive annual grass on seed fates of two native perennial grass species.

    PubMed

    Meyer, Susan E; Merrill, Katherine T; Allen, Phil S; Beckstead, Julie; Norte, Anna S

    2014-04-01

    Invasive plants exhibit both direct and indirect negative effects on recruitment of natives following invasion. We examined indirect effects of the invader Bromus tectorum (cheatgrass) on seed fates of two native grass species, Elymus elymoides and Pseudoroegneria spicata, by removing B. tectorum and by adding inoculum of the shared seed pathogen Pyrenophora semeniperda in factorial experiments at xeric and mesic field sites. We also included a supplemental watering treatment to increase emergence and also the potential for pathogen escape. We recorded emergence and survival of native seedlings and also determined the fate of unemerged seeds. At the xeric site, Pyrenophora-caused mortality was high (34%), and effects of other pathogens and failed emergence of germinants were smaller. Cheatgrass removal negatively affected both emergence (35 vs. 25%) and spring survival (69 vs. 42%). Pyrenophora-caused seed mortality increased with inoculum augmentation for both species (22 vs. 47% overall), but emergence was negatively impacted only for P. spicata (20 vs. 34%). At the mesic site, Pyrenophora-caused mortality was low (6%). Cheatgrass removal doubled emergence (26 vs. 14%). Seed mortality increased significantly with inoculum augmentation for P. spicata (12 vs. 5%) but not E. elymoides, while emergence was not significantly affected in either species. A large fraction of seeds produced germinants that failed to emerge (37%), while another large fraction (35%) was killed by other pathogens. We conclude that facilitation by cheatgrass at the xeric site but interference at the mesic site was probably mediated through litter effects that could be ameliorative or suppressive. Apparent competition between cheatgrass and native grasses could occur through Pyrenophora, especially in a xeric environment, but effects were weak or absent at emergence. This was probably because Pyrenophora attacks the same slow-germinating fraction that is subject to pre-emergence mortality from

  13. Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal.

    PubMed

    Minaya, Miguel; Díaz-Pérez, Antonio; Mason-Gamer, Roberta; Pimentel, Manuel; Catalán, Pilar

    2015-10-01

    Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG β-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether β-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the β-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the β-amylase exon+intron positions is optimal at all taxonomic levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Embolism and mechanical resistances play a key role in dehydration tolerance of a perennial grass Dactylis glomerata L.

    PubMed

    Volaire, Florence; Lens, Frederic; Cochard, Hervé; Xu, Hueng; Chacon-Doria, Larissa; Bristiel, Pauline; Balachowski, Jennifer; Rowe, Nick; Violle, Cyrille; Picon-Cochard, Catherine

    2018-05-17

    More intense droughts under climate change threaten species resilience. Hydraulic strategies determine drought survival in woody plants but have been hardly studied in herbaceous species. We explored the intraspecific variability of hydraulic and morphological traits as indicators of dehydration tolerance in a perennial grass, cocksfoot (Dactylis glomerata), which has a large biogeographical distribution in Europe. Twelve populations of cocksfoot originating from Mediterranean, Temperate and Northern European areas were grown in a controlled environment in pots. Dehydration tolerance, leaf and stem anatomical traits and xylem pressure associated with 88 or 50 % loss of xylem conductance (P88, P50) were measured. Across the 12 populations of cocksfoot, P50 ranged from -3.06 to - 6.36 MPa, while P88 ranged from -5.06 to -11.6 MPa. This large intraspecific variability of embolism thresholds corresponded with the biogeographical distribution and some key traits of the populations. In particular, P88 was correlated with dehydration tolerance (r = -0.79). The dehydration-sensitive Temperate populations exhibited the highest P88 (-6.1 MPa). The most dehydration-tolerant Mediterranean populations had the greatest leaf dry matter content and leaf fracture toughness, and the lowest P88 (-10.4 MPa). The Northern populations displayed intermediate trait values, potentially attributable to frost resistance. The thickness of metaxylem vessel walls in stems was highly correlated with P50 (r = -0.92), but no trade-off with stem lignification was observed. The relevance of the linkage between hydraulic and stomatal traits is discussed for drought survival in perennial grasses. Compared with woody species, the large intraspecific variability in dehydration tolerance and embolism resistance within cocksfoot has consequences for its sensitivity to climate change. To better understand adaptive strategies of herbaceous species to increasing drought and frost requires further exploration

  15. Investigating distribution pattern of species in a warm-temperate conifer-broadleaved-mixed forest in China for sustainably utilizing forest and soils.

    PubMed

    Song, Houjuan; Xu, Yudan; Hao, Jing; Zhao, Bingqing; Guo, Donggang; Shao, Hongbo

    2017-02-01

    The maintaining mechanisms and potential ecological processes of species diversity in warm temperate- conifer-broadleaved-mixed forest are far from clear understanding. In this paper, the relative neighborhood density Ω was used to analyze the spatial distribution patterns of 34 species with ≥11 individuals in a warm- temperate-conifer-broadleaved-mixed forest, northern China. Then we used canonical correspondence analysis (CCA) and Torus-translation test (TTT) to explain the distribution of observed species. Our results show that aggregated distribution is the dominant pattern in warm-temperate natural forest and four species regular distribution at the spatial scale >30m. The aggregated percentage and intensity decline with spatial scale, abundance and size classes increasing. Rare species are aggregated more than intermediate and abundant species. These results prove sufficiently the effects existence of scale separation, self-thinning and Janzen-Connell hypothesis. In addition, functional traits (dispersal modes and shade tolerance) also have a significant influence on distribution of species. The results of CCA confirm that slope and convexity are the most important factors affecting the distribution of tree species distribution, elevation and slope of shrub species though the combination of topographic variables only explained 1% of distribution of tree species and 2% of shrub species. Most species don't have habitat preference; however 47.1% (16/34) species including absolutely dominant tree (Pinus tabulaeformis and Quercus wutaishanica) and shrub species (Rosa xanthina) and most other species with important value in the front, are strongly positively or negatively associated with at least one habitat. The valley and ridge are most distinct habitat with association of 12 species in the plot. However, high elevation slope with 257 quadrats is the most extensive habitat with only four species. Therefore, there is obvious evidence that habitat heterogeneity

  16. Ecotype-specific improvement of nitrogen status in European grasses after drought combined with rewetting

    NASA Astrophysics Data System (ADS)

    Arfin Khan, Mohammed A. S.; Kreyling, Juergen; Beierkuhnlein, Carl; Jentsch, Anke

    2016-11-01

    Drought stress and associated low soil moisture can decrease N status of forage plants by reducing nitrogen (N) uptake. Conversely, rainfall and associated favorable soil moisture can improve plant N status. Yet, it is unclear to which degree drought combined with rewetting can buffer negative effects of drought on N status of forage plants and their populations. Here, we compared shoot N status (N concentration, total N uptake and C/N ratio) of four temperate grass species. Particularly, we investigated ecotypes (populations) grown from seeds from four to six European provenances/species after a drought treatment combined with rewetting (10 day harvest delay) versus continuously watered conditions for control. The experimental combination of drought and rewetting significantly increased shoot N concentration (+96%), N uptake (+31%); and decreased C/N ratio (-46%), biomass production (-29%) and C concentration (-1.4%) compared to control. Shoot N status was found to be different between target grass species and also within their populations under drought combined with rewetting treatment. Presumably drought-adapted populations did not perform better than populations from moist sites indicating no evidence of local adaptation. The drought combined with rewetting event could buffer the negative effects of drought. Shoot N status of grasses after drought and rewetting even exceeded control plants. This surprising finding can potentially be explained by higher N uptake, lack of growth dilution effects or delayed plant maturation. Furthermore, within-species shoot N status responses to drought combined with rewetting event were ecotype-specific, hinting at diverse responses of different population. For rangeland management, we recommend that if a drought event occurs during the growing season, harvesting should be delayed beyond a following rain event.

  17. Genome-Wide Analysis of NBS-LRR Genes in Sorghum Genome Revealed Several Events Contributing to NBS-LRR Gene Evolution in Grass Species

    PubMed Central

    Yang, Xiping; Wang, Jianping

    2016-01-01

    The nucleotide-binding site (NBS)–leucine-rich repeat (LRR) gene family is crucially important for offering resistance to pathogens. To explore evolutionary conservation and variability of NBS-LRR genes across grass species, we identified 88, 107, 24, and 44 full-length NBS-LRR genes in sorghum, rice, maize, and Brachypodium, respectively. A comprehensive analysis was performed on classification, genome organization, evolution, expression, and regulation of these NBS-LRR genes using sorghum as a representative of grass species. In general, the full-length NBS-LRR genes are highly clustered and duplicated in sorghum genome mainly due to local duplications. NBS-LRR genes have basal expression levels and are highly potentially targeted by miRNA. The number of NBS-LRR genes in the four grass species is positively correlated with the gene clustering rate. The results provided a valuable genomic resource and insights for functional and evolutionary studies of NBS-LRR genes in grass species. PMID:26792976

  18. A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.

    PubMed

    Yang, Jie; Swenson, Nathan G; Cao, Min; Chuyong, George B; Ewango, Corneille E N; Howe, Robert; Kenfack, David; Thomas, Duncan; Wolf, Amy; Lin, Luxiang

    2013-01-01

    Ecologists have historically used species-area relationships (SARs) as a tool to understand the spatial distribution of species. Recent work has extended SARs to focus on individual-level distributions to generate individual species area relationships (ISARs). The ISAR approach quantifies whether individuals of a species tend have more or less species richness surrounding them than expected by chance. By identifying richness 'accumulators' and 'repellers', respectively, the ISAR approach has been used to infer the relative importance of abiotic and biotic interactions and neutrality. A clear limitation of the SAR and ISAR approaches is that all species are treated as evolutionarily independent and that a large amount of work has now shown that local tree neighborhoods exhibit non-random phylogenetic structure given the species richness. Here, we use nine tropical and temperate forest dynamics plots to ask: (i) do ISARs change predictably across latitude?; (ii) is the phylogenetic diversity in the neighborhood of species accumulators and repellers higher or lower than that expected given the observed species richness?; and (iii) do species accumulators, repellers distributed non-randomly on the community phylogenetic tree? The results indicate no clear trend in ISARs from the temperate zone to the tropics and that the phylogenetic diversity surrounding the individuals of species is generally only non-random on very local scales. Interestingly the distribution of species accumulators and repellers was non-random on the community phylogenies suggesting the presence of phylogenetic signal in the ISAR across latitude.

  19. Functionally dissimilar neighbors accelerate litter decomposition in two grass species.

    PubMed

    Barbe, Lou; Jung, Vincent; Prinzing, Andreas; Bittebiere, Anne-Kristel; Butenschoen, Olaf; Mony, Cendrine

    2017-05-01

    Plant litter decomposition is a key regulator of nutrient recycling. In a given environment, decomposition of litter from a focal species depends on its litter quality and on the efficiency of local decomposers. Both may be strongly modified by functional traits of neighboring species, but the consequences for decomposition of litter from the focal species remain unknown. We tested whether decomposition of a focal plant's litter is influenced by the functional-trait dissimilarity to the neighboring plants. We cultivated two grass species (Brachypodium pinnatum and Elytrigia repens) in experimental mesocosms with functionally similar and dissimilar neighborhoods, and reciprocally transplanted litter. For both species, litter quality increased in functionally dissimilar neighborhoods, partly as a result of changes in functional traits involved in plant-plant interactions. Furthermore, functional dissimilarity increased overall decomposer efficiency in one species, probably via complementarity effects. Our results suggest a novel mechanism of biodiversity effects on ecosystem functioning in grasslands: interspecific functional diversity within plant communities can enhance intraspecific contributions to litter decomposition. Thus, plant species might better perform in diverse communities by benefiting from higher remineralization rates of their own litter. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Tree species distribution in temperate forests is more influenced by soil than by climate.

    PubMed

    Walthert, Lorenz; Meier, Eliane Seraina

    2017-11-01

    Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.

  1. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration

    PubMed Central

    Chu, Jianmin; Yang, Hongxiao; Lu, Qi; Zhang, Xiaoyan

    2015-01-01

    Some endemic shrubs in arid and semiarid ecosystems are in danger of extinction, and yet they can play useful roles in maintaining or restoring these ecosystems, thus practical efforts are needed to conserve them. The shrubs Amygdalus pedunculata Pall., Amygdalus mongolica (Maxim.) Ricker and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. are endemic species in arid and semiarid regions of northern China, where rangeland desertification is pronounced due to chronic overgrazing. In this study, we tested the hypothesis that these endemic shrubs have developed adaptations to arid and semiarid environments and could play critical roles as nurse species to initiate the process of rangeland recovery. Based on careful vegetation surveys, we analysed the niches of these species in relation to precipitation, temperature and habitats. All sampling plots were categorized by these endemics and sorted by the non-metric multidimensional scaling method. Species ratios of each life form and species co-occurrence rates with the endemics were also evaluated. Annual average temperature and annual precipitation were found to be the key factors determining vegetation diversity and distributions. Amygdalus pedunculata prefers low hills and sandy land in temperate semiarid regions. Amygdalus mongolica prefers gravel deserts of temperate semiarid regions. Ammopiptanthus mongolicus prefers sandy land of temperate arid regions. Communities of A. pedunculata have the highest diversity and the largest ratios of long-lived grass species, whereas those of A. mongolicus have the lowest diversity but the largest ratios of shrub species. Communities of A. mongolica are a transition between the first two community types. These findings demonstrate that our focal endemic shrubs have evolved adaptations to arid and semiarid conditions, thus they can be nurse plants to stabilize sand ground for vegetation restoration. We suggest that land managers begin using these shrub species to restore

  2. Solar Radiation Determines Site Occupancy of Coexisting Tropical and Temperate Deer Species Introduced to New Zealand Forests

    PubMed Central

    Allen, Robert B.; Forsyth, David M.; Allen, Roy K. J.; Affeld, Kathrin; MacKenzie, Darryl I.

    2015-01-01

    Assemblages of introduced taxa provide an opportunity to understand how abiotic and biotic factors shape habitat use by coexisting species. We tested hypotheses about habitat selection by two deer species recently introduced to New Zealand’s temperate rainforests. We hypothesised that, due to different thermoregulatory abilities, rusa deer (Cervus timorensis; a tropical species) would prefer warmer locations in winter than red deer (Cervus elaphus scoticus; a temperate species). Since adult male rusa deer are aggressive in winter (the rut), we also hypothesised that rusa deer and red deer would not use the same winter locations. Finally, we hypothesised that in summer both species would prefer locations with fertile soils that supported more plant species preferred as food. We used a 250 × 250 m grid of 25 remote cameras to collect images in a 100-ha montane study area over two winters and summers. Plant composition, solar radiation, and soil fertility were also determined for each camera location. Multiseason occupancy models revealed that direct solar radiation was the best predictor of occupancy and detection probabilities for rusa deer in winter. Multistate, multiseason occupancy models provided strong evidence that the detection probability of adult male rusa deer was greater in winter and when other rusa deer were present at a location. Red deer mostly vacated the study area in winter. For the one season that had sufficient camera images of both species (summer 2011) to allow two-species occupancy models to be fitted, the detection probability of rusa deer also increased with solar radiation. Detection probability also varied with plant composition for both deer species. We conclude that habitat use by coexisting tropical and temperate deer species in New Zealand likely depends on the interplay between the thermoregulatory and behavioural traits of the deer and the abiotic and biotic features of the habitat. PMID:26061426

  3. Time constraints in temperate-breeding species: Influence of growing season length on reproductive strategies

    USGS Publications Warehouse

    Gurney, K. E. B.; Clark, R.G.; Slattery, S.M.; Smith-Downey, N. V.; Walker, J.; Armstrong, L.M.; Stephens, S.E.; Petrula, M.; Corcoran, R.M.; Martin, K.H.; Degroot, K.A.; Brook, Rodney W.; Afton, A.D.; Cutting, K.; Warren, J.M.; Fournier, M.; Koons, D.N.

    2011-01-01

    Organisms that reproduce in temperate regions have limited time to produce offspring successfully, and this constraint is expected to be more pronounced in areas with short growing seasons. Information concerning how reproductive ecology of endotherms might be influenced by growing season length (GSL) is rare, and species that breed over a broad geographic range provide an opportunity to study the effects of time constraints on reproductive strategies. We analyzed data from a temperate-breeding bird, the lesser scaup Aythya affinis; hereafter scaup, collected at eight sites across a broad gradient of GSL to evaluate three hypotheses related to reproductive compensation in response to varying time constraints. Clutch initiation date in scaup was unaffected by GSL and was unrelated to latitude; spring thaw dates had a marginal impact on timing of breeding. Clutch size declined during the nesting season, as is reported frequently in bird species, but was also unaffected by GSL. Scaup do not appear to compensate for shorter growing seasons by more rapidly reducing clutch size. This study demonstrates that this species is remarkably consistent in terms of timing of breeding and clutch size, regardless of growing season characteristics. Such inflexibility could make this species particularly sensitive to environmental changes that affect resource availabilities. ?? 2011 The Authors. Ecography ?? 2011 Ecography.

  4. Time constraints in temperate-breeding species: influence of growing season length on reproductive strategies

    USGS Publications Warehouse

    Gurney, K. E. B.; Clark, Russell G.; Slattery, Stuart; Smith-Downey, N. V.; Walker, Jordan I.; Armstrong, L.M.; Stephens, S.E.; Petrula, Michael J.; Corcoran, R.M.; Martin, K.; Degroot, K.A.; Brook, Rodney W.; Afton, Alan D.; Cutting, K.; Warren, J.M.; Fournier, M.; Koons, David N.

    2011-01-01

    Organisms that reproduce in temperate regions have limited time to produce offspring successfully, and this constraint is expected to be more pronounced in areas with short growing seasons. Information concerning how reproductive ecology of endotherms might be influenced by growing season length (GSL) is rare, and species that breed over a broad geographic range provide an opportunity to study the effects of time constraints on reproductive strategies. We analyzed data from a temperate-breeding bird, the lesser scaup Aythya affinis; hereafter scaup, collected at eight sites across a broad gradient of GSL to evaluate three hypotheses related to reproductive compensation in response to varying time constraints. Clutch initiation date in scaup was unaffected by GSL and was unrelated to latitude; spring thaw dates had a marginal impact on timing of breeding. Clutch size declined during the nesting season, as is reported frequently in bird species, but was also unaffected by GSL. Scaup do not appear to compensate for shorter growing seasons by more rapidly reducing clutch size. This study demonstrates that this species is remarkably consistent in terms of timing of breeding and clutch size, regardless of growing season characteristics. Such inflexibility could make this species particularly sensitive to environmental changes that affect resource availabilities.

  5. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau.

    PubMed

    Liu, Yinzhan; Mu, Junpeng; Niklas, Karl J; Li, Guoyong; Sun, Shucun

    2012-07-01

    • Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Lignin and etherified ferulates impact digestibility and structural composition of three temperate perennial grasses

    USDA-ARS?s Scientific Manuscript database

    Breeding grasses for increased digestibility increases their value and profitability in ruminant livestock production systems. Digestibility can be improved in grasses by either increasing the concentration of soluble and readily fermentable carbohydrates or by altering the plant cell wall to create...

  7. The effect of rodent seed predation on four species of California annual grasses.

    PubMed

    Borchert, M I; Jain, S K

    1978-01-01

    The effect of seed predation by Microtus californicus and Mus musculus on plant numbers of four species of California annual grasses was investigated for one year period on a grassland near Davis, California. In winter, mice utilized dead star thistle plants for cover when grasses in open areas were short, but moved into open areas when grass grew tall in spring.Using exclosures and plots sown with known quantities of seed, it was estimated that a mouse population (approximate density 120/acre) consumed 75% of Avena fatua seed, 44% of Hordeum leporinum seed, and 37% of Bromus diandrus seed. Mice showed a strong preference for Avena seed.Plant numbers of Avena and Hordeum were reduced by 62% and 30%, respectively. Hordeum, Lolium, and to a lesser extent, Bromus responded to a competitive release from Avena by increases in plant size and reproductive output. In addition, seed predation markedly increased seed to adult plant survivorship of Avena, Hordeum, and Bromus.Vertebrate seed predation is discussed as a potentially important factor in the yearly patterns of plant population regulation in California annual grasslands.

  8. Important Considerations When Choosing Forage Grasses - Research Developments on Quality and Management

    USDA-ARS?s Scientific Manuscript database

    Seasonal changes in forage productivity and nutritive value will influence pasture management and ration balancing decisions by the producer. We determined seasonal yield and quality changes in the leaf and stem fraction of 10 temperate perennial grasses at two Wisconsin locations. After reaching ...

  9. Flea and Small Mammal Species Composition in Mixed-Grass Prairies: Implications for the Maintenance of Yersinia pestis.

    PubMed

    Maestas, Lauren P; Britten, Hugh B

    2017-07-01

    Maintenance of sylvatic plague in prairie dogs (Cynomis spp.) was once thought unlikely due to high mortality rates; yet more recent findings indicate that low-level enzootic plague may be maintained in susceptible prairie dog populations. Another hypothesis for the maintenance of sylvatic plague involves small mammals, other than prairie dogs, as an alternative reservoir in the sylvatic plague system. These hypotheses, however, are not mutually exclusive, as both prairie dogs and small mammals could together be driving sylvatic cycles of plague. The concept of a bridging vector has been used to explain the transmission of pathogens from one host species to another. In the case of sylvatic plague, this would require overlap in fleas between small mammals and prairie dogs, and potentially other species such as carnivores. Our goal was to evaluate the level of flea sharing between black-tailed prairie dogs (Cynomis ludovicianus) and other small mammals in a mixed-grass prairie in South Dakota. We investigated the species richness of small mammals and small-mammal fleas in a mixed-grass prairie system and compared findings with previous studies from a short-grass ecosystem in Colorado. Over the summer field seasons 2014-2016 we live-trapped small mammals, collected fleas, and showed differences between both the flea and small mammal composition of the two systems. We also recorded higher densities of deer mice and lower densities of northern grasshopper mice in mixed versus shortgrass prairies. We confirmed, as is the case in shortgrass prairies, a lack of substantial flea species overlap on small mammal hosts and fleas from prairie dogs and their burrows. Moreover this study demonstrates that although small mammals may not play a large part in interepizootic plague cycling in shortgrass prairie ecosystems, their role in mixed-grass prairies requires further evaluation.

  10. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    PubMed Central

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  11. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits.

    PubMed

    Lusk, Christopher H; Kelly, Jeff W G; Gleason, Sean M

    2013-03-01

    A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze-thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year.

  12. Foraminifera and the ecology of sea grass communities since the late Cretaceous

    NASA Astrophysics Data System (ADS)

    Hart, Malcolm; Smart, Christopher; Jagt, John

    2016-04-01

    Sea grasses are marine angiosperms (plants) that, in the late Cretaceous, migrated from the land into shallow-water marine environments. They represent a distinct, but fragile, marine habitat and sea grass meadows are often regarded as biodiversity hot-spots with a range of species (including fish, sea horses and cuttlefish) using them as nurseries for their young. Foraminifera are often found associated with sea grass meadows, with the associated taxa reflecting both the environment and palaeolatitude. In the tropics and sub-tropics, miliolid foraminifera dominate (e.g., Peneroplis spp.) as do large discoidal taxa such as Marginopora and Calcarina. In temperate to cool latitudes the assemblage changes to one dominated by smaller benthic taxa, including Elphidium spp. One taxon, Elphidium crispum, is geotropic and is often found - in the summer months - to crowd the fronds of the sea grass. In the Gulpen and Maastricht formations of the Maastricht area (The Netherlands and Belgium) sea grass fossils (both fronds and rhizomes) have been recorded in association with assemblages of both larger and smaller benthic foraminifera (Hart et al., 2016). Some of the large discoidal forms (e.g., Omphalocyclus and Orbitoides/Lepidorbitoides) and the distinctive Siderolites are associated with these sea grass fossils and are suggestive of the modern sea grass communities of sub-tropical areas. While earlier records were of relatively isolated sea grasses, in September/October 2015 surfaces with abundant sea grasses were found that are suggestive of complete 'meadows'. Preservation of some silicified rhizomes indicates that silicification must have been very rapid, before any degradation or compaction of the delicate tissues. The presence of sea grass fossils and their associated benthic foraminifera is indicative of a clear, shallow-water seaway, with a maximum depth of 15-20 m. The reported variations in sea level during the latest Cretaceous cannot, therefore, have been very

  13. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  14. Relationship of Productivity to Species Richness in the Xinjiang Temperate Grassland

    PubMed Central

    2016-01-01

    The relationship between species richness (SR) and aboveground net primary productivity (ANPP) is still a central and debated issue in community ecology. Previous studies have often emphasized the relationship of alpha diversity (number of species identity) to the mean ANPP with respect to the SR-ANPP relationship while neglecting the contribution of beta diversity (dissimilarity in species composition) to the mean ANPP and to the stability of ANPP (coefficient of ANPP: CV of ANPP). In this study, we used alpha and beta diversity, mean ANPP and the CV of ANPP collected from 159 sites and belonging to three vegetation types in the Xinjiang temperate grassland to first examine their trends along climatic factors and among different vegetation types and then test the relationship among alpha (beta) diversity and mean ANPP and the CV of ANPP. Our results showed that in the Xinjiang temperate grasslands, alpha diversity was positively and linearly correlated with MAP but unimodally correlated with MAT. Meanwhile, beta diversity was unimodally correlated with MAP but linearly correlated with MAT. Relative to desert steppe, meadow steppe and typical steppe had the highest alpha and beta diversity, respectively. Except for ANPP exhibiting a quadratic relationship with MAP, no significant relationship was found among ANPP, the CV of ANPP and climatic factors. ANPP and the CV of ANPP also exhibited no apparent patterns in variation among different vegetation types. Our results further showed that mean ANPP was closely associated with alpha diversity. Both linear and unimodal relationships were detected between alpha diversity and mean ANPP, but their particular form was texture-dependent. Meanwhile, the CV of ANPP was positively correlated with beta diversity. Our results indicated that in addition to incorporating alpha diversity and mean ANPP, incorporating beta diversity and the CV of ANPP could expand our understanding of the SR-ANPP relationship. PMID:27100676

  15. Role of carbohydrate metabolism in grass tetany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.

    1977-01-01

    Clinical hypomagnesemia is confined primarily to beef cattle in the United States but also occurs in dairy cattle in other countries, probably due to different management practices. During periods when grass tetany is likely, early vegetative temperate zone grasses are usually low in total readily available carbohydrates and magnesium but high in potassium and nitrogen. The tetany syndrome may include hypoglycemia and ketosis, suggesting an imbalance in intermediary energy metabolism. Many enzyme systems critical to cellular metabolism, including those which hydrolyze and transfer phosphate groups, are activated by Mg. Thus, by inference, Mg is required for normal glucose utilization, fat,more » protein, nucleic acid and coenzyme synthesis, muscle contraction, methyl group transfer, and sulfate, acetate, and formate activation. Numerous clinical and experimental studies suggest an intimate relationship between metabolism of Mg and that of carbohydrate, glucagon, and insulin. The objective is to review this literature and suggest ways in which these relationships might contribute to a chain of events leading to grass tetany.« less

  16. Dry matter yields and quality of forages derived from grass species and organic production methods (year 111).

    PubMed

    Pholsen, S; Rodchum, P; Higgs, D E B

    2014-07-01

    This third year work was carried on at Khon Kaen University during the 2008-2009 to investigate dry matter yields of grass, grass plus legumes, grown on Korat soil series (Oxic Paleustults). The experiment consisted of twelve-treatment combinations of a 3x4 factorial arranged in a Randomized Complete Block Design (RCBD) with four replications. The results showed that Dry Matter Yields (DMY) of Ruzi and Guinea grass were similar with mean values of 6,585 and 6,130 kg ha(-1) whilst Napier gave the lowest (884 kg ha(-1)). With grass plus legume, grass species and production methods gave highly significant dry matter yields where Guinea and Ruzi gave dry matter yields of 7,165 and 7,181 kg ha(-1), respectively and Napier was the least (2,790 kg ha(-1)). The production methods with the use of cattle manure gave the highest DMY (grass alone) of 10,267 kg ha(-1) followed by Wynn and Verano with values of 6,064 and 3,623 kg ha(-1), respectively. Guinea plus cattle manure gave the highest DMY of 14,599 kg ha(-1) whilst Ruzi gave 12,977 kg ha(-1). Guinea plus Wynn gave DMY of 7,082 kg ha(-1). Ruzi plus Verano gave DMY of 6,501 kg ha(-1). Forage qualities of crude protein were highest with those grown with grass plus legumes. Some prospects in improving production were discussed.

  17. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration.

    PubMed

    Chu, Jianmin; Yang, Hongxiao; Lu, Qi; Zhang, Xiaoyan

    2015-06-03

    Some endemic shrubs in arid and semiarid ecosystems are in danger of extinction, and yet they can play useful roles in maintaining or restoring these ecosystems, thus practical efforts are needed to conserve them. The shrubs Amygdalus pedunculata Pall., Amygdalus mongolica (Maxim.) Ricker and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. are endemic species in arid and semiarid regions of northern China, where rangeland desertification is pronounced due to chronic overgrazing. In this study, we tested the hypothesis that these endemic shrubs have developed adaptations to arid and semiarid environments and could play critical roles as nurse species to initiate the process of rangeland recovery. Based on careful vegetation surveys, we analysed the niches of these species in relation to precipitation, temperature and habitats. All sampling plots were categorized by these endemics and sorted by the non-metric multidimensional scaling method. Species ratios of each life form and species co-occurrence rates with the endemics were also evaluated. Annual average temperature and annual precipitation were found to be the key factors determining vegetation diversity and distributions. Amygdalus pedunculata prefers low hills and sandy land in temperate semiarid regions. Amygdalus mongolica prefers gravel deserts of temperate semiarid regions. Ammopiptanthus mongolicus prefers sandy land of temperate arid regions. Communities of A. pedunculata have the highest diversity and the largest ratios of long-lived grass species, whereas those of A. mongolicus have the lowest diversity but the largest ratios of shrub species. Communities of A. mongolica are a transition between the first two community types. These findings demonstrate that our focal endemic shrubs have evolved adaptations to arid and semiarid conditions, thus they can be nurse plants to stabilize sand ground for vegetation restoration. We suggest that land managers begin using these shrub species to restore

  18. Subtropical dry forest regeneration in grass-invaded areas of Puerto Rico: understanding why Leucaena leucocephala dominates and native species fail

    Treesearch

    Brett T. Wolfe; S.J. Van Bloem

    2012-01-01

    Throughout the tropics, non-native grasses invade, dominate, and persist in areas where subtropical and tropical dry forests have been highly degraded. In Central America and the Caribbean Islands, forests that regenerate in grass-invaded areas are generally composed of one to a few tree species, usually of the Fabaceae family and often non-native. We investigated the...

  19. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  20. Climate drives shifts in grass reproductive phenology across the western USA

    USGS Publications Warehouse

    Munson, Seth M.; Long, A. Lexine

    2016-01-01

    The capacity of grass species to alter their reproductive timing across space and through time can indicate their ability to cope with environmental variability and help predict their future performance under climate change.We determined the long-term (1895–2013) relationship between flowering times of grass species and climate in space and time using herbarium records across ecoregions of the western USA.There was widespread concordance of C3 grasses accelerating flowering time and general delays for C4 grasses with increasing mean annual temperature, with the largest changes for annuals and individuals occurring in more northerly, wetter ecoregions. Flowering time was delayed for most grass species with increasing mean annual precipitation across space, while phenology–precipitation relationships through time were more mixed.Our results suggest that the phenology of most grass species has the capacity to respond to increases in temperature and altered precipitation expected with climate change, but weak relationships for some species in time suggest that climate tracking via migration or adaptation may be required. Divergence in phenological responses among grass functional types, species, and ecoregions suggests that climate change will have unequal effects across the western USA.

  1. Native Grasses as a Management Alternative on Vegetated Closure Caps

    NASA Astrophysics Data System (ADS)

    Kwit, Charles; Collins, Beverly

    2008-06-01

    Capped waste sites often are vegetated with commercial turf grasses to increase evapotranspiration and prevent erosion and possible exposure of the barrier. Fertilizer, frequent watering, and mowing may be required to establish the turf grass and prevent invasion by trees and shrubs. Oldfield vegetation of grasses and forbs is a possible sustainable alternative to turf grass communities. To determine if oldfield vegetation can establish on caps, we (1) compared establishment of a dominant oldfield grass and a commercial turf grass under different combinations of new closure cap management: spring or summer planting and presence or absence of amendments to alleviate drought (watering, mulch) or increase soil fertility (fertilizer, lime, a nitrogen-fixing legume); (2) surveyed existing caps to determine if oldfield species establish naturally; and (3) performed a greenhouse experiment to compare growth of two native grasses under low and amended (added water, soil nutrients) conditions. Both the commercial grass and oldfield species established under new cap conditions; fertilizer, water, and mulch improved vegetation establishment in spring or summer, but legumes decreased grass cover. In the greenhouse, both native grasses grew best with amendments; however, substantial stem and root length were obtained with no fertilizer and only once-weekly watering. Existing vegetated caps supported planted grasses and naturally established oldfield species. Overall, the results indicate native grasses can establish on new caps and oldfields can serve as a management model; further work is needed to determine the management strategy to maintain herbaceous vegetation and slow woody species invasion.

  2. Tackling Contentious Invasive Plant Species: A Case Study of Buffel Grass in Australia

    NASA Astrophysics Data System (ADS)

    Grice, Anthony C.; Friedel, Margaret H.; Marshall, Nadine A.; van Klinken, Rieks D.

    2012-02-01

    Introduced plants that have both production values and negative impacts can be contentious. Generally they are either treated as weeds and their use prohibited; or unfettered exploitation is permitted and land managers must individually contend with any negative effects. Buffel grass ( Cenchrus ciliaris) is contentious in Australia and there has been no attempt to broadly and systematically address the issues surrounding it. However, recent research indicates that there is some mutual acceptance by proponents and opponents of each others' perspectives and we contend that this provides the basis for a national approach. It would require thorough and on-going consultation with stakeholders and development of realistic goals that are applicable across a range of scales and responsive to regional differences in costs, benefits and socio-economic and biophysical circumstances. It would be necessary to clearly allocate responsibilities and ascertain the most appropriate balance between legislative and non-legislative mechanisms. A national approach could involve avoiding the introduction of additional genetic material, countering proliferation in regions where the species is sparse, preventing incursion into conservation reserves where it is absent, containing strategically located populations and managing communities to prevent or reduce dominance by buffel grass. This approach could be applied to other contentious plant species.

  3. Bud-bank and tiller dynamics of co-occurring C3 caespitose grasses in mixed-grass prairie.

    PubMed

    Ott, Jacqueline P; Hartnett, David C

    2015-09-01

    Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence. © 2015 Botanical Society of America.

  4. Climate variability decreases species richness and community stability in a temperate grassland.

    PubMed

    Zhang, Yunhai; Loreau, Michel; He, Nianpeng; Wang, Junbang; Pan, Qingmin; Bai, Yongfei; Han, Xingguo

    2018-06-26

    Climate change involves modifications in both the mean and the variability of temperature and precipitation. According to global warming projections, both the magnitude and the frequency of extreme weather events are increasing, thereby increasing climate variability. The previous studies have reported that climate warming tends to decrease biodiversity and the temporal stability of community primary productivity (i.e., community stability), but the effects of the variability of temperature and precipitation on biodiversity, community stability, and their relationship have not been clearly explored. We used a long-term (from 1982 to 2014) field data set from a temperate grassland in northern China to explore the effects of the variability of mean temperature and total precipitation on species richness, community stability, and their relationship. Results showed that species richness promoted community stability through increases in asynchronous dynamics across species (i.e., species asynchrony). Both species richness and species asynchrony were positively associated with the residuals of community stability after controlling for its dependence on the variability of mean temperature and total precipitation. Furthermore, the variability of mean temperature reduced species richness, while the variability of total precipitation decreased species asynchrony and community stability. Overall, the present study revealed that species richness and species asynchrony promoted community stability, but increased climate variability may erode these positive effects and thereby threaten community stability.

  5. AmeriFlux CA-Let Alberta - Mixed Grass Prairie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Lawrence B.

    This is the AmeriFlux version of the carbon flux data for the site CA-Let Alberta - Mixed Grass Prairie. Site Description - Latitude 49.43° N; Longitude 112.56° W, altitude 951 meters,Mixed Grass Prairie that includes the following major species: Agropyron spp. (Wheat Grasses), Tragopogon dubius (Goat’s Beard), Vicia americana (Wild Vetch), Koleria cristata (June Grass), Eurotia lanata (Winter Fat), Stipa comata (Spear Grass), Achillea millefolium (Yarrow); Artemisia frigida (Pasture Sage); Carex spp. (Sedges), Bouteloua gracilis (Blue Grama Grass). Maximum canopy height varies from year to year

  6. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico). GRASS SHRIMP.

    DTIC Science & Technology

    1985-03-01

    8 Salinity .................................................... 8 Brackish-Water shrimp...names ........ Palaemonetes Order ..................... Decapoda p!. ; P. vulgaris; P. intermedius; Family ................. Palaemonidae P.paludosus...Spawning may produce an additional brood, depending on the species or time of The spawning season of grass spawning (Broad and Hubschman 1963; shrimp

  7. The northern flying squirrel as an indicator species of temperate rain forest: test of an hypothesis.

    Treesearch

    Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols

    2005-01-01

    Management indicator species (MIS) often are selected because their life history and demographics are thought to reflect a suite of ecosystem conditions that are too difficult or costly to measure directly. The northern flying squirrel (Glaucomys sabrinus) has been proposed as an MIS of temperate rain forest of southeastern Alaska based on previous...

  8. Shade Tolerance of Temperate Asian Bamboos: a Harbinger of their Naturalization in Pacific Northwest Coniferous Forests?

    USDA-ARS?s Scientific Manuscript database

    Bamboos native to temperate East Asian forests may be pre-adapted to floristically related coniferous forests in western North America that conspicuously lack large, rhizomatous grasses. Given the increasing opportunity for Asian bamboos to enter North America through horticulture, such pre-adaptat...

  9. Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2016-01-01

    Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016

  10. QTLs for resistance to the leaf rust Puccinia brachypodii in the model grass Brachypodium distachyon

    USDA-ARS?s Scientific Manuscript database

    The wild grass Brachypodium distachyon is a useful new model for temperate cereals, but its potential to study the interactions with pathogens remains underexploited. Leaf rust is one of the major fungal diseases affecting cereals, and recently the host status of Brachypodium to Puccinia rusts was i...

  11. Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species.

    PubMed

    Xu, Jichen; Tian, Jiang; Belanger, Faith C; Huang, Bingru

    2007-01-01

    Plant tolerance of heat stress involves various changes at physiological and molecular levels. The objective of this study was to examine the expression of a gene encoding expansin protein in relation to heat tolerance in two C(3) grass species and genotypes differing in heat tolerance. Heat-tolerant, thermal Agrostis scabra, adapted to high temperatures in geothermal areas in Yellowstone National Park, was subjected to 20 degrees C (control) or 40 degrees C (heat stress) for 7 d in a growth chamber. Differential display analysis identified that a gene, AsEXP1, encoding an expansin protein, was strongly up-regulated in leaves exposed to heat stress in thermal A. scabra. Virtual northern hybridization and RT-PCR confirmed that AsEXP1 was a heat-inducible gene in leaves. The expression of AsEXP1 was induced at 1 h of plant exposure to heat stress and reached the highest level of expression at 4 h of treatment. A 1.3 kb full-length cDNA of AsEXP1 was isolated, which encodes a 251 amino acid protein. Two ecotypes of thermal A. scabra and 10 genotypes of Agrostis stolonifera (creeping bentgrass), a widely used turfgrass species in cool climatic regions, varying in the level of heat tolerance, were exposed to 40 degrees C for 7 d to examine the level of AsEXP1 expression in relation to heat tolerance. Genetic variation in heat tolerance was evaluated by measuring cell membrane stability, photochemical efficiency, and leaf growth. RT-PCR analysis revealed that the level of AsEXP1 in different genotypes was positively correlated with the level of heat tolerance in both grass species. The results first identified a heat-related expansin gene in grass species and suggest that AsEXP1 may be useful as a molecular marker to select for heat-tolerant grass germplasm.

  12. Comparative Morphological Analysis of the Immature Stages of the Grass Blue Butterflies Zizeeria and Zizina (Lepidoptera: Lycaenidae).

    PubMed

    Gurung, Raj D; Iwata, Masaki; Hiyama, Atsuki; Taira, Wataru; Degnan, Bernard; Degnan, Sandie; Otaki, Joji M

    2016-08-01

    The pale grass blue butterfly has been used to assess the biological effects of the Fukushima nuclear accident. Zizeeria and Zizina are two closely related genera of grass blue butterflies that are widely distributed in tropical to temperate Asia, Australia, and Africa, making them suitable environmental indicators for these areas. However, the morphological features of the immature stages have been examined only in fragmentary fashion. Here, we reared Zizeeria maha argia, Zizeeria maha okinawana, Zizeeria karsandra karsandra, Zizina emelina emelina, Zizina otis labradus, and Zizina otis riukuensis using a standard rearing method that was developed for Zizeeria maha, and comparatively identified morphological traits to effectively classify the immature stages of species or subspecies. Morphological information on these and other subspecies including Zizeeria knysna knysna and Zizina otis antanossa from Africa was also collected from literature. The subspecies were all reared successfully. The subspecies all had dorsal nectary and tentacle organs with similar morphology. For the subspecies of Zizeeria maha, only minor morphological differences were noted. Similarly, the subspecies of Zizina otis shared many traits. Most importantly, Zizeeria and Zizina differed in the shape of the sensory hairs that accompany the dorsal nectary organ; Zizeeriahad pointed hairs, and Zizina had blunt or rounded hairs. However, Zizina emelina exhibited several intermediate features between these two genera. Overall, the morphological traits did not completely reflect the conventional systematic relationships. This comparative study describes the efficient rearing of the grass blue butterflies and provides a morphological basis for the use of these species as environmental indicators.

  13. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape

    PubMed Central

    Drea, Sinéad

    2012-01-01

    Members of the core pooids represent the most important crops in temperate zones including wheat, barley, and oats. Their importance as crops is largely due to the grain, particularly the storage capabilities of the endosperm. In this study, a comprehensive survey of grain morphology and endosperm organization in representatives of wild and cultivated species throughout the core pooids was performed. As sister to the core pooid tribes Poeae, Aveneae, Triticeae, and Bromeae within the Pooideae subfamily, Brachypodium provides a taxonomically relevant reference point. Using macroscopic, histological, and molecular analyses distinct patterns of grain tissue organization in these species, focusing on the peripheral and modified aleurone, are described. The results indicate that aleurone organization is correlated with conventional grain quality characters such as grain shape and starch content. In addition to morphological and organizational variation, expression patterns of candidate gene markers underpinning this variation were examined. Features commonly associated with grains are largely defined by analyses on lineages within the Triticeae and knowledge of grain structure may be skewed as a result of the focus on wheat and barley. Specifically, the data suggest that the modified aleurone is largely restricted to species in the Triticeae tribe. PMID:23081982

  14. Status of exotic grasses and grass-like vegetation and potential impacts on wildlife in New England

    USGS Publications Warehouse

    DeStefano, Stephen

    2013-01-01

    The Northeastern section of the United States, known as New England, has seen vast changes in land cover and human population over the past 3 centuries. Much of the region is forested; grasslands and other open-land cover types are less common, but provide habitat for many species that are currently declining in abundance and distribution. New England also consists of some of the most densely populated and developed states in the country. The origin, distribution, and spread of exotic species are highly correlated with human development. As such, exotics are common throughout much of New England, including several species of graminoids (grasses and grass-like plants such as sedges and rushes). Several of the more invasive grass species can form expansive dense mats that exclude native plants, alter ecosystem structure and functions, and are perceived to provide little-to-no value as wildlife food or cover. Although little research has been conducted on direct impacts of exotic graminoids on wildlife populations in New England, several studies on the common reed (Phragmites australis) in salt marshes have shown this species to have variable effects as cover for birds and other wildlife, depending on the distribution of the plant (e.g., patches and borders of reeds are used more by wildlife than expansive densely growing stands). Direct impacts of other grasses on wildlife populations are largely unknown. However, many of the invasive graminoid species that are present in New England have the capability of outcompeting native plants and thereby potentially affecting associated fauna. Preservation, protection, and restoration of grassland and open-land cover types are complex but necessary challenges in the region to maintain biological and genetic diversity of grassland, wetland, and other open-land obligate species.

