Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.
2013-01-01
The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.
Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.
Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H
2018-04-15
Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal pattern, driven by interactive influences on water quantity and quality of climate, geology, and terrestrial vegetation. Because climatic and vegetation dynamics vary annually in a seasonal, cyclic manner, a periodic function can be used to fit a sinusoidal model to the salinity pattern. The model framework used here is broadly applicable in systems with streamflow-dependent chronic salinity stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beyond cool: adapting upland streams for climate change using riparian woodlands.
Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J
2016-01-01
Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem consequences of climate change adaptation to guide future actions. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kristensen, P. B.; Kristensen, E. A.; Riis, T.; Baisner, A. J.; Larsen, S. E.; Verdonschot, P. F. M.; Baattrup-Pedersen, A.
2013-05-01
Predictions of the future climate infer that stream water temperatures may increase in temperate lowland areas and that streams without riparian forest will be particularly prone to elevated stream water temperature. Planting of riparian forest is a potential mitigation measure to reduce water temperatures for the benefit of stream organisms. However, no studies have yet determined the length of a forested reach required to obtain a significant temperature decrease. To investigate this we measured the temperature in five small Danish lowland streams from June 2010 to July 2011, all showing a sharp transition between an upstream open reach and a downstream forested reach. In all stream reaches we also measured canopy cover and a range of physical variables characterizing the streams reaches. This allowed us to analyse differences in mean daily temperature and amplitude per month among forested and open sections as well as to study annual temperature regimes and the influence of physical conditions on temperature changes. Stream water temperature in the open reaches was affected by heating, and in July we observed an increase in temperature over the entire length of the investigated reaches, reaching temperatures higher than the incipient lethal limit for brown trout. Along the forest reaches a significant decrease in July temperatures was recorded immediately (100 m) when the stream moved into the forested area. In three of our study streams the temperature continued to decrease the longer the stream entered into the forested reach, and the temperature decline did not reach a plateau. The temperature increases along the open reaches were accompanied by stronger daily temperature variation; however, when the streams entered into the forest, the range in daily variation decreased. Multiple regression analysis of the combined effects on stream water temperature of canopy cover, Width/Depth ratio, discharge, current velocity and water temperature revealed that canopy cover and Width/Depth were the two variables responsible for the reduced temperature observed when the streams enter the forest. In consequence, we conclude that even relatively short stretches (100-500 m) of forest alongside streams may combat the negative effects of heating of stream water and that forest planting can be a useful mitigation measure.
Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...
Sabater, Sergi; Elosegi, Arturo; Acuña, Vicenç; Basaguren, Ana; Muñoz, Isabel; Pozo, Jesús
2008-02-15
Climate affects many aspects of stream ecosystems, although the presence of riparian forests can buffer differences between streams in different climatic settings. In an attempt to measure the importance of climate, we compared the seasonal patterns of hydrology, input and storage of allochthonous organic matter, and the trophic structure (abundance of algae and macroinvertebrates) in two temperate forested streams, one Mediterranean, the other Atlantic. Hydrology played a leading role in shaping the trophic structure of both streams. Frequency and timing of floods and droughts determined benthic detritus storage. Inputs and retention of allochthonous organic matter were higher in the Atlantic stream, whereas chlorophyll concentration was lower because of stronger light limitation. Instead, light availability and scour of particulate organic matter during late winter favoured higher chlorophyll concentration in the Mediterranean stream. As a result, in the Mediterranean stream grazers were more prevalent and consumers showed a higher dependence on autotrophic materials. On the other hand, the Atlantic stream depended on allochthonous materials throughout the whole study period. The overall trophic structure showed much stronger seasonality in the Mediterranean than in the Atlantic stream, this being the most distinctive difference between these two types of temperate streams. The different patterns observed in the two streams are an indication that climatic differences should be incorporated in proper measurements of ecosystem health.
Linking LiDAR with streamwater biogeochemistry in coastal temperate rainforest watersheds
Jason B. Fellman; Brian Buma; Eran Hood; Richard T. Edwards; David V. D’Amore
2017-01-01
The goal of this study was to use watershed characteristics derived from light detection and ranging (LiDAR) data to predict stream biogeochemistry in Perhumid Coastal Temperate Rainforest (PCTR) watersheds. Over a 2-day period, we sampled 37 streams for concentrations of dissolved C, N, P, major cations, and measures of dissolved organic matter quality (specific...
Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...
Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
Mora-Gómez, Juanita; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M
2018-04-15
Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of β-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while β-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams. Copyright © 2017 Elsevier B.V. All rights reserved.
Recovery of a tropical stream after a harvest-related chlorine poisoning event.
EFFIE A. GREATHOUSE; JAMES G. MARCH; PRINGLE; CATHERINE M.
2005-01-01
1. Harvest-related poisoning events are common in tropical streams, yet research on stream recovery has largely been limited to temperate streams and generally does not include any measures of ecosystem function, such as leaf breakdown. 2. We assessed recovery of a second-order, high-gradient stream draining the Luquillo Experimental Forest, Puerto Rico, 3 months after...
Baattrup-Pedersen, Annette; Garssen, Annemarie; Göthe, Emma; Hoffmann, Carl Christian; Oddershede, Andrea; Riis, Tenna; van Bodegom, Peter M; Larsen, Søren E; Soons, Merel
2018-04-01
The hydrology of riparian areas changes rapidly these years because of climate change-mediated alterations in precipitation patterns. In this study, we used a large-scale in situ experimental approach to explore effects of drought and flooding on plant taxonomic diversity and functional trait composition in riparian areas in temperate Europe. We found significant effects of flooding and drought in all study areas, the effects being most pronounced under flooded conditions. In near-stream areas, taxonomic diversity initially declined in response to both drought and flooding (although not significantly so in all years) and remained stable under drought conditions, whereas the decline continued under flooded conditions. For most traits, we found clear indications that the functional diversity also declined under flooded conditions, particularly in near-stream areas, indicating that fewer strategies succeeded under flooded conditions. Consistent changes in community mean trait values were also identified, but fewer than expected. This can have several, not mutually exclusive, explanations. First, different adaptive strategies may coexist in a community. Second, intraspecific variability was not considered for any of the traits. For example, many species can elongate shoots and petioles that enable them to survive shallow, prolonged flooding but such abilities will not be captured when applying mean trait values. Third, we only followed the communities for 3 years. Flooding excludes species intolerant of the altered hydrology, whereas the establishment of new species relies on time-dependent processes, for instance the dispersal and establishment of species within the areas. We expect that altered precipitation patterns will have profound consequences for riparian vegetation in temperate Europe. Riparian areas will experience loss of taxonomic and functional diversity and, over time, possibly also alterations in community trait responses that may have cascading effects on ecosystem functioning.
Stream macrophytes are often removed with their sediments to deepen stream channels, stabilize channel banks, or provide habitat for target species. These sediments may support enhanced nitrogen processing. To evaluate sediment nitrogen processing, identify seasonal patterns, and...
Mason D. Bryant; Takashi Gomi; Jack J. Piccolo
2007-01-01
We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...
Zlatanović, Sanja; Fabian, Jenny; Premke, Katrin; Mutz, Michael
2018-04-15
Perennial, temperate, low-order streams are predicted to become intermittent as a result of irregular droughts caused by global warming and increased water demand. We hypothesize that stream metabolism changes caused by irregular droughts are linked to the shading and bed sediment structure of temperate streams. We set up 16 outdoor experimental streams with low or high shade conditions and streambeds either with alternating sorted patches of gravel and sand or homogeneous gravel-sand mix sediment structures. We assessed community respiration (CR), net ecosystem production (NEP) and periphyton biomass and structure (diatoms, green algae, cyanobacteria) in the course of 6weeks colonization, 6weeks desiccation, and 2.5weeks after rewetting. The heterotroph to autotroph (H:A) and fungi to bacteria (F:B) ratios in the microbial biofilm community were assessed at the end of the colonization and rewetting phases. Streams with different bed sediment structure were functionally similar; their metabolism under desiccation was controlled solely by light availability. During flow recession, all streams showed net heterotrophy. As desiccation progressed, NEP and CR decreased to zero. Desiccation altered the periphyton composition from predominantly diatoms to green algae and cyanobacteria, particularly in streams with low shade and mixed sediments. Rapid post-drought resilience of NEP was accompanied by high cyanobacteria and green algae growth in low shade, but poor total periphyton growth in high shade streams. Variable periphyton recovery was followed by increased H:A in relation to shading, and decreased F:B in relation to sediments structure. These shifts resulted in poor CR recovery compared to the colonization phase, suggesting a link between CR resilience and microbial composition changes. The links between drought effects, post-drought recovery, shading level, and streambed structure reveal the importance of low-order stream management under a changing climate and land use to mitigate the future impact of unpredictable infrequent droughts on stream metabolism in temperate ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, O. I.; Ahmed, S.
2017-12-01
Dissolved oxygen (DO) is a key indicator of stream water quality and ecosystem health. However, the temporal dynamics of stream DO is controlled by a multitude of interacting environmental drivers. The relative linkages of stream DO with the relevant environmental drivers were determined in this study across the U.S. East Coast by employing a systematic data analytics approach. The study analyzed temporal data for 51 water quality monitoring stations from USGS NWIS and EPA STORET databases. Principal component analysis and factor analysis, along with Pearson's correlation analysis, were applied to identify the interrelationships and unravel latent patterns among DO and the environmental drivers. Power law based partial least squares regression models with a bootstarp Monte-Carlo procedure (1000 iterations) were developed to reliably estimate the environmental linkages of DO by resolving multicollinearity. Based on the similarity of dominant drivers, the streams were categorized into three distinct environmental regimes. Stream DO in the northern part of temperate zone (e.g., northeast coast) had the strongest linkage with water temperature; suggesting an environmental regime with dominant climatic control. However, stream DO in the tropical zones (e.g., southeast Florida) was mostly driven by pH; indicating an environmental regime likely controlled by redox chemistry. Further, a transitional regime was found between the temperate and tropical zones, where stream DO was controlled by both water temperature and pH. The results suggested a strong effect of the climatic gradient (temperate to tropical) on stream DO along the East Coast. The identified environmental regimes and the regime-specific relative linkages provided new information on the dominant controls of coastal stream water quality dynamics. The findings would guide the planning and management of coastal stream water quality and ecosystem health across the U.S. East Coast and around the world.
Macroinvertebrates are important for processing leaf detritus in temperate streams, but studies about their role in tropical streams are scarce and often present conflicting results. We assessed the diet of Phylloicus (Trichoptera: Calamoceratidae) larvae, that is generally class...
Impacts of an invasive N2-fixing tree on Hawaiian stream water quality
Tracy N. Wiegner; Flint Hughes; Lisa M. Shizuma; David K. Bishaw; Mark E. Manuel
2013-01-01
N2-fixing trees can affect stream water quality. This has been documented in temperate streams, but not in tropical ones, even though N2-fixing trees are prevalent in the tropics. We investigated the effects of the introduced, invasive tree, Falcataria moluccanaalbiziaon water...
S. Conor Keitzer; Reuben R. Goforth
2013-01-01
Salamanders are abundant consumers in many temperate streams and may be important recyclers of biologically essential nutrients, but their ecological role is poorly understood. The ecological significance of nutrient recycling by salamanders may vary spatially and seasonally because of their potentially patchy distribution in streams and the dynamic nature of stream...
Leaf litter breakdown of native and exotic tree species in two Hawaiian streams that differ in flow
Megan Roberts; Ayron M. Strauch; Tracy Wiegner; Richard A. Mackenzie
2016-01-01
Riparian leaf litter is a major source of allochthonous organic material to temperate and tropical streams, promoting primary and secondary productivity in lotic and nearshore habitats. In tropical island streams, where native leaf-shredding macroinvertebrates are absent, physical fragmentation from stream flow is an important factor affecting leaf litter breakdown and...
Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling
Braun, Alexander; Auerswald, Karl; Geist, Juergen
2012-01-01
The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053
The Age of Terrestrial Carbon Export and Rainfall Intensity in a Temperate River Headwater System
NASA Astrophysics Data System (ADS)
Tittel, J.; Büttner, O.; Freier, K.; Heiser, A.; Sudbrack, R.; Ollesch, G.
2013-12-01
Riverine dissolved organic carbon (DOC) supports the production of estuaries and coastal ecosystems, constituting one of the most actively recycled pools of the global carbon cycle. A substantial proportion of DOC entering oceans is highly aged, but its origins remain unclear. Significant fluxes of old DOC have never been observed in temperate headwaters where terrestrial imports take place. Here, we studied the radiocarbon age of DOC in three streams draining forested headwater catchments of the river Mulde (Ore Mountains, Germany). We found modern DOC at moderately dry and moderately wet conditions as well as at high discharges during snowmelt. Old groundwater carbon contributed to stream DOC during the summer drought, although the yield was negligible. However, in a four-week summer precipitation event DOC aged at between 160 and 270 years was delivered into the watershed. In one stream, the DOC was modern but depleted in radiocarbon compared to other hydrological conditions. The yield was substantial and corresponded to 20 to 52% of the annual DOC yields in wet and dry years, respectively. Time-integrating samples of a downstream reservoir also revealed modern DOC ages under moderate conditions and old DOC from the rainfall event. Earlier studies suggested that increasing precipitation escalates the contribution of modern DOC from topsoil layers to surface runoff. Our results demonstrate a step change occurring if rainfall intensities increase and become extreme; then the consequences lead to the mobilization of old carbon in exceptionally high concentrations. The runoff/precipitation ratios of rainfall events indicated that during extreme events upland areas of the catchments were hydrologically connected to the stream and upland DOC was activated. Furthermore, the analysis of long-term data suggested that the DOC export in extreme precipitation events added to the annual yield and was not compensated for by lower exports in remaining periods. We conclude that climate change, along with additional processes associated with human activities, channels old soil carbon into more rapidly cycled carbon pools of the hydrosphere.
Susan L. Eggert; J. Bruce Wallace
2003-01-01
Leaf inputs in temperate forest streams may limit caddisfly production because leaf detritus serves both as a food and case-material resource. We estimated Pycnopsyche gentilis produdion in a stream experimentally decoupled fmm its riparian habitat and a reference stream for 8 y in the southern Appalachians. We also examined laboratory survivorship,...
J.L. Tank; P.J. Mulholland; J.L. Meyer; W.B. Bowden; J.R. Webster; B.J. Peterson
2000-01-01
Nitrogen is a critical element controlling the productivity and dynamics of stream ecosystems and many streams are limited by the supply of biologically available nitrogen (e.g. Grimm & Fisher 1986, Lohman et al. 1991). We are learning more about the fate of inorganic nitrogen entering streams through 15N tracer additions (Peterson et al....
Impact of landscape disturbance on the quality of terrestrial sediment carbon in temperate streams
NASA Astrophysics Data System (ADS)
Fox, James F.; Ford, William I.
2016-09-01
Recent studies have shown the super saturation of fluvial networks with respect to carbon dioxide, and the concept that the high carbon dioxide is at least partially the result of turnover of sediment organic carbon that ranges in age from years to millennia. Currently, there is a need for more highly resolved studies at stream and river scales that enable estimates of terrestrial carbon turnover within fluvial networks. Our objective was to develop a new isotope-based metric to estimate the quality of sediment organic carbon delivered to temperate streams and to use the new metric to estimate carbon quality across landscape disturbance gradients. Carbon quality is defined to be consistent with in-stream turnover and our metric is used to measure the labile or recalcitrant nature of the terrestrial-derived carbon within streams. Our hypothesis was that intensively-disturbed landscapes would tend to produce low quality carbon because deep, recalcitrant soil carbon would be eroded and transported to the fluvial system while moderately disturbed or undisturbed landscapes would tend to produce higher quality carbon from well-developed surface soils and litter. The hypothesis was tested by applying the new carbon quality metric to 15 temperate streams with a wide range of landscape disturbance levels. We find that our hypothesis premised on an indirect relationship between the extent of landscape disturbance and the quality of sediment carbon in streams holds true for moderate and high disturbances but not for un-disturbed forests. We explain the results based on the connectivity, or dis-connectivity, between terrestrial carbon sources and pathways for sediment transport. While pathways are typically un-limited for disturbed landscapes, the un-disturbed forests have dis-connectivity between labile carbon of the forest floor and the stream corridor. Only in the case when trees fell into the stream corridor due to severe ice storms did the quality of sediment carbon increase in the streams. We argue that as scientists continue to estimate the in-stream turnover of terrestrially-derived carbon in fluvial carbon budgets, the assumption of pathway connectivity between carbon sources to the stream should be justified.
Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry
Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer
2009-01-01
We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...
Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.
Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune
2010-10-01
Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation. © 2010 Society for Conservation Biology.
Convergent Diversity and Trait Composition in Temporary Streams and Ponds
2016-05-19
of aquatic invertebrate diversity. We used invertebrate assemblage data from seven arid- land streams in southeastern Arizona, United States...collected over 2 yr and nine temperate woodland ponds in Ontario, Canada collected over 2 yr. Our results showed that although invertebrate assemblages...from streams and ponds differ taxonomically, hydroperi- od had similar influence on invertebrate trait structure regardless of biogeographic and habitat
Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest
Rhonda Mazza; Richard Edwards; David D' Amore
2010-01-01
Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...
Roberts, James H.; Hitt, Nathaniel P.
2010-01-01
Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.
Human impacts to mountain streams
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2006-09-01
Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel connections, process domains, physical and ecological roles of disturbance, and stream resilience.
NASA Astrophysics Data System (ADS)
Freitag, Hendrik
2004-09-01
This study presents the first emergence trap samples from streams in the Philippines and Greater Sunda. Aquatic insect emergence from two small rivers and longitudinal patterns including estuaries are compared. A decline of total emergence towards estuaries was observed, affecting all major orders. Diptera, namely Chironomidae, dominated all sites. High abundances in Ceratopogonidae, Odonata, and Coleoptera were found, compared to other emergence studies from tropical and temperate latitudes. Ephemeroptera displayed a highly variable contribution to the emergence from Palawan as well as in other comparative studies either supported by the appropriate conditions for certain functional groups or limited by environmental variables such as pH. Trichoptera are likely to tolerate a wider range of environmental conditions and they are consequently able to fill further niches where Ephemeroptera are under-represented. Except for scarce abundances of Plecoptera observed in this and other studies from the tropics, no substantial differences in emergence composition at order level existed between temperate and tropical rivers, however, with a remarkable local variation. Components of riparian and non-aquatic insects and non-emergent fauna contributing to the collections are discussed based on trap features. (
Lyons, John; Zorn, Troy; Stewart, Jana S.; Seelbach, Paul W.; Wehrly, Kevin; Wang, Lizhu
2009-01-01
Coolwater streams, which are intermediate in character between coldwater “trout” streams and more diverse warmwater streams, occur widely in temperate regions but are poorly understood. We used modeled water temperature data and fish assemblage samples from 371 stream sites in Michigan and Wisconsin to define, describe, and map coolwater streams and their fish assemblages. We defined coolwater streams as ones having summer water temperatures suitable for both coldwater and warmwater species and used the observed distributions of the 99 fish species at our sites to identify coolwater thermal boundaries. Coolwater streams had June-through-August mean water temperatures of 17.0–20.5°C, July mean temperatures of 17.5–21.0°C, and maximum daily mean temperatures of 20.7–24.6°C. We delineated two subclasses of coolwater streams: “cold transition” (having July mean water temperatures of 17.5–19.5°C) and “warm transition” (having July mean temperatures of 19.5–21.0°C). Fish assemblages in coolwater streams were variable and lacked diagnostic species but were generally intermediate in species richness and overlapped in composition with coldwater and warmwater streams. In cold-transition streams, coldwater (e.g., salmonids and cottids) and transitional species (e.g., creek chub Semotilus atromaculatus, eastern blacknose dace Rhynichthys atratulus, white sucker Catostomus commersonii, and johnny darter Etheostoma nigrum) were common and warmwater species (e.g., ictalurids and centrarchids) were uncommon; in warm-transition streams warmwater and transitional species were common and coldwater species were uncommon. Coolwater was the most widespread and abundant thermal class in Michigan and Wisconsin, comprising 65% of the combined total stream length in the two states (cold-transition streams being more common than warm-transition ones). Our approach can be used to identify and characterize coolwater streams elsewhere in the temperate region, benefiting many aspects of fisheries management and environmental protection.
NASA Astrophysics Data System (ADS)
Johansen, Kasper; Grove, James; Denham, Robert; Phinn, Stuart
2013-01-01
Stream bank condition is an important physical form indicator for streams related to the environmental condition of riparian corridors. This research developed and applied an approach for mapping bank condition from airborne light detection and ranging (LiDAR) and high-spatial resolution optical image data in a temperate forest/woodland/urban environment. Field observations of bank condition were related to LiDAR and optical image-derived variables, including bank slope, plant projective cover, bank-full width, valley confinement, bank height, bank top crenulation, and ground vegetation cover. Image-based variables, showing correlation with the field measurements of stream bank condition, were used as input to a cumulative logistic regression model to estimate and map bank condition. The highest correlation was achieved between field-assessed bank condition and image-derived average bank slope (R2=0.60, n=41), ground vegetation cover (R=0.43, n=41), bank width/height ratio (R=0.41, n=41), and valley confinement (producer's accuracy=100%, n=9). Cross-validation showed an average misclassification error of 0.95 from an ordinal scale from 0 to 4 using the developed model. This approach was developed to support the remotely sensed mapping of stream bank condition for 26,000 km of streams in Victoria, Australia, from 2010 to 2012.
Riparian vegetation controls on the hydraulic geometry of streams
NASA Astrophysics Data System (ADS)
McBride, M.
2010-12-01
A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.
Todd A. Crowl; Vanessa Welsh; Tamara Heartsill Scalley
2006-01-01
Temperate headwater streams with closed canopies rely on inputs of terrestrially derived organic matter to provide the major energy basis for their food webs. Microbial colonization, or conditioning, makes leaf litter more nutritional and palatable to stream detritivores, but few studies have investigated the relative importance of litter source to macroshredders in...
E. Hood; J. Fellman; R.T. Edwards
2007-01-01
The annual return of spawning Pacific salmon (genus Oncorhynchus) can have a dramatic effect on the nutrient budgets of recipient freshwater ecosystems. We examined how spawning salmon affect streamwater concentrations of inorganic nitrogen and phosphorus and dissolved organic carbon (DOC) in Peterson Creek, a salmon stream in southeast Alaska. In...
Adrian Ares; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Down wood is associated with the function, structure, and diversity of riparian systems. Considerable knowledge has been generated regarding down wood stocks and dynamics in temperate forests, but there are few studies on effects of silvicultural practices and riparian buffer design on down wood, particularly in headwater streams. We analyzed interactive eff ects of...
Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White
2009-01-01
The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...
Effie A. Greathouse; Catherine M. Pringle
2006-01-01
We examined whether a tropical stream in Puerto Rico matched predictions of the river continuum concept (RCC) for macroinvertebrate functional feeding groups (FFGs). Sampling sites for macroinvertebrates, basal resources, and fishes ranged from headwaters to within 2.5 km of the fourth-order estuary. In a comparison with a model temperate system in which RCC...
Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph D.; Cunjak, Richard
2014-01-01
Assimilation of nutrients from carcass analogues was both direct and indirect, and a nutrient legacy was evident in the second year of sampling. Incorporation of nutrients from the pellets at a range of heights in the food web demonstrated the potential for marine-derived subsidies to contribute to freshwater ecosystem processes in Atlantic salmon nursery streams.
Unintended consequences of human research ethics committees: au revoir workplace studies?
Bamber, Greg J; Sappey, Jennifer
2007-07-01
To protect the welfare and rights of participants in research and to facilitate research that will be of benefit, as well as protect them against litigation, universities and research-funding agencies in Australia adopted the National Statement on Ethical Conduct in Research Involving Humans (NHMRC 1999). In many other countries there are similar statements. However, the ways in which such statements are often implemented by Human Research Ethics Committees (HRECs) are in conflict with an important stream of industrial sociological research. This stream seeks to deconstruct workplaces and de-layer management rhetoric to understand the realities and complexities of the social relations of production. There is a pluralist basis for much industrial sociology that challenges the unitarist view of the workplace as essentially harmonious. While views of workplaces as being conflictual and exploitative have to be tempered with an understanding of the accommodative and cooperative nature of workplace relations, there is nevertheless a general recognition of acts of resistance, as well as those of cooperation. The way in which the National Statement is typically implemented in Australia means that many HRECs require written, informed consent, which in the first instance will usually be that of management. An unintended consequence is a research focus on consensus, which is at best one-sided and at worst seriously misleading. It is unlikely that managerial consent will be granted unless there is a 'good news story' guaranteed. This article explores the ways in which HRECs may influence workplace research. The publication of the revised National Statement provides a valuable opportunity not to be missed by HRECs to implement more effective and efficient practices which would not have the unintended consequences of the earlier version. This would deserve the support of researchers in industrial sociology and other branches of the social sciences.
Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen
2013-01-01
Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after harsh desiccation, followed by loss of the specialized functions of specific groups of bacteria. PMID:24386188
Hunt, R.J.; Strand, M.; Walker, J.F.
2006-01-01
Measurements of groundwater-surface water exchange at three wetland stream sites were related to patterns in benthic productivity as part of the US Geological Survey's Northern Temperate Lakes-Water, Energy and Biogeochemical Budgets (NTL-WEBB) project. The three sites included one high groundwater discharge (HGD) site, one weak groundwater discharge (WGD) site, and one groundwater recharge (GR) site. Large upward vertical gradients at the HGD site were associated with smallest variation in head below the stream and fewest gradient reversals between the stream and the groundwater beneath the stream, and the stream and the adjacent streambank. The WGD site had the highest number of gradient reversals reflecting the average condition being closest to zero vertical gradient. The duration of groundwater discharge events was related to the amount of discharge, where the HGD site had the longest strong-gradient durations for both horizontal and vertical groundwater flow. Strong groundwater discharge also controlled transient temperature and chemical hyporheic conditions by limiting the infiltration of surface water. Groundwater-surface water interactions were related to highly significant patterns in benthic invertebrate abundance, taxonomic richness, and periphyton respiration. The HGD site abundance was 35% greater than in the WGD site and 53% greater than the GR site; richness and periphyton respiration were also significantly greater (p???0.001, 31 and 44%, respectively) in the HGD site than in the GR site. The WGD site had greater abundance (27%), richness (19%) and periphyton respiration (39%) than the GR site. This work suggests groundwater-surface water interactions can strongly influence benthic productivity, thus emphasizing the importance of quantitative hydrology for management of wetland-stream ecosystems in the northern temperate regions. ?? 2005 Elsevier B.V. All rights reserved.
Vermilyea, Andrew W; Nagorski, Sonia A; Lamborg, Carl H; Hood, Eran W; Scott, Durelle; Swarr, Gretchen J
2017-12-01
In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r 2 =0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r 2 =0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r 2 =0.55 for glacial stream, r 2 =0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm -2 y -1 , which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska. Copyright © 2017 Elsevier B.V. All rights reserved.
Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E
2009-01-01
Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.
The Bossons glacier protects Europe's summit from erosion
NASA Astrophysics Data System (ADS)
Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.
2013-08-01
The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.
The carbon cycle implications of chemical weathering in retrogressive thaw slump-impacted streams
NASA Astrophysics Data System (ADS)
Zolkos, S.; Tank, S. E.; Kokelj, S. V.
2016-12-01
Permafrost thaw is "unlocking" and exposing significant amounts of sediment, solutes and organic carbon previously maintained in frozen soils to biochemical processing and fluvial transport. While microbial respiration of permafrost organic carbon contributes significantly to CO2 in Arctic headwater streams, chemical weathering of minerals unearthed by thawing permafrost may fix CO2 as bicarbonate (HCO3), thus removing it from the active carbon cycle. However, the degree to which mineral weathering acts to temper CO2 generated during permafrost thaw is largely unknown. During summer 2015, we investigated these dynamics in eight streams (orders 1-3) impacted by retrogressive thaw slumps across the Peel Plateau (NT, Canada), where thaw slumps expose permafrost that is comprised of abundant glacial tills, and glaciofluvial and glaciolacustrine sediments. Thaw slump activity had a discernible signature in all streams: conductivity, pH, dissolved inorgnaic carbon (DIC), and solute concentrations (Ca, Mg, Na, K, SO4, Cl) increased in the downstream (thaw slump-impacted) reach, relative to upstream, while CO2 decreased. This corresponded with an isotopically-enriched DIC pool in impacted streams (mean δ13CDIC = -9.80‰), perhaps indicating the dissolution of carbonate minerals following exposure by thaw slump activity. Despite a general decrease downstream of thaw slumps, CO2 remained supersaturated in impacted streams (mean pCO2 = 915 µatm). However, the highest partial pressures of CO2 were found in thaw slump runoff (mean pCO2 = 4,600 µatm), above the point where runoff entered downstream systems. High pCO2 levels in slump runoff may be derived from microbial respiration of slump-released dissolved organic carbon or, for some slumps, carbonate dissolution (range δ13CDIC = 0.67 - -23.37‰). While this work suggests thaw slumps in the Western Canadian Arctic may act to partially temper CO2 in headwater streams, these stream networks will likely persist as significant sources of CO2 to the atmosphere.
Convergence of temperate and tropical stream fish assemblages
The hypothesis of convergence takes the deterministic view that community (or assemblage) structure can be predicted from the environment, and that the environment is expected to drive evolution in a predictable direction. Here we present results of a comparative study of freshwa...
NASA Astrophysics Data System (ADS)
Kreitinger, E.; D'Amore, D. V.; Walter, M. T.
2016-12-01
The Alaskan perhumid coastal temperate rainforest (PCTR) is part of the largest expanse of temperate rainforest in the world. Steep topography in this region characterizes thousands of small watersheds, from which more than 760 km3 y-1 of freshwater is exported from terrestrial systems to the nearshore estuary. This hydrologic flux carries large amounts of carbon and nutrients, which are believed to drive important bottom-up controls on ecosystem productivity. In recent years, carbon has been the focus of biogeochemical research in the PCTR, while nitrogen (N) dynamics remain relatively unstudied. We analyzed water chemistry from streams at the outflow points of discrete coastal watersheds in the region and developed predictive models for N flux across varying physiographic features. Predictive variables tested for this nutrient model were derived from regional geographic data to improve scalability. These include topography, wetland extent, forest type, harvest history and other variables related to ecosystem state-factor controls. Results indicate distinct patterns of nitrogen loss across the landscape. Dissolved organic nitrogen (DON) was the dominant form of N in nearly all samples across seasons (range 34.01-351.90 ppb, mean 154.30 ppb). The mean ratio of dissolved inorganic nitrogen as nitrate (NO3) and ammonium (NH4+) to total dissolved nitrogen (DIN:TDN) was .30 in spring and .13 in fall (SE ± .03 at both times). Overall trends in stream N concentrations are such that DON>>NO3>NH3. Results from this research improve our ability to predict dissolved N concentrations using landscape patterns in unsampled watersheds, where accessibility and cost pose hurdles to sampling. The model provides a basis for developing regional nitrogen budgets, which are fundamental to our understanding of aquatic and terrestrial ecosystems' response to management practices and climate change.
Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.
2014-01-01
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065
Logan, Diane E.; Kilmer, Jason R.; Marlatt, G. Alan
2014-01-01
Objective The present study examined the relationship between alcohol use and positive psychology’s character virtues1 in a college student sample. Each of the virtues of wisdom, courage, humanity, justice, temperance, and transcendence were examined as protective factors and moderators of drinking consequences. Participants This sample included 425 undergraduate students at a large Northwest University (69% female; 52% Caucasian, 34% Asian). Methods Participants completed paper and pencil questionnaires during October and November 2006 in exchange for extra credit in psychology classes. Results Higher temperance scores were associated with abstinence, lower risk drinking, and fewer consequences among heavy drinkers; both increased justice and transcendence were independently associated with abstinence only; and wisdom, courage, and humanity were not associated with any outcomes. Conclusions The associations between virtues and college student drinking support a collaboration between addictive behaviors and positive psychology to address college student drinking and minimize consequences. PMID:20159755
Nukazawa, Kei; Arai, Ryosuke; Kazama, So; Takemon, Yasuhiro
2018-06-14
Climate change places considerable stress on riverine ecosystems by altering flow regimes and increasing water temperature. This study evaluated how water temperature increases under climate change scenarios will affect stream invertebrates in pristine headwater streams. The studied headwater-stream sites were distributed within a temperate catchment of Japan and had similar hydraulic-geographical conditions, but were subject to varying temperature conditions due to altitudinal differences (100 to 850 m). We adopted eight general circulation models (GCMs) to project air temperature under conservative (RCP2.6), intermediate (RCP4.5), and extreme climate scenarios (RCP8.5) during the near (2031-2050) and far (2081-2100) future. Using the water temperature of headwater streams computed by a distributed hydrological-thermal model as a predictor variable, we projected the population density of stream invertebrates in the future scenarios based on generalized linear models. The mean decrease in the temporally averaged population density of Plecoptera was 61.3% among the GCMs, even under RCP2.6 in the near future, whereas density deteriorated even further (90.7%) under RCP8.5 in the far future. Trichoptera density was also projected to greatly deteriorate under RCP8.5 in the far future. We defined taxa that exhibited temperature-sensitive declines under climate change as cold stenotherms and found that most Plecoptera taxa were cold stenotherms in comparison to other orders. Specifically, the taxonomic families that only distribute in Palearctic realm (e.g., Megarcys ochracea and Scopura longa) were selectively assigned, suggesting that Plecoptera family with its restricted distribution in the Palearctic might be a sensitive indicator of climate change. Plecoptera and Trichoptera populations in the headwaters are expected/anticipated to decrease over the considerable geographical range of the catchment, even under the RCP2.6 in the near future. Given headwater invertebrates play important roles in streams, such as contributing to watershed productivity, our results provide useful information for managing streams at the catchment-level. Copyright © 2018 Elsevier B.V. All rights reserved.
Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K
2014-08-22
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation
NASA Technical Reports Server (NTRS)
Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.
2014-01-01
Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.
Tempering characteristics of a vanadium containing dual phase steel
NASA Astrophysics Data System (ADS)
Rashid, M. S.; Rao, B. V. N.
1982-10-01
Dual phase steels are characterized by a microstructure consisting of ferrite, martensite, retained austenite, and/or lower bainite. This microstructure can be altered by tempering with accompanying changes in mechanical properties. This paper examines such changes produced in a vanadium bearing dual phase steel upon tempering below 500 °C. The steel mechanical properties were minimally affected on tempering below 200 °C; however, a simultaneous reduction in uniform elongation and tensile strength occurred upon tempering above 400 °C. The large amount of retained austenite (≅10 vol pct) observed in the as-received steel was found to be essentially stable to tempering below 300 °C. On tempering above 400 °C, most of the retained austenite decomposed to either upper bainite (at 400 °C) or a mixture of upper bainite and ferrite-carbide aggregate formed by an interphase precipitation mechanism (at 500 °C). In addition, tempering at 400 °C led to fine precipitation in the retained ferrite. The observed mechanical properties were correlated with these microstructural changes. It was concluded that the observed decrease in uniform elongation upon tempering above 400 °C is primarily the consequence of the decomposition of retained austenite and the resulting loss of transformation induced plasticity (TRIP) as a contributing mechanism to the strain hardening of the steel.
NASA Astrophysics Data System (ADS)
Rawat, Pradeep K.
2014-09-01
The main objective of the study was to assess climate change and its geohydrological impacts on non-monsoon crop pattern at watershed level through GIS development on climate informatics, land use informatics, hydro-informatics and agro-informatics. The Dabka watershed constitutes a part of the Kosi Basin in densely populated Lesser Himalaya, India in district Nainital has been selected for the case illustration. This reconnaissance study analyzed the climatic database for last three decades (1982-2012) and estimates that the average temperature and evaporation loss have been rising with the rate of 0.07 °C/yr and 4.03 mm/yr respectively whereas the average rainfall has been decreasing with the rate of 0.60 mm/yr. These rates of climate change increasing with mounting elevations. Consequently the existing microclimatic zones (sub-tropical, temperate and moist temperate) shifting towards higher altitudes and affecting the favorable conditions of the land use pattern and decreased the eco-friendly forest and vegetation cover. The land use degradation and high rate of deforestation (0.22 km2 or 1.5%/yr) leads to accelerate several hydrological problems during non-monsoon period (i.e. decreasing infiltration capacity of land surface, declining underground water level, drying up natural perennial springs and streams, decreasing irrigation water availability etc.). In order to that the non-monsoon crops yield has been decreasing with the rate of 0.60% each year as the results suggest that the average crop yield is just about 58 q/ha whereas twenty five to thirty year back it was recorded about 66 q/ha which is about 12% higher (8 q/ha) than existing yield. On the other hand the population increasing with the growth rate of 2% each year. Therefore, decreasing crop yield and increasing population raised food deficiency problem and the people adopting other occupations which ultimately affecting rural livelihood of the Himalaya.
J.R. Corman; B.L. Bertolet; N.J. Casson; S.D. Sebestyen; R.K. Kolka; E.H. Stanley
2018-01-01
Terrestrial loads of dissolved organic matter (DOM) have increased in recent years in many north temperate lakes. While much of the focus on the "browning" phenomena has been on its consequences for carbon cycling, much less is known about how it influences nutrient loading to lakes. We characterize potential loads of nitrogen and phosphorus to seepage lakes...
Brent R. Frey; Ellen M. Boerger
2015-01-01
Groundstory vegetation typically accounts for the greatest proportion of plant diversity in temperate forests, representing a critical structural component and mediating numerous ecosystem processes, including tree regeneration. The effects of thinning on groundstory vegetation have received limited study in bottomland hardwood stands. This study investigated...
For several species of salmonids (Oncorhynchus and Salvelinus spp.) inhabiting Pacific coastal temperate streams, juvenile fish have been recorded moving between mainstem and tributary habitats during the transition from the summer dry season to the winter wet season. Movement co...
Climate, invasive species and land use drive population dynamics of a cold-water specialist
Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M; Muhlfeld, Clint C.
2017-01-01
Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences population dynamics in the context of other existing stressors.We used long-term data from 92 populations of bull trout Salvelinus confluentus – one of North America's most cold-adapted fishes – to quantify additive and interactive effects of climate, invasive species and land use on population dynamics (abundance, variability and growth rate).Populations were generally depressed, more variable and declining where spawning and rearing stream habitat was limited, invasive species and land use were prevalent and stream temperatures were highest. Increasing stream temperature acted additively and independently, whereas land use and invasive species had additive and interactive effects (i.e. the impact of one stressor depended on exposure to the other stressor).Most (58%–78%) of the explained variation in population dynamics was attributed to the presence of invasive species, differences in life history and management actions in foraging habitats in rivers, lakes and reservoirs. Although invasive fishes had strong negative effects on populations in foraging habitats, proactive control programmes appeared to effectively temper their negative impact.Synthesis and applications. Long-term demographic data emphasize that climate warming will exacerbate imperilment of cold-water specialists like bull trout, yet other stressors – especially invasive fishes – are immediate threats that can be addressed by proactive management actions. Therefore, climate-adaptation strategies for freshwater biodiversity should consider existing abiotic and biotic stressors, some of which provide potential and realized opportunity for conservation of freshwater biodiversity in a warming world.
Dendrochemistry of multiple releases of chlorinated solvents at a former industrial site
Jean Christophe Balouet; Joel G. Burken; Frank Karg; Don Vroblesky; Kevin T. Smith; Håkan Grudd; Anders Rindby; François Beaujard; Michel Chalot
2012-01-01
Trees can take up and assimilate contaminants from soil, subsurface, and groundwater. Contaminants in the transpiration stream can become bound or incorporated into the annual rings formed in trees of the temperate zones. The chemical analysis of precisely dated tree rings, called dendrochemistry, can be used to interpret past plant interactions with contaminants. This...
NASA Astrophysics Data System (ADS)
Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian
2014-05-01
Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.
Katherine McCulloh; John S. Sperry; Barbara Lachenbruch; Frederick D. Meinzer; Peter B. Reich; Steven Voelker
2010-01-01
Coniferous, diffuse-porous and ring-porous trees vary in their xylem anatomy, but the functional consequences of these differences are not well understood from the scale of the conduit to the individual. Hydraulic and anatomical measurements were made on branches and trunks from 16 species from temperate and tropical areas, representing all three wood types. Scaling of...
Parkyn, Stephanie M; Smith, Brian J
2011-09-01
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.
NASA Astrophysics Data System (ADS)
Parkyn, Stephanie M.; Smith, Brian J.
2011-09-01
Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.
Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones
2009-01-01
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...
Dalton J. Hance; Lisa M. Ganio; Kelly M. Burnett; Joseph L. Ebersole
2016-01-01
For several species of salmonids, Oncorhynchus and Salvelinus spp., inhabiting Pacific coastal temperate streams, juvenile fish have been recorded moving between main-stem and tributary habitats during the transition from the summer dry season to the winter wet season. Movement connecting summer and winter habitats may be particularly important for...
Bilotta, Gary S; Burnside, Niall G; Turley, Matthew D; Gray, Jeremy C; Orr, Harriet G
2017-01-01
Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies.
2017-01-01
Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies. PMID:28158282
Implications of climate change (global warming) for the healthcare system.
Raffa, R B; Eltoukhy, N S; Raffa, K F
2012-10-01
Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Logan, Diane E.; Kilmer, Jason R.; Marlatt, G. Alan
2010-01-01
Objective: The present study examined the relationship between alcohol use and positive psychology's character virtues in a college student sample. Each of the virtues of wisdom, courage, humanity, justice, temperance, and transcendence were examined as protective factors and moderators of drinking consequences. Participants: This sample included…
2018-05-31
See a jet stream speeding through Jupiter's atmosphere in this new view taken by NASA's Juno spacecraft. The jet stream, called Jet N2, was captured along the dynamic northern temperate belts of the gas giant planet. It is the white stream visible from top left to bottom right in the image. The color-enhanced image was taken at 10:34 p.m. PST on May 23 (1:34 a.m. EST on May 24), as Juno performed its 13th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 3,516 miles (5,659 kilometers) from the tops of the clouds of the planet at a northern latitude of 32.9 degrees. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager. The view is a composite of several separate JunoCam images that were re-projected, blended, and healed. https://photojournal.jpl.nasa.gov/catalog/PIA22422
Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers
Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.
2011-01-01
In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.
Research to inform policy on headwater streams: ongoing and future directions
Headwater streams are the exterior links of stream networks and represent a substantial proportion of U.S. stream miles. Alteration and loss of headwater streams have occurred without an understanding of the potential consequences to larger downstream waterbodies. Recent court ca...
Perakis, S.S.; Hedin, L.O.
2007-01-01
We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.
Marijić, Vlatka Filipović; Perić, Mirela Sertić; Kepčija, Renata Matoničkin; Dragun, Zrinka; Kovarik, Ivana; Gulin, Vesna; Erk, Marijana
2016-01-01
The present study was undertaken to obtain a better understanding of the seasonal variability of total dissolved metal/metalloid levels and physicochemical parameters within small- to medium-size freshwater ecosystems in temperate climate region. The research was conducted in four seasons in the Sutla River, medium-size polluted, and the Črnomerec Stream, small-size unpolluted watercourse in Croatia. In the Sutla River, characterized by the rural/industrial catchment, physicochemical parameters and total dissolved metal concentrations of 21 trace and 4 macro elements were analysed downstream of the point source of pollution, the glass production facility, indicating for the first time their variability across four seasons. Based on dissolved oxygen, total dissolved solids, nutrient concentrations, conductivity and total chemical oxygen demand, quality status of the Sutla River was good, but moderate to poor during summer, what was additionally confirmed by the highest levels of the most of 25 measured metals/metalloids in summer. Comparison with the reference small-size watercourse, the Črnomerec Stream, indicated significant anthropogenic impact on the Sutla River, most evident for Fe, Mn, Mo, Ni, Pb, Rb and Tl levels (3-70-fold higher in the Sutla River across all seasons). Generally, presented results indicated significant decrease of the water quality in the anthropogenically impacted small- to medium-size watercourses in summer, regarding physicochemical water parameters and total dissolved metal/metalloid concentrations, and pointed to significant seasonality of these parameters. Confirmed seasonality of river ecological status indicates that seasonal assessment represents a prerequisite for proper classification of the water quality in small- to medium-size temperate rivers.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.
2009-05-01
There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.
NASA Astrophysics Data System (ADS)
Merino, Carolina; Matus, Francisco; Fontaine, Sebastien
2016-04-01
Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio < 0.12, the mineralization rates from DOM and mineral soils were unaffected. Consequently, there would be a considerable reduction in the biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.
Catchment scale molecular composition of hydrologically mobilized dissolved organic matter
NASA Astrophysics Data System (ADS)
Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten
2016-04-01
Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples showed that also the event-mobilized DOM had higher radiocarbon content. Overall, hydrology not only controls the quantity of exported carbon from temperate catchments but also strongly influences the molecular composition by mobilizing distinct compound classes in conjunction with dissolved iron and aluminum. From these results future compositional changes in temperate river DOM can be assessed, given an expected increase in the magnitude of hydrologic events, and technical advice for drinking water production may be inferred.
Forest landscape restoration: linkages with stream fishes of the southern United States
Melvin L. Warren
2012-01-01
With well over 600 native species, the southern United States supports one of the richest temperate freshwater fish faunas on Earth (Fig. 10.1 ). Unfortunately, an expert review revealed that 27% (188 taxa) of southern fishes are endangered, threatened, or vulnerable (Warren et al. 2000 ) and that 16â18% of native fishes are imperiled in 45 of 51 major southern river...
NASA Astrophysics Data System (ADS)
Wong, J. C.; Williams, D.
