Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.
Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252
NASA Astrophysics Data System (ADS)
Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning
2018-03-01
Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results showed that the main controls on soil microbes and functions vary in different climatic zones and that the effects of soil moisture content, soil temperature, clay content, and the soil N / P ratio were considerable. This information will add value to the modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sihang; Zhang, Yuguang; Cong, Jing
Global warming has shifted climate zones poleward or upward. Furthermore, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic α-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRImore » (Net Relatedness Index) values increased from 0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomybased association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional α-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional β-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-fortime substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic α-diversities in broadleaved forest.« less
Yang, Sihang; Zhang, Yuguang; Cong, Jing; ...
2017-02-10
Global warming has shifted climate zones poleward or upward. Furthermore, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic α-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRImore » (Net Relatedness Index) values increased from 0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomybased association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional α-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional β-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-fortime substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic α-diversities in broadleaved forest.« less
NASA Astrophysics Data System (ADS)
Park, M.; Moon, M.; Park, J.; Cho, S.; Kim, H. S.
2016-12-01
Individual tree growth rates can be affected by various factors such as species, soil fertility, stand development stage, disturbance, and climate etc. To estimate the effect of changes in tree growth rate on the structure and functionality of forest ecosystem in the future, we analyzed the change of species-specific growth trends using the fifth Korea national forest inventory data, which was collected from 2006 to 2010. The ring samples of average tree were collected from nationwide inventory plots and the total number of individual tree ring series was 69,128 covering 185 tree species. Among those, fifty one species with more than 100 tree ring series were used for our analysis. For growth-trend analysis, standardized regional curves of individual species growth were generated from three forest zone in South Korea; subarctic, cool temperate, warm temperate forest zone. Then individual tree ring series was indexed by dividing the growth of the tree by expected growth from standardized regional curves. Then the ratio of all tree ring series were aligned by year and the Spearman's correlation coefficient of each species was calculated. The results show that most of species had increasing growth rates as forests developed after Korean war. For the last thirty years, 67.3% of species including Quercus spp. and Zelkova serrata had positive growth trends, on the other hand, 11.5% of species including Pinus spp. showed negative growth trends probably due to the changes in successional stages in Korean forests and climate change. These trends also vary with climate zone and species. For examples, Pinus densiflora, which showed negative growth trend overall, had steep negative growth trends in boreal and temperate zone, whereas it showed no specific trend in sub-tropical climate zone. Our trend analysis on 51 temperate tree species growth will be essential to predict the temperate forests species change for the this century.
Kirsch, Eileen M.; Heglund, Patricia J.; Gray, Brian R.; Mckann, Patrick
2013-01-01
The Upper Mississippi River is thought to provide important stopover habitat for migrating landbirds because of its north-south orientation and floodplain forests. The river flows through the Driftless Area of southwestern Wisconsin and southeastern Minnesota where forests are plentiful, yet forests of the floodplain and Driftless Area uplands differ greatly in landscape setting, tree species composition, and topography. We compared landbird assemblages in these upland and floodplain forests over three springs, 2005–2007, using line-transect surveys at randomly selected areas in and within 16 km of the floodplain. We found more species of both transient and locally breeding migrants per survey in floodplain than in upland forest. Detections of transient neotropical migrants did not differ statistically by habitat. Detections of locally breeding neotropical and temperate-zone migrants and transient temperate-zone migrants were greater in floodplain than in upland forest. Between floodplain and upland forest, assemblages of locally breeding species, including neotropical and temperate-zone migrants (of which some individuals were in transit), differed substantially, but assemblages of transients (including both neotropical and temperate-zone migrants) did not differ as much. Only two species of transient migrants had clear affinities for floodplain forest, and none had an affinity for upland forest, whereas most locally breeding migrants had an affinity for either upland or floodplain forest. Within each spring, however, detections of transient neotropical migrants shifted from being greater in floodplain to greater in upland forests. This intraseasonal shift may be related to the phenology of certain tree species.
Restoration Concepts for Temperate and Boreal Forests of North America and Western Europe
John A. Stanturf; P. Madsen
2002-01-01
Throughout the boreal and temperate zones, forest restoration efforts attempt to counteract negative effects of conversion to other land use (afforestation and remediation) and disturbance and stress on existing forests (rehabilitation). Appropriate silvicultural practices can be designed for any forest restoration objective. Most common objectives include timber,...
NASA Astrophysics Data System (ADS)
Igarashi, Yaeko; Irino, Tomohisa; Sawada, Ken; Song, Lu; Furota, Satoshi
2018-04-01
We reconstructed fluctuations in the East Asian monsoon and vegetation in the Japan Sea region since the middle Pliocene based on pollen data obtained from sediments collected by the Integrated Ocean Drilling Program off the southwestern coast of northern Japan. Taxodiaceae conifers Metasequoia and Cryptomeria and Sciadopityacere conifer Sciadopitys are excellent indicators of a humid climate during the monsoon. The pollen temperature index (Tp) can be used as a proxy for relative air temperature. Based on changes in vegetation and reconstructed climate over a period of 4.3 Ma, we classified the sediment sequence into six pollen zones. From 4.3 to 3.8 Ma (Zone 1), the climate fluctuated between cool/moist and warm/moist climatic conditions. Vegetation changed between warm temperate mixed forest and cool temperate conifer forest. The Neogene type tree Carya recovered under a warm/moist climate. The period from 3.8 to 2.5 Ma (Zone 2) was characterized by increased Metasequoia pollen concentration. Warm temperate mixed forest vegetation developed under a cool/moist climate. The period from 2.5 to 2.2 Ma (Zone 3) was characterized by an abrupt increase in Metasequoia and/or Cryptomeria pollen and a decrease in warm broadleaf tree pollen, indicating a cool/humid climate. The Zone 4 period (2.2-1.7 Ma) was characterized by a decrease in Metasequoia and/or Cryptomeria pollen and an increase in cool temperate conifer Picea and Tsuga pollen, indicating a cool/moist climate. The period from 1.7 to 0.3 Ma (Zone 5) was characterized by orbital-scale climate fluctuations. Cycles of abrupt increases and decreases in Cryptomeria and Picea pollen and in Tp values indicated changes between warm/humid and cold/dry climates. The alpine fern Selaginella selaginoides appeared as of 1.6 Ma. Vegetation alternated among warm mixed, cool mixed, and cool temperate conifer forests. Zone 6 (0.3 Ma to present) was characterized by a decrease in Cryptomeria pollen. The warm temperate broadleaf forest and cool temperate conifer forest developed alternately under warm/moist and cold/dry climate. Zone 2 corresponded to a weak Tsushima Current breaking through the Tsushima Strait, and the beginning of orbital-scale climatic changes at 1.7 Ma during Zone 5 corresponded to the strong inflow of the Tsushima Current into the Japan Sea during interglacial periods (Gallagher et al., 2015).
Silviculture for restoration of degraded temperate and boreal forests
John A. Stanturf; Palle Madsen; Emile S. Gardiner
2004-01-01
Throughout the temperate and boreal zones, human intervention has influenced landscapes and forests for millennia. The degree of human disturbance has only been constrained by the technology and resources available to different cultures and by time since initial habitation. Humans have influenced forests by regulating populations of browsers, clearing for agriculture,...
Keith Reinhardt; William K. Smith
2010-01-01
The red spruce-Fraser fir ecosystem (Picea rubens Sarg.-Abies fraseri [Pursh] Poir.) of the southern Appalachian mountains is a temperate zone cloud forest immersed in clouds for 30 to 40 percent of a typical summer day, and experiencing immersion on about 65 percent of all days annually. We compared the microclimate,...
John A. Stanturf
2005-01-01
The need to repair habitat and restore forest structure and funciton is recognized throughout the temperate and boreal zones as a component of sustainable forest management (Krishnaswamy and Hanson 1999; Dobson et al. 1997). Forest restoration is a complex task, complicated by diverse ecological and social conditions, that challenges our understanding of forest...
NASA Astrophysics Data System (ADS)
Yu, Lonfei; Zhu, Jing; Mulder, Jan; Dörsch, Peter
2016-04-01
Forests in China receive variable but increasing amounts of nitrogen from the atmosphere causing N saturation and nitrate runoff. Surprisingly high N-retention has been reported from subtropical forests, suggesting active mechanisms of N removal. Here we report a multi-site study of 15N and 18O abundances in soil nitrate (NO3-) across seven forested catchments spanning from temperate to subtropical China. In each catchment, samples were taken on one date during one or two summer along the hydrological continuum comprising hillslope positions and riparian zones. We had found previously in an intensive multi-year study at one of the sites, that the spatial pattern of summertime 15N and 18O in soil nitrate was remarkably stable across climatically distinct years, suggesting persistent N removal by denitrification at the foot of hill slopes and in groundwater discharge zones (Yu et al., submitted). In the present study, we extended the scope to five subtropical Chinese catchments and compared them with two temperate forests. Our data confirm the general pattern of efficient nitrification on hillslopes and strong denitrification in riparian zones in the subtropical catchments but not in the temperate ones. This is likely because high summer rainfalls at the monsoonal sites connect N mineralization and oxidation in upland positions with NO3- reduction in ground water discharge zones via NO3- runoff, rendering subtropical forests an efficient sink for reactive N with implications for regional N budgets. The impact of N deposition level, hydrology and edaphic factors on the predictive power of nitrate isotope signatures for N removal processes will be discussed. Yu L, Zhu J, Mulder J, Dörsch P: Spatiotemporal patterns in dual nitrate isotopes reveal efficient N transformation and denitrification along a hydrological continuum in N-saturated, subtropical forest. Submitted
Madis Sipols
1998-01-01
Systematic assessment and observation (survey, inventory) of forests in Latvia has been underway since the 1700's. Latvia's forests are in the boreal/temperate forest zone and cover 44 percent of the country. Forest growing conditions are subdivided into five site class types: forests on dry mineral, wet mineral, wet peat, drained mineral, drained peat soils...
Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng
2014-04-01
Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.
Hedwall, Per-Ola; Brunet, Jörg
2016-12-01
Northern forest ecosystems are exposed to a range of anthropogenic processes including global warming, atmospheric deposition, and changing land-use. The vegetation of northern forests is composed of species with several functional traits related to these processes, whose effects may be difficult to disentangle. Here, we combined analyses of spatio-temporal dynamics and functional traits of ground flora species, including morphological characteristics, responses to macro- and microclimate, soil conditions, and disturbance. Based on data from the Swedish National Forest Inventory, we compared changes in occurrence of a large number of ground flora species during a 20-year period (1994-2013) in boreal and temperate Sweden respectively. Our results show that a majority of the common ground flora species have changed their overall frequency. Comparisons of functional traits between increasing and declining species, and of trends in mean trait values of sample plots, indicate that current floristic changes are caused by combined effects of climate warming, nitrogen deposition and changing land-use. Changes and their relations with plant traits were generally larger in temperate southern Sweden. Nutrient-demanding species with mesotrophic morphology were favored by ongoing eutrophication due to nitrogen deposition in the temperate zone, while dwarf shrubs with low demands on nitrogen decreased in frequency. An increase of species with less northern and less eastern distribution limits was also restricted to temperate Sweden, and indicates effects of a moister and milder macroclimate. A trend toward dense plantation forests is mirrored by a decrease of light-demanding species in both vegetation zones, and a decrease of grassland species in the temperate zone. Although denser tree canopies may buffer effects of a warmer climate and of nitrogen deposition to some extent, traits related to these processes were weakly correlated in the group of species with changing frequency. Hence, our results indicate specific effects of these often confounded anthropogenic processes. © 2016 John Wiley & Sons Ltd.
Remote sensing and today's forestry issues
NASA Technical Reports Server (NTRS)
Sayn-Wittgenstein, L.
1977-01-01
The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.
CO2 flux studies of different hemiboreal forest ecosystems
NASA Astrophysics Data System (ADS)
Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido
2017-04-01
Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).
Introduction: Forest restoration in temperate and boreal zones
Emile Gardiner; Katrine Hahn; Magnus Löf
2003-01-01
The past decade has witnessed an acceleration of forest restoration activities around the globe. Afforestation of former agricultural land, rehabilitation of natural forest processes and structures at the stand and landscape levels, and conversion of single-species plantations to mixed-species stands are among the prominent types of restoration practices currently...