  15. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, James B.; Allain, Larry K.; Allen, Charles

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  16. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna.

    PubMed

    Zwerts, J A; Prins, H H T; Bomhoff, D; Verhagen, I; Swart, J M; de Boer, W F

    2015-01-01

    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns.

  17. The Seed Semipermeable Layer and Its Relation to Seed Quality Assessment in Four Grass Species.

    PubMed

    Lv, Yan Y; He, Xue Q; Hu, Xiao W; Wang, Yan R

    2017-01-01

    The existence of a semipermeable layer in grass seeds has been extensively reported, yet knowledge of its influence on tests for seed viability and vigor that depend upon measurement of electrical conductivity (EC) is limited. This study determined the presence and location of the semipermeable layer, and its relation to seed viability and vigor assessment, in seeds of four important grass species- Elymus nutans Griseb., Lolium perenne L., Leymus chinensis (Trin.) Tzvel., and Avena sativa L. Intact seeds of E. nutans, Lolium perenne , and Leymus chinensis exhibited little staining with triphenyl tetrazolium chloride (TTC), and there were no differences in EC between seeds with different germination percentage (GP) ( P > 0.05). After piercing the seed coat, however, all three species displayed positive staining with TTC, along with a significant negative correlation between EC and GP ( E. nutans : R 2 = 0.7708; Lolium perenne : R 2 = 0.8414; Leymus chinensis : R 2 = 0.859; P < 0.01). In contrast, both intact and pierced seeds of A. sativa possessed a permeable seed coat that showed positive staining with TTC and EC values that were significantly negatively correlated with GP [ R 2 = 0.9071 (intact) and 0.9597 (pierced); P < 0.01]. In commercial seed lots of A. sativa , a field emergence test indicated that EC showed a significant negative correlation with field emergence at two sowing dates ( R 2 = 0.6069, P < 0.01 and 0.5316, P < 0.05). Analysis of seed coat permeability revealed the presence of a semipermeable layer located in the seed coat adjacent to the endosperm in E. nutans, Lolium perenne , and Leymus chinensis ; however, no semipermeable layer was observed in A. sativa. This is the first report of the absence of a semipermeable layer in a grass species. The existence of a semipermeable layer is one of the most important factors affecting seed viability and vigor testing (based on EC measurement) in E. nutans, Lolium perenne , and Leymus chinensis

  18. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters

    PubMed Central

    Yordem, Burcu K.; Conte, Sarah S.; Ma, Jian Feng; Yokosho, Kengo; Vasques, Kenneth A.; Gopalsamy, Srinivasa N.; Walker, Elsbeth L.

    2011-01-01

    Background and Aims Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency. Methods The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography. Key Results Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated. Conclusions PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass

  19. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant.

    PubMed

    Khan, Sumaira; Kazi, Tasneem Gul; Kolachi, Nida Fatima; Baig, Jameel Ahmed; Afridi, Hassan Imran; Shah, Abdul Qadir; Kumar, Sham; Shah, Faheem

    2011-06-15

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V(5+) species from soil, vegetable and grass samples using Na(2)CO(3) in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V(5+) and V(4+) determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 μg/g in test and control soil samples, respectively. The contents of V(5+) and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 μg/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P<0.01). Statistical evaluations indicate that the sum of concentrations of V(5+) and V(4+) species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Sod-seeding to modify coastal bermuda grass on reclaimed lignite overburden in Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skousen, J.G.

    1986-01-01

    This study was conducted to investigate the ability of nine low-maintenance species to establish and persist with Coastal bermuda grass (Cynodon dactylon (L.) Pers.) established on reclaimed lignite overburden; to evaluate the establishment and persistence of seventeen low-maintenance species seeded in overburden with no vegetation cover; and to examine seeding mixtures and rates for establishing low-maintenance species into three cover types (bermuda grass, oats, (Avena fatua L.) and no cover). Seventeen low-maintenance species established and persisted in overburden without fertilization during years of low precipitation. Several seeded grasses showed sufficient stand development in monoculture for erosion control. Most of themore » other seeded species were slower in establishment, yet persisted on the site and promoted multiple use of the reclaimed area. Recommended seeding rates were generally adequate for seedling establishment in oat, bermuda grass, and no vegetation cover types. Sod-seeding into bermuda grass resulted in higher seedling densities than those in oats and no cover because of stored moisture beneath the sod during bermuda grass dormancy. Using /sup 15/N-labelled fertilizer, Coastal bermuda grass demonstrated the ability to rapidly recovery applied N. Maximilian sunflower (Helianthus maximiliani Schrad.) was suppressed by Coastal bermuda grass in mixture at all fertilizer N rates.« less

  1. Efficacy of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species

    PubMed Central

    Kacprzak, Malgorzata; Grobelak, Anna; Grosser, Anna; Prasad, M. N. V.

    2013-01-01

    The role of sewage sludge as an immobilising agent in the phytostabilization of metal-contaminated soil was evaluated using five grass species viz., Dactylis glomerata L., Festuca arundinacea Schreb., F. rubra L., Lolium perenne L., L. westerwoldicum L. The function of metal immobilization was investigated by monitoring pH, Eh and Cd, Pb, and Zn levels in column experiment over a period of 5-months. Grasses grown on sewage sludge-amendments produced high biomass in comparison to controls. A significant reduction in metal uptake by plants was also observed as a result of sewage sludge application, which was attributed to decreased bioavailability through soil stabilisation. We have observed that the sludge amendment decreased metal bioavailability and concentrations in soil at a depth of 25 cm, in contrast to untreated columns, where metal concentrations in the soil solution were very high. PMID:24912245

  2. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    PubMed

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  3. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    NASA Astrophysics Data System (ADS)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  4. Negative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest

    PubMed Central

    Piao, Tiefeng; Chun, Jung Hwa; Yang, Hee Moon; Cheon, Kwangil

    2014-01-01

    Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study. PMID:25058660

  5. Heterogeneity in soil water and light environments and dispersal limitation: what facilitates tree species coexistence in a temperate forest?

    PubMed

    Masaki, T; Hata, S; Ide, Y

    2015-03-01

    In the present study, we analysed the habitat association of tree species in an old-growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6-ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10-m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well-scattered seed distribution via wind and bird dispersal, as well as conspecific density-dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. The Impact of Different Grazing Periods in Dry Grasslands on the Expansive Grass Arrhenatherum elatius L. and on Woody Species

    NASA Astrophysics Data System (ADS)

    Dostálek, Jiří; Frantík, Tomáš

    2012-04-01

    Dry grasslands are one of the most species rich and endangered types of vegetation in Europe. In the Czech Republic, dry grasslands are mainly of anthropogenic origin and were formed as a result of grazing after the clear-cutting of thermophilous oak woods. Gradual changes in the farming landscape throughout the 20th century, particularly in the 1960s, resulted in the abandonment of the relatively infertile habitats of dry grasslands. After abandonment, dry grasslands decline and degrade due to the gradual overgrowth of woody species and expansion of perennial tall grasses. In the year 2000, a grazing management program was introduced in the protected areas within the territory of Prague City to maintain the species diversity of dry grasslands. The responses of the expansive grass species, Arrhenatherum elatius L. and multiple woody species (especially, Prunus spinosa L.) to differences in grazing periods were monitored for over a decade . Grazing in spring through the end of June had the greatest impact on the reduction of A. elatius and woody species. Grazing in the height of summer through autumn did not reduce the cover of these plants, and may support the prosperity of both A. elatius and the woody species due to higher levels of nutrients.

  7. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex.

    PubMed

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-04-28

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability.

  8. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex

    PubMed Central

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-01-01

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability. PMID:25928134

  9. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna

    PubMed Central

    Zwerts, J. A.; Prins, H. H. T.; Bomhoff, D.; Verhagen, I.; Swart, J. M.; de Boer, W. F.

    2015-01-01

    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns. PMID:26510157

  10. Niche evolution and thermal adaptation in the temperate species Drosophila americana.

    PubMed

    Sillero, N; Reis, M; Vieira, C P; Vieira, J; Morales-Hojas, R

    2014-08-01

    The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  11. An evaluation of the use of individual grass species in retaining polluted soil and dust particulates in vegetated sustainable drainage devices.

    PubMed

    Charlesworth, S M; Bennett, J; Waite, A

    2016-08-01

    A sustainable means of preventing polluted particulates carried in urban storm water entering rivers, groundwater and lakes is by employing vegetated sustainable drainage system (SUDS) devices, or best management practices to trap or biodegrade them. In the UK, a mixture of grass species is recommended for use in devices such as swales or filter strips. However, there is little evidence in support of the efficiency of the individual grasses or mixtures to deal with such contaminated material. A pot-based pollutant retention study was conducted using processed street dust from central Coventry, UK, as a simulated pollutant to be applied in different quantities to a variety of recommended grasses for vegetated SUDS devices. Analysis was conducted on compost cores, roots and shoots for heavy metals (Cd, Cu, Ni, Pb and Zn). Street dust mainly concentrated in the top compost layer for all grasses with only the finer material migrating down the profile. Analysis of roots indicated little accumulation, with ANOVA statistical tests indicating significant differences in heavy metal concentrations, with less in the compost and more in the shoots. Development of root systems on or near the surface possibly explains increased uptake of heavy metals by some species. Overall Agrostis canina and Poa pratensis showed the greatest accumulations compared to their controls although Agrostis capillaris syn.tenuis and Agrostis stolonifera also demonstrated accumulation potential. On ranking, Agrostis canina and Poa pratensis were highest overall. These rankings will assist in selecting the best grasses to address pollution of the urban environment by contaminated particulates.

  12. The merits of artificial selection for the development of restoration-ready plant materials of native perennial grasses

    USDA-ARS?s Scientific Manuscript database

    While seed harvested from remnant stands of grass can be used for restoration in temperate regions, seed recovery in semi-arid and arid environments is often unreliable and of low yield and quality. In addition, ongoing harvest of indigenous populations can be unsustainable, especially for those th...

  13. Temperate macroalgae impacts tropical fish recruitment at forefronts of range expansion

    NASA Astrophysics Data System (ADS)

    Beck, H. J.; Feary, D. A.; Nakamura, Y.; Booth, D. J.

    2017-06-01

    Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan ( 33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity ( K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish ( Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  14. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.

    PubMed

    McKeown, Meghan; Schubert, Marian; Preston, Jill C; Fjellheim, Siri

    2017-09-01

    Flowering time is a carefully regulated trait controlled primarily through the action of the central genetic regulator, FLOWERING LOCUS T (FT). Recently it was demonstrated that a microRNA, miR5200, targets the end of the second exon of FT under short-day photoperiods in the grass subfamily Pooideae, thus preventing FT transcripts from reaching threshold levels under non-inductive conditions. Pooideae are an interesting group in that they rapidly diversified from the tropics into the northern temperate region during a major global cooling event spanning the Eocene-Oligocene transition. We hypothesize that miR5200 photoperiod-sensitive regulation of Pooideae flowering time networks assisted their transition into northern seasonal environments. Here, we test predictions derived from this hypothesis that miR5200, originally found in bread wheat and later identified in Brachypodium distachyon, (1) was present in the genome of the Pooideae common ancestor, (2) is transcriptionally regulated by photoperiod, and (3) is negatively correlated with FT transcript abundance, indicative of miR5200 regulating FT. Our results demonstrate that miR5200 did evolve at or around the base of Pooideae, but only acquired photoperiod-regulated transcription within the Brachypodium lineage. Based on expression profiles and previous data, we posit that the progenitor of miR5200 was co-regulated with FT by an unknown mechanism. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Conservative decrease in water potential in existing leaves during new leaf expansion in temperate and tropical evergreen Quercus species.

    PubMed

    Saito, Takami; Naiola, B Paul; Terashima, Ichiro

    2007-12-01

    This study aimed at clarifying how the water potential gradient (deltapsi) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (psi(tlp)) are generally high. The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. (1) In Osaka, the midday leaf water potential (psi(midday)) was slightly higher in OLD (-0.5 MPa) than in CEX leaves (-0.6 MPa), whereas psi(tlp) was significantly lower in OLD (-2.9 MPa) than in CEX leaves (-1.0 MPa). In Bogor, psi(midday) was also higher in OLD leaves (-1.0 MPa) despite the low psi(tlp) (-1.9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high psi(midday) in OLD leaves after 1 month. Psi(midday) in OLD leaves thus appears to be independent of that in CEX leaves. The moderate decrease in psi(midday) in OLD leaves would contribute to maintenance of deltapsi in the shoots during leaf expansion.

  16. Entoloma subgenus Leptonia in boreal-temperate Eurasia: towards a phylogenetic species concept.

    PubMed

    Morozova, O V; Noordeloos, M E; Vila, J

    2014-06-01

    This study reveals the concordance, or lack thereof, between morphological and phylogenetic species concepts within Entoloma subg. Leptonia in boreal-temperate Eurasia, combining a critical morphological examination with a multigene phylogeny based on nrITS, nrLSU and mtSSU sequences. A total of 16 taxa was investigated. Emended concepts of subg. Leptonia and sect. Leptonia as well as the new sect. Dichroi are presented. Two species (Entoloma percoelestinum and E. sublaevisporum) and one variety (E. tjallingiorum var. laricinum) are described as new to science. On the basis of the morphological and phylogenetical evidence E. alnetorum is reduced to a variety of E. tjallingiorum, and E. venustum is considered a variety of E. callichroum. Accordingly, the new combinations E. tjallingiorum var. alnetorum and E. callichroum var. venustum are proposed. Entoloma lepidissimum var. pauciangulatum is now treated as a synonym of E. chytrophilum. Neotypes for E. dichroum, E. euchroum and E. lampropus are designated.

  17. Total centromere size and genome size are strongly correlated in ten grass species.

    PubMed

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  18. Linking xylem water storage with anatomical parameters in five temperate tree species.

    PubMed

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights

  19. Dose-response relationship of a new Timothy grass pollen allergoid in comparison with a 6-grass pollen allergoid.

    PubMed

    Pfaar, O; Hohlfeld, J M; Al-Kadah, B; Hauswald, B; Homey, B; Hunzelmann, N; Schliemann, S; Velling, P; Worm, M; Klimek, L

    2017-11-01

    Subcutaneous allergen immunotherapy with grass pollen allergoids has been proven to be effective and safe in the treatment of patients with allergic rhinoconjunctivitis. Based on the extensive cross-reactivity among Pooideae species, it has been suggested that grass pollen extracts could be prepared from a single species, rather than from a multiple species mixture. To find the optimal dose of a Phleum pratense (P. pratense) allergoid preparation and compare its efficacy and safety to a 6-grass pollen allergoid preparation. In this double-blind, placebo-controlled study (EudraCT: 2011-000674-58), three doses of P. pratense allergoid (1800 therapeutic units (TU), standard-dose 6000 TU and 18 000 TU) were compared with placebo and the marketed 6-grass pollen allergoid (6000 TU). In a pre-seasonal dosing regimen, 102 patients were randomized to five treatment groups and received nine subcutaneous injections. The primary efficacy endpoint was the change in weal size (late-phase reaction [LPR]) in response to the intracutaneous testing (ICT) before and after treatment, comparing the active allergoids to placebo. Secondary outcomes were the change in Total Nasal Symptom Score (TNSS) assessed in the allergen exposure chamber (AEC), the changes in P. pratense-serum-specific IgG 4 and the incidence of adverse events (AEs). All three doses of the P. pratense and the 6-grass pollen allergoid preparations were significantly superior to placebo for the primary outcome, whereas there were no significant differences in the change in TNSS. Compared to the standard-dose, the high-dose of P. pratense did not produce any additional significant benefit, but showed a slight increase in AEs. Yet this increase in AEs was lower than for the 6-grass pollen preparation. The standard-dose of the new P. pratense allergoid was comparable to the marketed 6-grass pollen preparation at equal dose for the parameters measured. © 2017 The Authors. Clinical & Experimental Allergy Published by John

  20. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia

    PubMed Central

    Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan

    2017-01-01

    Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE—petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations. PMID:28399170

  1. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia.

    PubMed

    Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan

    2017-01-01

    Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE-petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations.

  2. The Gondwanan connection - Southern temperate Amanita lineages and the description of the first sequestrate species from the Americas.

    PubMed

    Truong, Camille; Sánchez-Ramírez, Santiago; Kuhar, Francisco; Kaplan, Zachary; Smith, Matthew E

    2017-08-01

    Amanita is a diverse and cosmopolitan genus of ectomycorrhizal fungi. We describe Amanita nouhrae sp. nov., a new hypogeous ('truffle-like') species associated with Nothofagus antarctica in northern Patagonia. This constitutes the first report of a sequestrate Amanita from the Americas. Thick-walled basidiospores ornamented on the interior spore wall ('crassospores') were observed consistently in A. nouhrae and its sister epigeous taxon Amanita morenoi, a rarely collected but apparently common species from northern Patagonia that has sometimes been misidentified as the Australian taxon Amanita umbrinella. Nuclear 18S and 28S ribosomal DNA and mitochondrial 16S and 26S DNA placed these two species in a southern temperate clade within subgenus Amanita, together with other South American and Australian species. Based on a dated genus-level phylogeny, we estimate that the southern temperate clade may have originated near the Eocene/Oligocene boundary (ca. 35 Ma ± 10 Ma). This date suggests a broadly distributed ancestor in the Southern Hemisphere, which probably diversified as a result of continental drift, as well as the initiation of the Antarctic glaciation. By comparison, we show that this clade follows an exceptional biogeographic pattern within a genus otherwise seemingly dominated by Northern Hemisphere dispersal. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    NASA Astrophysics Data System (ADS)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  4. Invasion of the exotic grasses: Mapping their progression via satellite

    Treesearch

    Eric B. Peterson

    2008-01-01

    Several exotic annual grass species are invading the Intermountain West. After disturbances including wildfire, these grasses can form dense stands with fine fuels that then shorten fire intervals. Thus invasive annual grasses and wildfire form a positive feedback mechanism that threatens native ecosystems. Chief among these within Nevada are Bromus tectorum...

  5. The Occurrence of Balansioid Endophytes in Georgia, Florida, and Southern Grasses

    USDA-ARS?s Scientific Manuscript database

    A collection of toxic fungal endophytes of grasses were detailed in terms of their morphology and taxonomy in detailed slides useful for identification of the little know species of Balansia or clavicipitalean fungi that are found on southern pasture and weed grass species. We have established as ...

  6. Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5 years of warming.

    PubMed

    McCulloh, Katherine A; Petitmermet, Joshua; Stefanski, Artur; Rice, Karen E; Rich, Roy L; Montgomery, Rebecca A; Reich, Peter B

    2016-12-01

    Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architecture of six species growing in ambient T and ambient +3.4 °C T plots in two experimentally warmed forest sites in Minnesota. These sites are at the temperate-boreal ecotone, and we measured three species from each forest type. We hypothesized that relative to boreal species, temperate species near their northern range border would increase xylem conduit diameters when grown under elevated T. We also predicted a continuum of responses among wood types, with conduit diameter increases correlating with increases in the complexity of wood structure. Finally, we predicted that increases in conduit diameter and specific hydraulic conductivity would positively affect photosynthetic rates and growth. Our results generally supported our hypotheses, and conduit diameter increased under elevated T across all species, although this pattern was driven predominantly by three species. Two of these species were temperate angiosperms, but one was a boreal conifer, contrary to predictions. We observed positive relationships between the change in specific hydraulic conductivity and both photosynthetic rate (P = 0.080) and growth (P = 0.012). Our results indicate that species differ in their ability to adjust hydraulically to increases in T. Specifically, species with more complex xylem anatomy, particularly those individuals growing near the cooler edge of their range, appeared to be better able to increase conduit diameters and specific hydraulic conductivity, which permitted increases in photosynthesis and growth. Our data support results that indicate individual's ability to physiologically adjust is related to their location within their species range, and

  7. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes.

    PubMed

    Saarela, Jeffery M; Wysocki, William P; Barrett, Craig F; Soreng, Robert J; Davis, Jerrold I; Clark, Lynn G; Kelchner, Scot A; Pires, J Chris; Edger, Patrick P; Mayfield, Dustin R; Duvall, Melvin R

    2015-05-04

    Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae

  8. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes

    PubMed Central

    Saarela, Jeffery M.; Wysocki, William P.; Barrett, Craig F.; Soreng, Robert J.; Davis, Jerrold I.; Clark, Lynn G.; Kelchner, Scot A.; Pires, J. Chris; Edger, Patrick P.; Mayfield, Dustin R.; Duvall, Melvin R.

    2015-01-01

    Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some ‘early-diverging’ tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae–Meliceae and Ampelodesmeae–Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae–Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae–Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a

  9. Native grass seeding and forb planting establishment

    Treesearch

    I Nan Vance; Andrew Neill; Frank Morton

    2006-01-01

    After a dense stand of conifers encroaching on an oak savanna/meadow was removed, exotic forbs and grasses quickly populated the newly disturbed area. Establishing desirable native grasses and forbs that contribute to native plant diversity and compete with exotic species could aid in restoring this oak savanna plant community. Two experiments were conducted over time...

  10. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

    PubMed

    Moreira, Fátima M S; Lange, Anderson; Klauberg-Filho, Osmar; Siqueira, José O; Nóbrega, Rafaela S A; Lima, Adriana S

    2008-12-01

    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

  11. Amino acid uptake by temperate tree species characteristic of low- and high-fertility habitats.

    PubMed

    Scott, Emily E; Rothstein, David E

    2011-10-01

    The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of (15)N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH(4)(+)), and nitrate (NO(3)(-)) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH(4)(+) at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH(4)(+) and NO(3)(-); high-fertility species acquired the most N from NH(4)(+). Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.

  12. Cellulosic ethanol production from warm-season perennial grasses

    USDA-ARS?s Scientific Manuscript database

    Warm-season (C4) perennial grasses are able to produce large quantities of biomass, and will play a key role in bioenergy production, particularly in areas with long warm growing seasons. Several different grass species have been studied as candidate bioenergy crops for the Southeast USA, and each ...

  13. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  14. ECOLOGICAL DETERMINANTS OF POPULATION STRUCTURE AND GENE FLOW BETWEEN SYMPATRIC FUNGAL SPECIES IN THE GENUS COLLEOTRICHUM FROM DIVERSE GRASS COMMUNITIES

    EPA Science Inventory

    This comparative analysis will allow us to detect historical events of interest such as population fragmentations, range expansions, and colonization in the Colletotrichum species that inhabit pooid grasses. What is learned from C. cereale populations in agro...

  15. Leaf Photosynthesis and Plant Competitive Success in a Mixed-grass Prairie: With Reference to Exotic Grasses Invasion

    DOE PAGES

    Dong, Dr. Xuejun; Patton, J.; Gu, Lianhong; ...

    2014-11-26

    The widespread invasion of exotic cool-season grasses in mixed-grass rangeland is diminishing the hope of bringing back the natural native plant communities. However, ecophysiological mechanisms explaining the relative competitiveness of these invasive grasses over the native species generally are lacking. In this study, we used experimental data collected in south-central North Dakota, USA to address this issue. Photosynthetic potential was obtained from the net assimilation (A) vs. internal CO 2 (Ci) response curves from plants grown in a greenhouse. Plant success was defined as the average frequency measured over 25 years (1988 to 2012) on overflow range sites across fivemore » levels of grazing intensity. In addition, estimated leaf area index of individual species under field conditions was used to indicate plant success. The correlation between photosynthetic potential based on A/Ci curves and plant frequency was negative. The correlation between leaf photosynthesis and plant success (defined as leaf area within a unit land area) was also negative, although statistically weak. These results suggest that the two cool-season grasses, Poa pratensis and Bromus inermis, do not rely on superior leaf-level photosynthesis for competitive success. Instead, some other traits, such as early and late-season growth, may be more important for them to gain dominance in the mixed-grass prairie. We propose that the negative photosynthesis-frequency relation as observed in this study results from a strong competition for limited soil nutrients in the mixed-grass prairie. In conclusion, it has implications for the stability and productivity of the grassland under various human disruptions influencing the soil nutrient status.« less

  16. Leaf Photosynthesis and Plant Competitive Success in a Mixed-grass Prairie: With Reference to Exotic Grasses Invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Dr. Xuejun; Patton, J.; Gu, Lianhong

    The widespread invasion of exotic cool-season grasses in mixed-grass rangeland is diminishing the hope of bringing back the natural native plant communities. However, ecophysiological mechanisms explaining the relative competitiveness of these invasive grasses over the native species generally are lacking. In this study, we used experimental data collected in south-central North Dakota, USA to address this issue. Photosynthetic potential was obtained from the net assimilation (A) vs. internal CO 2 (Ci) response curves from plants grown in a greenhouse. Plant success was defined as the average frequency measured over 25 years (1988 to 2012) on overflow range sites across fivemore » levels of grazing intensity. In addition, estimated leaf area index of individual species under field conditions was used to indicate plant success. The correlation between photosynthetic potential based on A/Ci curves and plant frequency was negative. The correlation between leaf photosynthesis and plant success (defined as leaf area within a unit land area) was also negative, although statistically weak. These results suggest that the two cool-season grasses, Poa pratensis and Bromus inermis, do not rely on superior leaf-level photosynthesis for competitive success. Instead, some other traits, such as early and late-season growth, may be more important for them to gain dominance in the mixed-grass prairie. We propose that the negative photosynthesis-frequency relation as observed in this study results from a strong competition for limited soil nutrients in the mixed-grass prairie. In conclusion, it has implications for the stability and productivity of the grassland under various human disruptions influencing the soil nutrient status.« less

  17. Concentrations of major grass group 5 allergens in pollen grains and atmospheric particles: implications for hay fever and allergic asthma sufferers sensitized to grass pollen allergens.

    PubMed

    Schäppi, G F; Taylor, P E; Pain, M C; Cameron, P A; Dent, A W; Staff, I A; Suphioglu, C

    1999-05-01

    Grass pollen allergens are the most important cause of hay fever and allergic asthma during summer in cool temperate climates. Pollen counts provide a guide to hay fever sufferers. However, grass pollen, because of its size, has a low probability of entering the lower airways to trigger asthma. Yet, grass pollen allergens are known to be associated with atmospheric respirable particles. We aimed (1) to determine the concentration of group 5 major allergens in (a) pollen grains of clinically important grass species and (b) atmospheric particles (respirable and nonrespirable) and (2) to compare the atmospheric allergen load with clinical data to assess different risk factors for asthma and hay fever. We have performed a continuous 24 h sampling of atmospheric particles greater and lower than 7.2 microm in diameter during the grass pollen season of 1996 and 1997 (17 October 1996-16 January 1997) by means of a high volume cascade impactor at a height of about 15 m above ground in Melbourne. Using Western analysis, we assessed the reactivity of major timothy grass allergen Phl p 5 specific monoclonal antibody (MoAb) against selected pollen extracts. A MoAb-based ELISA was then employed to quantify Phl p 5 and cross-reactive allergens in pollen extracts and atmospheric particles larger and smaller than 7.2 microm. Phl p 5-specific MoAb detected group 5 allergens in tested grass pollen extracts, indicating that the ELISA employed here determines total group 5 allergen concentrations. On average, 0.05 ng of group 5 allergens were detectable per grass pollen grain. Atmospheric group 5 allergen concentrations in particles > 7.2 microm were significantly correlated with grass pollen counts (rs = 0.842, P < 0. 001). On dry days, 37% of the total group 5 allergen load, whereas upon rainfall, 57% of the total load was detected in respirable particles. After rainfall, the number of starch granule equivalents increased up to 10-fold; starch granule equivalent is defined as a

  18. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    PubMed

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  19. Conspecific Plant-Soil Feedbacks of Temperate Tree Species in the Southern Appalachians, USA

    PubMed Central

    Reinhart, Kurt O.; Johnson, Daniel; Clay, Keith

    2012-01-01

    Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be

  20. Conspecific plant-soil feedbacks of temperate tree species in the southern Appalachians, USA.

    PubMed

    Reinhart, Kurt O; Johnson, Daniel; Clay, Keith

    2012-01-01

    Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be

  1. Quantitative trait loci associated with drought tolerance in brachypodium distachyon

    USDA-ARS?s Scientific Manuscript database

    The temperate wild grass Brachypodium distachyon (Brachypodium) serves as model system for studying turf and forage grasses. Brachypodium collections show diverse responses to drought stress, but little is known about the genetic mechanisms of drought tolerance of this species. The objective of this...

  2. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying.

    PubMed

    Brinkmann, Nadine; Eugster, Werner; Zweifel, Roman; Buchmann, Nina; Kahmen, Ansgar

    2016-12-01

    Temperate forests are expected to be particularly vulnerable to drought and soil drying because they are not adapted to such conditions and perform best in mesic environments. Here we ask (i) how sensitively four common temperate tree species (Fagus sylvatica, Picea abies, Acer pseudoplatanus and Fraxinus excelsior) respond in their water relations to summer soil drying and seek to determine (ii) if species-specific responses to summer soil drying are related to the onset of declining water status across the four species. Throughout 2012 and 2013 we determined tree water deficit (TWD) as a proxy for tree water status from recorded stem radius changes and monitored sap flow rates with sensors on 16 mature trees studied in the field at Lägeren, Switzerland. All tree species responded equally in their relative maximum TWD to the onset of declining soil moisture. This implies that the water supply of all tree species was affected by declining soil moisture and that none of the four species was able to fully maintain its water status, e.g., by access to alternative water sources in the soil. In contrast we found strong and highly species-specific responses of sap flow to declining soil moisture with the strongest decline in P. abies (92%), followed by F. sylvatica (53%) and A. pseudoplatanus (48%). F. excelsior did not significantly reduce sap flow. We hypothesize the species-specific responses in sap flow to declining soil moisture that occur despite a simultaneous increase in relative TWD in all species reflect how fast these species approach critical levels of their water status, which is most likely influenced by species-specific traits determining the hydraulic properties of the species tree. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Conservative Decrease in Water Potential in Existing Leaves during New Leaf Expansion in Temperate and Tropical Evergreen Quercus Species

    PubMed Central

    Saito, Takami; Naiola, B. Paul; Terashima, Ichiro

    2007-01-01

    Background and Aims This study aimed at clarifying how the water potential gradient (ΔΨ) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (Ψtlp) are generally high. Materials The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. Key Results (1) In Osaka, the midday leaf water potential (Ψmidday) was slightly higher in OLD (−0·5 MPa) than in CEX leaves (−0·6 MPa), whereas Ψtlp was significantly lower in OLD (−2·9 MPa) than in CEX leaves (−1·0 MPa). In Bogor, Ψmidday was also higher in OLD leaves (−1·0 MPa) despite the low Ψtlp (−1·9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high Ψmidday in OLD leaves after 1 month. Ψmidday in OLD leaves thus appears to be independent of that in CEX leaves. Conclusions The moderate decrease in Ψmidday in OLD leaves would contribute to maintenance of ΔΨ in the shoots during leaf expansion. PMID:17855379

  4. The Effects of Seed Ingestion by Livestock, Dung Fertilization, Trampling, Grass Competition and Fire on Seedling Establishment of Two Woody Plant Species

    PubMed Central

    Tjelele, Julius; Ward, David; Dziba, Luthando

    2015-01-01

    The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle), dung (nutrients), fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1) seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested), 2) dung and control (no dung), 3) grass and control (mowed grass), 4) fire and control (no fire), 5) trampling and control (no trampling). The interaction of animal species, grass and fire had an effect on seedling recruitment (P < 0.0052). Seeds retrieved from goats and planted with no grass and with fire (6.81% ± 0.33) had a significant effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33). Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16) than cattle (1.93% ± 0.09) and control or untreated seeds (1.69% ± 0.11). Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment. PMID:25695765

  5. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.

    PubMed

    Scafaro, Andrew P; Xiang, Shuang; Long, Benedict M; Bahar, Nur H A; Weerasinghe, Lasantha K; Creek, Danielle; Evans, John R; Reich, Peter B; Atkin, Owen K

    2017-07-01

    Understanding of the extent of acclimation of light-saturated net photosynthesis (A n ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (T growth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO 2 response curves of A n were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (V cmax ) and electron transport (J max ) at each treatment's respective T growth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO 2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and T growth , A n at current atmospheric CO 2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing T growth . Similarly, area-based rates of V cmax at a measurement T of 25 °C (V cmax 25 ) linearly declined with increasing T growth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained V cmax and A n for leaves developed at higher T growth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for T growth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of T growth -mediated declines in V cmax 25 on A n , complementing current

  6. Species associations structured by environment and land-use history promote beta-diversity in a temperate forest.

    PubMed

    Murphy, Stephen J; Audino, Livia D; Whitacre, James; Eck, Jenalle L; Wenzel, John W; Queenborough, Simon A; Comita, Liza S

    2015-03-01

    Patterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.e., topography, soils, and distance to stream), spatial descriptors (i.e., spatial eigenvectors derived from Cartesian coordinates), and land-use history variables (i.e., land-use type and intensity, forest age, and distance to road), explained about half of the variation in both species richness and community composition. Spatial descriptors explained the most variation, followed by measured environmental variables and then by land- use history. Individual species revealed variable responses to each of these sets of predictor variables. Several species were associated with stream habitats, and others were strictly delimited across opposing north- and south-facing slopes. Several species were also associated with areas that experienced recent (i.e., <100 years) human land-use impacts. These results indicate that deterministic factors, including environmental and

  7. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Ciais, Philippe; Babst, Flurin; Guo, Weichao; Zhang, Cicheng; Magliulo, Vincenzo; Pavelka, Marian; Liu, Shaomin; Huang, Yongmei; Wang, Pei; Shi, Chunming; Ma, Yujun

    2018-01-01

    In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO 2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep-rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate. © 2017 John Wiley & Sons Ltd.

  8. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes

    PubMed Central

    Panchen, Zoe A.; Primack, Richard B.; Gallinat, Amanda S.; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert

    2015-01-01

    Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. PMID:25808654

  9. Confronting species distribution model predictions with species functional traits.

    PubMed

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  10. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    PubMed Central

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  11. Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production.

    PubMed

    Thurber, Carrie S; Ma, Justin M; Higgins, Race H; Brown, Patrick J

    2013-06-26

    Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation. We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time. Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.

  12. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  13. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  14. Temperate mountain grasslands: a climate-herbivore hypothesis for origins and persistence

    PubMed Central

    Weigl, Peter D; Knowles, Travis W

    2014-01-01

    Temperate montane grasslands and their unique biotas are declining worldwide as they are increasingly being invaded by forests. The origin and persistence of these landscapes have been the focus of such controversy that in many areas their conservation is in doubt. In the USA some biologists have largely dismissed the grass balds of the Southern Appalachians as human artifacts or anomalous and transitory elements of regional geography, worthy of only limited preservation efforts. On the basis of information from biogeography, community ecology, regional history and palaeontology and from consideration of two other montane grassland ecosystems—East Carpathian poloninas and Oregon Coast Range grass balds—we hypothesize that these landscapes are more widespread than was formerly recognized; they are, in many cases, natural and ancient and largely owe their origin and persistence to past climatic extremes and the activities of large mammalian herbivores. PMID:24118866

  15. Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk

    USGS Publications Warehouse

    Martin, Thomas E.; Llyod, Penn; Bosque, Carlos; Barton, Daniel C.; Biancucci, Atilio L.; Cheng, Yi-Ru; Ton, Riccardo

    2011-01-01

    Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species.

  16. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  17. Temperate rain forest species partition fine-scale gradients in light availability based on their leaf mass per area (LMA)

    PubMed Central

    Fajardo, Alex; Siefert, Andrew

    2016-01-01

    Background and Aims Ecologists are increasingly using plant functional traits to predict community assembly, but few studies have linked functional traits to species’ responses to fine-scale resource gradients. In this study, it was tested whether saplings of woody species partition fine-scale gradients in light availability based on their leaf mass per area (LMA) in three temperate rain forests and one Mediterranean forest in southern Chile. Methods LMA was measured under field conditions of all woody species contained in approx. 60 plots of 2 m2 in each site, and light availability, computed as the gap light index (GLI), was determined. For each site, species’ pairwise differences in mean LMA (Δ LMA) and abundance-weighted mean GLI (Δ light response) of 2 m2 plots were calculated and it was tested whether they were positively related using Mantel tests, i.e. if species with different LMA values differed in their response to light availability. Additionally linear models were fitted to the relationship between plot-level mean LMA and GLI across plots for each site. Key Results A positive and significant relationship was found between species’ pairwise differences in mean LMA and differences in light response across species for all temperate rain forests, but not for the Mediterranean forest. The results also indicated a significant positive interspecific link between LMA and light availability for all forests. This is in contrast to what is traditionally reported and to expectations from the leaf economics spectrum. Conclusions In environments subjected to light limitation, interspecific differences in a leaf trait (LMA) can explain the fine-scale partitioning of light availability gradients by woody plant species. This niche partitioning potentially facilitates species coexistence at the within-community level. The high frequency of evergreen shade-intolerant species in these forests may explain the positive correlation between light availability and LMA

  18. Relationships between in situ protein degradability and grass developmental morphology.

    PubMed

    Mitchell, R B; Redfearn, D D; Moser, L E; Grant, R J; Moore, K J; Kirch, B H

    1997-06-01

    The objective of this research was to determine the relationships between the morphological development and in situ ruminally degradable protein (RDP), ruminally undegradable protein (RUP), and microbial protein of two cool season grasses (intermediate wheatgrass and smooth bromegrass) and two warm season grasses (switchgrass and big bluestem). The initial growth of grass tillers grown near Mead, Nebraska was clipped at ground level six times during the 1992 growing season and morphologically classified. Mean stage was calculated. Forage was ground to pass a 2-mm screen and was incubated in ruminally fistulated steers for 16 h. The RUP was adjusted for microbial protein and acid detergent insoluble N. The mean stage of cool season grasses was higher than that of warm season grasses throughout the growing season. The RDP decreased as plant maturity increased for all species. The RUP expressed as a percentage of crude protein for the cool season grasses was lower than that for warm season grasses. The RUP for intermediate wheatgrass, smooth bromegrass, and switchgrass remained constant across maturities, but RUP for big bluestem decreased as maturity increased. Microbial augmentation of RUP decreased as crude protein decreased in all species. The RUP corrected for acid detergent insoluble N and microbial protein was relatively constant across plant maturities. The quantification of RUP across a range of plant maturities provided information for incorporating RUP content of forage grasses into the diets of animals.

  19. Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release.

    PubMed

    Broadbent, Arthur A D; Stevens, Carly J; Ostle, Nicholas J; Orwin, Kate H

    2018-03-01

    Multiple plant species invasions and increases in nutrient availability are pervasive drivers of global environmental change that often co-occur. Many plant invasion studies, however, focus on single-species or single-mechanism invasions, risking an oversimplification of a multifaceted process. Here, we test how biogeographic differences in soil biota, such as belowground enemy release, interact with increases in nutrient availability to influence invasive plant growth. We conducted a greenhouse experiment using three co-occurring invasive grasses and one native grass. We grew species in live and sterilized soil from the invader's native (United Kingdom) and introduced (New Zealand) ranges with a nutrient addition treatment. We found no evidence for belowground enemy release. However, species' responses to nutrients varied, and this depended on soil origin and sterilization. In live soil from the introduced range, the invasive species Lolium perenne L. responded more positively to nutrient addition than co-occurring invasive and native species. In contrast, in live soil from the native range and in sterilized soils, there were no differences in species' responses to nutrients. This suggests that the presence of soil biota from the introduced range allowed L. perenne to capture additional nutrients better than co-occurring species. Considering the globally widespread nature of anthropogenic nutrient additions to ecosystems, this effect could be contributing to a global homogenization of flora and the associated losses in native species diversity.

  20. Differential ecophysiological responses and resilience to heat wave events in four co-occurring temperate tree species

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Han, Jimei; Cummings, Cadan; McLennan, David A.; Warren, Jeffrey M.

    2018-06-01

    Extreme summer heat waves are known to induce foliar and stem mortality in temperate forest ecosystems, yet our mechanistic knowledge of physiological thresholds for damage is lacking. Current spatiotemporal simulations of forest growth responses to climate change fail to explain the variability between co-occurring tree species to climate extremes, indicating a need for new model frameworks that include mechanistic understanding of trait-specific responses. In this context, using manipulative heat wave (hw) experiments we investigated ecophysiological responses and physiological recovery in four co-occurring temperate tree species of the southeastern United States including three deciduous angiosperms: southern red oak (Quercus falcata Michx.), shumard oak (Q. shumardii Buckl.) and, tulip-poplar (Liriodendron tulipifera L.) and one evergreen conifer: eastern white pine (Pinus strobus L.). The objectives were to investigate inter-specific differences in ecophysiological responses to hw events to understand mechanistic differences in resilience that may be useful for future model development. Two-year-old, well-irrigated potted saplings were exposed to progressively increasing extreme hw diurnal cycles followed by a recovery cycle, with peak midday air temperature increasing from 37 °C to a maximum of 51 °C on the third day of the hw. Plants were assessed for various photosynthetic and water use responses, chlorophyll fluorescence and photosystem-II (PSII) activity, leaf temperature and foliar pigments. Intense heat caused progressive down-regulation in net photosynthesis, but the stomata remained operational, which helped cool leaves through loss of latent heat. Even though whole plant transpiration increased for all species, the rate plateaued at higher hw events that allowed leaf temperature to exceed 45 °C, well beyond the optimal range. A significant increase in non-photochemical quenching over the hw cycles was evident in all species though

  1. Fatty acid profile in vertical strata of elephant grass subjected to intermittent stocking.

    PubMed

    Dias, Kamila M; Schmitt, Daniel; Rodolfo, Giselle R; Deschamps, Francisco C; Camargo, Guilherme N; Pereira, Raphael S; Sbrissia, André F

    2017-01-01

    The milk and meat from animals with a pasture-based diet have higher proportions of CLA and C18:3 and lower omega-6:omega-3 ratios than products from animals with diets based on corn silage and concentrate. However, most of the published studies have evaluated fatty acid profiles in temperate climate grasses and the literature with tropical grasses is scarce. Thus, the aim of this study was to evaluate the morphological and fatty acid compositions in the vertical strata of elephant grass (Pennisetum purpureum Schum.) swards subjected to grazing heights (90 or 120 cm pre-grazing heights) and levels of defoliation (50% or 70% removal of the initial pre-grazing height). There were no interactions among pre-grazing height, the level of defoliation and grazing stratum. However, higher proportion of C18:3 (58% and 63%) was found in the 90-cm swards and in the half upper stratum. A higher proportion of C18:3 was associated with a higher leaf proportion and crude protein content. Thus, the upper stratum of sward or a grazing management scheme (e.g. first-last stocking) resulting in a higher proportion of leaves and crude protein both provide higher proportions of C18:3 to animals grazing in elephant grass swards.