2009-05-01
Detrital energy in temperate headwater streams is mainly derived from the annual input of leaf litter from the surrounding landscape. Presumably, its decomposition and other sources of autochthonous organic matter will change dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) quality. To investigate this, DOM was leached from two allochthonous sources: white birch (Betula papyrifera) and white cedar (Thuja occidentalis); and one autochthonous source, streambed biofilm, for a period of 7 days on 3 separate occasions in fall 2007. As a second treatment, microorganisms from the water column were filtered out. Deciduous leaf litter was responsible for high, short-term increases to DOC concentrations whereas the amounts leached from conifer needles were relatively constant in each month. Using UV spectroscopy, changes to DOM characteristics like aromaticity, spectral slopes, and molecular weight were mainly determined by source and indicated a preferential use of the labile DOM pool by the microorganisms. Excitation-emission matrices (EEMs) collected using fluorescence spectroscopy suggested that cedar litter was an important source of protein-like fluorescence and that the nature of the fluorescing DOM components changed in the presence of microorganisms. This study demonstrates that simultaneous examination of DOC concentrations and DOM quality will allow a better understanding of the carbon dynamics that connect terrestrial with aquatic ecosystems.
Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects
NASA Technical Reports Server (NTRS)
Neumann, K.; DesMarais, D. J.
1998-01-01
We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.
Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves
NASA Astrophysics Data System (ADS)
Tuckett, C. A.; de Bettignies, T.; Fromont, J.; Wernberg, T.
2017-09-01
Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010-2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.
NASA Astrophysics Data System (ADS)
Hinsby, K.; Markager, S.; Kronvang, B.; Windolf, J.; Sonnenborg, T. O.; Thorling, L.
2012-08-01
Intensive farming has severe impacts on the chemical status of groundwater and streams and consequently on the ecological status of dependent ecosystems. Eutrophication is a widespread problem in lakes and marine waters. Common problems are hypoxia, algal blooms, fish kills, and loss of water clarity, underwater vegetation, biodiversity and recreational value. In this paper we evaluate the nitrogen (N) and phosphorus (P) concentrations of groundwater and surface water in a coastal catchment, the loadings and sources of N and P, and their effect on the ecological status of an estuary. We calculate the necessary reductions in N and P loadings to the estuary for obtaining a good ecological status, which we define based on the number of days with N and P limitation, and the corresponding stream and groundwater threshold values assuming two different management options. The calculations are performed by the combined use of empirical models and a physically based 3-D integrated hydrological model of the whole catchment. The assessment of the ecological status indicates that the N and P loads to the investigated estuary should be reduced to levels corresponding to 52 and 56% of the current loads, respectively, to restore good ecological status. Model estimates show that threshold total N (TN) concentrations should be in the range of 2.9 to 3.1 mg l-1 in inlet freshwater (streams) to Horsens estuary and 6.0 to 9.3 mg l-1 in shallow aerobic groundwater (∼ 27-41 mg l-1 of nitrate), depending on the management measures implemented in the catchment. The situation for total P (TP) is more complex, but data indicate that groundwater threshold values are not needed. The stream threshold value for TP to Horsens estuary for the selected management options is 0.084 mg l-1. Regional climate models project increasing winter precipitation and runoff in the investigated region resulting in increasing runoff and nutrient loads to the Horsens estuary and many other coastal waters if present land use and farming practices continue. Hence, lower threshold values are required in many coastal catchments in the future to ensure good status of water bodies and ecosystems.
Headwater streams represent the majority of U.S. stream miles. As a consequence of being abundant and widespread, the alteration and loss of headwater streams may have impacts on downstream waterbodies. These streams are frequently the subject of proposed dredge and fill projects...
Subtle Consequences of Exposure to Weak Microwave Fields: Are There Non-Thermal Effects?
1983-01-01
8217" /\\ Lovely -3 When we speak of ’#subtle consequences of exposi ~res we’mean only that the effects were observed in the absence of cb nges in core temper...there is the possibility that any effects observed may be due to residual or proactive treatment effects on the dam which cause her to engage in ab
Hydrological Changes in the Arctic in Response to a Changing Climate
NASA Astrophysics Data System (ADS)
Hinzman, L. D.; Kane, D. L.; McNamara, J. P.; Nolan, M. A.; Romanovsky, V. E.; Yang, D.; Yoshikawa, K.
2003-12-01
The broadest impacts of climate change to the terrestrial arctic regions will result through consequent effects of changing permafrost structure and extent. As the climate differentially warms in summer and winter, the permafrost will become warmer, the active layer (the layer of soil above the permafrost that annually experiences freeze and thaw) will become thicker, the lower boundary of permafrost will become shallower and permafrost extent will decrease in area. These simple structural changes will affect every aspect of the surface water and energy balances. As the active layer thickens, there is greater storage capacity for soil moisture and greater lags and decays are introduced into the hydrologic response times to precipitation. When the frozen ground is very close to the surface, the stream and river discharge peaks are higher and the base flow is lower. As permafrost becomes thinner, there can be more connections between surface and subsurface water. As permafrost extent decreases, there is more infiltration to groundwater. This has significant impacts on large and small scales. The timing of stream runoff will change, reducing the percentage of continental runoff released during the summer and increasing the proportion of winter runoff. This is already becoming evident in Siberian Rivers. As permafrost becomes thinner and is reduced in spatial extent, the proportions of groundwater in stream runoff will increase as the proportion of surface runoff decreases, increasing river alkalinity and electrical conductivity. This could impact mixing of fresh and saline waters, formation of the halocline and seawater chemistry. Other important impacts will occur due to changing basin geomorphology. Currently the drainage networks in arctic watersheds are quite immature as compared to the more well-developed stream networks of temperate regions. These stream channels are essentially frozen in place as the major flood events (predominantly snowmelt) occur when the soils and streambeds are frozen solid. As the active layer becomes thicker, there could be significantly increased sediment loads delivered to the ocean. Presently, most small streams (<=ssim1,000 km2) in the Arctic are completely frozen from the bed to the surface when spring melt is initiated. However, in lower reaches of the rivers there are places where the channel is deep enough to prevent complete winter freezing. Break-up of the rivers differs dramatically in these places where the ice is not frozen fast to the bottom. Huge ice chunks are lifted by the flowing water, chewing up channels bottoms and sides and introducing massive sediments to the spring runoff.
Stabilization of benthic algal biomass in a temperate stream draining agroecosystems.
Ford, William I; Fox, James F
2017-01-01
Results of the present study quantified carbon sequestration due to algal stabilization in low order streams, which has not been considered previously in carbon stream ecosystem studies. The authors used empirical mode decomposition of an 8-year carbon elemental and isotope dataset to quantify carbon accrual and fingerprint carbon derived from algal stabilization. The authors then applied a calibrated, process-based stream carbon model (ISOFLOC) that elicits further evidence of algal stabilization. Data and modeling results suggested that processes of shielding and burial during an extreme hydrologic event enhance algal stabilization. Given that previous studies assumed stream algae are turned over or sloughed downstream, the authors performed scenario simulations of the calibrated model in order to assess how changing environmental conditions might impact algae stabilization within the stream. Results from modeling scenarios showed an increase in algal stabilization as mean annual water temperature increases ranging from 0 to 0.04 tC km -2 °C -1 for the study watershed. The dependence of algal stabilization on temperature highlighted the importance of accounting for benthic fate of carbon in streams under projected warming scenarios. This finding contradicts the evolving paradigm that net efflux of CO 2 from streams increases with increasing temperatures. Results also quantified sloughed algae that is transported and potentially stabilized downstream and showed that benthos-derived sloughed algae was on the same order of magnitude, and at times greater, than phytoplankton within downstream water bodies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed
Finlay, J.C.
2003-01-01
I investigated controls of stream dissolved inorganic carbon (DIC) sources and cycling along a stream size and productivity gradient in a temperate forested watershed in northern California. Dissolved CO2 (CO2 (aq)) dynamics in heavily shaded streams contrasted strongly with those of larger, open canopied sites. In streams with canopy cover > 97%, CO2 (aq) was highest during baseflow periods (up to 540 ??M) and was negatively related to discharge. Effects of algal photosynthesis on CO2 (aq) were minimal and stream CO2 (aq) was primarily controlled by groundwater CO2 (aq) inputs and degassing losses to the atmosphere. In contrast to the small streams. CO2 (aq) in larger, open-canopied streams was often below atmospheric levels at midday during baseflow and was positively related to discharge. Here, stream CO2 (aq) was strongly influenced by the balance between autotrophic and heterotrophic processes. Dynamics of HCO3- were less complex. HCO3- and Ca2+ were positively correlated, negatively related to discharge, and showed no pattern with stream size. Stable carbon isotope ratios of DIC (i.e. ??13C DIC) increased with stream size and discharge, indicating contrasting sources of DIC to streams and rivers. During summer baseflows, ??13C DIC were 13C-depleted in the smallest streams (minimum of -17.7???) due to the influence of CO2 (aq) derived from microbial respiration and HCO3- derived from carbonate weathering. ??13C DIC were higher (up to -6.6???) in the larger streams and rivers due to invasion of atmospheric CO2 enhanced by algal CO2 (aq) uptake. While small streams were influenced by groundwater inputs, patterns in CO2 (aq) and evidence from stable isotopes demonstrate the strong influence of stream metabolism and CO2 exchange with the atmosphere on stream and river carbon cycles.
Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.
NASA Astrophysics Data System (ADS)
Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.
2015-12-01
Severe wildfire has been shown to increase the magnitude and advance the timing of rainfall-generated stormflows across a range of hydro-climate regions. Loss of canopy and forest floor interception results in increased net precipitation which, along with the removal of forest organic layers and increased shorter-term water repellency, can result in strongly increased surface flow pathways and efficient routing of precipitation to streams. These abrupt changes have the potential to exacerbate flood impacts and alter the timing of runoff delivery to streams. However, while these effects are well documented in drier temperate mountain regions, changes in post-fire rainfall-runoff processes are less well understood in colder, more northern, snowfall dominated regimes. The objectives of this study are to explore longer term precipitation and runoff dynamics of burned and unburned (reference) watersheds from the Southern Rockies Watershed Project (SRWP) after the 2003 Lost Creek wildfire in the front-range Rocky Mountains of southwestern Alberta, Canada. Streamflow and precipitation were measured in 5 watersheds (3.7 - 10.4 km2) for 10 years following the wildfire (2005-2014). Measurements were collected from a dense network of meteorological and hydrometric stations. Stormflow volume, peak flow, time to peak flow, and total annual streamflow were compared between burned and reference streams. Event-based data were separated into 3 post-fire periods to detect changes in rainfall-runoff dynamics as vegetation regenerated. Despite large increases in post-fire snowpacks and net summer rainfall, rainfall-generated runoff from fire-affected watersheds was not large in comparison to that reported from more temperate snowfall-dominated Rocky Mountain hydrologic settings. High proportions of groundwater contribution to annual runoff regimes (as opposed to surface flow pathways) and groundwater storage were likely contributors to greater watershed resistance to wildfire effects in these northern Rocky Mountain catchments.
Ebullitive methane emissions from oxygenated wetland streams
Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.
2014-01-01
Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.
Spatial and Temporal Dynamics of Carbon Fluxes in Glacial Meltwater Streams, Antarctica
NASA Astrophysics Data System (ADS)
Torrens, C.; Lyons, W. B.; McKnight, D. M.; Welch, K. A.; Gooseff, M. N.
2017-12-01
In the McMurdo Dry Valleys [MDV], Antarctica, glacial meltwater streams are the primary biogeochemical connectors linking glaciers, soils and lakes. These streams control the supply of nutrients and carbon to their terminal lakes, yet little is known about the magnitude, timing or distribution of these fluxes. The McMurdo Long Term Ecological Research project [MCM LTER] has collected over 20 years of sample data on dissolved organic and inorganic carbon in Taylor Valley streamwater; this is the first spatial and temporal analysis of this data. MDV streams are characterized by strong diel pulses in streamflow, specific electrical conductance, and temperature. Unlike temperate stream systems, there is no terrestrial vegetation, lateral overland flow or deep groundwater connection in MDV streams. As a result, the organic carbon is autochthonous, originating from stream microbial mats. Inorganic carbon is primarily bicarbonate; its source is hyporheic zone weathering. The carbonate system is in atmospheric equilibrium, reflecting the wide and shallow stream channels. Preliminary data show that the DOC flux varies with streamflow and is greater on the rising limb of the diel flow pulse. This pattern is more distinct in longer streams. DIC data does not show the same pattern, although the response may be blurred by a lag in hyporheic response to flood pulses and the lack of time-series data for alkalinity. Stream flood pulse dynamics control carbon loading to MDV lakes. As the climate changes, so will the timing and magnitude of diel flood pulses. This is likely to increase carbon loading to the Dry Valley lakes, altering the ecosystem carbon balance. This study increases our understanding of past and current patterns of carbon fluxes from streams to lakes; understanding past patterns will improve predictions of future changes.
Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...
Methodological Concerns in Experimental Reading Research: All That Glitters...
ERIC Educational Resources Information Center
Henk, William A.
1987-01-01
Describes the nature and consequences of liberally or improperly applying the traditional reading research methodology and provides an argument for tempering judgments about the relative contributions that experimental studies make to the professional literature in reading. (SKC)
Correlation of microstructure and tempered martensite embrittlement in two 4340 steels
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, D. Y.; Asaro, R. J.
1989-06-01
This study is concerned with a correlation between the microstructure and fracture behavior of two AISI 4340 steels which were vacuum induction melted and then deoxidized with aluminum and titanium additions. This allowed a comparison between microstructures that underwent large increases in grain size and those that did not. When the steels were tempered at 350°C, K Ic and Charpy impact energy plots showed troughs which indicated tempered martensite embrittlement (TME). The TME results of plane strain fracture toughness are interpreted using a simple ductile fracture initiation model based on large strain deformation fields ahead of cracks, suggesting that K Icscales roughly with the square root of the spacing of cementite particles precipitated during the tempering treatment. The trough in Charpy impact energy is found to coincide well with the amount of intergranular fracture and the effect of segregation of phosphorus on the austenite grain boundaries. In addition, cementite particles are of primary importance in initiating the intergranular cracks and, consequently, reducing the Charpy energy. These findings suggest that TME in the two 4340 steels studied can be explained quantitatively using different fracture models.
Stellar streams as gravitational experiments. II. Asymmetric tails of globular cluster streams
NASA Astrophysics Data System (ADS)
Thomas, G. F.; Famaey, B.; Ibata, R.; Renaud, F.; Martin, N. F.; Kroupa, P.
2018-01-01
Kinematically cold tidal streams of globular clusters (GC) are excellent tracers of the Galactic gravitational potential at moderate Galactocentric distances, and can also be used as probes of the law of gravity on Galactic scales. Here, we compare for the first time the generation of such streams in Newtonian and Milgromian gravity (MOND). We first computed analytical results to investigate the expected shape of the GC gravitational potential in both frameworks, and we then ran N-body simulations with the Phantom of Ramses code. We find that the GCs tend to become lopsided in MOND. This is a consequence of the external field effect which breaks the strong equivalence principle. When the GC is filling its tidal radius the lopsidedness generates a strongly asymmetric tidal stream. In Newtonian dynamics, such markedly asymmetric streams can in general only be the consequence of interactions with dark matter subhalos, giant molecular clouds, or interaction with the Galactic bar. In these Newtonian cases, the asymmetry is the consequence of a very large gap in the stream, whilst in MOND it is a true asymmetry. This should thus allow us in the future to distinguish these different scenarios by making deep observations of the environment of the asymmetric stellar stream of Palomar 5. Moreover, our simulations indicate that the high internal velocity dispersion of Palomar 5 for its small stellar mass would be natural in MOND. The movie is available in electronic form at http://www.aanda.org
Isotopic signals of summer denitrification in a northern hardwood forested catchment.
Wexler, Sarah K; Goodale, Christine L; McGuire, Kevin J; Bailey, Scott W; Groffman, Peter M
2014-11-18
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ(15)NNO3 and δ(18)ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments.
Isotopic signals of summer denitrification in a northern hardwood forested catchment
Wexler, Sarah K.; Goodale, Christine L.; Bailey, Scott W.; Groffman, Peter M.
2014-01-01
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ15NNO3 and δ18ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments. PMID:25368188
Consequences of Pool Habitat Isolation on Stream Fishes
David G. Lonzarich; Melvin L. Warren; Mary E. Lonzarich
2004-01-01
Abstract - For fishes, stream habitat units (i.e., pools and riffles) often exist as relatively discrete patches of varying quality that are distributed in a mosaic along the stream continuum. Under these conditions, the possibility exists that the spacing of suitable patches within a stream reach may affect interhabitat movements of fishes and their...
Tropical small streams are a consistent source of methane
NASA Astrophysics Data System (ADS)
Vihermaa, Leena; Waldron, Susan
2013-04-01
To date only a few studies have quantified diffusive methane emissions from headwater streams therefore the magnitude and seasonal variation of these emissions remain poorly understood. Here we present results from two Western Amazonian small streams (first and second order) in Tambopata National Reserve, Peru. Towards the end of wet season, April-May 2012, the streams were sampled using a static floating chamber to accumulate methane. Samples were drawn from the headspace twice daily over period of four days on three separate occasions. The methane concentrations were analysed using a gas chromatograph and the linear part of concentration increase used to calculate the flux rates. The streams were consistently outgassing methane. The seasonally active first order stream outgassed 6 ±2.4 nmol CH4-C m-2 s-1 and the second order stream 20 ±4.0 nmol CH4-C m-2 s-1. The latter flux rate is comparable to fluxes measured from seasonally flooded Amazonian forest in previous studies. The range measured in our streams is comparable to previous results in temperate streams and the lower end of fluxes observed in some peatland streams. The only other study on Amazonian small streams detected methane fluxes that were 100 times greater than those measured here. Depending on the density of small streams in Amazonian basin and the prevalent flux rate, the fluvial methane fluxes may constitute a significant global warming potential. Upscaling to the Amazon basin, assuming small stream density of 0.2 %, as was found at our field site, and the flux rates detected, yields an annual global warming potential equal to approximately 1.5 Mt of CO2 which is of minor importance compared to aquatic CO2-C flux of 500 Mt yr-1 from the basin. However, if the higher fluxes detected in the previous study were prevalent, the basin wide methane flux could become significant. Further studies are needed to establish the stream density in the Amazon basin and typical methane flux rates.
Evidence against a late Wisconsinan ice shelf in the Gulf of Maine
Oldale, R.N.; Williams, R.S.; Colman, Steven M.
1990-01-01
Proposals for the formation of a late Wisconsinan ice shelf in the Gulf of Maine during the retreat of the Laurentide Ice Sheet are considered to be inappropriate. An Antarctic-type ice shelf does not fit the field data that indicate temperate glacial, terrestrial, and marine climates for the region between 18 ka and 12 ka. A temperate ice shelf has no modern analogues and may be physically impossible. The preponderance of stratified drift in the Gulf of Maine region supports temperate climates during late Wisconsinan time. It also indicates that glacial meltwater, rather than ice in either an ice sheet or ice shelf, was the primary transport mechanism of glacial sediment and the source for the glaciomarine mud. For these reasons we have proposed glacial analogues for the deglaciation of the Gulf of Maine that consist of temperate or subpolar marine-based glaciers, characterized by depositional environments dominated by meltwater discharge directly to the sea or the sea by way of subaerial meltwater streams. These analogues include Alaskan fjord glaciers, glaciers on the Alaskan continental shelf that discharged meltwater directly into the sea in the not too distant past, and Austfonna (Nordaustandet, Svalbard, Norway) that is presently discharging meltwater in the sea along a grounded ice wall. This last example is the best modern-day analogue for the depositional environment for most of the glaciomarine mud in the Gulf of Maine and deglaciation of the Gulf.
NASA Astrophysics Data System (ADS)
Cowley, K.; Fryirs, K.; Chisari, R.; Hose, G. C.
2016-12-01
Temperate upland swamps in Eastern Australia are endangered ecological communities under State and National legislation. They occur in headwaters of low order streams on low relief plateaus, providing base flow to streams that contribute to Sydney's major drinking water supplies that support some 4.5 million people. The swamps are also subject to aquifer interference activities from long wall mining and groundwater extraction, and are threatened by a changing climate. It is therefore critical that we understand their water source, storage capacity and residence times. We collected seasonal water samples from perched swamp aquifers in two highland regions of Eastern Australia for analysis of hydrogen and oxygen isotopes and compared them with rainwater, surface water and deeper groundwater to determine whether the swamps were primarily rainwater or groundwater fed. 222Rn was used as an environmental tracer to calculate residence times and relative groundwater/surface water ratios. We found over 60% of the swamps were sensitive to evaporation which has implications for swamp health in a warmer climate. Over a third of water from the perched swamp aquifer is derived from deeper sandstone aquifers with residence times of between 1.2 and 15 days. This swamp-groundwater connectivity means that mining activities or large-scale groundwater extraction could interfere with a significant component of the swamps' water source, its water storage capacity and downstream contributions to Sydney's drinking water supplies.
Geber-Corrêa, Rachel; Campos, Paola S.; Garcia, Marcos V. B.; Waichman, Andrea V.; van den Brink, Paul J.
2009-01-01
Parathion-methyl is an organophosphorous insecticide that is widely used in agricultural production sites in the Amazon. The use of this pesticide might pose a potential risk for the biodiversity and abundance of fish and invertebrate species inhabiting aquatic ecosystems adjacent to the agricultural fields. Due to a lack of toxicity data for Amazonian species, safe environmental concentrations used to predict the ecological risks of parathion-methyl in the Amazon are based on tests performed with temperate species, although it is unknown whether the sensitivity of temperate species is representative for those of Amazonian endemic species. To address this issue, the acute toxic effect (LC50–96 h) of parathion-methyl was assessed on seven fish and five freshwater invertebrate species endemic to the Amazon. These data were used to compare their pesticide sensitivity with toxicity data for temperate species collected from the literature. The interspecies sensitivity was compared using the Species Sensitivity Distribution (SSD) concept. The results of this study suggest that Amazonian species are no more, or less, sensitive to parathion-methyl than their temperate counterparts, with LC50 values ranging from 2900 to 7270 μg/L for fish and from 0.3 to 319 μg/L for freshwater arthropods. Consequently, this evaluation supports the initial use of toxicity data of temperate fish and freshwater invertebrate species for assessing the effects of parathion-methyl on Amazonian freshwater ecosystems. PMID:19847472
Bech, Claus; Chappell, Mark A; Astheimer, Lee B; Londoño, Gustavo A; Buttemer, William A
2016-05-01
Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species. The pace of life has been hypothesized to affect metabolism and, as predicted, tropical birds have lower basal metabolic rates (BMR) than temperate-breeding birds. However, many temperate-breeding Australian passerines belong to lineages that evolved in Australia and share 'slow' life-history traits that are typical of tropical birds. We obtained BMR from 30 of these 'old-endemics' and ten sympatric species of more recently arrived passerine lineages (derived from Afro-Asian origins or introduced by Europeans) with 'faster' life histories. The BMR of 'slow' temperate-breeding old-endemics was indistinguishable from that of new-arrivals and was not lower than the BMR of 'fast' temperate-breeding non-Australian passerines. Old-endemics had substantially smaller clutches and longer maximal life spans in the wild than new arrivals, but neither clutch size nor maximum life span was correlated with BMR. Our results suggest that low BMR in tropical birds is not functionally linked to their 'slow pace of life' and instead may be a consequence of differences in annual thermal conditions experienced by tropical versus temperate species.
Evaluation of passive samplers for the collection of dissolved organic matter in streams.
Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V
2015-01-01
Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.
NASA Astrophysics Data System (ADS)
Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Krusche, A. V.; Richey, J. E.
2012-12-01
The most abundant biochemicals on land are cellulose, hemicellulose, and lignin. Lignin, alone, composes roughly 30% of the organic carbon (OC) in the terrestrial biosphere (Boerjan et al., 2003) and a significant portion of the OC mobilized into stream and river networks worldwide. Here we present a synthesis of several studies examining (i) the mobilization dynamics/compositional changes in dissolved lignin during rapid storm events in small temperate streams (Hood Canal, WA, USA), and (ii) the respiration dynamics/biological overturning of dissolved (and particulate) lignin in the Amazon River mainstem. Rapid sampling (3 hour intervals) during short-term rainfall events has revealed that the concentration of dissolved lignin phenols (as well as DOC) in small temperate streams is strongly correlated with river discharge (Ward et al., 2012). Additionally, rapid discharge increases resulted in an increase in Ad/Al and C/V ratios and decrease in the S/V ratio of dissolved lignin phenols, indicating a mobilization of relatively degraded non-woody/gymnosperm-derived material in the dissolved phase during storms occurring after a long dry period. We hypothesize that sorption to soil surfaces imparts an additional control on lignin mobilization: degraded phenols are relatively more soluble than their non-degraded counterparts and are easily mobilized by rapid flow, whereas non-degraded phenols are slowly mobilized by base flow and continuously degraded in soils. Once lignin is mobilized into the aquatic setting it is often assumed to be refractory. However, evidence in the Amazon River mainstem suggests the contrary. We have assessed the biodegradability of dissolved (and particulate) lignin, as well as a vast suite (~120) of similar phenolic compounds with a series of incubation experiments performed on four Amazon River cruises. We estimate that on average the degradation of lignin and similar phenolic compounds supports 30-50% of bulk respiration rates in the river, implying that lignin may be a highly important organic matter fuel for CO2 outgassing from the world's inland waters. Contrary to bulk respiration rates, which poorly correlate with bulk OC concentrations, the respiration of lignin appears to be almost entirely controlled by substrate composition. Lignin (and OC) concentrations and lignin degradation rates both correlate well with the seasonal hydrograph in the Amazon (Ward et al., submitted). Based on the measurements made here, and by others (Hedges et al., 1988; Field et al., 1998; Houghton et al., 2001; Malhi et al., 2008; Bose et al., 2009) we estimate that roughly 80 Tg C of lignin is sequestered in Amazonian soils annually, roughly 40% of this lignin is respired in soils, 55% is respired within the river continuum, and less than 5% is delivered to the ocean.
Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.
2005-01-01
Recovery and protection of streams in urban areas depend on a comprehensive understanding of how human activities affect stream ecosystems. The hydrologic effects of urban development and the consequences for stream channel form and streambed stability were examined in 16 streams in the Puget Lowland, Washington, using three streamflow metrics that integrate storm‐scale effects of urban development over annual to decadal timescales: the fraction of time that streamflow exceeds the mean streamflow (TQmean), the coefficient of variation of annual maximum streamflow (CVAMF), and the fraction of time that streamflow exceeds the 0.5‐year flood (T0.5). Urban streams had low interannual variability in annual maximum streamflow and brief duration of frequent high flows, as indicated by significant correlations between road density and both CVAMFand T0.5. The broader distribution of streamflow indicated by TQmean may be affected by urban development, but differences in TQmean between streams are also likely a result of other physiographic factors. The increase in the magnitude of frequent high flows due to urban development but not their cumulative duration has important consequences for channel form and bed stability in gravel bed streams because geomorphic equilibrium depends on moderate duration streamflow (e.g., exceeded 10% of the time). Streams with low values of TQmean and T0.5 are narrower than expected from hydraulic geometry. Dimensionless boundary shear stress (t*) for the 0.5‐year flood was inversely related to T0.5 among the streams, indicating frequent and extensive bed disturbance in streams with low values of T0.5. Although stream channels expand and the size of bed material increases in response to urban streamflow patterns, these adjustments may be insufficient to reestablish the disturbance regime in urban streams because of the differential increase in the magnitude of frequent high flows causing disturbance relative to any changes in longer duration, moderate flows that establish a stable channel.
Jimenez, Ana Gabriela; Cooper-Mullin, Clara; Calhoon, Elisabeth A; Williams, Joseph B
2014-07-01
Animal life-history traits fall within limited ecological space with animals that have high reproductive rates having short lives, a continuum referred to as a "slow-fast" life-history axis. Animals of the same body mass at the slow end of the life-history continuum are characterized by low annual reproductive output and low mortality rate, such as is found in many tropical birds, whereas at the fast end, rates of reproduction and mortality are high, as in temperate birds. These differences in life-history traits are thought to result from trade-offs between investment in reproduction or self-maintenance as mediated by the biotic and abiotic environment. Thus, tropical and temperate birds provide a unique system to examine physiological consequences of life-history trade-offs at opposing ends of the "pace of life" spectrum. We have explored the implications of these trade-offs at several levels of physiological organization including whole-animal, organ systems, and cells. Tropical birds tend to have higher survival, slower growth, lower rates of whole-animal basal metabolic rate and peak metabolic rate, and smaller metabolically active organs compared with temperate birds. At the cellular level, primary dermal fibroblasts from tropical birds tend to have lower cellular metabolic rates and appear to be more resistant to oxidative cell stress than those of temperate birds. However, at the subcellular level, lipid peroxidation rates, a measure of the ability of lipid molecules within the cell membranes to thwart the propagation of oxidative damage, appear not to be different between tropical and temperate species. Nevertheless, lipids in mitochondrial membranes of tropical birds tend to have increased concentrations of plasmalogens (phospholipids with antioxidant properties), and decreased concentrations of cardiolipin (a complex phospholipid in the electron transport chain) compared with temperate birds.
Stream channel degradation and aggradation : causes and consequences to highways.
DOT National Transportation Integrated Search
1980-06-01
Aggradation and degradation are long term changes in stream channel elevation. The effects of gradation changes are not the same as local scour or erosion because they extend greater distances along the stream-bed. Degradation is a more common proble...
Modeling gypsy moth seasonality
J. A. Logan; D. R. Gray
1991-01-01
Maintaining an appropriate seasonality is perhaps the most basic ecological requisite for insects living in temperate environments. The basic ecological importance of seasonality is enough to justify expending considerable effort to accurately model the processes involved. For insects of significant economic consequence, seasonality assumes additional importance...
Spatial variation in fish assemblages across a beaver-influenced successional landscape
Schlosser, I.J.; Kallemeyn, L.W.
2000-01-01
Beavers are increasingly viewed as “ecological engineers,” having broad effects on physical, chemical, and biological attributes of north-temperate landscapes. We examine the influence of both local successional processes associated with beaver activity and regional geomorphic boundaries on spatial variation in fish assemblages along the Kabetogama Peninsula in Voyageurs National Park, northern Minnesota, USA. Fish abundance and species richness exhibited considerable variation among drainages along the peninsula. Geological barriers to fish dispersal at outlets of some drainages has reduced fish abundance and species richness. Fish abundance and species richness also varied within drainages among local environments associated with beaver pond succession. Fish abundance was higher in upland ponds than in lowland ponds, collapsed ponds, or streams, whereas species richness was highest in collapsed ponds and streams. Cluster analyses based on fish abundance at sites classified according to successional environment indicated that four species (northern redbelly dace, Phoxinus eos; brook stickleback, Culaea inconstans; finescale dace, P. neogaeus; and fathead minnow, Pimephales promelas), were predominant in all successional environments. Several less abundant species were added in collapsed ponds and streams, with smaller size classes of large lake species (e.g., black crappie, Pomoxis nigromaculatus; smallmouth bass, Micropertus dolomieui; yellow perch, Perca flavescens; and burbot, Lota lota) being a component of these less abundant species. The addition of smaller size classes of large lake species indicates that dispersal of early life-history stages from Kabetogama Lake played a role in determining the species richness and composition of less abundant species in successional environments on the peninsula. Furthermore, collapsed-pond and stream environments closer to Kabetogama Lake had higher species richness than similar successional sites located farther from the lake. Cluster analyses based on fish abundance at sites classified according to drainage indicated that species composition among drainages was influenced both by the presence or absence of geological barriers to fish dispersal and the nonrandom distribution of collapsed ponds and streams. Based on these results, we present a hierarchical conceptual model suggesting how geomorphic boundaries and beaver pond succession interact to influence fish assemblage attributes. The presence of a productive and diverse fish assemblage in headwater streams of north-temperate areas requires the entire spatial and temporal mosaic of successional habitats associated with beaver activity, including those due to the creation and abandonment of beaver ponds. The ultimate impact of the local successional mosaic on fishes, however, will be strongly influenced by the regional geomorphic context in which the mosaic occurs.
Carbonate chemistry of surface waters in a temperate karst region: the southern Yorkshire Dales, UK
NASA Astrophysics Data System (ADS)
Pentecost, Allan
1992-11-01
A detailed study of surface water chemistry is described from an important limestone region in northern England. Major ions and pH were determined for 485 sites (springs, seeps, streams, rivers and lakes) during summertime. The saturation state of the waters with respect to calcite was determined as the calcite saturation ratio (Ω). An unexpectedly large number of samples were found to be supersaturated (65.5% of the 268 km of watercourses surveyed). As a consequence, several streams entering major cave systems were incapable of further limestone solution, at least during periods of low flow. Many waters were supersaturated from their source and some deposited travertine. A significant negative correlation was found between spring discharge and both (Ω) and pH. Supersaturation was caused primarily by atmospheric degassing, with some contribution from aquatic plant photosynthesis. The median total dissolved inorganic carbon and Ca concentrations were 2.49 and 1.35 millimoles 1 -1 respectively. Calcium originated exclusively from limestone, and carbon dioxide mainly from the soil and dissolved limestone. South facing catchments provided springwaters with significantly higher levels of TDIC and Ca when compared with north facing catchments. The study suggests that acid rain made a measurable contribution to limestone dissolution. Carboniferous limestone denudation rates were estimated as 54 to 63 m 3 km -2 a -1 (54 to 63 mm 1000 years -1). About 50% of the Mg came from limestone and the remainder, together with most K, Na, SO 4 and Cl from precipitation. Concentrations of dissolved nutrients were low, medians for NO 3, NH 4, total PO 4 and SiO 3 were 24 μmol, 1.4 μmol, 0.64 μmol and 15.5 μmol 1 -1 respectively. The concentration of a further 23 trace elements was determined.
Changes to Watershed Hydrology due to Changing Snowmelt Patterns, Michigan, US
NASA Astrophysics Data System (ADS)
Ford, C.; Kendall, A. D.; Hyndman, D. W.
2017-12-01
With increasing temperatures and changing precipitation patterns associated with global climate change, the future of hydrologic resources related to snowmelt is less certain than ever. Most existing snowmelt hydrology research focuses on mountainous regions such as the western United States, where snowpack is a primary reservoir of available freshwater. Less research has been done on snowmelt hydrology in non-mountainous, temperate middle to upper latitude regions such as the Midwestern US, where snowmelt is still an important contributor to water budgets (and critically summer water supplies). This study examines the changes to watershed hydrology due to changing snowmelt patterns in Michigan, which has a tension line between seasonally-persistent snowpacks in the north, and episodic snowpacks in the south. This transition varies in space and time, and is likely moving northward as a consequence of climate change. Changes to snow and winter weather were statistically determined from output of the NOAA's Snow Data Assimilation System (SNODAS) model along with historical weather data from the Global Historical Climatology Network. Stream data from the USGS, combined with in-house monitoring data from groundwater and soil moisture networks provide insight into the hydrologic changes. Snowmelt in years with warmer winter temperatures tend to end earlier in the year, resulting in earlier peak stream flows. These changes become more noticeable in the northern regions of the state, where snowfall amounts can be amongst the largest in the country. This study also examines the changing spatial transition zone between regions with snow lasting throughout the season and regions with a more episodic snow presence. In an area with some of the largest freshwater resources in the world, significant changes to streamflow and groundwater recharge could impact already stressed ecosystems and local water supplies.
Impacts of beaver ponds on dissolved organic matter cycling in small temperate streams.
NASA Astrophysics Data System (ADS)
Larsen, J.; Lambert, T.; Larsen, A.; Lane, S.
2017-12-01
Beavers are engineers that modify the structure of river reaches and their hydrological functioning. By building dams, they modify the travel time of running waters and can lead to the flooding of surrounding soils and terrestrial vegetation, with potentially significant impact on biogeochemical cycles. Contradictory effects of beaver ponds on dissolved organic matter (DOM) concentration and composition have however been reported, and the underlying reasons are still unclear. In this study, we aimed to investigate the role of the landscape morphology as an important driver determining how a beaver population can affect stream DOM cycling. Four streams localized in Switzerland and Germany were visited during different seasons (spring, summer, winter) and monitored at upstream and downstream locations of beaver ponds across a hydrological cycle. The sites differed in terms of river channel morphology, presence or absence of floodplain, and vegetation cover. DOM composition was investigated through absorbance and fluorescence measurements coupled with parallel factor analysis (PARAFAC) along with stream water quality (nutrients, pH, dissolved oxygen and water temperature). The results show that the effects of beaver dams were variable, and emphasizes the importance of the geomorphological context.
NASA Astrophysics Data System (ADS)
Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.
2015-12-01
Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information could inform future studies, such as investigations into stream network scale thresholds in DOM cycling, carbon cycling modelling for the study region, or understanding the impact of wetlands sometimes considered geographically isolated on downstream ecosystems.
Smith, Shannen M; Fox, Rebecca J; Booth, David J; Donelson, Jennifer M
2018-04-01
Range shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate-mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range-expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body-size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species ('mixed' shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in 'mixed' shoals attaining larger body-sizes over the season than those in 'tropical-only' shoals. This benefit in terms of population body-size distributions was accompanied by greater social cohesion of 'mixed' shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate-induced range expansion of coral reef fishes. © 2018 John Wiley & Sons Ltd.
Alien molluscs are widely distributed in U.S. streams. While some raise economic concerns on the order of billions of dollars, documentation of widespread ecological effects has, in some instances, been more elusive. A probability survey of wadeable streams of the coterminous U.S...
Urban streams are degraded by a suite of factors, including burial beneath urban infrastructure (i.e., roads, parking lots) that eliminates light and reduces direct organic matter inputs to streams, with likely consequences for organic matter metabolism by microbes and carbon lim...
Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B
2012-04-01
The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs.
Dean E. Fletcher; S. David Wilkins; J.V. McArthur; Gary K. Meffe
2000-01-01
Two tributary streams (Fourmile branch and Pen branch) located on the US Department of Energy's Savannah river site in west-central South Carolina, USA received thermal discharges from nuclear production reactors for over 30 years. Effluent releases produced stream water temperatures of over 50°C and stream flows of ten times above their base level. Consequently,...
Quantitative Generalizations for Catchment Sediment Yield Following Plantation Logging
NASA Astrophysics Data System (ADS)
Bathurst, James; Iroume, Andres
2014-05-01
While there is a reasonably clear qualitative understanding of the impact of forest plantations on sediment yield, there is a lack of quantitative generalizations. Such generalizations would be helpful for estimating the impacts of proposed forestry operations and would aid the spread of knowledge amongst both relevant professionals and new students. This study therefore analyzed data from the literature to determine the extent to which quantitative statements can be established. The research was restricted to the impact of plantation logging on catchment sediment yield as a function of ground disturbance in the years immediately following logging, in temperate countries, and does not consider landslides consequent upon tree root decay. Twelve paired catchment studies incorporating pre- and post-logging measurements of sediment yield were identified, resulting in forty-three test catchments (including 14 control catchments). Analysis yielded the following principal conclusions: 1) Logging generally provokes maximum annual sediment yields of less than a few hundred t km-2 yr-1; best management practice can reduce this below 100 t km-2 yr-1. 2) At both the annual and event scales, the sediment yield excess of a logged catchment over a control catchment is within one order of magnitude, except with severe ground disturbance. 3) There is no apparent relationship between sediment yield impact and the proportion of catchment logged. The effect depends on which part of the catchment is altered and on its connectivity to the stream network. 4) The majority of catchments delivered their maximum sediment yield in the first two years after logging. The logging impacts were classified in terms of the absolute values of specific sediment yield, the values relative to those in the control catchments for the same period and the values relative both to the control catchment and the pre-logging period. Most studies have been for small catchments (< 10 km2) and temperate regions; the impact at large catchment scales and in tropical regions requires further research.
Net degradation of methyl mercury in alder swamps.
Kronberg, Rose-Marie; Tjerngren, Ida; Drott, Andreas; Björn, Erik; Skyllberg, Ulf
2012-12-18
Wetlands are generally considered to be sources of methyl mercury (MeHg) in northern temperate landscapes. However, a recent input-output mass balance study during 2007-2010 revealed a black alder (Alnus glutinosa) swamp in southern Sweden to be a consistent and significant MeHg sink, with a 30-60% loss of MeHg. The soil pool of MeHg varied substantially between years, but it always decreased with distance from the stream inlet to the swamp. The soil MeHg pool was significantly lower in the downstream as compared to the upstream half of the swamp (0.66 and 1.34 ng MeHg g⁻¹ SOC⁻¹ annual average⁻¹, respectively, one-way ANOVA, p = 0.0006). In 2008 a significant decrease of %MeHg in soil was paralleled by a significant increase in potential demethylation rate constant (k(d), p < 0.02 and p < 0.004, respectively). In contrast, the potential methylation rate constant (k(m)) was unrelated to distance (p = 0.3). Our results suggest that MeHg was net degraded in the Alnus swamp, and that it had a rapid and dynamic internal turnover of MeHg. Snapshot stream input-output measurements at eight additional Alnus glutinosa swamps in southern Sweden indicate that Alnus swamps in general are sinks for MeHg. Our findings have implications for forestry practices and landscape planning, and suggest that restored or preserved Alnus swamps may be used to mitigate MeHg produced in northern temperate landscapes.
Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.
2006-01-01
The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.
Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming.
Riecke, Lars; Sack, Alexander T; Schroeder, Charles E
2015-12-21
In many natural listening situations, meaningful sounds (e.g., speech) fluctuate in slow rhythms among other sounds. When a slow rhythmic auditory stream is selectively attended, endogenous delta (1‒4 Hz) oscillations in auditory cortex may shift their timing so that higher-excitability neuronal phases become aligned with salient events in that stream [1, 2]. As a consequence of this stream-brain phase entrainment [3], these events are processed and perceived more readily than temporally non-overlapping events [4-11], essentially enhancing the neural segregation between the attended stream and temporally noncoherent streams [12]. Stream-brain phase entrainment is robust to acoustic interference [13-20] provided that target stream-evoked rhythmic activity can be segregated from noncoherent activity evoked by other sounds [21], a process that usually builds up over time [22-27]. However, it has remained unclear whether stream-brain phase entrainment functionally contributes to this buildup of rhythmic streams or whether it is merely an epiphenomenon of it. Here, we addressed this issue directly by experimentally manipulating endogenous stream-brain phase entrainment in human auditory cortex with non-invasive transcranial alternating current stimulation (TACS) [28-30]. We assessed the consequences of these manipulations on the perceptual buildup of the target stream (the time required to recognize its presence in a noisy background), using behavioral measures in 20 healthy listeners performing a naturalistic listening task. Experimentally induced cyclic 4-Hz variations in stream-brain phase entrainment reliably caused a cyclic 4-Hz pattern in perceptual buildup time. Our findings demonstrate that strong endogenous delta/theta stream-brain phase entrainment accelerates the perceptual emergence of task-relevant rhythmic streams in noisy environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physical consequences of large organic debris in Pacific Northwest streams.
Frederick J. Swanson; George W. Lienkaemper
1978-01-01
Large organic debris in streams controls the distribution of aquatic habitats, the routing of sediment through stream systems, and the stability of streambed and banks. Management activities directly alter debris loading by addition or removal of material and indirectly by increasing the probability of debris torrents and removing standing streamside trees. We propose...
Geography of invasion in mountain streams: consequences of headwater lake fish introductions
Susan B. Adams; Christopher A. Frissell; Bruce E. Rieman
2001-01-01
The introduction of fish into high-elevation lakes can provide a geographic and demographic boost to their invasion of stream networks, thereby further endangering the native stream fauna. Increasingly, remaining populations of native salmonids are concentrated in fragmented headwater refugia that are protected by physical or biological barriers from introduced fishes...
Morphological response of songbirds to 100 years of landscape change in North America.
Desrochers, A
2010-06-01
Major landscape changes caused by humans may create strong selection pressures and induce rapid evolution in natural populations. In the last 100 years, eastern North America has experienced extensive clear-cutting in boreal areas, while afforestation has occurred in most temperate areas. Based on museum specimens, I show that wings of several boreal forest songbirds and temperate songbirds of non-forest habitats have become more pointed over the last 100 years. In contrast, wings of most temperate forest and early-successional boreal forests species have become less pointed over the same period. In contrast to wing shape, the bill length of most species did not change significantly through time. These results are consistent with the "habitat isolation hypothesis", i.e., songbirds evolved in response to recent changes in the amount of available habitat and associated implications for mobility. Rapid morphological evolution may mitigate, without necessarily preventing, negative consequences of habitat loss caused by humans through direct exploitation or climate change.
Not-so-well-tempered neutralino
NASA Astrophysics Data System (ADS)
Profumo, Stefano; Stefaniak, Tim; Stephenson-Haskins, Laurel
2017-09-01
Light electroweakinos, the neutral and charged fermionic supersymmetric partners of the standard model SU (2 )×U (1 ) gauge bosons and of the two SU(2) Higgs doublets, are an important target for searches for new physics with the Large Hadron Collider (LHC). However, if the lightest neutralino is the dark matter, constraints from direct dark matter detection experiments rule out large swaths of the parameter space accessible to the LHC, including in large part the so-called "well-tempered" neutralinos. We focus on the minimal supersymmetric standard model (MSSM) and explore in detail which regions of parameter space are not excluded by null results from direct dark matter detection, assuming exclusive thermal production of neutralinos in the early universe, and illustrate the complementarity with current and future LHC searches for electroweak gauginos. We consider both bino-Higgsino and bino-wino "not-so-well-tempered" neutralinos, i.e. we include models where the lightest neutralino constitutes only part of the cosmological dark matter, with the consequent suppression of the constraints from direct and indirect dark matter searches.
The importance of context dependency for understanding the effects of low flow events on fish
Walters, Annika W.
2014-01-01
The natural hydrology of streams and rivers has been extensively altered by dam construction, water diversion, and climate change. An increased frequency of low-flow events will affect fish by changing habitat availability, resource availability, and reproductive cues. I reviewed the literature to characterize the approaches taken to assess low-flow events and fish, the main effects of low-flow events on fish, and the associated mechanistic drivers. Most studies are focused on temperate streams and are comparative in nature. Decreased stream flow is associated with decreased survival, growth, and abundance of fish populations and shifts in community composition, but effects are variable. This variability in effects is probably caused by context dependence. I propose 3 main sources of context dependence that drive the variation in fish responses to low-flow events: attributes of the low-flow event, attributes of the habitat, and attributes of the fish. Awareness of these sources of context dependence can help managers interpret and explain data, predict vulnerability of fish communities, and prioritize appropriate management actions.