Zotin, A A; Ozerniuk, N D
2002-01-01
Comparison of respiration rate in pulmonate snails living in various climatic zones demonstrated higher constant a in representatives of Arion genus (A. subfucus and A. fasciatus) from Polar Area (Murmansk Region) as compared to inhabitants of temperate latitudes (Moscow Region). The snails of Deroceras genus (D. reticulatum) from these two climatic zones were indistinguishable by relative standard metabolism. Different effects of climatic thermal conditions on respiration rates in representatives of these two snail genera can be due to their specific biology. Representatives of Deroceras genus are short-cycle synanthropic species, while the snails of Arion genus are long-cycle species living mostly in the forest zone.
Koarashi, Jun; Iida, Takao; Asano, Tomohiro
2005-01-01
To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ((14)C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of (14)C abundances showed that (1) bomb-derived (14)C has penetrated the first 16cm mineral soil at least; (2) Delta(14)C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived (14)C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived (14)C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales.
NASA Astrophysics Data System (ADS)
Roth, T. R.; Nolin, A. W.
2015-12-01
Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.
Reanalysis of water and carbon cycle models at a critical zone observatory
USDA-ARS?s Scientific Manuscript database
The Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is a forested, hill-slope catchment located in the temperate-climate of central Pennsylvania with an extensive network of ground-based instrumentation for model testing and development. In this paper we discuss the use of multi-state fi...
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.
2010-12-01
Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.
Amanda Keasberry; Justin Hart; Daniel C. Dey; Callie Schweitzer
2016-01-01
Regeneration failure of Quercus in mature Quercus-dominated forests has been reported throughout the temperate zone. Quercus seedlings are often abundant in these forests, yet frequently fail to recruit to larger size classes despite canopy disturbances. To examine intra-stand patterns of advanced...
Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander
2018-04-20
Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.
Lucía Rodríguez, Romero; Pacheco, Leticia; Zavala Hurtado, José Alejandro
2008-06-01
Pteridophytes that indicate environmental alteration in the San Jer6nimo Amanalco temperate forest, Texcoco, Mexico. The patterns of distribution of 26 pteridophyte species were studied as possible indicators of environmental alteration in the temperate forest of San Jer6nimo Amanalco, Texcoco, State of Mexico. The presence and abundance of the pteridoflora was studied in relation to edaphic, topographic and vegetation variables in 100 sampling locations within an area of 494 hectares. The relationship between these variables was studied using Canonical Correspondence Analysis. Five landscapes were recognized in the study zone according to the degree of deterioration: severe erosion, erosion, mountain with moderate reversible deterioration, mountain with no evident deterioration, and canyon with no evident deterioration. Cheilanthes bonariensis and Pellaea ternifolia are indicators of environmental degradation. The taxa that only grow in landscapes without apparent alteration are Adiantum andicola, Adiantum poiretii, Argyrochosma incana, Asplenium blepharophorum, Dryopteris pseudo filix-mas, Equisetum hyemale and Pteris cretica.
Seed Biology and Technology of Quercus
F.T. Bonner; John A. Vozzo
1987-01-01
The genus Quercus,known as oak, includes worldwide some 500 species with 58 of these species in the United States, making it this country's largest genus of native trees (Little 1979). Oak is therefore an important group of temperate-zone forest trees. In addition, oaks are significant components of many of the major forest types of the South (Burns 1983)and are...
Apparent climatically induced increase of tree mortality rates in a temperate forest
van Mantgem, P.J.; Stephenson, N.L.
2007-01-01
We provide a first detailed analysis of long-term, annual-resolution demographic trends in a temperate forest. After tracking the fates of 21 338 trees in a network of old-growth forest plots in the Sierra Nevada of California, we found that mortality rate, but not the recruitment rate, increased significantly over the 22 years of measurement (1983-2004). Mortality rates increased in both of two dominant taxonomic groups (Abies and Pinus) and in different forest types (different elevational zones). The increase in overall mortality rate resulted from an increase in tree deaths attributed to stress and biotic causes, and coincided with a temperature-driven increase in an index of drought. Our findings suggest that these forests (and by implication, other water-limited forests) may be sensitive to temperature-driven drought stress, and may be poised for die-back if future climates continue to feature rising temperatures without compensating increases in precipitation. ?? 2007 Blackwell Publishing Ltd/CNRS.
Leithead, Mark D; Anand, Madhur; Silva, Lucas C R
2010-12-01
Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes-St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.
The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia
NASA Astrophysics Data System (ADS)
James, Noel P.; Reid, Catherine M.; Bone, Yvonne; Levings, Andrew; Malcolm, Isabelle
2013-06-01
The shallow neritic seafloor to depths of ~ 30 m along the coast of southwestern Victoria Australia, is the site of rocky reefs on volcanic and aeolianite bathymetric highs. The region, located near the warm- to cool-temperate environmental transition, is a site of prolific macroalgae (kelp) growth. Kelps are most prolific and diverse in high-energy, open-ocean environments whereas broad-leafed seagrasses, at their cold-water eastern limit, are restricted to local protected embayments. The seagrasses are reduced to one species of Amphibolis whereas the kelps are diverse and include the large intertidal bull kelp (Durvillaea), not present in warmer waters. The macroalgal forest extends from the intertidal to ~ 30 mwd (metres water depth) as a series of distinct biomes; 1) the Peritidal, 2) the Phaeophyte Forest (0-17 mwd), 3) the Rhodophyte Thicket (17-15 mwd), and 4) the Invertebrate Coppice (> 25 mwd). The Phaeophyte Forest is partitioned into a Durvillaea zone (0-2 mwd), a Phyllospora zone (2-10 mwd) and an Ecklonia zone (10-17mwd). The two major habitats within each biome comprise 1) an upward facing illuminated surface that supports a macroalgal canopy over an understorey of coralline algae and herbivorous gastropods, and 2) a separate, cryptic, shaded habitat dominated by a diverse community of filter-feeding invertebrates. These communities produce two different sediments; 1) geniculate and encrusting corallines and diverse gastropods from the upper surface, and 2) bryozoans, molluscs, barnacles, chitons, serpulids, and benthic foraminifers from the shaded, cryptic habitats. These particles are blended together with the latter becoming proportionally more abundant with increasing depth. Results of this study, when integrated with recent investigations in warm-temperate (South Australia) and cool-temperate (New Zealand) environments now define carbonate sedimentology of the macroalgal reef depositional system in this part of the northern Southern Ocean.
E.N. Jack Brookshire; Stefan Gerber; Jackson R. Webster; James M. Vose; Wayne T. Swank
2010-01-01
The microbial conversion of organic nitrogen (N) to plant available forms is a critical determinant of plant growth and carbon sequestration in forests worldwide. In temperate zones, microbial activity is coupled to variations in temperature, yet at the ecosystem level, microbial N mineralization seems to play a minor role in determining patterns of N loss. Rather, N...
Biophysical climate impacts of recent changes in global forest cover.
Alkama, Ramdane; Cescatti, Alessandro
2016-02-05
Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change. Copyright © 2016, American Association for the Advancement of Science.
Carbon Sequestration and Forest Management at DoD Installations: An Exploratory Study,
1995-01-01
and tropical latitudes, afforestation in the temperate regions, and agroforestry and natural reforestation in the tropics. Least promising from a...t-C. The most cost-efficient forestry and agroforestry practices, based on establishment costs, within zones of latitude are shown in the...Press, New Haven, CT. Schroeder, P.E., R.K. Dixon, and J.K. Winjum. 1993. Forest management and agroforestry to sequester and conserve atmospheric
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
Hanya, Goro; Tsuji, Yamato; Grueter, Cyril C
2013-04-01
In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17-28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the subsequent fruit-scarce period can be an effective strategy to survive the lean period (winter).
Methane emissions and uptake in temperate and tropical forest trees on free-draining soils.
NASA Astrophysics Data System (ADS)
Welch, Bertie; Sayer, Emma; Siegenthaler, Andy; Gauci, Vincent
2016-04-01
Forests play an important role in the exchange of radiatively important gases with the atmosphere. Previous studies have shown that in both temperate and tropical wetland forests tree stems are significant sources of methane (CH4), yet little is known about trace greenhouse gas dynamics in free-draining soils that dominate global forested areas. We examined trace gas (CH4 and N2O) fluxes from both soils and tree stems in a lowland tropical forest on free-draining soils in Panama, Central America and from a deciduous woodland in the United Kingdom. The tropical field site was a long-term experimental litter manipulation experiment in the Barro Colorado Nature Monument within the Panama Canal Zone, fluxes were sampled over the dry to wet season transition (March-August) in 2014 and November 2015. Temperate fluxes were sampled at Wytham Woods, Oxfordshire, over 12 months from February 2015 to January 2016. Tree stem samples were collected via syringe from temporary chambers strapped to the trees (as per Siegenthaler et al. (2015)) and the soil fluxes were sampled from permanently installed collars inserted to a 3cm depth. We found that seasonality (precipitation) is a significant driver of changing soil exchange from methane uptake to emission at the Panama sites. Experimental changes to litter quantity only become significant when coupled with seasonal change. Seasonal variability is an important control of the fluxes at out temperate forest site with changes in temperature and soil water content leading to changes in soil and tree stem trace gas fluxes from Wytham Woods. Siegenthaler, A., Welch, B., Pangala, S. R., Peacock, M., and Gauci, V.: Technical Note: Semi-rigid chambers for methane gas flux measurements on tree-stems, Biogeosciences Discuss., 12, 16019-16048, doi:10.5194/bgd-12-16019-2015, 2015.
A global climate niche for giant trees.
Scheffer, Marten; Xu, Chi; Hantson, Stijn; Holmgren, Milena; Los, Sietse O; van Nes, Egbert H
2018-04-15
Rainforests are among the most charismatic as well as the most endangered ecosystems of the world. However, although the effects of climate change on tropical forests resilience is a focus of intense research, the conditions for their equally impressive temperate counterparts remain poorly understood, and it remains unclear whether tropical and temperate rainforests have fundamental similarities or not. Here we use new global data from high precision laser altimetry equipment on satellites to reveal for the first time that across climate zones 'giant forests' are a distinct and universal phenomenon, reflected in a separate mode of canopy height (~40 m) worldwide. Occurrence of these giant forests (cutoff height > 25 m) is negatively correlated with variability in rainfall and temperature. We also demonstrate that their distribution is sharply limited to situations with a mean annual precipitation above a threshold of 1,500 mm that is surprisingly universal across tropical and temperate climates. The total area with such precipitation levels is projected to increase by ~4 million km 2 globally. Our results thus imply that strategic management could in principle facilitate the expansion of giant forests, securing critically endangered biodiversity as well as carbon storage in selected regions. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mihai, Bogdan; Savulescu, Ionut
2014-05-01
Forest fires in Romanian Carpathians became a frequent phenomenon during the last decade, although local climate and other environmental features did not create typical conditions. From 2004, forest fires affect in Romania more than 100 hectares/year of different forest types (deciduous and coniferous). Their magnitude and frequency are not known, since a historical forest fire inventory does not exist (only press papers and local witness for some selected events). Forest fires features the summer dry periods but there are dry autumns and early winter periods with events of different magnitudes. The application we propose is based on an empirical modeling of forest fire susceptibility in a typical mountain area from the Southern Carpathians, the Iezer Mountains (2462 m). The study area features almost all the altitudinal vegetation zones of the European temperate mountains, from the beech zone, to the coniferous zone, the subalpine and the alpine zones (Mihai et al., 2007). The analysis combines GIS and remote sensing models (Chuvieco et al., 2012), starting from the ideas that forest fires are featured by the ignition zones and then by the fire propagation zones. The first data layer (ignition zones) is the result of the crossing between the ignition factors: lightning - points of multitemporal occurence and anthropogenic activities (grazing, tourism and traffic) and the ignition zones (forest fuel zonation - forest stands, soil cover and topoclimatic factor zonation). This data is modelled from different sources: the MODIS imagery fire product (Hantson et al., 2012), detailed topographic maps, multitemporal orthophotos at 0.5 m resolution, Landsat multispectral imagery, forestry cadastre maps, detailed soil maps, meteorological data (the WorldClim digital database) as well as the field survey (mapping using GPS and local observation). The second data layer (fire propagation zones) is the result of the crossing between the forest fuel zonation, obtained with the help of forestry data, the wind regime data and the topographic features of the mountain area (elevation, slope declivity, slope aspect). The analysis also consider the insolation degree of mountain slopes, that creates favourable conditions for fire propagation between different canopies. These data layers are integrated within a simple GIS analysis in order to intersect the ignition zones with the fire propagation zones in order to obtain the potential areas to be affected by fire. The digital map show three levels of forest fire susceptibility, differenced on the basis of expert knowledge. The map can be validated from the statistical point of view with the polygons of the forest fire affected areas mapped from Landsat TM, ETM+ and OLI satellite imagery. The mapping results could be integrated within the forest management strategies and especially within the forest cadastre and development maps (updated every ten years). The result can confirm that the data gap in terms of forest fire events can be filled with expert knowledge. References Chuvieco, E, Aguado, I., Jurdao, S., Pettinari, M., Yebra, M., Salas, J., Hantson, S., de la Riva, J., Ibarra, P., Rodrigues, M., Echeverria, M., Azqueta, D., Roman, M., Bastarrika, A., Martinez, S., Recondo, C., Zapico, E., Martinez-Vega F.J. (2012) Integrating geospatial information into fire risk assessment, International Journal of Wildland Fire, 2,2, 69-86. Hantson, S., Padilla, M., Corti., D, Chuvieco, E. (2013) Strenghts and weaknesses of MODIS hotspots to characterize Global fire occurence, Remote Sensing of Environment, 131, 1, 152-159. Mihai, B., Savulescu, I.,Sandric, I. (2007) Change detection analysis (1986/2002) for the alpine, subalpine and forest landscape in Iezer Mountains (Southern Carpathians, Romania), Mountain Research and Development, 27, 250-258.