  2. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.

    PubMed

    Köcher, Paul; Horna, Viviana; Leuschner, Christoph

    2013-08-01

    The functional role of internal water storage is increasingly well understood in tropical trees and conifers, while temperate broad-leaved trees have only rarely been studied. We examined the magnitude and dynamics of the use of stem water reserves for transpiration in five coexisting temperate broad-leaved trees with largely different morphology and physiology (genera Fagus, Fraxinus, Tilia, Carpinus and Acer). We expected that differences in water storage patterns would mostly reflect species differences in wood anatomy (ring vs. diffuse-porous) and wood density. Sap flux density was recorded synchronously at five positions along the root-to-branch flow path of mature trees (roots, three stem positions and branches) with high temporal resolution (2 min) and related to stem radius changes recorded with electronic point dendrometers. The daily amount of stored stem water withdrawn for transpiration was estimated by comparing the integrated flow at stem base and stem top. The temporal coincidence of flows at different positions and apparent time lags were examined by cross-correlation analysis. Our results confirm that internal water stores play an important role in the four diffuse-porous species with estimated 5-12 kg day(-1) being withdrawn on average in 25-28 m tall trees representing 10-22% of daily transpiration; in contrast, only 0.5-2.0 kg day(-1) was withdrawn in ring-porous Fraxinus. Wood density had a large influence on storage; sapwood area (diffuse- vs. ring-porous) may be another influential factor but its effect was not significant. Across the five species, the length of the time lag in flow at stem top and stem base was positively related to the size of stem storage. The stem stores were mostly exhausted when the soil matrix potential dropped below -0.1 MPa and daily mean vapor pressure deficit exceeded 3-5 hPa. We conclude that stem storage is an important factor improving the water balance of diffuse-porous temperate broad-leaved trees in moist

  3. Reforestation with native mixed-species plantings in a temperate continental climate effectively sequesters and stabilizes carbon within decades.

    PubMed

    Cunningham, Shaun C; Cavagnaro, Timothy R; Mac Nally, Ralph; Paul, Keryn I; Baker, Patrick J; Beringer, Jason; Thomson, James R; Thompson, Ross M

    2015-04-01

    Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results

  4. Checklist of Serengeti Ecosystem Grasses

    PubMed Central

    Ficinski, Paweł; Vorontsova, Maria

    2016-01-01

    Abstract We present the first taxonomic checklist of the Poaceae species of the Serengeti, Tanzania. A review of the literature and herbarium specimens recorded 200 species of grasses, in line with similar studies in other parts of East Africa. The checklist is supported by a total of 939 herbarium collections. Full georeferenced collection data is made available alongside a summary checklist in pdf format. More than a quarter of the species are known from a single collection highlighting the need for further research, especially concerning the rare species and their distribution. PMID:27226761

  5. Endophytic Fusarium spp. from Roots of Lawn Grass (Axonopus compressus)

    PubMed Central

    Zakaria, Latiffah; Ning, Chua Harn

    2013-01-01

    Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidiogenous cell morphology. The detection of endophytic F. oxysporum and F. solani in the roots of lawn grass contributes to the knowledge of both the distribution of the two Fusarium species and the importance of roots as endophytic niches for Fusarium species. PMID:24575251

  6. Seed production and establishment of western Oregon native grasses

    Treesearch

    Dale C. Darris

    2005-01-01

    It is well understood that native grasses are ecologically important and provide numerous benefits. However, unfavorable economics, low seed yields for some species, genetic issues, and a lack of experience behind the production and establishment of most western Oregon native grasses remain significant impediments for their expanded use. By necessity, adaptation of...

  7. Fledgling survival increases with development time and adult survival across north and south temperate zones

    USGS Publications Warehouse

    Lloyd, Penn; Martin, Thomas E.

    2016-01-01

    Slow life histories are characterized by high adult survival and few offspring, which are thought to allow increased investment per offspring to increase juvenile survival. Consistent with this pattern, south temperate zone birds are commonly longer-lived and have fewer young than north temperate zone species. However, comparative analyses of juvenile survival, including during the first few weeks of the post-fledging period when most juvenile mortality occurs, are largely lacking. We combined our measurements of fledgling survival for eight passerines in South Africa with estimates from published studies of 57 north and south temperate zone songbird species to test three predictions: (1) fledgling survival increases with length of development time in the nest; (2) fledgling survival increases with adult survival and reduced brood size controlled for development time; and (3) south temperate zone species, with their higher adult survival and smaller brood sizes, exhibit higher fledgling survival than north temperate zone species controlled for development time. We found that fledgling survival was higher among south temperate zone species and generally increased with development time and adult survival within and between latitudinal regions. Clutch size did not explain additional variation, but was confounded with adult survival. Given the importance of age-specific mortality to life history evolution, understanding the causes of these geographical patterns of mortality is important.

  8. Establishing native warm season grasses on Eastern Kentucky strip mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomassmore » samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife

  9. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems.

    PubMed

    Coates, Peter S; Ricca, Mark A; Prochazka, Brian G; Brooks, Matthew L; Doherty, Kevin E; Kroger, Travis; Blomberg, Erik J; Hagen, Christian A; Casazza, Michael L

    2016-10-25

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass-fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

  10. Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves

    NASA Astrophysics Data System (ADS)

    Tuckett, C. A.; de Bettignies, T.; Fromont, J.; Wernberg, T.

    2017-09-01

    Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010-2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

  11. Tree-mediated methane emissions from tropical and temperate peatlands.

    NASA Astrophysics Data System (ADS)

    Pangala, S. R.; Gauci, V.; Hornibrook, E. R. C.; Gowing, D. J.

    2012-04-01

    Methane production and transport processes in peatlands are fairly well understood, but growing evidence for emission of methane through trees has highlighted the need to revisit methane transport processes. In wetland trees, morphological adaptations such as development of hypertrophied lenticels, aerenchyma and adventitious roots in response to soil anoxia mediates gas transport, transporting both oxygen from the atmosphere to oxygen-deprived roots and soil-produced methane from the root-zone to the atmosphere. Although, tree-mediated methane emissions from temperate tree species have been confirmed, methane emissions from tropical tree species and processes that control tree-mediated methane emissions remain unclear. This study explains the role of trees in transporting soil-produced methane to the atmosphere and uncovers the principal mechanisms of tree-mediated methane emissions. Methane emissions from eight tropical tree species and two temperate tree species were studied in situ. The mechanisms and controls on tree-mediated methane emissions were investigated using three year old common alder (Alnus glutinosa; 50 trees) grown under two artificially controlled water-table positions. Methane fluxes from whole mesocosms, the soil surface and tree stems were measured using static closed chambers. Both temperate and tropical tree species released significant quantities of methane, with tropical trees dominating ecosystem level methane fluxes. In temperate peatlands, both the methane gas transport mechanism and quantity of methane emitted from stems is tree-species dependent. In Alnus glutinosa, no correlations were observed between stomatal behaviour and tree-mediated methane emissions, however, stem methane emissions were positively correlated with both stem lenticel density and dissolved soil methane concentration. In Alnus glutinosa, no emissions were observed from leaf surfaces. The results demonstrate that exclusion of tree-mediated methane emissions from

  12. The Anthelmintic Ingredient Moxidectin Negatively Affects Seed Germination of Three Temperate Grassland Species

    PubMed Central

    Eichberg, Carsten; Wohde, Manuel; Müller, Kerstin; Rausch, Anja; Scherrmann, Christina; Scheuren, Theresa; Düring, Rolf-Alexander; Donath, Tobias W.

    2016-01-01

    In animal farming, anthelmintics are regularly applied to control gastrointestinal nematodes. There is plenty of evidence that also non-target organisms, such as dung beetles, are negatively affected by residues of anthelmintics in faeces of domestic ungulates. By contrast, knowledge about possible effects on wild plants is scarce. To bridge this gap of knowledge, we tested for effects of the common anthelmintic formulation Cydectin and its active ingredient moxidectin on seed germination. We conducted a feeding experiment with sheep and germination experiments in a climate chamber. Three wide-spread plant species of temperate grasslands (Centaurea jacea, Galium verum, Plantago lanceolata) were studied. We found significant influences of both, Cydectin and moxidectin, on germination of the tested species. Across species, both formulation and active ingredient solely led to a decrease in germination percentage and synchrony of germination and an increase in mean germination time with the formulation showing a more pronounced response pattern. Our study shows for the first time that anthelmintics have the potential to negatively affect plant regeneration. This has practical implications for nature conservation since our results suggest that treatments of livestock with anthelmintics should be carefully timed to not impede endozoochorous seed exchange between plant populations. PMID:27846249

  13. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.

    PubMed

    Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K

    2014-08-22

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Are High-Impact Species Predictable? An Analysis of Naturalised Grasses in Northern Australia

    PubMed Central

    van Klinken, Rieks D.; Panetta, F. Dane; Coutts, Shaun R.

    2013-01-01

    Predicting which species are likely to cause serious impacts in the future is crucial for targeting management efforts, but the characteristics of such species remain largely unconfirmed. We use data and expert opinion on tropical and subtropical grasses naturalised in Australia since European settlement to identify naturalised and high-impact species and subsequently to test whether high-impact species are predictable. High-impact species for the three main affected sectors (environment, pastoral and agriculture) were determined by assessing evidence against pre-defined criteria. Twenty-one of the 155 naturalised species (14%) were classified as high-impact, including four that affected more than one sector. High-impact species were more likely to have faster spread rates (regions invaded per decade) and to be semi-aquatic. Spread rate was best explained by whether species had been actively spread (as pasture), and time since naturalisation, but may not be explanatory as it was tightly correlated with range size and incidence rate. Giving more weight to minimising the chance of overlooking high-impact species, a priority for biosecurity, meant a wider range of predictors was required to identify high-impact species, and the predictive power of the models was reduced. By-sector analysis of predictors of high impact species was limited by their relative rarity, but showed sector differences, including to the universal predictors (spread rate and habitat) and life history. Furthermore, species causing high impact to agriculture have changed in the past 10 years with changes in farming practice, highlighting the importance of context in determining impact. A rationale for invasion ecology is to improve the prediction and response to future threats. Although our study identifies some universal predictors, it suggests improved prediction will require a far greater emphasis on impact rather than invasiveness, and will need to account for the individual circumstances of

  15. Tempered fractional calculus

    NASA Astrophysics Data System (ADS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  16. TEMPERED FRACTIONAL CALCULUS.

    PubMed

    Meerschaert, Mark M; Sabzikar, Farzad; Chen, Jinghua

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  17. TEMPERED FRACTIONAL CALCULUS

    PubMed Central

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2014-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690

  18. Attacking invasive grasses

    USGS Publications Warehouse

    Keeley, Jon E.

    2015-01-01

    In grasslands fire may play a role in the plant invasion process, both by creating disturbances that potentially favour non-native invasions and as a possible tool for controlling alien invasions. Havill et al. (Applied Vegetation Science, 18, 2015, this issue) determine how native and non-native species respond to different fire regimes as a first step in understanding the potential control of invasive grasses.

  19. Grass plastomes reveal unexpected paraphyly with endemic species of Micrairoideae from India and new haplotype markers in Arundinoideae.

    PubMed

    Duvall, Melvin R; Yadav, Shrirang R; Burke, Sean V; Wysocki, William P

    2017-02-01

    We investigated the little-studied Arundinoideae/Micrairoideae clade of grasses with an innovative plastome phylogenomic approach. This method gives robust results for taxa of uncertain phylogenetic placement. Arundinoideae comprise ∼45 species, although historically was much larger. Arundinoideae is notable for the widely invasive Phragmites australis . Micrairoideae comprise nine genera and ∼200 species. Some are threatened with extinction, including Hubbardia , some Isachne spp., and Limnopoa . Two micrairoid genera, Eriachne and Pheidochloa , exhibit C 4 photosynthesis in this otherwise C 3 subfamily and represent an independent origin of the C 4 pathway among grasses. Five new plastomes were sequenced with next-generation sequencing-by-synthesis methods. Plastomes were assembled by de novo methods and phylogenetically analyzed with eight other recently published arundinoid or micrairoid plastomes and 11 outgroup species. Stable carbon isotope ratios were determined for micrairoid and arundinoid species to investigate ambiguities in the proxy evidence for C 4 photosynthesis. Phylogenomic analyses showed strong support for ingroup nodes in the Arundinoideae/Micrairoideae subtree, including a paraphyletic clade of Hubbardieae with Isachneae. Anatomical, biochemical, and positively selected sites data are ambiguous with regard to the photosynthetic pathways in Micrairoideae. Species of Hubbardia , Isachne , and Limnopoa were definitively shown by δ 13 C measurements to be C 3 and Eriachne to be C 4 . Our plastome phylogenomic analyses for Micrairoideae are the first phylogenetic results to indicate paraphyly between Isachneae and Hubbardieae. The definitive δ 13 C data for four genera of Micrairoideae indicates the breadth of variation possible in the proxy evidence for photosynthetic pathways of both C 3 and C 4 taxa. © 2017 Duvall et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC).

  20. A novel method to characterize silica bodies in grasses.

    PubMed

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  1. Temperate mountain grasslands: a climate-herbivore hypothesis for origins and persistence.

    PubMed

    Weigl, Peter D; Knowles, Travis W

    2014-05-01

    Temperate montane grasslands and their unique biotas are declining worldwide as they are increasingly being invaded by forests. The origin and persistence of these landscapes have been the focus of such controversy that in many areas their conservation is in doubt. In the USA some biologists have largely dismissed the grass balds of the Southern Appalachians as human artifacts or anomalous and transitory elements of regional geography, worthy of only limited preservation efforts. On the basis of information from biogeography, community ecology, regional history and palaeontology and from consideration of two other montane grassland ecosystems-East Carpathian poloninas and Oregon Coast Range grass balds-we hypothesize that these landscapes are more widespread than was formerly recognized; they are, in many cases, natural and ancient and largely owe their origin and persistence to past climatic extremes and the activities of large mammalian herbivores. © 2013 The Authors. Biological Reviews published by John Wiley © Sons Ltd on behalf of Cambridge Philosophical Society.

  2. Photo-protective mechanisms in reed canary grass to alleviate photo-inhibition of PSII on the Qinghai-Tibet Plateau.

    PubMed

    Zhang, Chao; Zhang, Da-Wei; Sun, Yan-Ni; Arfan, Muhammad; Li, Da-Xu; Yan, Jia-Jun; You, Ming-Hong; Bai, Shi-Qie; Lin, Hong-Hui

    2017-08-01

    Due to its characteristic of high biomass yield potential, there is considerable interest in cultivating Phalaris arundinacea L. cv. 'chuancaoyin No.3' (reed canary grass) on the Qinghai-Tibet Plateau where there is an abundance of alpine steppe meadow and a potential large market for animal husbandry. In this study, we 1) investigate whether reed canary grass exhibits superior productive capacity to Elymus nutans 'Aba' (E. nutans), ordinary common pasture, during the long warm days of summer at high-altitude; and 2) compare the cold tolerance between reed canary grass and E. nutans, including photosynthesis, photo-inhibition, and photo-protection. The results suggest that reed canary grass exhibits higher photosynthetic capacity compared to E. nutans at latitudes of the cool temperate zone. Meanwhile, cold-induced photo-inhibition and photo-damage at high altitudes in reed canary grass were due to both stomatal and non-stomatal limitation, and the enhancement in photo-respiration, thermal dissipation, and Mehler reaction are important processes to minimize the negative effects of high elevation and a cold environment. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Land use strategies to mitigate climate change in carbon dense temperate forests

    PubMed Central

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  4. Using reinforced native grass sod for biostrips, bioswales, and sediment control.

    DOT National Transportation Integrated Search

    2008-12-01

    The objective of this research was to develop and demonstrate native grass sod for sediment control from disturbed lands associated with California highways. The research evaluated native grass species for inclusion in sod and evaluated the sod at a ...

  5. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).

  6. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.

    PubMed

    Blackman, Christopher J; Brodribb, Timothy J; Jordan, Gregory J

    2009-11-01

    Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions ranging from mild to lethal. During drought the vulnerability of K(leaf) to declining Psi(leaf) varied greatly among the species sampled. Following drought, plants were rewatered and the rate of E and K(leaf) recovery was found to be strongly dependent on the severity of the drought imposed. Gas exchange recovery was strongly correlated with the relatively slow recovery of K(leaf) for three of the four species, indicating conformity to a hydraulic-stomatal limitation model of plant recovery. However, there was also a shift in the sensitivity of stomata to Psi(leaf) suggesting that the plant hormone abscisic acid may be involved in limiting the rate of stomatal reopening. The level of drought tolerance varied among the four species and was correlated with leaf hydraulic vulnerability. These results suggest that species-specific variation in hydraulic properties plays a fundamental role in steering the dynamic response of plants during recovery.

  7. Relationships of cereal crops and other grasses

    PubMed Central

    Kellogg, Elizabeth A.

    1998-01-01

    The grass family includes some 10,000 species, and it encompasses tremendous morphological, physiological, ecological, and genetic diversity. The phylogeny of the family is becoming increasingly well understood. There were two major radiations of grasses, an early diversification leading to the subfamilies Pooideae, Bambusoideae, and Oryzoideae, and a later one leading to Panicoideae, Chloridoideae, Centothecoideae, and Arundinoideae. The phylogeny can be used to determine the direction of changes in genome arrangement and genome size. PMID:9482825

  8. Tempered fractional calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu; Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu; Chen, Jinghua, E-mail: cjhdzdz@163.com

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a temperedmore » fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.« less

  9. Tropical fishes dominate temperate reef fish communities within western Japan.

    PubMed

    Nakamura, Yohei; Feary, David A; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic

  10. Valley Oak Seedling Growth Associated with Selected Grass Species

    Treesearch

    Karen C. Danielsen; William L. Halvorson

    1991-01-01

    Valley oak (Quercus lobata Née) has exhibited inadequate regeneration since the last century. Seedlings become established, but few develop into saplings. We hypothesized that the invasion of alien annual grasses into native perennial grasslands has increased oak seedling mortality by decreasing soil moisture availability. We conducted greenhouse...

  11. Effects of Introduced Grasses, Grazing and Fire on Regional Biogeochemistry in Hawaii

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Asner, G. P.

    2003-12-01

    African grasses introduced for grazing have expanded in geographic extent in mesic tropical systems of Hawaii and other regions of the world. Grassland expansion leads to increases in fire frequency, speeding woodland and forest destruction at greater geographic scales than occurs with grazing alone. At Pu'uwa'awa'a Ranch, Hawaii, restoration of the native woodland habitat has become a critical objective following the introduction and dominance of the African grass species Pennisetum clandestinum and P. setaceum. Grazing and grass-fueled fires have destroyed over 60% of the original forest. To stabilize these communities, managers must balance the combined effects of grazing and fire. Grazing reduces the recruitment success of native tropical trees, but grazing also reduces fire risk by moderating grass fuel conditions and restricting the extent and density of the most flammable grass species. Our study focuses on two questions: (1) What grazing intensity is necessary to change the fire conditions of a region given in situ soil and precipitation conditions? (2) Have long-term grazing conditions altered soil carbon and nitrogen stocks? We used high resolution imaging spectrometer data to measure photosynthetic and non-photosynthetic vegetation cover, analysis of soil carbon and nitrogen stocks, and measurements of plant community composition along gradients in grazing intensity. P. setaceum, the more flammable alien grass, was dominant where grazing intensity was low and at lower elevations where precipitation is low. The less flammable grass, P. clandestinum, occurred in regions of high grazing intensity and higher precipitation. Grazing influenced the dominance of P. setaceum and P. clandestinum only where precipitation and soil characteristics were suitable for both grasses to occur. At suitable sites, grazing reduced fire conditions through a species sift towards P. clandestinum. Soil carbon and nitrogen stocks decreased with grazing intensity, which was

  12. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes.

    PubMed

    Panchen, Zoe A; Primack, Richard B; Gallinat, Amanda S; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert

    2015-11-01

    Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company

  13. Phytoremediation of metal-contaminated soil in temperate humid regions of British Columbia, Canada.

    PubMed

    Padmavathiamma, Prabha K; Li, Loretta Y

    2009-08-01

    The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn, and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the aboveground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.

  14. Palaeovegetation. Diversity of temperate plants in east Asia.

    PubMed

    Harrison, S P; Yu, G; Takahara, H; Prentice, I C

    2001-09-13

    The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles. According to Qian and Ricklefs, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs.

  15. Grass meristems II: inflorescence architecture, flower development and meristem fate.

    PubMed

    Tanaka, Wakana; Pautler, Michael; Jackson, David; Hirano, Hiro-Yuki

    2013-03-01

    Plant development depends on the activity of various types of meristems that generate organs such as leaves and floral organs throughout the life cycle. Grass species produce complex inflorescences and unique flowers. The grass inflorescence is composed of different types of branches, including a specialized branch called a spikelet. The spikelet is a special unit of the inflorescence and forms one to several florets, depending on the species. In the floret, floral organs such as perianth organs, carpels and stamens are formed. In Arabidopsis, because the inflorescence meristem (IM) forms the floral meristems (FMs) directly on its flanks, the change of meristem fate is relatively simple. In contrast, in grasses, different types of meristem, such as the IM, the branch meristem (BM), the spikelet pair meristem (SPM) in some grasses, the spikelet meristem (SM) and the FM, are responsible for the elaboration of their complex inflorescences and flowers. Therefore, sequential changes of meristem fate are required, and a number of genes involved in the specification of the fate of each meristem have been identified. In this review, we focus on the following issues concerning the fate of the reproductive meristems in two grass species, maize (Zea mays) and rice (Oryza sativa): (i) meristem regulation during inflorescence development; (ii) specification and fate change of the BM and the SM; (iii) determinacy of the FM; and (iv) communication between the meristem and lateral organs.

  16. Horizontal transfer of a ß-1,6-glucanase gene from an ancestral species of fungal endophyte to a cool-season grass host.

    PubMed

    Shinozuka, Hiroshi; Hettiarachchige, Inoka K; Shinozuka, Maiko; Cogan, Noel O I; Spangenberg, German C; Cocks, Benjamin G; Forster, John W; Sawbridge, Timothy I

    2017-08-22

    Molecular characterisation has convincingly demonstrated some types of horizontal gene transfer in eukaryotes, but nuclear gene transfer between distantly related eukaryotic groups appears to have been rare. For angiosperms (flowering plants), nuclear gene transfer events identified to date have been confined to genes originating from prokaryotes or other plant species. In this report, evidence for ancient horizontal transfer of a fungal nuclear gene, encoding a ß-1,6-glucanase enzyme for fungal cell wall degradation, into an angiosperm lineage is presented for the first time. The gene was identified from de novo sequencing and assembly of the genome and transcriptome of perennial ryegrass, a cool-season grass species. Molecular analysis confirmed the presence of the complete gene in the genome of perennial ryegrass. No corresponding sequence was found in other plant species, apart from members of the Poeae sub-tribes Loliinae and Dactylidinae. Evidence suggests that a common ancestor of the two sub-tribes acquired the gene from a species ancestral to contemporary grass-associated fungal endophytes around 9-13 million years ago. This first report of horizontal transfer of a nuclear gene from a taxonomically distant eukaryote to modern flowering plants provides evidence for a novel adaptation mechanism in angiosperms.

  17. Optimizing spectral resolutions for the classification of C3 and C4 grass species, using wavelengths of known absorption features

    NASA Astrophysics Data System (ADS)

    Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad

    2012-01-01

    Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.

  18. Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems.

    PubMed

    Bajwa, Ali Ahsan; Akhter, Muhammad Javaid; Iqbal, Nadeem; Peerzada, Arslan Masood; Hanif, Zarka; Manalil, Sudheesh; Hashim, Saima; Ali, Hafiz Haider; Kebaso, Lynda; Frimpong, David; Namubiru, Halima; Chauhan, Bhagirath Singh

    2017-08-01

    Avena fatua and Avena ludoviciana are closely related grass weed species infesting a large number of crops around the world. These species are widely distributed in diverse agro-ecosystems from temperate to sub-tropical regions due to their unique seed traits, successful germination ecology, high competitive ability, and allelopathic potential. A. fatua is more widespread, adaptable, and problematic than A. ludoviciana. Both these species infest major winter and spring crops, including wheat, oat, barley, canola, maize, alfalfa, and sunflower, causing up to 70% yield losses depending on crop species and weed density. Chemical control has been challenged by large-scale herbicide resistance evolution in these weed species. A. fatua is the most widespread herbicide-resistant weed in the world, infesting about 5 million hectares in 13 countries. The use of alternative herbicides with different modes of action has proved effective. Several cultural practices, including diverse crop rotations, cover crops, improved crop competition (using competitive cultivars, high seed rates, narrow row spacing, altered crop geometry), and allelopathic suppression, have shown promise for controlling A. fatua and A. ludoviciana. The integrated use of these cultural methods can reduce the herbicide dose required, and lower dependency on herbicides to control these grasses. Moreover, integrated management may successfully control herbicide-resistant populations of these weed species. The use of integrated approaches based on the knowledge of biology and ecology of A. fatua and A. ludoviciana may help to manage them sustainably in the future.

  19. A molecular identification system for grasses: a novel technology for forensic botany.

    PubMed

    Ward, J; Peakall, R; Gilmore, S R; Robertson, J

    2005-09-10

    Our present inability to rapidly, accurately and cost-effectively identify trace botanical evidence remains the major impediment to the routine application of forensic botany. Grasses are amongst the most likely plant species encountered as forensic trace evidence and have the potential to provide links between crime scenes and individuals or other vital crime scene information. We are designing a molecular DNA-based identification system for grasses consisting of several PCR assays that, like a traditional morphological taxonomic key, provide criteria that progressively identify an unknown grass sample to a given taxonomic rank. In a prior study of DNA sequences across 20 phylogenetically representative grass species, we identified a series of potentially informative indels in the grass mitochondrial genome. In this study we designed and tested five PCR assays spanning these indels and assessed the feasibility of these assays to aid identification of unknown grass samples. We confirmed that for our control set of 20 samples, on which the design of the PCR assays was based, the five primer combinations produced the expected results. Using these PCR assays in a 'blind test', we were able to identify 25 unknown grass samples with some restrictions. Species belonging to genera represented in our control set were all correctly identified to genus with one exception. Similarly, genera belonging to tribes in the control set were correctly identified to the tribal level. Finally, for those samples for which neither the tribal or genus specific PCR assays were designed, we could confidently exclude these samples from belonging to certain tribes and genera. The results confirmed the utility of the PCR assays and the feasibility of developing a robust full-scale usable grass identification system for forensic purposes.

  20. Local versus landscape-scale effects of savanna trees on grasses

    USGS Publications Warehouse

    Riginos, C.; Grace, J.B.; Augustine, D.J.; Young, T.P.

    2009-01-01

    1. Savanna ecosystems - defined by the coexistence of trees and grasses - cover more than one-fifth the world's land surface and harbour most of the world's rangelands, livestock and large mammal diversity. Savanna trees can have a variety of effects on grasses, with consequences for the wild and domestic herbivores that depend on them. 2.Studies of these effects have focused on two different spatial scales. At the scale of individual trees, many studies have shown net positive effects of trees on sub-canopy grass nutrient concentrations and biomass. At the landscape scale, other studies have shown negative effects of high tree densities on grass productivity. These disparate results have led to different conclusions about the effects of trees on forage quality and ungulate nutrition in savannas. 3.We integrate these approaches by examining the effects of trees on grasses at both spatial scales and across a range of landscape-scale tree densities. 4.We quantified grass biomass, species composition and nutrient concentrations in these different contexts in an Acacia drepanolobium savanna in Laikipia, Kenya. Individual trees had positive effects on grass biomass, most likely because trees enrich soil nitrogen. Grass leaf phosphorus in sub-canopy areas, however, was depressed. The effects of individual trees could explain the effects of increasing landscape-scale tree cover for the biomass of only two of the four dominant grass species. 5.The negative effects of trees on grass and soil phosphorus, combined with depressed grass productivity in areas of high tree cover, suggest that ungulate nutrition may be compromised in areas with many trees. 6.Synthesis. We conclude that few, isolated trees may have positive local effects on savanna grasses and forage, but in areas of high tree density the negative landscape-scale effects of trees are likely to outweigh these positive effects. In savannas and other patchy landscapes, attempts to predict the consequences of changes

  1. Effect of Parathion-Methyl on Amazonian Fish and Freshwater Invertebrates: A Comparison of Sensitivity with Temperate Data

    PubMed Central

    Geber-Corrêa, Rachel; Campos, Paola S.; Garcia, Marcos V. B.; Waichman, Andrea V.; van den Brink, Paul J.

    2009-01-01

    Parathion-methyl is an organophosphorous insecticide that is widely used in agricultural production sites in the Amazon. The use of this pesticide might pose a potential risk for the biodiversity and abundance of fish and invertebrate species inhabiting aquatic ecosystems adjacent to the agricultural fields. Due to a lack of toxicity data for Amazonian species, safe environmental concentrations used to predict the ecological risks of parathion-methyl in the Amazon are based on tests performed with temperate species, although it is unknown whether the sensitivity of temperate species is representative for those of Amazonian endemic species. To address this issue, the acute toxic effect (LC50–96 h) of parathion-methyl was assessed on seven fish and five freshwater invertebrate species endemic to the Amazon. These data were used to compare their pesticide sensitivity with toxicity data for temperate species collected from the literature. The interspecies sensitivity was compared using the Species Sensitivity Distribution (SSD) concept. The results of this study suggest that Amazonian species are no more, or less, sensitive to parathion-methyl than their temperate counterparts, with LC50 values ranging from 2900 to 7270 μg/L for fish and from 0.3 to 319 μg/L for freshwater arthropods. Consequently, this evaluation supports the initial use of toxicity data of temperate fish and freshwater invertebrate species for assessing the effects of parathion-methyl on Amazonian freshwater ecosystems. PMID:19847472

  2. Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO 2 concentrations

    NASA Astrophysics Data System (ADS)

    Hattas, D.; Stock, W. D.; Mabusela, W. T.; Green, I. R.

    2005-07-01

    The effects of elevated atmospheric CO 2 concentrations on plant polyphenolic, tannin, nitrogen, phosphorus and total nonstructural carbohydrate concentrations were investigated in leaves of subtropical grass and fynbos shrub species. The hypothesis tested was that carbon-based secondary compounds would increase when carbon gain is in excess of growth requirements. This premise was tested in two ecosystems involving plants with different photosynthetic mechanisms and growth strategies. The first ecosystem comprised grasses from a C 4-dominated, subtropical grassland, where three plots were subjected to three different free air CO 2 enrichment treatments, i.e., elevated (600 to 800 μmol mol -1), intermediate (400 μmol mol -1) and ambient atmospheric CO 2. One of the seven grass species, Alloteropsis semialata, had a C 3 photosynthetic pathway while the other grasses were all C 4. The second ecosystem was simulated in a microcosm experiment where three fynbos species were grown in open-top chambers at ambient and 700 μmol mol -1 atmospheric CO 2 in low nutrient acid sands typical of south western coastal and mountain fynbos ecosystems. Results showed that polyphenolics and tannins did not increase in the grass species under elevated CO 2 and only in Leucadendron laureolum among the fynbos species. Similarly, foliar nitrogen content of grasses was largely unaffected by elevated CO 2, and among the fynbos species, only L. laureolum and Leucadendron xanthoconus showed changes in foliar nitrogen content under elevated CO 2, but these were of different magnitude. The overall decrease in nitrogen and phosphorus and consequent increase in C:N and C:P ratio in both ecosystems, along with the increase in polyphenolics and tannins in L. laureolum in the fynbos ecosystem, may negatively affect forage quality and decomposition rates. It is concluded that fast growing grasses do not experience sink limitation and invest extra carbon into growth rather than polyphenolics and

  3. Suitability of multipurpose trees, shrubs and grasses to rehabilitate gullies in the sub-humid tropics

    NASA Astrophysics Data System (ADS)

    Talema, Ayalew; Muys, Bart; Poesen, Jean; Padro, Roc; Dibaba, Hirko; Diels, Jan

    2017-04-01

    Vegetation plays a vital role for sustainable rehabilitation of degraded lands. However, the selection of suitable and effective plant species remains a long-lasting challenge in most parts of the sub-humid tropics. To address this challenge 18 multipurpose plant species (6 trees, 3 shrubs and 9 grasses), preselected from the regional species pool in Southwest Ethiopia were planted in severely degraded gullies and monitored from July 2011 to June 2014. The experiment had a split-plot design with farmyard manure (FYM) application, as main plot and plant species as sub-plot factors repeated in three blocks. The study revealed that grasses were the most successful to rehabilitate the gully within the monitoring period, compared to trees and shrubs. The survival rate of the four most successful grass species, Chrysopogon zizanioides, Pennisetum macrourum, Pennisetum polystachion and Pennisetum purpureum ranged from 61 to 90% with FYM application and from 20 to 85% without FYM, while most of the well-known indigenous and exotic trees and shrubs failed to survive. For the grass Pennisetum purpureum, shoot height, shoot and root dry biomass increased by 300%, 342% and 578% respectively due to FYM application, with a remarkably higher response to FYM compared to all the other studied species. The overall results demonstrate that severely degraded lands can be effectively restored by using early successional species such as locally adapted and selected grasses before the plantation of trees and shrubs.

  4. Spatiotemporal Variation in the Environmental Controls of C4-Grass Origin and Ecology: Insights from Grass-Pollen δ13C Data

    NASA Astrophysics Data System (ADS)

    Nelson, D. M.; Urban, M.; Hu, F.

    2014-12-01

    Understanding the environmental factors controlling the origin and shifting abundance of C4 grasses in Earth's history is useful for projecting the response of C4-grass dominated grasslands to future environmental change. Unfortunately, grass pollen is typically morphologically indistinct, making palynological analysis a blunt tool for studying C4-grasses in the paleorecord. δ13C of individual grass-pollen grains using a spooling wire microcombustion device interfaced with an isotope ratio mass spectrometer (Single Pollen Isotope Ratio AnaLysis, SPIRAL) overcomes this challenge and the potential biases of δ13C data from other substrates (e.g. leaf waxes). To assess the presence and relative abundance of C3- and C4-grass pollen in samples of unknown composition, we developed a hierarchical Bayesian model, trained with ~1,900 δ13C values from pollen grains of 31 grass species. Surface-sediment data from Africa, Australia, and North America demonstrate the reliability of this technique for quantifying C4-grass abundance on the landscape. To investigate the timing and control of the origin of C4-grasses we analyzed samples from the Oligocene-Miocene from Europe and from the Eocene from North America. Results indicate that C4 grasses appeared on the landscape of southwest Europe no later than the early Oligocene, implying that low atmospheric pCO2 may not have been the main driver and/or precondition for the development of C4 photosynthesis in the grass family. In contrast, we found no evidence for C4 grasses in the southeast United States before pCO2 fell. In application of SPIRAL to the late Quaternary, we found that shifts in pCO2 and moisture balance exerted key controls on the relative abundance of C3 and C4 grasses in Africa and Australia. Overall, our results imply that as in the past, future changes in the C3/C4 composition of grass-dominated ecosystems will likely exhibit striking spatiotemporal variability as a result of differing combinations of

  5. Hybridization patterns in two contact zones of grass snakes reveal a new Central European snake species.

    PubMed

    Kindler, Carolin; Chèvre, Maxime; Ursenbacher, Sylvain; Böhme, Wolfgang; Hille, Axel; Jablonski, Daniel; Vamberger, Melita; Fritz, Uwe

    2017-08-07

    Recent studies found major conflicts between traditional taxonomy and genetic differentiation of grass snakes and identified previously unknown secondary contact zones. Until now, little is known about gene flow across these contact zones. Using two mitochondrial markers and 13 microsatellite loci, we examined two contact zones. One, largely corresponding to the Rhine region, involves the western subspecies Natrix natrix helvetica and the eastern subspecies N. n. natrix, whereas in the other, more easterly, contact zone two lineages meet that are currently identified with N. n. natrix and N. n. persa. This second contact zone runs across Central Europe to the southern Balkans. Our analyses reveal that the western contact zone is narrow, with parapatrically distributed mitochondrial lineages and limited, largely unidirectional nuclear gene flow. In contrast, the eastern contact zone is very wide, with massive nuclear admixture and broadly overlapping mitochondrial lineages. In combination with additional lines of evidence (morphology, phylogeny, divergence times), we conclude that these differences reflect different stages in the speciation process and that Natrix helvetica should be regarded as a distinct species. We suggest a nomenclatural framework for presently recognized grass snake taxa and highlight the need for reconciling the conflicts between genetics and taxonomy.

  6. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species.

    PubMed

    Ogasa, Mayumi; Miki, Naoko H; Murakami, Yuki; Yoshikawa, Ken

    2013-04-01

    Woody species hydraulically vulnerable to xylem cavitation may experience daily xylem embolism. How such species cope with the possibility of accumulated embolism is unclear. In this study, we examined seven temperate woody species to assess the hypothesis that low cavitation resistance (high vulnerability to cavitation) is compensated by high recovery performance via vessel refilling. We also evaluated leaf functional and xylem structural traits. The xylem recovery index (XRI), defined as the ratio of xylem hydraulic conductivity in plants rewatered after soil drought to that in plants under moist conditions, varied among species. The xylem water potential causing 50% loss of hydraulic conductivity (Ψ50) varied among the species studied, whereas only a slight difference was detected with respect to midday xylem water potential (Ψmin), indicating smaller hydraulic safety margins (Ψmin - Ψ50) for species more vulnerable to cavitation. Cavitation resistance (|Ψ50|) was negatively correlated with XRI across species, with cavitation-vulnerable species showing a higher performance in xylem recovery. Wood density was positively correlated with cavitation resistance and was negatively correlated with XRI. These novel results reveal that coordination exists between cavitation resistance and xylem recovery performance, in association with wood functional traits such as denser wood for cavitation-resistant xylem and less-dense but water-storable wood for refillable xylem. These findings provide insights into long-term maintenance of water transport in tree species growing under variable environmental conditions.

  7. Sonoran Desert ecosystem transformation by a C4 grass without the grass/fire cycle

    USGS Publications Warehouse

    Olsson, Aaryn D.; Betancourt, Julio; McClaran, Mitchel P.; Marsh, Stuart E.

    2012-01-01

    Aim Biological invasions facilitate ecosystem transformation by altering the structure and function, diversity, dominance and disturbance regimes. A classic case is the grass–fire cycle in which grass invasion increases the frequency, scale and/or intensity of wildfires and promotes the continued invasion of invasive grasses. Despite wide acceptance of the grass–fire cycle, questions linger about the relative roles that interspecific plant competition and fire play in ecosystem transformations. Location Sonoran Desert Arizona Upland of the Santa Catalina Mountains, Arizona, USA. Methods We measured species cover, density and saguaro (Carnegiea gigantea) size structure along gradients of Pennisetum ciliare invasion at 10 unburned/ungrazed P. ciliare patches. Regression models quantified differences in diversity, cover and density with respect to P. ciliare cover, and residence time and a Fisher's exact test detected demographic changes in saguaro populations. Because P. ciliare may have initially invaded locations that were both more invasible and less diverse, we ran analyses with and without the plots in which initial infestations were located. Results Richness and diversity decreased with P. ciliare cover as did cover and density of most dominant species. Richness and diversity declined with increasing time since invasion, suggesting an ongoing transformation. The proportion of old-to-young Carnegiea gigantea was significantly lower in plots with dominant P. ciliare cover. Main conclusions Rich desert scrub (15–25 species per plot) was transformed into depauperate grassland (2–5 species per plot) within 20 years following P. ciliare invasion without changes to the fire regime. While the onset of a grass–fire cycle may drive ecosystem change in the later stages and larger scales of grass invasions of arid lands, competition by P. ciliare can drive small-scale transformations earlier in the invasion. Linking competition-induced transformation rates with

  8. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-08

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Copyright © 2016, American Association for the Advancement of Science.

  9. Establishing native grasses in a big sagebrush-dominated site: an intermediate restoration step

    USGS Publications Warehouse

    Huber-Sannwald, Elisabeth; Pyke, David A.

    2005-01-01

    Many semiarid rangelands in the Great Basin, U.S.A., are shifting dominance to woody species as a consequence of land degradation including intense livestock grazing and fire suppression. Whereas past rehabilitation efforts in Big sagebrush (Artemisia tridentata) steppes removed the shrub and added introduced forage grasses to successfully shift communities from shrublands to grasslands, current consensus is that native species should be included in restoration projects and that retention of some woody plants is desirable. We examined the potential for interseeding grasses into dense shrub communities as a precursor to thinning shrubs and releasing grasses from shrub interference. We compared seedling establishment of the native grass, Bluebunch wheatgrass (Pseudoroegneria spicata), with that of the Eurasia grass, Crested wheatgrass (Agropyron desertorum), in dense Ar. tridentata stands. Shrubs may play an important role as nurse plants for seedling establishment (reduced solar radiation, 'island of fertility' effect) but result in highly contrasting light environments and root interference for seedlings. In experimental plots, we examined effects of Ar. tridentata shade levels (0, 40, 70, and 90% reduction of solar radiation) and initial root exclusion (present/absent) on the establishment and growth of P. spicata and Ag. desertorum seedlings. With this design we evaluated the interference effects of Ar. tridentata on the two grasses and identified the most beneficial microsites for grass restoration in Ar. tridentataa??dominated communities. We predicted seedling survival and growth to be greater under moderate shade (40% reduction) and limited root competition than under no or strong shade conditions (0 and 90%) and unrestricted root interactions. Fifty to 85% of the P. spicata and Ag. desertorum seedlings survived the dry summer months of 1995 and 1996 and the intervening winter. Neither shading nor root exclusion from Ar. tridentata affected final seedling

  10. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes.

    PubMed

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R(2)=0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species

  11. Assessing the competitive ability of Japanese stilt grass, Microstegium vimineum (Trin.) A. Camus

    USGS Publications Warehouse

    Leicht, S.A.; Silander, J.A.; Greenwood, K.

    2005-01-01

    Microstegium vimineum (Japanese stilt grass) is an invasive grass in the eastern half of the United States which can form dense monocultures in forest understories, displacing native species. Although the loss of native species has been observed in the field, the actual competitive ability of this grass has not been examined. Microstegium vimineum was grown under controlled environment, greenhouse conditions in competition with Lolium perenne ssp. multiflorum (annual rye grass) and Muhlenbergia mexicana (Mexican muhly) in varying density ratios in full and low light treatments. Microstegium vimineum had a greater aboveground biomass, relative growth rate, and reproductive output than both competitors in both light treatments. The high competitive ability of Microstegium vimineum, especially in low light conditions, reflects its highly aggressive nature in forested or other landscapes of eastern North America.

  12. Research on screening of suitable forage grasses in coastal saline - alkaline soil

    NASA Astrophysics Data System (ADS)

    Yue, Xiaoyu; Han, Xin; Song, Qianhong; Yang, Xu; Zhou, Qingyun

    2017-11-01

    The screening of salt-tolerant plants can provide suitable tree species for the afforestation of coastal salinity and maintain biodiversity and ecological stability. The research was based on the study of seven grasses, such as high fescue, the bermuda grass, the thyme, the rye grass, the precocious grass, the third leaf, and the red three leaves. Each pasture was planted in three different kinds of soil, such as salt alkali soil, salt alkali soil + ecological bag and non-saline alkali soil. The effect of salt alkali soil on germinating time, germination rate and grass growth was analyzed. The effects of ecological bag on soil salt and the growth and germination of grass was also analyzed in order to provide the reference basis for the widespread and systematic selection of salt-tolerant plants, with the grass being selected for the suitable ecological bag.