The role of DOM in nitrogen processing in streams across arctic regions affected by fire
NASA Astrophysics Data System (ADS)
Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.
2017-12-01
In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.
Nutrient variation in an urban lake chain and its consequences for phytoplankton production.
Roach, W John; Grimm, Nancy B
2009-01-01
In the Central Arizona-Phoenix (CAP) ecosystem, managers divert mixed stream water and groundwater to maintain an artificial lake chain in Indian Bend Wash (IBW), a historically flashy, ephemeral, desert stream. Nutrient concentrations in the CAP ecosystem's groundwater, stream water, and floodwater differ: stream water has low concentrations of both inorganic N and P, while groundwater is low in inorganic P but rich in nitrate (NO(3)(-)). Consequently, groundwater contribution drives inorganic N concentrations in the lake chain. In contrast, floodwater typically has high P concentrations while remaining low in N. Thus we expected N and P concentrations in IBW lakes to vary with the mix of water flowing through them. Elevated NO(3)(-) and low inorganic P concentrations were predicted when groundwater pumping was pronounced and this prediction was supported. We hypothesized that these predictable changes in water chemistry would affect nutrient limitation of phytoplankton. Laboratory nutrient-addition bioassays demonstrated that phytoplankton growth was P-limited throughout the summer of 2003 when N/P was high. However, after a late-season flood drove N/P below 31:1, the expected threshold between N and P limitation, N limitation was observed. Our results indicate that effects of floods, the preeminent historic drivers of Sonoran Desert stream biogeochemistry, are mitigated in urban ecosystems by decisions about which spigots to turn. Consequently, nutrient limitation of urban streams is driven as much by management decisions as by natural hydrologic variation.
Jimenez, Ana Gabriela; Williams, Joseph B
2014-01-01
Tropical and temperate birds provide a unique system to examine mechanistic consequences of life-history trade-offs at opposing ends of the pace-of-life spectrum; tropical birds tend to have a slow pace of life whereas temperate birds the opposite. Birds in the tropics have a lower whole-animal basal metabolic rate and peak metabolic rate, lower rates of reproduction, and longer survival than birds in temperate regions. Although skeletal muscle has a relatively low tissue-specific metabolism at rest, it makes up the largest fraction of body mass and therefore contributes more to basal metabolism than any other tissue. A principal property of muscle cells that influences their rate of metabolism is fiber size. The optimal fiber size hypothesis attempts to link whole-animal basal metabolic rate to the cost of maintaining muscle mass by stating that larger fibers may be metabolically cheaper to maintain since the surface area∶volume ratio (SA∶V) is reduced compared with smaller fibers and thus the amount of area to transport ions is also reduced. Because tropical birds have a reduced whole-organism metabolism, we hypothesized that they would have larger muscle fibers than temperate birds, given that larger muscle fibers have reduced energy demand from membrane Na(+)-K(+) pumps. Alternatively, smaller muscle fibers could result in a lower capacity for shivering and exercise. To test this idea, we examined muscle fiber size and Na(+)-K(+)-ATPase activity in 16 phylogenetically paired species of tropical and temperate birds. We found that 3 of the 16 paired comparisons indicated that tropical birds had significantly larger fibers, contrary to our hypothesis. Our data show that SA∶V is proportional to Na(+)-K(+)-ATPase activity in muscles of birds.
Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest.
Marczak, Laurie B; Richardson, John S
2007-07-01
1. Aquatic insects emerging from streams can provide an important energy subsidy to recipient consumers such as riparian web-building spiders. This subsidy has been hypothesized to be of little importance where the primary productivity of the recipient habitat exceeds that of the donor habitat. 2. To test this hypothesis, we manipulated emerging stream insect abundance in a productive riparian rainforest in a replicated design using greenhouse-type exclosures, contrasted with unmanipulated stream reaches (four exclosures on two streams). 3. Experimental exclosures resulted in a 62.9% decrease in aquatic insect abundance in exclusion reaches compared with control reaches. The overall density of riparian spiders was significantly positively correlated with aquatic insect abundances. Horizontal orb weavers (Tetragnathidae) showed a strong response to aquatic insect reduction - abundance at exclosure sites was 57% lower than at control sites. Several spider families that have not been associated with tracking aquatic insect subsidies also showed significantly decreased abundance when aquatic insects were reduced. 4. This result is contrary to predictions of weak subsidy effects where recipient net primary productivity is high. These results suggest that predicting the importance of resource subsidies for food webs requires a focus on the relative abundance of subsidy materials in recipient and donor habitats and not simply on the total flux of energy between systems.
Qiu, Ying-Xiong; Fu, Cheng-Xing; Comes, Hans Peter
2011-04-01
The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora. Copyright © 2011 Elsevier Inc. All rights reserved.
Methylation of Hg downstream from the Bonanza Hg mine, Oregon
Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn
2012-01-01
Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream from the mine that varied from <0.02 to 0.22ng/L. Aquatic snails collected downstream from the mine were elevated in Hg indicating significant bioavailability and uptake of Hg by these snails. Results for sediment and water indicated significant methyl-Hg formation in the ecosystem downstream from the Bonanza mine, which is enhanced by the temperate climate, high precipitation in the area, and high organic matter.
Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L
2014-01-01
BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.
Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
Twenty years of precipitation-chemistry data from the National Atmospheric Deposition Program site at El Verde, Puerto Rico, demonstrate that three major sources control the composition of solutes in rain in eastern Puerto Rico. In order of importance, these sources are marine salts, temperate contamination from the Northern Hemisphere, and Sahara Desert dust. Marine salts are a source of roughly 82 percent of the ionic charge in precipitation; marine salt inputs are greatest in January. Evaluation of 15 years of U.S. Geological Survey data for four watersheds in eastern Puerto Rico suggests that large storms, including hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Some of these storms were missed in sampling by the National Atmospheric Deposition Program, and therefore its data on the marine contribution likely underestimate chloride. The marine contribution is a weak source of acidity. Temperate contamination contributes about 10 percent of the ionic charge in precipitation; contaminants are primarily nitrate, ammonia, and sulfate derived from various manmade and natural sources. Peak deposition of temperate contaminants is during January, April, and May, months in which strong weather fronts arrive from the north. Temperate contamination, a strong source of acidity, is the only component that is increasing through time. Sahara Desert dust provides 5 percent of the ionic charge in precipitation; it is strongly seasonal, peaking in June and July during times of maximum dust transport from the Sahara and sub-Saharan regions. This dust contributes, on average, enough alkalinity to neutralize the acidity in June and July rains.
NASA Astrophysics Data System (ADS)
Goewert, Ann E.; Surge, Donna
2008-10-01
Growth lines and variation in oxygen and carbon isotope ratios (δ18O and δ13C) in shells of the Pliocene scallop Chesapecten madisonius preserve seasonal chronologies of biological and environmental change. This study evaluated whether (1) prominent growth lines were formed annually, and (2) growth rates estimated using isotope sclerochronology were comparable to rates estimated using visual inspection (measuring the width between external growth lines). We compared both techniques for estimating growth rates and age on three late to mid-Pliocene C. madisonius shells. The first approach located prominent growth lines on the δ18O time series, and differentiated between annual and non-annual (disturbance) growth lines. The second approach assumed all prominent lines were annual. This comparison showed that visual inspection underestimated growth rates and overestimated age. Seasonal timing of annual growth line formation using isotope sclerochronology provided unexpected results. Because this region fell within the warm-temperate paleobiogeographic province, we predicted annual lines formed during summers (most negative δ18O values). Instead, annual growth lines coincided with the most positive δ18O values (winter), typical of bivalves from cold-temperate regions. Moreover, shells recorded seasonal temperatures ranging from 3.2-20.8°C, a range lower than the thermal regime defined for warm-temperate environments (8-25°C). Possibly, the Sea Slope Gyre, which mixed eddies and cold filaments of the Labrador Current and warm waters of the Gulf Stream, penetrated the warm-temperate environment in this region. Alternatively, warm-water fauna from the zoogeographic Carolinian subprovince migrated northward and endured by virtue of warm summer temperatures. Regardless of the explanation, our findings provide a glimpse of mid-latitude seasonal temperature range for a warm climate episode during the mid-Pliocene.
Keeton, William S; Kraft, Clifford E; Warren, Dana R
2007-04-01
Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.
Landscape determinants of exchangeable calcium and magnesium in Ozark Highland forest soils
John M. Kabrick; Keith W. Goyne; Zhaofei Fan; Dennis Meinert
2011-01-01
Exchangeable base cations, particularly Ca and Mg, largely govern soil acidity and, consequently, plant species composition in temperate forests. Although studies have identified soil and terrain characteristics affecting exchangeable Ca and Mg, few studies have identified the relative importance of factors affecting Ca and Mg distribution across landscapes. Objectives...
Effects of turbulent hyporheic mixing on reach-scale solute transport
NASA Astrophysics Data System (ADS)
Roche, K. R.; Li, A.; Packman, A. I.
2017-12-01
Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of flow and mixing over the surface-subsurface continuum must be explicitly considered to properly interpret solute transport in coarse-bed streams.
Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia
NASA Astrophysics Data System (ADS)
Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.
2016-12-01
In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts of permafrost thawing and forest fires on nutrient dynamics in arctic streams.
Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F
2013-11-01
Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.
NASA Astrophysics Data System (ADS)
Pomeroy, J. W.; Carey, S. K.; Granger, R. J.; Hedstrom, N. R.; Janowicz, R.; Pietroniro, A.; Quinton, W. L.
2002-12-01
The supply of water to large northern catchments such as the Mackenzie and Yukon Rivers is dominated by snowmelt runoff from first order mountain catchments. In order to understand the timing, peak and duration of the snowmelt freshet at larger scale it is important to appreciate the spatial and temporal variability of snowmelt and runoff processes at the source. For this reason a comprehensive hydrology study of a Yukon River headwaters catchment, Wolf Creek Research Basin, near Whitehorse, has focussed on the spatial variability of snow ablation and snowmelt runoff generation and the consequences for the water balance in a mountain tundra zone. In northern mountain tundra, surface energetics vary with receipt of solar radiation, shrub vegetation cover and initial snow accumulation. Therefore the timing of snowmelt is controlled by aspect, in that south facing slopes become snow-free 4-5 weeks before the north facing. Runoff generation differs widely between the slopes; there is normally no spring runoff generated from the south facing slope as all meltwater evaporates or infiltrates. On the north facing slope, snowmelt provides substantial runoff to hillside macropores which rapidly route water to the stream channel. Macropore distribution is associated with organic terrain and discontinuous permafrost, which in turn result from the summer surface energetics. Therefore the influence of small-scale snow redistribution and energetics as controlled by topography must be accounted for when calculating contributing areas to larger scale catchments, and estimating the effectiveness of snowfall in generating streamflow. This concept is quite distinct from the drainage controlled contributing area that has been found useful in temperate-zone hydrology.
Techniques of fisheries management: water quality assessment with stream insects
A. Dennis Lemly
2000-01-01
Nutrient enrichment of streams is a long-standing problem that continues to have substantial local and regional consequences. For example, water quality of streams in the southern Appalachian Mountains of the U.S. can be seriously degraded by organic nutrients leached from animal wastes if cattle or other livestock are allowed to graze in the riparian zone. Local...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, R.D.; Pyne, A.R.; Hunter, L.E.
1992-01-01
Marine-ending glaciers may retreat with global warming as sea level rises by ocean thermal expansion. If the sea floor rises by sediment accumulation, then glaciers may not feel the effect of sea level rise. A submersible ROV and other techniques have been used to collect data from temperate and polar glaciers to compare sediment production and mass balance of their grounding-line systems. Temperature Alaskan valley glaciers flow at about 0.2--2 km/a and have high volumes of supraglacial, englacial and subglacial debris. However, most sediment contributed to the base of their tidewater cliffs comes from subglacial streams or squeezing out subglacialmore » sediment and pushing it with other marine sediment into a morainal bank. Blue Glacier, a thin, locally fed polar glacier in Antarctica, flows slowly and has minimal glacial debris. The grounding-line system at the tidewater cliff is a morainal bank that forms solely by pushing of marine sediment. An Antarctic polar outlet glacier, Mackay Glacier, terminating as a floating glacier-tongue, has similar volumes of basal debris to Alaskan temperature glaciers and flows at 250 m/a. However, no subglacial streams issued from Mackay's grounding line and all sedimentation was by rockfall and grainfall rainout from seawater undermelt of the tongue. A grounding-line wedge of glacimarine diamicton is deposited over subglacial (lodgement ) till. Although Antarctic grounding-line accumulation rates are three orders of magnitude smaller than Alaskan rates, both are capable of compensating for predicted rises in sea level by thermal heating from global warming.« less
NASA Astrophysics Data System (ADS)
Mugnier, J. L.; Godon, C.; Buoncristiani, J. F.; Paquette, J. L.; Trouvé, E.
2012-04-01
The efficiency of erosional processes is classically considered from detrital composition at the outlet of a shed that reflects the rocks eroded within the shed. We adapt fluvial detrital thermochronology (DeCelles et al., 2004) and lithology (Attal and Lavé, 2006) methods to the subglacial streams of the north face of the Mont Blanc. The lithology of this area is composed by a ~303 Ma old granite intruded within an older poly metamorphic complex (orthogneisses). In this study,we use macroscopic criteria (~10 000 clasts) and Ur/Pb dating of zircons (~500 datings of sand grains) to determine the provenance of the sediment transported by the glacier and by the sub-glacial streams. Samples come from sediments collected around the glacier (above, below or laterally), from different bedrocks sources according to the surface flow lines and glacier characteristics (above or below the ELA; temperate or cold), and from different subglacial streams. A comparison between the proportion of granite and orthogneisses in these samples indicates that: 1) the supra load follows the flow lines of the glacier deduced from SAR images correlation and the displacement pattern excludes supra load mixing of the different sources; 2) the transport by the glacier does not mix the clasts issued from the sub-glacial erosion with the clasts issued from supraglacial deposition, except in the lower tongue where supraglacial streams and moulins move the supraglacial load from top to bottom; 3) the erosion rate beneath the glacier is very small: null beneath the cold ice but also very weak beneath the greatest part of the temperate glacier; the erosion increases significantly beneath the tongue, where supraglacial load incorporated at the base favors abrasion; 4) the glacial erosion rate beneath the tongue remains at least five time smaller than the erosion rate coming from non-glacial area. According to our results, we demonstrate that the glaciers of the Mont-Blanc north face protect the top of Europe from erosion. DeCelles et al., 2004, Earth and Planetary Science Letters, v. 227, p. 313-330. Attal and Lavé, 2006, Geol. Soc. Am. Spec. Publ. (S.D. Willett, N. Hovius, M.T. Brandon and D. Fisher, eds.), 398, p. 143-171.
Long-term vegetation changes in a temperate forest impacted by climate change
Lauren E. Oakes; Paul E. Hennon; Kevin L. O' Hara; Rodolfo Dirzo
2014-01-01
Pervasive forest mortality is expected to increase in future decades as a result of increasing temperatures. Climate-induced forest dieback can have consequences on ecosystem services, potentially mediated by changes in forest structure and understory community composition that emerge in response to tree death. Although many dieback events around the world have been...
Evan P. McDonald; E. L. Kruger; Don E. Riemenschneider; J. G. Isebrands
2001-01-01
Concomitant increases in atmospheric CO2 and 03 are expected to impact temperate forest ecosystems. Free air CO2 and 03 enrichment (FACE) was used to examine the interactive effects of these gases on shoot growth responses of quaking aspen grown in an experimental system (...
Dissolved Organic Carbon: Nitrate Ratios as a Driver of Methane Fluxes in Stream Ecosystems
NASA Astrophysics Data System (ADS)
Sullivan, B. W.; Wymore, A.; Schade, J. D.; McDowell, W. H.
2016-12-01
Fluvial ecosystems are poorly understood components of the global methane (CH4) budget because the ecology of CH4 fluxes in streams has yet to be sufficiently elucidated. Both CH4 production and uptake via oxidation are microbially mediated processes, but it is unclear where in the fluvial environment are the sources and sinks of CH4 and what role terrestrial inputs of carbon (C) and nutrients have on the magnitude and direction of CH4 flux. To address these uncertainties, we measured CH4 fluxes in a laboratory incubation from two temperate headwater streams that differed in ambient dissolved organic carbon (DOC) and nitrate (NO3-) concentrations. We amended stream water and sediment microcosms from each site with labile DOC from senesced leaf litter to assess how DOC concentration and the DOC:NO3- ratio affect proximate controls on CH4 flux. Lastly, we manipulated sediment and water column ratios (0-100%) to estimate sources and fates of CH4 flux within the ecosystem. We measured CH4 fluxes for the first 120 minutes of the incubation to simulate short-term, in stream processes. Initially, streams were a source of methane, but switched to a sink within 120 minutes. Methane fluxes were statistically similar in both stream sediment and water, suggesting that microbial processing of CH4 has similar directionality and magnitude in each environment. Both CH4 oxidation and production were significantly correlated with the DOC: NO3- ratio over the course of the incubation. Early in the incubation, increasing DOC: NO3- increased CH4 flux, but late in the incubation, increasing DOC: NO3- increased CH4 oxidation. Together, our results challenge existing paradigms of CH4 flux in the fluvial environment and identify the DOC:NO3- ratio as a possible mechanism that can explain spatial and temporal CH4 flux patterns in streams.
Nitrogen Cycling and Bacterial Diversity in Hot and Cold Desert Stream Margins
NASA Astrophysics Data System (ADS)
Zeglin, L. H.; Vesbach, C. D.; Dahm, C. N.; Barrett, J. E.; Gooseff, M. N.
2006-12-01
Desert environments offer harsh conditions for life. By definition, water is an extremely limiting resource in any desert. Also, the range of temperatures with which desert life must cope is extreme. Finally, essential nutrients like nitrogen (N) are available in very low amounts relative to temperate environments. Thus, desert organisms are subject to severe stresses like desiccation, temperature stress and starvation. Here, we review the N biogeochemistry of two desert stream systems: the Onyx River, Wright Valley, Victoria Land, Antarctica and the Rio Salado, Sevilleta National Wildlife Refuge, New Mexico, USA. Annually, the Antarctic system receives <100 mm precipitation and is subject to mean temperature ranges of -30 to -15 C. The Rio Salado, in the northern Chihuahuan desert, receives an average of 250 mm precipitation per year and experiences average temperatures from 1.5 to 25 C. The most important sources and sinks of the major forms of N at these sites are contrasted and biogeochemical processes controlling these pools discussed. Nutrient gradients and bacterial diversity patterns in the parafluvial zone of these streams are used to illustrate relationships between biological diversity, environmental stress and N biogeochemistry in the hot and cold desert systems.
NASA Astrophysics Data System (ADS)
Chen, Jie; Li, Changsheng; Jin, Xin; Chen, Liqing; Fang, Lei
2018-03-01
To develop an appropriate quenching process to produce Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, the microstructures and mechanical properties of this steel were investigated under the direct quenching and tempering (DQT) and the direct quenching, reheated quenching and tempering (DQQT) heat treatment processes. The microstructure of the DQQT specimen was basically tempered sorbite with spherical precipitates, while quite a bit of tempered martensite was in the DQT specimen with dispersive nanoscaled precipitates. The yield strengths of the DQT and DQQT specimens were 1154 and 955 MPa, respectively. The yield strength of the DQT specimen was higher than that of the DQQT specimen because of its finer grain size, higher density of dislocations and dispersed precipitates. The DQQT specimen had spherical precipitates, which hindered the propagation of the crack. Moreover, the high-angle grain boundaries in the DQQT specimen took a higher proportion. Therefore, the Charpy impact values of DQT and DQQT specimens at - 60 °C were 38 and 75 J, respectively. Consequently, the mechanical properties of the Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, which met the standard of 1000 MPa grade steel plate for hydropower station, were acquired by the DQQT process.
Arimoro, Francis O; Obi-Iyeke, Grace E; Obukeni, Prince J O
2012-10-01
Canopy cover is well known to influence the distribution of macroinvertebrates in temperate streams. Very little is known about how this factor influences stream communities in Afrotropical streams. The effects and possible interactions of environmental factors and canopy cover on macroinvertebrate community structure (abundance, richness, and diversity) were examined in four stations in Eriora River, southern Nigeria bimonthly from May to November 2010. The river supported diverse macroinvertebrates in which the upstream sampling stations with dense canopy cover were dominated by Decapoda, Ephemeroptera, Odonata, Gastropoda, Trichoptera, and Coleoptera while Diptera and Coleoptera were the benthic organisms found predominant at downstream stations with less canopy cover. Some caddisfly species such as Agapetus agilis, Trichosetodes species and the stonefly Neoperla species were present upstream and were found to be potential bioindicators for a clean ecosystem. The blood worm Chironomus species and Tabanus sp. were abundant at the downstream of the river and are considered potential bioindicators for an organically degrading ecosystem. Some environmental factors varied temporally with significantly higher macroinvertebrate abundance and richness in May. We found out that canopy cover and environmental factors affected macroinvertebrates abundance, diversity, and richness and that the individual taxon had varying responses to these factors. These results help identify the mechanisms underlying the effects of canopy cover and other environmental factors on Afrotropical stream invertebrate communities.
Jonathan Thompson; Kelly Burnett
2008-01-01
Not all landslides are created equal. Some have the potential to run out to streams and others do not. Some are likely to simplify and damage stream habitat, and others can be important sources of gravel and large wood, fundamental components of habitat complexity for salmon and other stream inhabitants. Forest managers want to avoid negative consequences and promote...
Ecosystem Consequences of Contrasting Flow Regimes in an Urban Effects Stream Mesocosm Study
A stream mesocosm experiment was conducted to study the ecosystem-wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engine...
Tetracycline and its derivatives are extensively used human and animal antibiotics, and enter stream ecosystems via point and non-point sources. Laboratory studies indicate that microbial organisms are more sensitive to antibiotics than invertebrates or fish, and may indicate t...
Consequences of variation in stream-landscape connections for stream nitrate retention and export
NASA Astrophysics Data System (ADS)
Handler, A. M.; Helton, A. M.; Grimm, N. B.
2017-12-01
Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work focuses on how seasonal variability in connections between the stream and sources of nitrogen affect in-stream nitrate and ammonium uptake rates and watershed export. Episodic connections between dryland streams and the surrounding landscape can have a strong effect on stream nitrogen loads, uptake, and export.
Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell
2016-01-01
Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...
The Educational Ideas of Pedro Arrupe, SJ: A Valuable Resource for All Catholic Educators
ERIC Educational Resources Information Center
Meyo, Obwanda Stephen
2014-01-01
Pedro Arrupe was concerned about the growing attitude in which the vocation of humankind is understood as making oneself the centre of the universe, fearing that it has infiltrated into education and schools. Consequently, he set out to counteract this egoistic mindset by propounding an approach to education rooted in justice tempered with faith,…
Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett
2012-01-01
Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...
Lloyd, Penn; Frauenknecht, Bernhard D.; du Plessis, Morné A.; Martin, Thomas E.
2017-01-01
We studied the breeding biology of the south temperate Cape Penduline Tit (Anthoscopus minutus) in order to compare its life history traits with those of related north temperate members of the family Remizidae, namely the Eurasian Penduline Tit (Remiz pendulinus) and the Verdin (Auriparus flaviceps). We used this comparison to test key predictions of three hypotheses thought to explain latitudinal variation in life histories among bird species—the seasonality and food limitation hypothesis, nest predation hypothesis and adult mortality hypothesis. Contrary to the general pattern of smaller clutch size and lower adult mortality among south-temperate birds living in less seasonal environments, the Cape Penduline Tit has a clutch size larger than that of the Verdin and similar to that of the Eurasian Penduline Tit, and higher adult mortality than both of the other two species. The most notable difference between the Cape Penduline Tit and the two other species is in parental behavioural strategy, with the former exhibiting bi-parental care at all stages of nesting together with facultative cooperative breeding, whereas the Eurasian Penduline Tit has uni-parental care and the Verdin has a combination of female-only incubation but bi-parental nestling care. Consequently, in comparison to the other two species, the Cape Penduline Tit exhibits greater nest attentiveness during incubation, a similar per-nestling feeding rate and greater post-fledging survival. Its relatively large clutch size, high parental investment and associated high adult mortality in a less seasonal environment are consistent with key predictions of the adult mortality hypothesis but not with key predictions of the seasonality and food limitation hypothesis in explaining life history variation among Remizidae species. These results add to a growing body of evidence of the importance of age-specific mortality in shaping life history evolution.
NASA Astrophysics Data System (ADS)
Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.
2016-12-01
Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.
Sebok, Eva; Engesgaard, Peter; Duque, Carlos
2017-08-24
This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.
Life-stage-specific physiology defines invasion extent of a riverine fish
Lawrence, David J.; Beauchamp, David A.; Olden, Julian D.
2015-01-01
Many ecologists have called for mechanism-based investigations to identify the underlying controls on species distributions. Understanding these controls can be especially useful to construct robust predictions of how a species range may change in response to climate change or the extent to which a non-native species may spread in novel environments.Here, we link spatially intensive observations with mechanistic models to illustrate how physiology determines the upstream extent of the aquatic ectotherm smallmouth bass (Micropterus dolomieu) in two headwater rivers.Our results demonstrate that as temperatures become increasingly cold across a downstream to upstream gradient, food consumption in age 0 bass becomes increasingly constrained, and as a result, these fish become growth limited. Sufficient first summer growth of age 0 bass is essential for overwinter survival because young bass must persist from energy reserves accumulated during the summer, and those reserves are determined by body size.Our field data reveal the upstream extent of adult bass reproduction corresponds to a point in the downstream/upstream gradient where cold temperatures impair growth opportunities in young bass. This pattern was repeated in both study streams and explained why bass positioned nests twice as far upstream in the warm compared to the cold stream in the same basin. Placement of spawning nests by adult bass is likely subject to strong evolutionary selection in temperate systems: if bass spawn too far upstream, their young are unlikely to grow large enough to survive the winter. Consumption and growth in older bass (age 3–4) was far less sensitive to temperature. Based on these data, we suggest that temperature-sensitive age 0 bass constrain the upstream distribution limits of bass within temperate streams.In this study, we investigated how temperature-dependent physiology changed through the life history of a species and, in doing so, identified a climate-sensitive life-history stage that likely sets the distributional limits of all other life-history stages. We anticipate the framework developed here could be employed to identify how similar stage-specific environmental sensitivity determines distribution in many other ectothermic species.
McCorkle, Emma P.; Berhe, Asmeret Asefaw; Hunsaker, Carolyn T.; ...
2016-04-29
Here, soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance levels of the stable and radioactive isotopes of C ( 13C and 14C) and stable isotope of nitrogen ( 15N) to elucidate the origins of SOM eroded from low-order catchments along the western slopes of the Sierra Nevada of California, USA. Our work was conducted in two relatively undisturbed catchmentsmore » (low elevation = 1800 m, and high elevation = 2300 m) of the Kings River Experimental Watersheds (KREW) in the Sierra National Forest. Sediment captured in basins at the outlet of each gauged watershed were compared to possible source materials, which included: upland surficial organic horizons (i.e., forest floor) and mineral soils (0–0.6 m) from three landform positions (i.e., crest, backslope, and toeslope), stream bank soils (0–0.6 m), and stream-bed materials (0–0.05 m). We found that most of the organic matter (OM) in the captured sediments was composed of O-horizon material that had high C concentrations. Radiocarbon analyses also showed that the captured OM is composed of modern (post-1950) C, with fraction modern values at or above 1.0. Our results suggest that surface (sheet) erosion, as opposed to channeling through established streams and episodic mass wasting events, is likely the largest source of sediment exported out of these minimally disturbed, headwater catchments. The erosional export of sediment with a high concentration of C, especially in the form of relatively undecomposed litter from the O horizon, suggests that a large fraction of the exported C is likely to be decomposed during or after erosion; hence, it is unlikely that soil erosion acts as a significant net sink for atmospheric CO 2 in these low-order, temperate forest catchments.« less
Seramur, K.C.; Powell, R.D.; Carlson, P.R.
1997-01-01
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits. The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line. Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan; stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation. Between 1860 A.D. and 1899 A.D. (39 years), 8.96 x 108 m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of 2.3 x 107 m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCorkle, Emma P.; Berhe, Asmeret Asefaw; Hunsaker, Carolyn T.
Here, soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance levels of the stable and radioactive isotopes of C ( 13C and 14C) and stable isotope of nitrogen ( 15N) to elucidate the origins of SOM eroded from low-order catchments along the western slopes of the Sierra Nevada of California, USA. Our work was conducted in two relatively undisturbed catchmentsmore » (low elevation = 1800 m, and high elevation = 2300 m) of the Kings River Experimental Watersheds (KREW) in the Sierra National Forest. Sediment captured in basins at the outlet of each gauged watershed were compared to possible source materials, which included: upland surficial organic horizons (i.e., forest floor) and mineral soils (0–0.6 m) from three landform positions (i.e., crest, backslope, and toeslope), stream bank soils (0–0.6 m), and stream-bed materials (0–0.05 m). We found that most of the organic matter (OM) in the captured sediments was composed of O-horizon material that had high C concentrations. Radiocarbon analyses also showed that the captured OM is composed of modern (post-1950) C, with fraction modern values at or above 1.0. Our results suggest that surface (sheet) erosion, as opposed to channeling through established streams and episodic mass wasting events, is likely the largest source of sediment exported out of these minimally disturbed, headwater catchments. The erosional export of sediment with a high concentration of C, especially in the form of relatively undecomposed litter from the O horizon, suggests that a large fraction of the exported C is likely to be decomposed during or after erosion; hence, it is unlikely that soil erosion acts as a significant net sink for atmospheric CO 2 in these low-order, temperate forest catchments.« less
Finite element analysis of acoustic streaming in a Kundt tube with bended wall
NASA Astrophysics Data System (ADS)
Wada, Yuji; Yuge, Kohei
2018-07-01
Acoustic streaming near artificially prescribed ridges is simulated and discussed to understand the mechanism of Kundt tube powder-ridge generation. A viscoacoustic harmonic finite element analysis (FEA) and a static-fluid FEA are coupled using an acoustic streaming driving force to derive acoustic streaming. The half-wavelength mode is excited in an acoustic tube where the calculation mesh is distorted to form a sinusoidal bottom stick wall. Consequently, intense Schlichting streaming is obtained when the height and interval of the ridge agree with those in the literature. The mechanism underlying the regular ridge interval is related to the conversion of mainstream particle velocity into ridge-localized velocity, which produces an inlet or outlet vertical streaming in ridge valleys.
Here, there and everywhere: higher visual function and the dorsal visual stream.
Cooper, Sarah Anne; O'Sullivan, Michael
2016-06-01
The dorsal visual stream, often referred to as the 'where' stream, represents the pathway taken by visual information from the primary visual cortex to the posterior parietal lobe and onwards. It partners the ventral or 'what' stream, the subject of a previous review and largely a temporal-based system. Here, we consider the dorsal stream disorders of perception (simultanagnosia, akinetopsia) along with their consequences on action (eg, optic ataxia and oculomotor apraxia, along with Balint's syndrome). The role of the dorsal stream in blindsight and hemispatial neglect is also considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon—Salmo salar, number of >1 year old Atlantic salmon, number of brown trout—Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies. PMID:27191717
McCallister, S. Leigh; del Giorgio, Paul A.
2012-01-01
Northern rivers and lakes process large quantities of organic and inorganic carbon from the surrounding terrestrial ecosystems. These external carbon inputs fuel widespread CO2 supersaturation in continental waters, and the resulting CO2 emissions from lakes and rivers are now recognized as a globally significant loss of terrestrial production to the atmosphere. Whereas the magnitude of emissions has received much attention, the pathways of C delivery and processing that generate these emissions are still not well-understood. CO2 outgassing in aquatic systems has been unequivocally linked to microbial degradation and respiration of terrestrial organic carbon (OC), but the nature (i.e., age and source) of this OC respired in surface waters is largely unknown. We present direct radiocarbon measurements of OC respired by bacteria in freshwater aquatic systems, specifically temperate lakes and streams in Québec. Terrestrial OC fuels much of the respiration in these systems, and our results show that a significant fraction of the respired terrestrial OC is old (in the range of 1,000–3,000 y B.P.). Because the bulk OC pools in these lakes is relatively young, our results also suggest selective removal of an old but highly bioreactive terrestrial OC pool and its conversion to CO2 by bacteria. The respiration of ancient 14C-depleted terrestrial C in northern lakes and rivers provides a biological link between contemporary aquatic carbon biogeochemistry and paleo-conditions in the watershed, and it implies the aquatic-mediated return to the atmosphere of C putatively considered permanently stored, thus challenging current models of long-term C storage in terrestrial reservoirs. PMID:23027957
Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.
RED SHINER INVASION OF SOUTHEASTERN STREAMS: DYNAMICS AND ECOLOGICAL CONSEQUENCES
Red shiners, a minnow species native to streams of the central U.S., are spreading to other regions due to their widespread use as a bait-fish. Their expansion into new habitats comes at the expense of their native relatives. Red shiners are aggressive competitors for food and ...
Kollars, Nicole M; Henry, Amy K; Whalen, Matthew A; Boyer, Katharyn E; Cusson, Mathieu; Eklöf, Johan S; Hereu, Clara M; Jorgensen, Pablo; Kiriakopolos, Stephanie L; Reynolds, Pamela L; Tomas, Fiona; Turner, Mo S; Ruesink, Jennifer L
2017-01-01
Multi-trophic conservation and management strategies may be necessary if reciprocal linkages between primary producers and their consumers are strong. While herbivory on aquatic plants is well-studied, direct top-down control of seagrass populations has received comparatively little attention, particularly in temperate regions. Herein, we used qualitative and meta-analytic approaches to assess the scope and consequences of avian (primarily waterfowl) herbivory on temperate seagrasses of the genus Zostera . Meta-analyses revealed widespread evidence of spatio-temporal correlations between Zostera and waterfowl abundances as well as strong top-down effects of grazing on Zostera . We also documented the identity and diversity of avian species reported to consume Zostera and qualitatively assessed their potential to exert top-down control. Our results demonstrate that Zostera and their avian herbivores are ecologically linked and we suggest that bird herbivory may influence the spatial structure, composition, and functioning of the seagrass ecosystem. Therefore, the consequences of avian herbivory should be considered in the management of seagrass populations. Of particular concern are instances of seagrass overgrazing by waterfowl which result in long-term reductions in seagrass biomass or coverage, with subsequent impacts on local populations of waterfowl and other seagrass-affiliated species. While our results showed that bird density and type may affect the magnitude of the top-down effects of avian herbivory, empirical research on the strength, context-dependency, and indirect effects of waterfowl- Zostera interactions remains limited. For example, increased efforts that explicitly measure the effects of different functional groups of birds on seagrass abundance and/or document how climate change-driven shifts in waterfowl migratory patterns impact seagrass phenology and population structure will advance research programs for both ecologists and managers concerned with the joint conservation of both seagrasses and their avian herbivores.
Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.
2014-01-01
Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.
Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P
2013-01-01
In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these vulnerable and often overlooked ecosystems will be affected by long-term climate change.
Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P.
2013-01-01
In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these vulnerable and often overlooked ecosystems will be affected by long-term climate change. PMID:24312347
Paparazzo, Francesco; Tellier, Aurélien; Stephan, Wolfgang; Hutter, Stephan
2015-01-01
The ability to cope with infection by a parasite is one of the major challenges for any host species and is a major driver of evolution. Parasite pressure differs between habitats. It is thought to be higher in tropical regions compared to temporal ones. We infected Drosophila melanogaster from two tropical (Malaysia and Zimbabwe) and two temperate populations (the Netherlands and North Carolina) with the generalist entomopathogenic fungus Beauveria bassiana to examine if adaptation to local parasite pressures led to differences in resistance. Contrary to previous findings we observed increased survival in temperate populations. This, however, is not due to increased resistance to infection per se, but rather the consequence of a higher general vigor of the temperate populations. We also assessed transcriptional response to infection within these flies eight and 24 hours after infection. Only few genes were induced at the earlier time point, most of which are involved in detoxification. In contrast, we identified more than 4,000 genes that changed their expression state after 24 hours. This response was generally conserved over all populations with only few genes being uniquely regulated in the temperate populations. We furthermore found that the American population was transcriptionally highly diverged from all other populations concerning basal levels of gene expression. This was particularly true for stress and immune response genes, which might be the genetic basis for their elevated vigor. PMID:26154519
Paparazzo, Francesco; Tellier, Aurélien; Stephan, Wolfgang; Hutter, Stephan
2015-01-01
The ability to cope with infection by a parasite is one of the major challenges for any host species and is a major driver of evolution. Parasite pressure differs between habitats. It is thought to be higher in tropical regions compared to temporal ones. We infected Drosophila melanogaster from two tropical (Malaysia and Zimbabwe) and two temperate populations (the Netherlands and North Carolina) with the generalist entomopathogenic fungus Beauveria bassiana to examine if adaptation to local parasite pressures led to differences in resistance. Contrary to previous findings we observed increased survival in temperate populations. This, however, is not due to increased resistance to infection per se, but rather the consequence of a higher general vigor of the temperate populations. We also assessed transcriptional response to infection within these flies eight and 24 hours after infection. Only few genes were induced at the earlier time point, most of which are involved in detoxification. In contrast, we identified more than 4,000 genes that changed their expression state after 24 hours. This response was generally conserved over all populations with only few genes being uniquely regulated in the temperate populations. We furthermore found that the American population was transcriptionally highly diverged from all other populations concerning basal levels of gene expression. This was particularly true for stress and immune response genes, which might be the genetic basis for their elevated vigor.
Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions
NASA Astrophysics Data System (ADS)
Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; Bendix, J.
2017-02-01
The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of recent global climate change. The stimulation of plant photosynthesis due to rising atmospheric carbon dioxide concentrations ([CO2]) is widely assumed to increase the net primary productivity (NPP) of C3 plants--the CO2 fertilization effect (CFE). However, the magnitude and persistence of the CFE under future climates, including more frequent weather extremes, are controversial. Here we use data from 16 years of temperate grassland grown under `free-air carbon dioxide enrichment’ conditions to show that the CFE on above-ground biomass is strongest under local average environmental conditions. The observed CFE was reduced or disappeared under wetter, drier and/or hotter conditions when the forcing variable exceeded its intermediate regime. This is in contrast to predictions of an increased CO2 fertilization effect under drier and warmer conditions. Such extreme weather conditions are projected to occur more intensely and frequently under future climate scenarios. Consequently, current biogeochemical models might overestimate the future NPP sink capacity of temperate C3 grasslands and hence underestimate future atmospheric [CO2] increase.
Brischoux, François; Dupoué, Andréaz; Lourdais, Olivier; Angelier, Frédéric
2016-02-01
Temperate ectotherms are expected to benefit from climate change (e.g., increased activity time), but the impacts of climate warming during the winter have mostly been overlooked. Milder winters are expected to decrease body condition upon emergence, and thus to affect crucial life-history traits, such as survival and reproduction. Mild winter temperature could also trigger a state of chronic physiological stress due to inadequate thermal conditions that preclude both dormancy and activity. We tested these hypotheses on a typical temperate ectothermic vertebrate, the aspic viper (Vipera aspis). We simulated different wintering conditions for three groups of aspic vipers (cold: ~6 °C, mild: ~14 °C and no wintering: ~24 °C) during a one month long period. We found that mild wintering conditions induced a marked decrease in body condition, and provoked an alteration of some hormonal mechanisms involved in emergence. Such effects are likely to bear ultimate consequences on reproduction, and thus population persistence. We emphasize that future studies should incorporate the critical, albeit neglected, winter season when assessing the potential impacts of global changes on ectotherms. Copyright © 2015 Elsevier Inc. All rights reserved.
Murphy, Stephen J; Audino, Livia D; Whitacre, James; Eck, Jenalle L; Wenzel, John W; Queenborough, Simon A; Comita, Liza S
2015-03-01
Patterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.e., topography, soils, and distance to stream), spatial descriptors (i.e., spatial eigenvectors derived from Cartesian coordinates), and land-use history variables (i.e., land-use type and intensity, forest age, and distance to road), explained about half of the variation in both species richness and community composition. Spatial descriptors explained the most variation, followed by measured environmental variables and then by land- use history. Individual species revealed variable responses to each of these sets of predictor variables. Several species were associated with stream habitats, and others were strictly delimited across opposing north- and south-facing slopes. Several species were also associated with areas that experienced recent (i.e., <100 years) human land-use impacts. These results indicate that deterministic factors, including environmental and land-use history variables, are important drivers of community response. The large amount of "unexplained" variation seen here (about 50%) is commonly observed in other such studies attempting to explain distribution and abundance patterns of plant communities. Determining whether such large fractions of unaccounted for variation are caused by a lack of sufficient data, or are an indication of stochastic features of forest communities globally, will remain an important challenge for ecologists in the future.
Simulating the consequences of land management.
Jonathan. Thompson
2007-01-01
How do you project the effects of management decisions made today on future conditions of riparian forests, stream habitat, and fish abundance in the streams and rivers of the interior Columbia Basin? Researchers at PNW Research Station have developed some novel analytical tools to help answer this question. Their work is part of the Interior Northwest Landscape...
NASA Astrophysics Data System (ADS)
McGroddy, M. E.; Baisden, W. T.; Hedin, L. O.
2008-03-01
Hydrologic losses can play a key role in regulating ecosystem nutrient balances, particularly in regions where baseline nutrient cycles are not augmented by industrial deposition. We used first-order streams to integrate hydrologic losses at the watershed scale across unpolluted old-growth forests in New Zealand. We employed a matrix approach to resolve how stream water concentrations of dissolved organic carbon (DOC), organic and inorganic nitrogen (DON and DIN), and organic and inorganic phosphorus (DOP and DIP) varied as a function of landscape differences in climate and geology. We found stream water total dissolved nitrogen (TDN) to be dominated by organic forms (medians for DON, 81.3%, nitrate-N, 12.6%, and ammonium-N, 3.9%). The median stream water DOC:TDN:TDP molar ratio of 1050:21:1 favored C slightly over N and P when compared to typical temperate forest foliage ratios. Using the full set of variables in a multiple regression approach explained approximately half of the variability in DON, DOC, and TDP concentrations. Building on this approach we combined a simplified set of variables with a simple water balance model in a regression designed to predict DON export at larger spatial scales. Incorporating the effects of climate and geologic variables on nutrient exports will greatly aid the development of integrated Earth-climate biogeochemical models which are able to take into account multiple element dynamics and complex natural landscapes.
A trial of two trouts: Comparing the impacts of rainbow and brown trout on a native galaxiid
Young, K.A.; Dunham, J.B.; Stephenson, J.F.; Terreau, A.; Thailly, A.F.; Gajardo, G.; de Leaniz, C. G.
2010-01-01
Rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are the world's two most widespread exotic fishes, dominate the fish communities of most cold-temperate waters in the southern hemisphere and are implicated in the decline and extirpation of native fish species. Here, we provide the first direct comparison of the impacts of rainbow and brown trout on populations of a native fish by quantifying three components of exotic species impact: range, abundance and effect. We surveyed 54 small streams on the island of Chilo?? in Chilean Patagonia and found that the rainbow trout has colonized significantly more streams and has a wider geographic range than brown trout. The two species had similar post-yearling abundances in allopatry and sympatry, and their abundances depended similarly on reach-level variation in the physical habitat. The species appeared to have dramatically different effects on native drift-feeding Aplochiton spp., which were virtually absent from streams invaded by brown trout but shared a broad sympatric range with rainbow trout. Within this range, the species' post-yearling abundances varied independently before and after controlling for variation in the physical habitat. In the north of the island, Aplochiton spp. inhabited streams uninvaded by exotic trouts. Our results provide a context for investigating the mechanisms responsible for apparent differences in rainbow and brown trout invasion biology and can help inform conservation strategies for native fishes in Chilo?? and elsewhere. ?? 2010 The Authors. Journal compilation ?? 2010 The Zoological Society of London.
Rice, Philip S
2011-04-23
Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming units or quantitative mRNA RT-PCR. The ancestral varicella-zoster virus, most probably a tropical genotype, co-migrated with man as he left Africa approximately 200,000 years ago. For this virus to have lost the selective advantage of resistance to ultra-violet radiation, the hypothesis would predict that the temperate, ultra-violet sensitive virus should have acquired another selective advantage as an evolutionary trade-off. One obvious advantage could be an increased reactivation rate as zoster to set up more rounds of chickenpox transmission. If this were so, the mechanism responsible for resistance to ultra-violet radiation might also be involved in reactivation and latency. This could then provide the first insight into a genetic correlate of the survival strategy of this virus.
Ecoregion and land-use influence invertebrate and detritus transport from headwater streams
Binckley, Christopher A.; Wipfli, Mark S.; Medhurst, R. Bruce; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion; Kill, Joshua Y.
2010-01-01
4. Understanding the quantity and variation of headwater subsidies across climate and disturbance gradients is needed to appreciate the significance of ecological linkages between headwaters and associated downstream habitats. This will enable the accurate assessment of resource management impacts on stream ecosystems. Predicting the consequences of natural and anthropogenic disturbances on headwater stream transport rates will require knowledge of how both local and regional factors influence these potential subsidies. Our results suggest that resources transported from headwater streams reflect both the meso-scale land-use surrounding these areas and the constraints imposed by the ecoregion in which they are embedded.
Carbon and nitrogen stoichiometry across stream ecosystems
NASA Astrophysics Data System (ADS)
Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.
2017-12-01
Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio (3-100) of stream water dissolved organic matter.