Auclair, A.N.D. [Science and Policy Associates, Inc., Washington, D.C. (United States; Bedford, J.A. [Science and Policy Associates, Inc., Washington, D.C. (United States); Revenga, C. [Science and Policy Associates, Inc., Washington, D.C. (United States); Brenkert, A.L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1997-01-01
This database lists annual changes in areal extent (Ha) and gross merchantable wood volume (m3) produced by depletion and accrual processes in boreal and temperate forests in Alaska, Canada, Europe, Former Soviet Union, Non-Soviet temperate Asia, and the contiguous United States for the years 1890 through 1990. Forest depletions (source terms for atmospheric CO2) are identified as forest pests, forest dieback, forest fires, forest harvest, and land-use changes (predominantly the conversion of forest, temperate woodland, and shrubland to cropland). Forest accruals (sink terms for atmospheric CO2) are identified as fire exclusion, fire suppression, and afforestation or crop abandonment. The changes in areal extent and gross merchantable wood volume are calculated separately for each of the following biomes: forest tundra, boreal softwoods, mixed hardwoods, temperate softwoods, temperate hardwoods, and temperate wood- and shrublands.
Forest ecosystems of temperate climatic regions: from ancient use to climate change.
Gilliam, Frank S
2016-12-01
871 I. 871 II. 874 III. 875 IV. 878 V. 882 884 References 884 SUMMARY: Humans have long utilized resources from all forest biomes, but the most indelible anthropogenic signature has been the expanse of human populations in temperate forests. The purpose of this review is to bring into focus the diverse forests of the temperate region of the biosphere, including those of hardwood, conifer and mixed dominance, with a particular emphasis on crucial challenges for the future of these forested areas. Implicit in the term 'temperate' is that the predominant climate of these forest regions has distinct cyclic, seasonal changes involving periods of growth and dormancy. The specific temporal patterns of seasonal change, however, display an impressive variability among temperate forest regions. In addition to the more apparent current anthropogenic disturbances of temperate forests, such as forest management and conversion to agriculture, human alteration of temperate forests is actually an ancient phenomenon, going as far back as 7000 yr before present (bp). As deep-seated as these past legacies are for temperate forests, all current and future perturbations, including timber harvesting, excess nitrogen deposition, altered species' phenologies, and increasing frequency of drought and fire, must be viewed through the lens of climate change. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Koide, Kaoru; Koike, Katsuaki
2012-10-01
This study developed a geobotanical remote sensing method for detecting high water table zones using differences in the conditions of forest trees induced by groundwater supply in a humid warm-temperate region. A new vegetation index (VI) termed added green band NDVI (AgbNDVI) was proposed to discriminate the differences. The AgbNDVI proved to be more sensitive to water stress on green vegetation than existing VIs, such as SAVI and EVI2, and possessed a strong linear correlation with the vegetation fraction. To validate a proposed vegetation index method, a 23 km2 study area was selected in the Tono region of Gifu prefecture, central Japan. The AgbNDVI values were calculated from atmospheric corrected SPOT HRV data. To correctly extract high VI points, the influence factors on forest tree growth were identified using the AgbNDVI values, DEM and forest type data; the study area was then divided into 555 domains chosen from a combination of the influence factors and forest types. Thresholds for extracting high VI points were defined for each domain based on histograms of AgbNDVI values. By superimposing the high VI points on topographic and geologic maps, most high VI points are clearly located on either concave or convex slopes, and are found to be proximal to geologic boundaries—particularly the boundary between the Pliocene gravel layer and the Cretaceous granite, which should act as a groundwater flow path. In addition, field investigations support the correctness of the high VI points, because they are located around groundwater seeps and in high water table zones where the growth increments and biomass of trees are greater than at low VI points.
Soils characterisation along ecological forest zones in the Eastern Himalayas
NASA Astrophysics Data System (ADS)
Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg
2017-04-01
Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead of abrupt changes. We interpret these as manifestations of changes of temperature and precipitation with elevation which also drives forest zonation in these least anthropogenically influenced forest ecosystems. The elevational distribution of forest zones is correlated with the distribution of soil types and thus also reflects soil characteristics.
Meeting wild bees' needs on Western US rangelands
James H. Cane
2011-01-01
Rangelands are areas that are too arid, or with soils too shallow, to support either forests or cultivated agriculture, but that nonetheless produce enough vegetation for livestock grazing. Some arid rangeland regions, notably those with warm, dry climates in temperate zones (e.g., the warm deserts of the United States and adjacent Mexico, parts of Australia, South...
Will afforestation in temperate zones warm the earth?
David B. South; Xuhui Lee; Michael G. Messina
2012-01-01
For decades, forest researchers have known that afforestation can lower the surface albedo and that landscapes with low albedo will absorb more solar radiation than more reflective surfaces. As a result, afforestation will typically darken the surface of the Earth (when compared to grasslands or deserts). This darkening of the landscape can be measured and the local...
Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe
2013-01-01
Background A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2 IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed forest cover increase could reduce the effects of the greenhouse gas concentration change. Results Based on the simulation results, biogeophysical effects of the hypothetic potential afforestation may lead to cooler and moister conditions during summer in most parts of the temperate zone. The largest relative effects of forest cover increase can be expected in northern Germany, Poland and Ukraine, which is 15–20% of the climate change signal for temperature and more than 50% for precipitation. In northern Germany and France, potential afforestation may enhance the effects of emission change, resulting in more severe heavy precipitation events. The probability of dry days and warm temperature extremes would decrease. Conclusions Large contiguous forest blocks can have distinctive biogeophysical effect on the climate on regional and local scale. In certain regions of the temperate zone, climate change signal due to greenhouse gas emission can be reduced by afforestation due to the dominant evaporative cooling effect during summer. Results of this case study with a hypothetical land cover change can contribute to the assessment of the role of forests in adapting to climate change. Thus they can build an important basis of the future forest policy. PMID:23369380
Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia.
Loboda, Tatiana V; Chen, Dong
2017-01-01
Forest stand age plays a major role in regulating carbon fluxes in boreal and temperate ecosystems. Young boreal forests represent a relatively small but persistent source of carbon to the atmosphere over 30 years after disturbance, while temperate forests switch from a substantial source over the first 10 years to a notable sink until they reach maturity. Russian forests are the largest contiguous forest belt in the world that accounts for 17% of the global forest cover; however, despite its critical role in controlling global carbon cycle, little is known about spatial patterns of young forest distribution across Russia as a whole, particularly before the year 2000. Here, we present a map of young (0-27 years of age) forests, where 12- to 27-year-old forests were modeled from the single-date 500 m satellite record and augmented with the 0- to 11-year-old forest map aggregated from the 30 m resolution contemporary record between 2001 and 2012. The map captures the distribution of forests with the overall accuracy exceeding 85% within three largest bioclimatic vegetation zones (northern, middle, and southern taiga), although mapping accuracy for disturbed classes was generally low (the highest of 31% for user's and producer's accuracy for the 12-27 age class and the maximum of 74% for user's and 32% for producer's accuracy for the 0-11 age class). The results show that 75.5 ± 17.6 Mha (roughly 9%) of Russian forests were younger than 30 years of age at the end of 2012. The majority of these 47 ± 4.7 Mha (62%) were distributed across the middle taiga bioclimatic zone. Based on the published estimates of net ecosystem production (NEP) and the produced map of young forests, this study estimates that young Russian forests represent a total sink of carbon at the rate of 1.26 Tg C yr -1 . © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Salzmann, Ulrich; Strother, Stephanie; Sangiorgi, Francesca; Bijl, Peter; Pross, Joerg; Woodward, John; Escutia, Carlota; Brinkhuis, Henk
2016-04-01
The question whether Cenozoic climate was warm enough to support a substantial vegetation cover on the Antarctic continent is of great significance to the ongoing controversial debate on the dynamic behaviour of Antarctic land ice during the transition from a greenhouse to an icehouse world. Here we present palynological results from an Oligocene to Miocene sediment record provided by the Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin (East Antarctica). The Oligocene assemblages (33.9-23 Ma) are dominated by pollen and spores from temperate forest and sub-Antarctic shrub vegetation inhabiting different altitudinal zones. These include a lowland cold temperate forest with Dacrydium and Lagarostrobos (both common in southern forests of New Zealand and Tasmania today) and a high altitude tundra shrubland comprising Microcachrys, Nothofagus (southern beech) and Podocarpaceae conifers. A decline in pollen percentages of Dacrydium and Lagarostrobos and absence of Proteaceae indicate climate cooling during the late Oligocene (~25-23 Ma). However, the continuous presence of Lagarostrobos suggests that the full transition to a tundra environment had not yet occurred and climate on Wilkes Land during the late Oligocene was still warm enough to support forest vegetation in sheltered areas. Temperature reconstructions derived from the fossil pollen assemblages using the Coexistence Approach suggest mean annual temperatures (MATs) between 6.7-13.7°C during the early Oligocene and a drop of minimum MATs to 5.8°C in the late Oligocene. Pollen of "unambiguous" forest indicators, such as Lagarostrobos, are absent in the Miocene sediment record (16.2 -12.5 Ma) but temperatures were still high enough (minimum MATs > 5°C) to sustain a woody sub-Antarctic vegetation under partially ice-free conditions. Wilkes Land provides a unique record of Antarctic vegetation change from a subtropical, highly diverse Eocene rainforest to an Oligocene cold temperate forest and an impoverished Miocene sub-Antarctic shrubland. The pollen record suggests that temperatures were higher than in the Ross Sea region (i.e. Andrill, Cape Roberts) and the Wilkes Land margins were possibly one of the last refugia for temperate forest taxa on Antarctica during the Late Oligocene.
Forest Restoration in China: Advances, Obstacles, and Perspectives
Hai Ren; Hongfang Lu; Jun Wang; Nan Liu; Qinfeng Guo
2012-01-01
Because of the prolonged history of disturbance caused by intense human activities, restoration in China has been a major task facing many ecologists and land managers. There are six major forest types in China: cold temperate coniferous forest, temperate coniferous and broad-leaved mixed forest, warm temperate deciduous broad-leaved forest, subtropical evergreen broad...
NASA Astrophysics Data System (ADS)
Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.