  13. Effects of temperate agriculture on neotropical migrant landbirds

    Treesearch

    Nicholas L. Rodenhouse; Louis B. Best; Raymond J. O' Connor; Eric K. Bollinger

    1993-01-01

    The ecology of Neotropical migrant landbirds in temperate farmland is reviewed to develop management recommendations for the conservation of migrants. Migrants constitute about 71% of bird species using farmland and 86% of bird species nesting there. The number and abundances of Neotropical migrants using farmland are greatest in uncultivated edges with trees and...

  14. Species-Independent Down-Regulation of Leaf Photosynthesis and Respiration in Response to Shading: Evidence from Six Temperate Tree Species

    PubMed Central

    Chen, Anping; Lichstein, Jeremy W.; Osnas, Jeanne L. D.; Pacala, Stephen W.

    2014-01-01

    The ability to down-regulate leaf maximum net photosynthetic capacity (Amax) and dark respiration rate (Rdark) in response to shading is thought to be an important adaptation of trees to the wide range of light environments that they are exposed to across space and time. A simple, general rule that accurately described this down-regulation would improve carbon cycle models and enhance our understanding of how forest successional diversity is maintained. In this paper, we investigated the light response of Amax and Rdark for saplings of six temperate forest tree species in New Jersey, USA, and formulated a simple model of down-regulation that could be incorporated into carbon cycle models. We found that full-sun values of Amax and Rdark differed significantly among species, but the rate of down-regulation (proportional decrease in Amax or Rdark relative to the full-sun value) in response to shade was not significantly species- or taxon-specific. Shade leaves of sun-grown plants appear to follow the same pattern of down-regulation in response to shade as leaves of shade-grown plants. Given the light level above a leaf and one species-specific number (either the full-sun Amax or full-sun Rdark), we provide a formula that can accurately predict the leaf's Amax and Rdark. We further show that most of the down regulation of per unit area Rdark and Amax is caused by reductions in leaf mass per unit area (LMA): as light decreases, leaves get thinner, while per unit mass Amax and Rdark remain approximately constant. PMID:24727745

  15. Tropical Fishes Dominate Temperate Reef Fish Communities within Western Japan

    PubMed Central

    Nakamura, Yohei; Feary, David A.; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic

  16. Nitrous oxide production from temperate and tropical oyster species in response to nutrient loading

    NASA Astrophysics Data System (ADS)

    Chan, H.; Garate, M.; Moseman-Valtierra, S.

    2016-02-01

    Anthropogenic pollution, such as nitrogen (N), has the potential to increase greenhouse gas (GHG) emissions in marine ecosystems. Some organisms can be used as important biological indicators for GHG emissions to their environment based on their feeding habits. With large inputs of these anthropogenic pollutants, emissions of nitrous oxide (N2O), a potent GHG, can be potentially increased from temperate invertebrates, though not much is known about tropical invertebrates. Thus, we compared N2O emissions in response to N additions from the temperate oyster species Crassostrea virginica and compared it to a tropical species, Isognomon alatus, found in Puerto Rico. Oysters were exposed to two seawater treatments: (1) no nutrient addition (control) and (2) 100µM ammonium nitrate. Each treatment had 4-5 replicates. Measurements for dissolved N2O and nutrients were taken at the start of the incubation and then at two, four, and five hours by collecting water samples of each tank. Dissolved N2O concentrations were analyzed using gas chromatography. We hypothesized that the N addition treatment would produce more N2O for both Rhode Island and Puerto Rico. We found that there was no significant difference between the control and N enriched treatments for C. virginica over the short timespan, although the N enriched treatment did have a steady trend in increasing in N2O concentration over time. Further analysis is needed for the I. alatus, though we expect an increase in N2O emissions due to warmer water temperatures, which might enhance microbial metabolism and production of N2O. This differs from work previously done in a long-term experiment on C. virginica, which showed that N2O significantly in the N enriched treatment over 28-days. Our study shows that short-term pulses of N may not potentially increase N2O emissions, though further analysis is needed for longer-term exposures.

  17. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    PubMed Central

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of

  18. Land use strategies to mitigate climate change in carbon dense temperate forests.

    PubMed

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  19. From Leaf Synthesis to Senescence: n-Alkyl Lipid Abundance and D/H Composition Among Plant Species in a Temperate Deciduous Forest at Brown's Lake Bog, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Freimuth, E. J.; Diefendorf, A. F.; Lowell, T. V.

    2014-12-01

    The hydrogen isotope composition (D/H, δD) of terrestrial plant leaf waxes is a promising paleohydrology proxy because meteoric water (e.g., precipitation) is the primary hydrogen source for wax synthesis. However, secondary environmental and biological factors modify the net apparent fractionation between precipitation δD and leaf wax δD, limiting quantitative reconstruction of paleohydrology. These secondary factors include soil evaporation, leaf transpiration, biosynthetic fractionation, and the seasonal timing of lipid synthesis. Here, we investigate the influence of each of these factors on n-alkyl lipid δD in five dominant deciduous angiosperm tree species as well as shrubs, ferns and grasses in the watershed surrounding Brown's Lake Bog, Ohio, USA. We quantified n-alkane and n-alkanoic acid concentrations and δD in replicate individuals of each species at weekly to monthly intervals from March to October 2014 to assess inter- and intraspecific isotope variability throughout the growing season. We present soil, xylem and leaf water δD from each individual, and precipitation and atmospheric water vapor δD throughout the season to directly examine the relationship between source water and lipid isotope composition. These data allow us to assess the relative influence of soil evaporation and leaf transpiration among plant types, within species, and along a soil moisture gradient throughout the catchment. We use leaf water δD to approximate biosynthetic fractionation for each individual and test whether this is a species-specific and seasonal constant, and to evaluate variation among plant types with identical growth conditions. Our high frequency sampling approach provides new insights into the seasonal timing of n-alkane and n-alkanoic acid synthesis and subsequent fluctuations in concentration and δD in a temperate deciduous forest. These results will advance understanding of the magnitude and timing of secondary influences on the modern leaf wax

  20. Two new genera and five new species of Mugadina-like small grass cicadas (Hemiptera: Cicadidae: Cicadettini) from Central and Eastern Australia: comparative morphology, songs, behaviour and distributions.

    PubMed

    Ewart, A

    2018-04-20

    Moulds (2012) established the genus Mugadina for two small cicadas, M. marshalli (Distant) and M. emma (Goding and Froggatt), both grass inhabiting species known from Queensland and New South Wales. Both species are notable for their relatively simple 'ticking' songs. Moulds further noted that there were at least two superficially similar genera of cicadas, but each with different genitalia. This paper describes two new genera of small (9-15 mm body lengths) and distinctive grass cicadas with genitalia that are very similar to those of Mugadina, but possess clear morphological, colour and calling song differences. The new genera are: Heremusina n. gen. with two known species namely H. udeoecetes n. sp. and H. pipatio n. sp.; the second new genus is Xeropsalta n. gen., containing four known species, X. thomsoni n. sp., X. aridula n. sp., X. rattrayi n. sp., and X. festiva n. comb. Heremusina n. gen. species are described from the Alice Springs area of Northern Territory and the Cloncurry area of northwest Queensland, from arid to semi arid habitats. The Xeropsalta n. gen. species are described from western, southwest and central Queensland, and from the Simpson and Strzelecki Deserts in northeastern South Australia and northwestern New South Wales, respectively, all locations in very arid to arid habitats, but close to seasonal (often irregular) rivers and lakes. X. festiva n. comb. occurs in semi arid habitats in southern and southeastern Australia.        Detailed taxonomic descriptions are provided of the new species, together with distributions, habitats, and the calling songs. The Heremusina species emit songs with short repetitive buzzing echemes, the echeme durations differing between each species. The Xeropsalta songs are notable for their complexity, containing multiple elements with rapid changes of amplitudes and temporal structures, rather atypical of the songs of most small grass dwelling cicadas. Detailed song structures distinguishing each of

  1. Fruiting and flushing phenology in Asian tropical and temperate forests: implications for primate ecology.

    PubMed

    Hanya, Goro; Tsuji, Yamato; Grueter, Cyril C

    2013-04-01

    In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17-28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the

  2. Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan.

    PubMed

    Tsujino, Riyou; Yumoto, Takakazu

    2013-03-01

    In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.

  3. Maximizing biomass production in semi-arid regions: genotypic selection of identified species. [Saltbush and Johnson Grass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodin, J.R.; Newton, R.J.

    1983-08-31

    This project identifies genotypes selected from two species of unconventional plants previously identified as having exceptional potential for the production of biomass feedstock in semi-arid regions. The project involved collection of germ plasm from indigenous Atriplex canescens (saltbush) and introduced Sorghum halepense (Johnson grass). In addition, greenhouse and field screening techniques recently aplied to domesticated crop plants are used to identify exceptional biomass productivity based on drought tolerance, salinity tolerance, and seedling vigor. In both of these species, the genetic base is enormous. Saltbush is common to all of western North America, and Johnsongrass had established itself as an importantmore » forage and weedy species throughout most of the world. It would appear that artificial selection for desirable genotypes is a feasible process, and this project has demonstrated the possibility of selection from many accessions from the field. Preliminary screening for seedling vigor, drought tolerance, and salt tolerance has produced a few genotypes now ready for field testing. Propagation of these cloned genotypes is underway. 22 references, 2 figures, 1 table.« less

  4. Thermal biology of the sub-polar-temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae).

    PubMed

    Cumillaf, Juan P; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E; Vásquez, Jorge; Rosas, Carlos

    2016-02-15

    Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34-36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5-6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. © 2016. Published by The Company of Biologists Ltd.

  5. Thermal biology of the sub-polar–temperate estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae)

    PubMed Central

    Cumillaf, Juan P.; Blanc, Johnny; Paschke, Kurt; Gebauer, Paulina; Díaz, Fernando; Re, Denisse; Chimal, María E.; Vásquez, Jorge; Rosas, Carlos

    2016-01-01

    ABSTRACT Optimum temperatures can be measured through aerobic scope, preferred temperatures or growth. A complete thermal window, including optimum, transition (Pejus) and critical temperatures (CT), can be described if preferred temperatures and CT are defined. The crustacean Hemigrapsus crenulatus was used as a model species to evaluate the effect of acclimation temperature on: (i) thermal preference and width of thermal window, (ii) respiratory metabolism, and (iii) haemolymph proteins. Dependant on acclimation temperature, preferred temperature was between 11.8°C and 25.2°C while CT was found between a minimum of 2.7°C (CTmin) and a maximum of 35.9°C (CTmax). These data and data from tropical and temperate crustaceans were compared to examine the association between environmental temperature and thermal tolerance. Temperate species have a CTmax limit around 35°C that corresponded with the low CTmax limit of tropical species (34–36°C). Tropical species showed a CTmin limit around 9°C similar to the maximum CTmin of temperate species (5–6°C). The maximum CTmin of deep sea species that occur in cold environments (2.5°C) matched the low CTmin values (3.2°C) of temperate species. Results also indicate that the energy required to activate the enzyme complex (Ei) involved in respiratory metabolism of ectotherms changes along the latitudinal gradient of temperature. PMID:26879464

  6. Forage lignins: isolation, characterization and degradation in the gastrointestinal trace of ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiroz, R.A.

    1987-01-01

    A series of experiments were conducted to investigate the structural composition of forage lignins, structural changes of lignins in the gastrointestinal tract, alkali delignification kinetics and the use of core lignin components as an internal marker. Three species were selected to represent different forage types; alfalfa (Medicago sativa L.), a temperate perennial legume, tall fescue (Festuca arundinacea Schreb.), a temperate perennial grass and coastal bermudagrass (Cynodon dactylon L. Pers.), a tropical perennial grass. Alkaline lignins soluble in 1,4-dioxane, from forage and feces, were isolated and characterized using /sup 13/C nuclear magnetic resonance spectroscopy and nitrobenzene oxidation.

  7. A proteomic style approach to characterize a grass mix product reveals potential immunotherapeutic benefit.

    PubMed

    Bullimore, Alan; Swan, Nicola; Alawode, Wemimo; Skinner, Murray

    2011-09-01

    Grass allergy immunotherapies often consist of a mix of different grass extracts, each containing several proteins of different physiochemical properties; however, the subtle contributions of each protein are difficult to elucidate. This study aimed to identify and characterize the group 1 and 5 allergens in a 13 grass extract and to standardize the extraction method. The grass pollens were extracted in isolation and pooled and also in combination and analyzed using a variety of techniques including enzyme-linked immunosorbent assay, liquid chromatog-raphy-mass spectrometry, and sodium dodecyl sulfate-polyacrylam-ide gel electrophoresis. Gold-staining and IgE immunoblotting revealed a high degree of homology of protein bands between the 13 species and the presence of a densely stained doublet at 25-35 kD along with protein bands at approximately 12.5, 17, and 50 kD. The doublet from each grass species demonstrated a high level of group 1 and 5 interspecies homology. However, there were a number of bands unique to specific grasses consistent with evolutionary change and indicative that a grass mix immunotherapeutic could be considered broad spectrum. Sodium dodecyl sulfate-polyacrylamide gel electro-phoresis and IgE immunoblotting showed all 13 grasses share a high degree of homology, particularly in terms of group 1 and 5 allergens. IgE and IgG enzyme-linked immunosorbent assay potencies were shown to be independent of extraction method.

  8. Basin wildrye: the forgotten grass revisited

    USDA-ARS?s Scientific Manuscript database

    Basin wildrye was once a very abundant and widely occurring species throughout the landscapes of northern Nevada. When Captain Simpson, of the topographical Engineers, explored the route for a wagon road across the central Great Basin he marveled at the grass in the valley bottoms that reached to h...

  9. Status and use of important native grasses adapted to sagebrush communities

    Treesearch

    Thomas A. Jones; Steven R. Larson

    2005-01-01

    Due to the emphasis on restoration, native cool-season grass species are increasing in importance in the commercial seed trade in the Western U.S. Cultivated seed production of these native grasses has often been hampered by seed dormancy, seed shattering, and pernicious awns that are advantageous outside of cultivation. Relatively low seed yields and poor seedling...

  10. Elevated carbon dioxide and warming impact silicon and phenolic-based defences differently in native and exotic grasses.

    PubMed

    Johnson, Scott N; Hartley, Susan E

    2017-11-03

    Global climate change may increase invasions of exotic plant species by directly promoting the success of invasive/exotic species or by reducing the competitive abilities of native species. Changes in plant chemistry, leading to altered susceptibility to stress, could mediate these effects. Grasses are hyper-accumulators of silicon, which play a crucial function in the alleviation of diverse biotic and abiotic stresses. It is unknown how predicted increases in atmospheric carbon dioxide (CO 2 ) and air temperature affect silicon accumulation in grasses, especially in relation to primary and secondary metabolites. We tested how elevated CO 2 (eCO 2 ) (+240 ppm) and temperature (eT) (+4°C) affected chemical composition (silicon, phenolics, carbon and nitrogen) and plant growth in eight grass species, either native or exotic to Australia. eCO 2 increased phenolic concentrations by 11%, but caused silicon accumulation to decline by 12%. Moreover, declines in silicon occurred mainly in native species (-19%), but remained largely unchanged in exotic species. Conversely, eT increased silicon accumulation in native species (+19%) but decreased silicon accumulation in exotic species (-10%). Silicon and phenolic concentrations were negatively correlated with each other, potentially reflecting a defensive trade-off. Moreover, both defences were negatively correlated with plant mass, compatible with a growth-defence trade-off. Grasses responded in a species-specific manner, suggesting that the relative susceptibility of different species may differ under future climates compared to current species rankings of resource quality. For example, the native Microlaena stipoides was less well defended under eCO 2 in terms of both phenolics and silicon, and thus could suffer greater vulnerability to herbivores. To our knowledge, this is the first demonstration of the impacts of eCO 2 and eT on silicon accumulation in grasses. We speculate that the greater plasticity in silicon uptake

  11. Molecular cloning, characterization and expression analysis of coagulation factor VII gene in grass carp (Ctenopharyngodon idella).

    PubMed

    Liu, Qiaolin; Xu, Baohong; Xiao, Tiaoyi; Su, Jianming; Zhong, Lei

    2013-08-01

    Coagulation factor VII has been studied in several species but, to date, not in grass carp (Ctenopharyngodon idella), a commercially important freshwater fish found in China. In this study, the full-length cDNA of grass carp coagulation factor VII (GcCFVII) was cloned using a RACE-Ready cDNA Kit, grass carp were challenged with a hemorrhagic virus, and temporal expression profiles of GcCFVII in the thymus, gills, liver, spleen, and head kidney were examined at 0 h, 24 h, 48 h, 72 h, 96 h, and 138 h using fluorescence quantitative PCR. The results showed the 1480 bp GcCFVII to contain three conservative motifs: Gla, EGF-CA, and Tryp-SPc, similar to other species. Phylogenetic analysis showed the evolution of GcCFVII gene to be consistent with the evolution of the species. After viral challenge, GcCFVII expression in five tissues of grass carp showed different patterns of fluctuation. These results provide a solid basis for further investigation of GcCFVII and its relationship with grass carp hemorrhage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Genetic identification and evolutionary trends of the seagrass Halophila nipponica in temperate coastal waters of Korea.

    PubMed

    Kim, Young Kyun; Kim, Seung Hyeon; Yi, Joo Mi; Kang, Chang-Keun; Short, Frederick; Lee, Kun-Seop

    2017-01-01

    Although seagrass species in the genus Halophila are generally distributed in tropical or subtropical regions, H. nipponica has been reported to occur in temperate coastal waters of the northwestern Pacific. Because H. nipponica occurs only in the warm temperate areas influenced by the Kuroshio Current and shows a tropical seasonal growth pattern, such as severely restricted growth in low water temperatures, it was hypothesized that this temperate Halophila species diverged from tropical species in the relatively recent evolutionary past. We used a phylogenetic analysis of internal transcribed spacer (ITS) regions to examine the genetic variability and evolutionary trend of H. nipponica. ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed very low sequence divergence (less than 3-base pair, bp, difference), confirming that H. nipponica from Japan and Korea are the same species. Halophila species in the section Halophila, which have simple phyllotaxy (a pair of petiolate leaves at the rhizome node), were separated into five well-supported clades by maximum parsimony analysis. H. nipponica grouped with H. okinawensis and H. gaudichaudii from the subtropical regions in the same clade, the latter two species having quite low ITS sequence divergence from H. nipponica (7-15-bp). H. nipponica in Clade I diverged 2.95 ± 1.08 million years ago from species in Clade II, which includes H. ovalis. According to geographical distribution and genetic similarity, H. nipponica appears to have diverged from a tropical species like H. ovalis and adapted to warm temperate environments. The results of divergence time estimates suggest that the temperate H. nipponica is an older species than the subtropical H. okinawensis and H. gaudichaudii and they may have different evolutionary histories.

  13. Genetic identification and evolutionary trends of the seagrass Halophila nipponica in temperate coastal waters of Korea

    PubMed Central

    Kim, Young Kyun; Kim, Seung Hyeon; Yi, Joo Mi; Kang, Chang-Keun; Short, Frederick; Lee, Kun-Seop

    2017-01-01

    Although seagrass species in the genus Halophila are generally distributed in tropical or subtropical regions, H. nipponica has been reported to occur in temperate coastal waters of the northwestern Pacific. Because H. nipponica occurs only in the warm temperate areas influenced by the Kuroshio Current and shows a tropical seasonal growth pattern, such as severely restricted growth in low water temperatures, it was hypothesized that this temperate Halophila species diverged from tropical species in the relatively recent evolutionary past. We used a phylogenetic analysis of internal transcribed spacer (ITS) regions to examine the genetic variability and evolutionary trend of H. nipponica. ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed very low sequence divergence (less than 3-base pair, bp, difference), confirming that H. nipponica from Japan and Korea are the same species. Halophila species in the section Halophila, which have simple phyllotaxy (a pair of petiolate leaves at the rhizome node), were separated into five well-supported clades by maximum parsimony analysis. H. nipponica grouped with H. okinawensis and H. gaudichaudii from the subtropical regions in the same clade, the latter two species having quite low ITS sequence divergence from H. nipponica (7–15-bp). H. nipponica in Clade I diverged 2.95 ± 1.08 million years ago from species in Clade II, which includes H. ovalis. According to geographical distribution and genetic similarity, H. nipponica appears to have diverged from a tropical species like H. ovalis and adapted to warm temperate environments. The results of divergence time estimates suggest that the temperate H. nipponica is an older species than the subtropical H. okinawensis and H. gaudichaudii and they may have different evolutionary histories. PMID:28505209

  14. Breeding bird territory placement in riparian wet meadows in relation to invasive reed canary grass, Phalaris arundinacea

    USGS Publications Warehouse

    Kirsch, E.M.; Gray, B.R.; Fox, T.J.; Thogmartin, W.E.

    2007-01-01

    Invasive plants are a growing concern worldwide for conservation of native habitats. In endangered wet meadow habitat in the Upper Midwestern United States, reed canary grass (Phalaris arundinacea) is a recognized problem and its prevalence is more widespread than the better-known invasive wetland plant purple loosestrife (Lythrum salicaria). Although resource managers are concerned about the effect of reed canary grass on birds, this is the first study to report how common wet meadow birds use habitat in relation to reed canary grass cover and dominance. We examined three response variables: territory placement, size of territories, and numbers of territories per plot in relation to cover of reed canary grass. Territory locations for Sedge Wren (Cistothorus platensis) and Song Sparrow (Melospiza melodia) were positively associated with reed canary grass cover, while those for Common Yellowthroat (Geothlypis trichas) were not. Only Swamp Sparrow (M. georgiana) territory locations were negatively associated with reed canary grass cover and dominance (which indicated a tendency to place territories where there was no reed canary grass or where many plant species occurred with reed canary grass). Swamp Sparrow territories were positively associated with vegetation height density and litter depth. Common Yellowthroat territories were positively associated with vegetation height density and shrub cover. Song Sparrow territories were negatively associated with litter depth. Reed canary grass cover within territories was not associated with territory size for any of these four bird species. Territory density per plot was not associated with average reed canary grass cover of plots for all four species. Sedge Wrens and Song Sparrows may not respond negatively to reed canary grass because this grass is native to wet meadows of North America, and in the study area it merely replaces other tall lush plants. Avoidance of reed canary grass by Swamp Sparrows may be mediated

  15. Connecting long term species changes and their water competitions in temperate forest Mt. Baegun, Rep. of Korea using hydrogen and oxygen stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Lee, H.; Lee, M.; Song, W.; Byeon, S.; Lee, B.; Cho, S.; Park, J.; Kim, H. S.

    2017-12-01

    Many dynamic vegetation model simulations have predicted dramatic changes in species composition of temperate forests due to climate changes and successional reasons. Especially, conifer species are expected to lose their habitats and to be replaced by broadleaf species. Similarly, our more than 15-years-long 880 permenant plots tree survey data in Mt. Baegun, Rep. of Korea, showed substantial decrease of conifer species and their productivities and increase of broadleaved species. One of main reasons for these changes in species could be attributed to the water competition among tree species in the same stand. Therefore, we investigated the differences in water uptake scheme between conifer and broadleaf species from the temperate forests of Korea using stable isotopes. Six study plots showing high competition (conifers vs. broadleaf species) based on previous vegetation survey were chosen and the species-specific water uptake depth was estimated by measuring hydrogen(δ2H) and oxygen(δ18O) ratio from the xylem sap and leaves of individual species and by comparing them with those of soil water from 5 depths, (10, 30, 50, 100 and 120 cm), which extracted by lysimeter. The collection was conducted from April 2016 to Nov 2017. The conifer species included Pinus densiflora and Chamaecyparis obtusa vs. broadleaved species included Carpinus laxiflora, Prunus sargentii, Styrax obassia, Lindera erythrocarpa and Quercus species such as Q. mongolica, Q. serrata, Q. accuticima. Preliminary results showed the stable isotope signatures of soil water was increased from 10 cm to 30 cm, and then decreased gradually until 120 cm. In addition, current dominant canopy species, Chamaecyparis obtusa absorbed majority of their water from 10 to 30 cm depth. In comparison, current mid canopy but one of upcoming dominant species, Styrax obassia's major water source was 30 cm and deeper of soil. Our results could be essential for the prediction of species composition under climate change

  16. Detection of platinum species in plant material.

    PubMed

    Messerschmidt, J; Alt, F; Tölg, G

    1995-05-01

    Model experiments for the detection of platinum species in extracts from native and platinum-treated grass cultivations are described. The procedural steps are cultivation of the grass samples, extraction and concentration of the platinum species by ultrafiltration and freeze-drying, preparative separation of the species by gel chromatography followed by isotachophoresis, and sequential analytical detection of the separated platinum species by adsorptive voltammetry. After isotachophoresis, sharp peaks of platinum species could be detected. In the native grass extract only one platinum species (160-200 kDa) was found. In the platinum-treated grass extracts several platinum species were observed in the molecular mass range from 1 to > 1000 kDa. By an extremely sensitive platinum determination method (adsorptive voltammetry; detection limit, 2 pg Pt abs.) it was possible to detect platinum even in stained protein bands from horizontal gel electrophoresis of platinum containing fractions obtained after isotachophoresis.

  17. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species

    NASA Astrophysics Data System (ADS)

    Shoko, C.; Mutanga, O.

    2017-07-01

    C3 and C4 grass species discrimination has increasingly become relevant in understanding their response to environmental changes and to monitor their integrity in providing goods and services. While remotely-sensed data provide robust, cost-effective and repeatable monitoring tools for C3 and C4 grasses, this has been largely limited by the scarcity of sensors with better earth imaging characteristics. The recent launch of the advanced Sentinel 2 MultiSpectral Instrument (MSI) presents a new prospect for discriminating C3 and C4 grasses. The present study tested the potential of Sentinel 2, characterized by refined spatial resolution and more unique spectral bands in discriminating between Festuca (C3) and Themeda (C4) grasses. To evaluate the performance of Sentinel 2 MSI; spectral bands, vegetation indices and spectral bands plus indices were used. Findings from Sentinel 2 were compared with those derived from the widely-used Worldview 2 commercial sensor and the Landsat 8 Operational Land Imager (OLI). Overall classification accuracies have shown that Sentinel 2 bands have potential (90.36%), than indices (85.54%) and combined variables (88.61%). The results were comparable to Worldview 2 sensor, which produced slightly higher accuracies using spectral bands (95.69%), indices (86.02%) and combined variables (87.09%), and better than Landsat 8 OLI spectral bands (75.26%), indices (82.79%) and combined variables (86.02%). Sentinel 2 bands produced lower errors of commission and omission (between 4.76 and 14.63%), comparable to Worldview 2 (between 1.96 and 7.14%), than Landsat 8 (between 18.18 and 30.61%), when classifying the two species. The classification accuracy from Sentinel 2 also did not differ significantly (z = 1.34) from Worldview 2, using standard bands; it was significantly (z > 1.96) different using indices and combined variables, whereas when compared to Landsat 8, Sentinel 2 accuracies were significantly different (z > 1.96) using all variables

  18. Changes in vegetation structure and diversity after grass-to-forest succession in a Southern Appalachian watershed

    Treesearch

    Katherine J. Elliott; Lindsay R. Boring; Wayne T. Swank

    1998-01-01

    To document how species richness and diversity (H!) recover from severe large-scale disturbance, we report temporal patterns of species composition and diversity following grass-to-forest succession from a long-term experiment in the Coweeta Basin, western North Carolina. The original experiment -- clear-cutting, 5 yr of grass cover followed by a herbicide treatment,...

  19. The effects of precipitation and soil type on three invasive annual grasses in the western United States

    Treesearch

    Sheel Bansal; Jeremy J. James; Roger L. Sheley

    2014-01-01

    Multiple species of annual grasses are invading sagebrush-steppe communities throughout the western United States. Most research has focused on dominant species such as Bromus tectorum (cheatgrass), yet other, less studied annual grasses such as Taeniatherum caput-medusae (medusahead) and Ventenata dubia (ventenata) are spreading rapidly. Future precipitation regimes...

  20. Effects of climate and water balance across grasslands of varying C3 and C4 grass cover

    USGS Publications Warehouse

    Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.

    2016-01-01

    Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.

  1. Are Mojave Desert annual species equal? Resource acquisition and allocation for the invasive grass Bromus madritensis subsp. rubens (Poaceae) and two native species

    USGS Publications Warehouse

    Defalco, Lesley A.; Bryla, David R.; Smith-Longozo, Vickie; Nowak, Robert S.

    2003-01-01

    Abundance of invasive plants is often attributed to their ability ot outcompete native species. We compared resource acquisition and allocation of the invasive annual grass Bromus madritensis subsp. rubens with that of two native Mojave Desert annuals, Vulpia octoflora and Descurainia pinnata, in a glasshouse experiment. Each species was grown in monoculture at two densities and two levels of N availability to compare how these annuals capture resources and to understand their relative sensitivities to environmental change. During >4 mo of growth, Bromus used water more rapidly and had greater biomass and N content than the natives, partly because of its greater root-surface area and its exploitation of deep soils. Bromus also had greater N uptake, net assimilation and transpiration rates, and canopy area than Vulpia. Resource use by Bromuswas less sensitive to changes in N availability or density than were the natives. The two native species in this study produced numerous small seeds that tended to remain dormant, thus ensuring escape of offspring from unfavorable germination conditions; Bromus produced fewer but larger seeds that readily germinated. Collectively, these traits give Bromus the potential to rapidly establish in diverse habitats of the Mojave Desert, thereby gaining an advantage over coexisting native species.

  2. Early inflorescence development in the grasses (Poaceae)

    PubMed Central

    Kellogg, Elizabeth A.; Camara, Paulo E. A. S.; Rudall, Paula J.; Ladd, Philip; Malcomber, Simon T.; Whipple, Clinton J.; Doust, Andrew N.

    2013-01-01

    The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180°, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear “front” and “back;” this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern. PMID:23898335

  3. Scarification and gap size have interacting effects on northern temperate seedling establishment

    Treesearch

    John L. Willis; Michael B. Walters; Kurt W. Gottschalk

    2015-01-01

    After decades focused on promoting economically valuable species, management of northern temperate forests has increasingly become focused on promoting tree species diversity. Unfortunately, many formerly common species that could contribute to diversity including yellow birch (Betula alleghaniensis Britton.), paper birch (Betula papyrifera...

  4. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    PubMed Central

    Lemloh, Marie-Louise; Fromont, Jane; Brümmer, Franz; Usher, Kayley M

    2009-01-01

    Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA) with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide range of sponges in a wide range

  5. On the number of genes controlling the grass stage in longleaf pine

    Treesearch

    C. Dana Nelson; C. Weng; Thomas L. Kubisiak; M. Stine; C.L. Brown

    2003-01-01

    The grass stage is an inherent and distinctive developmental trait of longleaf pine (Pinus palustris), in which height growth in the first few years after germination is suppressed. In operational forestry practice the grass stage extends for nvo to several years and often plays a role in planting failures and decisions to plant alternative species....

  6. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide.

    PubMed

    Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine

    2012-02-01

    • It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. • Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. • Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. • The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  7. The effect of exotic grass Urochloa decumbens (Stapf) R.D.Webster (Poaceae) in the reduction of species richness and change of floristic composition of natural regeneration in the Floresta Nacional de Carajás, Brazil.

    PubMed

    Ferreira, Leandro V; Parolin, Pia; Matos, Darley C L; Cunha, Denise A; Chaves, Priscilla P; Neckel, Selvino O

    2016-01-01

    The introduction of exotic species is considered as one of the major causes of biodiversity loss. The National Forest of Carajás is one of the largest mineral provinces in the world. Mining activities caused changes of the natural habitats, leaving degraded areas after the mineral exploitation. One of the mining areas within FLONA Carajás was used for the extraction of gold. In the process of exploitation, a huge depression was formed by the removal of soil which was mounded up nearby. To prevent soil erosion of these mounds, an exotic grass, Urochloa decumbens (Stapf) R.D.Webster (Poaceae) was planted. The objective of this study was to compare the impact of this non-native grass on species richness and species composition of the natural regeneration in the degraded areas. Four areas were compared, two with and two without presence of U. decumbens. In each area, twenty four 1m²/plots were established. Species richness of the regeneration areas and population sizes were significantly lower in the plots where the exotic grass was present. Our study shows that U. decumbens had a negative effect on species richness and population density, and its presence changed the species composition and distribution of life forms of the natural regeneration.

  8. Spring Temperatures Alone Cannot Explain Timing of Budburst of Boreal-Temperate Tree Species under Experimental Warming

    NASA Astrophysics Data System (ADS)

    Montgomery, R. A.; Reich, P. B.; Rich, R. L.; Stefanski, A.

    2011-12-01

    Phenology, the timing of seasonal biological events such as budburst, blossom dates, bird migration and insect development, is critical to understanding species interactions (e.g. pollination, herbivory); determines growing season length in many (i.e. seasonal) terrestrial ecosystems; and can play a role in determining species range limits. There is ample evidence that plant and animal phenology has changed in recent decades. For trees in seasonally cold climates, change is most commonly manifested as earlier budburst, likely caused by earlier onset of warming temperatures in spring. Indeed, it is often assumed that one of the major phenological responses of temperate and boreal forest ecosystems to climate change will be earlier leafing and concomitantly, a longer growing season. However, spring warming interacts with other factors such as winter chilling and photoperiod to determine timing of spring leafing. For example, warmer winters could reduce the duration and amount of chilling experienced by dormant buds and lead to delayed budburst. Despite knowledge that such interactions exist, we know little about the interactive mechanisms by which various cues influence budburst in forest tree species or whether species differ in sensitivity to those cues. This gap hinders our ability to predict phenological responses and their ecological impacts under future climate scenarios. Over the past three years, we have conducted studies of leafing phenology, germination, photosynthesis, respiration, and growth of seedlings of ten boreal-temperate tree species subjected to experimental warming using infrared heat lamps and soil heating cables. Seedlings were planted into plots receiving ambient, +1.8°C or +3.6°C temperature treatments in open, aspen forest at the Cloquet Forestry Center, Cloquet, MN, USA (46°31' N, 92°30' W, 386 m a.s.l.; 4.5°C MAT, 807 mm MAP). While all species responded to warming by advancing the absolute date of budburst, several lines of evidence

  9. Ecological niche differentiation of polyploidization is not supported by environmental differences among species in a cosmopolitan grass genus.

    PubMed

    Visser, Vernon; Molofsky, Jane

    2015-01-01

    • Polyploidization frequently results in the creation of new plant species, the establishment of which is thought to often be facilitated by ecological niche differentiation from the diploid species. We tested this hypothesis using the cosmopolitan grass genus Phalaris (Poaceae), consisting of 19 species that range from diploid to tetraploid to hexaploid. Specifically, we tested whether (1) polyploids occupy more extreme environments and/or (2) have broader niche breadths and/or (3) whether the polyploid species' distributions indicate a niche shift from diploid species.• We employed a bootstrapping approach using distribution data for each species and eight environmental variables to investigate differences between species in the means, extremes, and breadths of each environmental variable. We used a kernel smoothing technique to quantify niche overlap between species.• Although we found some support for the three hypotheses for a few diploid-polyploid pairs and for specific environmental variables, none of these hypotheses were generally supported.• Our results suggest that these commonly held hypotheses about the effects of polyploidization on ecological distributions are not universally applicable. Correlative biogeographic studies like ours provide a necessary first step for suggesting specific hypotheses that require experimental verification. A combination of genetic, physiological, and ecological studies will be required to achieve a better understanding of the role of polyploidization in niche evolution. © 2015 Botanical Society of America, Inc.

  10. Grass Lignocellulose

    NASA Astrophysics Data System (ADS)

    Akin, Danny E.

    Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.

  11. Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    PubMed Central

    Fritsche, J.; Wohlfahrt, G.; Ammann, C.; Zeeman, M.; Hammerle, A.; Obrist, D.; Alewell, C.

    2013-01-01

    In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio) have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e.g. heavy rain, summer ozone) on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m−2 h−1 and mean deposition velocities up to 0.10 cm s−1 were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude. PMID:24348525

  12. Thermal Habitat Index of Many Northwest Atlantic Temperate Species Stays Neutral under Warming Projected for 2030 but Changes Radically by 2060

    PubMed Central

    Shackell, Nancy L.; Ricard, Daniel; Stortini, Christine

    2014-01-01

    Global scale forecasts of range shifts in response to global warming have provided vital insight into predicted species redistribution. We build on that insight by examining whether local warming will affect habitat on spatiotemporal scales relevant to regional agencies. We used generalized additive models to quantify the realized habitat of 46 temperate/boreal marine species using 41+ years of survey data from 35°N–48°N in the Northwest Atlantic. We then estimated change in a “realized thermal habitat index” under short-term (2030) and long-term (2060) warming scenarios. Under the 2030 scenario, ∼10% of species will lose realized thermal habitat at the national scale (USA and Canada) but planktivores are expected to lose significantly in both countries which may result in indirect changes in their predators’ distribution. In contrast, by 2060 in Canada, the realized habitat of 76% of species will change (55% will lose, 21% will gain) while in the USA, the realized habitat of 85% of species will change (65% will lose, 20% will gain). If all else were held constant, the ecosystem is projected to change radically based on thermal habitat alone. The magnitude of the 2060 warming projection (∼1.5–3°C) was observed in 2012 affirming that research is needed on effects of extreme “weather” in addition to increasing mean temperature. Our approach can be used to aggregate at smaller spatial scales where temperate/boreal species are hypothesized to have a greater loss at ∼40°N. The uncertainty associated with climate change forecasts is large, yet resource management agencies still have to address climate change. How? Since many fishery agencies do not plan beyond 5 years, a logical way forward is to incorporate a “realized thermal habitat index” into the stock assessment process. Over time, decisions would be influenced by the amount of suitable thermal habitat, in concert with gradual or extreme warming. PMID:24599187

  13. Thermal habitat index of many northwest Atlantic temperate species stays neutral under warming projected for 2030 but changes radically by 2060.

    PubMed

    Shackell, Nancy L; Ricard, Daniel; Stortini, Christine

    2014-01-01

    Global scale forecasts of range shifts in response to global warming have provided vital insight into predicted species redistribution. We build on that insight by examining whether local warming will affect habitat on spatiotemporal scales relevant to regional agencies. We used generalized additive models to quantify the realized habitat of 46 temperate/boreal marine species using 41+ years of survey data from 35°N-48°N in the Northwest Atlantic. We then estimated change in a "realized thermal habitat index" under short-term (2030) and long-term (2060) warming scenarios. Under the 2030 scenario, ∼10% of species will lose realized thermal habitat at the national scale (USA and Canada) but planktivores are expected to lose significantly in both countries which may result in indirect changes in their predators' distribution. In contrast, by 2060 in Canada, the realized habitat of 76% of species will change (55% will lose, 21% will gain) while in the USA, the realized habitat of 85% of species will change (65% will lose, 20% will gain). If all else were held constant, the ecosystem is projected to change radically based on thermal habitat alone. The magnitude of the 2060 warming projection (∼1.5-3°C) was observed in 2012 affirming that research is needed on effects of extreme "weather" in addition to increasing mean temperature. Our approach can be used to aggregate at smaller spatial scales where temperate/boreal species are hypothesized to have a greater loss at ∼40°N. The uncertainty associated with climate change forecasts is large, yet resource management agencies still have to address climate change. How? Since many fishery agencies do not plan beyond 5 years, a logical way forward is to incorporate a "realized thermal habitat index" into the stock assessment process. Over time, decisions would be influenced by the amount of suitable thermal habitat, in concert with gradual or extreme warming.

  14. Effects of exotic grasses on soil seed banks in Southeastern Arizona grasslands

    USGS Publications Warehouse

    McLaughlin, S.P.; Bowers, Janice E.

    2007-01-01

    At the Appleton-Whittell Research Ranch, an ungrazed grassland preserve in southeastern Arizona, soil seed banks were sampled in June, August, and October 2002 and June 2003. Wildfire had previously burned 90% of the research ranch in May 2002. Seed density and species richness in burned native grassland (2 plots) were compared to those in burned exotic grassland (2 plots). Averaged over 4 sample dates, seed densities were as follows: burned native grassland, 591 ?? 243.1 seeds??m-2 and 784 ?? 334.9 seeds??m-2; burned exotic grassland, 501 ?? 198.9 seeds??m-2 and 196 ?? 123.8 seeds??m-2. Species richness in the seed bank, also averaged over 4 sample dates, was as follows: burned native grassland, 16.3 ?? 1.7 species??m -2 and 19.5 ?? 1.0 species??m-2; burned exotic grassland, 12.0 ?? 3.4 species??m-2 and 11.06 ?? 2.5 species??m-2. The seed bank of burned exotic grassland contained significantly fewer seeds and species than that of burned native grassland. In addition, the seed bank in burned exotic grassland comprised mainly exotic grasses, whereas annual and perennial herbs, most of them native, dominated the seed bank of burned native grassland. Of the 50 species detected in soil samples, only 20 had a persistent seed bank, and only 1 of these was a native perennial bunchgrass. The preponderance of transient species means that eradication of exotic grasses must be followed by reseeding of native grasses and herbs, perhaps repeatedly, if native grassland is to replace exotic grassland.

  15. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Treesearch

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  16. Phenology largely explains taller grass at successful nests in greater sage-grouse.

    PubMed

    Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E

    2018-01-01

    Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

  17. Germination sensitivities to water potential among co-existing C3 and C4 grasses of cool semi-arid prairie grasslands.

    PubMed

    Mollard, F P O; Naeth, M A

    2015-03-01

    An untested theory states that C4 grass seeds could germinate under lower water potentials (Ψ) than C3 grass seeds. We used hydrotime modelling to study seed water relations of C4 and C3 Canadian prairie grasses to address Ψ divergent sensitivities and germination strategies along a risk-spreading continuum of responses to limited water. C4 grasses were Bouteloua gracilis, Calamovilfa longifolia and Schizachyrium scoparium; C3 grasses were Bromus carinatus, Elymus trachycaulus, Festuca hallii and Koeleria macrantha. Hydrotime parameters were obtained after incubation of non-dormant seeds under different Ψ PEG 6000 solutions. A t-test between C3 and C4 grasses did not find statistical differences in population mean base Ψ (Ψb (50)). We found idiosyncratic responses of C4 grasses along the risk-spreading continuum. B. gracilis showed a risk-taker strategy of a species able to quickly germinate in a dry soil due to its low Ψb (50) and hydrotime (θH ). The high Ψb (50) of S. scoparium indicates it follows the risk-averse strategy so it can only germinate in wet soils. C. longifolia showed an intermediate strategy: the lowest Ψb (50) yet the highest θH . K. macrantha, a C3 grass which thrives in dry habitats, had the highest Ψb (50), suggesting a risk-averse strategy for a C3 species. Other C3 species showed intermediate germination patterns in response to Ψ relative to C4 species. Our results indicate that grasses display germination sensitivities to Ψ across the risk-spreading continuum of responses. Thus seed water relations may be poor predictors to explain differential recruitment and distribution of C3 and C4 grasses in the Canadian prairies. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species.