NASA Astrophysics Data System (ADS)
Oliver, Allison A.; Tank, Suzanne E.; Giesbrecht, Ian; Korver, Maartje C.; Floyd, William C.; Sanborn, Paul; Bulmer, Chuck; Lertzman, Ken P.
2017-08-01
The perhumid region of the coastal temperate rainforest (CTR) of Pacific North America is one of the wettest places on Earth and contains numerous small catchments that discharge freshwater and high concentrations of dissolved organic carbon (DOC) directly to the coastal ocean. However, empirical data on the flux and composition of DOC exported from these watersheds are scarce. We established monitoring stations at the outlets of seven catchments on Calvert and Hecate islands, British Columbia, which represent the rain-dominated hypermaritime region of the perhumid CTR. Over several years, we measured stream discharge, stream water DOC concentration, and stream water dissolved organic-matter (DOM) composition. Discharge and DOC concentrations were used to calculate DOC fluxes and yields, and DOM composition was characterized using absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). The areal estimate of annual DOC yield in water year 2015 was 33.3 Mg C km-2 yr-1, with individual watersheds ranging from an average of 24.1 to 37.7 Mg C km-2 yr-1. This represents some of the highest DOC yields to be measured at the coastal margin. We observed seasonality in the quantity and composition of exports, with the majority of DOC export occurring during the extended wet period (September-April). Stream flow from catchments reacted quickly to rain inputs, resulting in rapid export of relatively fresh, highly terrestrial-like DOM. DOC concentration and measures of DOM composition were related to stream discharge and stream temperature and correlated with watershed attributes, including the extent of lakes and wetlands, and the thickness of organic and mineral soil horizons. Our discovery of high DOC yields from these small catchments in the CTR is especially compelling as they deliver relatively fresh, highly terrestrial organic matter directly to the coastal ocean. Hypermaritime landscapes are common on the British Columbia coast, suggesting that this coastal margin may play an important role in the regional processing of carbon and in linking terrestrial carbon to marine ecosystems.
Micro-environment measurement along a climatic gradient
NASA Astrophysics Data System (ADS)
Szita, Renáta; Ambrus, András
2017-04-01
Aquatic macroinvertebrates are heavily influenced by the climatic changes even in temperate, forested habitats. The potential impacts of global climate change may be an increase in water temperatures, changes in seasonal patterns (including intensity) of precipitation and runoff which can alter hydrologic characteristics of aquatic systems. Rapid changes in hydrology caused by extreme heavy rainfalls - especially if there are clearcuts within the catchment area - may cause changes in the hydromorphology, restructure the stream bed or alter the path of the stream itself. All these affect the species composition, that is why the investigated aquatic ecosystems, the streams in forested area have limited ability to adapt to climate change. In recent study, the samples were taken from three streams which are located in similar, forested areas. The sampling sites were chosen along a climatic gradient. The first sampling site is in Mecsek mountains (South Hungary), the second one is in Kőszeg mountains (West Hungary) and the third one is in Sopron mountains (Northwest Hungary). The biological samples were taken with a specific cross-section transect arrangement, applying a new, microhabitat-based quadrat sampling method in all selected areas. Parallel with the macroinvertebrate sampling, there were taken hydraulic measures too. The velocity profile, shear velocity, shear stress, drag force and the Reynold's and Froude numbers were estimated to define the near-bed hydraulic conditions, which influence the community structure of aquatic macroinvertebrates. The main aims of the study were recognize differences along the climatic gradient in a similar habitat types of small streams in forested area if there are any, check up the ability of detection fine differences between similar communities of the new sampling methode which focuses on the microhabitat-structure of certain stream sections instead of taking and analyzing composit samples from the whole section. One more additional important aim was to investigate the microhabitat preference of the Habitats Directive Annex II. Dragonfly species, the Cordulegaster heros which inhabits each sampling sites. This project was partly supported by VKSZ_12-1-2013-0034 project.
Hydration status influences seed fire tolerance in temperate European herbaceous species.
Ruprecht, E; Lukács, K; Domokos, P; Kuhn, T; Fenesi, A
2016-03-01
Prescribed burning is an important management tool in many parts of the world. While natural fires generally occur during the driest and warmest period of the year, prescribed burning is often timed out-of-season, when there is higher soil moisture and lower biomass combustibility. However, fire season may influence seedling recruitment after fire, e.g. through the effect of seed hydration status on fire tolerance. In non-fire-prone temperate regions, anthropogenic fire may occur exclusively in periods outside the growing season with higher soil moisture, which may have negative consequences on seedling recruitment. Fire tolerance of moist and dry seeds of 16 temperate European herbaceous species belonging to four families was assessed using heat treatment of 100 °C for 5 min and subsequent germination trials. Moist seeds of Asteraceae, Poaceae and Brassicaceae had a predominantly negative reaction to the heat treatment, while those of Fabaceae tolerated it or germination was even enhanced. The reaction of dry seeds was completely different, with positive responses in three species of the Fabaceae and fire tolerance in species of other families. Our results point out that hydration status may significantly influence the post-fire germination of seeds. Dry seeds were found to tolerate high heat, while moist seeds were harmed in more than half of the species. This implies that if prescribed burning is applied in temperate grasslands of Europe, it should be timed to dry periods of the dormant season in order to protect seeds from negative effects of fire. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
El Yaacoubi, Adnane; Malagi, Gustavo; Oukabli, Ahmed; Citadin, Idemir; Hafidi, Majida; Bonhomme, Marc; Legave, Jean-Michel
2016-11-01
Few studies have focused on the characterization of bud dormancy and growth dynamics for temperate fruit species in temperate and mild cropping areas, although this is an appropriate framework to anticipate phenology adaptation facing future warming contexts which would potentially combine chill declines and heat increases. To examine this issue, two experimental approaches and field observations were used for high- and low-chill apple cultivars in temperate climate of southern France and in mild climates of northern Morocco and southern Brazil. Low-chill almond cultivars offered an additional relevant plant material for comparison with apple in northern Morocco. Divergent patterns of dormancy and growth dynamics were clearly found in apple tree between southern France and southern Brazil. Divergences were less pronounced between France and Morocco. A global view outlined main differences in the dormancy chronology and intensity, the transition between endordormancy and ecodormancy and the duration of ecodormancy. A key role of bud rehydration in the transition period was shown. High-chill cultivars would be submitted in mild conditions to heterogeneous rehydration capacities linked to insufficient chill fulfillment and excessive forcing linked to high temperatures. This would favor bud competitions and consequently excessive flowering durations and weak flowering. Low chilling requirements in apple and almond would conversely confer biological capacities to tolerate superficial dormancy and abrupt transition from endordormancy to ecodormancy without important heterogeneous rehydration states within buds. It may also assume that low-chill cultivars can also tolerate high temperatures during ecodormancy as well as extended flowering durations.
NASA Astrophysics Data System (ADS)
El Yaacoubi, Adnane; Malagi, Gustavo; Oukabli, Ahmed; Citadin, Idemir; Hafidi, Majida; Bonhomme, Marc; Legave, Jean-Michel
2016-11-01
Few studies have focused on the characterization of bud dormancy and growth dynamics for temperate fruit species in temperate and mild cropping areas, although this is an appropriate framework to anticipate phenology adaptation facing future warming contexts which would potentially combine chill declines and heat increases. To examine this issue, two experimental approaches and field observations were used for high- and low-chill apple cultivars in temperate climate of southern France and in mild climates of northern Morocco and southern Brazil. Low-chill almond cultivars offered an additional relevant plant material for comparison with apple in northern Morocco. Divergent patterns of dormancy and growth dynamics were clearly found in apple tree between southern France and southern Brazil. Divergences were less pronounced between France and Morocco. A global view outlined main differences in the dormancy chronology and intensity, the transition between endordormancy and ecodormancy and the duration of ecodormancy. A key role of bud rehydration in the transition period was shown. High-chill cultivars would be submitted in mild conditions to heterogeneous rehydration capacities linked to insufficient chill fulfillment and excessive forcing linked to high temperatures. This would favor bud competitions and consequently excessive flowering durations and weak flowering. Low chilling requirements in apple and almond would conversely confer biological capacities to tolerate superficial dormancy and abrupt transition from endordormancy to ecodormancy without important heterogeneous rehydration states within buds. It may also assume that low-chill cultivars can also tolerate high temperatures during ecodormancy as well as extended flowering durations.
The geology of selected peat-forming environments in temperate and tropical latitudes
Cameron, C.C.; Palmer, C.A.; Esterle, J.S.
1990-01-01
We studied peat in several geologic and climatic settings: (1) a glaciated terrain in cold-temperate Maine and Minnesota, U.S.A.; (2) an island in a temperate maritime climate in the Atlantic Ocean off the coast of Maine, U.S.A., where sea level is rising rapidly and changing the environment of peat accumulation; (3) swamps along the warm-temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often, thus creating sites for accumulation; and (4) in a tropical climate along the coast of Sarawak, Malaysia, and the delta of the Batang Hari River, Sumatra, Indonesia (Figs. 1 and 2). With the exception of the deposits on the Atlantic and Gulf Coastal Plains, most of the deposits described are domed bogs in which peat accumulation continued above the surface of the surrounding soil. The bogs of the U.S. Atlantic and Gulf Coastal Plains have almost level surfaces. All domed bogs are not entirely ombrotrophic (watered only from precipitation); multidomed bogs that rise from irregular or hilly surfaces may be crossed by streams that supply water to the bogs. The geologic processes or organic sedimentation, namely terrestrialization and paludification, are similar in all peat deposits considered here. Differences in geomorphology affecting the quantity and that quality of peat that has ash contents of less than 25%, which are desirable for commercial purposes, depend chiefly on: (1) high humidity, which is favorable to luxuriant growth of peat-forming vegetation; (2) a depositional setting that permits extensive accumulation relatively free from inorganic contamination from sea water and streams and from dust and volcanic ash; and (3) a stable regional water table that controls the rate of decomposition under aerobic conditions and protects the deposit against the ravages of fire. Differences in peat textures are due to the type of vegetation and to the degree of decomposition. The rate of decomposition is largely the result of the amount of oxidation and aerobic microbial activity. Stratigraphic distribution of various textures and amounts of inorganic components within a peat deposit is largely determined by the vertical positions occupied by peat-forming environments, such as pond, marsh, swamp and heath where vegetation accumulated, and the depth to zones of unoxygenated water. Peat also differs in the rate of accumulation. On the basis of carbon-14 dating, an estimated 8 m of peat in the tropical Batang Hari River deposit in Sumatra has been accumulating at the rate of about 1.5 m/1,000 yr, whereas peat in the cold-temperate deposit in Maine has been accumulating at the rate of 0.66 m/1,000 yr. Accumulation rates in domed deposits such as these are affected not only by factors controlling volume of biomass and aerobic decay but also by stream erosion and fires that remove peat. Such disconformities (see Fig. 2) within the deposit may be recognized by sudden vertical changes in degree of decomposition and/or the presence of charcoal. The trace-element content of peat deposits is affected by the environments of their settings. Samples of peat that have an ash content of less than 25% dry weight and that are from small, almost level swamp deposits along the Atlantic Coastal Plain of North Carolina were compared with similar samples from small domed bogs in Maine, a glaciated area. Samples from Nort Carolina, which are from deposits in thick fluvial and nearshore marine sediments far from the bedrock source, are generally higher in Ti, Cr and Pb. The Maine samples from deposits in glacial drift close to the bedrock source contain more Zn, Mn, P, Ca, Na and Fe. The kind and amount of trace elements within the deposits appear to relate largely to depositional setting, to kinds of bedrock source, and to the modes of transportation from source to peat swamp. Trace-element concentrations in the extensive Sumatra peat deposit, which represents a potentially commercial coal bed, are similar to those found in Appalachian c
Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A
2014-02-01
Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.
2016-02-01
Ongoing emissions of carbon dioxide (CO2) and invasion of part of this CO2 into the oceans are projected to lower the calcium carbonate saturation state. As a result, the ability of many marine organisms to calcify may be compromised, with significant impacts on ocean ecosystems throughout the 21st Century. In laboratory manipulations, calcifying organisms have exhibited reduced calcification under elevated pCO2 conditions. Consequently, in situ observations of the sensitivity of calcifying communities to natural saturation state variability are increasingly valued as they incorporate complex species interactions, and capture the carbonate chemistry conditions to which communities are acclimatized. Using intensive seawater sampling techniques we assess the community level sensitivity of calcification rates to natural temporal variability in the aragonite saturation state (Ωarag) at both a tropical coral reef and temperate intertidal study site. Both sites experiences large daily variation in Ωarag during low tide due to photosynthesis, respiration, and the time at which the sites are isolated from the open ocean. On hourly timescales, we find that community level rates of calcification have only a weak dependence on variability in Ωarag at the tropical study site. At the temperate study site, although limited Ωarag sensitivity is observed during the day, nighttime community calcification rates are found to be strongly influenced by variability in Ωarag, with greater dissolution rates at lower Ωarag levels. If the short-term sensitivity of community calcification to Ωarag described here is representative of the long-term sensitivity of marine ecosystems to ocean acidification, then one would expect temperate intertidal calcifying communities to be more vulnerable than tropical coral reef calcifying communities. In particular, reductions in net community calcification, in the temperate intertidal zone may be predominately due to the nocturnal impact of ocean acidification.
Forest clearfelling effects on dissolved oxygen and metabolism in peatland streams.
O'Driscoll, Connie; O'Connor, Mark; Asam, Zaki-Ul-Zaman; de Eyto, Elvira; Brown, Lee E; Xiao, Liwen
2016-01-15
Peatlands cover ∼3% of the world's landmass and large expanses have been altered significantly as a consequence of land use change. Forestry activities are a key pressure on these catchments increasing suspended sediment and nutrient export to receiving waters. The aim of this study was to investigate stream dissolved oxygen (DO) and metabolic activity response following clearfelling of a 39-year-old lodgepole pine and Sitka spruce forestry in an upland peat catchment. Significant effects of clearfelling on water temperature, flows, DO and stream metabolic (photosynthesis, respiration) rates were revealed. Stream temperature and discharge significantly increased in the study stream following clearfelling. Instream ecosystem respiration increased significantly following clearfelling, indicating an increase in the net consumption of organic carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Van Hoorebeek, Mark; Marson, James
2005-01-01
Purpose: The purpose of this paper is to assess the financial and intellectual issues facing the university sector as many institutions in the UK pursue alternative revenue streams. As a consequence to the increasing financial pressures, university departments are increasingly exposed to new forms of potential litigation and also face the risk to…
fMRI Evidence for Dorsal Stream Processing Abnormality in Adults Born Preterm
ERIC Educational Resources Information Center
Chaminade, Thierry; Leutcher, Russia Ha-Vinh; Millet, Veronique; Deruelle, Christine
2013-01-01
We investigated the consequences of premature birth on the functional neuroanatomy of the dorsal stream of visual processing. fMRI was recorded while sixteen healthy participants, 8 (two men) adults (19 years 6 months old, SD 10 months) born premature (mean gestational age 30 weeks), referred to as Premas, and 8 (two men) matched controls (20…
NASA Astrophysics Data System (ADS)
Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida
2013-04-01
In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.
NASA Astrophysics Data System (ADS)
Woodhouse, Francis; Goldstein, Raymond
2013-03-01
Cytoplasmic streaming is the ubiquitous phenomenon of deliberate, active circulation of the entire liquid contents of a plant or animal cell by the walking of motor proteins on polymer filament tracks. Its manifestation in the plant kingdom is particularly striking, where many cells exhibit highly organised patterns of flow. How these regimented flow templates develop is biologically unclear, but there is growing experimental evidence to support hydrodynamically-mediated self-organisation of the underlying microfilament tracks. Using the spirally-streaming giant internodal cells of the characean algae Chara and Nitella as our prototype, we model the developing sub-cortical streaming cytoplasm as a continuum microfilament suspension subject to hydrodynamic and geometric forcing. We show that our model successfully reproduces emergent streaming behaviour by evolving from a totally disordered initial state into a steady characean ``conveyor belt'' configuration as a consequence of the cell geometry, and discuss applicability to other classes of steadily streaming plant cells.
Guan, Bi-Cai; Fu, Cheng-Xing; Qiu, Ying-Xiong; Zhou, Shi-Liang; Comes, Hans Peter
2010-01-01
To evaluate the role of Quaternary refugial isolation in allopatric (incipient) speciation of East Asian temperate forest biotas, we analyzed amplified fragment length polymorphisms (AFLPs) and the breeding system in Dysosma versipellis. The study revealed that D. versipellis is mostly self-incompatible, genetically highly subdivided and depauperate at the population level (e.g., Φ(ST) = 0.572/H(E) = 0.083), and characterized by a low pollen-to-seed migration ratio (r ≈ 4.0). The latter outcome likely reflects limited pollen flow in a low-seed disperser whose hypothesized "sapromyophilous" flowers undergo scarce, inefficient, and likely specialized cross-pollination by small Anoplodera beetles, rather than carrion flies as assumed previously. In consequence, fruit set in D. versipellis was strongly pollen-limited. Our AFLP data support the hypothesis of a long-standing cessation of gene flow between western and central eastern populations, consistent with previous chloroplast DNA data. This phylogeographic pattern supports the role of the Sichuan Basin as a floristic boundary separating the Sino-Himalayan vs. Sino-Japanese Forest subkingdoms. Our genetic data of D. versipellis also imply that temperate deciduous forest elements to the west and the east of this basin responded differently to Quaternary climate change, which may have triggered or is leading to allopatric (incipient) speciation.
Martin, Thomas E.; Llyod, Penn; Bosque, Carlos; Barton, Daniel C.; Biancucci, Atilio L.; Cheng, Yi-Ru; Ton, Riccardo
2011-01-01
Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species.
Dynamics of groundwater-surface water interactions in urban streams
NASA Astrophysics Data System (ADS)
Musolff, A.; Schmidt, C.; Fleckenstein, J. H.
2010-12-01
In industrialized countries the majority of streams and rivers have been subject to changes in the hydrological regime and alteration of the channel morphology. Urban streams are typically characterized by “flashier” hydrographs as a result of more direct runoff from impervious surfaces. Channel structure and complexity are often impaired compared to pristine streams. As a consequence the potential for bedform-driven water flow in the streambed is reduced. The downward transport of oxygen by advective flow in the streambed is known to be of great ecological importance for the hyporheic macro and micro fauna and facilitates nutrient cycling and the degradation of organic pollutants. We studied the dynamics of groundwater-surface water exchange of two anthropogenically impacted streams in urban areas to examine the effects of variable hydrologic boundary conditions on water flux and redox conditions in the streambed. The first stream is fed by groundwater as well as storm-water from a large industrial area. Here, we monitored the variability of vertical hydraulic gradients, streambed temperature and redox conditions in the streambed over the course of 5 months. The second stream is frequently polluted by combined sewer overflows (CSO) from an urban watershed. Here, we measured the vertical hydraulic gradients, streambed temperature and electrical conductivity (EC) in the stream, the streambed and in the adjacent aquifer. Both streams are characterized by strong variations in hydraulic gradients due to the dynamic hydrographs as well as the variations in total head in the shallow aquifer. Therefore, magnitude and direction of water flux through the streambed changed significantly over time. At the first site long-term variations of redox conditions in the shallow streambed (0.1 m) were related to the direction of water fluxes. Downward water flow resulted in increased redox potentials. However, the high short-term variability of redox conditions could not be directly attributed to changes in the hydraulic conditions. At the second site, increased EC in the shallow aquifer was related to seasonally losing conditions (associated with low water tables in summer) and the resulting groundwater recharge. Sudden increases in stream stage due to rain events and subsequent CSO resulted in altered streambed water fluxes, as evidenced by the disturbance of vertical streambed temperature profiles down to a depth of 0.3 m. Both, short-term and long-term variations in hydraulic gradients between the stream, the streambed and the groundwater were found to influence the magnitude and direction of water fluxes. Flashy flow events influence the water flux in the streambed very rapidly. However, changes in redox potential in the streambed require losing conditions over time scales longer than the duration of a typical high flow event. As a consequence, the complexity of water exchange in the streambed should be carefully monitored, both in space and time. Our results indicate that variable hydraulic gradients may induce intense exchange fluxes between the stream and streambed in urban streams and may compensate some of the negative consequences of degraded channels with limited bedform-driven flow.
Benjamin N. Sulman; Ankur R. Desai; D.S. Mackay; S. Samanta; B.D. Cook; N. Saliendra
2008-01-01
Terrestrial carbon fluxes represent a major source of uncertainty in estimates of future atmospheric greenhouse gas accumulation and consequently models of climate change. In the Upper Great Lakes states (Minnesota, Wisconsin, and Michigan), wetlands cover 14% of the land area, and compose up to one third of the land cover in the forest-wetland landscapes that dominate...
2011-01-01
Background Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Presentation of the hypothesis Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. Testing the Hypothesis The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming units or quantitative mRNA RT-PCR. Implications of the hypothesis The ancestral varicella-zoster virus, most probably a tropical genotype, co-migrated with man as he left Africa approximately 200,000 years ago. For this virus to have lost the selective advantage of resistance to ultra-violet radiation, the hypothesis would predict that the temperate, ultra-violet sensitive virus should have acquired another selective advantage as an evolutionary trade-off. One obvious advantage could be an increased reactivation rate as zoster to set up more rounds of chickenpox transmission. If this were so, the mechanism responsible for resistance to ultra-violet radiation might also be involved in reactivation and latency. This could then provide the first insight into a genetic correlate of the survival strategy of this virus. PMID:21513563
Byappanahalli, M.N.; Whitman, R.L.; Shively, D.A.; Sadowsky, M.J.; Ishii, S.
2006-01-01
The common occurrence of Escherichia coli in temperate soils has previously been reported, however, there are few studies to date to characterize its source, distribution, persistent capability and genetic diversity. In this study, undisturbed, forest soils within six randomly selected 0.5 m2 exclosure plots (covered by netting of 2.3 mm2 mesh size) were monitored from March to October 2003 for E. coli in order to describe its numerical and population characteristics. Culturable E. coli occurred in 88% of the samples collected, with overall mean counts of 16 MPN g-1, ranging from <1 to 1657 (n = 66). Escherichia coli counts did not correlate with substrate moisture content, air, or soil temperatures, suggesting that seasonality were not a strong factor in population density control. Mean E. coli counts in soil samples (n = 60) were significantly higher inside than immediately outside the exclosures; E. coli distribution within the exclosures was patchy. Repetitive extragenic palindromic polymerase chain reaction (Rep-PCR) demonstrated genetic heterogeneity of E. coli within and among exclosure sites, and the soil strains were genetically distinct from animal (E. coli) strains tested (i.e. gulls, terns, deer and most geese). These results suggest that E. coli can occur and persist for extended periods in undisturbed temperate forest soils independent of recent allochthonous input and season, and that the soil E. coli populations formed a cohesive phylogenetic group in comparison to the set of fecal strains with which they were compared. Thus, in assessing E. coli sources within a stream, it is important to differentiate background soil loadings from inputs derived from animal and human fecal contamination. ?? 2005 Society for Applied Microbiology and Blackwell Publishing Ltd.
Longitudinal distribution and parameters of large wood in a Mediterranean ephemeral stream
NASA Astrophysics Data System (ADS)
Galia, T.; Škarpich, V.; Tichavský, R.; Vardakas, L.; Šilhán, K.
2018-06-01
Although large wood (LW) has been intensively studied in forested basins of humid temperate climates, data on LW patterns in different fluvial environments are rather scarce. Therefore, we investigated the dimensions, characteristics, longitudinal distribution, and dynamics of LW along a 4.05-km-long reach of an ephemeral channel typical of European Mediterranean mountainous landscape (Sfakiano Gorge, Crete, Greece). We analysed a total of 795 LW pieces, and the mean observed abundance of LW was generally lower (14.3 m3/ha of active valley floor or 19.6 LW pieces/100 m of stream length) than is usually documented for more humid environments. The number of LW pieces was primarily controlled by trees growing on the valley floor. These living trees acted as important LW supply agents (by tree throws or the supply of individual branches with sufficient LW dimensions) and flow obstructions during large flood events, causing storage of transported LW pieces in jams. However, the downstream transport of LW is probably episodic, and large jams are likely formed only during major floods; after >15 years, we still observed significant imprints of the last major flood event on the present distribution of LW. The geomorphic function of LW in the studied stream can only be perceived to be a spatially limited stabilising element for sediments, which was documented by a few accumulations of coarse clastic material by LW steps and jams.
Strong wave/mean-flow coupling in baroclinic acoustic streaming
NASA Astrophysics Data System (ADS)
Chini, Greg; Michel, Guillaume
2017-11-01
Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.
Assessing the consequences of nonnative trout in headwater ecosystems in western North America
Jason B. Dunham; David S. Pilliod; Michael K. Young
2004-01-01
Intentional introductions of nonnative trout into headwater lakes and streams can have numerous effects on the receiving ecosystems, potentially threatening native species and disrupting key ecological processes. In this perspective, we focus on seven key issues for assessing the biological and economic consequences of nonnative trout in headwater ecosystems: (1)...
NASA Astrophysics Data System (ADS)
Cocito, S.; Lombardi, C.
2016-02-01
In a wide range of temperate environmental settings, long-lived, carbonate benthic organisms provide the framework of biogenic constructions, which create and maintain habitats and ecological niches for many species. These physical structures provide living space which progressively increases as framework grows. In temperate waters, bryozoans can have reef-constructing roles, and can substitute for corals in abundance and structure. As all bioconstructional species, they are seriously threaten by climate changes and its consequences such as thermal anomalies. The present study provides an assessment of changes in habitat provision by a reef-forming bryozoan dominating sub-tidal rocky reefs in the Ligurian Sea (NW Mediterranean) through 9-year time. Large ellipsoidal foliaceous colonies of Pentapora fascialis were monitored in 12 replicated stations (area: 1 m2) at two depths (11 and 22 m) from 1997 to 2005. Variation of living space (i.e. empty colony spaces) was computed by using colony width and high recorded annually. Impacts and long-term consequences of the 1999 and 2003 thermal anomalies were evaluated as changes in empty colony spaces. Over the 9 year monitoring, living space resulted more abundant at the deep stations (2947±617 cm3) than at the shallow ones (1652±494 cm3). Rapid decline in living space (90% and 94% reduction at 11 and 22 m stations, respectively) following the 1999 event was mainly due to the necrosis and reduction of the largest colonies. Differently, after the 2003 thermal anomaly the living space decline occurred gradually during the following 2 years. Interestingly, between the two events, colonies at the deep stations regained living space to pre-disturbance level (5671±1862 cm3) showing higher resilience to disturbance. Detecting effects of extreme events on bioconstructions and associated biota will contribute to the assessment of biodiversity changes and to predict future changes in threatened marine ecosystems.
Melanie Vanderhoof; Laurie Alexander
2016-01-01
The degree of hydrological connectivity between wetland systems and downstream receiving waters can be expected to influence the volume and variability of stream discharge. The Prairie Pothole Region contains a high density of depressional wetland features, a consequence of glacial retreat. Spatial variability in wetland density, drainage evolution, and precipitation...
Jonathan A. O' Donnell; George R. Aiken; Evan S. Kane; Jeremy B. Jones
2010-01-01
Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate DOC chemical composition....
Bret C. Harvey; Jason L. White; Rodney J. Nakamoto; Steven F. Railsback
2014-01-01
Resource managers commonly face the need to evaluate the ecological consequences of specific water diversions of small streams. We addressed this need by conducting 4 years of biophysical monitoring of stream reaches above and below a diversion and applying two individual-based models of salmonid fish that simulated different levels of behavioral complexity. The...
Matthew R. Sloat; Gordon H. Reeves; Kelly R. Christiansen
2016-01-01
In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural...
NASA Astrophysics Data System (ADS)
Boodoo, K. S.; Schelker, J.; Battin, T. J.
2016-12-01
Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.
Gooseff, Michael N.; McKnight, Diane M.; Lyons, W. Berry; Blum, Alex E.
2002-01-01
In the McMurdo Dry Valleys, Antarctica, dilute glacial meltwater flows down well‐established streambeds to closed basin lakes during the austral summer. During the 6–12 week flow season, a hyporheic zone develops in the saturated sediment adjacent to the streams. Longer Dry Valley streams have higher concentrations of major ions than shorter streams. The longitudinal increases in Si and K suggest that primary weathering contributes to the downstream solute increase. The hypothesis that weathering reactions in the hyporheic zone control stream chemistry was tested by modeling the downstream increase in solute concentration in von Guerard Stream in Taylor Valley. The average rates of solute supplied from these sources over the 5.2 km length of the stream were 6.1 × 10−9 mol Si L−1 m−1 and 3.7 × 10−9 mol K L−1 m−1, yielding annual dissolved Si loads of 0.02–1.30 mol Si m−2 of watershed land surface. Silicate minerals in streambed sediment were analyzed to determine the representative surface area of minerals in the hyporheic zone subject to primary weathering. Two strategies were evaluated to compute sediment surface area normalized weathering rates. The first applies a best linear fit to synoptic data in order to calculate a constant downstream solute concentration gradient, dC/dx (constant weathering rate contribution, CRC method); the second uses a transient storage model to simulate dC/dx, representing both hyporheic exchange and chemical weathering (hydrologic exchange, HE method). Geometric surface area normalized dissolution rates of the silicate minerals in the stream ranged from 0.6 × 10−12 mol Si m−2 s−1 to 4.5 × 10−12 mol Si m−2 s−1 and 0.4 × 10−12 mol K m−2 s−1to 1.9 × 10−12 mol K m−2 s−1. These values are an order of magnitude lower than geometric surface area normalized weathering rates determined in laboratory studies and are an order of magnitude greater than geometric surface area normalized weathering rates determined in a warmer, wetter setting in temperate basins, despite the cold temperatures, lack of precipitation and lack of organic material. These results suggest that the continuous saturation and rapid flushing of the sediment due to hyporheic exchange facilitates weathering in Dry Valley streams.
Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís
2015-01-01
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function. PMID:25714337
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druffel, E.M.; Suess, H.E.
1983-02-20
We have made radiocarbon measurements of banded hermatypic corals from Florida, Belize, and the Galapagos Islands. Interpretation is presented here of these previously reported results. These measurements represent the /sup 14/C//sup 12/C ratios in dissolved inorganic carbon (DIOC) in the surface ocean waters of the Gulf Stream and the Peru Current at the time of coral ring formation. A depletion in radiocarbon concentration was observed incoral rings that grew from A.D. 1900--1952. It was caused by dilution of existing /sup 14/C levels with dead CO/sub 2/ from fossil fuel burning (the Suess effect, or S/sub e/). A similar trend wasmore » observed in the distribution of bomb-produced /sup 14/C in corals that had grown during the years following A.D. 1952. The concentration of bomb-produced radiocarbon was much higher in corals from temperate regions (Florida, Belize, Hawaiian Islands) than in corals from tropical regions (Galapagos Islands and Canton Island). The apparent radiocarbon ages of the surface waters in temperate and tropical oceans during the preanthropogenic period range from about 280 to 520 years B.P. (-40 to -69%). At all investigated locations, it is likely that waters at subsurface depths have the same apparent radiocarbon age of about 670 years B.P. From the change of oceanic ..delta../sup 14/C in the surface during post-bomb times, the approximate annual rate of net input of /sup 14/CO/sub 2/ to the ocean waters is calculated to be about 8% of the prevailing /sup 14/C difference between atmosphere and ocean. From this input and from preanthropogenic ..delta../sup 14/C values found at each location, it can be seen that vertical mixing of water in the Peru Current is about 3 times greater than that in the Gulf Stream.« less
NASA Astrophysics Data System (ADS)
Lu, Meng-Chang; Huang, -Chuan, Jr.; Chang, Chung-Te; Shih, Yu-Ting; Lin, Teng-Chiu
2016-04-01
The riverine DIN is a crucial indicator for eutrophication in river network. The riverine DIN export in Taiwan is featured by the extremely high yield, ~3800 kg-N km-2yr-1, nearly 20-fold than the global average, showing the interesting terrestrial N process yet rarely documented. In this study we collected the DIN samples in rainwater, soil water, and stream water in a mountainous forest watershed, FuShan experimental forest watershed 1 (WS1) which is a natural broadleaf forest without human activities. Based on the intensive observations, we applied the INCA-N to simulate the riverine DIN response and thus estimate the terrestrial N processes in a global synthesis. The result showed that both discharge and DIN yield were simulated well with the average Nash-Sutcliffe efficiency coefficient of 0.83 and 0.76 , respectively. Among all N processes, N uptake, mineralization, nitrification, denitrfication, and immobilization are significantly positive correlated with soil moisture (R2>0.99), which indicates that soil moisture greatly influences N cycle processes. The average rate of mineralization and nitrification in wet years are consistent with documented values, whereas the rates in dry years are lower than the observations. Despite the high nitrification rate, the secondary forest may uptake abundant N indicating the plant uptake, which responds for removing considerable nitrate, is a controlling factor in forest ecosystem. Our simulated denitrification rate falls between the documented rates of temperate forest and agricultural area, and that may be affected by the high N-deposition in Taiwan. Simulated in-stream denitrification rate is less than 10% of the rate in soil, and is a little lower than that in temperate forest. This preliminary simulation provides an insightful guide to establish the monitoring programme and improve the understanding of N cycle in subtropical.
Forestry practices and aquatic biodiversity: Fish
Gresswell, Robert E.
2005-01-01
In the Pacific Northwest, fish communities are found in a diverse array of aquatic habitats ranging from the large coastal rivers of the temperate rainforests, to the fragmented and sometimes ephemeral streams of the xeric interior basins, and high-elevation streams and lakes in the mountainous areas (Rieman et al. 2003). Only high-elevation lakes and streams isolated above barriers to fish passage remained historically devoid of fish because they were never invaded following Pleistocene glaciation (Smith 1981). Despite this widespread distribution and once great population abundances, taxonomic diversity of fishes in these forested systems is naturally lower than in aquatic habitats in the eastern U.S. (Reeves, Bisson, and Dambacher 1998). Interactions among factors that influence species richness in aquatic systems (e.g., basin size, long-term stability of habitat, and barriers to colonization; Smith 1981) continue to influence the occurrence and persistence of fishes in these systems today. Consequently, the larger low-elevation rivers and estuaries support the greatest variety of fish species. In the high-elevation tributary streams, fish communities are less complex because these aquatic systems were less climatically and geologically stable, and fish populations were smaller and more prone to local extirpation. Furthermore, barriers to fish passage inhibited dispersal and colonization (Smith 1981). Streams in forested landscapes generally support salmon and trout, Oncorhynchus spp., whitefish Prosopium spp., sculpins Cottus spp., suckers Catostomus spp., and minnows (Cyprinidae), but in some of the colder streams, chars (e.g., Salvelinus confluentus and Salvelinus malma) and lampreys (Petromyzontidae)may also occur (Rieman et al. 2003).Although biodiversity defined in terms of fish species richness is low in the Pacific Northwest, intraspecific variability is high, and polytypic fish species are common in the diverse aquatic habitats of the region. For example, the salmonids in the coastal rivers and streams, and the larger interconnected streams, rivers, and lakes of the interior exhibit a variety of ecotypes and migratory life histories (Healey 1986; Trotter 1989; Larson and McIntire 1993; Northcote 1997). This life-history variation appears to be associated with adaptation to spatial and temporal variation in environment (e.g., Schaffer and Elson 1975; Carl and Healey 1984; Beacham and Murray 1987), and there is some evidence of the genetic heritability of life-history traits (Carl and Healey 1984; Gharrett and Smoker 1993; Hankin, Nicholas, and Downey 1993). Persistence of any level of biological organization (e.g., life-history type, population, metapopulation, subspecies, species, community) is related to the interaction of environmental and biological components, and intraspecific diversity is a means of spreading risk (sensu den Boer 1968) of extirpation in dynamic environments (Gresswell 1999). Unfortunately, despite the broad distribution and extensive intraspecific diversity, persistence of native fishes is uncertain in the Pacific Northwest. Many populations of anadromous salmonids, once synonymous with vigorous biological communities throughout the region, are threatened with extinction (Nehlsen, Williams, and Lichatowich 1991; Frissell 1993; Thurow, Lee, and Rieman 1997). Furthermore, over half of the native taxa in the Columbia River Basin are either listed under the Endangered Species Act, are being considered for listing, or are deemed sensitive by the management agencies (Lee et al. 1997; Thurow, Lee, and Rieman 1997). Potamodromous species like bull trout Salvelinus confluentus are estimated to occur as strong populations in less than 5% of their potential range (Rieman, Lee, and Thurow 1997). Although not currently listed under the endangered species list, the coastal cutthroat trout Oncorhynchus clarki is managed as a sensitive species in Oregon and California (Hall, Bisson, and Gresswell 1997). Native non-game fishes have rarely been monitored, but populations of species such as large-scale suckers (Catostomus macrocheilus), squawfish (Ptychocheilus umpquae), and Pacific lamprey (Lampetra tridentata) also are declining in some drainages (Oregon Department of Fish and Wildlife, unpublished data).
Corotating pressure waves without streams in the solar wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1983-01-01
Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.
Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954
Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.
Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc
2015-01-01
The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios.
Greenhouse Gas Emission from Beef Cattle Grazing Systems on Temperate Grasslands
NASA Astrophysics Data System (ADS)
Rice, C. W.; Rivera-Zayas, J.
2017-12-01
At a global scale, cattle production is responsible for 65% of GHG emissions. During 2014 cattle management was the largest emitters of methane (CH4) representing a 23.2% of the total CH4 from anthropogenic activities. Since 2014, gas samples have been gathered and analyzed for carbon dioxide (CO2), CH4 and nitrous oxide (N2O) from three grazing areas under three different burning regimes at the temperate grassland of Konza Prairie Biological Station in Kansas. Burning regimes included one site in annually burned, and two sites with patch burned every three years on offset years. Burning regimes showed no effect in N2O emissions (p<0.05). Annual burning lowered CO2 emissions relative to patch burned. There was a significant effect of interaction between emissions and season. Maximum CO2 and CH4 fluxes were gathered during summer and fall; which coincided with high biomass seasons. Weather and edaphological conditions during fall and winter increase N2O emissions. A decrease in CO2 and CH4 fluxes, and N2O and CH4 soil uptake occurred during winter. Data gathered since 2014 implies CH4 and N2O are consumed on grazed grassland soils; with an increase in consumption with patch burning. Results quantify the role of temperate grasslands as a sink of CH4, and a possible sink of N2O. This experiment evidence CO2, CH4 and N2O emissions behavior as a consequence of burning regimes, and quantify the role of temperate grasslands as a sink of CH4 and N2O in order to understand best practice for resilience of beef cattle management.
NASA Astrophysics Data System (ADS)
Hinsby, K.; Markager, S.; Kronvang, B.; Windolf, J.; Sonnenborg, T. O.; Thorling, L.
2012-02-01
Intensive farming has severe impacts on the chemical status of groundwater and streams and consequently on the ecological status of dependent ecosystems. Eutrophication is a widespread problem in lakes and marine waters. Common problems are hypoxia, algal blooms and fish kills, and loss of water clarity, underwater vegetation, biodiversity, and recreational value. In this paper we evaluate the nitrogen (N) and phosphorus (P) chemistry of groundwater and surface water in a coastal catchment, the loadings and sources of N and P and their effect on the ecological status of an estuary. We calculate the necessary reductions in N and P loadings to the estuary for obtaining a good ecological status, which we define based on the number of days with N and P limitation, and the equivalent stream and groundwater threshold values assuming two different management options. The calculations are performed by the combined use of empirical models and a physically based 3-D integrated hydrological model of the whole catchment. The assessment of the ecological status indicates that the N and P loads to the investigated estuary should be reduced by a factor of 0.52 and 0.56, respectively, to restore good ecological status. Model estimates show that threshold total N concentrations should be in the range of 2.9 to 3.1 mg l-1 in inlet freshwater to Horsens Estuary and 6.0 to 9.3 mg l-1 in shallow aerobic groundwater (∼27-41 mg l-1 of nitrate), depending on the management measures implemented in the catchment. The situation for total P is more complex but data indicate that groundwater threshold values are not needed. The inlet freshwater threshold value for total P to Horsens Estuary for the selected management options is 0.084 mg l-1. Regional climate models project increasing winter precipitation and runoff in the investigated region resulting in increasing runoff and nutrient loads to coastal waters if present land use and farming practices continue. Hence, lower threshold values are required in the future to ensure good status of all water bodies and ecosystems.
NASA Astrophysics Data System (ADS)
Deirmendjian, Loris; Loustau, Denis; Augusto, Laurent; Lafont, Sébastien; Chipeaux, Christophe; Poirier, Dominique; Abril, Gwenaël
2018-02-01
We studied the export of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from forested shallow groundwater to first-order streams, based on groundwater and surface water sampling and hydrological data. The selected watershed was particularly convenient for such study, with a very low slope, with pine forest growing on sandy permeable podzol and with hydrology occurring exclusively through drainage of shallow groundwater (no surface runoff). A forest plot was instrumented for continuous eddy covariance measurements of precipitation, evapotranspiration, and net ecosystem exchanges of sensible and latent heat fluxes as well as CO2 fluxes. Shallow groundwater was sampled with three piezometers located in different plots, and surface waters were sampled in six first-order streams; river discharge and drainage were modeled based on four gauging stations. On a monthly basis and on the plot scale, we found a good consistency between precipitation on the one hand and the sum of evapotranspiration, shallow groundwater storage and drainage on the other hand. DOC and DIC stocks in groundwater and exports to first-order streams varied drastically during the hydrological cycle, in relation with water table depth and amplitude. In the groundwater, DOC concentrations were maximal in winter when the water table reached the superficial organic-rich layer of the soil. In contrast, DIC (in majority excess CO2) in groundwater showed maximum concentrations at low water table during late summer, concomitant with heterotrophic conditions of the forest plot. Our data also suggest that a large part of the DOC mobilized at high water table was mineralized to DIC during the following months within the groundwater itself. In first-order streams, DOC and DIC followed an opposed seasonal trend similar to groundwater but with lower concentrations. On an annual basis, leaching of carbon to streams occurred as DIC and DOC in similar proportion, but DOC export occurred in majority during short periods of the highest water table, whereas DIC export was more constant throughout the year. Leaching of forest carbon to first-order streams represented a small portion (approximately 2 %) of the net land CO2 sink at the plot. In addition, approximately 75 % of the DIC exported from groundwater was not found in streams, as it returned very fast to the atmosphere through CO2 degassing.
Jaisuk, Chaowalee; Senanan, Wansuk
2018-01-01
Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid , in eight tributary streams in the upper Nan River drainage basin ( n = 30-100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated ( P < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global F ST = 0.022, P < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized F ST ( P < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R 2 = 0.75). The MEMGENE analysis suggested genetic division between northern (genetic clusters 1 and 2) and southern (clusters 3 and 4) sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.
Diurnal feeding behavior of the American Eel Anguilla rostrata
Engman, Augustin C.; Fischer, Jesse R.; Kwak, Thomas J.; Walter, Michael J.
2017-01-01
Despite potential to structure ecosystem food webs through top-down effects, the trophic interactions of the American Eel Anguilla rostrata remain largely understudied. All previous research on the trophic ecology of American Eel in inland aquatic ecosystems has been conducted in temperate continental regions of the species' range. These studies have led to a paradigm that American Eel is a nocturnally active benthic predator, which most commonly consumes benthic invertebrates. Tropical island streams and rivers have habitats and communities that are distinct from temperate counterparts, but comprise a large portion of the adult habitat in the American Eel's range. We documented a previously undescribed diurnal feeding behavior by American Eel in a Caribbean river and demonstrate that this behavior, and a shift toward more frequent daytime feeding, is linked to periodic mass migrations of postlarvae of amphidromous fish taxa, including the Sicydiine goby Sicydiumspp. Our findings indicate that periodic mass migrations of amphidromous postlarvae could function as a potentially important food source for American Eel in tropical regions of its distribution, despite the intermittence of availability. Furthermore, this suggests that the American Eel plays an important role in the structure of tropical lotic food webs through top-down effects that are potentially augmented by instream barriers.
Monitoring Liverworts to Evaluate the Effectiveness of Hydroriparian Buffers
NASA Astrophysics Data System (ADS)
Higgins, Kellina L.; Yasué, Maï
2014-01-01
In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas ( n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones ( n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25-35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.
Steinlin, Christine; Bogdal, Christian; Lüthi, Martin P; Pavlova, Pavlina A; Schwikowski, Margit; Zennegg, Markus; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad
2016-06-07
In previous studies, the incorporation of polychlorinated biphenyls (PCBs) has been quantified in the accumulation areas of Alpine glaciers. Here, we introduce a model framework that quantifies mass fluxes of PCBs in glaciers and apply it to the Silvretta glacier (Switzerland). The models include PCB incorporation into the entire surface of the glacier, downhill transport with the flow of the glacier ice, and chemical fate in the glacial lake. The models are run for the years 1900-2100 and validated by comparing modeled and measured PCB concentrations in an ice core, a lake sediment core, and the glacial streamwater. The incorporation and release fluxes, as well as the storage of PCBs in the glacier increase until the 1980s and decrease thereafter. After a temporary increase in the 2000s, the future PCB release and the PCB concentrations in the glacial stream are estimated to be small but persistent throughout the 21st century. This study quantifies all relevant PCB fluxes in and from a temperate Alpine glacier over two centuries, and concludes that Alpine glaciers are a small secondary source of PCBs, but that the aftermath of environmental pollution by persistent and toxic chemicals can endure for decades.
Hardness of H13 Tool Steel After Non-isothermal Tempering
NASA Astrophysics Data System (ADS)
Nelson, E.; Kohli, A.; Poirier, D. R.
2018-04-01
A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.
NASA Astrophysics Data System (ADS)
Allani, Mouna; Garbinato, Benoît; Pedone, Fernando
An increasing number of Peer-to-Peer (P2P) Internet applications rely today on data dissemination as their cornerstone, e.g., audio or video streaming, multi-party games. These applications typically depend on some support for multicast communication, where peers interested in a given data stream can join a corresponding multicast group. As a consequence, the efficiency, scalability, and reliability guarantees of these applications are tightly coupled with that of the underlying multicast mechanism.