2012-04-01
A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.
NASA Astrophysics Data System (ADS)
Kohlmaier, G. H.; Häger, Ch.; Würth, G.; Lüdeke, M. K. B.; Ramge, P.; Badeck, F.-W.; Kindermann, J.; Lang, T.
1995-02-01
The rôle of the temperate and boreal forests as a global CO2 source or sink is examined, both for the present time and for the next hundred years. The results of the Forest Resource Assessment for 1990 of the Economic Comission for Europe and the Food and Agricultural Organisation of the United Nations (1992) serve as the main database in this study. Out of the estimated total area of approximately 20106 km2 of forests and wooded lands in the temperate and boreal zone only approximately fifty percent is documented within the category of exploitable forests, which are examined in detail here. In this study, a general formalism of the time evolution of an ensemble of forests within an ecological province is developed using the formalism of the Leslie matrix. This matrix can be formulated if the age class dependent mortalities which arise from the disturbances are known. A distinction is made between the natural disturbances by fire, wind throw and insect infestations and disturbances introduced through harvesting of timber. Through the use of Richards growth function each age class of a given biome is related to the corresponding biomass and annual increment. The data reported on the mean net annual increment and on the mean biomass serve to calibrate the model. The difference of the reported net annual increment and annual fellings of approximately 550 106 m3 roundwood correspond to a sink of 210-330 Mt of carbon per year excluding any changes in the soil balance. It could be shown that the present distribution of forest age classes for the United States, Canada, Europe, or the former Soviet Union does not correspond to a quasi-stationary state, in which biomass is accumulated only due to a stimulated growth under enhanced atmospheric CO2 levels. The present CO2 sink function will not persist in the next century, if harvesting rates increase with 0.5% annually or even less. The future state will also be influenced by the effect of the greenhouse climate, the impact of which may range from a stimulating effect on growth, which is calculated by the Frankfurt biosphere model, up to a transitional negative effect through a shift in vegetation zones.
Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.
Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong
2017-11-01
Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests demonstrate similar N uptake patterns although they differ in physiology of trees and soil biogeochemical processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Saito, Masayuki; Koike, Fumito
2013-01-01
Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban–rural–forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban–rural–forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale of management according to the degree of urbanization. PMID:23741495
Saito, Masayuki; Koike, Fumito
2013-01-01
Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban-rural-forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban-rural-forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale of management according to the degree of urbanization.
NASA Astrophysics Data System (ADS)
Wickham, J.; Wade, T. G.; Riitters, K. H.
2014-09-01
Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.
Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine
Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie
2013-01-01
In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227
Simulating the onset of spring vegetation growth across the Northern Hemisphere.
Liu, Qiang; Fu, Yongshuo H; Liu, Yongwen; Janssens, Ivan A; Piao, Shilong
2018-03-01
Changes in the spring onset of vegetation growth in response to climate change can profoundly impact climate-biosphere interactions. Thus, robust simulation of spring onset is essential to accurately predict ecosystem responses and feedback to ongoing climate change. To date, the ability of vegetation phenology models to reproduce spatiotemporal patterns of spring onset at larger scales has not been thoroughly investigated. In this study, we took advantage of phenology observations via remote sensing to calibrate and evaluated six models, including both one-phase (considering only forcing temperatures) and two-phase (involving forcing, chilling, and photoperiod) models across the Northern Hemisphere between 1982 and 2012. Overall, we found that the model that integrated the photoperiod effect performed best at capturing spatiotemporal patterns of spring phenology in boreal and temperate forests. By contrast, all of the models performed poorly in simulating the onset of growth in grasslands. These results suggest that the photoperiod plays a role in controlling the onset of growth in most Northern Hemisphere forests, whereas other environmental factors (e.g., precipitation) should be considered when simulating the onset of growth in grasslands. We also found that the one-phase model performed as well as the two-phase models in boreal forests, which implies that the chilling requirement is probably fulfilled across most of the boreal zone. Conversely, two-phase models performed better in temperate forests than the one-phase model, suggesting that photoperiod and chilling play important roles in these temperate forests. Our results highlight the significance of including chilling and photoperiod effects in models of the spring onset of forest growth at large scales, and indicate that the consideration of additional drivers may be required for grasslands. © 2017 John Wiley & Sons Ltd.
James D. Wickham; Timothy G. Wade; Kurt H. Riitters
2013-01-01
Aim Because of the low albedo of forests and other biophysical factors, most scenario-based climate modelling studies indicate that removal of temperate forest will promote cooling, indicating that temperate forests are a source of heat relative to other classes of land cover. Our objective was to test the hypothesis that US temperate forests reduce...
Caviedes, Julián; Ibarra, José Tomás
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests.
2017-01-01
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349
Particulate and trace gas emissions from large biomass fire in North America
Lawrence F. Radke; Dean A. Hegg; Peter V. Hobbs; J.David Nance; Jamie H. Lyons; Krista K. Laursen; Raymond E. Weiss; Phillip J. Riggan; Darold E. Ward
1991-01-01
In this chapter we describe the results of airborne studies of smokes from 17 biomass fuel fires, including 14 prescribed fires and 3 wildfires, burned primarily in the temperate zone of North America between 34° and 49°N latitude. The prescribed fires were in forested lands and logging debris and varied in areas burned from 10 to 700 hectares...
John Faaborg
2005-01-01
Our understanding of the ecology and conservation of migratory birds has changed dramatically in the past 25 years. In the Smithsonian symposium of 1977, scientists shifted from the idea of North American birds invading the tropics to that of tropical birds using the temperate zone, with little mention of conservation. By the Manomet meeting of 1989, declines on the...
Eugene S. Morton; Bridget J. M. Stutchbury
2005-01-01
Migratory birds are birds of two worlds, breeding in the temperate zone then living as tropical birds for most of the year. We show two aspects of this unique biology that are important considerations for their conservation. First, habitat selection for breeding must include their need for extra-pair mating opportunities. Second, non-breeding distributions in tropical...
Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; K. Francis Salifu; R. Kasten Dumroese
2007-01-01
Spring planting is standard operational practice in the Central Hardwood Region, though little is known about potential impacts of low root temperature (RT) common during spring on establishment success of temperate deciduous forest tree species. The effects of low RTon growth, gas exchange, and root respiration following winter dormancy were studied in 1-year-old...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.; Lugo, A. E.; Liegel, B.
1980-08-01
Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brownmore » and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.« less
Relation between century-scale Holocene arid intervals in tropical and temperate zones
NASA Astrophysics Data System (ADS)
Lamb, H. F.; Gasse, F.; Benkaddour, A.; El Hamouti, N.; van der Kaars, S.; Perkins, W. T.; Pearce, N. J.; Roberts, C. N.
1995-01-01
CLIMATE records from lake sediments in tropical Africa, Central America and west Asia show several century-scale arid intervals during the Holocene1-10. These may have been caused by temporary weakening of the monsoonal circulation associated with reduced northward heat transport by the oceans7 or by feedback processes stimulated by changes in tropical land-surface conditions10. Here we use a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions. We find evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics. But our pollen data show that the forest vegetation was not substantially affected by these events, indicating that precipitation remained adequate during the summer growing season. Thus, the depletion of the groundwater aquifer that imprinted the dry events in the lake record must have resulted from reduced winter precipitation. We suggest that the occurrence of arid events during the summer in the tropics but during the winter at temperate latitudes can be rationalized if they are both associated with cooler sea surface temperatures in the North Atlantic.
Low historical nitrogen deposition effect on carbon sequestration in the boreal zone
NASA Astrophysics Data System (ADS)
Fleischer, K.; Wârlind, D.; van der Molen, M. K.; Rebel, K. T.; Arneth, A.; Erisman, J. W.; Wassen, M. J.; Smith, B.; Gough, C. M.; Margolis, H. A.; Cescatti, A.; Montagnani, L.; Arain, A.; Dolman, A. J.
2015-12-01
Nitrogen (N) cycle dynamics and N deposition play an important role in determining the terrestrial biosphere's carbon (C) balance. We assess global and biome-specific N deposition effects on C sequestration rates with the dynamic global vegetation model LPJ-GUESS. Modeled CN interactions are evaluated by comparing predictions of the C and CN version of the model with direct observations of C fluxes from 68 forest FLUXNET sites. N limitation on C uptake reduced overestimation of gross primary productivity for boreal evergreen needleleaf forests from 56% to 18%, presenting the greatest improvement among forest types. Relative N deposition effects on C sequestration (dC/dN) in boreal, temperate, and tropical sites ranged from 17 to 26 kg C kg N-1 when modeled at site scale and were reduced to 12-22 kg C kg N-1 at global scale. We find that 19% of the recent (1990-2007) and 24% of the historical global C sink (1900-2006) was driven by N deposition effects. While boreal forests exhibit highest dC/dN, their N deposition-induced C sink was relatively low and is suspected to stay low in the future as no major changes in N deposition rates are expected in the boreal zone. N deposition induced a greater C sink in temperate and tropical forests, while predicted C fluxes and N-induced C sink response in tropical forests were associated with greatest uncertainties. Future work should be directed at improving the ability of LPJ-GUESS and other process-based ecosystem models to reproduce C cycle dynamics in the tropics, facilitated by more benchmarking data sets. Furthermore, efforts should aim to improve understanding and model representations of N availability (e.g., N fixation and organic N uptake), N limitation, P cycle dynamics, and effects of anthropogenic land use and land cover changes.
Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.
Evrendilek, Fatih; Gulbeyaz, Onder
2008-09-01
The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.
NASA Astrophysics Data System (ADS)
Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.
2016-03-01
Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.
Forests in a water limited world under climate change
NASA Astrophysics Data System (ADS)
Mátyás, Csaba; Sun, Ge
2014-08-01
The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses.
Wetlands, climate zones and Barmah Forest virus disease in Queensland, Australia.
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2012-12-01
Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia, but the linkages of the wetlands and climate zones with BFV transmission remain unclear. We aimed to examine the relationship between the wetlands, climate zones and BFV risk in Queensland, Australia. Data on the wetlands, climate zones, population and BFV cases for the period 1992 to 2008 were obtained from relevant government agencies. BFV risk was grouped as low-, medium- and high-level based on BFV incidence percentiles. The buffer zones around each BFV case were made using 1, 5, 10, 15, 20, 25 and 50km distances. We performed a discriminant analysis to determine the differences between wetland classes and BFV risk within each climate zone. The discriminant analyses show that saline 1, riverine and saline tidal influence were the most significant contributors to BFV risk in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. These models had classification accuracies of 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV risk varies with wetland class and climate zone. The discriminant analysis is a useful tool to quantify the links between wetlands, climate zones and BFV risk. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Challenges of reforestation in a water limited world under climate change
NASA Astrophysics Data System (ADS)
Mátyás, Csaba; Sun, Ge
2014-05-01
The debate on the ecological benefits of planted forests at the sensitive lower edge of the closed forest belt (at the "xeric limits") is still unresolved. Forests sequester atmospheric carbon dioxide, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously predominantly occupied by grassland or agriculture can dramatically alter the energy and water balance at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts under future climate change and variability due to its high ecohydrological sensitivity. The study investigates some of the relevant aspects of the ecological and climatic role of plantation forests and potential impacts at the dryland edges of the temperate zone, using case studies from three countries/regions on three continents. We found that, contrary to popular expectations, the effect of forest cover on regional climate might be limited and the influence of reforestation on water resources might turn into negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events likely reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest policy on management, silviculture and reforestation planning requires the consideration of local hydrologic conditions, future climatic conditions, and also of non-forest alternatives of land use. Keywords: drylands, xeric limits, trailing limits, ecohydrology, climate forcing, land use change, forest policy
Khan, Waqas; Khan, Shujaul Mulk; Ahmad, Habib; Alqarawi, Abdulaziz A; Shah, Ghulam Mujtaba; Hussain, Manzoor; Abd Allah, E F
2018-01-01
The life form and leaf size spectra of plant species of the Thandiani forests, district Abbottabad, were studied during the summer of 2013. These forests host 252 plant species of 97 families. Biological spectra showed that Hemicryptophytes (80 spp., 31.74%) were dominant followed by Megaphanerophytes (51 spp., 20.24%), Therophytes (49 spp., 19.44%) and Nanophanerophytes (45 spp., 17.86). Hemicryptophytes are the indicators of cold temperate vegetation. At the lower elevations, Megaphanerophytes and Nanophanerophytes were dominant which confirm trees as dominant habit form due to high soil depth, moisture and temperature factors. Data on Leaf spectra in the area showed that Microphyllous (88 spp., 34.92%) species were dominant followed by Leptophyllous (74 spp., 29.36%) and Nanophyllous (60 spp., 23.80%). The Microphyllous plants again are the indicator of cold temperate zone as the area is situated at an elevation of 1191-2626 m. Similarly, Nanophylls were dominant at lower elevations. Data on family importance values and diversity among various communities were also recorded. Life form and Leaf spectra studies could be used to understand the micro climatic variation of the region.
Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico
NASA Astrophysics Data System (ADS)
Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.
2013-05-01
Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.
USDA-ARS?s Scientific Manuscript database
The forest pathogen Armillaria mellea s.s. (Basidiomycota, Physalacriaceae) is among the most significant forest pathogens causing root rot in northern temperate forest trees worldwide. Phylogenetic reconstructions for A. mellea show distinct European, Asian and North American lineages. The North Am...
Longhorned beetle (Coleoptera: Cerambycidae) diversity in a fragmented temperate forest landscape
Pavuk, Daniel M
2013-01-01
Longhorned beetles (Coleoptera: Cerambycidae) are an important component of temperate forest ecosystems. We trapped longhorned beetles in forests in northwest Ohio during 2008 to test the hypothesis that larger forests have greater species diversity than smaller forests. Large forests had a significantly greater cerambycid species richness than small forests (t = 3.16. P = 0.02), and there was a significant relationship between forest size and cerambycid species richness. PMID:24627763
Surface soil phytoliths as vegetation and altitude indicators: a study from the southern Himalaya
An, Xiaohong; Lu, Houyuan; Chu, Guoqiang
2015-01-01
Phytoliths represent one of the few available altitudinal vegetation proxies for mountain ecosystems. This study analyzed 41 topsoil phytolith samples collected from five altitudinal zones in the southern Himalaya as far as, and beyond, the timberline, from tropical forest (up to 1,000 m a.s.l.) to subtropical forest (1,000–2,000 m a.s.l.), to temperate forest (2,000–3,000 m a.s.l.), to subalpine forest (3,000–4,100 m a.s.l.) and finally to alpine scrub (4,100–5,200 m a.s.l.). The statistical results show a good correlation between phytolith assemblages and these five altitudinal vegetation zones: the five phytolith assemblages identified effectively differentiated these five altitudinal vegetation zones. In particular, coniferous phytoliths accurately indicated the timberline. Additionally, we tested the phytolith index Ic (a proxy for estimating the percentage of Pooideae vis-à-vis the total grass content) as a quantifier of phytolith variety versus altitude. Ic increased along altitude, as expected. An investigation of phytoliths provided an initial basis for the analysis of the composition of gramineous vegetation. Furthermore, redundancy analysis and discriminant analysis also suggested a significant correlation between phytolith assemblages and altitude. Our research therefore provides an up-to-date analogue for the reconstruction of changes to palaeovegetation and palaeoaltitude in mountainous areas. PMID:26500137
NASA Astrophysics Data System (ADS)
Sharifullin, A.; Gusarov, A.; Gafurov, A.; Essuman-Quainoo, B.
2018-01-01
A general trend of erosion processes over the last 50-60 years can be estimated by dating sediments washed off from arable lands and accumulated in the first-order dry valleys bottoms. Three small (first-order) catchments were chosen as objects of the study. They are located, respectively, in the southern part of the taiga zone, the zone of temperate broad-leaf forests and the forest-steppe zone of the Russian Plain. To date the sediments accumulated in the bottoms the radioactive caesium-137 (137Cs) of global (since 1954) and Chernobyl origin (1986) had been used as a chronomarker. The average (for all the catchments) sedimentation rates during the global 137Cs fallout period (1963(1954)-1986) are at least 0.88-2.71 cm per year.For the period that has passed since the Chernobyl accident (1986-2015(2016)) the average rates were 0.15-1.07 cm per year. The greatest reduction in the sedimentation rates is observed in the subzone of the southern taiga, the lowest one is in the forest-steppe zone of the Russian Plain. The main reason for such significant reduction in the rates of sedimentation of the soil erosion products in the dry valley bottoms was a reduction of surface runoff within the catchments during a snowmelt period, as well as crop-rotation changes there.
Alvar soils and ecology in the boreal forest and taiga regions of Canada.
NASA Astrophysics Data System (ADS)
Ford, D.
2012-04-01
Alvars have been defined as "...a biological association based on a limestone plain with thin or no soil and, as a result, sparse vegetation. Trees and bushes are stunted or absent ... may include prairie spp." (Wikipedia). They were first described in southern Sweden, Estonia, the karst pavements of Yorkshire (UK) and the Burren (Eire). In North America alvars have been recognised and reported only in the Mixed Forest (deciduous/coniferous) Zone around the Great Lakes. An essential feature of the hydrologic controls on vegetation growth on natural alvars is that these terrains were glaciated in the last (Wisconsinan/Würm) ice age: the upper beds of any pre-existing epikarst were stripped away by glacier scour and there has been insufficient time for post-glacial epikarst to achieve the depths and densities required to support the deep rooting needed for mature forest cover. However, in the sites noted above, the alvars have been created, at least in part, by deforestation, overgrazing, burning to create browse, etc. and thus should not be considered wholly natural phenomena. There are extensive natural alvars in the Boreal Forest and Taiga ecozones in Canada. Their nature and variety will be illustrated with examples from cold temperate maritime climate settings in northern Newfoundland and the Gulf of St Lawrence and cold temperate continental to sub-arctic climates in northern Manitoba and the Northwest Territories.
Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil
Tng, David Y. P.; Janos, David P.; Jordan, Gregory J.; Weber, Ellen; Bowman, David M. J. S.
2014-01-01
Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an “ashbed effect”). PMID:25339968
Ulyshen Michael
2011-01-01
Studies on the vertical distribution patterns of arthropods in temperate deciduous forests reveal highly stratified (i.e., unevenly vertically distributed) communities. These patterns are determined by multiple factors acting simultaneously, including: (1) time (forest age, season, time of day); (2) forest structure (height, vertical foliage complexity, plant surface...
Temperate forest health in an era of emerging megadisturbance
Millar, Constance I.; Stephenson, Nathan L.
2015-01-01
Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.
NASA Astrophysics Data System (ADS)
Stock, Svenja; Köster, Moritz; Dippold, Michaela; Boy, Jens; Matus, Francisco; Merino, Carolina; Nájera, Francisco; Spielvogel, Sandra; Gorbushina, Anna; Kuzyakov, Yakov
2017-04-01
The Chilean ecosystems provide a unique study area to investigate biotic controls on soil organic matter (SOM) decomposition and mineral weathering depending on climate (from hyper arid to temperate humid). Microorganisms play a crucial role in the SOM decomposition, nutrient release and cycling. By means of extracellular enzymes microorganisms break down organic compounds and provide nutrients for plants. Soil moisture (abiotic factor) and root carbon (biotic factor providing easily available energy source for microorganisms), are important factors for microbial decomposition of SOM and show strong gradients along the investigated climatic gradient. A high input of root carbon increases microbial activity and enzyme production, and facilitates SOM breakdown and nutrient release The aim of this study was to determine the potential enzymatic SOM decomposition and nutrient release depending on root proximity and precipitation. C and N contents, δ13C and δ15N values, and kinetics (Vmax, Km) of six extracellular enzymes, responsible for C, N, and P cycles, were quantified in vertical (soil depth) and horizontal (from roots to bulk soil) gradients in two climatic regions: within a humid temperate forest and a semiarid open forest. The greater productivity of the temperate forest was reflected by higher C and N contents compared to the semiarid forest. Regression lines between δ13C and -[ln(%C)] showed a stronger isotopic fractionation from top- to subsoil at the semiarid open forest, indicating a faster SOM turnover compared to the humid temperate forest. This is the result of more favorable soil conditions (esp. temperature and smaller C/N ratios) in the semiarid forest. Depth trends of δ15N values indicated N limitation in both soils, though the limitation at the temperate site was stronger. The activity of enzymes degrading cellulose and hemicellulose increased with C content. Activity of enzymes involved in C, N and P cycles decreased from top- to subsoil and with distance to roots. Chitinase and acid phosphatase activities increased with increasing C contents and indicated a faster substrate turnover in soil under the temperate forest compared to the semiarid forest. In contrast, Tyrosin-aminopeptidase activities indicated a faster substrate turnover under semiarid forest than the temperate forest, and strongly increased with increasing N content. We conclude that the N availability and SOM turnover under semiarid open forest is higher than under humid temperate forest. The enzyme activities are depending on depth only indirectly and are driven mainly by soil C content, which is directly affected by root carbon input.
Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.
2005-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.
Lloyd, Penn; Martin, Thomas E.
2016-01-01
Slow life histories are characterized by high adult survival and few offspring, which are thought to allow increased investment per offspring to increase juvenile survival. Consistent with this pattern, south temperate zone birds are commonly longer-lived and have fewer young than north temperate zone species. However, comparative analyses of juvenile survival, including during the first few weeks of the post-fledging period when most juvenile mortality occurs, are largely lacking. We combined our measurements of fledgling survival for eight passerines in South Africa with estimates from published studies of 57 north and south temperate zone songbird species to test three predictions: (1) fledgling survival increases with length of development time in the nest; (2) fledgling survival increases with adult survival and reduced brood size controlled for development time; and (3) south temperate zone species, with their higher adult survival and smaller brood sizes, exhibit higher fledgling survival than north temperate zone species controlled for development time. We found that fledgling survival was higher among south temperate zone species and generally increased with development time and adult survival within and between latitudinal regions. Clutch size did not explain additional variation, but was confounded with adult survival. Given the importance of age-specific mortality to life history evolution, understanding the causes of these geographical patterns of mortality is important.
Lee E. Frelich; Peter B. Reich; David W. Peterson
2017-01-01
Historically, oak forests and woodlands intergraded with southern boreal forest, temperate mesic forest, and grassland biomes, forming complex fire-mediated relationships in the Great Lakes region of Minnesota, Wisconsin, and Michigan, USA. Variability in fire recurrence intervals allowed oaks to mix with grasses or with mesic forest species in areas with high (2â10 yr...
Jorge E. Morfin-Rios; Ernesto Alvarado-Celestino; Enrique J. Jardel-Pelaez; Robert E. Vihnanek; David K. Wright; Jose M. Michel-Fuentes; Clinton S. Wright; Roger D. Ottmar; David V. Sandberg; Andres Najera-Diaz
2008-01-01
Single wide-angle and stereo photographs display a range of forest ecosystems conditions and fuel loadings in montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental of Mexico. Each group of photographs includes inventory information summarizing overstory vegetation composition and...
Monitoring Liverworts to Evaluate the Effectiveness of Hydroriparian Buffers
NASA Astrophysics Data System (ADS)
Higgins, Kellina L.; Yasué, Maï
2014-01-01
In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas ( n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones ( n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25-35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.
Temperate forest health in an era of emerging megadisturbance
C. I. Millar; N. L. Stephenson
2015-01-01
Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically...
Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary; ...
2016-03-17
Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary
Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less
Timothy J. Veverica; Evan S. Kane; Eric S. Kasischke
2012-01-01
Organic layer consumption during forest fires is hard to quantify. These data suggest that the adventitious root methods developed for reconstructing organic layer depths following wildfires in boreal black spruce forests can also be applied to mixed tamarack forests growing in temperate regions with glacially transported soils.
Qingyuan Zhang; Xiangming Xiao; Bobby Braswell; Ernst Linder; Scott Ollinger; Marie-Louise Smith; Julian P. Jenkins; Fred Baret; Andrew D. Richardson; Berrien III Moore; Rakesh Minocha
2006-01-01
In this paper, we present an improved procedure for collecting no or little atmosphere- and snow-contaminated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest (the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface...