    PubMed

    Fu, Yongshuo S H; Campioli, Matteo; Vitasse, Yann; De Boeck, Hans J; Van den Berge, Joke; AbdElgawad, Hamada; Asard, Han; Piao, Shilong; Deckmyn, Gaby; Janssens, Ivan A

    2014-05-20

    Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year's senescence and next year's leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter-spring 2009-2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species.

  19. Leaf-out phenology of temperate woody plants: from trees to ecosystems.

    PubMed

    Polgar, Caroline A; Primack, Richard B

    2011-09-01

    Leafing-out of woody plants begins the growing season in temperate forests and is one of the most important drivers of ecosystem processes. There is substantial variation in the timing of leaf-out, both within and among species, but the leaf development of almost all temperate tree and shrub species is highly sensitive to temperature. As a result, leaf-out times of temperate forests are valuable for observing the effects of climate change. Analysis of phenology data from around the world indicates that leaf-out is generally earlier in warmer years than in cooler years and that the onset of leaf-out has advanced in many locations. Changes in the timing of leaf-out will affect carbon sequestration, plant-animal interactions, and other essential ecosystem processes. The development of remote sensing methods has expanded the scope of leaf-out monitoring from the level of an individual plant or forest to an entire region. Meanwhile, historical data have informed modeling and experimental studies addressing questions about leaf-out timing. For most species, onset of leaf-out will continue to advance, although advancement may be slowed for some species because of unmet chilling requirements. More information is needed to reduce the uncertainty in predicting the timing of future spring onset. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  20. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.

    PubMed

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A

    2014-02-01

    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.

  1. Effects of an invasive grass on the demography of the Caribbean cactus Harrisia portoricensis: Implications for cacti conservation

    NASA Astrophysics Data System (ADS)

    Rojas-Sandoval, Julissa; Meléndez-Ackerman, Elvia

    2012-05-01

    The impact of exotic species around the world is among the primary threats to the conservation and management of rare and endangered species. In this work we asked whether or not the presence of the African grass Megathyrsus maximus on Mona Island was associated with negative impacts on the demography of the endangered Caribbean cactus Harrisia portoricensis. To address this question we performed field observations where we compared demographic data collected at un-manipulated areas invaded by Megathyrsus with un-manipulated areas non-invaded by this exotic grass. Additionally, demographic data were also collected in areas in which we removed the exotic grass biomass using two alternative treatments: complete and partial grass removal. Results demonstrated that the presence of Megathyrsus has negative effects on demographic parameters of Harrisia at various stages throughout its life cycle. In general, the survival, growth, and reproduction of Harrisia plants were depressed under the presence of Megathyrsus. Growth and survival of seedlings and juveniles of Harrisia were more impacted by the presence of Megathyrsus than adult performance and seedling recruitment only occurred in areas with grass absence. Our combined results suggest that modifications of the micro-environment by the presence of Megathyrsus may add an additional level of vulnerability to the persistence of Harrisia, and as such this factor must be considered when designing conservation strategies for this endangered species. This study highlights the need for a greater emphasis on understanding the interactions between invasive grass species and native cacti, and the importance of such information in designing conservation strategies for cacti species elsewhere.

  2. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    PubMed

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  3. Relationship between the Al resistance of grasses and their adaptation to an infertile habitat.

    PubMed

    Poozesh, Vahid; Cruz, Pablo; Choler, Philippe; Bertoni, Georges

    2007-05-01

    Original data on Al resistance, relative growth rate and leaf traits of five European grasses as well as literature data on Al resistance, habitat preference and traits of grasses were considered to determine whether (a) Al resistance is correlated to a growth conservative strategy and (b) species occurrence could be useful to assess Al toxicity in meadows on acid soils. The Al resistance of 15 species was represented by the Al activity in nutrient solution that resulted in a 50 % decrease in root length, [Al(3+)](50), or, for published values, in root or plant biomass. The correlations between Al resistance and acidity or nitrogen indices and the correlation between Al resistance and selected traits (relative growth rate, leaf dry matter content, specific leaf area and leaf thickness) were calculated. Principal component analysis was used for the characterization of the relationships between Al resistance and measured traits. The [Al(3+)](50) values of the resistant species Molinia caerulea and Sieglingia decumbens were 13 and 26 microm [Al(3+)](50), respectively. The known Al resistance of 15 species that were mainly of the intermediate strategy competitor-stress tolerator-ruderal (C-S-R) type and of the S type was correlated with Ellenberg's nitrogen and acidity indices. For the whole set of species, the correlation between Al resistance and traits was not significant. The Al resistance of the C-S-R species was variable and independent of their traits. S-type species, adapted to acid soils and with traits of conservative strategy, displayed Al resistance. The large difference in Al resistance between grasses may help assess Al soil toxicity by using the abundance of grasses.

  4. Effects of neighbor species and distance on 2- and 4-year survival of Lehmann lovegrass and native grasses

    Treesearch

    Sharon H. Biedenbender; Mitchel P. McClaran; Bruce A. Roundy

    2003-01-01

    The relationship between Lehmann lovegrass, an invasive African grass, and native Southwestern grasses has not been fully determined. The first purpose of this study was to compare the survival of Lehmann lovegrass with two native grasses (plains lovegrass and Arizona cottontop) seeded on the Santa Rita Experimental Range in southeast Arizona in 1994. One year after...

  5. Effect of cattle grazing, seeded grass, and an herbicide on ponderosa pine seedling survival and growth

    Treesearch

    Philip M. McDonald; Gary O. Fiddler

    1999-01-01

    On a site of above-average quality in northern California, an early shrub-forb-grass plant community was treated by artificially seeding two forage grass species at plantation age 3, cattle grazing with and without seeded grasses, and applying a soil-active chemical (Velpar). Planted ponderosa pines were part of this community. Results for a 10-year period (1988-1997)...

  6. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature

    Treesearch

    Cun-Yang Niu; Frederick C. Meinzer; Guang-You Hao

    2017-01-01

    1. In temperate ecosystems, freeze-thaw events are an important environmental stress that can induce severe xylem embolism (i.e. clogging of conduits by air bubbles) in overwintering organs of trees. However, no comparative studies of different adaptive strategies among sympatric tree species for coping with winter embolism have examined the potential role of the...

  7. Excreting and non-excreting grasses exhibit different salt resistance strategies

    PubMed Central

    Moinuddin, Muhammad; Gulzar, Salman; Ahmed, Muhammad Zaheer; Gul, Bilquees; Koyro, Hans-Werner; Khan, Muhammad Ajmal

    2014-01-01

    The combination of traits that makes a plant successful under saline conditions varies with the type of plant and its interaction with the environmental conditions. Knowledge about the contribution of these traits towards salt resistance in grasses has great potential for improving the salt resistance of conventional crops. We attempted to identify differential adaptive response patterns of salt-excreting versus non-excreting grasses. More specifically, we studied the growth, osmotic, ionic and nutrient (carbon/nitrogen) relations of two salt-excreting (Aeluropus lagopoides and Sporobolus tremulus) and two non-excreting (Paspalum paspalodes and Paspalidium geminatum) perennial C4 grasses under non-saline and saline (0, 200 and 400 mM NaCl) conditions. Growth and relative growth rate decreased under saline conditions in the order P. geminatum > S. tremulus = A. lagopoides > P. paspalodes. The root-to-shoot biomass allocation was unaffected in salt-excreting grasses, increased in P. paspalodes but decreased in P. geminatum. Salt-excreting grasses had a higher shoot/root Na+ ratio than non-excreting grasses. K+, Ca2+ and Mg2+ homoeostasis remained undisturbed among test grasses possibly through improved ion selectivity with rising substrate salinity. Salt-excreting grasses increased leaf succulence, decreased ψs and xylem pressure potential, and accumulated proline and glycinebetaine with increasing salinity. Higher salt resistance of P. paspalodes could be attributed to lower Na+ uptake, higher nitrogen-use efficiency and higher water-use efficiency among the test species. However, P. geminatum was unable to cope with salt-induced physiological drought. More information is required to adequately document the differential strategies of salt resistance in salt-excreting and non-excreting grasses. PMID:24996428

  8. Molecular Phylogenetics of the Genus Neoconocephalus (Orthoptera, Tettigoniidae) and the Evolution of Temperate Life Histories

    PubMed Central

    Snyder, Robert L.; Frederick-Hudson, Katy H.; Schul, Johannes

    2009-01-01

    Background The katydid genus Neoconocephalus (25+ species) has a prominent acoustic communication system and occurs in large parts of the Neotropics and Nearctic. This group has been subject of numerous behavioral, physiological, and evolutionary studies of its acoustic communication system. Two distinct life histories occur in this group: The tropical life history incorporates multiple generations/year and direct egg development without environmental triggers. Temperate life history is characterized by overwintering in the egg stage, cold trigger of egg development, and one generation/year. This study reconstructs the phylogenetic relationships within the genus to (1) determine the evolutionary history of the temperate life history, and (2) to support comparative studies of evolutionary and physiological problems in this genus. Methodology/Principal Findings We used Amplified Fragment Length Polymorphisms (AFLP), and sequences of two nuclear loci and one mitochondrial locus to reconstruct phylogenetic relationships. The analysis included 17 ingroup and two outgroup species. AFLP and mitochondrial data provided resolution at the species level while the two nuclear loci revealed only deeper nodes. The data sets were combined in a super-matrix to estimate a total evidence tree. Seven of the temperate species form a monophyletic group; however, three more temperate species were placed as siblings of tropical species. Conclusions/Significance Our analyses support the reliability of the current taxonomic treatment of the Neoconocephalus fauna of Caribbean, Central, and North America. Ancestral state reconstruction of life history traits was not conclusive, however at least four transitions between life histories occurred among our sample of species. The proposed phylogeny will strengthen conclusions from comparative work in this group. PMID:19779617

  9. D-Pinitol in Fabaceae: an Oviposition Stimulant for the Common Grass Yellow Butterfly, Eurema mandarina.

    PubMed

    Mukae, Shin-Ya; Ohashi, Toshiki; Matsumoto, Yuika; Ohta, Shinji; Ômura, Hisashi

    2016-11-01

    The common grass yellow butterfly, Eurema mandarina (formerly Eurema hecabe mandarina) (Lepidoptera, Pieridae), recently has been separated taxonomically from a subtropical population of Eurema hecabe in Japan. This species is widely distributed in the temperate region of Japan, and feeds mainly on various ligneous plants within the Fabaceae. We attempted to identify an oviposition stimulant for E. mandarina from its primary hosts, Albizia julibrissin and Lespedeza cuneata. In both hosts, crude extract and an aqueous fraction elicited oviposition responses from gravid females. A polar subfraction of the aqueous fraction also stimulated high oviposition-stimulatory activity, comparable to the original aqueous fraction, suggesting that E. mandarina females use water-soluble compounds for host recognition. Subsequent activity-directed fractionation by ion exchange chromatography indicated that one of the key substances was contained in the neutral/amphoteric fraction. Chemical analyses revealed that the active fractions of both hosts contained D-(+)-pinitol as the major component. We examined female responses to authentic D-pinitol and found that it induced oviposition responses at concentrations greater than 0.1 %. Since this cyclitol is omnipresent in Fabaceae, we conclude that D-pinitol plays a role in mediating oviposition of E. mandarina on fabaceous plants.

  10. Gene expression in grass ovaries infected with seed born fungal endophyte Neotyphodium occultans analyzed by a next-generation sequencing system

    USDA-ARS?s Scientific Manuscript database

    Fungal endophytes of the genus Neotyphodium form symbiotic associations with many grass species of the subfamily Pooideae, including some important forage and turf species such as Lolium grasses. The endophytes are maintained in host plant communities by seed transmission from maternal plants to off...

  11. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests.

    PubMed

    Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.

  12. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    PubMed

    Ehlers, Bodil K

    2011-01-01

    Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  13. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    PubMed Central

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  14. Grass flower development.

    PubMed

    Hirano, Hiro-Yuki; Tanaka, Wakana; Toriba, Taiyo

    2014-01-01

    Grasses bear unique flowers lacking obvious petals and sepals in special inflorescence units, the florets and the spikelet. Despite this, grass floral organs such as stamens and lodicules (petal homologs) are specified by ABC homeotic genes encoding MADS domain transcription factors, suggesting that the ABC model of eudicot flower development is largely applicable to grass flowers. However, some modifications need to be made for the model to fit grasses well: for example, a YABBY gene plays an important role in carpel specification. In addition, a number of genes are involved in the development of the lateral organs that constitute the spikelet. In this review, we discuss recent progress in elucidating the genes required for flower and spikelet development in grasses, together with those involved in fate determination of the spikelet and flower meristems.

  15. Thermal dependence of locomotor performance in two cool-temperate lizards.

    PubMed

    Gaby, Mya J; Besson, Anne A; Bezzina, Chalene N; Caldwell, Amanda J; Cosgrove, Sarai; Cree, Alison; Haresnape, Steff; Hare, Kelly M

    2011-09-01

    Temperate-zone ectotherms experience varying or very low ambient temperatures and may have difficulty in attaining preferred body temperatures. Thus, adaptations to reduce the thermal dependence of physiological processes may be present. We measured the optimal temperature range for sprint speed and compared it with the selected body temperatures (T (sel)) of two sympatric, cool-temperate lizards: the diurnal skink Oligosoma maccanni and the primarily nocturnal gecko Woodworthia (previously Hoplodactylus) "Otago/Southland". We also investigated whether time-of-day influenced sprint speed. Contrary to results for other reptiles, we found that time-of-day did not influence speed in either species. For each species, the optimal temperature range for sprinting and T (sel) overlapped, supporting the 'thermal coadaptation' hypothesis. However, the optimal range of temperatures for speed is not always attainable during activity by either species, which have limited opportunities to attain T (sel) in the field. The thermal sensitivity of sprint speed in these two species does not appear to have evolved to fully match their current thermal environment. More data on cold-adapted species are needed to fully understand physiological adaptation in ectotherms.

  16. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    PubMed

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  17. The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species.

    PubMed

    Teletchea, F; Gardeur, J-N; Kamler, E; Fontaine, P

    2009-02-01

    Based on the analysis of six egg variables and incubation temperature of 65 temperate freshwater fish species, the possible relationships between oocyte diameter, incubation time and incubation temperature were reassessed and compared to the results obtained from marine fishes. Most freshwater species have eggs (mean +/-s.d. 2.19 +/- 1.52 mm) larger than marine species, that are chiefly demersal and develop stuck to various substrata, such as plants or rocks. A strong negative relationship was found between incubation time (t, days) and incubation temperature (T, degrees C): t = 186.23e(-0.197T) (r(2)= 0.87). A strong dependence of incubation time on oocyte diameter (Ø, mm) and incubation temperature was also found and was defined as: log(10)t= 3.002 + 0.599 log(10)Ø - 1.91 log(10) (T + 2), which explained 92% of the variance of the data set. Five major groups of species were defined based on the principal component analysis (PCA) of four quantitative variables. There were two distinct groups of salmonids, displaying demersal and non-adhesive eggs with a long incubation time at low temperature, the eggs of which required a high number of degree-days. There was a large group of species possessing small, mostly demersal and adhesive eggs developing at high temperature during a short period of time, and requiring a low number of degree-days. Between these two extremes, there was a fourth group displaying intermediate values and a fifth group including three species with large, adhesive and demersal eggs incubating at high temperatures during a short period of time. The burbot Lota lota displayed an unusual combination of variables compared to the remaining species in the data set.

  18. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    PubMed Central

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  19. Relationship between the Al Resistance of Grasses and their Adaptation to an Infertile Habitat

    PubMed Central

    Poozesh, Vahid; Cruz, Pablo; Choler, Philippe; Bertoni, Georges

    2007-01-01

    Background and Aims Original data on Al resistance, relative growth rate and leaf traits of five European grasses as well as literature data on Al resistance, habitat preference and traits of grasses were considered to determine whether (a) Al resistance is correlated to a growth conservative strategy and (b) species occurrence could be useful to assess Al toxicity in meadows on acid soils. Methods The Al resistance of 15 species was represented by the Al activity in nutrient solution that resulted in a 50 % decrease in root length, {Al3+}50, or, for published values, in root or plant biomass. The correlations between Al resistance and acidity or nitrogen indices and the correlation between Al resistance and selected traits (relative growth rate, leaf dry matter content, specific leaf area and leaf thickness) were calculated. Principal component analysis was used for the characterization of the relationships between Al resistance and measured traits. Key Results The {Al3+}50 values of the resistant species Molinia caerulea and Sieglingia decumbens were 13 and 26 µm {Al3+}50, respectively. The known Al resistance of 15 species that were mainly of the intermediate strategy competitor–stress tolerator–ruderal (C-S-R) type and of the S type was correlated with Ellenberg's nitrogen and acidity indices. For the whole set of species, the correlation between Al resistance and traits was not significant. Conclusion The Al resistance of the C-S-R species was variable and independent of their traits. S-type species, adapted to acid soils and with traits of conservative strategy, displayed Al resistance. The large difference in Al resistance between grasses may help assess Al soil toxicity by using the abundance of grasses. PMID:17452383

  20. Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and Temperate Host Species Growing Near Their Shared Ecotonal Range Limits.

    PubMed

    Mucha, Joanna; Peay, Kabir G; Smith, Dylan P; Reich, Peter B; Stefański, Artur; Hobbie, Sarah E

    2018-02-01

    Ectomycorrhizal (ECM) fungi can influence the establishment and performance of host species by increasing nutrient and water absorption. Therefore, understanding the response of ECM fungi to expected changes in the global climate is crucial for predicting potential changes in the composition and productivity of forests. While anthropogenic activity has, and will continue to, cause global temperature increases, few studies have investigated how increases in temperature will affect the community composition of ectomycorrhizal fungi. The effects of global warming are expected to be particularly strong at biome boundaries and in the northern latitudes. In the present study, we analyzed the effects of experimental manipulations of temperature and canopy structure (open vs. closed) on ectomycorrhizal fungi identified from roots of host seedlings through 454 pyrosequencing. The ecotonal boundary site selected for the study was between the southern boreal and temperate forests in northern Minnesota, USA, which is the southern limit range for Picea glauca and Betula papyrifera and the northern one for Pinus strobus and Quercus rubra. Manipulations that increased air and soil temperature by 1.7 and 3.4 °C above ambient temperatures, respectively, did not change ECM richness but did alter the composition of the ECM community in a manner dependent on host and canopy structure. The prediction that colonization of boreal tree species with ECM symbionts characteristic of temperate species would occur was not substantiated. Overall, only a small proportion of the ECM community appears to be strongly sensitive to warming.

  1. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant

  2. Host preference and species richness of wood-inhabiting aphyllophoraceous fungi in a cool temperate area of Japan.

    PubMed

    Yamashita, Satoshi; Hattori, Tsutomu; Abe, Hisashi

    2010-01-01

    We examined the species richness and host utilization patterns of wood-inhabiting aphyllophoraceous fungi (polypores and related fungi) in an old-growth beech and oak forest in a cool, temperate area of Japan. Coarse woody debris (CWD) > or = 20 cm diam within a 6 ha plot was surveyed in Sep 2002. Tree genus, diameter, decay class and tree part of CWD samples were recorded. Fruiting bodies of aphyllophoraceous fungi that arose from the CWD were surveyed three times and identified to species. In total 256 CWD samples from 12 tree genera were surveyed with Quercus being the most frequent followed by Castanea and Fagus. From 196 CWD samples we recorded 436 wood-inhabiting fungi belonging to 63 species. Fifteen fungal species had at least 10 records, with Hymenochaete rubiginosa, Daedalea dickinsii, Xylobolus frustulatus, Rigidoporus cinereus and the small form of Fomes fomentarius being the most frequent. The number of fungal species that appeared on Fagus was significantly larger than that on Castanea, when the number of fruiting bodies collected was at least 50. The occurrences of the 15 dominant fungal species, except Trametes versicolor, were related to traits of the CWD. Tree genus was a predictor variable that affected the appearance of 11 of the 15 species of wood-inhabiting fungi. Only the tree part was selected for the models of Rigidoporus eminens, Schizopora flavipora and Stereum ostrea. Our results suggest that tree genus and tree part are important factors determining fungal community structure because these were selected as complementary predictor variables. Both oak and beech appear to be the most important tree genera for maintaining wood-inhabiting fungal species richness because the fungal flora formed on oak CWD is nearly complementary to those on chestnut, with low fungal species richness.

  3. Climate change is projected to outpace rates of niche change in grasses.

    PubMed

    Cang, F Alice; Wilson, Ashley A; Wiens, John J

    2016-09-01

    Climate change may soon threaten much of global biodiversity, especially if species cannot adapt to changing climatic conditions quickly enough. A critical question is how quickly climatic niches change, and if this speed is sufficient to prevent extinction as climates warm. Here, we address this question in the grass family (Poaceae). Grasses are fundamental to one of Earth's most widespread biomes (grasslands), and provide roughly half of all calories consumed by humans (including wheat, rice, corn and sorghum). We estimate rates of climatic niche change in 236 species and compare these with rates of projected climate change by 2070. Our results show that projected climate change is consistently faster than rates of niche change in grasses, typically by more than 5000-fold for temperature-related variables. Although these results do not show directly what will happen under global warming, they have troubling implications for a major biome and for human food resources. © 2016 The Author(s).

  4. Blue light and solar UV radiation accelerate spring and autumn phenology in temperate deciduous tree species.

    NASA Astrophysics Data System (ADS)

    Brelsford, C.; Robson, T. M.

    2017-12-01

    Trees utilise multiple cues to time their bud-burst and leaf out in spring so that they can exploit favorable conditions for photosynthesis but minimize the risk of damage, and time their leaf senescence come autumn to extend the period of carbon assimilation and remobilize nutrients as efficiently as possible. Whilst the effects of temperature and photoperiod on phenology have been well studied, the effect of light quality is not often considered. The amount and proportion of blue light (BL 400-500nm), UV-A (325-400nm), and UV-B (290-320nm) reaching the ground changes with latitude, day length and the time of year, and yet little is known about how this affects the phenology of plants. We hypothesize that these compositional changes can be exploited by temperate deciduous tree species as cues for bud-burst and leaf senescence via blue and UV photoreceptors. To test this hypothesis, we measured the days until bud-burst of dormant branches from trees of Alnus glutinosa, Betula pendula, and Quercus robur when grown under a broad spectrum, either including or without BL, but of equivalent PAR. We also monitored the spring and autumn leaf phenology of Acer platanoides seedlings growing under forest canopies in southern Finland, under filter treatments attenuating UV-A radiation, UV-A + UV-B radiation or BL and UV-A and UV-B radiation, and a transparent control filter. In controlled conditions, BL advanced bud-burst by 3.3 days in branches of B.pendula, 6 days in A.glutinosa, and 6.3 days in Q.robur. In the field experiment, BL promoted bud burst of A.platanoides seedlings by 3 days. Leaf senescence was promoted by up to 16 days with BL, and by at least 3 days by UV-A and UV-B. The effect of BL in reducing the number of days until bud burst was greatest in later successional species. Furthermore, both blue light and UV advanced leaf senescence in autumn. Further research is needed to identify the photoreceptor mechanisms that underpin these physiological processes, and

  5. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species

    PubMed Central

    Fu, Yongshuo S. H.; Campioli, Matteo; Vitasse, Yann; De Boeck, Hans J.; Van den Berge, Joke; AbdElgawad, Hamada; Asard, Han; Piao, Shilong; Deckmyn, Gaby; Janssens, Ivan A.

    2014-01-01

    Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year’s senescence and next year’s leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter–spring 2009–2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species. PMID:24799708

  6. The carbon and nitrogen ecophysiologies of two endemic tropical orchids mirrors those of their temperate relatives and the local environment.

    PubMed

    Hynson, Nicole A

    2016-11-01

    Orchids are one of the most widely distributed plant families. However, current research on the ecophysiology of terrestrial orchids is biased towards temperate species. Thus, it is currently unknown whether tropical terrestrial orchids belong to similar trophic guilds as their temperate relatives. To examine the ecophysiologies of two tropical terrestrial orchids, I analysed the carbon and nitrogen stable isotope compositions and nitrogen concentrations of the Hawaiian endemics Anoectochilus sandvicensis and Liparis hawaiensis . I compared these values with those of surrounding vegetation and their temperate relatives. I found that A. sandvicensis was consistently enriched in the heavy isotope of nitrogen ( 15 N) and had higher nitrogen (N) concentrations than surrounding vegetation, and these values were even higher than those of its temperate relatives. Carbon stable isotope composition among populations of A. sandvicensis varied by island. These results point to local environment and evolutionary history determining the ecophysiology of this species. Whereas L.hawaiensis was also enriched in 15 N and had on average higher N concentrations than surrounding vegetation, these values were not significantly different from temperate relatives, indicating that evolutionary history may be a stronger predictor of this orchid species' ecophysiology than environment. I suggest that both Hawaiian species are potentially partially mycoheterotrophic.

  7. The carbon and nitrogen ecophysiologies of two endemic tropical orchids mirrors those of their temperate relatives and the local environment

    PubMed Central

    2016-01-01

    Orchids are one of the most widely distributed plant families. However, current research on the ecophysiology of terrestrial orchids is biased towards temperate species. Thus, it is currently unknown whether tropical terrestrial orchids belong to similar trophic guilds as their temperate relatives. To examine the ecophysiologies of two tropical terrestrial orchids, I analysed the carbon and nitrogen stable isotope compositions and nitrogen concentrations of the Hawaiian endemics Anoectochilus sandvicensis and Liparis hawaiensis. I compared these values with those of surrounding vegetation and their temperate relatives. I found that A. sandvicensis was consistently enriched in the heavy isotope of nitrogen (15N) and had higher nitrogen (N) concentrations than surrounding vegetation, and these values were even higher than those of its temperate relatives. Carbon stable isotope composition among populations of A. sandvicensis varied by island. These results point to local environment and evolutionary history determining the ecophysiology of this species. Whereas L.hawaiensis was also enriched in 15N and had on average higher N concentrations than surrounding vegetation, these values were not significantly different from temperate relatives, indicating that evolutionary history may be a stronger predictor of this orchid species' ecophysiology than environment. I suggest that both Hawaiian species are potentially partially mycoheterotrophic. PMID:28018622

  8. Grass seedling demography and sagebrush steppe restoration

    Treesearch

    J. J. James; M. J. Rinella; T. Svejcar

    2012-01-01

    Seeding is a key management tool for arid rangeland. In these systems, however, seeded species often fail to establish. A recent study inWyoming big sagebrush steppe suggested that over 90% of seeded native grass individuals die before seedlings emerged. This current study examines the timing and rate of seed germination, seedling emergence, and seedling death related...

  9. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes.

    PubMed

    Spatafora, J W; Sung, G-H; Sung, J-M; Hywel-Jones, N L; White, J F

    2007-04-01

    Grass-associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypocreales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best-characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of considerable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbionts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi. A minimum of 5-8 independent and unidirectional interkingdom host jumps has occurred among clavicipitaceous fungi, including 3-5 to fungi, 1-2 to animals, and 1 to plants. These findings provide a new evolutionary context for studying the biology of the grass symbionts, their role in plant ecology, and the evolution of host affiliation in fungal symbioses.

  10. Liana habitat and host preferences in northern temperate forests

    USGS Publications Warehouse

    Leicht-Young, S. A.; Pavlovic, N.B.; Frohnapple, K.J.; Grundel, R.

    2010-01-01

    Lianas and other climbers are important ecological and structural components of forest communities. Like other plants, their abundance in a given habitat depends on a variety of factors, such as light, soil moisture and nutrients. However, since lianas require external support, host tree characteristics also influence their distribution. Lianas are conspicuous life forms in tropical regions, but in temperate areas, where they are less prominent, little is known about factors that control their distributions in these forests. We surveyed the climbing plant species in 20 mature (100 years and greater) forested habitats in the Midwest USA at a variety of levels from simple presence/absence, to ground layer abundances, to those species that had ascended trees. We also examined attributes of the tree species with climbers attached to them. Using cluster analysis, we distinguished five different tree communities in our survey locations. We determined that 25% of the trees we surveyed had one or more lianas attached to it, with Parthenocissus quinquefolia (Virginia creeper) the most common climbing species encountered. Canopy cover and soil attributes both influenced climber species presence/absence and ground layer climber abundance. The proportion of liana species of a given climbing type (roots, stem twiner, tendril climber) was significantly related to the DBH of the host tree, with more root climbers and fewer stem and tendril climbers on large trees. In general, the DBH of climbing lianas had a significant positive relationship to the DBH of the host tree; however this varied by the identity of the liana and the tree species. The greater the DBH of the host tree, the higher the probability that it was colonized by one or more lianas, with tree species such as Pinus banksiana (jack pine) and Quercus alba (white oak) being more susceptible to liana colonization than others. Finally, some liana species such as Celastrus scandens (American bittersweet) showed a

  11. When did C4 Photosynthesis originate: New evidence from δ13C analysis of single grass-pollen grains

    NASA Astrophysics Data System (ADS)

    Urban, M. A.; Nelson, D. M.; Pearson, A.; Hu, F.

    2009-12-01

    C4 grasses account for >20% of global primary productivity and dominate tropical, subtropical, and warm-temperate grassland ecosystems. Thus it is vital to understand when and why C4 photosynthesis first evolved in the grass family (Poaceae). However, because of limitations of most proxies, the origin of C4 grasses remains ambiguous. Grass pollen is morphologically indistinct below the family level, making pollen analysis a crude instrument for studying C4-grass evolution. Previous studies have investigated the timing of C4 evolution using molecular tools and δ13C records from n-alkanes, ungulate teeth, and paleosols, but they yield disparate results. Molecular clocks suggest that C4 grasses first evolved between 27 and 36 Ma (million years before present), coincident with the Oligocene decline in pCO2 from >1000 to <500 ppm. In contrast, δ13C-based approaches do not detect the presence of C4 grasses until the middle Miocene, indicating that they were previously uncommon or absent on the landscape. To investigate when C4 photosynthesis first appeared in the grass family, we utilized Single Pollen Isotope Ratio AnaLysis (SPIRAL), a technique that reliably distinguishes C4 from C3 grass pollen via δ13C. We analyzed 837 single grains of grass pollen from eight lacustrine geological samples (~100 grains/sample) from France and Spain spanning the earliest Oligocene to middle Miocene. To distinguish C3/C4 ratios, we used an optimal threshold value of -19.2‰ adjusted for small (~1‰) temporal variations in atmospheric δ13C. Initial results provide unequivocal evidence of C4 grass pollen in all samples (24-57% C4 grass pollen ±9.2% on average) lending further credence to the molecular data, which posits that C4 grasses appeared as early as the Late Eocene, which is a plausible outcome when considering alternate schemes of dating phylogenetic trees. A C4 origin prior to pCO2 reaching its lowest levels of the Cenozoic at the Oligocene/Miocene boundary indicates that

  12. Local-scale drivers of tree survival in a temperate forest.

    PubMed

    Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.

  13. Local-Scale Drivers of Tree Survival in a Temperate Forest

    PubMed Central

    Wang, Xugao; Comita, Liza S.; Hao, Zhanqing; Davies, Stuart J.; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1–20 cm dbh) and medium trees (20–40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management. PMID:22347996

  14. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species

    PubMed Central

    Ma, Xiqing; Huang, Bingru

    2016-01-01

    Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; ‘BR’) and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; ‘Baron’) were treated with 10 μM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth. PMID:27446135

  15. Colonization and nursery habitat use patterns of larval and juvenile flatfish species in a small temperate estuary

    NASA Astrophysics Data System (ADS)

    Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Martinho, Filipe; Baptista, Joana; Pardal, Miguel A.

    2013-02-01

    Migrations between coastal and estuarine nursery areas are essential for successful completion of the life cycle of several marine fish. The present study evaluates the use of a small temperate estuary, the Mondego, Portugal, as a nursery habitat for several flatfishes during their early life stages. Data from seasonal and diel larval sampling at the mouth of the estuary and both larvae and juvenile monthly spatial distribution in the estuary (2005-2009) were gathered in order to investigate the life cycle of Platichthys flesus, Solea solea and Solea senegalensis. Larvae entrance in the estuary occurred mainly during summer and autumn with no evidence for diel or tidal vertical stratification. S. senegalensis larvae were present in all seasons at downstream areas presenting low successful settlement and juveniles' densities inside the estuary. Conversely, P. flesus and S. solea were mainly present as juveniles with upstream areas being preferred by flounder. Both species larvae seemed to settle in nearby coastal areas. The importance of the Mondego estuary for flatfishes differed according to the species, playing an important role mainly during the first year for all species. The present study highlights the importance of integrating larval and juvenile stages of fish to assess the very important role of estuaries as nursery areas.

  16. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    PubMed

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  17. Long term impacts of invasive grasses and subsequent fire in seasonally dry Hawaiian woodlands

    Treesearch

    Carla M. D’Antonio; Flint Hughes; J. T. Tunison

    2011-01-01

    Invasive nonnative grasses have altered the composition of seasonally dry shrublands and woodlands throughout the world. In many areas they coexist with native woody species until fire occurs, after which they become dominant. Yet it is not clear how long their impacts persist in the absence of further fire. We evaluated the long-term impacts of grass invasions and...

  18. Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars.

    PubMed

    Pembleton, Luke W; Drayton, Michelle C; Bain, Melissa; Baillie, Rebecca C; Inch, Courtney; Spangenberg, German C; Wang, Junping; Forster, John W; Cogan, Noel O I

    2016-05-01

    A targeted amplicon-based genotyping-by-sequencing approach has permitted cost-effective and accurate discrimination between ryegrass species (perennial, Italian and inter-species hybrid), and identification of cultivars based on bulked samples. Perennial ryegrass and Italian ryegrass are the most important temperate forage species for global agriculture, and are represented in the commercial pasture seed market by numerous cultivars each composed of multiple highly heterozygous individuals. Previous studies have identified difficulties in the use of morphophysiological criteria to discriminate between these two closely related taxa. Recently, a highly multiplexed single nucleotide polymorphism (SNP)-based genotyping assay has been developed that permits accurate differentiation between both species and cultivars of ryegrasses at the genetic level. This assay has since been further developed into an amplicon-based genotyping-by-sequencing (GBS) approach implemented on a second-generation sequencing platform, allowing accelerated throughput and ca. sixfold reduction in cost. Using the GBS approach, 63 cultivars of perennial, Italian and interspecific hybrid ryegrasses, as well as intergeneric Festulolium hybrids, were genotyped. The genetic relationships between cultivars were interpreted in terms of known breeding histories and indistinct species boundaries within the Lolium genus, as well as suitability of current cultivar registration methodologies. An example of applicability to quality assurance and control (QA/QC) of seed purity is also described. Rapid, low-cost genotypic assays provide new opportunities for breeders to more fully explore genetic diversity within breeding programs, allowing the combination of novel unique genetic backgrounds. Such tools also offer the potential to more accurately define cultivar identities, allowing protection of varieties in the commercial market and supporting processes of cultivar accreditation and quality assurance.

  19. Temperature responses of tropical to warm temperate Cladophora species in relation to their distribution in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cambridge, M. L.; Breeman, A. M.; Kraak, S.; van den Hoek, C.

    1987-09-01

    The relationship between distribution boundaries and temperature responses of some North Atlantic Cladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group ( C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group ( C. prolifera: isolate from Corsica; C. coelothrix: isolates from Brittany and Curaçao; and C. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20 30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C. C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests that C. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests that C. prolifera, C. coelothrix and C. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10 15°C interval. C. prolifera and C. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences

  20. Temperate forest health in an era of emerging megadisturbance

    USGS Publications Warehouse

    Millar, Constance I.; Stephenson, Nathan L.

    2015-01-01

    Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.

  1. Forest ecosystems of temperate climatic regions: from ancient use to climate change.

    PubMed

    Gilliam, Frank S

    2016-12-01

    871 I. 871 II. 874 III. 875 IV. 878 V. 882 884 References 884 SUMMARY: Humans have long utilized resources from all forest biomes, but the most indelible anthropogenic signature has been the expanse of human populations in temperate forests. The purpose of this review is to bring into focus the diverse forests of the temperate region of the biosphere, including those of hardwood, conifer and mixed dominance, with a particular emphasis on crucial challenges for the future of these forested areas. Implicit in the term 'temperate' is that the predominant climate of these forest regions has distinct cyclic, seasonal changes involving periods of growth and dormancy. The specific temporal patterns of seasonal change, however, display an impressive variability among temperate forest regions. In addition to the more apparent current anthropogenic disturbances of temperate forests, such as forest management and conversion to agriculture, human alteration of temperate forests is actually an ancient phenomenon, going as far back as 7000 yr before present (bp). As deep-seated as these past legacies are for temperate forests, all current and future perturbations, including timber harvesting, excess nitrogen deposition, altered species' phenologies, and increasing frequency of drought and fire, must be viewed through the lens of climate change. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  2. Heavy metal levels of pasture grasses in metropolitan area

    NASA Astrophysics Data System (ADS)

    Luilo, G. B.; Othman, O. C.

    2003-05-01

    Urban agriculture is becoming an important lucrative activity in Dar es Salaam City even though the city is subject to traffic and industrial pollution pressures. Poor planning has left only limited spaces, particularly road reserves, for cultivation and foraging animals. While there is increasing road traffic no study bas been conducted determine levels of trace metals in pasture grasses. This study, therefore, reports on the levels of cadmium, manganese, lead and zinc of cynodon grasses in road vicinity in the city. Results show that the trace metal levels (ppm ± SDE) in Cynodon grass species were: Cd (0.24 ± 0.06-2.58 ± 0.15), Mn (41.5 ± 13.6-345.0 ± 124.3), Pb (1.15 ± 0.64-25.53 ± 1.29) and Zn (25.97 ± 3.69-95.36 ± 19.61). The mean levels of lead and zinc varied exponentially with distance off the road up to 15 m distance. Lead and zinc levels correlated with average daily traffic in the roads while cadmium and manganese did not. This suggests that lead and zinc in grasses owe their sources from the passing motor vehicles in agreement with other reported studies. It is recommended that pasture grasses in road vicinities must not be used for foraging dairy cattle and goats for public health reasons.

  3. A novel family of cyclic oligopeptides derived from ribosomal peptide synthesis of an in planta-induced gene, gigA, in Epichloë endophytes of grasses.

    PubMed

    Johnson, Richard D; Lane, Geoffrey A; Koulman, Albert; Cao, Mingshu; Fraser, Karl; Fleetwood, Damien J; Voisey, Christine R; Dyer, Jolon M; Pratt, Jennifer; Christensen, Michael; Simpson, Wayne R; Bryan, Gregory T; Johnson, Linda J

    2015-12-01

    Fungal endophytes belonging to the genus Epichloë form associations with temperate grasses belonging to the sub-family Poöideae that range from mutualistic through to pathogenic. We previously identified a novel endophyte gene (designated gigA for grass induced gene) that is one of the most abundantly expressed fungal transcripts in endophyte-infected grasses and which is distributed and highly expressed in a wide range of Epichloë grass associations. Molecular and biochemical analyses indicate that gigA encodes a small secreted protein containing an imperfect 27 amino acid repeat that includes a kexin protease cleavage site. Kexin processing of GigA liberates within the plant multiple related products, named here as epichloëcyclins, which we have demonstrated by MS/MS to be cyclic peptidic in nature. Gene deletion of gigA leads to the elimination of all epichloëcyclins with no conspicuous phenotypic impact on the host grass, suggesting a possible bioactive role. This is a further example of a ribosomal peptide synthetic (RiPS) pathway operating within the Ascomycetes, and is the first description of such a pathway from a mutualistic symbiotic fungus from this Phylum. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests

    PubMed Central

    Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632

  5. Effects of nitrogen fertilisation rate and maturity of grass silage on methane emission by lactating dairy cows.

    PubMed

    Warner, D; Hatew, B; Podesta, S C; Klop, G; van Gastelen, S; van Laar, H; Dijkstra, J; Bannink, A

    2016-01-01

    Grass silage is typically fed to dairy cows in temperate regions. However, in vivo information on methane (CH(4)) emission from grass silage of varying quality is limited. We evaluated the effect of two rates of nitrogen (N) fertilisation of grassland (low fertilisation (LF), 65 kg of N/ha; and high fertilisation (HF), 150 kg of N/ha) and of three stages of maturity of grass at cutting: early maturity (EM; 28 days of regrowth), mid maturity (MM; 41 days of regrowth) and late maturity (LM; 62 days of regrowth) on CH(4) production by lactating dairy cows. In a randomised block design, 54 lactating Holstein-Friesian dairy cows (168±11 days in milk; mean±standard error of mean) received grass silage (mainly ryegrass) and compound feed at 80 : 20 on dry matter basis. Cows were adapted to the diet for 12 days and CH(4) production was measured in climate respiration chambers for 5 days. Dry matter intake (DMI; 14.9±0.56 kg/day) decreased with increasing N fertilisation and grass maturity. Production of fat- and protein-corrected milk (FPCM; 24.0±1.57 kg/day) decreased with advancing grass maturity but was not affected by N fertilisation. Apparent total-tract feed digestibility decreased with advancing grass maturity but was unaffected by N fertilisation except for an increase and decrease in N and fat digestibility with increasing N fertilisation, respectively. Total CH(4) production per cow (347±13.6 g/day) decreased with increasing N fertilisation by 4% and grass maturity by 6%. The smaller CH(4) production with advancing grass maturity was offset by a smaller FPCM and lower feed digestibility. As a result, with advancing grass maturity CH(4) emission intensity increased per units of FPCM (15.0±1.00 g CH(4)/kg) by 31% and digestible organic matter intake (33.1±0.78 g CH(4)/kg) by 15%. In addition, emission intensity increased per units of DMI (23.5±0.43 g CH(4)/kg) by 7% and gross energy intake (7.0±0.14% CH(4)) by 9%, implying an increased loss of dietary

  6. Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows

    PubMed Central

    Hyndes, Glenn A.; Heck, Kenneth L.; Vergés, Adriana; Harvey, Euan S.; Kendrick, Gary A.; Lavery, Paul S.; McMahon, Kathryn; Orth, Robert J.; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun

    2016-01-01

    Abstract Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions. PMID:28533562

  7. Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows.

    PubMed

    Hyndes, Glenn A; Heck, Kenneth L; Vergés, Adriana; Harvey, Euan S; Kendrick, Gary A; Lavery, Paul S; McMahon, Kathryn; Orth, Robert J; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun

    2016-11-01

    Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions.

  8. Ecology, genetics, and biological control of invasive annual grasses in the Great Basin

    USDA-ARS?s Scientific Manuscript database

    Several annual grass species native to Eurasia, including cheatgrass (Bromus tectorum), red brome (B. rubens), and medusahead (Taeniatherum caput-medusae) have become invasive in the western USA. These invasive species degrade rangelands by compromising forage, outcompeting native flora, and exacerb...

  9. [Odocoileus virginianus diet (Artiodactyla: Cervidae) in a temperate forest of Northern Oaxaca, Mexico].