Extreme Changes in Stream Geomorphic Conditions induced by Fluvial Scour in Bridges
NASA Astrophysics Data System (ADS)
Özcan, O.; Ozcan, O.
2016-12-01
The numerous complexities associated with bridge scour have caused scour to be one of the most active topics of stream geomorphic research. The assessment of local scouring mechanism around bridge piers provides information for decision-making regarding the pile footing design, predicting the safety of bridges under critical scoured conditions, and as a result, may help prevent unnecessary loses. In the study, bridge design plans and HEC-RAS modeling were used for the assessment of changes in stream geomorphic conditions. The derived fluvial scour depths were compared with the field measurements and the empirical formula which is based on stream flow discharge rate, streambed condition and shape of river. Preliminary results revealed that bridge damage resulting from the flood event in 2003 induced substantial scour around bridge piles. Afterwards, significant stream bed change was observed under the influence of fluvial scour in another flood occurred in 2009. Consequently, geomorphic conditions of the stream bed should be considered in the structural design of the bridges.
NASA Astrophysics Data System (ADS)
Johnston, Scott G.; Rose, Andrew L.; Burton, Edward D.; Webster-Brown, Jenny
2015-01-01
Large alpine landslides that entrain substantial organic material below the water table and create suspended floodplains may have long-term consequences for the mobilisation of redox sensitive elements, such as Fe, into streamwaters. In turn, the cycling of iron in aquatic systems can influence the fate of nutrients, alter primary productivity, enhance accumulation of trace metals and induce fractionation of rare earth elements (REE). In this study we examine a reach of a pristine oligotrophic alpine stream bracketing a 30 year-old landslide and explore the consequences of landslide-induced Fe mobilisation for aqueous geochemistry and the composition of benthic stream cobble biofilm. Elevated Fe2+ and Mn in landslide zone stream waters reflect inputs of circumneutral groundwater from the landslide debris-zone floodplain. Geochemical characteristics are consistent with reductive dissolution being a primary mechanism of Fe2+ and Mn mobilisation. Stream cobble biofilm in the landslide zone is significantly (P < 0.01) enriched in poorly crystalline Fe(III) (∼10-400 times background) and Mn (∼15-150 times background) (1 M HCl extractable; Fe(III)Ab). While the landslide zone accounts for less than ∼9% of the total stream length, we estimate it is responsible for approximately 60-80% of the stream's benthic biofilm load of poorly crystalline Fe(III) and Mn. Biofilm Fe(III) precipitates are comprised mainly of ferrihydrite, lepidocrocite and an organic-Fe species, while precipitate samples collected proximal to hyporheic seeps contain abundant sheath structures characteristic of the neutrophilic Fe(II)-oxidising bacteria Leptothrix spp. Stream-cobble Fe(III)-rich biofilm is accumulating PO43- (∼3-30 times background) and behaving as a preferential substrate for photosynthetic periphyton, with benthic PO43-, chlorophyll a, organic carbonHCl and total N all significantly positively correlated with Fe(III)Ab and significantly elevated within the landslide zone (P < 0.01). P K-edge XANES indicates P is associated with both ferric and Ca-phosphate minerals, while SEM-EDX elemental mapping of Fe(III) precipitates reveal strong spatial associations between P, Ca and Fe. Cobble Fe(III)-rich biofilm is also sorbing and accumulating multiple trace metals and REE. Within the landslide zone there are significant (P < 0.01) enrichments (up to ∼10-100 times background) for most trace metals examined here and metals display significant positive linear correlations with Fe(III)Ab on a log transformed basis. Stream cobble biofilm also exhibits distinct REE fractionation along the flow path, with light REE (La, Ce, Nd, Pr) preferentially partitioning to the Fe(III) and Mn-rich biofilm within the landslide zone. Accumulation of PO43- and trace metals in this relatively environmentally labile form may have implications for their bioavailability and downstream transport, but further research is required to assess possible ecological consequences. This study demonstrates the potential for large alpine landslides to encourage reach-scale circumneutral Fe mobilisation in adjacent streams, thereby shaping multiple aspects of benthic stream geochemistry for many years after the landslide event itself.
Milotić, T; Hoffmann, M
2016-11-01
Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment. We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions). Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions. According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Sanhueza, J. P.; Rojas, D.; Prat, O.; García, J.; Meléndrez, M. F.; Suarez, S.
2018-07-01
A 12 pct Cr martensitic/ferritic steel was designed and produced to study Laves and Z-phase as precipitation hardening particles under creep conditions (650 °C). According to thermodynamic calculations, W and Cu additions were selected to ensure the precipitation of Laves after tempering. It is known that Z-phase formation does not follow the classical nucleation theory. Indeed, MX particles are transformed into Z-phase by Cr diffusion from the matrix to the precipitate. Therefore, to promote fast Z-phase formation, Ta, Co, and N additions were used to produce Ta-MX, which will be transformed into Z-phase. The main result achieved was the precipitation of Laves after tempering, with a particle size of 196 nm. As regards to Z-phase, the transformation of Ta-MX into Z-phase after tempering was confirmed by the formation of hybrid nanoparticles of 30 nm. Although W and Ta have a low diffusion in the martensitic/ferritic matrix, characterization of the precipitates after isothermal aging revealed that Laves and Z-phase have fast growth kinetics, reaching 400 and 143 nm, respectively, at 8760 hours. Consequently, creep test at 650 °C showed premature failures after few thousand hours. Therefore, it is expected that future research in the field of martensitic/ferritic steels will focus on the growth and coarsening behavior of Laves and Z-phase.
Ecosystem carbon exchange in response to locust outbreaks in a temperate steppe.
Song, Jian; Wu, Dandan; Shao, Pengshuai; Hui, Dafeng; Wan, Shiqiang
2015-06-01
It is predicted that locust outbreaks will occur more frequently under future climate change scenarios, with consequent effects on ecological goods and services. A field manipulative experiment was conducted to examine the responses of gross ecosystem productivity (GEP), net ecosystem carbon dioxide (CO2) exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) to locust outbreaks in a temperate steppe of northern China from 2010 to 2011. Two processes related to locust outbreaks, natural locust feeding and carcass deposition, were mimicked by clipping 80 % of aboveground biomass and adding locust carcasses, respectively. Ecosystem carbon (C) exchange (i.e., GEP, NEE, ER, and SR) was suppressed by locust feeding in 2010, but stimulated by locust carcass deposition in both years (except SR in 2011). Experimental locust outbreaks (i.e., clipping plus locust carcass addition) decreased GEP and NEE in 2010 whereas they increased GEP, NEE, and ER in 2011, leading to neutral changes in GEP, NEE, and SR across the 2 years. The responses of ecosystem C exchange could have been due to the changes in soil ammonium nitrogen, community cover, and aboveground net primary productivity. Our findings of the transient and neutral changes in ecosystem C cycling under locust outbreaks highlight the importance of resistance, resilience, and stability of the temperate steppe in maintaining reliable ecosystem services, and facilitate the projections of ecosystem functioning in response to natural disturbance and climate change.
NASA Astrophysics Data System (ADS)
Sanhueza, J. P.; Rojas, D.; Prat, O.; García, J.; Meléndrez, M. F.; Suarez, S.
2018-05-01
A 12 pct Cr martensitic/ferritic steel was designed and produced to study Laves and Z-phase as precipitation hardening particles under creep conditions (650 °C). According to thermodynamic calculations, W and Cu additions were selected to ensure the precipitation of Laves after tempering. It is known that Z-phase formation does not follow the classical nucleation theory. Indeed, MX particles are transformed into Z-phase by Cr diffusion from the matrix to the precipitate. Therefore, to promote fast Z-phase formation, Ta, Co, and N additions were used to produce Ta-MX, which will be transformed into Z-phase. The main result achieved was the precipitation of Laves after tempering, with a particle size of 196 nm. As regards to Z-phase, the transformation of Ta-MX into Z-phase after tempering was confirmed by the formation of hybrid nanoparticles of 30 nm. Although W and Ta have a low diffusion in the martensitic/ferritic matrix, characterization of the precipitates after isothermal aging revealed that Laves and Z-phase have fast growth kinetics, reaching 400 and 143 nm, respectively, at 8760 hours. Consequently, creep test at 650 °C showed premature failures after few thousand hours. Therefore, it is expected that future research in the field of martensitic/ferritic steels will focus on the growth and coarsening behavior of Laves and Z-phase.
Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification
Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken
2016-01-01
Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406
Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.
Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken
2016-03-18
Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.
Does climate undermine subjective well-being? A 58-nation study.
Fischer, Ronald; Van de Vliert, Evert
2011-08-01
The authors test predictions from climato-economic theories of culture that climate and wealth interact in their influence on psychological processes. Demanding climates (defined as colder than temperate and hotter than temperate climates) create potential threats for humans. If these demands can be met by available economic resources, individuals experience challenging opportunities for self-expression and personal growth and consequently will report lowest levels of ill-being. If threatening climatic demands cannot be met by resources, resulting levels of reported ill-being will be highest. These predictions are confirmed in nation-level means of health complaints, burnout, anxiety, and depression across 58 societies. Climate, wealth, and their interaction together account for 35% of the variation in overall subjective ill-being, even when controlling for known predictors of subjective well-being. Further investigations of the process suggest that cultural individualism does not mediate these effects, but subjective well-being may function as a mediator of the impact of ecological variables on ill-being.
Kelly, John J.; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R.; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A.; Rier, Steven T.; Tuchman, Nancy C.
2010-01-01
Elevated atmospheric CO2 can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO2 would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO2, and their leaves were incubated in a woodland stream. Elevated-CO2 treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO2 treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall Gram-positive bacterial sequences. PMID:20543045
Distribution and speciation of trace elements in iron and manganese oxide cave deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-10-24
Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less
Kelly, John J; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A; Rier, Steven T; Tuchman, Nancy C
2010-08-01
Elevated atmospheric CO(2) can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO(2) would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO(2), and their leaves were incubated in a woodland stream. Elevated-CO(2) treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO(2) treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall gram-positive bacterial sequences.
Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.
2016-01-01
The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819
Peylin, Philippe; Bacour, Cédric; MacBean, Natasha; ...
2016-09-20
Here, large uncertainties in land surface models (LSMs) simulations still arise from inaccurate forcing, poor description of land surface heterogeneity (soil and vegetation properties), incorrect model parameter values and incomplete representation of biogeochemical processes. The recent increase in the number and type of carbon cycle-related observations, including both in situ and remote sensing measurements, has opened a new road to optimize model parameters via robust statistical model–data integration techniques, in order to reduce the uncertainties of simulated carbon fluxes and stocks. In this study we present a carbon cycle data assimilation system that assimilates three major data streams, namely themore » Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) observations of vegetation activity, net ecosystem exchange (NEE) and latent heat (LE) flux measurements at more than 70 sites (FLUXNET), as well as atmospheric CO 2 concentrations at 53 surface stations, in order to optimize the main parameters (around 180 parameters in total) of the Organizing Carbon and Hydrology in Dynamics Ecosystems (ORCHIDEE) LSM (version 1.9.5 used for the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations). The system relies on a stepwise approach that assimilates each data stream in turn, propagating the information gained on the parameters from one step to the next. Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, which suggests that current LSMs have reached the level of development to assimilate these observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for temperate ecosystems). The assimilation of atmospheric CO 2, using the general circulation model (GCM) of the Laboratoire de Météorologie Dynamique (LMDz; step 3), provides an overall constraint (i.e., constraint on large-scale net CO 2 fluxes), resulting in an improvement of the fit to the observed atmospheric CO 2 growth rate. Thus, the optimized model predicts a land C (carbon) sink of around 2.2 PgC yr -1 (for the 2000–2009 period), which is more compatible with current estimates from the Global Carbon Project (GCP) than the prior value. The consistency of the stepwise approach is evaluated with back-compatibility checks. The final optimized model (after step 3) does not significantly degrade the fit to MODIS-NDVI and FLUXNET data that were assimilated in the first two steps, suggesting that a stepwise approach can be used instead of the more “challenging” implementation of a simultaneous optimization in which all data streams are assimilated together. Most parameters, including the scalar of the initial soil carbon pool size, changed during the optimization with a large error reduction. This work opens new perspectives for better predictions of the land carbon budgets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peylin, Philippe; Bacour, Cédric; MacBean, Natasha
Here, large uncertainties in land surface models (LSMs) simulations still arise from inaccurate forcing, poor description of land surface heterogeneity (soil and vegetation properties), incorrect model parameter values and incomplete representation of biogeochemical processes. The recent increase in the number and type of carbon cycle-related observations, including both in situ and remote sensing measurements, has opened a new road to optimize model parameters via robust statistical model–data integration techniques, in order to reduce the uncertainties of simulated carbon fluxes and stocks. In this study we present a carbon cycle data assimilation system that assimilates three major data streams, namely themore » Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) observations of vegetation activity, net ecosystem exchange (NEE) and latent heat (LE) flux measurements at more than 70 sites (FLUXNET), as well as atmospheric CO 2 concentrations at 53 surface stations, in order to optimize the main parameters (around 180 parameters in total) of the Organizing Carbon and Hydrology in Dynamics Ecosystems (ORCHIDEE) LSM (version 1.9.5 used for the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations). The system relies on a stepwise approach that assimilates each data stream in turn, propagating the information gained on the parameters from one step to the next. Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, which suggests that current LSMs have reached the level of development to assimilate these observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for temperate ecosystems). The assimilation of atmospheric CO 2, using the general circulation model (GCM) of the Laboratoire de Météorologie Dynamique (LMDz; step 3), provides an overall constraint (i.e., constraint on large-scale net CO 2 fluxes), resulting in an improvement of the fit to the observed atmospheric CO 2 growth rate. Thus, the optimized model predicts a land C (carbon) sink of around 2.2 PgC yr -1 (for the 2000–2009 period), which is more compatible with current estimates from the Global Carbon Project (GCP) than the prior value. The consistency of the stepwise approach is evaluated with back-compatibility checks. The final optimized model (after step 3) does not significantly degrade the fit to MODIS-NDVI and FLUXNET data that were assimilated in the first two steps, suggesting that a stepwise approach can be used instead of the more “challenging” implementation of a simultaneous optimization in which all data streams are assimilated together. Most parameters, including the scalar of the initial soil carbon pool size, changed during the optimization with a large error reduction. This work opens new perspectives for better predictions of the land carbon budgets.« less
NASA Astrophysics Data System (ADS)
Doctor, D. H.; Sebestyen, S. D.; Aiken, G. R.; Shanley, J. B.; Kendall, C.; Boyer, E. W.
2006-12-01
Increased DOC flux in streams and rivers is commonly observed during high runoff regimes, however DOC concentrations alone do not provide information about multiple sources or pathways of DOC to streams. In an effort to gain this information, we measured DOC concentrations and stable carbon isotope composition (δ13C-DOC) on samples collected at high-frequency during events at Sleepers River Research Watershed in Vermont, USA. During snowmelt and storm events, peaks in stream DOC concentration (up to 10.5 mg/L) were coincident with peaks in flow. Stream water δ13C-DOC measurements ranged between -23.7‰ and - 28.9‰ and indicated changing sources of DOC during events; the highest δ13C-DOC values occurred consistently at the lowest flows, and the lowest δ13C-DOC values occurred with peaks in discharge. Water samples collected from shallow wells and stacked soil lysimeters showed the highest DOC concentrations in the most shallow (<0.5 m) lysimeter waters, and the lowest concentrations in the deeper (>1.5 m) well waters. Wells and lysimeters exhibited a range of δ13C-DOC values similar to those observed in the stream; however, samples collected from shallow horizons at nested wells and lysimeters consistently showed lower δ13C-DOC values than those from greater depths. Maple leaf litter collected from across the watershed provided an end-member of fresh organic material, with average δ13C composition of -31.3±0.7‰ (n=57), which is lower than the lowest measured DOC values in any of the stream, well, or lysimeter waters. A subset of stream waters were fractionated onto XAD4 and XAD8 resins; the hydrophobic acid fraction (XAD8) had consistently lower δ13C values than the transphilic acid fraction (XAD4), and both of these were lower than those of the bulk DOC. Samples with lower δ13C-DOC values also exhibited higher SUVA-254 values, i.e. greater aromaticity. Thus, lower δ13C-DOC values are interpreted as an indicator of relatively "fresh", more aromatic and more biologically labile material while higher δ13C-DOC values indicate relatively more degraded material. Since lower δ13C-DOC values were observed in the shallowest well and lysimeter waters and in stream water during periods of highest DOC flux, we surmise that fresh DOC is mobilized to the stream along relatively shallow flowpaths during high flows, and that a second source of more degraded DOC supplies background concentrations to the stream at lower flows.
NASA Astrophysics Data System (ADS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Meerschaert, Mark M; Sabzikar, Farzad; Chen, Jinghua
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA
2014-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690
Large Bodies Associated with Meteoroid Streams
NASA Technical Reports Server (NTRS)
Badadzhanov, P. B.; William, I. P.; Kokhirova, G. I.
2011-01-01
It is now accepted that some near-Earth objects (NEOs) may be dormant or dead comets. One strong indicator of cometary nature is the existence of an associated meteoroid stream with its consequently observed meteor showers. The complexes of NEOs which have very similar orbits and a likely common progenitor have been identified. The theoretical parameters for any meteor shower that may be associated with these complexes were calculated. As a result of a search of existing catalogues of meteor showers, activity has been observed corresponding to each of the theoretically predicted showers was found. We conclude that these asteroid-meteoroid complexes of four NEOs moving within the Piscids stream, three NEOs moving within the Iota Aquariids stream, and six new NEOs added to the Taurid complex are the result of a cometary break-up.
Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.
2011-01-01
We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.
Effects of remediation on the bacterial community of an acid mine drainage impacted stream.
Ghosh, Suchismita; Moitra, Moumita; Woolverton, Christopher J; Leff, Laura G
2012-11-01
Acid mine drainage (AMD) represents a global threat to water resources, and as such, remediation of AMD-impacted streams is a common practice. During this study, we examined bacterial community structure and environmental conditions in a low-order AMD-impacted stream before, during, and after remediation. Bacterial community structure was examined via polymerase chain reaction amplification of 16S rRNA genes followed by denaturing gradient gel electrophoresis. Also, bacterial abundance and physicochemical data (including metal concentrations) were collected and relationships to bacterial community structure were determined using BIO-ENV analysis. Remediation of the study stream altered environmental conditions, including pH and concentrations of some metals, and consequently, the bacterial community changed. However, remediation did not necessarily restore the stream to conditions found in the unimpacted reference stream; for example, bacterial abundances and concentrations of some elements, such as sulfur, magnesium, and manganese, were different in the remediated stream than in the reference stream. BIO-ENV analysis revealed that changes in pH and iron concentration, associated with remediation, primarily explained temporal alterations in bacterial community structure. Although the sites sampled in the remediated stream were in relatively close proximity to each other, spatial variation in community composition suggests that differences in local environmental conditions may have large impacts on the microbial assemblage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, Brian D; Bernhardt, Emily; Roberts, Brian
Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolvedmore » organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.« less
Steven F. Railsback; Bret C. Harvey; Jason L. White
2014-01-01
Modeling and management of facultative anadromous salmonids is complicated by their ability to select anadromous or resident life histories. Conventional theory for this behavior assumes individuals select the strategy offering highest expected reproductive success but does not predict how population-level consequences such as a streamâs smolt production emerge from...
Groundwater declines are linked to changes in Great Plains stream fish assemblages
Prekins, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John
2017-01-01
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.
Groundwater declines are linked to changes in Great Plains stream fish assemblages.
Perkin, Joshuah S; Gido, Keith B; Falke, Jeffrey A; Fausch, Kurt D; Crockett, Harry; Johnson, Eric R; Sanderson, John
2017-07-11
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950-2010) and prospective (2011-2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.
Groundwater declines are linked to changes in Great Plains stream fish assemblages
Perkin, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John
2017-01-01
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur. PMID:28652354
Louisiana waterthrush and benthic macroinvertebrate response to shale gas development
Wood, Petra; Frantz, Mack W.; Becker, Douglas A.
2016-01-01
Because shale gas development is occurring over large landscapes and consequently is affecting many headwater streams, an understanding of its effects on headwater-stream faunal communities is needed. We examined effects of shale gas development (well pads and associated infrastructure) on Louisiana waterthrush Parkesia motacilla and benthic macroinvertebrate communities in 12 West Virginia headwater streams in 2011. Streams were classed as impacted (n = 6) or unimpacted (n = 6) by shale gas development. We quantified waterthrush demography (nest success, clutch size, number of fledglings, territory density), a waterthrush Habitat Suitability Index, a Rapid Bioassessment Protocol habitat index, and benthic macroinvertebrate metrics including a genus-level stream-quality index for each stream. We compared each benthic metric between impacted and unimpacted streams with a Student's t-test that incorporated adjustments for normalizing data. Impacted streams had lower genus-level stream-quality index scores; lower overall and Ephemeroptera, Plecoptera, and Trichoptera richness; fewer intolerant taxa, more tolerant taxa, and greater density of 0–3-mm individuals (P ≤ 0.10). We then used Pearson correlation to relate waterthrush metrics to benthic metrics across the 12 streams. Territory density (no. of territories/km of stream) was greater on streams with higher genus-level stream-quality index scores; greater density of all taxa and Ephemeroptera, Plecoptera, and Trichoptera taxa; and greater biomass. Clutch size was greater on streams with higher genus-level stream-quality index scores. Nest survival analyses (n = 43 nests) completed with Program MARK suggested minimal influence of benthic metrics compared with nest stage and Habitat Suitability Index score. Although our study spanned only one season, our results suggest that shale gas development affected waterthrush and benthic communities in the headwater streams we studied. Thus, these ecological effects of shale gas development warrant closer examination.
NASA Astrophysics Data System (ADS)
Boodoo, Kyle; Battin, Tom; Schelker, Jakob
2017-04-01
Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. Furthermore, catchment CO2 outgassing fluxes significantly exceeded that of the stream, with higher diurnal CO2 outgassing fluxes observed for all 13 GBs within the Ybbs and Erlauf catchments as compared to their respective streams. We found DOC concentration did not significantly correlate to CO2 outgassing. But, vertical temperature gradient as a measure of heat flux to the hyporheic zone explained 55% and 69% of the variability in observed CO2 efflux from the OSB gravel bar (seasonal samplings during summer 2015 - winter 2016) and 11 catchment gravel bars (2 GBs excluded due to equipment malfunction) respectively. These results highlight the effect of temperature on physical and biochemical stream processes, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu; Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu; Chen, Jinghua, E-mail: cjhdzdz@163.com
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a temperedmore » fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.« less
Dynamical Evolution of Meteoroid Streams, Developments Over the Last 30 Years
NASA Technical Reports Server (NTRS)
Williams, I. P.
2011-01-01
As soon as reliable methods for observationally determining the heliocentric orbits of meteoroids and hence the mean orbit of a meteoroid stream in the 1950s and 60s, astronomers strived to investigate the evolution of the orbit under the effects of gravitational perturbations from the planets. At first, the limitations in the capabilities of computers, both in terms of speed and memory, placed severe restrictions on what was possible to do. As a consequence, secular perturbation methods, where the perturbations are averaged over one orbit became the norm. The most popular of these is the Halphen- Goryachev method which was used extensively until the early 1980s. The main disadvantage of these methods lies in the fact that close encounter can be missed, however they remain useful for performing very long-term integrations. Direct integration methods determine the effects of the perturbing forces at many points on an orbit. This give a better picture of the orbital evolution of an individual meteoroid, but many meteoroids have to be integrated in order to obtain a realistic picture of the evolution of a meteoroid stream. The notion of generating a family of hypothetical meteoroids to represent a stream and directly integrate the motion of each was probably first used by Williams Murray & Hughes (1979), to investigate the Quadrantids. Because of computing limitations, only 10 test meteoroids were used. Only two years later, Hughes et. al. (1981) had increased the number of particles 20-fold to 200 while after a further year, Fox Williams and Hughes used 500 000 test meteoroids to model the Geminid stream. With such a number of meteoroids it was possible for the first time to produce a realistic cross-section of the stream on the ecliptic. From that point on there has been a continued increase in the number of meteoroids, the length of time over which integration is carried out and the frequency with which results can be plotted so that it is now possible to produce moving images of the stream. As a consequence, over recent years, emphasis has moved to considering stream formation and the role fragmentation plays in this.
2017-01-01
Corbicula fluminea is an aggressive invasive species of bivalve that arrived into the Río de la Plata River between the late 60’s and early 70’s, and dispersed widely throughout the Neotropical region, evidencing a great adaptive flexibility to different environmental conditions. This species is a functional hermaphrodite with larval incubation inside the inner demibranch. Despite its widespread distribution, there are no previous studies of complete gonadal histology and reproductive cycle for this species in the Neotropical region. In this study, the reproductive dynamics of C. fluminea in a temperate region, the Santa Catalina Pampean stream, Argentina, is described. Samples of 20–30 individuals were collected monthly from April 2003-April 2005 and processed using traditional histological techniques. During the two years of this study, seven spawning events were recognized. Three major spawns occurred in spring and summer, and other four minor ones during summer and autumn. Events of oocyte recovery were observed after spawning. A high number of incubating individuals was detected. The results stressed the difficulty of identifying a particular pattern of gamete release and of spawning behaviour in this invasive species, especially when inhabiting an unstable environment. PMID:29065185
Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai
2014-01-01
We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems.
Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai
2014-01-01
We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems. PMID:25264627
Land Cover and Hydrologic Variability in Residential Watersheds: Drivers of N Loss in Sacramento CA
NASA Astrophysics Data System (ADS)
McConaghie, J. B.; Zhou, W.; Cadenasso, M. L.
2011-12-01
A key aspect to understanding N loss from urban systems is the link between landscape heterogeneity and variability in non-point source (NPS) nitrogen (N) flux. Because water transports N across the landscape and into receiving streams as runoff, understanding how landscape heterogeneity influences water quantity and movement is also needed. High variability in N loss has been documented from urban systems. However, typical NPS studies characterize landscape heterogeneity by land use and only weakly explain variability in stream N. Focusing on land cover, rather than land use, may better explain observed variability in N loss because land cover elements may better indicate major drivers of N loss. Also, most studies have been conducted in temperate urban systems with stream flow year round. In semi-arid urban systems, storm flow accounts for the majority of stream discharges, and residential irrigation contributes significantly to flows in the dry season. To address how landscape heterogeneity affects variability in water quantity and quality in urban streams, we examined how land cover influences stream flows and N loss in residential streams of metropolitan Sacramento, CA. We analyzed fine-scale variation in land cover and stream N during base flow and storm events in 4 residential watersheds which differ substantially in land cover. We classified land cover using HERCULES (High Ecological Resolution Classification for Urban Landscapes and Environmental Systems) which was developed specifically for urban systems. HERCULES classifies high-resolution aerial photographs into 5 elements: buildings, pavement, herbaceous and woody vegetation, and bare soil. Streams were sampled for discharge, NO3, and Total N using auto samplers during storms in the 2010-2011 rainy season and monthly in the dry season. Partial correlation analysis and multivariate models describe the relationships between land cover elements, water retention, and stream N in these watersheds. We found an early season flush of N from streams during the first storms, and N levels diminished through progressive storms. Also, N concentrations were higher during the rainy season compared to the dry season. High proportion of impervious cover was associated with greater flow rates overall, while high proportion of herbaceous cover was associated with reduced flow rates during storms. The proportion of pavement in the watersheds, a commonly used indicator of urban intensity, did not strongly correlate with increased levels of stream N except during the flush, but did correlate with the magnitude and timing of flows during storms. However, high proportions of building cover, e.g. residential homes, did correlate with higher N fluxes. The use of fertilizers or enhanced N cycling through vegetation management near residential buildings is a possible source of increased N. Management to reduce aquatic enrichment of N from urban ecosystems may be best directed toward identifying N sources and sinks associated with specific land covers. Management must also account for seasonal dynamics, such as annual hydrologic patterns, which drive the loss of N.
Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.
2016-01-01
The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.
Roon, David A.; Wipfli, Mark S.; Wurtz, Tricia L.; Blanchard, Arny L.
2016-01-01
The spread of invasive species in riparian forests has the potential to affect both terrestrial and aquatic organisms linked through cross-ecosystem resource subsidies. However, this potential had not been explored in regards to terrestrial prey subsidies for stream fishes. To address this, we examined the effects of an invasive riparian tree, European bird cherry (EBC, Prunus padus), spreading along urban Alaskan salmon streams, by collecting terrestrial invertebrates present on the foliage of riparian trees, their subsidies to streams, and their consumption by juvenile coho salmon (Oncorhynchus kisutch). Riparian EBC supported four to six times less terrestrial invertebrate biomass on its foliage and contributed two to three times lower subsidies relative to native deciduous trees. This reduction in terrestrial invertebrate biomass was consistent between two watersheds over 2 years. In spite of this reduction in terrestrial prey resource input, juvenile coho salmon consumed similar levels of terrestrial invertebrates in stream reaches bordered by EBC. Although we did not see ecological effects extending to stream salmonids, reduced terrestrial prey subsidies to streams are likely to have negative consequences as EBC continues to spread.
Reverse Current in Solar Flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1976-01-01
The theory that impulsive X ray bursts are produced by high energy electrons streaming from the corona to the chromosphere is investigated. Currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model indicates that the primary electron stream leads to the development of an electric field in the ambient corona which decelerates the primary beam and produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Regional-scale, fully coupled modelling of stream aquifer interaction in a tropical catchment
NASA Astrophysics Data System (ADS)
Werner, Adrian D.; Gallagher, Mark R.; Weeks, Scott W.
2006-09-01
SummaryThe planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance.
Importance of adaptation and genotype × environment interactions in tropical beef breeding systems.
Burrow, H M
2012-05-01
This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate environment for use in the (sub)tropics. However, G × E interactions are unlikely to be of major importance in tropically adapted beef cattle grazed in either temperate or (sub)tropical environments, although sex × environment interactions may provide new opportunities for differentially selecting to simultaneously improve steer performance in benign environments and female performance in harsher environments. Early evidence suggests that re-ranking of SNPs occurs across temperate and tropical environments, although their magnitude is still to be confirmed in well-designed experiments. The major limitation to genetic improvement of beef cattle over the next decade is likely to be a deficiency of large numbers of accurately recorded phenotypes for most productive and adaptive traits and, in particular, for difficult-to-measure adaptive traits such as resistance to disease and environmental stressors.
The Importance of Reconnection at Sector Boundaries: Another Space Weather Hazard?
NASA Astrophysics Data System (ADS)
Qi, Y.; Lai, H.; Russell, C. T.
2017-12-01
Sector Boundaries are interfaces between nearly oppositely directed magnetic flux in the solar wind. When the leading solar wind stream is moving more slowly than the following stream a high-pressure ridge appears at the interface, that compresses the plasma sometimes leading to a forward and reverse shock pair that slows the fast stream and accelerate the slow stream. If reconnection at the interface between the streams occurs part of the magnetic flux will be annihilated but the plasma once associated with that magnetic flux remains near the interface causing a sometimes significant short-lived dynamic pressure increase. The declining phase of solar cycle 24 exhibits several examples of the phenomenon with densities reaching over 80 protons cm-3 at speed of about 400 km sec-1. We examine the solar wind context of the phenomenon and the consequences at the magnetosphere using space-based and ground-based observations and comment on their possible generation of geomagnetically-induced currents.
Carlisle, D.M.; Clements, W.H.
2003-01-01
Secondary production estimates from several Rocky Mountain streams were used to test hypotheses about the effects of chronic metal contamination on insect populations and ecosystem processes. Quantitative samples of chemistry, habitat, and benthic insects were collected monthly during the ice-free period (May-November) from five 2nd- to 3rd-order streams that varied primarily in Zn contamination. Secondary production was estimated for the 19 dominant taxa using increment-summation, size-frequency, and P/B methods. Uncertainty was estimated by bootstrapping estimates of mean abundance, biomass, and cohort production intervals. Secondary production of metal-sensitive Heptageniidae (Rhithrogena robusta, Cinygmula spp., and Epeorus longimanus) was lower in lightly to moderately contaminated streams than in reference streams. Experiments were done to determine whether herbivore growth was influenced by food quality in contaminated streams. Growth estimates from field and microcosm experiments revealed that low mayfly production in contaminated streams was caused mostly by reduced population abundances. Production of predatory stoneflies was also lower in contaminated streams than reference streams. Estimates of the trophic basis of production revealed that, although the relative contribution to community production from various food sources was similar among streams, total production attributable to algae and animal prey declined in contaminated streams. Much of the reduction in herbivory in contaminated streams was the result of lower production of heptageniids, especially R. robusta. Assemblage and taxon-specific estimates of secondary production were sensitive to variation in metal contamination and indicated that relatively low metal concentrations may have ecosystem-wide consequences for energy flow.
NASA Astrophysics Data System (ADS)
Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber
2017-04-01
Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.
Dendrochemistry of multiple releases of chlorinated solvents at a former industrial site
Balouet, Jean Christophe; Burken, Joel G.; Karg, Frank; Vroblesky, Don; Smith, Kevin T.; Grudd, Hakan; Rindby, Anders; Beaujard, Francois; Chalot, Michel
2012-01-01
Trees can take up and assimilate contaminants from the soil, subsurface, and groundwater. Contaminants in the transpiration stream can become bound or incorporated into the annual rings formed in trees of the temperate zones. The chemical analysis of precisely dated tree rings, called dendrochemistry, can be used to interpret past plant interactions with contaminants. This investigation demonstrates that dendrochemistry can be used to generate historical scenarios of past contamination of groundwater by chlorinated solvents at a site in Verl, Germany. Increment cores from trees at the Verl site were collected and analyzed by energy-dispersive X-ray fluorescence (EDXRF) line scanning. The EDXRF profiles showed four to six time periods where tree rings had anomalously high concentrations of chlorine (Cl) as an indicator of potential contamination by chlorinated solvents.
Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands
NASA Astrophysics Data System (ADS)
Obermeier, Wolfgang; Lehnert, Lukas; Kammann, Claudia; Müller, Christoph; Grünhage, Ludger; Luterbacher, Jürg; Erbs, Martin; Yuan, Naiming; Bendix, Jörg
2016-04-01
The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of global climate change. The rising atmospheric carbon dioxide (CO2) concentrations may stimulate plant photosynthesis and, thus, cause a net sink effect in the global carbon cycle. As a consequence of an enhanced photosynthesis, an increase in the net primary productivity (NPP) of C3 plants (termed CO2 fertilization) is widely assumed. This process is associated with a reduced stomatal conductance of leaves as the carbon demand of photosynthesis is met earlier. This causes a higher water-use efficiency and, hence, may reduce water stress in plants exposed to elevated CO2 concentrations ([eCO2]). However, the magnitude and persistence of the CO2 fertilization effect under a future climate including more frequent weather extremes are controversial. To test the CO2 fertilization effect for Central European grasslands, a data set comprising 16 years of biomass samples and environmental variables such as local weather and soil conditions was analysed by means of a novel approach. The data set was recorded on a "Free Air Carbon dioxide Enrichment" (FACE) experimental site which allows to quantify the CO2 fertilization effect under naturally occurring climate variations. The results indicate that the CO2 fertilization effect on the aboveground biomass is strongest under local average environmental conditions. Such intermediate regimes were defined by the mean +/- 1 standard deviation of the long-term average in the respective variable three months before harvest. The observed CO2 fertilization effect was reduced or vanished under drier, wetter and hotter conditions when the respective variable exceeded the bounds of the intermediate regimes. Comparable conditions, characterized by a higher frequency of more extreme weather conditions, are predicted for the future by climate projections. Consequently, biogeochemical models may overestimate the future NPP sink capacity of temperate C3 grasslands. Because temperate grasslands represent an important part of the Earth's terrestrial surface and therefore the global carbon cycle, atmospheric CO2 concentrations [CO2] might increase faster than currently expected.
Consequences and potential problems of operating room outbursts and temper tantrums by surgeons.
Jacobs, George B; Wille, Rosanne L
2012-01-01
Anecdotal tales of colorful temper tantrums and outbursts by surgeons directed at operating room nurses and at times other health care providers, like residents and fellows, are part of the history of surgery and include not only verbal abuse but also instrument throwing and real harassment. Our Editor-in-Chief, Dr. Nancy Epstein, has made the literature review of "Are there truly any risks and consequences when spine surgeons mistreat their predominantly female OR nursing staff/colleagues, and what can we do about it?," an assigned topic for members of the editorial board as part of a new category entitled Ethical Note for our journal. This is a topic long overdue and I chose to research it. There is no medical literature to review dealing with nurse abuse. To research this topic, one has to involve business, industry, educational institutions, compliance standards and practices, and existing state and federal laws. I asked Dr. Rosanne Wille to co-author this paper since, as the former Dean of Nursing and then Provost and Senior Vice President for Academic Affairs at a major higher educational institution, she had personal experience with compliance regulations and both sexual harassment and employment discrimination complaints, to make this review meaningful. A review of the existing business practices and both state and federal laws strongly suggests that although there has not been any specific legal complaint that is part of the public record, any surgeon who chooses to act out his or her frustration and nervous energy demands by abusing co-workers on the health care team, and in this case specifically operating room personnel, is taking a chance of making legal history with financial outcomes which only an actual trial can predict or determine. Even more serious outcomes of an out-of-control temper tantrum and disruptive behavior can terminate, after multiple hearings and appeals, in adverse decisions affecting hospital privileges. Surgeons who abuse other health care workers are in violation of institutional bylaws and compliance regulations and create a hostile environment at work which adversely affects efficient productivity and violates specific State and Federal laws which prohibit discrimination based on race, color, sex, religion, or national origin.
Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.
NASA Astrophysics Data System (ADS)
Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.
2005-05-01
We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (USA). Rates of recovery varied among community components and depended on duration of enrichment (2 to 13 consecutive growing seasons). Biomass and C:P ratio of epilithic algae returned to reference levels rapidly (within 2 years), regardless of enrichment duration. Bryophyte cover, which increased greatly after long-term enrichment (>8 years), recovered to reference levels only after 7 years, when a storm scoured most remnant moss in the recovering reach. Persistence of bryophytes slowed recovery rates of insect taxa that had either been positively (e.g., Ephemerella, most chironomid taxa) or negatively (e.g., Orthocladius rivulorum) affected by this shift in dominant primary producer and its consequence for benthic habitat. Growth of Arctic grayling (adults and young-of-year), the top predator, returned to reference rates within two years. Recovery of these Arctic stream ecosystems from nutrient enrichment was consequently controlled largely by interactions between duration of enrichment and physical disturbance, mediated through physical habitat shifts caused by bryophytes.
Coherence, causation, and the future of cognitive neuroscience research.
Ramey, Christopher H; Chrysikou, Evangelia G
2014-01-01
Nachev and Hacker's conceptual analysis of the neural antecedents of voluntary action underscores the real danger of ignoring the meta-theoretical apparatus of cognitive neuroscience research. In this response, we temper certain claims (e.g., whether or not certain research questions are incoherent), consider a more extreme consequence of their argument against cognitive neuroscience (i.e., whether or not one can speak about causation with neural antecedents at all), and, finally, highlight recent methodological developments that exemplify cognitive neuroscientists' focus on studying the brain as a parallel, dynamic, and highly complex biological system.
Dodge, Kara L.; Galuardi, Benjamin; Miller, Timothy J.; Lutcavage, Molly E.
2014-01-01
Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m−3), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km−1) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity. PMID:24646920
Dodge, Kara L; Galuardi, Benjamin; Miller, Timothy J; Lutcavage, Molly E
2014-01-01
Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m(-3)), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1)) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity.
Linking xylem water storage with anatomical parameters in five temperate tree species.
Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven
2016-06-01
The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869
Guo, Chengyuan; Wang, Renzhong; Xiao, Chunwang
2012-01-01
Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects. PMID:22496905
Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.
O'Donnell, Jonathan A.; Aiken, George R.; Kane, Evan S.; Jones, Jeremy B.
2010-01-01
Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate the relationship between source water (shallow versus deep groundwater flow paths) and DOC chemical composition. Using base cation chemistry and principal component analysis, we observed high contributions of deep groundwater to glacial and clearwater streams, whereas blackwater streams received larger contributions from shallow groundwater sources. DOC concentration and specific ultraviolet absorbance peaked during spring snowmelt in all streams, and were consistently higher in blackwater streams than in glacial and clearwater streams. The hydrophobic acid fraction of DOC dominated across all streams and seasons, comprising between 35% and 56% of total DOC. The hydrophilic acid fraction of DOC was more prominent in glacial (23% ± 3%) and clearwater streams (19% ± 1%) than in blackwater streams (16% ± 1%), and was enriched during winter base flow (29% ± 1%) relative to snowmelt and summer base flow. We observed that an increase in the contribution of deep groundwater to streamflow resulted in decreased DOC concentration, aromaticity, and DOC-to-dissolved organic nitrogen ratio, and an increase in the proportion of hydrophilic acids relative to hydrophobic acids. Our findings suggest that future permafrost degradation and higher contributions of groundwater to streamflow may result in a higher fraction of labile DOM in streams of the Yukon basin.
Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.
Reverse current in solar flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1977-01-01
We examine the proposal that impulsive X-ray bursts are produced by high-energy electrons streaming from the corona to the chromosphere. It is known that the currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model in which the reverse current is stable indicates that the primary electron stream leads to the development of an electric field in the ambient corona which (a) decelerates the primary beam and (b) produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Feeding periodicity, diet composition, and food consumption of subyearling rainbow trout in winter
Johnson, James H.; Chalupnicki, Marc; Abbett, Ross
2016-01-01
Although winter is a critically important period for stream salmonids, aspects of the ecology of several species are poorly understood. Consequently, we examined the diel feeding ecology of subyearling rainbow trout (Oncorhynchus mykiss) during winter in a central New York stream. Rainbow trout diet was significantly different during each 4-h interval and also differed from the drift and benthos. Feeding was significantly greater during darkness (i.e. 20:00 h – 04:00 h) than during daylight hours (i.e. 08:00 h – 16:00 h), peaking at 20:00 h. Daily food consumption (1.9 mg) and daily ration (3.4 %) during winter were substantially lower than previously reported for subyearling rainbow trout in the same stream during summer. These findings provide important new insights into the winter feeding ecology of juvenile rainbow trout in streams.
Consequences arising from elevated surface temperatures on human blood.
Hamilton, Kathrin F; Schmidt, Verena I; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2010-09-01
Heat in blood pumps is generated by losses of the electrical motor and bearings. In the presented study the influence of tempered surfaces on bulk blood and adhesions on these surfaces was examined. Titanium alloy housing dummies were immersed in 25 mL heparinized human blood. The dummies were constantly tempered at specific temperatures (37-45 °C) over 15 min. Blood samples were withdrawn for blood parameter analysis and the determination of the plasmatic coagulation cascade. The quantities of adhesion on surfaces were determined by drained weight. Blood parameters do not alter significantly up to surface temperatures of 45 °C. In comparison to the control specimen, a drop in the platelet count can be observed, but is not significantly temperature dependent. The mean mass of adhesions at 41 °C increased up to 66% compared to 37 °C. Thus, heat generated in electrical motors and contact bearings may influence the amount of adhesions on surfaces. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Petchsang, S.; Phung-on, I.; Poopat, B.
2016-12-01
Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.
Verde, Cinzia; Giordano, Daniela; di Prisco, Guido
2008-01-01
In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.
Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel
NASA Astrophysics Data System (ADS)
Avishan, Behzad
2017-09-01
The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.
Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel
NASA Astrophysics Data System (ADS)
Wang, Qian; Sun, Yu; Zhang, Chuanyou; Wang, Qingfeng; Zhang, Fucheng
2018-04-01
Martensitic steels based on a composition of 25CrMo47NbVTi with different concentrations of Nb (0.003%–0.060%) were quenched (Q) at 900 °C and tempered (T) at 700 °C to obtain oil country tubular goods (OCTG) with higher yield strength. The precipitation and microstructures were characterized and quantified by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The results show that the increased Nb content led to an enhanced overall precipitation, the rising solution-precipitation temperature, the increased mass or volume fraction of the Nb-containing precipitates, and the decreased average diameter of Nb-containing particles. With the enhanced precipitation of small sized Nb-containing particles, the austenite grain and corresponding martensitic packet and block were evidently refined. In addition, the dislocation density increased slightly with increasing Nb addition. The yield strength was experimentally measured and quantitatively estimated. The findings based on theoretical calculations indicated that as a consequence of intensified strengthening from grain boundaries, precipitates and dislocations, the yield strength was enhanced significantly by Nb addition.
Experimental evidence for beneficial effects of projected climate change on hibernating amphibians.
Üveges, Bálint; Mahr, Katharina; Szederkényi, Márk; Bókony, Veronika; Hoi, Herbert; Hettyey, Attila
2016-05-27
Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation.
Lai, Floriana; Jutfelt, Fredrik; Nilsson, Göran E
2015-01-01
Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.
Power-law scaling in daily rainfall patterns and consequences in urban stream discharges
NASA Astrophysics Data System (ADS)
Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.
2016-04-01
Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faduska, A.; Rau, E.; Alger, J.V.
Data are given on the corrosion properties of type 410 stainless steel tempered at 1150 d F. Control mechanismn-drive motor tubes and some outer housings are constructed of 650 d F tempered type 410 stainless steel. Since the stress corrosion resistance of type 410 in the 1150 d F tempered condition is superior, the utilization of the 1150 d F tempered material is more desirable for this application. The properties of 410 stainless steel hardened and tempered at 1150 d F are given. (W.L.H.)
Gomez-Velez, Jesus D.; Harvey, Judson
2014-01-01
Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.
NASA Astrophysics Data System (ADS)
Gomez-Velez, Jesus D.; Harvey, Judson W.
2014-09-01
Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.
Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy
NASA Astrophysics Data System (ADS)
Wang, An; Liu, Zhiyi; Liu, Meng; Wu, Wenting; Bai, Song; Yang, Rongxian
2017-05-01
Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.