USDA-ARS?s Scientific Manuscript database
Bamboos native to temperate East Asian forests may be pre-adapted to floristically related coniferous forests in western North America that conspicuously lack large, rhizomatous grasses. Given the increasing opportunity for Asian bamboos to enter North America through horticulture, such pre-adaptat...
Schulte-Uebbing, Lena; de Vries, Wim
2018-02-01
Elevated nitrogen (N) deposition may increase net primary productivity in N-limited terrestrial ecosystems and thus enhance the terrestrial carbon (C) sink. To assess the magnitude of this N-induced C sink, we performed a meta-analysis on data from forest fertilization experiments to estimate N-induced C sequestration in aboveground tree woody biomass, a stable C pool with long turnover times. Our results show that boreal and temperate forests responded strongly to N addition and sequestered on average an additional 14 and 13 kg C per kg N in aboveground woody biomass, respectively. Tropical forests, however, did not respond significantly to N addition. The common hypothesis that tropical forests do not respond to N because they are phosphorus-limited could not be confirmed, as we found no significant response to phosphorus addition in tropical forests. Across climate zones, we found that young forests responded more strongly to N addition, which is important as many previous meta-analyses of N addition experiments rely heavily on data from experiments on seedlings and young trees. Furthermore, the C-N response (defined as additional mass unit of C sequestered per additional mass unit of N addition) was affected by forest productivity, experimental N addition rate, and rate of ambient N deposition. The estimated C-N responses from our meta-analysis were generally lower that those derived with stoichiometric scaling, dynamic global vegetation models, and forest growth inventories along N deposition gradients. We estimated N-induced global C sequestration in tree aboveground woody biomass by multiplying the C-N responses obtained from the meta-analysis with N deposition estimates per biome. We thus derived an N-induced global C sink of about 177 (112-243) Tg C/year in aboveground and belowground woody biomass, which would account for about 12% of the forest biomass C sink (1,400 Tg C/year). © 2017 John Wiley & Sons Ltd.
Survival rates of birds of tropical and temperate forests: will the dogma survive?
Karr, J.R.; Nichols, J.D.; Klimkiewicz, M.K.; Brawn, J.D.
1990-01-01
Survival rates of tropical forest birds are widely assumed to be high relative to the survival rates of temperate forest birds. Much life-history theory is based on this assumption despite the lack of empirical data to support it. We provide the first detailed comparison of survival rates of tropical and temperate forest birds based on extensive data bases and modern capture-recapture models. We find no support for the conventional wisdom. Because clutch size is only one component of reproductive rate, the frequently assumed, simple association between clutch size and adult survival rates should not necessarily be expected. Our results emphasize the need to consider components of fecundity in addition to clutch size when comparing the life histories of tropical and temperate birds and suggest similar considerations in the development of vertebrate life-history theory.
Whitlock, C.; Sarna-Wojcicki, A. M.; Bartlein, P.J.; Nickmann, R.J.
2000-01-01
Sediment cores from Carp Lake provide a pollen record of the last ca. 125,000 years that helps disclose vegetational and climatic conditions from the present day to the previous interglaciation (120-133 ka). The core also contained 15 tephra layers, which were characterised by electron-microprobe analysis of volcanic glass shards. Identified tephra include Mount St. Helens Ye, 3.69 ka; Mazama ash bed, 7.54 ka; Mount St. Helens layer C, 35-50 ka; an unnamed Mount St. Helens tephra, 75-150 ka; the tephra equivalent of layer E at Pringle Falls, Oregon, <218 ka; and an andesitic tephra layer similar to that at Tulelake, California, 174 ka. Ten calibrated radiocarbon ages and the ages of Mount St. Helens Ye, Mazama ash, and the unnamed Mount St. Helens tephra were used to develop an age-depth model. This model was refined by also incorporating the age of marine oxygen isotope stage (IS) boundary 4/5 (73.9 ka) and the age of IS-5e (125 ka). The justification for this age-model is based on an analysis of the pollen record and lithologic data. The pollen record is divided into 11 assemblage zones that describe alternations between periods of montane conifer forest, pine forest, and steppe. The previous interglacial period (IS-5e) supported temperate xerothermic forests of pine and oak and a northward and westward expansion of steppe and juniper woodland, compared to their present occurrence. The period from 83 to 117 ka contains intervals of pine forest and parkland alternating with pine-spruce forest, suggesting shifts from cold humid to cool temperate conditions. Between 73 and 83 ka, a forest of oak, hemlock, Douglas-fir, and fir was present that has no modem analogue. It suggests warm wet summers and cool wet winters. Cool humid conditions during the mid-Wisconsin interval supported mixed conifer forest with Douglas-fir and spruce. The glacial interval featured cold dry steppe, with an expansion of spruce in the late-glacial. Xerothermic communities prevailed in the early Holocene, when temperate steppe was widespread and the lake dried intermittently. The middle Holocene was characterised by ponderosa pine forest, and the modem vegetation was established in the last 3900 yr, when ponderosa pine, Douglas-fir, fir, and oak were part of the local vegetation.
Palaeovegetation. Diversity of temperate plants in east Asia.
Harrison, S P; Yu, G; Takahara, H; Prentice, I C
2001-09-13
The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles. According to Qian and Ricklefs, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs.
Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.
Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir
2017-08-04
Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.
Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong
2013-01-01
The Gap Partitioning Hypothesis (GPH) posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests, allowing trees with contrasting strategies to coexist along resource gradients. Few studies have examined gap partitioning of temperate, ground-layer vascular plants. We used a ground-layer plant community of a temperate...
Yude Pan; Richard Birdsey; John Hom; Kevin McCullough
2007-01-01
We used our GIS variant of the PnET-CN model to investigate changes of forest carbon stocks and fluxes in Mid-Atlantic temperate forests over the last century (1900-2000). Forests in this region are affected by multiple environmental changes including climate, atmospheric CO2 concentration, N deposition and tropospheric ozone, and extensive land disturbances. Our...
David Rogers Tilley; Wayne T. Swank
2003-01-01
Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a...
Forest resilience to drought varies across biomes.
Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego
2018-05-01
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.
Mechanisms of nitrogen deposition effects on temperate forest lichens and trees
Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings
2017-01-01
We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...
Conservation importance of early post-disturbance temperate forests
Charles Kwit; David I. King; Beverly Collins; Mark E. Swanson
2014-01-01
The early post-disturbance stage of temperate forest succession (also referred to as 'early-seral' or 'early-successional' forest) has been the subject of interest and debate. Often thought of as an ephemeral (and often disorganized) state of eventual closed-canopy systems, its direct and immediate role in conservation traditionally has been ignored...
Fire effects on temperate forest soil C and N storage
Lucas E. Nave; Eric D. Vance; Christopher W. Swanston; Peter S. Curtis
2011-01-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting...
Gabriel Y Galán, Jose María; Murciano, Antonio; Sirvent, Laure; Sánchez, Abel; Watkins, James E
2018-01-01
Ferns are an important component of ecosystems around the world. Studies of the impacts that global changes may have on ferns are scarce, yet emerging studies indicate that some species may be particularly sensitive to climate change. The lack of research in this subject is much more aggravated in the case of epiphytes, and especially those that live under temperate climates. A mathematical model was developed for two temperate epiphytic ferns in order to predict potential impacts on spore germination kinetics, in response to different scenarios of global change, coming from increasing temperature and forest fragmentation. Our results show that an increasing temperature will have a negative impact over the populations of these temperate epiphytic ferns. Under unfragmented forests the germination percentage was comparatively less influenced than in fragmented patches. This study highlight that, in the long term, populations of the studied epiphytic temperate ferns may decline due to climate change. Overall, epiphytic fern communities will suffer changes in diversity, richness and dominance. Our study draws attention to the role of ferns in epiphytic communities of temperate forests, emphasizing the importance of considering these plants in any conservation strategy, specifically forest conservation. From a methodological point of view, the model we propose could be easily used to dynamically monitor the status of ecosystems, allowing the quick prediction of possible future scenarios, which is a crucial issue in biodiversity conservation decision-making.
NASA Technical Reports Server (NTRS)
Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.
1994-01-01
We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.
Keith, Heather; Mackey, Brendan G; Lindenmayer, David B
2009-07-14
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.
Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests
Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.
2009-01-01
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199
Tangled trends for temperate rain forests as temperatures tick up
Noreen Parks; Tara Barrett
2013-01-01
Climate change is altering growing conditions in the temperate rain forest region that extends from northern California to the Gulf of Alaska. Longer, warmer growing seasons are generally increasing the overall potential for forest growth in the region. However, species differ in their ability to adapt to changing conditions. For example, researchers with Pacific...
Reinmann, Andrew B.; Hutyra, Lucy R.
2017-01-01
Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world’s remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region’s carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world’s other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest. PMID:27994137
Reinmann, Andrew B; Hutyra, Lucy R
2017-01-03
Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.
NASA Astrophysics Data System (ADS)
Melaas, Eli K.; Sulla-Menashe, Damien; Friedl, Mark A.
2018-03-01
The timing of leaf emergence is an important diagnostic of climate change impacts on ecosystems. Here we present the first continental-scale analysis of multidecadal changes in the timing of spring onset across North American temperate and boreal forests based on Landsat imagery. Our results show that leaf emergence in Eastern Temperate Forests has consistently trended earlier, with a median change of about 1 week over the 30 year study period. Changes in leaf emergence dates in boreal forests were more heterogeneous, with some sites showing trends toward later dates. Interannual variability in leaf emergence dates was strongly sensitive to springtime accumulated growing degree days across all sites, and geographic patterns of changes in onset dates were highly correlated with changes in regional springtime temperatures. These results provide a refined characterization of recent changes in springtime forest phenology and improve understanding regarding the sensitivity of North American forests to climate change.
Gary M. Koehler; Keith B. Aubry
1994-01-01
Three species of wild cats (felids) occur in the temperate forests of North America: the cougar (Fells concolor), bobcat (Lynx rufus), and lynx (Lynx canadensis). The cougar is found in both temperate and tropical forests from the mountains of southern British Columbia to the southern...
NASA Astrophysics Data System (ADS)
Reinmann, A.; Hutyra, L.
2016-12-01
Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.
Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest
Rhonda Mazza; Richard Edwards; David D' Amore
2010-01-01
Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...
Detrimental Influence of Invasive Earthworms on North American Cold-Temperate Forest Soils
ERIC Educational Resources Information Center
Enerson, Isabel
2012-01-01
The topic of invasive earthworms is a timely concern that goes against many preconceived notions regarding the positive benefits of all worms. In the cold-temperate forests of North America invasive worms are threatening forest ecosystems, due to the changes they create in the soil, including decreases in C:N ratios and leaf litter, disruption of…
Ziter, Carly; Bennett, Elena M; Gonzalez, Andrew
2014-11-01
Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.
Dar, Javid Ahmad; Sundarapandian, Somaiah
2015-02-01
An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is influenced by vegetation type, stand structure, management history, and altitude. Our results reveal that a higher percentage (63 %) of C is stored in biomass and less in soil in these temperate forests except at the higher elevation broad-leaved BU forest. Results from this study will enhance our ability to evaluate the role of these forests in regional and global C cycles and have great implications for planning strategies for conservation. The study provides important data for developing and validating C cycling models for temperate forests.
Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico
2012-11-05
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.
NASA Astrophysics Data System (ADS)
Monsivais-Huertero, A.; Jimenez-Escalona, J. C.; Ramos, J.; Zempoaltecatl-Ramirez, E.