    PubMed

    González, Graciela; Briones-Salas, Miguel

    2012-03-01

    The Sierra Madre de Oaxaca region, located in the Northern state of Oaxaca, Mexico, is an area of forest ecosystems subject to high exploitation rates, although in some areas its temperate forests are conserved by indigenous community initiatives that live there. We analyzed the diet of white tailed-deer (Odocoileus virginianus) in the localities of Santa Catarina Lachatao and San Miguel Amatlán from June 1998 to August 1999. Sampling was done during both the wet and dry seasons, and included the observation of browsing traces (238 observations), microhistological analysis of deer feces (28 deer pellet-groups), and two stomach content analysis. The annual diet of white-tailed deer was composed of 42 species from 23 botanical families. The most represented families in the diet of this deer were Fagaceae, Asteraceae, Ericaceae and Fabaceae. There were significant differences in the alpha diversity of the diet during the wet and dry seasons (H'=2.957 and H'=1.832, respectively). The similarity percentage between seasons was 56%. Differences in plant species frequency were significantly higher during the wet season. Herbaceous plants made up the greatest percentage of all the species consumed. The preferred species throughout the year were Senecio sp. (shrub), Sedum dendroideum (herbaceous), Arctostaphylos pungens (shrub) and Satureja macrostema (shrub). Diet species richness was found to be lower than that observed in a tropical forest (Venezuela), tropical dry forest (Mexico) and temperate deciduous and mixed forest (Mexico), but similar to the diet species richness observed in a tropical dry forest (Costa Rica) and temperate coniferous and deciduous forests (USA).

  10. The effect of temperate or tropical pasture grazing state and grain-based concentrate allocation on dairy cattle production and behavior.

    PubMed

    Clark, C E F; Kaur, R; Millapan, L O; Golder, H M; Thomson, P C; Horadagoda, A; Islam, M R; Kerrisk, K L; Garcia, S C

    2018-06-01

    Grain-based concentrate (GBC) supplement is of high cost to dairy farmers as a feed source as opposed to grazed pasture. Milk production response to GBC is affected by the composition and nutritive value of the remainder of the diet, animal factors, and interactions between forage type and level of GBC. In grazing systems, dairy cattle encounter contrasting pasture states, primarily because the social structure of the herd affects the timing of when each animal accesses a paddock after milking as a result of a relatively consistent cow milking order. However, the effect of feed management, namely pasture state and GBC allocation, on dairy cattle production and behavior is unknown. We examined the effect of varying GBC allocation for dairy cattle grazing differing states of kikuyu grass (Pennisetum clandestinum, a tropical pasture species; experiment 1) and annual ryegrass (Lolium multiflorum L., a temperate pasture species; experiment 2) on dry matter intake, milk production and composition, and grazing behavior. For each experiment, 90 lactating dairy cattle were randomly allocated to 2 consistent (fresh-fresh and depleted-depleted) and 2 inconsistent (fresh-depleted and depleted-fresh pasture state treatments (defined as sequences of pasture state allocation for the morning and afternoon grazing events) and 3 GBC treatments [2.7, 5.4, and 8.1 kg of dry matter (DM)/cow per day], giving 12 treatment combinations for each experiment. The duration of each experiment was 14 d, with the first 7 d used as adaptation to treatment. In each experiment, 3 cattle were selected from each of the 12 pasture type × GBC treatment groups within the experimental herd to determine herbage intake and total DM digestibility using the n-alkanes method (n = 36). There was no interaction between kikuyu grass or ryegrass pasture state and GBC level for intake, digestibility, or milk yield or components. Dairy cattle offered fresh-fresh and depleted-fresh ryegrass produced 9% more milk

  11. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis)

    PubMed Central

    Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T.

    2015-01-01

    The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene. PMID:26083467

  12. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis).

    PubMed

    Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T

    2015-01-01

    The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene.

  13. First direct confirmation of grass carp spawning in a Great Lakes tributary

    USGS Publications Warehouse

    Embke, Holly S.; Kocovsky, Patrick M.; Richter, Catherine A.; Pritt, Jeremy J.; Christine M. Mayer,; Qian, Song

    2016-01-01

    Grass carp (Ctenopharyngodon idella), an invasive species of Asian carp, has been stocked for many decades in the United States for vegetation control. Adult individuals have been found in all of the Great Lakes except Lake Superior, but no self-sustaining populations have yet been identified in Great Lakes tributaries. In 2012, a commercial fisherman caught four juvenile diploid grass carp in the Sandusky River, a major tributary to Lake Erie. Otolith microchemistry and the capture location of these fish permitted the conclusion that they were most likely produced in the Sandusky River. Due to this finding, we sampled ichthyoplankton using paired bongo net tows and larval light traps during June–August of 2014 and 2015 to determine if grass carp are spawning in the Sandusky River. From the samples collected in 2015, we identified and staged eight eggs that were morphologically consistent with grass carp. Five eggs were confirmed as grass carp using quantitative Polymerase Chain Reaction for a grass carp-specific marker, while the remaining three were retained for future analysis. Our finding confirms that grass carp are naturally spawning in this Great Lakes tributary. All eggs were collected during high-flow events, either on the day of peak flow or 1–2 days following peak flow, supporting an earlier suggestion that high flow conditions favor grass carp spawning. The next principal goal is to identify the spawning and hatch location(s) for the Sandusky River. Predicting locations and conditions where grass carp spawning is most probable may aid targeted management efforts.

  14. Baseline and stress-induced levels of corticosterone in male and female Afrotropical and European temperate stonechats during breeding.

    PubMed

    Apfelbeck, Beate; Helm, Barbara; Illera, Juan Carlos; Mortega, Kim G; Smiddy, Patrick; Evans, Neil P

    2017-05-22

    Latitudinal variation in avian life histories falls along a slow-fast pace of life continuum: tropical species produce small clutches, but have a high survival probability, while in temperate species the opposite pattern is found. This study investigated whether differential investment into reproduction and survival of tropical and temperate species is paralleled by differences in the secretion of the vertebrate hormone corticosterone (CORT). Depending on circulating concentrations, CORT can both act as a metabolic (low to medium levels) and a stress hormone (high levels) and, thereby, influence reproductive decisions. Baseline and stress-induced CORT was measured across sequential stages of the breeding season in males and females of closely related taxa of stonechats (Saxicola spp) from a wide distribution area. We compared stonechats from 13 sites, representing Canary Islands, European temperate and East African tropical areas. Stonechats are highly seasonal breeders at all these sites, but vary between tropical and temperate regions with regard to reproductive investment and presumably also survival. In accordance with life-history theory, during parental stages, post-capture (baseline) CORT was overall lower in tropical than in temperate stonechats. However, during mating stages, tropical males had elevated post-capture (baseline) CORT concentrations, which did not differ from those of temperate males. Female and male mates of a pair showed correlated levels of post-capture CORT when sampled after simulated territorial intrusions. In contrast to the hypothesis that species with low reproduction and high annual survival should be more risk-sensitive, tropical stonechats had lower stress-induced CORT concentrations than temperate stonechats. We also found relatively high post-capture (baseline) and stress-induced CORT concentrations, in slow-paced Canary Islands stonechats. Our data support and refine the view that baseline CORT facilitates energetically

  15. Recurrent sequence exchange between homeologous grass chromosomes.

    PubMed

    Wicker, Thomas; Wing, Rod A; Schubert, Ingo

    2015-11-01

    All grass species evolved from an ancestor that underwent a whole-genome duplication (WGD) approximately 70 million years ago. Interestingly, the short arms of rice chromosomes 11 and 12 (and independently their homologs in sorghum) were found to be much more similar to each other than other homeologous regions within the duplicated genome. Based on detailed analysis of rice chromosomes 11 and 12 and their homologs in seven grass species, we propose a mechanism that explains the apparently 'younger' age of the duplication in this region of the genome, assuming a small number of reciprocal translocations at the chromosome termini. In each case the translocations were followed by unbalanced transmission and subsequent lineage sorting of the involved chromosomes to offspring. Molecular dating of these translocation events also allowed us to date major chromosome 'fusions' in the evolutionary lineages that led to Brachypodium and Triticeae. Furthermore, we provide evidence that rice is exceptional regarding the evolution of chromosomes 11 and 12, inasmuch as in other species the process of sequence exchange between homeologous chromosomes ceased much earlier than in rice. We presume that random events rather than selective forces are responsible for the observed high similarity between the short arm ends of rice chromosomes 11 and 12. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. Suppression of cheatgrass by established perennial grasses: I. mechanisms

    USDA-ARS?s Scientific Manuscript database

    Cheatgrass is often considered a competitive species. In a greenhouse experiment using rhizotrons, we tested the effect of established perennial grasses (Indian ricegrass, creeping wildrye, and Snake River wheatgrass) on the growth of cheatgrass. The soil was a sandy loam A horizon of a Xeric Haploc...

  17. The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest.

    PubMed

    Li, Weibin; Bai, Zhen; Jin, Changjie; Zhang, Xinzhong; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing

    2017-07-15

    Soil respiration is the largest terrestrial carbon flux into the atmosphere, and different tree species could directly influence root derived respiration and indirectly regulate soil respiration rates by altering soil chemical and microbial properties. In this study, we assessed the small scale spatial heterogeneity of soil respiration and the microbial community below the canopy of three dominant tree species (Korean pine (Pinus koraiensis), Mongolian oak (Quercus mongolica), and Manchuria ash (Fraxinus mandshurica)) in a temperate mixed forest in Northeast China. Soil respiration differed significantly during several months and increased in the order of oakspecies were not mainly regulated by soil temperature. In addition, the lower N and higher C concentrations of pine litter resulted in a higher C/N ratio than ash and oak, which might lead to a higher recalcitrance and slower decomposition rate, and decreased heterotrophic respiration under pine. By contrast, fine root biomass was significantly higher under pine than ash and oak, which induced higher soil autotrophic respiration under pine compared to ash and oak. Tree species sharply regulated the bacterial communities through altering the litter and soil properties, while the fungal communities were relatively consistent among tree species. This study revealed the connection between species specific traits and soil respiration, which is crucial for understanding plant-soil feedbacks and improving forecasts of the global carbon cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Li, Changjia; Pan, Chengzhong

    2018-03-01

    The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is

  19. Variations in biological characteristics of temperate gonochoristic species of Platycephalidae and their implications: A review

    NASA Astrophysics Data System (ADS)

    Coulson, Peter G.; Hall, Norman G.; Potter, Ian C.

    2017-05-01

    This review provides a composite account of the biological characteristics of the temperate gonochoristic species of the Platycephalidae. Initially, data were obtained for the five abundant platycephalid species in south-western Australia, which each came from either over bare substrata or seagrass and from either estuaries, marine coastal waters or marine embayments. The von Bertalanffy growth curves for females and males of each species differed significantly, with females having a greater TL∞ and lower growth coefficient k. From tests using their upper deciles, the total length (TL) attained by the largest females of each species was significantly greater than that of their males, whereas such a trend did not occur with age. The ratio of females to males in each abundant age class, and overall, exceeded parity for four of the five species (typically P < 0.001) and increased with increasing TL. Mortality estimates, which were similar for each sex of each species, suggest that Platycephalus speculator has been substantially exploited in a seasonally-closed estuary in which it completes its whole life cycle. The above and other biological data for the five species were collated with those published previously for two of those species and five other platycephalid species in south-eastern Australia and one in Japan and another in the Suez Canal, yielding the following conclusions for gonochoristic species of the Platycephalidae. Females attain a larger size than males, the extent varying markedly among species, whereas the longevities of the two sexes of each platycephalid species are similar. The maximum TLs and ages of the various species range widely, with values for females, for example, extending from 221 mm for Ambiserrula jugosa to 985 mm for Platycephalus fuscus and from four years for A. jugosa to 26 years for Platycephalus conatus. The overall ratio of females to males is positively related to the extent to which both the maximum TLs and TL∞s of the

  20. Longhorned beetle (Coleoptera: Cerambycidae) diversity in a fragmented temperate forest landscape

    PubMed Central

    Pavuk, Daniel M

    2013-01-01

    Longhorned beetles (Coleoptera: Cerambycidae) are an important component of temperate forest ecosystems.  We trapped longhorned beetles in forests in northwest Ohio during 2008 to test the hypothesis that larger forests have greater species diversity than smaller forests.  Large forests had a significantly greater cerambycid species richness than small forests (t = 3.16. P = 0.02), and there was a significant relationship between forest size and cerambycid species richness. PMID:24627763

  1. Quantifying competitive ability of perennial grasses to inhibit Scotch broom

    Treesearch

    Timothy Harrington

    2011-01-01

    Greenhouse pot studies were conducted to quantify the competitive abilities of three native perennial grass species to inhibit development of Scotch broom (Cytisus scoparius (L.) Link ) seedlings: spike bentgrass (Agrostis exarata Trin. ), blue wildrye (Elymus glaucus Buckley), and western fescue (

  2. Energy content of tropical grasses and legumes grown for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Biomass samples of the tropical grasses Brachiaria brizantha (Hochst. ex A. Rich.) Staph, Brachiaria humidicola (Rendle) Schweick, Brachiaria decumbens Staph, Panicum maximum Jacq., Pennistetum alopecuroides (L.) Spreng and three species of the tropical legume Stylosanthes grown in Mato Grosso do Su...

  3. Delimitation of cryptic species inside Claviceps purpurea.

    PubMed

    Pažoutová, Sylvie; Pešicová, Kamila; Chudíčková, Milada; Šrůtka, Petr; Kolařík, Miroslav

    2015-01-01

    Claviceps purpurea is an ovarian parasite infecting grasses (Poaceae) including cereals and forage plants. This fungus produces toxic alkaloids and consumption of contaminated grains can cause ergotism in humans and other mammals. Recent molecular genetics studies have indicated that it included three cryptic species (G1, G2, G3). In this study, reproductive isolation amongst these groups and among material from Phragmites and Molinia was tested using gene flow statistics for five polymorphic loci, and to support these data, phylogenetic affiliations based on gene trees and a multigene phylogeny were used. The four recognized species are characterized based on morphology and host spectrum and formal taxonomic names are proposed. Claviceps purpurea sensu stricto (G1 group) represents a typical rye ergot, but infects various other grasses. Typical hosts of Claviceps humidiphila (new name for G2 species), like Phalaris arundinacea, belong to grasses preferring humid locations. Claviceps spartinae (G3) is specific to chloridoid grasses from salt barches. The material from Phragmites and Molinia can be authenticated with the species Claviceps microcephala for which the new name Claviceps arundinis is proposed here. The divergence time between species was estimated and the tools for species identification are discussed. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Emerging technologies advancing forage and turf grass genomics.

    PubMed

    Kopecký, David; Studer, Bruno

    2014-01-01

    Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Grass-legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years.

    PubMed

    Helgadóttir, Áslaug; Suter, Matthias; Gylfadóttir, Thórey Ó; Kristjánsdóttir, Thórdís A; Lüscher, Andreas

    2018-05-22

    Grassland-based livestock systems in cool maritime regions are commonly dominated by grass monocultures receiving relatively high levels of fertilizer. The current study investigated whether grass-legume mixtures can improve the productivity, resource efficiency and robustness of yield persistence of cultivated grassland under extreme growing conditions over a period of 5 years. Monocultures and mixtures of two grasses (Phleum pratense and Festuca pratensis) and two legumes (Trifolium pratense and Trifolium repens), one of which was fast establishing and the other temporally persistent, were sown in a field trial. Relative abundance of the four species in the mixtures was systematically varied at sowing. The plots were maintained under three N levels (20, 70 and 220 kg N ha-1 year-1) and harvested twice a year for five consecutive years. Yields of individual species and interactions between all species present were modelled to estimate the species diversity effects. Significant positive diversity effects in all individual years and averaged across the 5 years were observed. Across years, the four-species equi-proportional mixture was 71 % (N20: 20 kg N ha-1 year-1) and 51 % (N70: 70 kg N ha-1 year-1) more productive than the average of monocultures, and the highest yielding mixture was 36 % (N20) and 39 % (N70) more productive than the highest yielding monoculture. Importantly, diversity effects were also evident at low relative abundances of either species group, grasses or legumes in the mixture. Mixtures suppressed weeds significantly better than monocultures consistently during the course of the experiment at all N levels. The results show that even in the less productive agricultural systems in the cool maritime regions grass-legume mixtures can contribute substantially and persistently to a more sustainable agriculture. Positive grass-legume interactions suggest that symbiotic N2 fixation is maintained even under these marginal conditions, provided that

  6. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture.

    PubMed

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W

    2013-11-07

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.

  7. Carbon sequestration in managed temperate coniferous forests under climate change

    NASA Astrophysics Data System (ADS)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  8. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments.

    PubMed

    Gehrke, Berit

    2018-01-01

    Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments - at least tropical ones - are species sinks.

  9. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments

    PubMed Central

    Gehrke, Berit

    2018-01-01

    Abstract Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks. PMID:29706788

  10. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research.

    PubMed

    Lai, Floriana; Jutfelt, Fredrik; Nilsson, Göran E

    2015-01-01

    Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.

  11. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass

    USDA-ARS?s Scientific Manuscript database

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated w...

  12. Establishment of non-native plant species after wildfires: Effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments

    USGS Publications Warehouse

    Hunter, M.E.; Omi, Philip N.; Martinson, E.J.; Chong, G.W.

    2006-01-01

    Establishment and spread of non-native species following wildfires can pose threats to long-term native plant recovery. Factors such as disturbance severity, resource availability, and propagule pressure may influence where non-native species establish in burned areas. In addition, pre- and post-fire management activities may influence the likelihood of non-native species establishment. In the present study we examine the establishment of non-native species after wildfires in relation to native species richness, fire severity, dominant native plant cover, resource availability, and pre- and post-fire management actions (fuel treatments and post-fire rehabilitation treatments). We used an information-theoretic approach to compare alternative hypotheses. We analysed post-fire effects at multiple scales at three wildfires in Colorado and New Mexico. For large and small spatial scales at all fires, fire severity was the most consistent predictor of non-native species cover. Non-native species cover was also correlated with high native species richness, low native dominant species cover, and high seeded grass cover. There was a positive, but non-significant, association of non-native species with fuel-treated areas at one wildfire. While there may be some potential for fuels treatments to promote non-native species establishment, wildfire and post-fire seeding treatments seem to have a larger impact on non-native species. ?? IAWF 2006.

  13. Improving our understanding of environmental controls on the distribution of C3 and C4 grasses.

    PubMed

    Pau, Stephanie; Edwards, Erika J; Still, Christopher J

    2013-01-01

    A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environmental settings and distinct adaptive traits. Such confounded comparisons of C3 and C4 grasses may bias our understanding of ecological sorting imposed strictly by photosynthetic pathway. Here, we used MaxEnt species distribution modeling in combination with satellite data to understand the functional diversity of C3 and C4 grasses by comparing both large clades and closely related sister taxa. Similar to previous work, we found that C4 grasses showed a preference for regions with higher temperatures and lower precipitation compared with grasses using the C3 pathway. However, air temperature differences were smaller (2 °C vs. 4 °C) and precipitation and % tree cover differences were larger (1783 mm vs. 755 mm, 21.3% vs. 7.7%, respectively) when comparing C3 and C4 grasses within the same clade vs. comparing all C4 and all C3 grasses (i.e., ignoring phylogenetic structure). These results were due to important differences in the environmental preferences of C3 BEP and PACMAD clades (the two main grass clades). Winter precipitation was found to be more important for understanding the distribution and environmental niche of C3 PACMADs in comparison with both C3 BEPs and C4 taxa, for which temperature was much more important. Results comparing closely related C3 -C4 sister taxa supported the patterns derived from our modeling of the larger clade groupings. Our findings, which are novel in comparing the distribution and niches of clades, demonstrate that the evolutionary history of taxa is important for understanding the functional diversity of C3 and C4 grasses, and should have implications for how grasslands will respond to global change. © 2012

  14. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship

    PubMed Central

    Pickering, Emily A.; Adler, Alyssa M.; Taylor, J. Christopher; Peterson, Charles H.

    2017-01-01

    Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor

  15. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    PubMed

    Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H

    2017-01-01

    Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor

  16. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots.

    PubMed

    Wang, Wei; Zhou, Hui; Ma, Baiquan; Owiti, Albert; Korban, Schuyler S; Han, Yuepeng

    2016-06-30

    Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.

  17. Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities.

    PubMed

    Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S

    2015-10-01

    In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.

  18. Late Quaternary climate stability and the origins and future of global grass endemism.

    PubMed

    Sandel, Brody; Monnet, Anne-Christine; Govaerts, Rafaël; Vorontsova, Maria

    2017-01-01

    Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year -1 ), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year -1 ). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the

  19. Reversing land degradation through grasses: a systematic meta-analysis in the Indian tropics

    NASA Astrophysics Data System (ADS)

    Mandal, Debashis; Srivastava, Pankaj; Giri, Nishita; Kaushal, Rajesh; Cerda, Artemi; Meherul Alam, Nurnabi

    2017-02-01

    Although intensive agriculture is necessary to sustain the world's growing population, accelerated soil erosion contributes to a decrease in the environmental health of ecosystems at local, regional and global scales. Reversing the process of land degradation using vegetative measures is of utmost importance in such ecosystems. The present study critically analyzes the effect of grasses in reversing the process of land degradation using a systematic review. The collected information was segregated under three different land use and land management situations. Meta-analysis was applied to test the hypothesis that the use of grasses reduces runoff and soil erosion. The effect of grasses was deduced for grass strip and in combination with physical structures. Similarly, the effects of grasses were analyzed in degraded pasture lands. The overall result of the meta-analysis showed that infiltration capacity increased approximately 2-fold after planting grasses across the slopes in agricultural fields. Grazing land management through a cut-and-carry system increased conservation efficiencies by 42 and 63 % with respect to reduction in runoff and erosion, respectively. Considering the comprehensive performance index (CPI), it has been observed that hybrid Napier (Pennisetum purpureum) and sambuta (Saccharum munja) grass seem to posses the most desirable attributes as an effective grass barrier for the western Himalayas and Eastern Ghats, while natural grass (Dichanthium annulatum) and broom grass (Thysanolaena maxima) are found to be most promising grass species for the Konkan region of the Western Ghats and the northeastern Himalayan region, respectively. In addition to these benefits, it was also observed that soil carbon loss can be reduced by 83 % with the use of grasses. Overall, efficacy for erosion control of various grasses was more than 60 %; hence, their selection should be based on the production potential of these grasses under given edaphic and agro

  20. Are diversification rates and chromosome evolution in the temperate grasses (Pooideae) associated with major environmental changes in the Oligocene-Miocene?

    PubMed

    Pimentel, Manuel; Escudero, Marcial; Sahuquillo, Elvira; Minaya, Miguel Ángel; Catalán, Pilar

    2017-01-01

    The Pooideae are a highly diverse C3 grass subfamily that includes some of the most economically important crops, nested within the highly speciose core-pooid clade. Here, we build and explore the phylogeny of the Pooideae within a temporal framework, assessing its patterns of diversification and its chromosomal evolutionary changes in the light of past environmental transformations. We sequenced five plastid DNA loci, two coding ( ndhF , matk ) and three non-coding ( trnH-psbA , trnT-L and trnL-F ), in 163 Poaceae taxa, including representatives for all subfamilies of the grasses and all but four ingroup Pooideae tribes. Parsimony and Bayesian phylogenetic analyses were conducted and divergence times were inferred in BEAST using a relaxed molecular clock. Diversification rates were assessed using the MEDUSA approach, and chromosome evolution was analyzed using the chromEvol software. Diversification of the Pooideae started in the Late-Eocene and was especially intense during the Oligocene-Miocene. The background diversification rate increased significantly at the time of the origin of the Poodae + Triticodae clade. This shift in diversification occurred in a context of falling temperatures that potentially increased ecological opportunities for grasses adapted to open areas around the world. The base haploid chromosome number n  = 7 has remained stable throughout the phylogenetic history of the core pooids and we found no link between chromosome transitions and major diversification events in the Pooideae.

  1. Are diversification rates and chromosome evolution in the temperate grasses (Pooideae) associated with major environmental changes in the Oligocene-Miocene?

    PubMed Central

    Escudero, Marcial; Sahuquillo, Elvira; Minaya, Miguel Ángel; Catalán, Pilar

    2017-01-01

    The Pooideae are a highly diverse C3 grass subfamily that includes some of the most economically important crops, nested within the highly speciose core-pooid clade. Here, we build and explore the phylogeny of the Pooideae within a temporal framework, assessing its patterns of diversification and its chromosomal evolutionary changes in the light of past environmental transformations. We sequenced five plastid DNA loci, two coding (ndhF, matk) and three non-coding (trnH-psbA, trnT-L and trnL-F), in 163 Poaceae taxa, including representatives for all subfamilies of the grasses and all but four ingroup Pooideae tribes. Parsimony and Bayesian phylogenetic analyses were conducted and divergence times were inferred in BEAST using a relaxed molecular clock. Diversification rates were assessed using the MEDUSA approach, and chromosome evolution was analyzed using the chromEvol software. Diversification of the Pooideae started in the Late-Eocene and was especially intense during the Oligocene-Miocene. The background diversification rate increased significantly at the time of the origin of the Poodae + Triticodae clade. This shift in diversification occurred in a context of falling temperatures that potentially increased ecological opportunities for grasses adapted to open areas around the world. The base haploid chromosome number n = 7 has remained stable throughout the phylogenetic history of the core pooids and we found no link between chromosome transitions and major diversification events in the Pooideae. PMID:28951814

  2. Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study.

    PubMed

    Sofia, Ghitarrini; Emma, Tedeschini; Veronica, Timorato; Giuseppe, Frenguelli

    2017-01-01

    Many works carried out in the last decades have shown that the pollen season for taxa flowering in winter and spring, in temperate regions, has tended to be earlier, probably due to the continuous rise in temperature. The mean annual temperature in Perugia, Central Italy, was about 0.5 °C higher in the last three decades compared with that registered from 1952 to 1981. The increase of temperature took place mainly in winter and spring, while no significant variation was recorded during the summer and autumn. This scenario shows variations in the timing and behavior of flowering of many spontaneous plants such as grasses, whose phenology is strongly influenced by air temperature. This work reports fluctuations in the airborne grass pollen presence in Perugia over a 33-year period (1982-2014), in order to study the influence of the warming registered in recent years on the behavior of pollen release of this taxon. The grass pollen season in Perugia typically lasts from the beginning of May to late July. The start dates showed a marked trend to an earlier beginning of the season (-0.4 day/year), as well as a strong correlation with the average temperatures of March and April. The peak is reached around 30th May, but the annual pollen index (API) is following a decreasing trend. The correlation between starting dates and spring temperatures could be interesting for the constitution of a forecasting model capable of predicting the presence of airborne grass pollen, helping to plan therapies for allergic people.

  3. Exotic Grass Yields Under Southern Pines

    Treesearch

    H.A. Pearson

    1975-01-01

    Kentucky 31 and Kenwell tall fescue, Pensacola bahia, and Brunswick grasses yielded nea,rly three times more forage under an established pine stand than native grasses 7 years after seeding. Introducing exotic grasses did not significantly increase total grass production but did enhance range quality since the cool-season grasses are green during winter and are higher...

  4. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.

    PubMed

    Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G

    2016-02-01

    Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.

  5. Long-term exposure to elevated CO 2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.

    Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less

  6. Long-term exposure to elevated CO 2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie

    DOE PAGES

    Zelikova, Tamara Jane; Blumenthal, Dana M.; Williams, David G.; ...

    2014-10-13

    Climate controls vegetation distribution across the globe, and some vegetation types are more vulnerable to climate change, whereas others are more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, we need to evaluate the potential for resistance as we predict future ecosystem function. In a mixed-grass prairie in the northern Great Plains, in this study we used a large field experiment to test the effects of elevated CO 2, warming, and summer irrigation on plant community structure and productivity, linking changes in both to stability in plant community compositionmore » and biomass production. We show that the independent effects of CO 2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO 2 are not limited to water saving because they differ from those of irrigation. We also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO 2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO 2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. Finally, our results have implications for how we manage native grasslands in the face of changing climate.« less

  7. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants.

    PubMed

    Bauer, Julia I; Gross, Madeleine; Cramer, Benedikt; Humpf, Hans-Ulrich; Hamscher, Gerd; Usleber, Ewald

    2018-01-10

    Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.

  8. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    NASA Astrophysics Data System (ADS)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  9. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury

    PubMed Central

    Jimenez, Ana Gabriela; Harper, James M.; Queenborough, Simon A.; Williams, Joseph B.

    2013-01-01

    SUMMARY A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H2O2, paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD50) from tropical birds were significantly higher for H2O2 and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD50, we found that cells from tropical birds had greater tolerance for Cd, H2O2, paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species. PMID:23264487

  10. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury.

    PubMed

    Jimenez, Ana Gabriela; Harper, James M; Queenborough, Simon A; Williams, Joseph B

    2013-04-15

    A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H(2)O(2), paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD(50)) from tropical birds were significantly higher for H(2)O(2) and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD(50), we found that cells from tropical birds had greater tolerance for Cd, H(2)O(2), paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species.

  11. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    NASA Astrophysics Data System (ADS)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  12. FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO

    Treesearch

    Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire

    2012-01-01

    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...

  13. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromericmore » regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops« less

  14. Grass fungal endophytes and uses thereof

    DOEpatents

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  15. Nuclear DNA Variation, Chromosome Numbers and Polyploidy in the Endemic and Indigenous Grass Flora of New Zealand

    PubMed Central

    MURRAY, B. G.; DE LANGE, P. J.; FERGUSON, A. R.

    2005-01-01

    • Background and Aims Little information is available on DNA C-values for the New Zealand flora. Nearly 85 % of the named species of the native vascular flora are endemic, including 157 species of Poaceae, the second most species-rich plant family in New Zealand. Few C-values have been published for New Zealand native grasses, and chromosome numbers have previously been reported for fewer than half of the species. The aim of this research was to determine C-values and chromosome numbers for most of the endemic and indigenous Poaceae from New Zealand. • Scope To analyse DNA C-values from 155 species and chromosome numbers from 55 species of the endemic and indigenous grass flora of New Zealand. • Key Results The new C-values increase significantly the number of such measurements for Poaceae worldwide. New chromosome numbers were determined from 55 species. Variation in C-value and percentage polyploidy were analysed in relation to plant distribution. No clear relationship could be demonstrated between these variables. • Conclusions A wide range of C-values was found in the New Zealand endemic and indigenous grasses. This variation can be related to the phylogenetic position of the genera, plants in the BOP (Bambusoideae, Oryzoideae, Pooideae) clade in general having higher C-values than those in the PACC (Panicoideae, Arundinoideae, Chloridoideae + Centothecoideae) clade. Within genera, polyploids typically have smaller genome sizes (C-value divided by ploidy level) than diploids and there is commonly a progressive decrease with increasing ploidy level. The high frequency of polyploidy in the New Zealand grasses was confirmed by our additional counts, with only approximately 10 % being diploid. No clear relationship between C-value, polyploidy and rarity was evident. PMID:16243852

  16. The value of small habitat islands for the conservation of genetic variability in a steppe grass species

    NASA Astrophysics Data System (ADS)

    Wódkiewicz, Maciej; Dembicz, Iwona; Moysiyenko, Ivan I.

    2016-10-01

    The habitat loss and fragmentation due to agricultural land-conversion affected the steppe throughout its range. In Ukraine, 95% of steppe was destroyed in the last two centuries. Remaining populations are confined to few refuges, like nature reserves, loess ravines, and kurgans (small burial mounds), the latter being often subject to destruction by archeological excavations. Stipa capillata L. is a typical grass species of Eurasian steppes and extrazonal dry grasslands, that was previously used as a model species in studies on steppe ecology. The aim of our research was to assess genetic diversity of S. capillata populations within different types of steppe refuges (loess ravines, biosphere reserve, kurgan) and to evaluate the value of the latter group for the preservation of genetic diversity in the study species. We assessed genetic diversity of 266 individuals from 15 populations (nine from kurgans, three from loess ravines and three from Askania-Nova Biosphere Reserve) with eight Universal Rice Primers (URPs). Studied populations showed high intra-population variability (I: 0.262-0.419, PPB: 52.08-82.64%). Populations from kurgans showed higher genetic differentiation (ΦST = 0.247) than those from loess ravines (ΦST = 0.120) and the biosphere reserve (ΦST = 0.142). Although the diversity metrics were to a small extent lower for populations from kurgans than from larger refugia we conclude that all studied populations of the species still preserve high genetic variability and are valuable for protection. To what extent this pattern holds true under continuous fragmentation in the future must be carefully monitored.

  17. Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses

    PubMed Central

    Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael

    2013-01-01

    Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343

  18. Testing efficacy of distance and tree-based methods for DNA barcoding of grasses (Poaceae tribe Poeae) in Australia

    PubMed Central

    Walsh, Neville G.; Cantrill, David J.; Holmes, Gareth D.; Murphy, Daniel J.

    2017-01-01

    In Australia, Poaceae tribe Poeae are represented by 19 genera and 99 species, including economically and environmentally important native and introduced pasture grasses [e.g. Poa (Tussock-grasses) and Lolium (Ryegrasses)]. We used this tribe, which are well characterised in regards to morphological diversity and evolutionary relationships, to test the efficacy of DNA barcoding methods. A reference library was generated that included 93.9% of species in Australia (408 individuals, x¯ = 3.7 individuals per species). Molecular data were generated for official plant barcoding markers (rbcL, matK) and the nuclear ribosomal internal transcribed spacer (ITS) region. We investigated accuracy of specimen identifications using distance- (nearest neighbour, best-close match, and threshold identification) and tree-based (maximum likelihood, Bayesian inference) methods and applied species discovery methods (automatic barcode gap discovery, Poisson tree processes) based on molecular data to assess congruence with recognised species. Across all methods, success rate for specimen identification of genera was high (87.5–99.5%) and of species was low (25.6–44.6%). Distance- and tree-based methods were equally ineffective in providing accurate identifications for specimens to species rank (26.1–44.6% and 25.6–31.3%, respectively). The ITS marker achieved the highest success rate for specimen identification at both generic and species ranks across the majority of methods. For distance-based analyses the best-close match method provided the greatest accuracy for identification of individuals with a high percentage of “correct” (97.6%) and a low percentage of “incorrect” (0.3%) generic identifications, based on the ITS marker. For tribe Poeae, and likely for other grass lineages, sequence data in the standard DNA barcode markers are not variable enough for accurate identification of specimens to species rank. For recently diverged grass species similar challenges are

  19. Testing efficacy of distance and tree-based methods for DNA barcoding of grasses (Poaceae tribe Poeae) in Australia.

    PubMed

    Birch, Joanne L; Walsh, Neville G; Cantrill, David J; Holmes, Gareth D; Murphy, Daniel J

    2017-01-01

    In Australia, Poaceae tribe Poeae are represented by 19 genera and 99 species, including economically and environmentally important native and introduced pasture grasses [e.g. Poa (Tussock-grasses) and Lolium (Ryegrasses)]. We used this tribe, which are well characterised in regards to morphological diversity and evolutionary relationships, to test the efficacy of DNA barcoding methods. A reference library was generated that included 93.9% of species in Australia (408 individuals, [Formula: see text] = 3.7 individuals per species). Molecular data were generated for official plant barcoding markers (rbcL, matK) and the nuclear ribosomal internal transcribed spacer (ITS) region. We investigated accuracy of specimen identifications using distance- (nearest neighbour, best-close match, and threshold identification) and tree-based (maximum likelihood, Bayesian inference) methods and applied species discovery methods (automatic barcode gap discovery, Poisson tree processes) based on molecular data to assess congruence with recognised species. Across all methods, success rate for specimen identification of genera was high (87.5-99.5%) and of species was low (25.6-44.6%). Distance- and tree-based methods were equally ineffective in providing accurate identifications for specimens to species rank (26.1-44.6% and 25.6-31.3%, respectively). The ITS marker achieved the highest success rate for specimen identification at both generic and species ranks across the majority of methods. For distance-based analyses the best-close match method provided the greatest accuracy for identification of individuals with a high percentage of "correct" (97.6%) and a low percentage of "incorrect" (0.3%) generic identifications, based on the ITS marker. For tribe Poeae, and likely for other grass lineages, sequence data in the standard DNA barcode markers are not variable enough for accurate identification of specimens to species rank. For recently diverged grass species similar challenges are

  20. Dry kiln schedules for commercial woods : temperate and tropical

    Treesearch

    R. Sidney Boone; Charles J. Kozlik; Paul J. Bois; Eugene M. Wengert

    1988-01-01

    This report contains suggested dry kiln schedules for over 500 commercial woods, both temperate and tropical. Kiln schedules are completely assembled and written out for easy use. Schedules for several thicknesses and specialty products (e.g. squares, handle stock, gunstock blanks) are given for many species. The majority of the schedules are from the world literature...

  1. Presence of Trifolium repens Promotes Complementarity of Water Use and N Facilitation in Diverse Grass Mixtures.

    PubMed

    Hernandez, Pauline; Picon-Cochard, Catherine

    2016-01-01

    Legume species promote productivity and increase the digestibility of herbage in grasslands. Considerable experimental data also indicate that communities with legumes produce more above-ground biomass than is expected from monocultures. While it has been attributed to N facilitation, evidence to identify the mechanisms involved is still lacking and the role of complementarity in soil water acquisition by vertical root differentiation remains unclear. We used a 20-months mesocosm experiment to investigate the effects of species richness (single species, two- and five-species mixtures) and functional diversity (presence of the legume Trifolium repens) on a set of traits related to light, N and water use and measured at community level. We found a positive effect of Trifolium presence and abundance on biomass production and complementarity effects in the two-species mixtures from the second year. In addition the community traits related to water and N acquisition and use (leaf area, N, water-use efficiency, and deep root growth) were higher in the presence of Trifolium. With a multiple regression approach, we showed that the traits related to water acquisition and use were with N the main determinants of biomass production and complementarity effects in diverse mixtures. At shallow soil layers, lower root mass of Trifolium and higher soil moisture should increase soil water availability for the associated grass species. Conversely at deep soil layer, higher root growth and lower soil moisture mirror soil resource use increase of mixtures. Altogether, these results highlight N facilitation but almost soil vertical differentiation and thus complementarity for water acquisition and use in mixtures with Trifolium. Contrary to grass-Trifolium mixtures, no significant over-yielding was measured for grass mixtures even those having complementary traits (short and shallow vs. tall and deep). Thus, vertical complementarity for soil resources uptake in mixtures was not only

  2. Abiotic factors affect the recruitment and biomass of perennial grass and evergreen shrub seedlings in denuded areas of Patagonian Monte rangelands.

    PubMed

    Bosco, Tomás; Bertiller, Mónica Beatriz; Carrera, Analía Lorena

    2018-07-15

    Assessing the ability of key species to cope with environmental stresses in disturbed areas is an important issue for recovery of degraded arid ecosystem. Our objective was to evaluate the effect of soil moisture, exposure to UV radiation, and presence/absence of litter with different chemistry on soil N, recruitment and biomass of seedlings of perennial grass (Poa ligularis and Nassella tenuis) and evergreen shrub species (Atriplex lampa and Larrea divaricata) in denuded areas. We carried out a microcosm experiment with soil blocks (28 cm depth) sowed with seeds of the target species, subjected to different levels of litter type (perennial grass-evergreen shrub mixture, evergreen shrub mixture, and no litter), UV radiation (near ambient and reduced UV), and soil water (high: 15-25% and low 5-15%). Periodically, during 6 months, we assessed soil-N (total and inorganic) at two depths and species seedling recruitment at microcosms. Additionally, emerged seedlings of each species were transplanted to individual pots containing soil and subjected to the same previous factors during 12 months. Then, all plants were harvested and biomass assessed. Only inorganic soil-N at the upper soil varied among treatments increasing with the presence of evergreen shrub litter, exposure to ambient UV, and high soil water. Inorganic soil-N, promoted by near ambient UV and high soil water, had a positive effect on recruitment of perennial grasses and A. lampa. Both litter types promoted the recruitment of perennial grasses. Evergreen shrub litter and high soil water promoted the recruitment of L. divaricata. Seedling biomass of perennial grasses increased with high soil water and reduced UV. Ambient UV had positive or null effects on biomass of evergreen shrub seedlings. High soil water increased biomass of L. divaricata seedlings. We concluded that soil water appeared as the most limiting factor for seedling recruitment of all species whereas inorganic soil N limited the

  3. Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity

    Treesearch

    Paula M. Pijut; Shaneka S. Lawson; Charles H. Michler

    2011-01-01

    Hardwood tree species in forest, plantation, and urban environments (temperate regions of the world) are important biological resources that play a significant role in the economy and the ecology of terrestrial ecosystems, and they have aesthetic and spiritual value. Because of these many values of hardwood tree species, preserving forest tree biodiversity through the...

  4. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots

    PubMed Central

    Wang, Wei; Zhou, Hui; Ma, Baiquan; Owiti, Albert; Korban, Schuyler S.; Han, Yuepeng

    2016-01-01

    Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots. PMID:27356489

  5. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    PubMed Central

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  6. Are temperate canopy spiders tree-species specific?

    PubMed

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  7. Distribution, Diversity, and Long-Term Retention of Grass Short Interspersed Nuclear Elements (SINEs).

    PubMed

    Mao, Hongliang; Wang, Hao

    2017-08-01

    Instances of highly conserved plant short interspersed nuclear element (SINE) families and their enrichment near genes have been well documented, but little is known about the general patterns of such conservation and enrichment and underlying mechanisms. Here, we perform a comprehensive investigation of the structure, distribution, and evolution of SINEs in the grass family by analyzing 14 grass and 5 other flowering plant genomes using comparative genomics methods. We identify 61 SINE families composed of 29,572 copies, in which 46 families are first described. We find that comparing with other grass TEs, grass SINEs show much higher level of conservation in terms of genomic retention: The origin of at least 26% families can be traced to early grass diversification and these families are among most abundant SINE families in 86% species. We find that these families show much higher level of enrichment near protein coding genes than families of relatively recent origin (51%:28%), and that 40% of all grass SINEs are near gene and the percentage is higher than other types of grass TEs. The pattern of enrichment suggests that differential removal of SINE copies in gene-poor regions plays an important role in shaping the genomic distribution of these elements. We also identify a sequence motif located at 3' SINE end which is shared in 17 families. In short, this study provides insights into structure and evolution of SINEs in the grass family. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Salt tolerance evolves more frequently in C4 grass lineages.

    PubMed

    Bromham, L; Bennett, T H

    2014-03-01

    Salt tolerance has evolved many times in the grass family, and yet few cereal crops are salt tolerant. Why has it been so difficult to develop crops tolerant of saline soils when salt tolerance has evolved so frequently in nature? One possible explanation is that some grass lineages have traits that predispose them to developing salt tolerance and that without these background traits, salt tolerance is harder to achieve. One candidate background trait is photosynthetic pathway, which has also been remarkably labile in grasses. At least 22 independent origins of the C4 photosynthetic pathway have been suggested to occur within the grass family. It is possible that the evolution of C4 photosynthesis aids exploitation of saline environments, because it reduces transpiration, increases water-use efficiency and limits the uptake of toxic ions. But the observed link between the evolution of C4 photosynthesis and salt tolerance could simply be due to biases in phylogenetic distribution of halophytes or C4 species. Here, we use a phylogenetic analysis to investigate the association between photosynthetic pathway and salt tolerance in the grass family Poaceae. We find that salt tolerance is significantly more likely to occur in lineages with C4 photosynthesis than in C3 lineages. We discuss the possible links between C4 photosynthesis and salt tolerance and consider the limitations of inferring the direction of causality of this relationship. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  9. Presence of Multiple Mycotoxins and Other Fungal Metabolites in Native Grasses from a Wetland Ecosystem in Argentina Intended for Grazing Cattle

    PubMed Central

    Nichea, María J.; Palacios, Sofia A.; Chiacchiera, Stella M.; Sulyok, Michael; Krska, Rudolf; Chulze, Sofia N.; Torres, Adriana M.; Ramirez, María L.