Tromboni, F; Dodds, W K
2017-07-01
Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.
Strauss, E.A.; Lamberti, G.A.
2002-01-01
1. Microbial decomposition of dissolved organic carbon (DOC) contributes to overall stream metabolism and can influence many processes in the nitrogen cycle, including nitrification. Little is known, however, about the relative decomposition rates of different DOC sources and their subsequent effect on nitrification. 2. In this study, labile fraction and overall microbial decomposition of DOC were measured for leaf leachates from 18 temperate forest tree species. Between 61 and 82% (mean, 75%) of the DOC was metabolized in 24 days. Significant differences among leachates were found for labile fraction rates (P < 0.0001) but not for overall rates (P = 0.088). 3. Nitrification rates in stream sediments were determined after addition of 10 mg C L-1 of each leachate. Nitrification rates ranged from below detection to 0.49 ??g N mL sediment-1 day-1 and were significantly correlated with two independent measures of leachate DOC quality, overall microbial decomposition rate (r = -0.594, P = 0.0093) and specific ultraviolet absorbance (r = 0.469, P = 0.0497). Both correlations suggest that nitrification rates were lower in the presence of higher quality carbon. 4. Nitrification rates in sediments also were measured after additions of four leachates and glucose at three carbon concentrations (10, 30, and 50 mg C L-1). For all carbon sources, nitrification rates decreased as carbon concentration increased. Glucose and white pine leachate most strongly depressed nitrification. Glucose likely increased the metabolism of heterotrophic bacteria, which then out-competed nitrifying bacteria for NH4+. White pine leachate probably increased heterotrophic metabolism and directly inhibited nitrification by allelopathy.
Wakschlag, Lauren S.; Choi, Seung W.; Carter, Alice S.; Hullsiek, Heide; Burns, James; McCarthy, Kimberly; Leibenluft, Ellen; Briggs-Gowan, Margaret J.
2013-01-01
Background Temper modulation problems are both a hallmark of early childhood and a common mental health concern. Thus, characterizing specific behavioral manifestations of temper loss along a dimension from normative misbehaviors to clinically significant problems is an important step toward identifying clinical thresholds. Methods Parent-reported patterns of temper loss were delineated in a diverse community sample of preschoolers (n = 1,490). A developmentally sensitive questionnaire, the Multidimensional Assessment of Preschool Disruptive Behavior (MAP-DB), was used to assess temper loss in terms of tantrum features and anger regulation. Specific aims were: (a) document the normative distribution of temper loss in preschoolers from normative misbehaviors to clinically concerning temper loss behaviors, and test for sociodemographic differences; (b) use Item Response Theory (IRT) to model a Temper Loss dimension; and (c) examine associations of temper loss and concurrent emotional and behavioral problems. Results Across sociodemographic subgroups, a unidimensional Temper Loss model fit the data well. Nearly all (83.7%) preschoolers had tantrums sometimes but only 8.6% had daily tantrums. Normative misbehaviors occurred more frequently than clinically concerning temper loss behaviors. Milder behaviors tended to reflect frustration in expectable contexts, whereas clinically concerning problem indicators were unpredictable, prolonged, and/or destructive. In multivariate models, Temper Loss was associated with emotional and behavioral problems. Conclusions Parent reports on a developmentally informed questionnaire, administered to a large and diverse sample, distinguished normative and problematic manifestations of preschool temper loss. A developmental, dimensional approach shows promise for elucidating the boundaries between normative early childhood temper loss and emergent psychopathology. PMID:22928674
NASA Astrophysics Data System (ADS)
Kirkham, K. G.; Perry, W. L.
2005-05-01
Headwater streams in central Illinois have been dredged and channelized to drain surrounding agricultural fields and has led to extensive erosion and eutrophication. Restoration of these systems through farmer implementation of Best Management Practices (BMPs) may be one solution. Examination of algal population dynamics may be useful in assessment of BMP effectiveness. We have monitored two small headwater streams, Bray Creek and Frog Alley, for a suite of physicochemical parameters focusing on dissolved oxygen, nitrogen, and phosphorus for three years. Nutrient concentrations suggested potential nutrient limitation by nitrates during late summer and phosphorus limitation in early summer. To determine seasonal algal dynamics with seasonally varying nutrient limitation in agricultural headwater streams, we used nutrient diffusing substrata (NDS). NDS with agar (controls) or amended with either nitrogen, phosphorus, or both were deployed for 21-24 days in both streams each month for a year. Slight nutrient limitation was observed in Bray Creek during August and November while phosphorus was limiting in September (P<0.05). We suggest agricultural streams are more dynamic than previously thought and algal populations may be seasonally nutrient limited and with consequent effects on dissolved oxygen concentrations.
NASA Astrophysics Data System (ADS)
Gries, C.; Winslow, L.; Shin, P.; Hanson, P. C.; Barseghian, D.
2010-12-01
At the North Temperate Lakes Long Term Ecological Research (NTL LTER) site six buoys and one met station are maintained, each equipped with up to 20 sensors producing up to 45 separate data streams at a 1 or 10 minute frequency. Traditionally, this data volume has been managed in many matrix type tables, each described in the Ecological Metadata Language (EML) and accessed online by a query system based on the provided metadata. To develop a more flexible information system, several technologies are currently being experimented with. We will review, compare and evaluate these technologies and discuss constraints and advantages of network memberships and implementation of standards. A Data Turbine server is employed to stream data from data logger files into a database with the Real-time Data Viewer being used for monitoring sensor health. The Kepler work flow processor is being explored to introduce quality control routines into this data stream taking advantage of the Data Turbine actor. Kepler could replace traditional database triggers while adding visualization and advanced data access functionality for downstream modeling or other analytical applications. The data are currently streamed into the traditional matrix type tables and into an Observation Data Model (ODM) following the CUAHSI ODM 1.1 specifications. In parallel these sensor data are managed within the Global Lake Ecological Observatory Network (GLEON) where the software package Ziggy streams the data into a database of the VEGA data model. Contributing data to a network implies compliance with established standards for data delivery and data documentation. ODM or VEGA type data models are not easily described in EML, the metadata exchange standard for LTER sites, but are providing many advantages from an archival standpoint. Both GLEON and CUAHSI have developed advanced data access capabilities based on their respective data models and data exchange standards while LTER is currently in a phase of intense technology developments which will eventually provide standardized data access that includes ecological data set types currently not covered by either ODM or VEGA.
Packet spacing : an enabling mechanism for delivering multimedia content in computational grids /
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, A. C.; Feng, W. C.; Belford, Geneva G.
2001-01-01
Streaming multimedia with UDP has become increasingly popular over distributed systems like the Internet. Scientific applications that stream multimedia include remote computational steering of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does not possess a self-regulating, congestion-control mechanism; and most best-efort traflc is served by congestion-controlled TCF! Consequently, UDP steals bandwidth from TCP such that TCP$ows starve for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of UDP-based streaming will cause the Internet to collapse as it did in the mid-1980's due to the use of non-congestion-controlled TCP. To address thismore » problem, we introduce the counterintuitive notion of inter-packet spacing with control feedback to enable UDP-based applications to perform well in the next-generation Internet and computational grids. When compared with traditional UDP-based streaming, we illustrate that our approach can reduce packet loss over SO% without adversely afecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, streaming, TCI: UDlq rate-adjusting congestion control, computational grid, Access Grid.« less
Three-Dimensional Phenomena in Microbubble Acoustic Streaming
NASA Astrophysics Data System (ADS)
Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.
2015-04-01
Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.
Maret, T.R.; Robinson, C.T.; Minshall, G.W.
1997-01-01
Fish assemblages and environmental variables were evaluated from 37 least-disturbed, 1st- through 6th-order streams and springs in the upper Snake River basin, western USA. Data were collected as part of the efforts by the U.S. Geological Survey National Water Quality Assessment Program and the Idaho State University Stream Ecology Center to characterize aquatic biota and associated habitats in least-disturbed coldwater streams. Geographically, the basin comprises four ecoregions. Environmental variables constituting various spatial scales, from watershed characteristics to in stream habitat measures, were used to examine distribution patterns in fish assemblages. Nineteen fish species in the families Salmonidae, Cottidae, Cyprinidae, and Catostemidae were collected. Multivariate analyses showed high overlap in stream fish assemblages among the ecoregions. Major environmental factors determining species distributions in the basin were stream gradient, watershed size, conductivity, and percentage of the watershed covered by forest. Lowland streams (below 1,600 m in elevation), located mostly in the Snake River Basin/High Desert ecoregion, displayed different fish assemblages than upland streams (above 2,000 m elevation) in the Northern Rockies, Middle Rockies, and Northern Basin and Range ecoregions. For example, cotrids were not found in streams above 2,000 m in elevation. In addition, distinct fish assemblages were found in tributaries upstream and downstream from the large waterfall, Shoshone Falls, on the Snake River. Fish metrics explaining most of the variation among sites included the total number of species, number of native species, number of salmonid species, percent introduced species, percent cottids, and percent salmonids. Springs also exhibited different habitat conditions and fish assemblages than streams. The data suggest that the evolutionary consequences of geographic features and fish species introductions transcend the importance of ecoregion boundaries on fish distributions in the upper Snake River basin.
STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
Meerschaert, Mark M; Sabzikar, Farzad
2014-07-01
Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.
NASA Astrophysics Data System (ADS)
Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.
2015-12-01
The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.
Dalu, Tatenda; Wasserman, Ryan J; Tonkin, Jonathan D; Mwedzi, Tongayi; Magoro, Mandla L; Weyl, Olaf L F
2017-12-31
Water pollution is a critical management issue, with many rivers and streams draining urban areas being polluted by the disposal of untreated solid waste and wastewater discharge, storm water and agricultural runoff. This has implications for biodiversity, and many rivers in the developing world are now considered compromised. We investigated benthic macroinvertebrate community structure and composition in relation to physico-chemical conditions of the water column and sediments. The study was conducted in an Austral catchment subject to both urban and agricultural pollutants in two different seasons. We assessed whether sediment characteristics were more important drivers of macroinvertebrate community composition than water column characteristics. We expected clear differences in macroinvertebrate community composition and in the associated community metrics due to distinct flow conditions between the two seasons. A combination of multivariate analyses (canonical correspondence analysis (CCA)) and biological indicator analysis were used to examine these patterns. Chironomidae was the most abundant family (>60%) in the upper mainstem river and stream sites. Stream sites were positively associated with CCA axis 2, being characterised by high turbidity and lower pH, salinity, phosphate concentration, channel width and canopy cover. Canopy cover, channel width, substrate embeddedness, phosphate concentration, pH, salinity and turbidity all had a significant effect on macroinvertebrate community composition. Using CCA variation partitioning, water quality was, however, a better predictor of benthic macroinvertebrate composition than sediment chemical conditions. Furthermore, our results suggest that seasonality had little effect on structuring benthic macroinvertebrate communities in this south-eastern zone of South Africa, despite clear changes in sediment chemistry. This likely reflects the relative lack of major variability in water chemistry compared to sediment chemistry between seasons and the relatively muted variability in precipitation between seasons than the more classic Austral temperate climates. Copyright © 2017 Elsevier B.V. All rights reserved.
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo; ...
2017-02-28
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less
Response of non-added solutes during nutrient addition experiments in streams
NASA Astrophysics Data System (ADS)
Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.
2015-12-01
Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may provide insights into fundamental aspects of stream nutrient cycling.
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less
Forecasting the viability of sea turtle eggs in a warming world.
Pike, David A
2014-01-01
Animals living in tropical regions may be at increased risk from climate change because current temperatures at these locations already approach critical physiological thresholds. Relatively small temperature increases could cause animals to exceed these thresholds more often, resulting in substantial fitness costs or even death. Oviparous species could be especially vulnerable because the maximum thermal tolerances of incubating embryos is often lower than adult counterparts, and in many species mothers abandon the eggs after oviposition, rendering them immobile and thus unable to avoid extreme temperatures. As a consequence, the effects of climate change might become evident earlier and be more devastating for hatchling production in the tropics. Loggerhead sea turtles (Caretta caretta) have the widest nesting range of any living reptile, spanning temperate to tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong correlations between empirical hatching success and habitat quality allowed global predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate change, many sea turtle populations nesting in tropical environments are predicted to experience severe reductions in hatchling production, whereas hatching success in many temperate populations could remain unchanged or even increase with rising temperatures. Some populations could show very complex responses to climate change, with higher relative hatchling production as temperatures begin to increase, followed by declines as critical physiological thresholds are exceeded more frequently. Predicting when, where, and how climate change could impact the reproductive output of local populations is crucial for anticipating how a warming world will influence population size, growth, and stability.
Melo-Ferreira, José; Vilela, Joana; Fonseca, Miguel M.; da Fonseca, Rute R.; Boursot, Pierre; Alves, Paulo C.
2014-01-01
Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive. PMID:24696399
Hanya, Goro; Tsuji, Yamato; Grueter, Cyril C
2013-04-01
In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17-28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the subsequent fruit-scarce period can be an effective strategy to survive the lean period (winter).
Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors
Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive ...
Developing short-span alternatives to reinforced concrete box culvert structures in Kansas.
DOT National Transportation Integrated Search
2014-07-01
Concrete box culvert floor slabs are known to have detrimental effects on river and stream hydraulics. : Consequences include an aquatic environment less friendly to the passage of fish and other organisms. This has : prompted environmental regulatio...
INVASION DYNAMICS OF RED SHINERS (CYPRINELLA LUTRENSIS) IN SOUTHEASTERN STREAMS
Red shiners have invaded a range of North American ecosystems, including several southeastern U.S. river drainages. A principle consequence of these invasions is extirpation of native congeners, either through competition or hydridization. We are conducting research to identify...
Um, Ki Sung; Kwak, Yun Sik; Cho, Hune; Kim, Il Kon
2005-11-01
A basic assumption of Health Level Seven (HL7) protocol is 'No limitation of message length'. However, most existing commercial HL7 interface engines do limit message length because they use the string array method, which is run in the main memory for the HL7 message parsing process. Specifically, messages with image and multi-media data create a long string array and thus cause the computer system to raise critical and fatal problem. Consequently, HL7 messages cannot handle the image and multi-media data necessary in modern medical records. This study aims to solve this problem with the 'streaming algorithm' method. This new method for HL7 message parsing applies the character-stream object which process character by character between the main memory and hard disk device with the consequence that the processing load on main memory could be alleviated. The main functions of this new engine are generating, parsing, validating, browsing, sending, and receiving HL7 messages. Also, the engine can parse and generate XML-formatted HL7 messages. This new HL7 engine successfully exchanged HL7 messages with 10 megabyte size images and discharge summary information between two university hospitals.
NASA Astrophysics Data System (ADS)
Taylor, B. W.; Hall, R. O.; Flecker, A. S.; Fisher, C. A.; Grant, M. B.; Jeffs, L.; Richmond, E. L.; Thomas, S. A.
2005-05-01
The key roles played by a few species and the non-random order of human-induced biodiversity loss provide compelling reasons for predicting the consequences of individual species losses on ecosystem functioning. This is especially true for vertebrates such as fish that are more vulnerable to extinction and are often over-harvested. Here we test the consequences of losing a single detritivorous fish species, Prochilodus mariae that constitutes 80% of the South American freshwater fishery and is declining. We used a large-scale experimental approach to remove Prochilodus from a diverse assemblage, and measured the effects of its loss on the stream nitrogen cycle using a 15NH4-N addition during years with high and low fish abundance. There was no difference in gross uptake of dissolved 15NH4-N, but when detritivorous fish were present nitrification was 30% higher. The flux of nitrogen into fine benthic particulate compartments was 46% greater when detritivorous fish were removed, but long-term N loss was much higher from these compartments. In contrast, in the presence of detritivorous fish N was retained by more stable epilithic biofilms. In the ecologically intact system, detritivorous fish influence the fates and fluxes of N, which increases N storage by this headwater stream.
Isotopic signals from precipitation and denitrification in nitrate in a northern hardwood forest
NASA Astrophysics Data System (ADS)
Goodale, C. L.; Wexller, S.
2012-12-01
Denitrification can represent an important term in the nitrogen budget of small catchments; however, this process varies greatly over space and time and is notoriously difficult to quantify. Measurements of the natural abundance of stable isotopes of nitrogen and oxygen in dissolved nitrate in stream- and river water can sometimes provide evidence of denitrification, particularly in large river basins or agriculturally impacted catchments. To date, however, this approach has provided little to no evidence of denitrification in catchments in temperate forests. Here, we examined d15N and d18O of nitrate in water samples collected during summer 2011 not only from streams and precipitation, but also from groundwater from the hydrologic reference watershed (W3) drained by Paradise Brook, at the Hubbard Brook Experimental Forest, in the White Mountains, New Hampshire. Despite low nitrate concentrations (< 0.5 to 8.8 uM nitrate) dual-isotopic signals of nitrate sources and nitrogen cycle processes were clearly distinguishable, including sources from atmospheric deposition, and from nitrification of atmospheric ammonium and from or soil organic nitrogen, as well as nitrate affected by soil denitrification. An atmospheric signal from nitrate in precipitation (enriched with 18O) was observed immediately following a precipitation event in mid-July contributing roughly 22% of stream nitrate export on this date. Stream samples the day following this and other storms showed this export of event nitrate to be short-lived. Hillslope piezometers showed low nitrate concentrations and high d15N- and d18O-nitrate values (averaging 12 and 18 per mil, repectively) indicating denitrification, which preferentially removes isotopically light N and O in N gases and leaves isotopically heavy nitrate behind. These samples showed a positive relationship between nitrogen and oxygen isotopic composition with a regression line slope of 0.76 (R2 = 0.68), and an isotope enrichment factor -12.7 per mil for denitrification removal of nitrate in these hillslope soils. The isotopic composition of a time series of samples from three riparian piezometers crossing Paradise Brook shows strong connections between the riparian soil water and the stream, as well as a different dominant source of nitrate in each piezometer. Repeated surveys of stream nitrate show modest positive enrichment in N and O isotopes with a slope between 18O and 15N of 0.96, indicating either in- or near-stream denitrification or mixing between stream and hillslope water bearing a stronger denitrification signal. The dual isotope approach provides detailed information on nitrogen cycling dynamics during the summer in a northern hardwood forested catchment. Together, these observations provide strong isotopic evidence for rapid rates of denitrification during summer in the soils of this small forested catchment.
μ-tempered metadynamics: Artifact independent convergence times for wide hills
NASA Astrophysics Data System (ADS)
Dickson, Bradley M.
2015-12-01
Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60∘ for μTmetaD.
μ-tempered metadynamics: Artifact independent convergence times for wide hills.
Dickson, Bradley M
2015-12-21
Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60(∘) for μTmetaD.
Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz
2018-04-15
Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event. Copyright © 2017 Elsevier B.V. All rights reserved.
Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.
2013-01-01
For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through stream rechanneling or wetland construction in appropriate hydrologic settings.
The significance of small streams
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2017-09-01
Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.
On the behaviour of a stressed cotton canopy in a direct air stream
NASA Technical Reports Server (NTRS)
Schutt, J. B.; Newcomb, W. W.
1986-01-01
Reflectance variations of a stressed cotton canopy were conducted in the presence of a fan-generated air stream to investigate the effects of air movement and the resulting temperature changes on remotely-sensed data. The initial drop in reflectance after application of the air stream was found to be greatest in the morning because leaf turgor was at a maximum, enabling leaves on the windward side of the canopy to assume surprisingly stable vertical positions. By afternoon, a reduction in leaf turgor was responsible for less stem displacement and consequently a reduction in light-trapping capability. However, reflectance oscillations were greater because the leaves had become sufficiently limp to flutter at the edges and about the petioles exposing both adaxial and abaxial surfaces to the incident light.
Westerhoff, P.; Anning, D.
2000-01-01
Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p < 0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p < 0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition. (C) 2000 Elsevier Science B.V.Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water resources was studied. DOC concentration and composition, seasonal watershed runoff events, streamflow variations, water management practices, and urban infrastructure in several Arizona watersheds were monitored. Ephemeral sites had the highest DOC levels, and unregulated perennial sites and lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater treatment plants. Reservoir outflows and wastewater treatment plant effluent had higher and less variable DOC concentrations than inflows to reservoirs. UV absorbance values, fluorescence measurements, and other indicators suggest that urban water systems (reservoirs and wastewater treatment plants) affect temporal variability in DOC concentration and composition.
Bib Pharma Monopoly: Why Consumers Keep Landing on "Park Place" and How the Game is Rigged.
Levy, Mark S
Now, more than ever before, pharmacologists are contributing medical advances to confront ravaging disease. They are developing drugs to mitigate the effects of Alzheimer’s, HIV, multiple sclerosis, and various forms of cancer. To capitalize on the opportunity, brand-name pharmaceutical firms are patenting these drugs, consequently guarding formulas and, with it, profits. Patents grant brand-name firms market exclusivity, which essentially allows them to set their own prices. Even though brand-name firms are investing some of their capital to cultivate new drugs, they also are enjoying gigantic revenue streams, absurd profit margins, and seemingly unfettered control of their respective markets. Consequently, sick patients are unable to afford their medication; high prices are bankrupting consumers in the absence of reasonably-priced generic alternatives. Despite the fact that generic drugs contain identical ingredients, cure the same symptoms, and cost 70% less, brand-name drugs persistently dominate their generic counterparts. Indeed, brand-name firms are improperly preventing generic market entry. Without generic competition, no watchdog exists to curb big pharma’s prohibitive prices. Despite the Supreme Court’s fleeting fix in FTC v. Actavis, which condemned reverse payment settlements that precluded competition, brand-name firms are employing other tactics predatorily to extend their market exclusivity and charge consumers unaffordable prices. To prevent brand-name abuse and help infirm patients afford their medication, this Comment proposes that courts apply federal antitrust law to brand-name firms that attempt to monopolize a pharmaceutical market through anticompetitive means, particularly by abusing Risk Evaluation & Mitigation Strategies (REMS) and by "product hopping." To combat exclusionary conduct, courts should mirror the “rule of reason” framework set forth in Actavis and apply an "enhanced" version specifically tailored to the pharmaceutical industry, giving stronger credence to generic challengers. In addition to finding brand-name tactics exclusionary, this Comment also proposes that courts adopt a bright-line rule prohibiting brand-name firms from exploiting the "legitimate business" defense to immunize their destructive conduct. The current framework perpetuates abuse and grants brand-name firms ostensibly indefinite monopolies. Analyzing brand-name defensive tactics under federal antitrust law would facilitate generic market entry and consequently moderate drug prices. Even after sacrificing their entire financial portfolios, patients are still unable to afford their medication. This Comment interprets Actavis as prohibiting the “legitimate business” defense and provides a remedy to deserving consumers by preventing REMS abuse and product hopping, fostering generic competition, and tempering excessive drug prices.
Challenging the coherence of social justice as a shared nursing value.
Lipscomb, Martin
2011-01-01
Normative and prescriptive claims regarding social justice are often inadequately developed in the nursing literature and, in consequence, they must be rejected in their current form. Thus, claims regarding social justice are frequently presented as mere assertion (without clarification or supporting argument) or, alternatively, when assertions are supported that support may be weak (e.g. social justice is repeated juxtaposed against contentious assumptions regarding market disutility). This paper challenges the coherence of social justice as a shared nursing value and it is suggested that claims regarding the concept should be tempered. © 2010 Blackwell Publishing Ltd.
Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change
Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy
2015-01-01
Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.
Swarming: flexible roaming plans.
Partridge, Jonathan D; Harshey, Rasika M
2013-03-01
Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on "hard" agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a "softer" agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior.
Carbon fate in a large temperate human-impacted river system: Focus on benthic dynamics
NASA Astrophysics Data System (ADS)
Vilmin, Lauriane; Flipo, Nicolas; Escoffier, Nicolas; Rocher, Vincent; Groleau, Alexis
2016-07-01
Fluvial networks play an important role in regional and global carbon (C) budgets. The Seine River, from the Paris urban area to the entrance of its estuary (220 km), is studied here as an example of a large human-impacted river system subject to temperate climatic conditions. We assess organic C (OC) budgets upstream and downstream from one of the world's largest wastewater treatment plants and for different hydrological conditions using a hydrobiogeochemical model. The fine representation of sediment accumulation on the river bed allows for the quantification of pelagic and benthic effects on OC export toward the estuary and on river metabolism (i.e., net CO2 production). OC export is significantly affected by benthic dynamics during the driest periods, when 25% of the inputs to the system is transformed or stored in the sediment layer. Benthic processes also substantially affect river metabolism under any hydrological condition. On average, benthic respiration accounts for one third of the total river respiration along the studied stretch (0.27 out of 0.86 g C m-2 d-1). Even though the importance of benthic processes was already acknowledged by the scientific community for headwater streams, these results stress the major influence of benthic dynamics, and thus of physical processes such as sedimentation and resuspension, on C cycling in downstream river systems. It opens the door to new developments in the quantification of C emissions by global models, whereby biogeochemical processing and benthic dynamics should be taken into account.
Swarming: Flexible Roaming Plans
Partridge, Jonathan D.
2013-01-01
Movement over an agar surface via swarming motility is subject to formidable challenges not encountered during swimming. Bacteria display a great deal of flexibility in coping with these challenges, which include attracting water to the surface, overcoming frictional forces, and reducing surface tension. Bacteria that swarm on “hard” agar surfaces (robust swarmers) display a hyperflagellated and hyperelongated morphology. Bacteria requiring a “softer” agar surface (temperate swarmers) do not exhibit such a dramatic morphology. For polarly flagellated robust swarmers, there is good evidence that restriction of flagellar rotation somehow signals the induction of a large number of lateral flagella, but this scenario is apparently not relevant to temperate swarmers. Swarming bacteria can be further subdivided by their requirement for multiple stators (Mot proteins) or a stator-associated protein (FliL), secretion of essential polysaccharides, cell density-dependent gene regulation including surfactant synthesis, a functional chemotaxis signaling pathway, appropriate cyclic (c)-di-GMP levels, induction of virulence determinants, and various nutritional requirements such as iron limitation or nitrate availability. Swarming strategies are as diverse as the bacteria that utilize them. The strength of these numerous designs stems from the vantage point they offer for understanding mechanisms for effective colonization of surface niches, acquisition of pathogenic potential, and identification of environmental signals that regulate swarming. The signature swirling and streaming motion within a swarm is an interesting phenomenon in and of itself, an emergent behavior with properties similar to flocking behavior in diverse systems, including birds and fish, providing a convenient new avenue for modeling such behavior. PMID:23264580
NASA Astrophysics Data System (ADS)
Vajda, Vivi; Raine, J. Ian
2010-05-01
Mangahouanga Stream, Hawkes Bay, New Zealand is world-famous for its high southern latitude vertebrate fossils including plesiosaurs, mosasaurs and more rarely, dinosaurs. The fossils are preserved in the conglomeratic facies of the Maungataniwha Sandstone Member of the Tahora Formation. A palynological investigation of sediments from the boulders hosting vertebrate fossils reveals well-preserved palynological assemblages dominated by pollen and spores from land plants but also including marine dinoflagellate cysts in one sample. The palynofacies is strongly dominated by wood fragments including charcoal, and the sample taken from a boulder hosting plesiosaur vertebrae is entirely terrestrially derived, suggesting a fresh-water habitat for at least some of these plesiosaurs. The key-pollen taxa Nothofagidites senectus and Tricolpites lilliei, together with the dinocyst Isabelidinium pellucidum and the megaspore Grapnelispora evansii, strongly indicate an early Maastrichtian age for the host rock. The terrestrial palynoflora reflects a mixed vegetation dominated by podocarp conifers and angiosperms with a significant tree-fern subcanopy component. The presence of taxa with modern temperate distributions such as Nothofagus (southern beech), Proteaceae and Cyatheaceae (tree-ferns), indicates a mild-temperate climate and lack of severe winter freezing during the latest Cretaceous, providing an ecosystem which most probably made it possible for polar dinosaurs to overwinter. The paper is dedicated to Mrs Joan Wiffen who with her great persistence, enthusiasm and courage put Mangahouanga on the world map, becoming a role model for many young scientists.
Patterns and age distribution of ground-water flow to streams
Modica, E.; Reilly, T.E.; Pollock, D.W.
1997-01-01
Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.
NASA Astrophysics Data System (ADS)
Cabrera, V. D.; Jankowski, K.; Neill, C.; Macedo, M.; Deegan, L.; Brando, P. M.; Nascimento, S.; Nascimento, E.; Rocha, S.; Coe, M. T.; Nunes, D.
2015-12-01
Globalization and the increasing demand for food create pressure to both expand and intensify agriculture. These changes have potentially large consequences for the solute concentrations and functioning of streams. In the Brazilian Amazon, crop agriculture expanded greatly during the last 20 years. More recently, farmers have intensified production on existing cropland by double cropping of soy and maize during the same year. Maize, a novel crop for the region, requires much higher applications of nitrogen (N) fertilizer than soybeans. To determine whether this novel land use and associated N addition influenced N concentrations in groundwater and stream water, we measured N concentrations in groundwater wells and streams from small headwater watersheds across three land uses (soy-maize, soy, and tropical forest) in the Upper Xingu Basin, a region of rapid cropland intensification in the southern Amazon. Each watershed contained six groundwater wells arranged in a transect reaching cropland field edge on either side of the stream. Total inorganic N concentrations were higher in wells adjacent to fields where double cropping occurred, while stream concentrations did not differ overall among land uses. This suggests the riparian zones are critical in the removal of N, but as the intensification of agriculture continues the ability of the riparian zone to prevent N from traveling to streams is unknown. Their protection is critical to the functioning of tropical watersheds.
Spatio-temporal variation of stream-aquifer interaction: Effect of a weir construction in Korea
NASA Astrophysics Data System (ADS)
Lee, Hyeonju; Koo, Min-Ho; Kim, Kisu; Kim, Yongcheol
2015-04-01
The Four Major Rivers Restoration Project was conducted to secure sufficient water resources, introduce comprehensive flood control measures, and improve water quality while restore the river ecosystem in Korea. The dredging of river bed and the installation of 16 weirs were done in Han, Geum, Yeongsan, and Nakdong rivers from late 2010 to early 2012 as a part of the project. Groundwater data obtained from 213 groundwater monitoring wells near the four major rivers were used to analyze the impacts of weir construction on the nearby groundwater flow system. The groundwater level and chemical characteristics were analyzed to investigate how the groundwater flow system and water quality changed after the weir construction. The results showed that groundwater level rose immediately following the rise of stream stage after the weir construction. Also, the hydrologic condition of the stream in some upland of the weirs was changed from a gaining to a losing stream. Consequently, the direction of groundwater flow was changed from perpendicular to parallel to the stream, and it swapped the groundwater in the downstream of the weir for the water recharged from the stream. Considering the results, some groundwater quality is expected to be changed and become similar to that of the stream, although the change has been not observed yet. Therefore, both further monitoring of the groundwater quality and hydrogeochemical analysis are required for quantitatively evaluating the effect of the weir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Y.; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240; Li, W., E-mail: weilee@sjtu.edu.cn
Low temperature tempering is important in improving the mechanical properties of steels. In this study, the thermoelectric power method was employed to investigate carbon segregation during low temperature tempering ranging from 110 °C to 170 °C of a medium carbon alloyed steel, combined with micro-hardness, transmission electron microscopy and atom probe tomography. Evolution of carbon dissolution from martensite and segregation to grain boundaries/interfaces and dislocations were investigated for different tempering conditions. Carbon concentration variation was quantified from 0.33 wt.% in quenching sample to 0.15 wt.% after long time tempering. The kinetic of carbon diffusion during tempering process was discussed throughmore » Johnson-Mehl-Avrami equation. - Highlights: • The thermoelectric power (TEP) was employed to investigate the low temperature tempering of a medium carbon alloyed steel. • Evolution of carbon dissolution was investigated for different tempering conditions. • Carbon concentration variation was quantified from 0.33 wt.% in quenching sample to 0.15 wt.% after long time tempering.« less
Seasonal infectious disease epidemiology
Grassly, Nicholas C; Fraser, Christophe
2006-01-01
Seasonal change in the incidence of infectious diseases is a common phenomenon in both temperate and tropical climates. However, the mechanisms responsible for seasonal disease incidence, and the epidemiological consequences of seasonality, are poorly understood with rare exception. Standard epidemiological theory and concepts such as the basic reproductive number R0 no longer apply, and the implications for interventions that themselves may be periodic, such as pulse vaccination, have not been formally examined. This paper examines the causes and consequences of seasonality, and in so doing derives several new results concerning vaccination strategy and the interpretation of disease outbreak data. It begins with a brief review of published scientific studies in support of different causes of seasonality in infectious diseases of humans, identifying four principal mechanisms and their association with different routes of transmission. It then describes the consequences of seasonality for R0, disease outbreaks, endemic dynamics and persistence. Finally, a mathematical analysis of routine and pulse vaccination programmes for seasonal infections is presented. The synthesis of seasonal infectious disease epidemiology attempted by this paper highlights the need for further empirical and theoretical work. PMID:16959647
Atkinson, Janette; Braddick, Oliver
2011-01-01
Visual information is believed to be processed through two distinct, yet interacting cortical streams. The ventral stream performs the computations needed for recognition of objects and faces ("what" and "who"?) and the dorsal stream the computations for registering spatial relationships and for controlling visually guided actions ("where" and "how"?). We initially proposed a model of spatial deficits in Williams syndrome (WS) in which visual abilities subserved by the ventral stream, such as face recognition, are relatively well developed (although not necessarily in exactly the same way as in typical development), whereas dorsal-stream functions, such as visuospatial actions, are markedly impaired. Since these initial findings in WS, deficits of motion coherence sensitivity, a dorsal-stream function has been found in other genetic disorders such as Fragile X and autism, and as a consequence of perinatal events (in hemiplegia, perinatal brain anomalies following very premature birth), leading to the proposal of a general "dorsal-stream vulnerability" in many different conditions of abnormal human development. In addition, dorsal-stream systems provide information used in tasks of visuospatial memory and locomotor planning, and these systems are closely coupled to networks for attentional control. We and several other research groups have previously shown deficits of frontal and parietal lobe function in WS individuals for specific attention tasks [e.g., Atkinson, J., Braddick, O., Anker, S., Curran, W., & Andrew, R. (2003). Neurobiological models of visuospatial cognition in children with Williams Syndrome: Measures of dorsal-stream and frontal function. Developmental Neuropsychology, 23(1/2), 141-174.]. We have used the Test of Everyday Attention for Children (TEA-Ch) which aims to attempt to separate components of attention with distinct brain networks (selective attention, sustained attention, and attention control-executive function) testing a group of older children with WS, but this test battery is too demanding for many children and adults with WS. Consequently, we have devised a new set of tests of attention, the Early Childhood Attention Battery (ECAB). This uses similar principles to the TEA-Ch, but adapted for mental ages younger than 6 years. The ECAB shows a distinctive attention profile for WS individuals relative to their overall cognitive development, with relative strength in tasks of sustained attention and poorer performance on tasks of selective attention and executive control. These profiles, and the characteristic developmental courses, also show differences between children with Down's syndrome and WS. This chapter briefly reviews new research findings on WS in these areas, relating the development of brain systems in WS to evidence from neuroimaging in typically developing infants, children born very preterm, and normal adults. The hypothesis of "dorsal-stream(s) vulnerability" which will be discussed includes a number of interlinked brain networks, subserving not only global visual processing and formulation of visuomotor actions but interlinked networks of attention. Copyright © 2011 Elsevier B.V. All rights reserved.
VISCOUS BOUNDARY LAYERS OF RADIATION-DOMINATED, RELATIVISTIC JETS. II. THE FREE-STREAMING JET MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Eric R.; Begelman, Mitchell C., E-mail: eric.coughlin@colorado.edu, E-mail: mitch@jila.colorado.edu
2015-08-10
We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model—where a narrow stream of fluid is injected into a static medium—and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their coresmore » have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look “down the barrel of the jet.” These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.« less
Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows
NASA Astrophysics Data System (ADS)
Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro
2015-11-01
Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.
2018-05-01
Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.
Fasching, Christina; Behounek, Barbara; Singer, Gabriel A; Battin, Tom J
2014-05-15
Streams receive substantial terrestrial deliveries of dissolved organic matter (DOM). The chromophoric (CDOM) fraction of terrestrial deliveries confers the brown colour to streamwater, often understood as browning, and plays a central role in aquatic photochemistry and is generally considered resistant to microbial metabolism. To assess the relevance of terrigenous DOM for carbon fluxes mediated by stream microorganisms, we determined the bioavailable fraction of DOM and microbial carbon use efficiency (CUE), and related these measures to partial pressure of CO2 in headwater streams spanning across a browning gradient. Fluorescence and absorbance analyses revealed high molecular weight and aromaticity, and elevated contributions from humic-like components to characterize terrestrial CDOM. We found that microorganisms metabolized this material at the cost of low CUE and shifted its composition (from fluorescence and absorbance) towards less aromatic and low-molecular weight compounds. Respiration (from CUE) was related to CO2 supersaturation in streams and this relationship was modulated by DOM composition. Our findings imply that terrigenous DOM is respired by microorganisms rather than incorporated into their biomass, and that this channelizes terrigenous carbon to the pool of CO2 potentially outgassing from streams into the atmosphere. This finding may gain relevance as major terrigenous carbon stores become mobilized and browning progresses.
Fasching, Christina; Behounek, Barbara; Singer, Gabriel A.; Battin, Tom J.
2014-01-01
Streams receive substantial terrestrial deliveries of dissolved organic matter (DOM). The chromophoric (CDOM) fraction of terrestrial deliveries confers the brown colour to streamwater, often understood as browning, and plays a central role in aquatic photochemistry and is generally considered resistant to microbial metabolism. To assess the relevance of terrigenous DOM for carbon fluxes mediated by stream microorganisms, we determined the bioavailable fraction of DOM and microbial carbon use efficiency (CUE), and related these measures to partial pressure of CO2 in headwater streams spanning across a browning gradient. Fluorescence and absorbance analyses revealed high molecular weight and aromaticity, and elevated contributions from humic-like components to characterize terrestrial CDOM. We found that microorganisms metabolized this material at the cost of low CUE and shifted its composition (from fluorescence and absorbance) towards less aromatic and low-molecular weight compounds. Respiration (from CUE) was related to CO2 supersaturation in streams and this relationship was modulated by DOM composition. Our findings imply that terrigenous DOM is respired by microorganisms rather than incorporated into their biomass, and that this channelizes terrigenous carbon to the pool of CO2 potentially outgassing from streams into the atmosphere. This finding may gain relevance as major terrigenous carbon stores become mobilized and browning progresses. PMID:24828296
Multi-scale assessment of human-induced changes to ...
Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which physical and chemical characteristics of the instream habitat of low-order Amazonian streams change in response to past local- and catchment-level anthropogenic disturbances. Methods: To do so, we collected field instream habitat (i.e., physical habitat and water quality) and landscape data from 99 stream sites in two eastern Brazilian Amazon regions. We used random forest regression trees to assess the relative importance of different predictor variables in determining changes in instream habitat response variables. Adaptations the USEPA’s National Aquatic Resource Survey (NARS) designs, field methods, and approaches for assessing ecological condition have been applied in state and basin stream surveys throughout the U.S., and also in countries outside of the U.S. These applications not only provide valuable tests of the NARS approaches, but generate new understandings of natural and anthropogenic controls on biota and physical habitat in streams. Results from applications in Brazil, for example, not only aid interpretation of the condition of Brazilian streams, but also refine approaches for interpreting aquatic resource surveys in the U.S. and elsewhere. In this article, the authors des
Wood in New Zealand's Native Forest Streams. Recent Advances
NASA Astrophysics Data System (ADS)
Mark, M. A.; Davies-Colley, R.
2005-05-01
We conducted a series of research projects to investigate the importance of wood in native forested streams of New Zealand. We examined abundance and geomorphic role of wood in 18 pristine native forest streams (channel width: 3-6 m) throughout New Zealand. Forest type and geographic location had no discernable influence on wood abundance, possibly reflecting the confounding influences of local features (e.g., tree fall regime) and methodology (`snap-shot' survey of a dynamic system). Number (18-66 per 100 m) and dead wood volume (85-470 m3 ha-1) of stream logs were at the high end of the international range. Living trees contributed up to 25% of total wood, and tree ferns were strongly represented (up to 11% of volume). The largest 10% of pieces contributed 75% of the total volume. The importance of the large wood pieces (>10 m3) was explored further with surveys within that watershed containing the site with the greatest wood volume. The largest pieces were rare but seemed relatively uniformly distributed. To explore the biological consequences of stream wood, we studied use of wood-related micro-habitat by the crayfish (Paranephrops planifrons White). Our findings suggest that wood is an important component of New Zealand's forested stream ecosystems.
DOT National Transportation Integrated Search
2014-07-01
Concrete box culvert floor slabs are known to have detrimental effects on river and stream hydraulics. Consequences include an aquatic environment less friendly to the passage of fish and other organisms. This has prompted environmental regulations r...
GEOGRAPHIC TARGETING OF INCREASES IN NUTRIENT EXPORT DUE TO FUTURE URBANIZATION
Urbanization replaces the extant natural resource base (e.g., forests, wet- lands) with an infrastructure that is capable of supporting humans. One ecological consequence of urbanization is higher concentrations of nitrogen (N) and phosphorous (P) in streams, lakes, and estuaries...
ERIC Educational Resources Information Center
Palmer, James C.
2014-01-01
Community college leaders face several fundamental challenges as they work on sustaining the fiscal viability of their institutions. These include the need to anticipate the unintended consequences of performance-based funding, diversify revenue streams in ways that reduce fiscal dependence on tuition and state appropriations, control costs, and…
Brightbill, Robin A.; Koerkle, Edward H.
2003-01-01
The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.
Sheth, Bhavin R; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.
Hidden dangers: Environmental consequences of preparing for war
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birks, J.W.; Ehrlich, A.H.
1990-01-01
This compilation of chapters by some of the world's foremost non-governmental experts, focuses on the military's nuclear mess. Hidden Dangers suggests that in the end, events, not politics, changed operations' in the nuclear complex. After Chernobyl, safety became the pressing issue. Although the continuing stream of revelations of safety and environmental violations within the US nuclear weapons complex may make the 1990 book seem out of date, it remains an indispensable primer for those concerned with the social and environmental consequences of nuclear weapons production.
Is the great attractor really a great wall
NASA Technical Reports Server (NTRS)
Stebbins, Albert; Turner, Michael S.
1988-01-01
Some of the cosmological consequences are discussed of a late time phase transition which produces light domain walls. The observed peculiar velocity field of the Universe and the observed isotropy of the microwave background radiation severely constrain the wall surface density in such a scenario. The most interesting consequence of such a phase transition is the possibility that the local, coherent streaming motion reported by the Seven Samurai could be explained by the repulsive effect of a relic domain wall with the Hubble volume (the Great Wall).
Biological and physical conditions of macroinvertebrates in reference lowland streams
NASA Astrophysics Data System (ADS)
de Brouwer, Jan; Eekhout, Joris; Verdonschot, Piet
2016-04-01
Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Currently, stream restoration measures are being implemented in these degraded lowland streams, where design principles are often based on outdated relationships between biological and physical conditions. Little is known about the reference conditions in these streams. Therefore, the aim of this research is to quantify the relationships between biological and physical conditions of macroinvertebrates in reference lowland streams. The research was conducted in four near-natural lowland streams in Central Poland. Field data were obtained during a field campaign in 2011. The following data were obtained in a 50-m reach in each of the four streams: macroinvertebrate sampling, spatial habitat patterns, bathymetry, and flow-velocity. Furthermore, water level, light sensitivity and temperature sensors were installed to obtain the temporal dynamic of these streams. Macroinvertebrates were sampled in 9 different habitat types, i.e. sand, gravel, fine organic matter, stones, branches, leaves, silt, vegetation, and wood. Macroinvertebrates were determined to the highest taxonomic level possible. Data from the bathymetrical surveys were interpolated on a grid and bathymetrical metrics were determined. Flow velocity measurements were related to habitats and flow velocity metrics were determined. Analysis of the data shows that flow conditions vary among the different habitat, with a gradient from hard substrates towards soft substrates. Furthermore, the data show that stream as a unit best explains species composition, but also specific habitat conditions, such as substrate type and flow velocity, correlate with species composition. More specific, the data shows a strong effect of wood on species composition. These findings may have implications for stream restoration design, which mainly focus on large-scale reconstruction of channel planform, whereas this study shows that improvement of stream ecology should focus on the smaller habitat scale.
Wallin, Marcus B; Grabs, Thomas; Buffam, Ishi; Laudon, Hjalmar; Agren, Ånneli; Öquist, Mats G; Bishop, Kevin
2013-03-01
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land-water-atmosphere interfaces is sometimes mentioned, low-order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2 ) from running waters within a 67 km(2) boreal catchment was studied. During a 4 year period (2006-2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high-resolution (5 × 5 m) grid-based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m(-2) yr(-1) ) of the entire stream C flux (9.6 (±2.4) g C m(-2) yr(-1) ) (lateral as DIC, DOC, and vertical as CO2 ). In addition, 72% of the total CO2 loss took place already in the first- and second-order streams. This study demonstrates the importance of including CO2 evasion from low-order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape. © 2012 Blackwell Publishing Ltd.
Consequences and potential problems of operating room outbursts and temper tantrums by surgeons
Jacobs, George B.; Wille, Rosanne L.