2013-05-01
Forest areas cover the 32% of the Mexican territory. Due to their geographical location, Mexico presents heterogeneous climatic and topographic conditions. The country is divided into two different regions: an arid /semiarid zone (North) and a tropical/temperate zone (South). Due to the effects of climate change, Mexico has been affected in two ways. In the North, there has been a desertification of regions as result of the absence of rainfall and a low rate of soil moisture. On the other hand, in the South, there has been an increase in the intensity of rainfall causing serious flooding. Another effect is the excessive deforestation in Southern Mexico. The FAO has determined that Mexico could present one of the highest losses of forest areas mainly in temperate and subtropical ecosystems. The Biosphere Reserve of Calakmul is the protected area with the largest surface of tropical forest in Mexico. The Biosphere Reserve of Calakmul is located in the state of Campeche that the flora and fauna are being affected. The type of vegetation located in the reserve of Calakmul Biosphere is rainforest with high spatial density and highly heterogeneous due to multiple plant species and the impact of human activities in the area. The satellite remote sensing techniques becomes a very useful tool to monitor the area because a large area can be covered. To understand the radar images, the identification of sensitive parameters governing the radar signal is necessary. With the launch of the satellites Radarsat-2, ASAR-Envisat and ALOSPalSAR, significant progress has been done in the interpretation of satellite radar images. Directly applying physical models becomes a problem due to the large number of input parameters in the models, together with the difficulty in measuring these parameters in the field. The models developed so far have been applied and validated for homogeneous forests with low or average spatial density of trees. This is why it is recommended in a comprehensive validation of the models for heterogeneous forests with a high density of trees, such as Calakmul. This paper presents a methodology for identifying sensitive parameters governing the scenes backscatter vegetables reserve Calakmul Biosphere from a physical model.
NASA Astrophysics Data System (ADS)
Takahara, Hikaru; Igarashi, Yaeko; Hayashi, Ryoma; Kumon, Fujio; Liew, Ping-Mei; Yamamoto, Masanobu; Kawai, Sayuri; Oba, Tadamichi; Irino, Tomohisa
2010-10-01
High-resolution pollen records from Taiwan, Japan and Sakhalin document regional vegetation changes during Dansgaard-Oeschger (D-O) cycles during the last glacial. During the period from the cold phase (GS 18/19) to warm phase (D-O 19), the biome shift from temperate conifer forest to cold/cool conifer forest in Japan and from subtropical forest to temperate deciduous/conifer forest in Taiwan. The vegetation in D-O 17, cool mixed forest in central Japan, temperate deciduous broadleaf forest in western Japan and subtropical forest in Taiwan, indicates warm condition but not wet in all area. These vegetation changes lead to biome shift from MIS (Marine Isotope Stage) 4 to MIS 3. The abundance of Cryptomeria japonica and Fagus crenata in D-O 12 and D-O 8 indicates wet conditions brought by the strong summer monsoon through the Islands and high snowfall brought by the inflow of the Tsushima Warm Current into the Sea of Japan. The registration of other D-O warming events in MIS 3, although reflected by shifts in the abundance of key species, is not sufficient to produce changes in biomes. Development of cold deciduous forest in HS (Heinrich events) 1 in Sakhalin, Hokkaido and central Japan was conspicuous and was much larger than that in YD. Vegetation response in YD was small scale and within the same biome in the East Asian Islands. In D-O 1 at the termination of the last glacial, the same taxa that developed in the early Holocene, cold evergreen needleleaf trees in northern region, temperate deciduous broadleaf trees in central and western Japan, and warm-temperate evergreen trees in Taiwan, increased.
Can Detectability Analysis Improve the Utility of Point Counts for Temperate Forest Raptors?
Temperate forest breeding raptors are poorly represented in typical point count surveys because these birds are cryptic and typically breed at low densities. In recent years, many new methods for estimating detectability during point counts have been developed, including distanc...
The role of disappeared disturbances in driving the North American prairie-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.; Staver, A. C.
2016-12-01
Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.
Long-term variability in the water budget and its controls in an oak-dominated temperate forest
Jing Xie; Ge Sun; Hou-Sen Chu; Junguo Liu; Steven G. McNulty; Asko Noormets; Ranjeet John; Zutao Ouyang; Tianshan Zha; Haitao Li; Wenbin Guan; Jiquan Chen
2014-01-01
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi-year water budget (2004â2010) and quantified environmental controls on an evapotranspiration (ET) in a...
Climate-driven regime shift of a temperate marine ecosystem.
Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun
2016-07-08
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Copyright © 2016, American Association for the Advancement of Science.
Menge, Duncan N L; DeNoyer, Jeanne L; Lichstein, Jeremy W
2010-08-06
Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The 'phylogenetic constraints hypothesis' states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the 'selective constraints hypothesis' states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis. Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the 'potentially N-fixing clade' (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile. These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon.
LaManna, Joseph A.; Martin, Thomas E.
2017-01-01
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.
Menge, Duncan N. L.; DeNoyer, Jeanne L.; Lichstein, Jeremy W.
2010-01-01
Background Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The ‘phylogenetic constraints hypothesis’ states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the ‘selective constraints hypothesis’ states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis. Methodology/Principal Findings Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the ‘potentially N-fixing clade’ (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile. Conclusions/Significance These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon. PMID:20700466
LaManna, Joseph A; Martin, Thomas E
2017-08-01
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes. © 2016 Cambridge Philosophical Society.
Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.
Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A
2014-02-01
Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Saranya, K. R. L.
2017-08-01
This study has generated a national level spatial database of land cover and changes in forest cover of Afghanistan for the 1975-1990, 1990-2005 and 2005-2014 periods. Using these results we have analysed the annual deforestation rates, spatial changes in forests, forest types and fragmentation classes over a period of 1975 to 2014 in Afghanistan. The land cover map of 2014 provides distribution of forest (dry evergreen, moist temperate, dry temperate, pine, sub alpine) and non-forest (grassland, scrub, agriculture, wetlands, barren land, snow and settlements) in Afghanistan. The largest land cover, barren land, contributes to 56% of geographical area of country. Forest is distributed mostly in eastern Afghanistan and constitutes an area of 1.02% of geographical area in 2014. The annual deforestation rate in Afghanistan's forests for the period from 1975 to 1990 estimated as 0.06% which was declined significantly from 2005 to 2014. The predominant forest type in Afghanistan is moist temperate which shows loss of 80 km2 of area during the last four decades of the study period. At national level, the percentage of large core forest area was calculated as 52.20% in 2014.
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.
2007-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.
Michael D. Ulyshen; James L. Hanula
2007-01-01
We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...
Michael Ulyshen; James Hanula
2007-01-01
We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...
Jing Xie; Jiquan Chen; Ge Sun; Housen Chu; Asko Noormets; Zutao Ouyang; Ranjeet John; Shiqiang Wan; Wenbin Guan
2014-01-01
Our understanding of the long-term carbon (C) cycle of temperate deciduous forests and its sensitivity to climate variability is limited due to the large temporal dynamics of C fluxes. The goal of the study was to quantify the effects of environmental variables on the C balance in a 70-year-old mixed-oak woodland forest over a 7-year period in northwest Ohio, USA. The...
Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.
Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A
2016-01-01
Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody structures. Given the high growth rates of these forests during secondary succession, our results further indicate that a forest management promoting tree diversity after disturbance may accelerate CO2 sequestration from the atmosphere and thus be relevant in a climate-change context.
NASA Astrophysics Data System (ADS)
Jaramillo, Fernando; Cory, Neil; Arheimer, Berit; Laudon, Hjalmar; van der Velde, Ype; Hasper, Thomas B.; Teutschbein, Claudia; Uddling, Johan
2018-01-01
During the last 6 decades, forest biomass has increased in Sweden mainly due to forest management, with a possible increasing effect on evapotranspiration. However, increasing global CO2 concentrations may also trigger physiological water-saving responses in broadleaf tree species, and to a lesser degree in some needleleaf conifer species, inducing an opposite effect. Additionally, changes in other forest attributes may also affect evapotranspiration. In this study, we aimed to detect the dominating effect(s) of forest change on evapotranspiration by studying changes in the ratio of actual evapotranspiration to precipitation, known as the evaporative ratio, during the period 1961-2012. We first used the Budyko framework of water and energy availability at the basin scale to study the hydroclimatic movements in Budyko space of 65 temperate and boreal basins during this period. We found that movements in Budyko space could not be explained by climatic changes in precipitation and potential evapotranspiration in 60 % of these basins, suggesting the existence of other dominant drivers of hydroclimatic change. In both the temperate and boreal basin groups studied, a negative climatic effect on the evaporative ratio was counteracted by a positive residual effect. The positive residual effect occurred along with increasing standing forest biomass in the temperate and boreal basin groups, increasing forest cover in the temperate basin group and no apparent changes in forest species composition in any group. From the three forest attributes, standing forest biomass was the one that could explain most of the variance of the residual effect in both basin groups. These results further suggest that the water-saving response to increasing CO2 in these forests is either negligible or overridden by the opposite effect of the increasing forest biomass. Thus, we conclude that increasing standing forest biomass is the dominant driver of long-term and large-scale evapotranspiration changes in Swedish forests.
Over the past century, human activities have increased the rate and extent of atmospheric nitrogen (N) deposition over large regions of Earth. These novel N inputs have driven many previously N-limited temperate forests towards a condition of "N saturation," characterized by poo...
Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree
Nina Wurzburger; Chelcy Ford Miniat
2013-01-01
General circulation models project more intense and frequent droughts over the next century, but many questions remain about how terrestrial ecosystems will respond. Of particular importance, is to understand how drought will alter the species composition of regenerating temperate forests wherein symbiotic dinitrogen (N2)- fixing plants play a...
Vulnerability of forest vegetation to anthropogenic climate change in China.
Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang
2018-04-15
China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Robbins, C.S.; Dowell, B.A.; Dawson, D.K.; Colon, J.A.; Estrada, R.; Sutton, A.; Sutton, R.; Weyer, D.; Hagan, John M.; Johnston, David W.
1992-01-01
Neotropical migrant bird populations were sampled at 76 sites in seven countries by using mist nets and point counts during a six-winter study. Populations in major agricultural habitats were compared with those in extensive forest and isolated forest fragments. Certain Neotropical migrants, such as the Northern Parula, American Redstart, and the Black-throated Blue, Magnolia, Black-and-white, and Hooded warblers, were present in arboreal agricultural habitats such as pine, cacao, citrus, and shade coffee plantations in relatively large numbers. Many north temperate zone shrub-nesting species, such as the Gray Catbird, White-eyed Vireo, Tennessee Warbler, Common Yellowthroat, and Indigo Bunting, also used agricultural habitats in winter, as did resident hummingbirds and migrant orioles. Ground-foraging migrants, such as thrushes and Kentucky Warblers, were rarely found in the agricultural habitats sampled. Although many Neotropical migrants use some croplands, this use might be severely limited by overgrazing by cattle, by intensive management (such as removal of ground cover in an orchard), or by heavy use of insecticides, herbicides, or fungicides.
Carbon sequestration in managed temperate coniferous forests under climate change
NASA Astrophysics Data System (ADS)
Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.
2016-03-01
Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.
Soejima, Akiko; Tanabe, Akifumi S; Takayama, Izumi; Kawahara, Takayuki; Watanabe, Kuniaki; Nakazawa, Miyuki; Mishima, Misako; Yahara, Tetsukazu
2017-11-01
The genus Stevia comprises approximately 200 species, which are distributed in North and South America, and are representative of the species diversity of the Asteraceae in the New World. We reconstructed the phylogenetic relationships using sequences of ITS and cpDNA and estimated the divergence times of the major clade of this genus. Our results suggested that Stevia originated in Mexico 7.0-7.3 million years ago (Mya). Two large clades, one with shrub species and another with herb species, were separated at about 6.6 Mya. The phylogenetic reconstruction suggested that an ancestor of Stevia was a small shrub in temperate pine-oak forests and the evolutionary change from a shrub state to a herb state occurred only once. A Brazilian clade was nested in a Mexican herb clade, and its origin was estimated to be 5.2 Mya, suggesting that the migration from North America to South America occurred after the formation of the Isthmus of Panama. The species diversity in Mexico appears to reflect the habitat diversity within the temperate pine-oak forest zone. The presence of many conspecific diploid-polyploid clades in the phylogenetic tree reflects the high frequency of polyploidization among the perennial Stevia species.