    2015-01-01

    The aim of this study was to evaluate the occurrence of several fungal metabolites, including mycotoxins in natural grasses (Poaceae) intended for grazing cattle. A total number of 72 and 77 different metabolites were detected on 106 and 69 grass samples collected during 2011 and 2014, respectively. A total of 60 metabolites were found across both years. Among the few mycotoxins considered toxic for ruminants, no samples of natural grasses were contaminated with aflatoxins, ochratoxin A, ergot alkaloids, and gliotoxin, among others. However, we were able to detect important metabolites (toxic to ruminants) such as type A trichothecenes, mainly T-2 toxin and HT-2 toxin (up to 5000 µg/kg each), and zearalenone (up to 2000 µg/kg), all at very high frequencies and levels. Other fungal metabolites that were found to be prevalent were other Fusarium metabolites like beauvericin, equisetin and aurofusarin, metabolites produced by Alternaria spp., sterigmatocystin and its precursors and anthrachinone derivatives. It is important to point out that the profile of common metabolites was shared during both years of sampling, and also that the occurrence of important metabolites is not a sporadic event. Considering that this area of temperate grassland is used for grazing cattle all year long due to the richness in palatable grasses (Poaceae), the present work represents a starting point for further studies on the occurrence of multi-mycotoxins in natural grasses in order to have a complete picture of the extent of cattle exposure. Also, the present study shows that the presence of zeranol in urine of beef cattle may not be a consequence of illegal use of this banned substance, but the product of the natural occurrence of zearalenone and α-zearalenol in natural grasses intended for cattle feeding. PMID:26308052

  10. Are Temperate Canopy Spiders Tree-Species Specific?

    PubMed Central

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood. PMID:24586251

  11. Feasibility of an implantable capsule for limiting lifespan of grass carp

    USGS Publications Warehouse

    Thomas, R.M.; Miranda, L.E.; Kirk, J.P.

    2006-01-01

    The grass carp (Ctenopharyngodon idella) is an herbivorous cyprinid stocked to control undesirable aquatic vegetation. However, stocking grass carp presents several problems including complete eradication of submersed aquatic vegetation, dispersal out of the target area, adverse effects on fish communities, and damage to waterfowl habitat and native vegetation. The purpose of this research was to consider the feasibility of an implantable capsule for limiting the lifespan of grass carp. Stainless steel dowel pins were inserted into 49 fish to identify the most appropriate site to implant the capsule. The throat region along the body's longitudinal axis was identified as the most suitable location because it resulted in minimal loss over an 8-month holding period. Rotenone solutions were injected into the ventral surface between the pelvic fins to determine the lethal dosage to 95% of the population (LD 95). The LD95 for grass carp increased curvilin-early with fish weight. Four polymers that merit further evaluation in constructing the capsule are poly[bis(p-carboxyphenoxy) propane anhydride], poly[bis(p- carboxyphenoxy) hexane anhydride], poly-1-lactide, and poly(??-caprolactone) . Implants are commonly used to deliver pharmaceutical products in medical and veterinarian applications, and have been used in fish. Developing a bioerodible capsule could increase the safety and flexibility of stocking grass carp for control of aquatic plants, and may also be applicable for management of other exotic species.

  12. Recovery of tall cotton-grass following real and simulated feeding by snow geese

    USGS Publications Warehouse

    Hupp, Jerry W.; Robertson, Donna G.; Schmutz, Joel A.

    2000-01-01

    Lesser snow geese Anser caerulescens caerulescens from the western Canadian Arctic feed on underground parts of tall cotton-grass Eriophorum angustifolium during autumn staging on the coastal plain of the Beaufort Sea in Canada and Alaska. We studied revegetation of sites where cotton-grass had been removed either by human-imprinted snow geese or by hand to simulate snow goose feeding. Aerial cover of cotton-grass at sites (n = 4) exploited by human-imprinted snow geese averaged 60 and 39% lower than in undisturbed control plots during the first and second year after feeding, respectively. Underground biomass of cotton-grass stembases and rhizomes in hand-treated plots was 80 and 62% less than in control plots 2 and 4 yr after removal, respectively (n = 10 yr-1). Aerial cover and biomass of common non-forage species such as Carex aquatilis did not increase on treated areas. Removal of cotton-grass by geese likely reduces forage availability at exploited sites for at least 2-4 yr after feeding but probably does not affect long-term community composition. Temporal heterogeneity in forage abundance likely contributes to the large spatial requirement of snow geese during staging.

  13. Phenology of temperate trees in tropical climates

    NASA Astrophysics Data System (ADS)

    Borchert, Rolf; Robertson, Kevin; Schwartz, Mark D.; Williams-Linera, Guadalupe

    2005-09-01

    Several North American broad-leaved tree species range from the northern United States at ˜47°N to moist tropical montane forests in Mexico and Central America at 15-20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from -10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.

  14. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    USGS Publications Warehouse

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  15. Seeding Method Influences Warm-Season Grass Abundance and Distribution but not Local Diversity in Grassland Restoration

    USGS Publications Warehouse

    Yurkonis, K.A.; Wilsey, B.J.; Moloney, K.A.; Drobney, P.; Larson, D.L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands. ?? 2010 Society for Ecological Restoration International.

  16. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna.

    PubMed

    Priyadarshini, K V R; Prins, Herbert H T; de Bie, Steven; Heitkönig, Ignas M A; Woodborne, Stephan; Gort, Gerrit; Kirkman, Kevin; Fry, Brian; de Kroon, Hans

    2014-04-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used (15)N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ(15)N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ(15)N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.

  17. The interaction between freezing tolerance and phenology in temperate deciduous trees

    PubMed Central

    Vitasse, Yann; Lenz, Armando; Körner, Christian

    2014-01-01

    Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748

  18. Molecular cloning of the MARCH family in grass carp (Ctenopharyngodon idellus) and their response to grass carp reovirus challenge.

    PubMed

    Ou, Mi; Huang, Rong; Xiong, Lv; Luo, Lifei; Chen, Geng; Liao, Lanjie; Li, Yongming; He, Libo; Zhu, Zuoyan; Wang, Yaping

    2017-04-01

    Grass carp (Ctenopharyngodon idellus) is an economical aquaculture species in China, and the Grass Carp Reovirus (GCRV) that causes hemorrhagic disease seriously affects the grass carp cultivation industry. Substantial evidence indicates that there is an association between the membrane-associated RING-CH family of E3 ligase (MARCH) family and immune defense in mammals, while functional studies on non-mammalian MARCH proteins are limited. In order to know the characteristics of the MARCH genes in C. idellus, eight MARCH genes (MARCH1, 2, 5, 6, 7, 8, 9 and 11) were cloned and the open reading frames (ORF) were identified in grass carp. All MARCH proteins in grass carp contained an RING-CH domain, which is characteristic of the MARCH protein. The phylogenetic analysis revealed that different MARCH proteins gathered into their separate clusters. All eight members of the MARCH gene family were detected in all tissues sampled, but the relative expression level differed. In addition, the mRNA expression of all the MARCHs was regulated at different levels in the immune organs after a GCRV challenge, and they responded robustly in both the intestine and liver. The mRNA expression of MARCH8, MHC II, TfR, IL1RAP, EGR1, and DUSP1 in the intestine after GCRV infection was analyzed, and the results showed that MARCH8 could negatively regulate TfR, IL1RAP, EGR1, and DUSP1, which signaled via the MAPK or NF-κB-activation pathways that play vital roles in immunity. Our findings identified a novel gene family in C. idellus and provided novel evidence that MARCH genes are inducible and involved in the immune response. Moreover, MARCH8 might function to negatively regulate immune receptors in C. idellus. Therefore, the MARCH might play a vital role in regulating the immune response of C. idellus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  20. Lianas as invasive species in North America: Chapter 28

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.

    2015-01-01

    Liana diversity is typically low in the temperate zones; however, the influx of non-native invasive liana species in North America has increased local diversity at the expense of native habitats and species. Some of the most illustrative studies of invasive lianas in temperate North America compared the biological traits of invasive lianas with native congeners or ecological analogs. The majority of these studies focused on two species, Celastrus orbiculatus (oriental bittersweet) and Lonicera japonica (Japanese honeysuckle). Temperate zone lianas generally have higher photosynthetic rates than other early successional species and their host trees. Invasive lianas are having an increasing impact on the dynamics and trajectories of North American plant communities. They often exhibit superior growth and survival compared to their native counterparts, and in some cases, invasive lianas may directly contribute to the decline of their native correlates.

  1. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species.

  2. Chapter 18. Grasses

    Treesearch

    Stephen B. Monsen; Richard Stevens; Nancy Shaw

    2004-01-01

    Grasses are adapted to a wide range of edaphic and climatic conditions and are found in nearly all plant communities. In the Western United States, grasses are seeded on disturbances to provide forage (Hull and Holmgren 1964; Vallentine 1989), wildlife habitat (Plummer and others 1968), and watershed stability (Cornelius 1946; Hafenrichter and others 1949; Piper 1934;...

  3. Tangled trends for temperate rain forests as temperatures tick up

    Treesearch

    Noreen Parks; Tara Barrett

    2013-01-01

    Climate change is altering growing conditions in the temperate rain forest region that extends from northern California to the Gulf of Alaska. Longer, warmer growing seasons are generally increasing the overall potential for forest growth in the region. However, species differ in their ability to adapt to changing conditions. For example, researchers with Pacific...

  4. UV induced visual cues in grasses

    PubMed Central

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji; Lukose, Sujith; Gopakumar, Bhaskaran; Koshy, Konnath Chacko

    2013-01-01

    Grasses are traditionally considered as wind pollinated, however, field observations confirmed frequent insect visits to grass flowers, suggesting insect pollination. Fruit and seed predators inflict heavy losses to cereals and millets during their growth, maturation and storage. The actual factors guiding insects and predators to grass flowers, fruits and seeds are not clear. Here, we report attractive blue fluorescence emissions on grass floral parts such as glumes, lemma, palea, lodicules, staminal filaments, pollens and fruits in ultraviolet (UV) 366 nm, whereas the stigmatic portions were not blue, but red fluorescent. We characterized the blue fluorescent constituent in grass reproductive structures as ferulic acid (FA). Fluorescence spectra of blue-emitting grass floral, seed extracts and isolated FA on excitation at 366 nm showed their emissions at 420–460 nm. We propose these FA-based blue fluorescence emissions in grass reproductive structures as visual cues that attract pollinators, predators and even pests towards them. PMID:24061408

  5. Spread of common native and invasive grasses and ruderal trees following anthropogenic disturbances in a tropical dry forest

    Treesearch

    Xavier A. Jaime; Skip J. Van Bloem; Frank H. Koch; Stacy A. C. Nelson

    2017-01-01

    Introduction: A fundamental challenge to the integrity of tropical dry forest ecosystems is the invasion of nonnative grass species. These grasses compete for resources and fuel anthropogenic wildfires. In 2012, a bulldozer from the Puerto Rico Electric Power Authority cleared a 570-m trail from a state road into a mature dry forest section...

  6. Establishment of the woody grass Arundinaria gigantea for riparian restoration

    Treesearch

    Adam J. Dattilo; Charles C. Rhoades

    2005-01-01

    Canebrakes are dense stands of Arundinaria gigantea (Walt.) Muhl. that covered large areas of the southeastern North America. With agricultural development, canebrakes were quickly converted to crop and pastureland and now occur only in small, isolated patches. There is growing interest in the use of A. gigantea and other temperate bamboo species in riparian and...

  7. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration.

    PubMed

    Zwetsloot, Marie J; Kessler, André; Bauerle, Taryn L

    2018-04-01

    Root-soil interactions fundamentally affect the terrestrial carbon (C) cycle and thereby ecosystem feedbacks to climate change. This study addressed the question of whether the secondary metabolism of different temperate forest tree species can affect soil microbial respiration. We hypothesized that phenolics can both increase and decrease respiration depending on their function as food source, mobilizer of other soil resources, signaling compound, or toxin. We analyzed the phenolic compounds from root exudates and root tissue extracts of six tree species grown in a glasshouse using high-performance liquid chromatography. We then tested the effect of individual phenolic compounds, representing the major identified phenylpropanoid compound classes, on microbial respiration through a 5-d soil incubation. Phenolic root profiles were highly species-specific. Of the eight classes identified, flavonoids were the most abundant, with flavanols being the predominating sub-class. Phenolic effects on microbial respiration ranged from a 26% decrease to a 46% increase, with reduced respiration occurring in the presence of compounds possessing a catechol ring. Tree species variation in root phenolic composition influences the magnitude and direction of root effects on microbial respiration. Our data support the hypothesis that functional group rather than biosynthetic class determines the root phenolic effect on soil C cycling. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses

    PubMed Central

    Balachowski, Jennifer A.; Bristiel, Pauline M.; Volaire, Florence A.

    2016-01-01

    Background and Aims Evidence suggests drought severity is increasing due to climate change, but strategies promoting severe drought survival in perennial grasses have been seldom explored. This is particularly true of summer dormancy, an adaptation common in summer-dry Mediterranean-type climates. In addition, though theory predicts superior drought survival results in lower potential productivity, studies rarely measure both drought survival and growth under optimal conditions. Methods Physiological and functional ecological approaches were integrated to quantify interspecific variation in foliar and root traits in a suite of eight California perennial grass species. In a glasshouse experiment, summer dormancy, foliar functional trait variation, and seasonal growth and phenology under non-limiting water conditions and dehydration tolerance under progressive drought were quantified. In a second glasshouse study, root functional traits were quantified under non-limiting water conditions in rhizotrons. Key Results Summer dormancy was associated with higher dehydration tolerance, and negatively associated with traits conferring dehydration avoidance. Species with greater summer dormancy were characterized by greater springtime productivity, earlier reproduction, and a shallow and fine root system, which are indicative of dehydration escape. Summer dormancy was associated with an acquisitive, competitive functional strategy in spring, and a conservative strategy in summer. Conclusions Both the escape and acquisitive springtime strategies observed in summer dormant perennial taxa are typically associated with annual grasses. California grasslands were once dominated by perennial species, but have been overtaken by non-native Mediterranean annual grasses, which are expected to be further favoured by climate change. Owing to functional similarity with these exotic annuals, it is suggested that native summer dormant taxa may play an important ecological role in the future

  9. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses.

    PubMed

    Balachowski, Jennifer A; Bristiel, Pauline M; Volaire, Florence A

    2016-08-01

    Evidence suggests drought severity is increasing due to climate change, but strategies promoting severe drought survival in perennial grasses have been seldom explored. This is particularly true of summer dormancy, an adaptation common in summer-dry Mediterranean-type climates. In addition, though theory predicts superior drought survival results in lower potential productivity, studies rarely measure both drought survival and growth under optimal conditions. Physiological and functional ecological approaches were integrated to quantify interspecific variation in foliar and root traits in a suite of eight California perennial grass species. In a glasshouse experiment, summer dormancy, foliar functional trait variation, and seasonal growth and phenology under non-limiting water conditions and dehydration tolerance under progressive drought were quantified. In a second glasshouse study, root functional traits were quantified under non-limiting water conditions in rhizotrons. Summer dormancy was associated with higher dehydration tolerance, and negatively associated with traits conferring dehydration avoidance. Species with greater summer dormancy were characterized by greater springtime productivity, earlier reproduction, and a shallow and fine root system, which are indicative of dehydration escape. Summer dormancy was associated with an acquisitive, competitive functional strategy in spring, and a conservative strategy in summer. Both the escape and acquisitive springtime strategies observed in summer dormant perennial taxa are typically associated with annual grasses. California grasslands were once dominated by perennial species, but have been overtaken by non-native Mediterranean annual grasses, which are expected to be further favoured by climate change. Owing to functional similarity with these exotic annuals, it is suggested that native summer dormant taxa may play an important ecological role in the future of both natural and restored California grasslands

  10. Changes in Seagrass Species Composition in Northwestern Gulf of Mexico Estuaries: Effects on Associated Seagrass Fauna

    PubMed Central

    Ray, Brandon R.; Johnson, Matthew W.; Cammarata, Kirk; Smee, Delbert L.

    2014-01-01

    The objective of this study was to measure the communities associated with different seagrass species to predict how shifts in seagrass species composition may affect associated fauna. In the northwestern Gulf of Mexico, coverage of the historically dominant shoal grass (Halodule wrightii) is decreasing, while coverage of manatee grass (Syringodium filiforme) and turtle grass (Thalassia testudinum) is increasing. We conducted a survey of fishes, crabs, and shrimp in monospecific beds of shoal, manatee, and turtle grass habitats of South Texas, USA to assess how changes in sea grass species composition would affect associated fauna. We measured seagrass parameters including shoot density, above ground biomass, epiphyte type, and epiphyte abundance to investigate relationships between faunal abundance and these seagrass parameters. We observed significant differences in communities among three seagrass species, even though these organisms are highly motile and could easily travel among the different seagrasses. Results showed species specific relationships among several different characteristics of the seagrass community and individual species abundance. More work is needed to discern the drivers of the complex relationships between individual seagrass species and their associated fauna. PMID:25229897

  11. Temper Foam

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Fabricated by Expanded Rubber & Plastics Corporation, Temper Foam provides better impact protection for airplane passengers and enhances passenger comfort on long flights because it distributes body weight and pressure evenly over the entire contact area. Called a "memory foam" it matches the contour of the body pressing against it and returns to its original shape once the pressure is removed. As a shock absorber, a three-inch foam pad has the ability to absorb the impact of a 10-foot fall by an adult. Applications include seat cushioning for transportation vehicles, padding for furniture and a variety of athletic equipment medical applications including wheelchair padding, artificial limb socket lining, finger splint and hand padding for burn patients, special mattresses for the bedridden and dental stools. Production and sales rights are owned by Temper Foam, Inc. Material is manufactured under license by the Dewey and Almy Division of Grace Chemical Corporation. Distributors of the product are Kees Goebel Medical Specialties, Inc. and Alimed, Inc. They sell Temper Foam in bulk to the fabricators who trim it to shapes required by their customers.

  12. The genome of the endophytic bacterium H. frisingense GSF30(T) identifies diverse strategies in the Herbaspirillum genus to interact with plants.

    PubMed

    Straub, Daniel; Rothballer, Michael; Hartmann, Anton; Ludewig, Uwe

    2013-01-01

    The diazotrophic, bacterial endophyte Herbaspirillum frisingense GSF30(T) has been identified in biomass grasses grown in temperate climate, including the highly nitrogen-efficient grass Miscanthus. Its genome was annotated and compared with related Herbaspirillum species from diverse habitats, including H. seropedicae, and further well-characterized endophytes. The analysis revealed that Herbaspirillum frisingense lacks a type III secretion system that is present in some related Herbaspirillum grass endophytes. Together with the lack of components of the type II secretion system, the genomic inventory indicates distinct interaction scenarios of endophytic Herbaspirillum strains with plants. Differences in respiration, carbon, nitrogen and cell wall metabolism among Herbaspirillum isolates partially correlate with their different habitats. Herbaspirillum frisingense is closely related to strains isolated from the rhizosphere of phragmites and from well water, but these lack nitrogen fixation and metabolism genes. Within grass endophytes, the high diversity in their genomic inventory suggests that even individual plant species provide distinct, highly diverse metabolic niches for successful endophyte-plant associations.

  13. The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants

    PubMed Central

    Straub, Daniel; Rothballer, Michael; Hartmann, Anton; Ludewig, Uwe

    2013-01-01

    The diazotrophic, bacterial endophyte Herbaspirillum frisingense GSF30T has been identified in biomass grasses grown in temperate climate, including the highly nitrogen-efficient grass Miscanthus. Its genome was annotated and compared with related Herbaspirillum species from diverse habitats, including H. seropedicae, and further well-characterized endophytes. The analysis revealed that Herbaspirillum frisingense lacks a type III secretion system that is present in some related Herbaspirillum grass endophytes. Together with the lack of components of the type II secretion system, the genomic inventory indicates distinct interaction scenarios of endophytic Herbaspirillum strains with plants. Differences in respiration, carbon, nitrogen and cell wall metabolism among Herbaspirillum isolates partially correlate with their different habitats. Herbaspirillum frisingense is closely related to strains isolated from the rhizosphere of phragmites and from well water, but these lack nitrogen fixation and metabolism genes. Within grass endophytes, the high diversity in their genomic inventory suggests that even individual plant species provide distinct, highly diverse metabolic niches for successful endophyte-plant associations. PMID:23825472

  14. Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex

    USDA-ARS?s Scientific Manuscript database

    The genus Diaporthe comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Cryptic diversification, phenotypic plasticity and extensive host associations have long complicated accurate identifications of species in this genus. The delimitation of the ge...

  15. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate–boreal forest

    PubMed Central

    Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico

    2012-01-01

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083

  16. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    PubMed

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  17. Species delimitation in frogs from South American temperate forests: The case of Eupsophus, a taxonomically complex genus with high phenotypic variation

    PubMed Central

    Correa, Claudio; Vásquez, Dayana; Castro-Carrasco, Camila; Zúñiga-Reinoso, Álvaro; Ortiz, Juan Carlos; Palma, R. Eduardo

    2017-01-01

    One of the most characteristic and abundant amphibian taxa of South American temperate forests is Eupsophus. The ten currently recognized species of the genus have been divided in two species groups, roseus and vertebralis, but most of them, eight, belong to the roseus group. Recent phylogeographic and phylogenetic studies have suggested that species diversity of the roseus group could be underestimated. An examination of the literature shows that species of the roseus group exhibit high levels of variation in their external characteristics, particularly those used as diagnostic characters, which compromises their taxonomy and hinders their field recognition. High levels of variation were also observed in several new populations of the roseus group discovered in southern Chile (36°-40°S), which could not be identified to the species level by their external characteristics. On the other hand, the literature reveals a scarse karyotype differentiation and a high bioacoustic uniformity among the species of the roseus group. We performed a Bayesian phylogenetic analysis using mitochondrial and nuclear genes to reevaluate the species diversity of the roseus group, including all the nominal species of Eupsophus and new populations. This analysis was complemented with three species delimitation approaches, General Mixed Yule Coalescent, multi-rate Poisson Tree Process and Automatic Barcode Gap Discovery. We favored a conservative delimitation of only four species for the roseus group, a result more consistent with the distribution of pairwise genetic distances, and the available chromosome and bioacoustic evidence. The four recognized lineages, which have nearly completely allopatric distributions, are named after the earliest nominal species that they include, but because high levels of phenotypic variation, they are not diagnosable by consistent differences in external morphology. We discuss the implications of this new proposal for the taxonomy and conservation of the

  18. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    PubMed

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  19. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    PubMed

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  20. Invasion of the tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) in temperate grasslands

    PubMed Central

    Ortiz-Gamino, Diana; Pérez-Rodríguez, Paulino

    2016-01-01

    The tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) presents a broad distribution (e.g., 56 countries from four continents). It is generally assumed that temperature appears to limit the success of tropical exotic species in temperate climates. However, the distribution range of this species could advance towards higher elevations (with lower temperatures) where no tropical species currently occur. The aim of this study was to evaluate the soil and climatic variables that could be closely associated with the distribution of P. corethrurus in four sites along an altitudinal gradient in central Veracruz, Mexico. We predicted that the distribution of P. corethrurus would be more related to climate variables than edaphic parameters. Five sampling points (in the grassland) were established at each of four sites along an altitudinal gradient: Laguna Verde (LV), La Concepción (LC), Naolinco (NA) and Acatlán (AC) at 11–55, 992–1,025, 1,550–1,619 y 1,772–1,800 masl, respectively. The climate ranged from tropical to temperate along the altitudinal gradient. Ten earthworm species (5 Neotropical, 4 Palearctic and 1 Nearctic) were found along the gradient, belonging to three families (Rhinodrilidae, Megascolecide and Lumbricidae). Soil properties showed a significant association (positive for Ngrass, pH, permanent wilting point, organic matter and P; and negative for Total N, K and water-holding capacity) with the abundance of the earthworm community. Also there seems to be a relationship between climate and earthworm distribution along the altitudinal gradient. P. corethrurus was recorded at tropical (LV and LC) and temperate sites (NA) along the altitudinal gradient. Our results reveal that soil fertility determines the abundance of earthworms and site (climate) can act as a barrier to their migration. Further research is needed to determine the genetic structure and lineages of P. corethrurus along altitudinal gradients. PMID:27761348

  1. Cloning and preliminary functional studies of the JAM-A gene in grass carp (Ctenopharyngodon idellus).

    PubMed

    Du, Fukuan; Su, Jianguo; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2013-06-01

    Grass carp (Ctenopharyngodon idellus) is a very important aquaculture species in China and other South-East Asian countries; however, disease outbreaks in this species are frequent, resulting in huge economic losses. Grass carp hemorrhage caused by grass carp reovirus (GCRV) is one of the most serious diseases. Junction adhesion molecule A (JAM-A) is the mammalian receptor for reovirus, and has been well studied. However, the JAM-A gene in grass carp has not been studied so far. In this study, we cloned and elucidated the structure of the JAM-A gene in grass carp (GcJAM-A) and then studied its functions during grass carp hemorrhage. GcJAM-A is composed of 10 exons and 9 introns, and its full-length cDNA is 1833 bp long, with an 888 bp open reading frame (ORF) that encodes a 295 amino acid protein. The GcJAM-A protein is predicted to contain a typical transmembrane domain. Maternal expression pattern of GcJAM-A is observed during early embryogenesis, while zygote expression occurs at 8 h after hatching. GcJAM-A is expressed strongly in the gill, liver, intestine and kidney, while it is expressed poorly in the blood, brain, spleen and head kidney. Moreover, lower expression is observed in the gill, liver, intestine, brain, spleen and kidney of 30-month-old individuals, compared with 6-month-old. In a GcJAM-A-knockdown cell line (CIK) infected with GCRV, the expression of genes involved in the interferon and apoptosis pathways was significantly inhibited. These results suggest that GcJAM-A could be a receptor for GCRV. We have therefore managed to characterize the GcJAM-A gene and provide evidence for its role as a receptor for GCRV. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    PubMed

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  3. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen.

    PubMed

    Zhang, Hai-Yang; Yu, Qiang; Lü, Xiao-Tao; Trumbore, Susan E; Yang, Jun-Jie; Han, Xing-Guo

    2016-04-01

    Shrub encroachment induced by global change and human disturbance strongly affects ecosystem structure and function. In this study, we explore the degree to which invading leguminous shrubs affected neighboring grasses, including via the transfer of fixed nitrogen (N). We measured N concentrations and natural abundance (15)N of shoot tissues from three dominant grasses from different plant functional groups across seven distances along a local transect (up to 500 cm) to the leguminous shrub, Caragana microphylla. C. microphylla did transfer fixed N to neighboring grasses, but the amount and distance of N transferred were strongly species-specific. Shoot N concentrations decreased significantly with distance from C. microphylla, for a rhizomatous grass, Leymus chinensis, and a bunchgrass, Achnatherum sibiricum. However, N concentrations of another bunchgrass, Stipa grandis, were higher only directly underneath the shrub canopy. Shoot δ(15)N values of L. chinensis were enriched up to 500 cm from the shrub, but for S. grandis were enriched only below the shrub canopy. In contrast, δ(15)N of A. sibiricum did not change along the 500-cm transect. Our results indicated the rhizomatous grass transferred fixed N over long distances while bunchgrasses did not. The presence of C. microphylla increased the shoot biomass of L. chinensis but decreased that of S. grandis and A. sibiricum. These findings highlight the potential role of nutrient-acquisition strategies of neighboring grasses in moderating the interspecific variation of fixed N transfer from the leguminous shrub. Overall, leguminous shrubs have either positive or negative effects on the neighboring grasses and dramatically affect plant community composition and structure.

  4. Brown world forests: increased ungulate browsing keeps temperate trees in recruitment bottlenecks in resource hotspots.

    PubMed

    Churski, Marcin; Bubnicki, Jakub W; Jędrzejewska, Bogumiła; Kuijper, Dries P J; Cromsigt, Joris P G M

    2017-04-01

    Plant biomass consumers (mammalian herbivory and fire) are increasingly seen as major drivers of ecosystem structure and function but the prevailing paradigm in temperate forest ecology is still that their dynamics are mainly bottom-up resource-controlled. Using conceptual advances from savanna ecology, particularly the demographic bottleneck model, we present a novel view on temperate forest dynamics that integrates consumer and resource control. We used a fully factorial experiment, with varying levels of ungulate herbivory and resource (light) availability, to investigate how these factors shape recruitment of five temperate tree species. We ran simulations to project how inter- and intraspecific differences in height increment under the different experimental scenarios influence long-term recruitment of tree species. Strong herbivore-driven demographic bottlenecks occurred in our temperate forest system, and bottlenecks were as strong under resource-rich as under resource-poor conditions. Increased browsing by herbivores in resource-rich patches strongly counteracted the increased escape strength of saplings in these patches. This finding is a crucial extension of the demographic bottleneck model which assumes that increased resource availability allows plants to more easily escape consumer-driven bottlenecks. Our study demonstrates that a more dynamic understanding of consumer-resource interactions is necessary, where consumers and plants both respond to resource availability. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.

    PubMed

    Meerschaert, Mark M; Sabzikar, Farzad

    2014-07-01

    Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.

  6. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass

    Treesearch

    Xiaoqing Yu; Paula M. Pijut; Stephen Byrne; Torben Asp; Guihua Bai; Yiwei Jiang

    2015-01-01

    Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global...

  7. Body size variation of mammals in a fragmented, temperate rainforest.

    PubMed

    Lomolino, Mark V; Perault, David R

    2007-08-01

    Body size is perhaps the most important trait of an organism, affecting all of its physiological and ecological processes and, therefore, fundamentally influencing its ability to survive and reproduce in different environments, including those that have been modified by human activities. We tested the hypothesis that anthropogenic transformation of old-growth forest landscapes can result in significant intraspecific changes in body size of resident biotas. We collected data on five species of nonvolant mammals (common deer mouse[Peromyscus maniculatus], northwestern deer mouse[P. keeni], southern red-backed vole[Clethrionomys gapperi], montane shrew[Sorex monticolus], and Trowbridge's shrew[S. trowbridgii]) to test whether body size (mass and length) of these species varied across types of land cover (macrohabitats) and along elevational gradients of the fragmented, temperate rainforest of Olympic National Forest (Washington, U.S.A.). We measured 2168 and 1134 individuals for body mass and body length, respectively. Three species (P. keeni, S. monticolus, and S. trowbridgii) exhibited significantly different body size among macrohabitats: individuals from fragments were smaller than those in old-growth corridors and those in more extensive stands of old-growth forest. Body size of P. keeni was significantly correlated with elevation along corridors, peaking near the medial reaches of the corridors. The effects of anthropogenic transformations of this landscape of old-growth, temperate rainforest, although not universal among the five species, were significant and rapid-developing in just a few decades following tree harvests. Thus, anthropogenic fragmentation may influence not only the diversity, species composition, and densities of local biotas, but also one of the most fundamental and defining characteristics of native species-their body size.

  8. Early growth tolerances of grasses, shrubs, and trees to boron in tunnel spoil

    Treesearch

    Parker F. Pratt; Eamor C. Nord; Francis L. Bair

    1971-01-01

    The effects of boron and salts in spoil material on survival and growth of 44 grass, shrub, and tree species were tested under greenhouse conditions. The spoil used was from the Angeles Tunnel of the California Aqueduct's West Branch now being built. Several species within each plant group apparently can tolerate boron, but field tests will be needed before most...

  9. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    USGS Publications Warehouse

    Coates, Peter S.; Ricca, Mark; Prochazka, Brian; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.

    2016-01-01

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

  10. Cedrol, a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus.

    PubMed

    Eneh, Lynda K; Saijo, Hiromi; Borg-Karlson, Anna-Karin; Lindh, Jenny M; Rajarao, Gunaratna Kuttuva

    2016-09-17

    Cedrol, a sesquiterpene alcohol, is the first identified oviposition attractant for African malaria vectors. Finding the natural source of this compound might help to elucidate why Anopheles gambiae and Anopheles arabiensis prefer to lay eggs in habitats containing it. Previous studies suggest that cedrol may be a fungal metabolite and the essential oil of grass rhizomes have been described to contain a high amount of different sesquiterpenes. Rhizomes of the grass Cyperus rotundus were collected in a natural malaria mosquito breeding site. Two fungi were isolated from an aqueous infusion with these rhizomes. They were identified as Fusarium falciforme and a species in the Fusarium fujikuroi species complex. Volatile compounds were collected from the headspace above fungal cultures on Tenax traps which were analysed by gas chromatography-mass spectrometry (GCMS). Cedrol and a cedrol isomer were detected in the headspace above the F. fujikuroi culture, while only cedrol was detected above the F. falciforme culture. Cedrol an oviposition attractant for African malaria vectors is produced by two fungi species isolated from grass rhizomes collected from a natural mosquito breeding site.

  11. The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition.

    PubMed

    Ciepiela, Grażyna Anna; Godlewska, Agnieszka; Jankowska, Jolanta

    2016-02-01

    The objective of this study was to determine the effect of the biostimulant Kelpak and different nitrogen rates on cellulose, hemicellulose and lignin contents as well as non-structural carbohydrates in orchard grass and Braun's festulolium. The experiment was a split-plot arrangement with three replicates. It was set up at the experimental facility of the University of Natural Sciences and Humanities, Siedlce, in late April 2009. The following factors were examined: biostimulant with the trade name Kelpak SL applied at 2 dm(3) ha(-1) and a control-no biostimulant; nitrogen application rates 50 and 150 kg ha(-1) and a control (0 kg ha(-1)); pure stands of grass species grown in monoculture--orchard grass (Dactylis glomerata), cv. Amila,-Braun's festulolium (Festulolium braunii), cv. Felopa. Kelpak significantly increased non-structural carbohydrates, and increasing nitrogen rates reduced the concentration of these components in plants. Increasing nitrogen rates significantly decreased cellulose, hemicellulose, lignin and non-structural carbohydrate contents. Compared with orchard grass, Braun's festulolium proved to be of a higher nutritional value due to lower cellulose, hemicellulose and lignin contents and more non-structural carbohydrates. The aforementioned contents in the grasses differed significantly depending on the cut. Most cellulose and non-structural carbohydrates were determined in second-cut grass whereas most hemicellulose and lignin in second-cut grass.

  12. Differentiation of plant age in grasses using remote sensing

    NASA Astrophysics Data System (ADS)

    Knox, Nichola M.; Skidmore, Andrew K.; van der Werff, Harald M. A.; Groen, Thomas A.; de Boer, Willem F.; Prins, Herbert H. T.; Kohi, Edward; Peel, Mike

    2013-10-01

    Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (AVNIRn+log(ASWIR2n))/(AVNIRn-log(ASWIR2n)), where AVNIRn and ASWIR2n are the respective normalised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.

  13. Pests in ornamental grasses

    USDA-ARS?s Scientific Manuscript database

    Ornamental perennial grasses are becoming increasingly popular in the landscape due to their beauty and ease of care. Although few pest problems are encountered in ornamental grasses, they are not immune to insects and disease. Two lined spittlebugs (Prosapia bicincta) can cause damage to ornament...

  14. Losses of female song with changes from tropical to temperate breeding in the New World blackbirds

    PubMed Central

    Price, J. Jordan; Lanyon, Scott M.; Omland, Kevin E.

    2009-01-01

    Birds in which both sexes produce complex songs are thought to be more common in the tropics than in temperate areas, where typically only males sing. Yet the role of phylogeny in this apparent relationship between female song and latitude has never been examined. Here, we reconstruct evolutionary changes in female song and breeding latitude in the New World blackbirds (Icteridae), a family with both temperate and tropical representatives. We provide strong evidence that members of this group have moved repeatedly from tropical to temperate breeding ranges and, furthermore, that these range shifts were associated with losses of female song more often than expected by chance. This historical perspective suggests that male-biased song production in many temperate species is the result not of sexual selection for complex song in males but of selection against such songs in females. Our results provide new insights into the differences we see today between tropical and temperate songbirds, and suggest that the role of sexual selection in the evolution of bird song might not be as simple as we think. PMID:19324802

  15. Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics

    DOE PAGES

    Sumiyoshi, Yudai; Crow, Susan E.; Litton, Creighton M.; ...

    2016-07-08

    Perennial grasses can sequester soil organic carbon (SOC) in sustainably managed biofuel systems, directly mitigating atmospheric CO 2 concentrations while simultaneously generating biomass for renewable energy. Our objective was to quantify SOC accumulation and identify the primary drivers of belowground C dynamics in a zero-tillage production system of tropical perennial C4 grasses grown for biofuel feedstock in Hawaii. Specifically, the quantity, quality, and fate of soil C inputs were determined for eight grass accessions – four varieties each of napier grass and guinea grass. Carbon fluxes (soil CO 2 efflux, aboveground net primary productivity, litterfall, total belowground carbon flux, rootmore » decay constant), C pools (SOC pool and root biomass), and C quality (root chemistry, C and nitrogen concentrations, and ratios) were measured through three harvest cycles following conversion of a fallow field to cultivated perennial grasses. A wide range of SOC accumulation occurred, with both significant species and accession effects. Aboveground biomass yield was greater, and root lignin concentration was lower for napier grass than guinea grass. Structural equation modeling revealed that root lignin concentration was the most important driver of SOC pool: varieties with low root lignin concentration, which was significantly related to rapid root decomposition, accumulated the greatest amount of SOC. Roots with low lignin concentration decomposed rapidly, but the residue and associated microbial biomass/by-products accumulated as SOC. In general, napier grass was better suited for promoting soil C sequestration in this system. Further, high-yielding varieties with low root lignin concentration provided the greatest climate change mitigation potential in a ratoon system. By understanding the factors affecting SOC accumulation and the net greenhouse gas trade-offs within a biofuel production system will aid in crop selection to meet multiple goals toward

  16. Upgrading food wastes by means of bromelain and papain to enhance growth and immunity of grass carp (Ctenopharyngodon idella).

    PubMed

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp.

  17. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    USDA-ARS?s Scientific Manuscript database

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  18. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence

    PubMed Central

    2015-01-01

    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0–20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20–90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. PMID:26633177

  19. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    NASA Astrophysics Data System (ADS)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  20. Toxicity of Inorganic Mercury to Native Australian Grass Grown in Three Different Soils.

    PubMed

    Mahbub, Khandaker Rayhan; Kader, Mohammed; Krishnan, Kannan; Labbate, Maurizio; Naidu, Ravi; Megharaj, Mallavarapu

    2017-06-01

    In this study, three native Australian grasses namely Iseilema membranaceum (Barcoo), Dichanthium sericeum (Queensland Blue) and Sporobolus africanus (Tussock) were grown in three different soils spiked with different concentrations of inorganic mercury and the root elongation was monitored up to 28 days following the germination. Results showed that mercury at certain concentrations significantly inhibited the root growth of all three tested native grasses grown in three soils, however, the toxicity was less in the soil with high organic carbon content and acidic pH. The calculated EC 50 values ranged from 10 to 224 mg/kg total Hg in soil. However, the EC 10 values indicated that existing guideline values for mercury may be of protective to the native Australian vegetation. Considering their tolerance to soil mercury, these grass species have the potential for their use in rehabilitation of mercury contaminated sites.

  1. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  2. A Tensile Strength of Bermuda Grass and Vetiver Grass in Terms of Root Reinforcement Ability Toward Soil Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Noorasyikin, M. N.; Zainab, M.

    2016-07-01

    An examination on root characteristics and root properties has been implemented in this study. Two types of bioengineering were chose which are Vetiver grass and Bermuda grass as these grasses were widely applied for slope stabilization. The root samples were taken to the laboratory to investigate its classification, characteristics and strength. The root of both grasses was found grow with fibrous root matrix system. In terms of root anchorage, the root matrix system of Vetiver grass was exhibits more strengthen than the Bermuda grass. However, observation on root image from Scanning Electron Microscope test reveals that the root of Vetiver grass becomes non-porous as the moisture content reduced. Meanwhile, the root tensile strength of Bermuda grass was obtained acquired low value with higher percentage of moisture content, root morphology and bonding strength. The results indicated that the root tensile strength is mainly influence by percentage of moisture content and root morphology.

  3. Coherent Microwave Scattering Model of Marsh Grass

    NASA Astrophysics Data System (ADS)

    Duan, Xueyang; Jones, Cathleen E.

    2017-12-01

    In this work, we developed an electromagnetic scattering model to analyze radar scattering from tall-grass-covered lands such as wetlands and marshes. The model adopts the generalized iterative extended boundary condition method (GIEBCM) algorithm, previously developed for buried cylindrical media such as vegetation roots, to simulate the scattering from the grass layer. The major challenge of applying GIEBCM to tall grass is the extremely time-consuming iteration among the large number of short subcylinders building up the grass. To overcome this issue, we extended the GIEBCM to multilevel GIEBCM, or M-GIEBCM, in which we first use GIEBCM to calculate a T matrix (transition matrix) database of "straws" with various lengths, thicknesses, orientations, curvatures, and dielectric properties; we then construct the grass with a group of straws from the database and apply GIEBCM again to calculate the T matrix of the overall grass scene. The grass T matrix is transferred to S matrix (scattering matrix) and combined with the ground S matrix, which is computed using the stabilized extended boundary condition method, to obtain the total scattering. In this article, we will demonstrate the capability of the model by simulating scattering from scenes with different grass densities, different grass structures, different grass water contents, and different ground moisture contents. This model will help with radar experiment design and image interpretation for marshland and wetland observations.

  4. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    USGS Publications Warehouse

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  5. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition

    PubMed Central

    Meckel, Heather; Reichmann, Lara G.; Polley, H. Wayne; Fay, Philip A.

    2017-01-01

    Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparius) and switchgrass (Panicum virgatum). We predicted that a) the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b) competitive effect and response would be negatively correlated and c) soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding) ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2–5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass’ competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  6. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition.

    PubMed

    Schwinning, Susanne; Meckel, Heather; Reichmann, Lara G; Polley, H Wayne; Fay, Philip A

    2017-01-01

    Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparius) and switchgrass (Panicum virgatum). We predicted that a) the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b) competitive effect and response would be negatively correlated and c) soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding) ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  7. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation.

    PubMed

    Yin, Xiao-Han; Sterck, Frank; Hao, Guang-You

    2018-04-23

    Some temperate tree species mitigate the negative impacts of frost-induced xylem cavitation by restoring impaired hydraulic function via positive pressures, and may therefore be more resistant to frost fatigue (the phenomenon that post-freezing xylem becomes more susceptible to hydraulic dysfunction) than nonpressure-generating species. We test this hypothesis and investigate underlying anatomical/physiological mechanisms. Using a common garden experiment, we studied key hydraulic traits and detailed xylem anatomical characteristics of 18 sympatric tree species. These species belong to three functional groups, that is, one generating both root and stem pressures (RSP), one generating only root pressure (RP), and one unable to generate such pressures (NP). The three functional groups diverged substantially in hydraulic efficiency, resistance to drought-induced cavitation, and frost fatigue resistance. Most notably, RSP and RP were more resistant to frost fatigue than NP, but this was at the cost of reduced hydraulic conductivity for RSP and reduced resistance to drought-induced cavitation for RP. Our results show that, in environments with strong frost stress: these groups diverge in hydraulic functioning following multiple trade-offs between hydraulic efficiency, resistance to drought and resistance to frost fatigue; and how differences in anatomical characteristics drive such divergence across species. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. North American crop wild relatives of temperate berries (Fragaria L., Ribes L., Rubus L., and Vaccinium L.)