2012-01-01
Background: Anecdotal tales of colorful temper tantrums and outbursts by surgeons directed at operating room nurses and at times other health care providers, like residents and fellows, are part of the history of surgery and include not only verbal abuse but also instrument throwing and real harassment. Our Editor-in-Chief, Dr. Nancy Epstein, has made the literature review of “Are there truly any risks and consequences when spine surgeons mistreat their predominantly female OR nursing staff/colleagues, and what can we do about it?,” an assigned topic for members of the editorial board as part of a new category entitled Ethical Note for our journal. This is a topic long overdue and I chose to research it. Methods: There is no medical literature to review dealing with nurse abuse. To research this topic, one has to involve business, industry, educational institutions, compliance standards and practices, and existing state and federal laws. I asked Dr. Rosanne Wille to co-author this paper since, as the former Dean of Nursing and then Provost and Senior Vice President for Academic Affairs at a major higher educational institution, she had personal experience with compliance regulations and both sexual harassment and employment discrimination complaints, to make this review meaningful. Results: A review of the existing business practices and both state and federal laws strongly suggests that although there has not been any specific legal complaint that is part of the public record, any surgeon who chooses to act out his or her frustration and nervous energy demands by abusing co-workers on the health care team, and in this case specifically operating room personnel, is taking a chance of making legal history with financial outcomes which only an actual trial can predict or determine. Even more serious outcomes of an out-of-control temper tantrum and disruptive behavior can terminate, after multiple hearings and appeals, in adverse decisions affecting hospital privileges. Conclusions: Surgeons who abuse other health care workers are in violation of institutional bylaws and compliance regulations and create a hostile environment at work which adversely affects efficient productivity and violates specific State and Federal laws which prohibit discrimination based on race, color, sex, religion, or national origin. PMID:22905323
Klingbeil, Brian T; Willig, Michael R
2015-01-01
Effective monitoring programs for biodiversity are needed to assess trends in biodiversity and evaluate the consequences of management. This is particularly true for birds and faunas that occupy interior forest and other areas of low human population density, as these are frequently under-sampled compared to other habitats. For birds, Autonomous Recording Units (ARUs) have been proposed as a supplement or alternative to point counts made by human observers to enhance monitoring efforts. We employed two strategies (i.e., simultaneous-collection and same-season) to compare point count and ARU methods for quantifying species richness and composition of birds in temperate interior forests. The simultaneous-collection strategy compares surveys by ARUs and point counts, with methods matched in time, location, and survey duration such that the person and machine simultaneously collect data. The same-season strategy compares surveys from ARUs and point counts conducted at the same locations throughout the breeding season, but methods differ in the number, duration, and frequency of surveys. This second strategy more closely follows the ways in which monitoring programs are likely to be implemented. Site-specific estimates of richness (but not species composition) differed between methods; however, the nature of the relationship was dependent on the assessment strategy. Estimates of richness from point counts were greater than estimates from ARUs in the simultaneous-collection strategy. Woodpeckers in particular, were less frequently identified from ARUs than point counts with this strategy. Conversely, estimates of richness were lower from point counts than ARUs in the same-season strategy. Moreover, in the same-season strategy, ARUs detected the occurrence of passerines at a higher frequency than did point counts. Differences between ARU and point count methods were only detected in site-level comparisons. Importantly, both methods provide similar estimates of species richness and composition for the region. Consequently, if single visits to sites or short-term monitoring are the goal, point counts will likely perform better than ARUs, especially if species are rare or vocalize infrequently. However, if seasonal or annual monitoring of sites is the goal, ARUs offer a viable alternative to standard point-count methods, especially in the context of large-scale or long-term monitoring of temperate forest birds.
40 CFR 426.60 - Applicability; description of the automotive glass tempering subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... automotive glass tempering subcategory. 426.60 Section 426.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.60 Applicability; description of the automotive glass tempering...
40 CFR 426.60 - Applicability; description of the automotive glass tempering subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... automotive glass tempering subcategory. 426.60 Section 426.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.60 Applicability; description of the automotive glass tempering...
Origin and influence of coal mine drainage on streams of the United States
Powell, J.D.
1988-01-01
Degradation of water quality related to oxidation of iron disulfide minerals associated with coal is a naturally occurring process that has been observed since the late seventeenth century, many years before commencement of commercial coal mining in the United States. Disturbing coal strata during mining operations accelerates this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Degraded water quality in the temperate eastern half of the United States is readily detected because of the low mineralization of natural water. Maps are presented showing areas in the eastern United States where concentrations of chemical constituents in water affected by coal mining (pH, dissolved sulfate, total iron, total manganese) exceed background values and indicate effects of coal mining. Areas in the East most affected by mine drainage are in western Pennsylvania, southern Ohio, western Maryland, West Virginia, southern Illinois, western Kentucky, northern Missouri, and southern Iowa. Effects of coal mining on water quality in the more arid western half of the United States are more difficult to detect because of the high degree of mineralization of natural water. Normal background concentrations of constituents are not useful in evaluating effects of coal mine drainage on streams in the more arid West. Three approaches to reduce the effects of coal mining on water quality are: (1) exclusion of oxygenated water from reactive minerals, (2) neutralization of the acid produced, (3) retardation of acid-producing bacteria population in spoil material, by application of detergents that do not produce byproducts requiring disposal. These approaches can be used to help prevent further degradation of water quality in streams by future mining. ?? 1988 Springer-Verlag New York Inc.
Primary factors affecting water quality and quantity in four watersheds in Eastern Puerto Rico
Murphy, Sheila F.; Stallard, Robert F.
2009-01-01
As part of the U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) program, four small watersheds in eastern Puerto Rico were monitored to identify and evaluate the effects of geology, landcover, atmospheric deposition, and other factors on stream water quality and quantity. Two catchments are located on coarse-grained granitic plutonic rocks, which weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sediments, which weather to quartz-poor, fine-grained soils. These differing soil materials result in different hydrologic regimes. Soils on the granitic rocks have greater permeability than those developed on the volcaniclastic rocks, allowing more water infiltration and potentially greater landslide erosion rates. For each bedrock type, one catchment was covered with mature rainforest, and the other catchment was affected by agricultural practices typical of eastern Puerto Rico. These practices led to the erosion of much of the original surface soil in the agricultural watersheds, which introduced large quantities of sediment to stream channels. The agricultural watersheds are undergoing natural reforestation, like much of Puerto Rico. Eastern Puerto Rico receives large atmospheric inputs of marine salts, pollutants from the Northern Hemisphere, and Saharan Desert dust. Marine salts contribute over 80 percent of the ionic charge in precipitation, with peak inputs in January. Intense storms, mostly hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Temperate pollution contributes nitrate, ammonia, and sulfate, with maximum inputs during northern cold fronts in January, April, and May. Pollution inputs have increased through time. Desert dust peaks in June and July, during times of maximum dust transport from the Saharan Desert across the Atlantic Ocean.
Conflicting drainage patterns in the Matera Horst Area, southern Italy
NASA Astrophysics Data System (ADS)
Beneduce, P.; Festa, V.; Francioso, R.; Schiattarella, M.; Tropeano, M.
The Matera Horst (“ Murgia materana”) is included in the Apulian plateau, basically formed by Mesozoic shallow-water carbonates. The zone is located in a present-day temperate belt and form a flat-topped morphostructural large element inside the foreland area of the southern Apennines. This horst is bordered by high-angle faults and surrounded by downthrown blocks covered by Plio-Quaternary marine and alluvial sediments. The structural high experienced several morphological cycles from Miocene to Quaternary. In particular, three evolutionary stages can be recognized at least. The first stage is currently represented by relics of a flat erosional landscape at the top of the relieves. The second one is testified by gentle slopes with wide glacis at the foothills, locally covered by coarse waste deposits. During the third stage a series of marine terraces formed and a drainage system developed creating both bland valleys and well-defined channels and gorges. The latter streams deeply carve the Cretaceous limestone of the Matera Horst for they represent the morphological response to the tectonic uplift of the area and clearly post-date the former features. Since the fluvial net took place on Pleistocene covers, later widely eroded, it is possible to conclude that the major part of the Matera Horst drainage system represents a good example of superimposition. However, low order streams and segments of major rivers appear to be structurally controlled, as suggested by comparison with the fracture system. Further, also open synclines and gently steeped flexures may locally exert a driving control on minor streams. These apparently conflicting genetic hypotheses can be explained by the role of exhumation of inherited structures of the bedrock in add to a constant interplay between tectonics, erosion and drainage evolution during Quaternary times.
NASA Astrophysics Data System (ADS)
Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.
2014-12-01
Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to differences in stream morphology, but rather to changes in elevation and associated air temperatures. These results demonstrate strong indirect effects of forest age and valley morphometry on organic matter storage and animal secondary production in streams that is mediated by direct effects associated with the presence or absence of logjams.
Antunes, Jorge T.; Leão, Pedro N.; Vasconcelos, Vítor M.
2015-01-01
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms. PMID:26042108
Reproductive phenologies in a diverse temperate ant fauna
Dunn, R.R.; Parker, C.R.; Geraghty, M.; Sanders, N.J.
2007-01-01
1. Ant nuptial flights are central to understanding ant life history and ecology but have been little studied. This study examined the timing of nuptial flights, the synchronicity of nuptial flights (as a potential index of mating strategy), and variation in nuptial flights with elevation and among years in a diverse temperate ant fauna. 2. Flights occurred throughout the year, but were concentrated in the beginning of summer and in early fall (autumn). Relative to the entire flight season, closely related species tended to be more likely than expected by chance to fly at similar times, perhaps because of phylogenetic constraints on life history evolution. 3. Flights were relatively synchronous within species for nearly all species considered, but synchronicity did not appear to be a robust estimate of overall mating strategy. 4. Overall patterns in nuptial flights among species and the timing of flights for individual species varied with elevation, but did not vary greatly among years. 5. Although this study is one of the most comprehensive on the reproductive flight phenologies of ants, much remains to be learned about the causes and consequences of such spatial and temporal variation in flight phenology. ?? 2007 The Royal Entomological Society.
Antunes, Jorge T; Leão, Pedro N; Vasconcelos, Vítor M
2015-01-01
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms.
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E.; Figuera, Andreína; Rabinovich, Jorge E.
2015-01-01
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. PMID:25688019
Consequences of calcium decline on the embryogenesis and life history of Daphnia magna.
Giardini, Jamie-Lee; Yan, Norman D; Heyland, Andreas
2015-07-01
Ambient calcium is declining in thousands of soft-water lake habitats in temperate regions as a consequence of unsustainable forestry practices, decreased atmospheric calcium deposition and acidic deposition. As their exoskeleton is heavily reinforced with calcium, freshwater crustaceans have a high specific calcium requirement relative to other aquatic organisms. Daphnia, in particular, is an ideal crustacean for investigating the consequences of calcium decline because it is an abundant and important member of freshwater zooplankton communities. Although it has been established that adult and juvenile Daphnia have different tolerances to low ambient calcium as a result of their different life stage-specific calcium requirements, the consequences of declining calcium on embryonic development have never been investigated. Here, we describe the distribution of calcium in embryonic stages of D. magna and introduce a novel and easy to use staging scheme. We tested whether calcium can be traced from mothers to their offspring. Finally, we assessed the fitness consequences of maternal provisioning in limiting calcium environments. We found that while embryos require calcium for their development and moulting, they do not equilibrate with environmental calcium levels. Instead, we were able to trace calcium from mothers to their offspring. Furthermore, our data strongly suggest that females are faced with an allocation trade-off between providing calcium to their offspring and using it for growth and moulting. Together, these data provide novel insights into the consequences of calcium decline for freshwater zooplankton. © 2015. Published by The Company of Biologists Ltd.
Western Mountain Initiative - Background
, and degraded water quality in mountain lakes and streams. In each case, ecosystem thresholds were dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and . Third, Western mountain ecosystems are important to society, providing water, wood products, carbon
Consequences of tetracycline exposure to stream periphyton in an experimental mesocosm study
A significant amount of ingested, injected, and applied antibiotics are not metabolized but are excreted; entering the environment via point and non-point sources. Tetracycline and its derivatives are among the most extensively used human and animal antibiotics. We examined the ...
Multi-scale assessment of human-induced changes to Amazonian instream habitats
Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which ph...
Angelstam, Per; Andersson, Kjell; Isacson, Maths; Gavrilov, Dmitri V; Axelsson, Robert; Bäckström, Mattias; Degerman, Erik; Elbakidze, Marine; Kazakova-Apkarimova, Elena Yu; Sartz, Lotta; Sädbom, Stefan; Törnblom, Johan
2013-03-01
Barriers and bridges to implement policies about sustainable development and sustainability commonly depend on the past development of social-ecological systems. Production of metals required integration of use of ore, streams for energy, and wood for bioenergy and construction, as well as of multiple societal actors. Focusing on the Swedish Bergslagen region as a case study we (1) describe the phases of natural resource use triggered by metallurgy, (2) the location and spatial extent of 22 definitions of Bergslagen divided into four zones as a proxy of cumulative pressure on landscapes, and (3) analyze the consequences for natural capital and society. We found clear gradients in industrial activity, stream alteration, and amount of natural forest from the core to the periphery of Bergslagen. Additionally, the legacy of top-down governance is linked to today's poorly diversified business sector and thus municipal vulnerability. Comparing the Bergslagen case study with other similar regions in Russia and Germany, we discuss the usefulness of multiple case studies.
Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.
2012-01-01
Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242
Evaluating local indirect addressing in SIMD proc essors
NASA Technical Reports Server (NTRS)
Middleton, David; Tomboulian, Sherryl
1989-01-01
In the design of parallel computers, there exists a tradeoff between the number and power of individual processors. The single instruction stream, multiple data stream (SIMD) model of parallel computers lies at one extreme of the resulting spectrum. The available hardware resources are devoted to creating the largest possible number of processors, and consequently each individual processor must use the fewest possible resources. Disagreement exists as to whether SIMD processors should be able to generate addresses individually into their local data memory, or all processors should access the same address. The tradeoff is examined between the increased capability and the reduced number of processors that occurs in this single instruction stream, multiple, locally addressed, data (SIMLAD) model. Factors are assembled that affect this design choice, and the SIMLAD model is compared with the bare SIMD and the MIMD models.
Sheth, Bhavin R.; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670
Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.
1988-12-31
High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. Themore » high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.« less
Harper, Matthew P; Peckarsky, Barbara L
2006-04-01
To understand the consequences of human accelerated environmental change, it is important to document the effects on natural populations of an increasing frequency of extreme climatic events. In stream ecosystems, recent climate change has resulted in extreme variation in both thermal and hydrological regimes. From 2001 to 2004, a severe drought in western United States corresponded with earlier emergence of the adult stage of the high-altitude stream mayfly, Baetis bicaudatus. Using a long-term database from a western Colorado stream, the peak emergence date of this mayfly population was predicted by both the magnitude and date of peak stream flow, and by the mean daily water temperature, suggesting that Baetis may respond to declining stream flow or increasing water temperature as proximate cues for early metamorphosis. However, in a one-year survey of multiple streams from the same drainage basin, only water temperature predicted spatial variation in the onset of emergence of this mayfly. To decouple the effects of temperature and flow, we separately manipulated these factors in flow-through microcosms and measured the timing of B. bicaudatus metamorphosis to the adult stage. Mayflies emerged sooner in a warmed-water treatment than an ambient-water treatment; but reducing flow did not accelerate the onset of mayfly emergence. Nonetheless, using warming temperatures to cue metamorphosis enables mayflies to time their emergence during the descending limb of the hydrograph when oviposition sites (protruding rocks) are becoming available. We speculate that large-scale climate changes involving warming and stream drying could cause significant shifts in the timing of mayfly metamorphosis, thereby having negative effects on populations that play an important role in stream ecosystems.
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
Sweeten, Sara E.; Ford, W. Mark
2016-01-01
Within the central Appalachia Coalfields, the aquatic impacts of large-scale land uses, such as surface mining, are of particular ecological concern. Identification and quantification of land use impacts to aquatic ecosystems are a necessary first step to aid in mitigation of negative consequences to biota. However, quantifying physical environmental quality such as stream and riparian habitat often can be quite difficult, particularly when there is time or fiscal limitations. As such, standard protocols such as the U.S. EPA’s Stream Habitat Rapid Bioassessment Protocol have been established to be cost- and time-effective. This protocol estimates ten different stream and riparian conditions on a scale of 0 to 20. Unfortunately, using estimations can be problematic because of large potential variation in the scoring depending on differences in training, experience, and opinion of the personnel doing the estimations. In order to help negate these biases and provide a simplified process, the U.S. Army Corps of Engineers (USACE) developed a functional assessment for streams that measures 11 stream and riparian variables along with watershed land use to calculate three different scores, a hydrology score, biogeochemical score, and habitat score. In our study, we examined the correlation of stream salamander presence and abundance to the three USACE scores. In the summer of 2013, we visited 70 sites in the southwest Virginia Coalfields multiple times to collect salamanders and quantify stream and riparian microhabitat parameters. Using occupancy and abundance analyses, we found strong relationships among three Desmognathus spp. and the USACE Habitat FCI score. Accordingly, the Habitat FCI score provides a reasonable assessment of physical instream and riparian conditions that may serve as a surrogate for understanding the community composition and integrity of aquatic salamander in the region.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.
2003-12-01
Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.
Synchrotron x-ray microtomography of the interior microstructure of chocolate
NASA Astrophysics Data System (ADS)
Lügger, Svenja K.; Wilde, Fabian; Dülger, Nihan; Reinke, Lennart M.; Kozhar, Sergii; Beckmann, Felix; Greving, Imke; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan
2016-10-01
The structure of chocolate, a multicomponent food product, was analyzed using microtomography. Chocolate consists of a semi-solid cocoa butter matrix and a dense network of suspended particles. A detailed analysis of the microstructure is needed to understand mass transport phenomena. Transport of lipids from e.g. a filling or liquid cocoa butter is responsible for major problems in the confectionery industry such as formation of chocolate bloom, which is the formation of visible white spots or a grayish haze on the chocolate surface and leads to consumer rejections and thus large sales losses for the confectionery industry. In this study it was possible to visualize the inner structure of chocolate and clearly distinguish the particles from the continuous phase by taking advantage of the high density contrast of synchrotron radiation. Consequently, particle arrangement and cracks within the sample were made visible. The cracks are several micrometers thick and propagate throughout the entire sample. Images of pure cocoa butter, chocolate without any particles, did not show any cracks and thus confirmed that cracks are a result of embedded particles. They arise during the manufacturing process. Thus, the solidification process, a critical manufacturing step, was simulated with finite element methods in order to understand crack formation during this step. The simulation showed that cracks arise because of significant contraction of cocoa butter, the matrix phase, without any major change of volume of the suspended particles. Tempering of the chocolate mass prior to solidification is another critical step for a good product quality. We found that samples which solidified in an uncontrolled manner are less homogeneous than tempered samples. In summary, our study visualized for the first time the inner microstructure of tempered and untempered cocoa butter as well as chocolate without sample destruction and revealed cracks, which might act as transport pathways.
NASA Astrophysics Data System (ADS)
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Seasonality of temperate forest photosynthesis and daytime respiration.
Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R
2016-06-30
Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
The Indiana State Board of Health is developing a State water-quality plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Duck Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The major point-source waste load affecting Duck Creek is the Elwood wastewater-treatment facility. Natural streamflow during the low flow is zero, so no benefit from dilution is provided. Natural reaeration at the low-flow condition (approximately 3 cubic feet per second), also low, is estimated to be less than 1 per day (base e at 20 Celsius). Consequently, the wasteload assimilative capacity of the stream is low. Effluent ammonia-nitrogen concentrations, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State ammonia-nitrogen toxicity standards (2.5 milligrams per liter from April to October and 4.0 milligrams per liter from November through March). The projected effluent ammonia-nitrogen load will also result in the present Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) not being met. Benthic-oxygen demand may also affect stream water quality. During the summer low-flow, a benthic-oxygen demand of only 0.6 gram per square meter per day would utilize all the streams 's available assimilative capacity. (USGS)
Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of...
CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR
Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...
Learner Engagement Strategies in Online Class Environment
ERIC Educational Resources Information Center
Chakraborty, Misha
2017-01-01
This dissertation explores the area of student engagement. Precisely, the dissertation attempts to find out the importance, roles, significance and factors involved in online student engagement and their consequences in achieving a positive learning environment. The first stream of inquiry investigated the perceived links between students'…
NASA Astrophysics Data System (ADS)
Herbirowo, Satrio; Adjiantoro, Bintang; Romijarso, Toni Bambang; Pramono, Andika Widya
2018-05-01
High demand of armor material impacts on the use of lateritic steel as alternative armored material, therefore an increase of its mechanical properties is necessary. Quenching and tempering process can be used to increase the mechanical properties of the lateritic steel. The variables that used in this research are variation in media quench (water, oil, and air) and variation in tempering temperatures (0, 100, and 200 °C). The results show that specimen with water quenchant tempered at 100 °C have the highest average on hardness (59.1 HRC) and tensile strength. Specimen with oil quenchant tempered at 100 °C has the highest impact toughness (52 J). Secondary hardening and tempered martensite embrittlement phenomenon is found in some specimens where its hardness increased and its impact toughness decreased after the tempering process. Microstructures which formed in this process are martensite and retained austenite phase with fracture types are brittle.
NASA Astrophysics Data System (ADS)
Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.
2018-02-01
Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.
THE ROLE OF THE CONSEQUENCE MANAGEMENT HOME TEAM IN THE FUKUSHIMA DAIICHI RESPONSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pemberton, Wendy; Mena, RaJah; Beal, William
The Consequence Management Home Team is a U.S. Department of Energy/National Nuclear Security Administration asset. It assists a variety of response organizations with modeling; radiological operations planning; field monitoring techniques; and the analysis, interpretation, and distribution of radiological data. These reach-back capabilities are activated quickly to support public safety and minimize the social and economic impact of a nuclear or radiological incident. In the Fukushima Daiichi response, the Consequence Management Home Team grew to include a more broad range of support than was historically planned. From the early days of the response to the continuing involvement in supporting late phasemore » efforts, each stage of the Consequence Management Home Team support had distinct characteristics in terms of management of incoming data streams as well as creation of products. Regardless of stage, the Consequence Management Home Team played a critical role in the Fukushima Daiichi response effort.« less
Temperate macroalgae impacts tropical fish recruitment at forefronts of range expansion
NASA Astrophysics Data System (ADS)
Beck, H. J.; Feary, D. A.; Nakamura, Y.; Booth, D. J.
2017-06-01
Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan ( 33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity ( K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish ( Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.
Solute and sediment export from Amazon forest and soybean headwater streams.
Riskin, Shelby H; Neill, Christopher; Jankowski, KathiJo; Krusche, Alex V; McHorney, Richard; Elsenbeer, Helmut; Macedo, Marcia N; Nunes, Darlisson; Porder, Stephen
2017-01-01
Intensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood. We sampled seven headwater streams draining watersheds in forest (n = 3) or soybeans (n = 4) to examine the effects of soybean cropping on stream solute concentrations and watershed export in a region of rapid soybean expansion in the Brazilian state of Mato Grosso. We measured stream flows and concentrations of NO 3 - , PO 4 3- , SO 4 2- , Cl - , NH 4 + , Ca 2+ , Mg 2+ , Na + , K + , Al 3+ , Fe 3+ , and dissolved organic carbon (DOC) biweekly to monthly to determine solute export. We also measured stormflows and stormflow solute concentrations in a subset of watersheds (two forest, two soybean) during two/three storms, and solutes and δ 18 O in groundwater, rainwater, and throughfall to characterize watershed flowpaths. Concentrations of all solutes except K + varied seasonally in streamwater, but only Fe 3+ concentrations differed between land uses. The highest streamwater and rainwater solute concentrations occurred during the peak season of wildfires in Mato Grosso, suggesting that regional changes in atmospheric composition and deposition influence seasonal stream solute concentrations. Despite no concentration differences between forest and soybean land uses, annual export of NH 4 + , PO 4 3- , Ca 2+ , Fe 3+ , Na + , SO 4 2- , DOC, and TSS were significantly higher from soybean than forest watersheds (5.6-fold mean increase). This increase largely reflected a 4.3-fold increase in water export from soybean watersheds. Despite this increase, total solute export per unit watershed area (i.e., yield) remained low for all watersheds (<1 kg NO 3 - N·ha -1 ·yr -1 , <2.1 kg NH 4 + -N·ha -1 ·yr -1 , <0.2 kg PO 4 3- -P·ha -1 ·yr -1 , <1.5 kg Ca 2+ ·ha -1 ·yr -1 ). Responses of both streamflows and solute concentrations to crop agriculture appear to be controlled by high soil hydraulic conductivity, groundwater-dominated hydrologic flowpaths on deep soils, and the absence of nitrogen fertilization. To date, these factors have buffered streams from the large increases in solute concentrations that often accompany intensive croplands in other locations. © 2016 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Gopa, E-mail: gopa_mjs@igcar.gov.in; Das, C.R.; Albert, S.K.
Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-raymore » diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M{sub 23}C{sub 6}) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe{sub 2}C and M{sub 23}C{sub 6} types of carbides coexisting in the material. The nucleation of Fe{sub 2}C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M{sub 23}C{sub 6} carbides, instead of Fe{sub 2}C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of carbide precipitation varies with temperature of tempering. • Mostly iron rich Fe{sub 2}C carbides are present in the embrittlement temperature range. • With the precipitation of M{sub 23}C{sub 6} carbides, recovery from the embrittlement begins.« less
Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian
2018-04-16
In this study, it was found that the residual stream from pretreatments of rice straw exhibited high antioxidant activity. Assays based on the Folin-Ciocalteu colorimetric method confirmed that the residual stream contained large amounts of phenolic compounds. Three antioxidant assays were employed to evaluate the bioactivity of the residual stream. Strong linear correlations existed among the release of phenolic compounds, saccharification efficiency, and antioxidant activity. The alkaline pretreatment provided a much greater release of phenolic compounds, especially phenolic acids, compared to the acid pretreatment, and consequently, it had stronger linear correlations than the acid pretreatment. Antibacterial experiments demonstrated the ability of the phenolic compounds in the residual stream to inhibit the growth of microorganisms, indicating the potential of these compounds as antimicrobial agents. To discuss the possibility of the co-production of antimicrobial agents and biofuels/biochemicals, both acid and alkaline pretreatments were optimized using response surface methodology. Under the optimal conditions, 285.7 g glucose could be produced from 1 kg rice straw with the co-production of 3.84 g FA and 6.98 g p-CA after alkaline pretreatment. These results show that the recovery of phenolic compounds from the residual stream could be a green strategy for the low-cost bioconversion of rice straw.
Crawford, Charles G.; Wilber, William G.; Peters, James G.
1980-01-01
A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)
Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares
2016-02-01
Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L. hyperborea. Because no genetic baseline is currently available for this species, our results may represent a first step in informing conservation and mitigation strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Robert
2014-04-01
Over the course of five years we have established a long-term array of warming chambers at Duke and Harvard Forest that simulate future conditions with regard to temperature. In these chambers, we have studied, ants, other animal taxa, fungi, bacteria and plants and their responses to the treatments. We have coupled these studies with lab experiments, large-scale observations, and models to contextualize our results. Finally, we have developed integrative models of the future distribution of species and their consequences as a result of warming in eastern North America and more generally.
Estimating retention potential of headwater catchment using Tritium time series
NASA Astrophysics Data System (ADS)
Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe
2018-06-01
Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.
Parallel tempering for the traveling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percus, Allon; Wang, Richard; Hyman, Jeffrey
We explore the potential of parallel tempering as a combinatorial optimization method, applying it to the traveling salesman problem. We compare simulation results of parallel tempering with a benchmark implementation of simulated annealing, and study how different choices of parameters affect the relative performance of the two methods. We find that a straightforward implementation of parallel tempering can outperform simulated annealing in several crucial respects. When parameters are chosen appropriately, both methods yield close approximation to the actual minimum distance for an instance with 200 nodes. However, parallel tempering yields more consistently accurate results when a series of independent simulationsmore » are performed. Our results suggest that parallel tempering might offer a simple but powerful alternative to simulated annealing for combinatorial optimization problems.« less
Self-Plagiarism and Unfortunate Publication: An Essay on Academic Values
ERIC Educational Resources Information Center
Robinson, Susan R.
2014-01-01
Recent years have seen a steady stream of journal editorials condemning self-plagiarism and other questionable publishing practices. Whilst in the biomedical sciences, redundant publication is condemned for its potential to exaggerate the efficacy of clinical trials, the potential negative consequences of textual recycling are less obvious in the…
Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes
C. Rhett Jackson; Catherine M. Pringle
2010-01-01
A broad perspective on hydrologic connectivity is necessary when managing stream ecosystems and establishing conservation priorities. Hydrologic connectivity refers to the water-mediated transport of matter, energy, or organisms within or between elements of the hydrologic cycle. The potential negative consequences of enhancing hydrologic connectivity warrant careful...
Characterizing drought for forested landscapes and streams
USDA-ARS?s Scientific Manuscript database
The changing nature of drought is a growing global concern (Cook et al. 2015, Dai 2011, Seneviratne et al. 2010, Sheffield and Wood 2008b, Trenberth et al. 2014, Wilhite et al. 2014). Drought can be a severe natural disaster with substantial social and economic consequences affecting large areas wit...
Jonathan W. Long; Karen Pope
2014-01-01
Wet meadows help to sustain favorable water flows, biological diversity, and other values; consequently, restoration of degraded wet meadows is an important part of a strategy for promoting socioecological resilience. This chapter focuses on high-elevation wet meadows that are associated with streams; thus restoration of such meadows may be considered a subset of...
Slade, Jeffrey W.; Adams, Jean V.; Christie, Gavin C.; Cuddy, Douglas W.; Fodale, Michael F.; Heinrich, John W.; Quinlan, Henry R.; Weise, Jerry G.; Weisser, John W.; Young, Robert J.
2003-01-01
Before 1995, Great Lakes streams were selected for lampricide treatment based primarily on qualitative measures of the relative abundance of larval sea lampreys, Petromyzon marinus. New integrated pest management approaches required standardized quantitative measures of sea lamprey. This paper evaluates historical larval assessment techniques and data and describes how new standardized methods for estimating abundance of larval and metamorphosed sea lampreys were developed and implemented. These new methods have been used to estimate larval and metamorphosed sea lamprey abundance in about 100 Great Lakes streams annually and to rank them for lampricide treatment since 1995. Implementation of these methods has provided a quantitative means of selecting streams for treatment based on treatment cost and estimated production of metamorphosed sea lampreys, provided managers with a tool to estimate potential recruitment of sea lampreys to the Great Lakes and the ability to measure the potential consequences of not treating streams, resulting in a more justifiable allocation of resources. The empirical data produced can also be used to simulate the impacts of various control scenarios.
Root water uptake and lateral interactions among root systems in a temperate forest
NASA Astrophysics Data System (ADS)
Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.
2016-12-01
A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.
Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest
NASA Astrophysics Data System (ADS)
D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.
2011-12-01
Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.
Running key mapping in a quantum stream cipher by the Yuen 2000 protocol
NASA Astrophysics Data System (ADS)
Shimizu, Tetsuya; Hirota, Osamu; Nagasako, Yuki
2008-03-01
A quantum stream cipher by Yuen 2000 protocol (so-called Y00 protocol or αη scheme) consisting of linear feedback shift register of short key is very attractive in implementing secure 40 Gbits/s optical data transmission, which is expected as a next-generation network. However, a basic model of the Y00 protocol with a very short key needs a careful design against fast correlation attacks as pointed out by Donnet This Brief Report clarifies an effectiveness of irregular mapping between running key and physical signals in the driver for selection of M -ary basis in the transmitter, and gives a design method. Consequently, quantum stream cipher by the Y00 protocol with our mapping has immunity against the proposed fast correlation attacks on a basic model of the Y00 protocol even if the key is very short.
Transport, behavior, and fate of volatile organic compounds in streams
Rathbun, R.E.
1998-01-01
Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.
Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.
2007-01-01
Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.
Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Sagarduy, Mikel; Pozo, Jesús
2015-01-15
Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can override the flow intermittence effects. Copyright © 2014. Published by Elsevier B.V.
Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment
NASA Astrophysics Data System (ADS)
Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip
2014-05-01
Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.
Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.
2015-01-01
Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.
Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.
2013-01-01
Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.
Wootton, J Timothy; Pfister, Catherine A; Forester, James D
2008-12-02
Increasing global concentrations of atmospheric CO(2) are predicted to decrease ocean pH, with potentially severe impacts on marine food webs, but empirical data documenting ocean pH over time are limited. In a high-resolution dataset spanning 8 years, pH at a north-temperate coastal site declined with increasing atmospheric CO(2) levels and varied substantially in response to biological processes and physical conditions that fluctuate over multiple time scales. Applying a method to link environmental change to species dynamics via multispecies Markov chain models reveals strong links between in situ benthic species dynamics and variation in ocean pH, with calcareous species generally performing more poorly than noncalcareous species in years with low pH. The models project the long-term consequences of these dynamic changes, which predict substantial shifts in the species dominating the habitat as a consequence of both direct effects of reduced calcification and indirect effects arising from the web of species interactions. Our results indicate that pH decline is proceeding at a more rapid rate than previously predicted in some areas, and that this decline has ecological consequences for near shore benthic ecosystems.
Properties of 5052 Aluminum For Use as Honeycomb Core in Manned Spaceflight
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.
2018-01-01
This work explains that the properties of Al 5052 material used commonly for honeycomb cores in sandwich panels are highly dependent on the tempering condition. It has not been common to specify the temper when ordering HC material nor is it common for the supplier to state what the temper is. For aerospace uses, a temper of H38 or H39 is probably recommended. This temper should be stated in the bill of material and should be verified upon receipt of the core. To this end some properties provided herein can aid as benchmark values.
Mori, Yoshiharu; Okamoto, Yuko
2013-02-01
A simulated tempering method, which is referred to as simulated-tempering umbrella sampling, for calculating the free energy of chemical reactions is proposed. First principles molecular dynamics simulations with this simulated tempering were performed to study the intramolecular proton transfer reaction of malonaldehyde in an aqueous solution. Conformational sampling in reaction coordinate space can be easily enhanced with this method, and the free energy along a reaction coordinate can be calculated accurately. Moreover, the simulated-tempering umbrella sampling provides trajectory data more efficiently than the conventional umbrella sampling method.
Dussex, Nicolas; Chuah, Aaron; Waters, Jonathan M
2016-01-01
Insect flight loss is a repeated phenomenon in alpine habitats, where wing reduction is thought to enhance local recruitment and increase fecundity. One predicted consequence of flight loss is reduced dispersal ability, which should lead to population genetic differentiation and perhaps ultimately to speciation. Using a dataset of 15,123 SNP loci, we present comparative analyses of fine-scale population structure in codistributed Zelandoperla stonefly species, across three parallel altitudinal transects in New Zealand's Rock and Pillar mountain range. We find that winged populations (altitude 200-500 m; Zelandoperla decorata) show no genetic structuring within or among streams, suggesting substantial dispersal mediated by flight. By contrast, wingless populations (Zelandoperla fenestrata; altitude 200-1100 m) exhibit distinct genetic clusters associated with each stream, and additional evidence of isolation by distance within streams. Our data support the hypothesis that wing-loss can initiate diversification in alpine insect populations over small spatial scales. The often deep phylogenetic placement of lowland Z. fenestrata within their stream-specific clades suggests the possibility of independent alpine colonization events for each stream. Additionally, the detection of winged, interspecific hybrid individuals raises the intriguing possibility that a previously flightless lineage could reacquire flight via introgression. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Subglacial hydrology and the formation of ice streams
Kyrke-Smith, T. M; Katz, R. F; Fowler, A. C
2014-01-01
Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. PMID:24399921
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John
This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less
Rosi-Marshall, Emma J; Kincaid, Dustin W; Bechtold, Heather A; Royer, Todd V; Rojas, Miguel; Kelly, John J
2013-04-01
Pharmaceutical and personal care products are ubiquitous in surface waters but their effects on aquatic biofilms and associated ecosystem properties are not well understood. We measured in situ responses of stream biofilms to six common pharmaceutical compounds (caffeine, cimetidine, ciprofloxacin, diphenhydramine, metformin, ranitidine, and a mixture of each) by deploying pharmaceutical-diffusing substrates in streams in Indiana, Maryland, and New York. Results were consistent across seasons and geographic locations. On average, algal biomass was suppressed by 22%, 4%, 22%, and 18% relative to controls by caffeine, ciprofloxacin, diphenhydramine, and the mixed treatment, respectively. Biofilm respiration was significantly suppressed by caffeine (53%), cimetidine (51%), ciprofloxacin (91%), diphenhydramine (63%), and the mixed treatment (40%). In autumn in New York, photosynthesis was also significantly suppressed by diphenhydramine (99%) and the mixed treatment (88%). Pyrosequencing of 16S rRNA genes was used to examine the effects of caffeine and diphenhydramine on biofilm bacterial community composition at the three sites. Relative to the controls, diphenhydramine exposure significantly altered bacterial community composition and resulted in significant relative increases in Pseudomonas sp. and decreases in Flavobacterium sp. in all three streams. These ubiquitous pharmaceuticals, alone or in combination, influenced stream biofilms, which could have consequences for higher trophic levels and important ecosystem processes.
Response and Recovery of Streams From an Extreme Flood
NASA Astrophysics Data System (ADS)
Kantack, K. M.; Renshaw, C. E.; Magilligan, F. J.; Dethier, E.
2015-12-01
In temperate regions, channels are expected to recover from intense floods in a matter of months to years, but quantitative empirical support for this idea remains limited. Moreover, existing literature fails to address the spatial variability of the recovery process. Using an emerging technology, we investigate the immediate response to and progressive recovery of channels in the Northeastern United States from an extreme flood. We seek to determine what factors, including the nature and extent of the immediate response of the channel to the flood and post-flood availability of sediment, contribute to the spatial variability of the rate of recovery. Taking advantage of the 2011 flooding from Tropical Storm Irene, for which pre- and post-flood aerial lidar exist, along with a third set of terrestrial lidar collected in 2015, we assess channel response and recovery with multi-temporal lidar comparison. This method, with kilometers of continuous data, allows for analysis beyond traditional cross-section and reach-scale studies. Results indicate that landscape-scale factors, such as valley morphology and gradients in unit stream power, are controls on channel response to the flood, producing spatially variable impacts. Along a 16.4-km section (drainage area = 82 km2) of the Deerfield River in Vermont, over 148,000 m3 or erosion occurred during the flood. The spatial variation of impacts was correlated (R2= 0.476) with the ratio of channel width to valley width. We expect the recovery process will similarly exhibit spatial variation in rate and magnitude, possibly being governed by gradients in unit stream power and sediment availability. We test the idea that channel widening during the flood reduces post-flood unit stream power, creating a pathway for deposition and recovery to pre-flood width. Flood-widened reaches downstream of point-sources of sediment, such as landslides, will recover more quickly than those without consistent sediment supply. Results of this study will improve our ability to predict the nature and location of flood impacts and determine what factors contribute to the spatial variability of channel recovery.
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.
Follstad Shah, Jennifer J; Kominoski, John S; Ardón, Marcelo; Dodds, Walter K; Gessner, Mark O; Griffiths, Natalie A; Hawkins, Charles P; Johnson, Sherri L; Lecerf, Antoine; LeRoy, Carri J; Manning, David W P; Rosemond, Amy D; Sinsabaugh, Robert L; Swan, Christopher M; Webster, Jackson R; Zeglin, Lydia H
2017-08-01
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E a , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E a could be calculated. Higher values of E a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E a was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E a values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale. © 2017 John Wiley & Sons Ltd.
Broadhead, A T; Horn, R; Lerner, D N
2013-09-01
Captured streams and springs may be flowing in combined sewers, increasing clean baseflow in pipes and wastewater treatment works (WwTWs), reducing pipe capacity and increasing treatment costs. The UK water industry is aware of this in principle, but there has been no explicit discussion of this in the published literature, nor have there been any known attempts to manage it. Instead, the current focus is on the similar intrusion of groundwater infiltration through pipe cracks and joints. We have conducted a thorough review of literature and international case studies to investigate stream and spring capture, finding several examples with convincing evidence that this occurs. We identify three modes of entry: capture by conversion, capture by interception, and direct spring capture. Methods to identify and quantify capture are limited, but the experience in Zurich suggests that it contributed 7-16% of the baseflow reaching WwTWs. There are negative impacts for the water industry in capital and operational expenditure, as well as environmental and social impacts of loss of urban streams. For a typical WwTW (Esholt, Bradford) with 16% of baseflow from captured streams and springs, we conservatively estimate annual costs of £ 2 million to £ 7 million. A detailed case study from Zurich is considered that has successfully separated captured baseflow into daylighted streams through the urban area, with multiple economic, environmental and social benefits. We conclude that there is a strong case for the UK water industry to consider captured streams and springs, quantify them, and assess the merits of managing them. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peterson, James T.; Shea, C.P.
2015-01-01
Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
The hypothesis of the local supercloud and the nearby moving groups of stars
NASA Astrophysics Data System (ADS)
Olano, C. A.
2016-06-01
The velocity distribution of stars in the solar neighbourhood can be globally characterized by the presence of two stellar streams (I and II). Stream I contains kinematic substructures, named moving groups of stars, such us the Pleiades and Hyades groups. While Stream II is essentially associated with the Sirius group. The origin and nature of these two stellar streams are still not completely clear. We propose that Streams I and II were gravitationally linked to an old gas supercloud that was disintegrated in parts that formed new subsystems, viz., the Orion arm and Gould's belt. On the basis of this idea, we constructed a dynamical model of the supercloud in order to explain the kinematic and structural characteristics of the local system of gas and stars. For the study of the relative orbits of the two stellar streams with respect to the supercloud's centre and of the Galactic orbit of the supercloud, we developed appropriate epicyclic motion equations. The results of the model indicate the possibility that about 75-100 Myr ago the supercloud crossed the Perseus arm and as a consequence was strongly braked. Besides, around 60 Myr ago, the position of the supercloud coincided approximately with that of the Big Dent, a huge depression of the Galactic disc. We suggest that the cause that originated the Big Dent could be the same that perturbed the supercloud starting the formation of the Orion arm and Gould's belt. In this context, we derived the theoretical distributions of positions and velocities for the stars of Streams I and II.
Effects of pulse and press drying disturbance on benthic stream communities
Lynch, Dustin T.; Magoulick, Daniel D.
2016-01-01
Natural disturbance is an integral component of most ecosystems and occurs in 3 different forms: pulse, press, and ramp. In lotic ecosystems, seasonal drought is a major form of disturbance, particularly in intermittent headwater streams, which often are reduced to pools that serve as refuges for biota. We used simulated intermittent stream pools to compare the effects of control, pulse, and press drying on growth and survival in 3 fish species (Lepomis megalotis, Campostoma anomalum, and Etheostoma spectabile) commonly found together in drought-prone streams in the Ozark Highlands, USA. We also compared effects on benthic community structure, including periphyton and chironomid density and sediment in deep (permanently watered) and shallow (intermittently dewatered) habitat. Only one species, L. megalotis, showed a significant reduction in length and mass growth in press drying compared with control treatments. Drying and type of drying had no effect on survival of any fish species. Drying and type of drying had strong overall effects on periphyton growth in shallow habitats, where ash-free dry mass decreased and the autotrophic index (the ratio of chlorophyll a to total biomass) increased significantly in drying relative to control and in press relative to pulse treatments. Drying negatively affected sediment accumulation in shallow habitat and chironomid density in deep habitat. Drying in intermittent streams has species-dependent effects on fish growth and benthic structure, and pulse and press drying differ in their effects on periphyton in these systems. These effects may have important consequences in seasonally drying streams as anthropogenic influence on stream drying increases.
Wang, Zhen; Kwok, Kevin W H; Lui, Gilbert C S; Zhou, Guang-Jie; Lee, Jae-Seong; Lam, Michael H W; Leung, Kenneth M Y
2014-06-01
Due to a lack of saltwater toxicity data in tropical regions, toxicity data generated from temperate or cold water species endemic to North America and Europe are often adopted to derive water quality guidelines (WQG) for protecting tropical saltwater species. If chemical toxicity to most saltwater organisms increases with water temperature, the use of temperate species data and associated WQG may result in under-protection to tropical species. Given the differences in species composition and environmental attributes between tropical and temperate saltwater ecosystems, there are conceivable uncertainties in such 'temperate-to-tropic' extrapolations. This study aims to compare temperate and tropical saltwater species' acute sensitivity to 11 chemicals through a comprehensive meta-analysis, by comparing species sensitivity distributions (SSDs) between the two groups. A 10 percentile hazardous concentration (HC10) is derived from each SSD, and then a temperate-to-tropic HC10 ratio is computed for each chemical. Our results demonstrate that temperate and tropical saltwater species display significantly different sensitivity towards all test chemicals except cadmium, although such differences are small with the HC10 ratios ranging from 0.094 (un-ionised ammonia) to 2.190 (pentachlorophenol) only. Temperate species are more sensitive to un-ionised ammonia, chromium, lead, nickel and tributyltin, whereas tropical species are more sensitive to copper, mercury, zinc, phenol and pentachlorophenol. Through comparison of a limited number of taxon-specific SSDs, we observe that there is a general decline in chemical sensitivity from algae to crustaceans, molluscs and then fishes. Following a statistical analysis of the results, we recommend an extrapolation factor of two for deriving tropical WQG from temperate information. Copyright © 2013 Elsevier Ltd. All rights reserved.
Increased stormwater flows are a direct result of urbanization and the consequent increase in the proportion of land area under impervious surface. Due to its contribution to abnormally high stream flows and its role as a carrier of pollutants that degrade water quality, exc...
2011-04-01
Bunn S. E. and Arthington A.H. 2002. Basic principles and ecological consequences of altered flow regimes on aquatic biodiversity . Environmental...cycling in streams: can fish create biogeochemical hotspots ? Ecology 89: 2335-2346. Matthews W.J. and Marsh-Matthews E. 2003. Effects of drought on
OPTIMIZATION OF A PULSED LIMESTONE BED REACTOR AT THE ARGO TUNNEL IN IDAHO SPRINGS, COLORADO
Acid Mine Drainage (AMD) is an unintended consequence of coal and metal mining that adversely affects thousands of miles of streams both in the eastern and western regions of the U.S. A novel AMD treatment process based on limestone based on limestone neutralization has been dev...
Effects of Speed of Word Processing on Semantic Access: The Case of Bilingualism
ERIC Educational Resources Information Center
Martin, Clara D.; Costa, Albert; Dering, Benjamin; Hoshino, Noriko; Wu, Yan Jing; Thierry, Guillaume
2012-01-01
Bilingual speakers generally manifest slower word recognition than monolinguals. We investigated the consequences of the word processing speed on semantic access in bilinguals. The paradigm involved a stream of English words and pseudowords presented in succession at a constant rate. English-Welsh bilinguals and English monolinguals were asked to…
Increased stormwater flows are a direct result of urbanization and the consequent increase in the proportion of land area under impervious surface. Due to its contribution to abnormally high stream flows and its role as a carrier of pollutants that degrade water quality, excess s...
Forest ecosystems of temperate climatic regions: from ancient use to climate change.
Gilliam, Frank S
2016-12-01
871 I. 871 II. 874 III. 875 IV. 878 V. 882 884 References 884 SUMMARY: Humans have long utilized resources from all forest biomes, but the most indelible anthropogenic signature has been the expanse of human populations in temperate forests. The purpose of this review is to bring into focus the diverse forests of the temperate region of the biosphere, including those of hardwood, conifer and mixed dominance, with a particular emphasis on crucial challenges for the future of these forested areas. Implicit in the term 'temperate' is that the predominant climate of these forest regions has distinct cyclic, seasonal changes involving periods of growth and dormancy. The specific temporal patterns of seasonal change, however, display an impressive variability among temperate forest regions. In addition to the more apparent current anthropogenic disturbances of temperate forests, such as forest management and conversion to agriculture, human alteration of temperate forests is actually an ancient phenomenon, going as far back as 7000 yr before present (bp). As deep-seated as these past legacies are for temperate forests, all current and future perturbations, including timber harvesting, excess nitrogen deposition, altered species' phenologies, and increasing frequency of drought and fire, must be viewed through the lens of climate change. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Kramer, Michael J.; Bellwood, David R.; Taylor, Richard B.; Bellwood, Orpha
2017-09-01
Tropical and temperate marine habitats have long been recognised as fundamentally different system, yet comparative studies are rare, particularly for small organisms such as Crustacea. This study investigates the ecological attributes (abundance, biomass and estimated productivity) of benthic Crustacea in selected microhabitats from a tropical and a temperate location, revealing marked differences in the crustacean assemblages. In general, microhabitats from the tropical location (dead coral, the epilithic algal matrix [algal turfs] and sand) supported high abundances of small individuals (mean length = 0.53 mm vs. 0.96 mm in temperate microhabitats), while temperate microhabitats (the brown seaweed Carpophyllum sp., coralline turf and sand) had substantially greater biomasses of crustaceans and higher estimated productivity rates. In both locations, the most important microhabitats for crustaceans (per unit area) were complex structures: tropical dead coral and temperate Carpophyllum sp. It appears that the differences between microhabitats are largely driven by the size and relative abundance of key crustacean groups. Temperate microhabitats have a higher proportion of relatively large Peracarida (Amphipoda and Isopoda), whereas tropical microhabitats are dominated by small detrital- and microalgal-feeding crustaceans (harpacticoid copepods and ostracods). These differences highlight the vulnerability of tropical and temperate systems to the loss of complex benthic structures and their associated crustacean assemblages.
Surficial redistribution of fallout 131iodine in a small temperate catchment
NASA Astrophysics Data System (ADS)
Landis, Joshua D.; Hamm, Nathan T.; Renshaw, Carl E.; Dade, W. Brian; Magilligan, Francis J.; Gartner, John D.
2012-03-01
Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) 137cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer 7beryllium, a consequence of the radionuclides' shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries.
Dincă, Vlad; Zakharov, Evgeny V.; Hebert, Paul D. N.; Vila, Roger
2011-01-01
DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of the European butterfly fauna. This country includes five eco-regions, the highest of any in the European Union, and is a good representative for temperate areas. Morphology and DNA barcodes of more than 1300 specimens were carefully studied and compared. Our results indicate that 90 per cent of the species form barcode clusters allowing their reliable identification. The remaining cases involve nine closely related species pairs, some whose taxonomic status is controversial or that hybridize regularly. Interestingly, DNA barcoding was found to be the most effective identification tool, outperforming external morphology, and being slightly better than male genitalia. Romania is now the first country to have a comprehensive DNA barcode reference database for butterflies. Similar barcoding efforts based on comprehensive sampling of specific geographical regions can act as functional modules that will foster the early application of DNA barcoding while a global system is under development. PMID:20702462
Surficial redistribution of fallout 131iodine in a small temperate catchment
Landis, Joshua D.; Hamm, Nathan T.; Renshaw, Carl E.; Dade, W. Brian; Magilligan, Francis J.; Gartner, John D.
2012-01-01
Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) 137cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer 7beryllium, a consequence of the radionuclides’ shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries. PMID:22378648
Lee, Won Young; Kim, Mincheol; Jablonski, Piotr G.; Choe, Jae Chun; Lee, Sang-im
2014-01-01
Inhibitory effect of incubation on microbial growth has extensively been studied in wild bird populations using culture-based methods and conflicting results exist on whether incubation selectively affects the growth of microbes on the egg surface. In this study, we employed culture-independent methods, quantitative PCR and 16S rRNA gene pyrosequencing, to elucidate the effect of incubation on the bacterial abundance and bacterial community composition on the eggshells of the Eurasian Magpie (Pica pica). We found that total bacterial abundance increased and diversity decreased on incubated eggs while there were no changes on non-incubated eggs. Interestingly, Gram-positive Bacillus, which include mostly harmless species, became dominant and genus Pseudomonas, which include opportunistic avian egg pathogens, were significantly reduced after incubation. These results suggest that avian incubation in temperate regions may promote the growth of harmless (or benevolent) bacteria and suppress the growth of pathogenic bacterial taxa and consequently reduce the diversity of microbes on the egg surface. We hypothesize that this may occur due to difference in sensitivity to dehydration on the egg surface among microbes, combined with the introduction of Bacillus from bird feathers and due to the presence of antibiotics that certain bacteria produce. PMID:25089821
NASA Astrophysics Data System (ADS)
Foroozmehr, Ehsan; Kovacevic, Radovan
2011-07-01
A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.
Mogi, M; Armbruster, P A; Tuno, N; Aranda, C; Yong, H S
2017-11-07
We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E; Figuera, Andreína; Rabinovich, Jorge E
2015-04-05
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Diffraction Theory and Almost Periodic Distributions
NASA Astrophysics Data System (ADS)
Strungaru, Nicolae; Terauds, Venta
2016-09-01
We introduce and study the notions of translation bounded tempered distributions, and autocorrelation for a tempered distribution. We further introduce the spaces of weakly, strongly and null weakly almost periodic tempered distributions and show that for weakly almost periodic tempered distributions the Eberlein decomposition holds. For translation bounded measures all these notions coincide with the classical ones. We show that tempered distributions with measure Fourier transform are weakly almost periodic and that for this class, the Eberlein decomposition is exactly the Fourier dual of the Lebesgue decomposition, with the Fourier-Bohr coefficients specifying the pure point part of the Fourier transform. We complete the project by looking at few interesting examples.
Tempered glass and thermal shock of ceramic materials
NASA Technical Reports Server (NTRS)
Bunnell, L. Roy
1992-01-01
A laboratory experiment is described that shows students the different strengths and fracture toughnesses between tempered and untempered glass. This paper also describes how glass is tempered and the materials science aspects of the process.
Wear Characteristics and Mechanisms of H13 Steel with Various Tempered Structures
NASA Astrophysics Data System (ADS)
Cui, X. H.; Wang, S. Q.; Wei, M. X.; Yang, Z. R.
2011-08-01
Wear tests of H13 steel with various tempering microstructures were performed under atmospheric conditions at room temperature (RT), 200 °C, and 400 °C. The wear characteristics and wear mechanisms of various tempered microstructures of the steel were focused by investigating the structure, morphology, and composition of the worn surfaces. Under atmospheric conditions at RT, 200 °C, and 400 °C, adhesive wear, mild oxidation wear, and oxidation wear prevailed, respectively. The wear rate at 200 °C was substantially lower than those at RT and 400 °C due to the protection of tribo-oxides. In mild oxidation wear, the tempered microstructures of the steel presented almost no obvious influence on the wear resistance. However, in adhesive wear and oxidation wear, the wear resistance strongly depended on the tempered microstructures of the steel. The steel tempered at 600-650 °C presented pronouncedly lower wear rates than the one tempered at 200-550 or 700 °C. It can be suggested that the wear resistance of the steel was closely related with its fracture resistance.
Sweeten, Sara E.; Ford, W. Mark
2015-01-01
Large-scale land uses such as residential wastewater discharge and coal mining practices, particularly surface coal extraction and associated valley fills, are of particular ecological concern in central Appalachia. Identification and quantification of both alterations across scales are a necessary first-step to mitigate negative consequences to biota. In central Appalachian headwater streams absent of fish, salamanders are the dominant, most abundant vertebrate predator providing a significant intermediate trophic role. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, and past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging with salamander abundances. However, little is known about these linkages in the coalfields of central Appalachia. In the summer of 2013, we visited 70 sites (sampled three times each) in the southwest Virginia coalfields to survey salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework we compared the effects of microhabitat and large-scale land use on salamander abundances. Our findings indicate that dusky salamander (Desmognathus spp.) abundances are more correlated to microhabitat parameters such as canopy cover than to subwatershed land uses. Brook salamander (Eurycea spp.) abundances show strong negative associations to the suspended sediments and stream substrate embeddedness. Neither Desmognathus spp. nor Eurycea spp. abundances were influenced by water conductivity. These suggest protection or restoration of riparian habitats and erosion control is an important conservation component for maintaining stream salamanders in the mined landscapes of central Appalachia.
Long-term morphological evolution of a morphologically active man-made stream in the Netherlands
NASA Astrophysics Data System (ADS)
Eekhout, J.; Hoitink, T.
2010-12-01
Around 1770, a straight artificial canal (Gelderns-Nierskanaal) has been constructed between the River Niers and the River Meuse, crossing the border between Germany and the Netherlands, with the purpose of reducing flood risk in the downstream reaches of the River Niers. Whereas the German part of the canal is kept straight throughout time, the Dutch part was left unprotected and developed into a morphodynamically active stream featuring a meandering planform. The current planform and in-channel morphology are analyzed using airborne LiDAR data and historical topographic maps. Around the turn of the 18th century, the first attempts were made to make detailed topographic maps. From this time on, at least 16 topographic maps of the area around the stream were made. With the use of these historical topographic maps, a reconstruction is made of the planimetric shape of the stream over a period of 240 years. The LiDAR data show old meander belts at several places around the stream. Those belts compare well with the topographic maps. The sinuosity increases from upstream to downstream. This could be a consequence of the valley slope, where the upper part is flat and the slope increases in downstream direction. Besides, the LiDAR data show that erosion resulted in an incised valley, with dimensions to 50 m in width and 6 m in depth. Both the datasets are combined to make an estimate of the historical sediment budget of the stream.
Role of Turbulent Damping in Cosmic Ray Galactic Winds
NASA Astrophysics Data System (ADS)
Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen
2018-06-01
Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).
NASA Astrophysics Data System (ADS)
Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.
2003-12-01
The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.
Rapid Thermal Processing to Enhance Steel Toughness.
Judge, V K; Speer, J G; Clarke, K D; Findley, K O; Clarke, A J
2018-01-11
Quenching and Tempering (Q&T) has been utilized for decades to alter steel mechanical properties, particularly strength and toughness. While tempering typically increases toughness, a well-established phenomenon called tempered martensite embrittlement (TME) is known to occur during conventional Q&T. Here we show that short-time, rapid tempering can overcome TME to produce unprecedented property combinations that cannot be attained by conventional Q&T. Toughness is enhanced over 43% at a strength level of 1.7 GPa and strength is improved over 0.5 GPa at an impact toughness of 30 J. We also show that hardness and the tempering parameter (TP), developed by Holloman and Jaffe in 1945 and ubiquitous within the field, is insufficient for characterizing measured strengths, toughnesses, and microstructural conditions after rapid processing. Rapid tempering by energy-saving manufacturing processes like induction heating creates the opportunity for new Q&T steels for energy, defense, and transportation applications.
Auclair, A.N.D. [Science and Policy Associates, Inc., Washington, D.C. (United States; Bedford, J.A. [Science and Policy Associates, Inc., Washington, D.C. (United States); Revenga, C. [Science and Policy Associates, Inc., Washington, D.C. (United States); Brenkert, A.L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1997-01-01
This database lists annual changes in areal extent (Ha) and gross merchantable wood volume (m3) produced by depletion and accrual processes in boreal and temperate forests in Alaska, Canada, Europe, Former Soviet Union, Non-Soviet temperate Asia, and the contiguous United States for the years 1890 through 1990. Forest depletions (source terms for atmospheric CO2) are identified as forest pests, forest dieback, forest fires, forest harvest, and land-use changes (predominantly the conversion of forest, temperate woodland, and shrubland to cropland). Forest accruals (sink terms for atmospheric CO2) are identified as fire exclusion, fire suppression, and afforestation or crop abandonment. The changes in areal extent and gross merchantable wood volume are calculated separately for each of the following biomes: forest tundra, boreal softwoods, mixed hardwoods, temperate softwoods, temperate hardwoods, and temperate wood- and shrublands.
Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.
Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong
2017-11-01
Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests demonstrate similar N uptake patterns although they differ in physiology of trees and soil biogeochemical processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Huguet, A.; Fosse, C.; Metzger, P.; Derenne, S.
2009-12-01
Glycerol dialkyl glycerol tetraethers (GDGTs) are complex lipids of high molecular weight, present in cell membranes of archaea and some bacteria. Archaeal membranes are formed predominantly by isoprenoid GDGTs with acyclic or ring-containing biphytanyl chains. Another type of GDGTs with branched instead of isoprenoid alkyl chains was recently discovered in soils. Branched tetraethers were suggested to be produced by anaerobic bacteria and can be used to reconstruct past air temperature and soil pH. Lipids preserved in soils can take two broad chemical forms: "free" lipids, recoverable after solvent extraction, and "bound" lipids, linked to the organic or mineral matrix of soils. The "free" and "bound" lipid fractions may respond to environmental changes in different ways and the information derived from these two pools may differ. The aim of the present work was therefore to compare the abundance and distribution of "free" and "bound" GDGTs in two contrasted podzols: a temperate podzol located 40 km north of Paris and a tropical podzol from the upper Amazon Basin. Five samples were collected from the whole profile of the temperate podzol including the litter layer. Five additional samples were obtained from three profiles of the tropical soil sequence, representative of the transition between a latosol and a well-developed podzol. Vertical and/or lateral variations in GDGT content and composition were highlighted. In particular, in the tropical sequence, GDGTs were present at relatively low concentrations in the early stages of podzolisation and were more abundant in the well-developed podzolic horizons, where higher acidity and increased bacterial activity may favour their stabilization. Concerning the temperate podzol, GDGT distribution was shown to vary greatly with depth in the soil profile, the methylation degree of bacterial GDGTs being notably higher in the surficial than in the deep soil horizons. Bacterial GDGTs were also detected in the litter layer of the temperate podzol, suggesting the presence of branched-GDGT producing bacteria in the litter, probably in anoxic microenvironments. Last, we showed for the first time that substantial amounts of "bound" GDGTs could be released after acid hydrolysis of solvent-extracted soils, since "bound" lipids represented between 10 and 60% of total (i.e. "free" + "bound") bacterial GDGTs and between 15 and 60% of total archaeal GDGTs in podzol samples. In addition, we observed that "free" and "bound" GDGTs could present different distribution patterns. Thus, the average methylation degree of bacterial GDGTs was higher in the "free" than in the "bound" lipid fraction in 3 soil horizons of the temperate podzol. Consequently, different mean air temperature values could be derived from "free" and "bound" bacterial GDGT distributions, suggesting that data obtained from the "free" lipid fraction have to be interpreted with care.
Quagelli, Luca; Solano, Paola
2017-10-01
In this paper, the authors analyze the relevance and transformative potential of individual psychoanalytic psychodrama in the treatment of children with severe impairments in symbolization. Central features of this modality, including promoting the representation of early traumatic experiences, are presented and discussed. Specific features include double-envelope containment of the co-therapists' group and play leader, consequent diffraction of the transference-determining portrayal, gradual integration, and initial figuration of coexisting split-off fragments. Drawing on in-depth clinical material, the authors show how psychodrama tempers the potentially traumatic effects of the encounter with the object, allowing these patients to access the transitional area of play. © 2017 The Psychoanalytic Quarterly, Inc.
NASA Astrophysics Data System (ADS)
Klein, M.; Eifler, D.
2010-07-01
To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.
Monte Carlo simulation of Hamaker nanospheres coated with dipolar particles
NASA Astrophysics Data System (ADS)
Meyra, Ariel G.; Zarragoicoechea, Guillermo J.; Kuz, Victor A.
2012-01-01
Parallel tempering Monte Carlo simulation is carried out in systems of N attractive Hamaker spheres dressed with n dipolar particles, able to move on the surface of the spheres. Different cluster configurations emerge for given values of the control parameters. Energy per sphere, pair distribution functions of spheres and dipoles as function of temperature, density, external electric field, and/or the angular orientation of dipoles are used to analyse the state of aggregation of the system. As a consequence of the non-central interaction, the model predicts complex structures like self-assembly of spheres by a double crown of dipoles. This interesting result could be of help in understanding some recent experiments in colloidal science and biology.
The Effect of Rare-Earth Metals on Cast Steels
1954-04-01
as the 1-inch section is also illustrated in Figure 23 and consists of tempered bainite and tempered martensite. Both of the control steels (AE-1...section Tempered bainite and tempered martensite 4 inch section Figure 23 Microstructure ol the Mn-Cr-Mo base control steels . Etched with... bainite 4-inch Section Figure 25—Microstructures of the MnCr-Mo + Rare Earths f B cast steels . Etched with picral, SOOX - .1 €. Figure 26
Method to Predict Tempering of Steels Under Non-isothermal Conditions
NASA Astrophysics Data System (ADS)
Poirier, D. R.; Kohli, A.
2017-05-01
A common way of representing the tempering responses of steels is with a "tempering parameter" that includes the effect of temperature and time on hardness after hardening. Such functions, usually in graphical form, are available for many steels and have been applied for isothermal tempering. In this article, we demonstrate that the method can be extended to non-isothermal conditions. Controlled heating experiments were done on three grades in order to verify the method.
NASA Astrophysics Data System (ADS)
Xiong, Xuesong; Yang, Feng; Zou, Xingrong; Suo, Jinping
2012-11-01
The effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel was investigated. The results from tensile tests showed that whether twice quenching and tempering processes(1253 K/0.5 h/W.C(water cool) + 1033 K/2 h/A.C(air cool) + 1233 K/0.5 h/W.C + 1033 K/2 h/A.C named after 2Q&2TI, and 1253 K/0.5 h/W.C + 1033 K/2 h/A.C + 1233 K/0.5 h/W.C + 1013 K/2 h/A.C named after 2Q&2TII)increased strength of steel or not depended largely on the second tempering temperature compared to quenching and tempering process(1253 K/0.5 h/W.C + 1033 K/2 h/A.C named after 1Q&1T). Charpy V-notch impact tests indicated that twice quenching and tempering processes reduced the ductile brittle transition temperature (DBTT). Microstructure inspection revealed that the prior austenitic grain size and martensite lath width were refined after twice quenching and tempering treatments. Precipitate growth was inhibited by a slight decrease of the second tempering temperature from 1033 to 1013 K. The finer average size of precipitates is considered to be the main possible reason for the higher strength and lower DBTT of 2Q&2TII compared with 2Q&2TI.
Hydrologic regimes as potential drivers of morphologic divergence in fish
Bruckerhoff, Lindsey; Magoulick, Daniel D.
2017-01-01
Fishes often exhibit phenotypic divergence across gradients of abiotic and biotic selective pressures. In streams, many of the known selective pressures driving phenotypic differentiation are largely influenced by hydrologic regimes. Because flow regimes drive so many attributes of lotic systems, we hypothesized fish exhibit phenotypic divergence among streams with different flow regimes. We used a comparative field study to investigate the morphological divergence of Campostoma anomalom (central stonerollers) among streams characterized by highly variable, intermittent flow regimes and streams characterized by relatively stable, groundwater flow regimes. We also conducted a mesocosm experiment to compare the plastic effects of one component of flow regimes, water velocity, on morphology of fish from different flow regimes. We observed differences in shape between flow regimes likely driven by differences in allometric growth patterns. Although we observed differences in morphology across flow regimes in the field, C. anomalum did not exhibit morphologic plasticity in response to water velocity alone. This study contributes to the understanding of how complex environmental factors drive phenotypic divergence and may provide insight into the evolutionary consequences of disrupting natural hydrologic patterns, which are increasingly threatened by climate change and anthropogenic alterations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba
Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less
The Challenge of Simulating the Regional Climate over Florida
NASA Astrophysics Data System (ADS)
Misra, V.; Mishra, A. K.
2015-12-01
In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.
Seasonal habitat use of brook trout and juvenile steelhead in a Lake Ontario tributary
Johnson, James H.; Abbett, Ross; Chalupnicki, Marc A.; Verdoliva, Francis
2016-01-01
Brook trout (Salvelinus fontinalis) are generally restricted to headwaters in New York tributaries of Lake Ontario. In only a few streams are brook trout abundant in lower stream reaches that are accessible to adult Pacific salmonids migrating from the lake. Consequently, because of the rarity of native brook trout populations in these lower stream reaches it is important to understand how they use stream habitat in sympatry with juvenile Pacific salmonids which are now naturalized in several Lake Ontario tributaries. In this study, we examined the seasonal (spring, summer, and fall) habitat use of brook trout and juvenile steelhead (Oncorhynchus mykiss) in Hart Brook, a tributary of eastern Lake Ontario. We found interspecific, intraspecific, and seasonal variation in habitat use. Subyearling steelhead were associated with faster water velocities than subyearling brook trout and, overall, had the least habitat similarity to the other salmonid groups examined. Overyearling brook trout and yearling steelhead exhibited the greatest degree of habitat selection and habitat selection by all four salmonid groups was greatest in summer. The availability of pool habitat for overyearling salmonids may pose the largest impediment to these species in Hart Brook.
Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba; ...
2016-01-07
Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less
Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.
2015-01-01
Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.
Morphological assessment of reconstructed lowland streams in the Netherlands
NASA Astrophysics Data System (ADS)
Eekhout, Joris P. C.; Hoitink, Antonius J. F.; de Brouwer, Jan H. F.; Verdonschot, Piet F. M.
2015-07-01
Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three reconstructed streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realise water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.
Morphological Assessment of Reconstructed Lowland Streams in the Netherlands
NASA Astrophysics Data System (ADS)
Hoitink, T.; Eekhout, J.; de Brouwer, J.; Verdonschot, P.
2014-12-01
Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three lowland streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realize water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.
Anderson, Elizabeth P.; Freeman, Mary C.; Pringle, C.M.
2006-01-01
Small dams for hydropower have caused widespread alteration of Central American rivers, yet much of recent development has gone undocumented by scientists and conservationists. We examined the ecological effects of a small hydropower plant (Dona Julia Hydroelectric Center) on two low-order streams (the Puerto Viejo River and Quebradon stream) draining a mountainous area of Costa Rica. Operation of the Dona Julia plant has dewatered these streams, reducing discharge to ~ 10% of average annual flow. This study compared fish assemblage composition and aquatic habitat upstream and downstream of diversion dams on two streams and along a ~ 4 km dewatered reach of the Puerto Viejo River in an attempt to evaluate current instream flow recommendations for regulated Costa Rican streams. Our results indicated that fish assemblages directly upstream and downstream of the dam on the third order Puerto Viejo River were dissimilar, suggesting that the small dam (< 15 in high) hindered movement of fishes. Along the ~ 4 km dewatered reach of the Puerto Viejo River, species count increased with downstream distance from the dam. However, estimated species richness and overall fish abundance were not significantly correlated with downstream distance from the dam. Our results suggested that effects of stream dewatering may be most pronounced for a subset of species with more complex reproductive requirements, classified as equilibrium-type species based on their life-history. In the absence of changes to current operations, we expect that fish assemblages in the Puerto Viejo River will be increasingly dominated by opportunistic-type, colonizing fish species. Operations of many other small hydropower plants in Costa Rica and other parts of Central America mirror those of Doha Julia; the methods and results of this study may be applicable to some of those projects.
Nørum, Ulrik; Friberg, Nikolai; Jensen, Maria R; Pedersen, Jakob M; Bjerregaard, Poul
2010-07-15
Pesticides are transported from crop fields to adjacent streams via surface run-off, drains, groundwater, wind drift and atmospheric deposition and give rise to transient pulse contamination. Although the concentrations observed, typically <10 microg L(-1), cannot be expected to be acutely lethal, effects in streams at the population and ecosystem level have been reported. One of the most conspicuous phenomena associated with these transient pesticide pulses is drift, where large numbers of freshwater invertebrates are carried along by the current and disappear from the contaminated stretch of the stream. The aim of the present study was to evaluate the feasibility of linking laboratory studies of the sublethal effects of pulse exposure to the pyrethroid lambda-cyhalothrin on the locomotory behaviour of stream invertebrates with effects on drift behaviour under more environmentally realistic conditions in stream microcosms. In the laboratory as well as in the microcosms, the order of sensitivities of the three species tested was (with Leuctra nigra being the most sensitive): L. nigra>Gammarus pulex>Heptagenia sulphurea. The LOECs determined for L. nigra (1 ng L(-1)), G. pulex (10 ng L(-1)) and H. sulphurea (100 ng L(-1)) are all within expected environmental concentrations. For the species of invertebrates investigated, it was possible to extrapolate directly from pyrethroid-induced behavioural changes observed in the laboratory to drift under more realistic conditions in stream microcosms. Consequently, the fast and cost-effective video tracking methodology may be applied for screening for potential effects of a wider range of pesticides and other stressors on the locomotory behaviour of freshwater invertebrates. The results indicate that such behavioural changes may be predictive of effects at the ecosystem level. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Shea, C.P.; Bettoli, Phillip William; Potoka, K. M.; Saylor, C. F.; Shute, P. W.
2015-01-01
During the past 100 years, most large rivers in North America have been altered for flood control, hydropower, navigation or water supply development. Although these activities clearly provide important human services, their associated environmental disturbances can profoundly affect stream-dwelling organisms. We used dynamic multi-species occupancy models combined with a trait-based approach to estimate the influence of site-level and species-level characteristics on patch dynamic rates for 15 darter species native to the Elk River, a large, flow-regulated Tennessee River tributary in Tennessee and Alabama. Dynamic occupancy modelling results indicated that for every 2.5 °C increase in stream temperature, darters were 3.94 times more likely to colonize previously unoccupied stream reaches. Additionally, large-bodied darter species were 3.72 times more likely to colonize stream reaches compared with small-bodied species, but crevice-spawning darter species were 5.24 times less likely to colonize previously unoccupied stream reaches. In contrast, darters were 2.21 times less likely to become locally extinct for every 2.5 °C increase in stream temperature, but high stream discharge conditions elevated the risk of local extinction. Lastly, the presence of populations in neighbouring upstream study reaches contributed to a lower risk of extinction, whereas the presence of populations in neighbouring downstream study reaches contributed to higher rates of colonization. Our study demonstrates the application of a trait-based approach combined with a metapopulation framework to assess the patch dynamics of darters in a regulated river. Results from our study will provide a baseline for evaluating the ecological consequences of alternative dam operations.
Acoustic emission-microstructural relationships in ferritic steels. Part 2: The effect of tempering
NASA Astrophysics Data System (ADS)
Scruby, C. B.; Wadley, H. N. G.
1985-07-01
Tempering of Fe-3.25 wt%Ni alloys with carbon contents of between 0.057 and 0.49 wt% leads to a pronounced acoustic emission activity during ambient temperature tensile testing. The maximum emission occurs from samples tempered approx. 250 deg C and appears only weakly influenced by carbon content. Mechanical property determinations link the maximum to a precipitation hardening effect. A model involving the cooperative motion of dislocations over distances corresponding to the lath-packet dimension is proposed. The mechanism responsible for cooperative motion is believed to be a precipitate shearing process, the first time such a process has been proposed for quenched and tempered ferritic steels. A second, much weaker source of emission has been identified in material subjected to prolonged tempering at 625 deg C. The mechanism responsible for this emission is believed to be the sudden multiplication and propagation of dislocations during microyield events. No evidence has been found to support the view that carbide fracture in quenched and tempered steels is a direct source of acoustic emission. The microstructural states in which most quenched and tempered steels are used in practice, generate very little detectable acoustic emission either during deformation or fracture, irrespective of carbon content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornos, J.J.; Forteza, V.; Jaume, C.
1990-05-01
Cala Fornells is a restricted bay located in the northern section of the island Minorca. Cala Fornells has a surface area of 4 km{sup 2} and a maximum depth of 25 m at the mouth, which connects with the northern Minorca platform. Due to ephemeral streams with very fine textural inflow, the sedimentary facies present in the floor of the bay are primarily controlled by the bioclastic carbonate ecosystem production and the terrigenous input. The distribution of the facies is related to three major factors: (1) bathymetry, which controls the ecosystem distribution (Cymodocea nodosa-Caulerpa prolifera, Posidonia oceanica, and maeerl communities,more » from shallowest to deepest); (2) hydrodynamic conditions due to northern winds (locally called Tramuntana), which control the grain size distribution; and (3) local ephemeral streams, which control the terrigenous input. In the coarser fractions of the sediment (gravel and sand), the main component in the deepest zones are skeletal fragments of red algae. The shallowest zones contain fragments of the green alga Halimeda tuna, which may represent up to 50% of the total bioclastic fraction. The terrigenous components are mostly shales and only locally do they find a sand fragment of limestone and quartz grains. The organic matter content is very high (over 6% in the finest fractions), whereas in the more hydrodynamic and deeper facies (25 m) where the bioclastic fractions are predominant, the organic carbon content is below 0.5%.« less
Soil erosion and management activities on forested slopes
Robert R. Ziemer
1986-01-01
Some of the most productive forests in the Western United States grow on marginally stable mountainous slopes, where disturbance increases the likelihood of erosion. Much of the public's concern about, and, consequently, most of the research on, erosion from these forested areas is related more to the degradation of stream resources by eroded material than to the...
Overview of best management practices related to forest roads: The southern states
Johnny M. Grace
2002-01-01
Forest roads are vital in the implementation of most all forest management activities. However, the potential of forest roads to have accelerated erosion losses and degrade water quality through stream sedimentation has long been recognized throughout the U.S. Forest roads have the potential to cause serious environmental impacts (possibly consequences) without...
W. F. Mueggler
1985-01-01
Aspen trees grow along moist stream bottoms as well as on dry ridges and southerly exposures, on talus slopes, and on shallow to deep soils of varied origins. Quaking aspen is one of the few plant species that can grow in all mountain vegetational zones from the alpine to the basal plain (Daubenmire 1943). As a consequence, aspen dominated communities are found...
Modelling dendritic ecological networks in space: An integrated network perspective
Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...
H. H. Welsh; C. A. Wheeler; A. J. Lind
2010-01-01
Spatial patterns of animals have important implications for population dynamics and can reveal other key aspects of a species' ecology. Movements and the resulting spatial arrangements have fitness and genetic consequences for both individuals and populations. We studied the spatial and dispersal patterns of the Oregon Gartersnake, Thamnophis atratus...
Consequences of ignoring geologic variation in evaluating grazing impacts
Jonathan W. Long; Alvin L. Medina
2006-01-01
The geologic diversity of landforms in the Southwest complicates efforts to evaluate impacts of land uses such as livestock grazing. We examined a research study that evaluated relationships between trout biomass and stream habitat in the White Mountains of east-central Arizona. That study interpreted results of stepwise regressions and a nonparametric test of âgrazed...
E. Ashley Steel; Abby Tillotson; Donald A. Larson; Aimee H. Fullerton; Keith P. Denton; Brian R. Beckman
2012-01-01
Alterations in variance of riverine thermal regimes have been observed and are predicted with climate change and human development. We tested whether changes in daily or seasonal thermal variability, aside from changes in mean temperature, could have biological consequences by exposing Chinook salmon (Oncorhynchus tshawytscha) eggs to eight...
Use of benthic prey by salmonids under turbid conditions in a laboratory stream
Bret C. Harvey; Jason L. White
2008-01-01
The negative effect of turbidity on the reactive distance of salmonids has been well established. However, determining the consequences of this relationship for overall feeding success remains problematic, as successful foraging by salmonids across a broad range in turbidity has been observed under a variety of conditions. Previous laboratory and field observations...
NASA Technical Reports Server (NTRS)
1979-01-01
A decade ago, NASA's Ames Research Center developed a new foam material for protective padding of airplane seats. Now known as Temper Foam, the material has become one of the most widely-used spinoffs. Latest application is a line of Temper Foam cushioning produced by Edmont-Wilson, Coshocton, Ohio for office and medical furniture. The example pictured is the Classic Dental Stool, manufactured by Dentsply International, Inc., York, Pennsylvania, one of four models which use Edmont-Wilson Temper Foam. Temper Foam is an open-cell, flameresistant foam with unique qualities.
Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel
NASA Astrophysics Data System (ADS)
Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.
2015-01-01
Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
NASA Astrophysics Data System (ADS)
Schwab, Michael P.; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2018-04-01
Diel fluctuations of stream water DOC concentrations are generally explained by a complex interplay of different instream processes. We measured the light absorption spectrum of water and DOC concentrations in situ and with high frequency by means of a UV-Vis spectrometer during 18 months at the outlet of a forested headwater catchment in Luxembourg (0.45 km2). We generally observed diel DOC fluctuations with a maximum in the afternoon during days that were not affected by rainfall-runoff events. We identified an increased inflow of terrestrial DOC to the stream in the afternoon, causing the DOC maxima in the stream. The terrestrial origin of the DOC was derived from the SUVA-254 (specific UV absorbance at 254 nm) index, which is a good indicator for the aromaticity of DOC. In the studied catchment, the most likely process that can explain the diel DOC input variations towards the stream is the so-called viscosity effect. The water temperature in the upper parts of the saturated riparian zone is increasing during the day, leading to a lower viscosity and therefore a higher hydraulic conductivity. Consequently, more water from areas that are rich in terrestrial DOC passes through the saturated riparian zone and contributes to streamflow in the afternoon. We believe that not only diel instream processes, but also viscosity-driven diel fluctuations of terrestrial DOC input should be considered to explain diel DOC patterns in streams.
Practical Meteor Stream Forecasting
NASA Technical Reports Server (NTRS)
Cooke, William J.; Suggs, Robert M.
2003-01-01
Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.
NASA Astrophysics Data System (ADS)
Jurči, Peter; Dománková, Mária; Ptačinová, Jana; Pašák, Matej; Kusý, Martin; Priknerová, Petra
2018-03-01
The microstructure and tempering response of Cr-V ledeburitic steel Vanadis 6 subjected to sub-zero treatment at - 196 °C for 4 h have been examined with reference to the same steel after conventional heat treatment. The obtained experimental results infer that sub-zero treatment significantly reduces the retained austenite amount, makes an overall refinement of microstructure, and induces a significant increase in the number and population density of small globular carbides with a size 100-500 nm. At low tempering temperatures, the transient M3C-carbides precipitated, whereas their number was enhanced by sub-zero treatment. The presence of chromium-based M7C3 precipitates was evidenced after tempering at the temperature of normal secondary hardening; this phase was detected along with the M3C. Tempering above 470 °C converts almost all the retained austenite in conventionally quenched specimens while the transformation of retained austenite is rather accelerated in sub-zero treated material. As a result of tempering, a decrease in the population density of small globular carbides was recorded; however, the number of these particles retained much higher in sub-zero treated steel. Elevated hardness of sub-zero treated steel can be referred to more completed martensitic transformation and enhanced number of small globular carbides; this state is retained up to a tempering temperature of around 500 °C in certain extent. Correspondingly, lower as-tempered hardness of sub-zero treated steel tempered above 500 °C is referred to much lower contribution of the transformation of retained austenite, and to an expectedly lower amount of precipitated alloy carbides.
NASA Astrophysics Data System (ADS)
Li, Dazhao; Li, Xiaonan; Cui, Tianxie; Li, Jianmin; Wang, Yutian; Fu, Peimao
2015-03-01
There are few relevant researches on coils by tempering, and the variations of microstructure and properties of steel coil during the tempering process also remain unclear. By using thermo-mechanical control process(TMCP) technology, Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line. Then, the samples are taken from the coils and tempered at the temperatures of 220 °C, 350 °C, and 620 °C respectively. After tempering the strength, ductility and toughness of samples are tested, and meanwhile microstructures are investigated. Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops. Then, the lath-shaped ferrites begin to gather, and the retained austenite films start to decompose. Finally, the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds. The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates, and the dislocation density decreases. The yield strength is highest when the steel is tempered at 220 °C because of pinning of the precipitates to dislocations. The total elongation increases in all samples because of the development of ferrites during tempering. The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen. This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels, as well as its resulting performance variation rules.
NASA Astrophysics Data System (ADS)
Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil
2015-05-01
This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.
NASA Astrophysics Data System (ADS)
Amangabara, G. T.
2006-05-01
There are two main drainage rivers in the Port Harcourt Metropolis - The Ntamogba and the Woji creek (Abam, 2004). There are a few other drainage rivers that are equally important e.g. the Nwaja River that drains Rumukalagbor, Elekahia, New GRA Phases IV and V, Presidential Housing Estate and Sun Ray publications Area of Aba Road. These river systems drain the entire Port Harcourt City dividing the City into three major drainage zones. Since the discovery of oil in Nigeria in the 1950s, the country has been suffering the negative environmental consequences of oil development. The growth of the country's oil industry, combined with population explosion and a lack of environmental regulations, led to substantial damage to Nigeria's environment, especially in the Niger Delta region, the center of the country's oil industry. Uncontrolled population movement as well as spontaneous housing development on marginal lands such as stream corridors, has led to the degradation of all major stream channels in the Nation's oil capital - Port Harcourt City. The longitudinal profiles and cross sections of reaches of three major streams (Ntamogba, Nwaja, and Oginigba streams) were investigated. Land use maps of 1979 1999 and 2004 were used. Our result showed that 1). Almost all of the stream corridors have been built up without adequate plan 2). The natural grades have been distorted by channelisation for the purpose of flood evacuation without geomorphic consideration .3). Our research also shows that the interface of saline water and fresh water has extended upstream affecting urban infrastructure. 4) localized damming and sedimentation behind hydraulic structures were common occurrences) our overall result indicate that two episodes of channel incision on Oginigba stream had increased slope reduced sinuosity increased entrenchment and reduce width-depth ratio . Conclusively the factors of the instability of theses urban streams are manly the processes of urbanization which include waste dumping channelisation and unregulated housing development in the channel corridors. KEY WORDS: stream instability, marginal lands, stream corridor, saline environment, spontaneous, geomorphic, channelisation
NASA Technical Reports Server (NTRS)
McPherron, Robert L.; Weygand, James
2006-01-01
Corotating interaction regions during the declining phase of the solar cycle are the cause of recurrent geomagnetic storms and are responsible for the generation of high fluxes of relativistic electrons. These regions are produced by the collision of a high-speed stream of solar wind with a slow-speed stream. The interface between the two streams is easily identified with plasma and field data from a solar wind monitor upstream of the Earth. The properties of the solar wind and interplanetary magnetic field are systematic functions of time relative to the stream interface. Consequently the coupling of the solar wind to the Earth's magnetosphere produces a predictable sequence of events. Because the streams persist for many solar rotations it should be possible to use terrestrial observations of past magnetic activity to predict future activity. Also the high-speed streams are produced by large unipolar magnetic regions on the Sun so that empirical models can be used to predict the velocity profile of a stream expected at the Earth. In either case knowledge of the statistical properties of the solar wind and geomagnetic activity as a function of time relative to a stream interface provides the basis for medium term forecasting of geomagnetic activity. In this report we use lists of stream interfaces identified in solar wind data during the years 1995 and 2004 to develop probability distribution functions for a variety of different variables as a function of time relative to the interface. The results are presented as temporal profiles of the quartiles of the cumulative probability distributions of these variables. We demonstrate that the storms produced by these interaction regions are generally very weak. Despite this the fluxes of relativistic electrons produced during those storms are the highest seen in the solar cycle. We attribute this to the specific sequence of events produced by the organization of the solar wind relative to the stream interfaces. We also show that there are large quantitative differences in various parameters between the two cycles.
Tundra fire alters stream water chemistry and benthic invertebrate communities, North Slope, Alaska
NASA Astrophysics Data System (ADS)
Allen, A. R.; Bowden, W. B.; Kling, G. W.; Schuett, E.; Kostrzewski, J. M.; Kolden Abatzoglou, C.; Findlay, R. H.
2010-12-01
Increased fire frequency and severity are potentially important consequences of climate change in high latitude ecosystems. The 2007 Anaktuvuk River fire, which burned from July until October, is the largest recorded tundra fire from Alaska's north slope (≈1,000 km2). The immediate effects of wildfire on water chemistry and biotic assemblages in tundra streams are heretofore unknown. We hypothesized that a tundra fire would increase inorganic nutrient inputs to P-limited tundra streams, increasing primary production and altering benthic macroinvertebrate community structure. We examined linkages among: 1) percentage of riparian zone and overall watershed vegetation burned, 2) physical, chemical and biological stream characteristics, and 3) macroinvertebrate communities in streams draining burned and unburned watersheds during the summers of 2008 and 2009. Streams in burned watersheds contained higher mean concentrations of soluble reactive phosphorus (SRP), ammonium (NH4+), and dissolved organic carbon (DOC). In contrast, stream nitrate (NO3-) concentrations were lower in burned watersheds. The net result was that the tundra fire did not affect concentrations of dissolved inorganic nitrogen (NH4+ + NO3-). In spite of increased SRP, benthic chlorophyll-a biomass was not elevated. Macroinvertebrate abundances were 1.5 times higher in streams draining burned watersheds; Chironomidae midges, Nematodes, and Nemoura stoneflies showed the greatest increases in abundance. Multivariate multiple regression identified environmental parameters associated with the observed changes in the macroinvertebrate communities. Since we identified stream latitude as a significant predictor variable, latitude was included in the model as a covariate. After removing the variation associated with latitude, 67.3 % of the variance in macroinvertebrate community structure was explained by a subset of 7 predictor variables; DOC, conductivity, mean temperature, NO3-, mean discharge, SRP and NH4+. The percentage of riparian vegetation burned, the percentage of watershed vegetation burned and total suspended solids were not included in the model as these parameters correlated with DOC concentration at r > 0.90. These results indicate that tundra fire not only alters stream water chemistry, it also affects benthic macroinvertebrate community structure.
Incorporation of water-use summaries into the StreamStats web application for Maryland
Ries, Kernell G.; Horn, Marilee A.; Nardi, Mark R.; Tessler, Steven
2010-01-01
Approximately 25,000 new households and thousands of new jobs will be established in an area that extends from southwest to northeast of Baltimore, Maryland, as a result of the Federal Base Realignment and Closure (BRAC) process, with consequent new demands on the water resources of the area. The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, has extended the area of implementation and added functionality to an existing map-based Web application named StreamStats to provide an improved tool for planning and managing the water resources in the BRAC-affected areas. StreamStats previously was implemented for only a small area surrounding Baltimore, Maryland, and it was extended to cover all BRAC-affected areas. StreamStats could provide previously published streamflow statistics, such as the 1-percent probability flood and the 7-day, 10-year low flow, for U.S. Geological Survey data-collection stations and estimates of streamflow statistics for any user-selected point on a stream within the implemented area. The application was modified for this study to also provide summaries of water withdrawals and discharges upstream from any user-selected point on a stream. This new functionality was made possible by creating a Web service that accepts a drainage-basin delineation from StreamStats, overlays it on a spatial layer of water withdrawal and discharge points, extracts the water-use data for the identified points, and sends it back to StreamStats, where it is summarized for the user. The underlying water-use data were extracted from the U.S. Geological Survey's Site-Specific Water-Use Database System (SWUDS) and placed into a Microsoft Access database that was created for this study for easy linkage to the Web service and StreamStats. This linkage of StreamStats with water-use information from SWUDS should enable Maryland regulators and planners to make more informed decisions on the use of water resources in the BRAC area, and the technology should be transferrable to other geographic areas.
Fouch, T.D.; Carter, L.D.; Kunk, Michael J.; Smith, C.A.S.; White, J.M.
1994-01-01
Cenozoic strata exposed along the Porcupine River between the Upper Ramparts and Canyon Village, Alaska, can be divided into five unconformity-bounded units (sequences) which are: lower and middle Miocene unit A, the white sandy fluvial sequence with peat beds; middle Miocene unit B, the basalt sequence-part B1 is basalt, and part B2 is organic-rich sedimentary beds; upper Miocene unit C, mudrock-dominated lake sequence; late Miocene or Pliocene to Pleistocene unit D, terrace gravels, detrital organic matter and associated sediments, and Holocene unit E, mixed sand and gravel-rich sediment and other sedimentary material including peat and eolian silt. The sequence (unit A) of lower and middle Miocene fluvial deposits formed in streams and on flood plains, just before the inception of local volanism. Fossil pollen from unit A suggests conifer-dominated regional forests and cool temperate climates. Peat beds and lake deposits from unit B contain pollen that indicates a warmer temperate climate coinciding with the middle Miocene thermal maximum. The lake deposits (unit C) downstream from the basalts accumulated in a small basin which resulted from a hydrologic system that was dammed in the late Miocene but breached soon thereafter. The lower part of the terrace gravels (unit D) expresses breaching of the dammed hydrologic system (of unit C). The Porcupine River became a major tributary of the Yukon River in late Pleistocene time when Laurentide ice blocked drainage from the Yukon interior basins causing meltwater to spill over the low divide separating it from the Porcupine River drainage initiating erosion and capture of the Yukon interior basins. ?? 1994.