    USDA-ARS?s Scientific Manuscript database

    The crop wild relatives of temperate berry species abound on the North American continent; >170 species are endemic in North America. The development and production of berry crops, such as strawberries (Fragaria L.), currants and gooseberries (Ribes L.), raspberries and blackberries (Rubus L.), blue...

  9. Ecological traps in shallow coastal waters-Potential effect of heat-waves in tropical and temperate organisms.

    PubMed

    Vinagre, Catarina; Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A V

    2018-01-01

    Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.

  10. Coleopterans Associated with Plants that form Phytotelmata in Subtropical and Temperate Argentina, South America

    PubMed Central

    Campos, Raúl E.; Fernández, Liliana A.

    2011-01-01

    A list of the most common plants that form phytotelmata and their associated coleopterans (aquatic, semi-aquatic and terrestrial) from the northeastern subtropical and temperate area of Argentina, South America with biological and behavioral observations is presented in this study. Species of Poaceae (n = 3), Bromeliaceae (5), Apiaceae (6), Araceae (2), Urticaceae (1), Marantaceae (1), Arecaceae (1), Dipsacaceae (1) and Cyperaceae (1) were identified as phytotelmata. Aquatic species of Scirtidae (2), Dytiscidae (2), and Hydrophilidae (4), semi-aquatic Chelonariidae (2), and terrestrial species of Carabidae (3), Staphylinidae (5), Histeridae (1), Elateridae (1), Cantharidae (1), Cleridae (1), Tenebrionidae (1), Meloidae (1), Anthicidae (1), Chrysomelidae (3), Curculionidae (7) and Apionidae (1) were identified from six species of Eryngium L. (Apiales: Apiaceae), two species of Guadua Kunth (Poales: Poaceae), Aechmea distichantha Lemaire (Poales: Bromeliaceae), and from fallen leaves of Euterpe edulis Martius (Arecales: Arecaceae) from the temperate and subtropical area. The highest species richness was recorded in Eryngium phytotelmata. Fifteen species of beetles inhabit Eryngium cabrerae Pontiroli, 11 in E. horridum Malme, 7 in E. stenophyllum Urban, 4 in E. aff. serra Chamisso and Schlechtendal., 3 in E. elegans Chamisso and Schlechtendal, 2 in E. eburneum Decne and E. pandanifolium Chamisso and Schlechtendal. From bamboo, 6 species of coleopterans were collected from Guadua trinii (Nees) Nees ex Ruprecht and 4 from G. chacoensis (Rojas) Londoño and Peterson. Three species of aquatic coleopterans were recorded from A. distichantha and only one from E. edulis. PMID:22236084

  11. Coleopterans associated with plants that form phytotelmata in subtropical and temperate Argentina, South America.

    PubMed

    Campos, Raúl E; Fernández, Liliana A

    2011-01-01

    A list of the most common plants that form phytotelmata and their associated coleopterans (aquatic, semi-aquatic and terrestrial) from the northeastern subtropical and temperate area of Argentina, South America with biological and behavioral observations is presented in this study. Species of Poaceae (n = 3), Bromeliaceae (5), Apiaceae (6), Araceae (2), Urticaceae (1), Marantaceae (1), Arecaceae (1), Dipsacaceae (1) and Cyperaceae (1) were identified as phytotelmata. Aquatic species of Scirtidae (2), Dytiscidae (2), and Hydrophilidae (4), semi-aquatic Chelonariidae (2), and terrestrial species of Carabidae (3), Staphylinidae (5), Histeridae (1), Elateridae (1), Cantharidae (1), Cleridae (1), Tenebrionidae (1), Meloidae (1), Anthicidae (1), Chrysomelidae (3), Curculionidae (7) and Apionidae (1) were identified from six species of Eryngium L. (Apiales: Apiaceae), two species of Guadua Kunth (Poales: Poaceae), Aechmea distichantha Lemaire (Poales: Bromeliaceae), and from fallen leaves of Euterpe edulis Martius (Arecales: Arecaceae) from the temperate and subtropical area. The highest species richness was recorded in Eryngium phytotelmata. Fifteen species of beetles inhabit Eryngium cabrerae Pontiroli, 11 in E. horridum Malme, 7 in E. stenophyllum Urban, 4 in E. aff. serra Chamisso and Schlechtendal., 3 in E. elegans Chamisso and Schlechtendal, 2 in E. eburneum Decne and E. pandanifolium Chamisso and Schlechtendal. From bamboo, 6 species of coleopterans were collected from Guadua trinii (Nees) Nees ex Ruprecht and 4 from G. chacoensis (Rojas) Londoño and Peterson. Three species of aquatic coleopterans were recorded from A. distichantha and only one from E. edulis.

  12. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    PubMed

    Wagner, Thomas C; Hane, Susanne; Joubert, Dave F; Fischer, Christina

    2016-01-01

    Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody encroachers

  13. Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates.

    PubMed

    Machado, José-Luis; Reich, Peter B

    2006-07-01

    In shaded environments, minimizing dark respiration during growth could be an important aspect of maintaining a positive whole-plant net carbon balance. Changes with plant size in both biomass distribution to different tissue types and mass-specific respiration rates (R(d)) of those tissues would have an impact on whole-plant respiration. In this paper, we evaluated size-related variation in R(d), biomass distribution, and nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations of leaves, stems and roots of three cold-temperate tree species (Abies balsamea (L.) Mill, Acer rubrum L. and Pinus strobus L.) in a forest understory. We sampled individuals varying in age (6 to 24 years old) and in size (from 2 to 500 g dry mass), and growing across a range of irradiances (from 1 to 13% of full sun) in northern Minnesota, USA. Within each species, we found small changes in R(d), N and TNC when comparing plants growing across this range of light availability. Consistent with our hypotheses, as plants grew larger, whole-plant N and TNC concentrations in all species declined as a result of a combination of changes in tissue N and shifts in biomass distribution patterns. However, contrary to our hypotheses, whole-plant and tissue R(d) increased with plant size in the three species.

  14. Chilling and heat requirements for flowering in temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  15. Chilling and heat requirements for flowering in temperate fruit trees.

    PubMed

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  16. Phylogeny and photosynthesis of the grass tribe Paniceae.

    PubMed

    Washburn, Jacob D; Schnable, James C; Davidse, Gerrit; Pires, J Chris

    2015-09-01

    The grass tribe Paniceae includes important food, forage, and bioenergy crops such as switchgrass, napiergrass, various millet species, and economically important weeds. Paniceae are also valuable for answering scientific and evolutionary questions about C4 photosynthetic evolution, drought tolerance, and spikelet variation. However, the phylogeny of the tribe remains incompletely resolved. Forty-five taxa were selected from across the tribe Paniceae and outgroups for genome survey sequencing (GSS). These data were used to build a phylogenetic tree of the Paniceae based on 102 markers (78 chloroplast, 22 mitochondrial, 2 nrDNA). Ancestral state reconstruction analyses were also performed within the Paniceae using both the traditional and two subtype classification systems to test hypotheses of C4 subtype evolution. The phylogenetic tree resolves many areas of the Paniceae with high support and provides insight into the origin and number of C4 evolution events within the tribe. The recovered phylogeny and ancestral state reconstructions support between four and seven independent origins of C4 photosynthesis within the tribe and indicate which species are potentially the closest C3 sister taxa of each of these events. Although the sequence of evolutionary events that produced multiple C4 subtypes within the Paniceae remains undetermined, the results presented here are consistent with only a subset of currently proposed models. The species used in this study constitute a panel of C3 and C4 grasses that are suitable for further studies on C4 photosynthesis, bioenergy, food and forage crops, and various developmental features of the Paniceae. © 2015 Botanical Society of America.

  17. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata).

    PubMed

    Su, Yi; Han, Fengxiang X; Chen, Jian; Sridhar, B B Maruthi; Monts, David L

    2008-01-01

    The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.

  18. Seasonal ovulatory activity exists in tropical Creole female goats and Black Belly ewes subjected to a temperate photoperiod.

    PubMed

    Chemineau, Philippe; Daveau, Agnès; Cognié, Yves; Aumont, Gilles; Chesneau, Didier

    2004-08-27

    Seasonality of ovulatory activity is observed in European sheep and goat breeds, whereas tropical breeds show almost continuous ovulatory activity. It is not known if these tropical breeds are sensitive or not to temperate photoperiod. This study was therefore designed to determine whether tropical Creole goats and Black-Belly ewes are sensitive to temperate photoperiod. Two groups of adult females in each species, either progeny or directly born from imported embryos, were used and maintained in light-proof rooms under simulated temperate (8 to 16 h of light per day) or tropical (11 - 13 h) photoperiods. Ovulatory activity was determined by blood progesterone assays for more than two years. The experiment lasted 33 months in goats and 25 months in ewes. Marked seasonality of ovulatory activity appeared in the temperate group of Creole female goats. The percentage of female goats experiencing at least one ovulation per month dramatically decreased from May to September for the three years (0%, 27% and 0%, respectively). Tropical female goats demonstrated much less seasonality, as the percentage of goats experiencing at least one ovulation per month never went below 56%. These differences were significant. Both groups of temperate and tropical Black-Belly ewes experienced a marked seasonality in their ovulatory activity, with only a slightly significant difference between groups. The percentage of ewes experiencing at least one ovulation per month dropped dramatically in April and rose again in August (tropical ewes) or September (temperate ewes). The percentage of ewes experiencing at least one ovulation per month never went below 8% and 17% (for tropical and temperate ewes respectively) during the spring and summer months. An important seasonality in ovulatory activity of tropical Creole goats was observed when females were exposed to a simulated temperate photoperiod. An unexpected finding was that Black-Belly ewes and, to a lesser extent, Creole goats exposed to

  19. Seasonal ovulatory activity exists in tropical Creole female goats and Black Belly ewes subjected to a temperate photoperiod

    PubMed Central

    Chemineau, Philippe; Daveau, Agnès; Cognié, Yves; Aumont, Gilles; Chesneau, Didier

    2004-01-01

    Background Seasonality of ovulatory activity is observed in European sheep and goat breeds, whereas tropical breeds show almost continuous ovulatory activity. It is not known if these tropical breeds are sensitive or not to temperate photoperiod. This study was therefore designed to determine whether tropical Creole goats and Black-Belly ewes are sensitive to temperate photoperiod. Two groups of adult females in each species, either progeny or directly born from imported embryos, were used and maintained in light-proof rooms under simulated temperate (8 to 16 h of light per day) or tropical (11 – 13 h) photoperiods. Ovulatory activity was determined by blood progesterone assays for more than two years. The experiment lasted 33 months in goats and 25 months in ewes. Results Marked seasonality of ovulatory activity appeared in the temperate group of Creole female goats. The percentage of female goats experiencing at least one ovulation per month dramatically decreased from May to September for the three years (0%, 27% and 0%, respectively). Tropical female goats demonstrated much less seasonality, as the percentage of goats experiencing at least one ovulation per month never went below 56%. These differences were significant. Both groups of temperate and tropical Black-Belly ewes experienced a marked seasonality in their ovulatory activity, with only a slightly significant difference between groups. The percentage of ewes experiencing at least one ovulation per month dropped dramatically in April and rose again in August (tropical ewes) or September (temperate ewes). The percentage of ewes experiencing at least one ovulation per month never went below 8% and 17% (for tropical and temperate ewes respectively) during the spring and summer months. Conclusions An important seasonality in ovulatory activity of tropical Creole goats was observed when females were exposed to a simulated temperate photoperiod. An unexpected finding was that Black-Belly ewes and, to a

  20. Hardness of H13 Tool Steel After Non-isothermal Tempering

    NASA Astrophysics Data System (ADS)

    Nelson, E.; Kohli, A.; Poirier, D. R.

    2018-04-01

    A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.

  1. Warming and elevated CO2 lead to longer growing season in temperate grassland

    USDA-ARS?s Scientific Manuscript database

    Observational data over time suggest that as climate has warmed the growing season has lengthened, although experimental warming shortens early-growing species’ life cycles. Are other plant species living longer? We found that experimental warming in a temperate, semi-arid grassland led to earlier l...

  2. Chemicals Reduce Need To Mow Grass

    NASA Technical Reports Server (NTRS)

    Humphrys, Brooks; Farley, Max; Gast, Larry J.

    1993-01-01

    Brief report discusses use of herbicides Roundup(R), Campaign(R), and Oust(R) to retard growth of Argentine bahia grass. Herbicide applied by use of spraying apparatus pulled by tractor. "Chemical mowing" keeps grass at "freshly mowed" height with less mechanical mowing. Applied to grass on shoulders of roads, reducing time spent on mowing.

  3. Woody-grass ratios in a grassy arid system are limited by multi-causal interactions of abiotic constraint, competition and fire.

    PubMed

    Nano, Catherine E M; Clarke, Peter J

    2010-03-01

    Predicting changes in vegetation structure in fire-prone arid/semi-arid systems is fraught with uncertainty because the limiting factors to coexistence between grasses and woody plants are unknown. We investigated abiotic and biotic factors influencing boundaries and habitat membership in grassland (Triodia or 'spinifex' grassland)-shrubland (Acacia aneura or 'mulga' shrubland) mosaics in semi-arid central Australia. We used a field experiment to test for the effects of: (1) topographic relief (dune/swale habitat), (2) adult neighbour removal, and (3) soil type (sand/clay) on seedling survival in three shrub and two grass species in reciprocal field plantings. Our results showed that invasion of the shrubland (swale) by neighbouring grassland species is negated by abiotic limitations but competition limits shrubland invasion of the grassland (dune). All species from both habitats had significantly reduced survival in the grassland (dune) in the presence of the dominant grass (Triodia) regardless of soil type or shade. Further, the removal of the dominant grass allowed the shrubland dominant (A. aneura) to establish outside its usual range. Seedling growth and sexual maturation of the shrubland dominant (A. aneura) was slow, implying that repeated fire creates an immaturity risk for this non-sprouter in flammable grassland. By contrast, rapid growth and seed set in the grassland shrubs (facultative sprouters) provides a solution to fire exposure prior to reproductive onset. In terms of landscape dynamics, we argue that grass competition and fire effects are important constraints on shrubland patch expansion, but that their relative importance will vary spatially throughout the landscape because of spatial and temporal rainfall variability.

  4. Assessing dimethoate contamination in temperate and tropical climates: potential use of biomarkers in bioassays with two chironomid species.

    PubMed

    Domingues, Inês; Guilhermino, Lúcia; Soares, Amadeu M V M; Nogueira, António J A

    2007-08-01

    This study was conducted to investigate the potential use of biomarkers in bioassays with chironomids to assess contamination by pesticides in temperate and tropical climates. Two species of midge were studied, the widespread Chironomus riparius and the tropical Kiefferulus calligaster (Kieffer, 1911). Preliminary studies included investigations of the effects of temperature on larval development and the influence of larval age on normal variability of cholinesterase (ChE) and glutathione S-transferase (GST) activities and protein content. In the second phase, the influence of two abiotic factors particularly important in tropical conditions (temperature and oxygen concentration) and of the organophosphorous (OP) insecticide dimethoate on biochemical and conventional endpoints was investigated. Results showed that K. calligaster is morphologically and physiologically similar to C. riparius and for both, the time of larval development decreases with the increase of temperature. Moreover, 3rd and 4th instars appeared to be the most suitable for biomarkers determinations. ChE activity seems to be valuable biomarker regarding temperature and dissolved oxygen (DO) variations, while some caution should be taken when using GST as an environmental biomarker, since it shows some dependence of these parameters. C. riparius was more sensitive to dimethoate than K. calligaster suggesting that the use of bioassays with the former species in tropical conditions may overestimate the toxicity of OP pesticides to autochthonous species. When testing sub-lethal effects of dimethoate to C. riparius, ChE activity showed to be a very sensitive parameter detecting significant effects at the lowest concentration that caused emergence delay of larvae, suggesting that it is an ecologically relevant parameter.

  5. Optimization of delignification of two Pennisetum grass species by NaOH pretreatment using Taguchi and ANN statistical approach.

    PubMed

    Mohaptra, Sonali; Dash, Preeti Krishna; Behera, Sudhanshu Shekar; Thatoi, Hrudayanath

    2016-01-01

    In the bioconversion of lignocelluloses for bioethanol, pretreatment seems to be the most important step which improves the elimination of the lignin and hemicelluloses content, exposing cellulose to further hydrolysis. The present study discusses the application of dynamic statistical techniques like the Taguchi method and artificial neural network (ANN) in the optimization of pretreatment of lignocellulosic biomasses such as Hybrid Napier grass (HNG) (Pennisetum purpureum) and Denanath grass (DG) (Pennisetum pedicellatum), using alkali sodium hydroxide. This study analysed and determined a parameter combination with a low number of experiments by using the Taguchi method in which both the substrates can be efficiently pretreated. The optimized parameters obtained from the L16 orthogonal array are soaking time (18 and 26 h), temperature (60°C and 55°C), and alkali concentration (1%) for HNG and DG, respectively. High performance liquid chromatography analysis of the optimized pretreated grass varieties confirmed the presence of glucan (47.94% and 46.50%), xylan (9.35% and 7.95%), arabinan (2.15% and 2.2%), and galactan/mannan (1.44% and 1.52%) for HNG and DG, respectively. Physicochemical characterization studies of native and alkali-pretreated grasses were carried out by scanning electron microscopy and Fourier transformation Infrared spectroscopy which revealed some morphological differences between the native and optimized pretreated samples. Model validation by ANN showed a good agreement between experimental results and the predicted responses.

  6. Integrated production of warm season grasses and agroforestry for biomass production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, R.; Omielan, J.; Girouard, P.

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to havemore » distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.« less

  7. Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings.

    PubMed

    Melato, F A; Mokgalaka, N S; McCrindle, R I

    2016-01-01

    Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of <1 for all the metals. This study revealed the defense mechanisms employed by Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.

  8. Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub-steppe communities

    Treesearch

    Sheel Bansal; Roger L. Sheley; Bob Blank; Edward A. Vasquez

    2014-01-01

    Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation...

  9. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention.

    PubMed

    Devis, Deborah L; Davies, Janet M; Zhang, Dabing

    2017-09-01

    Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses. Copyright © 2017. Published by Elsevier Inc.

  10. [Factors affecting the vegetation restoration after fires in cold temperate wetlands: A review].

    PubMed

    Zhao, Feng-Jun; Wang, Li-Zhong; Shu, Li-Fu; Chen, Peng-Yu; Chen, Li-guang

    2013-03-01

    Cold temperate wetland plays an important role in maintaining regional ecological balance. Fire is an important disturbance factor in wetland ecosystem. Severe burning can induce the marked degradation of the ecological functions of wetland ecosystem. The vegetation restoration, especially the early vegetation restoration, after fires, is the premise and basis for the recovery of the ecological functions of the ecosystem. This paper reviewed the research progress on the factors affecting the vegetation restoration after fires in wetlands. The vegetation restoration after fires in cold temperate wetlands was controlled by the fire intensity, fire size, vegetation types before fires, regeneration characteristics of plant species, and site conditions. It was considered that the long-term monitoring on the post-fire vegetation restoration in cold temperate wetland, the key factors affecting the vegetation restoration, the roles of frozen soil layer on the post-fire vegetation restoration, and the theories and technologies on the vegetation restoration would be the main research directions in the future.

  11. Environmental factors explaining the vegetation patterns in a temperate peatland.

    PubMed

    Pellerin, Stéphanie; Lagneau, Louis-Adrien; Lavoie, Martin; Larocque, Marie

    2009-08-01

    Although ombrotrophic temperate peatlands are important ecosystems for maintaining biodiversity in eastern North America, the environmental factors influencing their flora are only partly understood. The relationships between plant species distribution and environmental factors were thus studied within the oldest temperate peatland of Québec. Plant assemblages were identified by cluster analysis while CCA was used to related vegetation gradients to environmental factors. Five assemblages were identified; three typical of open bog and two characterized by more minerotrophic vegetation. Thicker peat deposit was encounter underlying the bog assemblages while higher water table level and percentage of free surface water distinguished the minerotrophic assemblages. Overall, the floristic patterns observed were spatially structured along the margins and the expanse. The most important environmental factors explaining this spatial gradient were the percentage of free surface water and the highest water-table level.

  12. Carbon Pools in a Temperate Heathland Resist Changes in a Future Climate

    NASA Astrophysics Data System (ADS)

    Ambus, P.; Reinsch, S.; Nielsen, P. L.; Michelsen, A.; Schmidt, I. K.; Mikkelsen, T. N.

    2014-12-01

    The fate of recently plant assimilated carbon was followed into ecosystem carbon pools and fluxes in a temperate heathland after a 13CO2 pulse in the early growing season in a 6-year long multi-factorial climate change experiment. Eight days after the pulse, recently assimilated carbon was significantly higher in storage organs (rhizomes) of the grass Deschampsia flexuosa under elevated atmospheric CO2 concentration. Experimental drought induced a pronounced utilization of recently assimilated carbon belowground (roots, microbes, dissolved organic carbon) potentially counterbalancing limited nutrient availability. The fate of recently assimilated carbon was not affected by moderate warming. The full factorial combination of elevated CO2, warming and drought simulating future climatic conditions as expected for Denmark in 2075 did not change short-term carbon turnover significantly compared to ambient conditions. Overall, climate factors interacted in an unexpected way resulting in strong resilience of the heathland in terms of short-term carbon turnover in a future climate.

  13. Ecosystem vs. community recovery 25 years after grass invasions and fire in a subtropical woodland

    USGS Publications Warehouse

    D'Antonio, Carla M.; Yelenik, Stephanie G.; Mack, Michelle C.

    2017-01-01

    Despite a large body of research documenting invasive plant impacts, few studies have followed individual invaded sites over decades to observe how they change, and none have contrasted how compositional impacts from invasion compare to ecosystem-process impacts over a multi-decadal time-scale. Using direct measurements of plant density and composition and of ecosystems processes, we evaluate how ecosystem structure, above-ground net primary production (ANPP), and above-ground and soil nutrient pools compare over 25 years since fire and C4 grass invasions disrupted seasonally dry Hawaiian woodlands. We compare structure and function between primary woodland that has never burned and is largely native species-dominated, with sites that had been the same woodland type but burned in alien-grass-fuelled fires in the 1970s and 1980s. The sites have not experienced fires since 1987. We report here that woody plant composition and structure continue to be dramatically changed by the initial invasions and fires that occurred 25 years ago and invaders continue to dominate in burned sites. This is reflected in continued low plant carbon pools in burned compared to unburned sites. Yet ANPP and N storage, which were dramatically lower in the initial decade after invasive-grass fuelled fires, have increased and are now indistinguishable from values measured in intact woodlands. Soil carbon pools were resilient to both invasion and fire initially and over time. Above-ground net primary production has recovered because of invasion of burned sites by a non-native N-fixing tree rather than because of recovery of native species. This invasive N-fixing tree is unlikely to return C storage of the invaded sites to those of unburned woodland because of its tissue and growth characteristics and its interactions with invasive grasses. It does not facilitate native species but rather promotes a persistent invasive grass/N-fixer savanna. Synthesis. We conclude that fire, an unusual

  14. An exotic grass disrupts mycorrhizal fungi which increases the mortality of Artemisia tridentata

    USDA-ARS?s Scientific Manuscript database

    Invasive plant species are capable of changing the community composition of arbuscular mycorrhizal fungi (AMF). Changes to AMF communities may contribute to the net negative impact of invasives on resident plants. Here we compared the AMF communities of the invasive grass Agropyron cristatum acros...

  15. Ecological traps in shallow coastal waters—Potential effect of heat-waves in tropical and temperate organisms

    PubMed Central

    Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A. V.

    2018-01-01

    Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species’ acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools. PMID:29420657

  16. Responses of tropical native and invader C4 grasses to water stress, clipping and increased atmospheric CO2 concentration.

    PubMed

    Baruch, Zdravko; Jackson, Robert B

    2005-10-01

    The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO(2) concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C(4) grass (Trachypogon plumosus) and two African C(4) grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO(2) concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO(2) increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO(2), the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g(-1) week(-1) vs 0.25 g g(-1) week(-1)). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO(2) than did the native grass (biomass increases of 21-47% compared with decreases of 13-51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO(2) promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO(2) to favor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO(2) suggests further increases in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.

  17. Status of herbicide technology for control of tree species and to reduce shrub and grass competition

    Treesearch

    Maxwell L., Jr. McCormack

    1977-01-01

    The values of herbicides as silvicultural tools are summarized. Treatments are discussed with reference to chemicals and methods of application as they pertain to control of grass and herbaceous weeds, understory vegetation, and overstory vegetation.

  18. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.

    PubMed

    Throop, Heather L; Reichmann, Lara G; Sala, Osvaldo E; Archer, Steven R

    2012-06-01

    Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.

  19. Germination fitness of two temperate epiphytic ferns shifts under increasing temperatures and forest fragmentation.

    PubMed

    Gabriel Y Galán, Jose María; Murciano, Antonio; Sirvent, Laure; Sánchez, Abel; Watkins, James E

    2018-01-01

    Ferns are an important component of ecosystems around the world. Studies of the impacts that global changes may have on ferns are scarce, yet emerging studies indicate that some species may be particularly sensitive to climate change. The lack of research in this subject is much more aggravated in the case of epiphytes, and especially those that live under temperate climates. A mathematical model was developed for two temperate epiphytic ferns in order to predict potential impacts on spore germination kinetics, in response to different scenarios of global change, coming from increasing temperature and forest fragmentation. Our results show that an increasing temperature will have a negative impact over the populations of these temperate epiphytic ferns. Under unfragmented forests the germination percentage was comparatively less influenced than in fragmented patches. This study highlight that, in the long term, populations of the studied epiphytic temperate ferns may decline due to climate change. Overall, epiphytic fern communities will suffer changes in diversity, richness and dominance. Our study draws attention to the role of ferns in epiphytic communities of temperate forests, emphasizing the importance of considering these plants in any conservation strategy, specifically forest conservation. From a methodological point of view, the model we propose could be easily used to dynamically monitor the status of ecosystems, allowing the quick prediction of possible future scenarios, which is a crucial issue in biodiversity conservation decision-making.

  20. Using expansive grasses for monitoring heavy metal pollution in the vicinity of roads.

    PubMed

    Vachová, Pavla; Vach, Marek; Najnarová, Eva

    2017-10-01

    We propose a method for monitoring heavy metal deposition in the vicinity of roads using the leaf surfaces of two expansive grass species which are greatly abundant. A principle of the proposed procedure is to minimize the number of operations in collecting and preparing samples for analysis. The monitored elements are extracted from the leaf surfaces using dilute nitric acid directly in the sample-collection bottle. The ensuing steps, then, are only to filter the extraction solution and the elemental analysis itself. The verification results indicate that the selected grasses Calamagrostis epigejos and Arrhenatherum elatius are well suited to the proposed procedure. Selected heavy metals (Zn, Cu, Pb, Ni, Cr, and Cd) in concentrations appropriate for direct determination using methods of elemental analysis can be extracted from the surface of leaves of these species collected in the vicinity of roads with medium traffic loads. Comparing the two species showed that each had a different relationship between the amounts of deposited heavy metals and distance from the road. This disparity can be explained by specific morphological properties of the two species' leaf surfaces. Due to the abundant occurrence of the two species and the method's general simplicity and ready availability, we regard the proposed approach to constitute a broadly usable and repeatable one for producing reproducible results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. SOIL QUALITY RECOVERY IN PREVIOUSLY FARMED FIELDS SEEDED TO PERENNIAL WARM SEASON NATIVE GRASS

    EPA Science Inventory

    A study of twelve Conservation Reserve Program sites in northeastern Kansas was conducted to determine native grass species and selected soil textures influence on soil quality recovery.
    Plant productivity, plant carbon and nitrogen concentrations, total soil nitrogen and car...

  2. Parallel tempering for the traveling salesman problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percus, Allon; Wang, Richard; Hyman, Jeffrey

    We explore the potential of parallel tempering as a combinatorial optimization method, applying it to the traveling salesman problem. We compare simulation results of parallel tempering with a benchmark implementation of simulated annealing, and study how different choices of parameters affect the relative performance of the two methods. We find that a straightforward implementation of parallel tempering can outperform simulated annealing in several crucial respects. When parameters are chosen appropriately, both methods yield close approximation to the actual minimum distance for an instance with 200 nodes. However, parallel tempering yields more consistently accurate results when a series of independent simulationsmore » are performed. Our results suggest that parallel tempering might offer a simple but powerful alternative to simulated annealing for combinatorial optimization problems.« less

  3. Accuracy and consistency of grass pollen identification by human analysts using electron micrographs of surface ornamentation1

    PubMed Central

    Mander, Luke; Baker, Sarah J.; Belcher, Claire M.; Haselhorst, Derek S.; Rodriguez, Jacklyn; Thorn, Jessica L.; Tiwari, Shivangi; Urrego, Dunia H.; Wesseln, Cassandra J.; Punyasena, Surangi W.

    2014-01-01

    • Premise of the study: Humans frequently identify pollen grains at a taxonomic rank above species. Grass pollen is a classic case of this situation, which has led to the development of computational methods for identifying grass pollen species. This paper aims to provide context for these computational methods by quantifying the accuracy and consistency of human identification. • Methods: We measured the ability of nine human analysts to identify 12 species of grass pollen using scanning electron microscopy images. These are the same images that were used in computational identifications. We have measured the coverage, accuracy, and consistency of each analyst, and investigated their ability to recognize duplicate images. • Results: Coverage ranged from 87.5% to 100%. Mean identification accuracy ranged from 46.67% to 87.5%. The identification consistency of each analyst ranged from 32.5% to 87.5%, and each of the nine analysts produced considerably different identification schemes. The proportion of duplicate image pairs that were missed ranged from 6.25% to 58.33%. • Discussion: The identification errors made by each analyst, which result in a decline in accuracy and consistency, are likely related to psychological factors such as the limited capacity of human memory, fatigue and boredom, recency effects, and positivity bias. PMID:25202649

  4. Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree

    Treesearch

    Nina Wurzburger; Chelcy Ford Miniat

    2013-01-01

    General circulation models project more intense and frequent droughts over the next century, but many questions remain about how terrestrial ecosystems will respond. Of particular importance, is to understand how drought will alter the species composition of regenerating temperate forests wherein symbiotic dinitrogen (N2)- fixing plants play a...

  5. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis.

    PubMed

    Sharwood, Robert E; Ghannoum, Oula; Kapralov, Maxim V; Gunn, Laura H; Whitney, Spencer M

    2016-11-28

    Enhancing the catalytic properties of the CO 2 -fixing enzyme Rubisco is a target for improving agricultural crop productivity. Here, we reveal extensive diversity in the kinetic response between 10 and 37 °C by Rubisco from C 3 and C 4 species within the grass tribe Paniceae. The CO 2 fixation rate (kcatc) for Rubisco from the C 4 grasses with nicotinamide adenine dinucleotide (NAD) phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PCK) photosynthetic pathways was twofold greater than the kcatc of Rubisco from NAD-ME species across all temperatures. The declining response of CO 2 /O 2 specificity with increasing temperature was less pronounced for PCK and NADP-ME Rubisco, which would be advantageous in warmer climates relative to the NAD-ME grasses. Modelled variation in the temperature kinetics of Paniceae C 3 Rubisco and PCK Rubisco differentially stimulated C 3 photosynthesis relative to tobacco above and below 25 °C under current and elevated CO 2 . Amino acid substitutions in the large subunit that could account for the catalytic variation among Paniceae Rubisco are identified; however, incompatibilities with Paniceae Rubisco biogenesis in tobacco hindered their mutagenic testing by chloroplast transformation. Circumventing these bioengineering limitations is critical to tailoring the properties of crop Rubisco to suit future climates.

  6. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System

    PubMed Central

    Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan

    2017-01-01

    Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional

  7. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System.

    PubMed

    Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan

    2017-01-01

    Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional

  8. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes.

    PubMed

    Shoji, Jun-Ya; Charlton, Nikki D; Yi, Mihwa; Young, Carolyn A; Craven, Kelly D

    2015-01-01

    Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.

  9. Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes

    PubMed Central

    Shoji, Jun-ya; Charlton, Nikki D.; Yi, Mihwa; Young, Carolyn A.; Craven, Kelly D.

    2015-01-01

    Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species. PMID:25837972

  10. Comparative visual ecophysiology of mid-Atlantic temperate reef fishes

    PubMed Central

    Horodysky, Andrij Z.; Brill, Richard W.; Crawford, Kendyl C.; Seagroves, Elizabeth S.; Johnson, Andrea K.

    2013-01-01

    Summary The absolute light sensitivities, temporal properties, and spectral sensitivities of the visual systems of three mid-Atlantic temperate reef fishes (Atlantic spadefish [Ephippidae: Chaetodipterus faber], tautog [Labridae: Tautoga onitis], and black sea bass [Serranidae: Centropristis striata]) were studied via electroretinography (ERG). Pelagic Atlantic spadefish exhibited higher temporal resolution but a narrower dynamic range than the two more demersal foragers. The higher luminous sensitivities of tautog and black sea bass were similar to other benthic and demersal coastal mid-Atlantic fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of the three species spanned 400–610 nm, with high likelihood of cone dichromacy providing the basis for color and contrast discrimination. Significant day-night differences in spectral responses were evident in spadefish and black sea bass but not tautog, a labrid with characteristic structure-associated nocturnal torpor. Atlantic spadefish responded to a wider range of wavelengths than did deeper-dwelling tautog or black sea bass. Collectively, these results suggest that temperate reef-associated fishes are well-adapted to their gradient of brighter to dimmer photoclimates, representative of their unique ecologies and life histories. Continuing anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may however impede visual foraging and reproductive signaling in temperate reef fishes. PMID:24285711

  11. Tree species' responses to throughfall removal experiments superimposed on a natural drought event in two contrasting humid temperate forests in New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Jennings, Katie; McIntire, Cameron; Coble, Adam; Vandeboncoeur, Matthew; Rustad, Lindsay; Templer, Pamela; Absbjornsen, Heidi

    2017-04-01

    Climate change is likely to affect Northeastern U.S. forests through the increased frequency and severity of drought events. However, our understanding of how these humid temperate forests will respond to moderate to extreme droughts is limited. Given the important role that these forests play in providing ecosystem services and in supplying forest products, enhancing our knowledge about the impacts of drought is critical to guiding forest management and climate change adaptation efforts. We conducted 50% throughfall removal experiments at two contrasting sites in the Northeastern US (Hubbard Brook Experimental Forest and Thompson Farm, NH, USA), which were superimposed on the severe natural drought occurring in August-September 2016. Preliminary analysis suggests that the two sites respond differently to simulated drought. Pinus strobus trees at Thompson Farm reduced their transpiration rates in response to both the natural and experimental drought, particularly evident during a 5-day period at the height of the drought were transpiration nearly ceased. Both P. strobus and Quercus rubra trees increased their water use efficiency in response to reduced soil water availability, with Q. rubra allowing its midday water potential to reach more negative values, consistent with its more drought tolerant strategy compared to P. strobus. In contrast, we did not detect any significant differences in tree transpiration rates or growth in the dominant tree species, Acer rubrum, in response to the experimental drought treatment at Hubbard Brook. However, both soil respiration and fine root biomass production were lower in the drought treatment plots relative to the control plots at Hubbard Brook. We plan to continue these throughfall removal experiments for at least two more years to better understand the implications of future drought in these humid temperate forests and identify differences in species' physiological adaptations and threshold responses.

  12. Climate change and temperate zone insects: the tyranny of thermodynamics meets the world of limited resources.

    PubMed

    Adamo, Shelley A; Baker, Jillian L; Lovett, Maggie M E; Wilson, Graham

    2012-12-01

    Climate change will result in warmer temperatures and an increase in the frequency and severity of extreme weather events. Given that higher temperatures increase the reproductive rate of temperate zone insects, insect population growth rates are predicted to increase in the temperate zone in response to climate. This consensus, however, rests on the assumption that food is freely available. However, under conditions of limited food, the reproductive output of the Texan cricket Gryllus texensis (Cade and Otte) was highest at its current normal average temperature and declined with increasing temperature. Moreover, low food availability decreased survival during a simulated heat wave. Therefore, the effects of climate change on this species, and possibly on many others, are likely to hinge on food availability. Extrapolation from our data suggests that G. texensis will show larger yearly fluctuations in population size as climate change continues, and this will also have ecological repercussions. Only those temperate zone insects with a ready supply of food (e.g., agricultural pests) are likely to experience the predicted increase in population growth in response to climate change; food-limited species are likely to experience a population decline.

  13. Logging impacts on avian species richness and composition differ across latitudes and foraging and breeding habitat preferences.

    PubMed

    LaManna, Joseph A; Martin, Thomas E

    2017-08-01

    Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes. © 2016 Cambridge Philosophical Society.

  14. Common garden comparisons of reproductive, forage and weed suppression potential of rangeland rehabilitation grasses of the Great Basin

    USDA-ARS?s Scientific Manuscript database

    Common garden experiments are a means to remove environmental effects. Using 8 species of perennial rangeland grasses, we established a common garden (3 reps x28 plants = 84 plants/species). We found that ‘Hycrest’ crested wheatgrass (Agropyron cristatum) and bluebunch wheatgrass (Pseudoroegneria sp...

  15. Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale?

    NASA Astrophysics Data System (ADS)

    Alfaro Reyna, Teresa; Retana, Javier; Martínez-Vilalta, Jordi

    2018-07-01

    Reports on forest decline, changes in species composition and the distribution of forests in response to changes in climate and land use are increasing worldwide. Temperate forests are largely dominated by two tree families: Pinaceae and Fagaceae. These two families have distinct functional properties and different responses to environmental factors. Several local and regional assessments, particularly in Europe, have found that species of Fagaceae are invading areas previously dominated by Pinaceae. The main aim of this synthesis study is to analyze the relative dynamics of Pinaceae and Fagaceae species in temperate forests around the world, with the following specific objectives: (1) establish if there is a consistent directional substitution of Pinaceae by Fagaceae worldwide; and (2) determine whether these directional changes are associated with specific climatic conditions or certain geographic regions, reflecting differences in historical forest management and land use. A bibliographic review was performed and 51 papers were found that met the search criteria, including a total of 121 case studies in which the relative dynamics of Pinaceae and Fagaceae were evaluated. Our results show that the relative abundance of Fagaceae increased in 71% of cases (P → F dynamics), whereas Pinaceae relative abundance increased in 17% of cases (F → P) and 12% of cases did not show clear changes. Increases of Fagaceae relative to Pinaceae were less clear in areas where vegetation dynamics were driven by natural disturbances. Our results indicate a widespread increase in dominance of Fagaceae species at the expense of Pinaceae across northern temperate forests, with the exception of Eastern North America. The potential implications for ecosystem function and forest resilience under ongoing climate change are large and clearly deserve further study.

  16. Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentration

    USGS Publications Warehouse

    Yoder, C.K.; Vivin, P.; DeFalco, L.A.; Seemann, J.R.; Nowak, R.S.

    2000-01-01

    Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C3 perennial Achnatherum hymenoides, the C4 perennial Pleuraphis rigida and the C3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μl l−1) or elevated (1000 μl l−1) CO2 in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C3 grasses in response to elevated CO2 (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor below-ground biomass of the C4 perennial grass was significantly affected by the CO2 treatment. Elevated CO2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO2treatments for any species, indicating no enhanced uptake of N under elevated CO2. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole root-system basis (NO3+NH4uptake capacity × root biomass) was influenced positively by elevated CO2 only for A. hymenoidesafter anthesis. These results suggest that elevated CO2 may result in a competitive advantage forA. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20 °C were not significantly affected by the CO2treatment. However, specific root

  17. Nest sites of ducks in grazed mixed-grass prairie in North Dakota

    USGS Publications Warehouse

    Duebbert, H.F.; Lokemoen, J.T.; Sharp, D.E.

    1986-01-01

    Habitat use and nesting success of seven species of dabbling ducks were evaluated in five vegetative associations within grazed mixed-grass prairie in central North Dakota. During 1976-80, 548 nests were found on 412 ha of grazed prairie for an annual average density of 27 nests/100 ha. Numbers of nests found ranged from 1/100 ha in 1977 (a drought year) to 58/100 ha in 1979 (a very wet year), reflecting the variability that may be expected in a dynamic prairie wetland environment. Nesting success ranged from an average of 23% in the western snowberry (Symphoricarpos occidentalis) association to 34% in the mixed-grass association. Forty-two percent of the mallard (Anas platyrhynchos) nests and 35% of the gadwall (A. strepera) nests were in patches of western snowberry and/or Wood's rose (Rosa woodsii) that made up 2% of the available cover. Numbers of nests of blue-winged teal (A. discors) and northern shoveler (A. clypeata) were highest in cool-season grasses, especially green needlegrass (Stipa viridula) and western wheatgrass (Agropyron smithii). Height/density (HD) of residual cover decreased exponentially with increased grazing pressure. Use of grazed prairie by blue-winged teal was maximized when the HD of residual cover was 0.5 dm or higher, as could be maintained under light grazing. Results of this study indicated that properly grazed mixed-grass prairie can provide adequate nesting habitat for dabbling ducks. We recommend that preservation and sound ecological management be focused on large tracts of mixed-grass prairie with complexes of seasonal and semipermanent wetlands.

  18. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought.

    PubMed

    Taylor, Samuel H; Ripley, Brad S; Martin, Tarryn; De-Wet, Leigh-Ann; Woodward, F Ian; Osborne, Colin P

    2014-06-01

    Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m(-2) s(-1) higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4-8.1 mmol mol(-1)) than C3 averages (0.7-6.8 mmol mol(-1)), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are

  19. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought

    PubMed Central

    Taylor, Samuel H; Ripley, Brad S; Martin, Tarryn; De-Wet, Leigh-Ann; Woodward, F Ian; Osborne, Colin P

    2014-01-01

    Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m−2 s−1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4–8.1 mmol mol−1) than C3 averages (0.7–6.8 mmol mol−1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses

  20. Modeled hydraulic redistribution in tree-grass, CAM-grass, and tree-CAM associations: the implications of crassulacean acid metabolism (CAM).

    PubMed

    Yu, Kailiang; Foster, Adrianna

    2016-04-01

    Past studies have largely focused on hydraulic redistribution (HR) in trees, shrubs, and grasses, and recognized its role in interspecies interactions. HR in plants that conduct crassulacean acid metabolism (CAM), however, remains poorly investigated, as does the effect of HR on transpiration in different vegetation associations (i.e., tree-grass, CAM-grass, and tree-CAM associations). We have developed a mechanistic model to investigate the net direction and magnitude of HR at the patch scale for tree-grass, CAM-grass, and tree-CAM associations at the growing season to yearly timescale. The modeling results show that deep-rooted CAM plants in CAM-grass associations could perform hydraulic lift at a higher rate than trees in tree-grass associations in a relatively wet environment, as explained by a significant increase in grass transpiration rate in the shallow soil layer, balancing a lower transpiration rate by CAM plants. By comparison, trees in tree-CAM associations may perform hydraulic descent at a higher rate than those in tree-grass associations in a dry environment. Model simulations also show that hydraulic lift increases the transpiration of shallow-rooted plants, while hydraulic descent increases that of deep-rooted plants. CAM plants transpire during the night and thus perform HR during the day. Based on these model simulations, we suggest that the ability of CAM plants to perform HR at a higher rate may have different effects on the surrounding plant community than those of plants with C3 or C4 photosynthetic pathways (i.e., diurnal transpiration).