Mogi, M; Armbruster, P A; Tuno, N; Aranda, C; Yong, H S
2017-11-07
We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
González, Graciela; Briones-Salas, Miguel
2012-03-01
The Sierra Madre de Oaxaca region, located in the Northern state of Oaxaca, Mexico, is an area of forest ecosystems subject to high exploitation rates, although in some areas its temperate forests are conserved by indigenous community initiatives that live there. We analyzed the diet of white tailed-deer (Odocoileus virginianus) in the localities of Santa Catarina Lachatao and San Miguel Amatlán from June 1998 to August 1999. Sampling was done during both the wet and dry seasons, and included the observation of browsing traces (238 observations), microhistological analysis of deer feces (28 deer pellet-groups), and two stomach content analysis. The annual diet of white-tailed deer was composed of 42 species from 23 botanical families. The most represented families in the diet of this deer were Fagaceae, Asteraceae, Ericaceae and Fabaceae. There were significant differences in the alpha diversity of the diet during the wet and dry seasons (H'=2.957 and H'=1.832, respectively). The similarity percentage between seasons was 56%. Differences in plant species frequency were significantly higher during the wet season. Herbaceous plants made up the greatest percentage of all the species consumed. The preferred species throughout the year were Senecio sp. (shrub), Sedum dendroideum (herbaceous), Arctostaphylos pungens (shrub) and Satureja macrostema (shrub). Diet species richness was found to be lower than that observed in a tropical forest (Venezuela), tropical dry forest (Mexico) and temperate deciduous and mixed forest (Mexico), but similar to the diet species richness observed in a tropical dry forest (Costa Rica) and temperate coniferous and deciduous forests (USA).
Kennedy, Martin J; Hedin, Lars O; Derry, Louis A
2002-07-23
An experimental tracer addition of (84)Sr to an unpolluted temperate forest site in southern Chile, as well as the natural variation of (87)Sr/(86)Sr within plants and soils, indicates that mechanisms in shallow soil organic horizons are of key importance for retaining and recycling atmospheric cation inputs at scales of decades or less. The dominant tree species Nothofagus nitida feeds nearly exclusively (>90%) on cations of atmospheric origin, despite strong variations in tree size and location in the forest landscape. Our results illustrate that (i) unpolluted temperate forests can become nutritionally decoupled from deeper weathering processes, virtually functioning as atmospherically fed ecosystems, and (ii) base cation turnover times are considerably more rapid than previously recognized in the plant available pool of soil. These results challenge the prevalent paradigm that plants largely feed on rock-derived cations and have important implications for understanding sensitivity of forests to air pollution.
Song, Houjuan; Xu, Yudan; Hao, Jing; Zhao, Bingqing; Guo, Donggang; Shao, Hongbo
2017-02-01
The maintaining mechanisms and potential ecological processes of species diversity in warm temperate- conifer-broadleaved-mixed forest are far from clear understanding. In this paper, the relative neighborhood density Ω was used to analyze the spatial distribution patterns of 34 species with ≥11 individuals in a warm- temperate-conifer-broadleaved-mixed forest, northern China. Then we used canonical correspondence analysis (CCA) and Torus-translation test (TTT) to explain the distribution of observed species. Our results show that aggregated distribution is the dominant pattern in warm-temperate natural forest and four species regular distribution at the spatial scale >30m. The aggregated percentage and intensity decline with spatial scale, abundance and size classes increasing. Rare species are aggregated more than intermediate and abundant species. These results prove sufficiently the effects existence of scale separation, self-thinning and Janzen-Connell hypothesis. In addition, functional traits (dispersal modes and shade tolerance) also have a significant influence on distribution of species. The results of CCA confirm that slope and convexity are the most important factors affecting the distribution of tree species distribution, elevation and slope of shrub species though the combination of topographic variables only explained 1% of distribution of tree species and 2% of shrub species. Most species don't have habitat preference; however 47.1% (16/34) species including absolutely dominant tree (Pinus tabulaeformis and Quercus wutaishanica) and shrub species (Rosa xanthina) and most other species with important value in the front, are strongly positively or negatively associated with at least one habitat. The valley and ridge are most distinct habitat with association of 12 species in the plot. However, high elevation slope with 257 quadrats is the most extensive habitat with only four species. Therefore, there is obvious evidence that habitat heterogeneity play an important role on shaping spatial distribution of species in warm temperate forest. Our research results provide significant evidence that dispersal limitation and habitat heterogeneity have a contribution jointly to regulating the spatial distribution pattern of species in warm-temperate-forest in China. Copyright © 2016 Elsevier B.V. All rights reserved.
Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph
2015-01-01
Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention. PMID:25691978
Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols
2005-01-01
We studied red-backed vole Clethrionomys gapperi and Keen' s mouse Peromyscus keeni populations in the Alexander Archipelago to test predictions regarding habitat relations in temperate rain forest of southeastern Alaska during August - September 1998 and 2000 and April - May 1999 and 2000. We measured 26 vegetative and...
Alan F. Talhelm; Kurt S. Pregitzer; Mark E. Kubiske; Donald R. Zak; Courtney E. Campany; Andrew J. Burton; Richard E. Dickson; George R. Hendrey; J. G. Isebrands; Keith F. Lewin; John Nagy; David F. Karnosky
2014-01-01
Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment...
Joshua R. King; Robert J. Warren; Mark A. Bradford
2013-01-01
Earthworms, termites, and ants are common macroinvertebrates in terrestrial environments, although for most ecosystems data on their abundance and biomass is sparse. Quantifying their areal abundance is a critical first step in understanding their functional importance. We intensively sampled dead wood, litter, and soil in eastern US temperate hardwood forests at four...
Paula M. Pijut; Shaneka S. Lawson; Charles H. Michler
2011-01-01
Hardwood tree species in forest, plantation, and urban environments (temperate regions of the world) are important biological resources that play a significant role in the economy and the ecology of terrestrial ecosystems, and they have aesthetic and spiritual value. Because of these many values of hardwood tree species, preserving forest tree biodiversity through the...
Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment
John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan
2009-01-01
Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass,...
Liao, Wenying; Menge, Duncan N L
2016-01-01
Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees ("N fixers") are rare and decline in abundance as succession proceeds-a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers' rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers' successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers' successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role.
Liao, Wenying; Menge, Duncan N. L.
2016-01-01
Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees (“N fixers”) are rare and decline in abundance as succession proceeds–a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers’ rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers’ successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers’ successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role. PMID:27780268
Forest turnover rates follow global and regional patterns of productivity
Stephenson, N.L.; van Mantgem, P.J.
2005-01-01
Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.
Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W
2017-06-01
Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Beaulieu, Jacques-Louis de; Brugiapaglia, Elisabetta; Joannin, Sébastien; Guiter, Frédéric; Zanchetta, Giovanni; Wulf, Sabine; Peyron, Odile; Bernardo, Liliana; Didier, Julien; Stock, Agnès; Rius, Damien; Magny, Michel
2017-02-01
Retrospective science such as palaeoecology deeply depends on the preservation of archives in sensitive places. As an example, mountains of medium altitude from Mediterranean peninsulas have long been identified by biogeographers as refuges zones allowing the survival of European temperate taxa during the ice ages, but archives to validate this hypothesis are scarce, especially in Southern Italy. Here we present a new sequence from Lago Trifoglietti (1048 m a.s.l.) in the Calabrian Mountains, which covers the Late Glacial Interstadial (LGI, corresponding to the Bölling-Alleröd period in northern-central Europe) and the transition to the Holocene. The independent chronology based on seven radiocarbon dates is supported by the evidence of three tephra layers already identified in other regional sequences. During the LGI, besides the high diversity of non arboreal pollen grains, a great number of pollens of temperate forest trees are present or abundant (mostly deciduous oaks and fir). These assemblages suggest that the site was above but not far from the upper limit of diversified woodland stands. They confirm a local survival during the last glacial. The Younger Dryas is not marked by major changes, and oak percentages are even higher, suggesting a resilient expansion at lower altitude. Surprisingly the site remains above the timberline until an aridity crisis centered at 11,100 cal 14C yr PB, which is correlated with the Preboreal Oscillation (PBO). This event is immediately followed by the local settlement of a dense fir and beech forest around the lake. A comparison with other Italian key sequences aims at explaining the climate forcing factors that governed this original vegetation dynamic. Further investigations using additional proxies are needed for a more robust climate reconstruction.
Community Compensatory Trend Prevails from Tropical to Temperate Forest
Xiao, Lin; Yu, Shixiao; Li, Mingguang; Wang, Yongfan
2012-01-01
Community compensatory trend (CCT) is thought to facilitate persistence of rare species and thus stabilize species composition in tropical forests. However, whether CCT acts over broad geographical ranges is still in question. In this study, we tested for the presence of negative density dependence (NDD) and CCT in three forests along a tropical-temperate gradient. Inventory data were collected from forest communities located in three different latitudinal zones in China. Two widely used methods were used to test for NDD at the community level. The first method considered relationships between the relative abundance ratio and adult abundance. The second method emphasized the effect of adult abundance on abundance of established younger trees. Evidence for NDD acting on different growth forms was tested by using the first method, and the presence of CCT was tested by checking whether adult abundance of rare species affected that of established younger trees less than did abundance of common species. Both analyses indicated that NDD existed in seedling, sapling and pole stages in all three plant communities and that this effect increased with latitude. However, the extent of NDD varied among understory, midstory and canopy trees in the three communities along the gradient. Additionally, despite evidence of NDD for almost all common species, only a portion of rare species showed NDD, supporting the action of CCT in all three communities. So, we conclude that NDD and CCT prevail in the three recruitment stages of the tree communities studied; rare species achieve relative advantage through CCT and thus persist in these communities; CCT clearly facilitates newly established species and maintains tree diversity within communities across our latitudinal gradient. PMID:22701682
Multispecies genetic structure and hybridization in the Betula genus across Eurasia.
Tsuda, Yoshiaki; Semerikov, Vladimir; Sebastiani, Federico; Vendramin, Giovanni Giuseppe; Lascoux, Martin
2017-01-01
Boreal and cool temperate forests are the major land cover of northern Eurasia, and information about continental-scale genetic structure and past demographic history of forest species is important from an evolutionary perspective and has conservation implications. However, although many population genetic studies of forest tree species have been conducted in Europe or Eastern Asia, continental-scale genetic structure and past demographic history remain poorly known. Here, we focus on the birch genus Betula, which is commonly distributed in boreal and cool temperate forests, and examine 129 populations of two tetraploid and four diploid species collected from Iceland to Japan. All individuals were genotyped at seven to 18 nuclear simple sequence repeats (nSSRs). Pairwise FST' among the six species ranged from 0.285 to 0.903, and genetic differentiation among them was clear. structure analysis suggested that Betula pubescens is an allotetraploid and one of the parental species was Betula pendula. In both species pairs of B. pendula and B. plathyphylla, and B. pubescens and B. ermanii, genetic diversity was highest in central Siberia. A hybrid zone was detected around Lake Baikal for eastern and western species pairs regardless of ploidy level. Approximate Bayesian computation suggested that the divergence of B. pendula and B. platyphylla occurred around the beginning of the last ice age (36 300 years BP, 95% CI: 15 330-92 700) and hybridization between them was inferred to have occurred after the last glacial maximum (1614 years BP, 95% CI: 561-4710), with B. pendula providing a higher contribution to hybrids. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Scharnweber, Tobias; van der Maaten, Ernst; Heinrich, Ingo; Buras, Allan; van der Maaten Theunissen, Marieke; Wilmking, Martin
2014-05-01
In contrast to extreme environments with low human impact, where often one specific (climatic) factor is limiting tree growth, dendrochronological research in the temperate zone has to cope with a wide variety of climatic and non-climatic drivers. Sophisticated statistical tools, like various detrending and filtering techniques, allow for a rather precise analysis of high-frequency (annual) climate-growth relationships. However, as almost all forests in the temperate zone are to some degree influenced by human activities, it is difficult to separate anthropogenic from climatic influence on the lower time-frequencies of decades to centuries. Footprints of human activity in time series of tree-ring parameters might be caused directly through forest utilization (logging) or indirectly through environmental changes such as eutrophication or atmospheric pollution. The former can be elucidated by traditional dendrochronological techniques based on ring parameters; evaluation of the latter requires additional proxies such as dendrochemical data. For the interpretation of long-term trends and the calibration of tree-ring based reconstructions it is therefore necessary to study tree growth in as undisturbed forest environments as possible. Comparison with dendrochronological time series from managed forest might then allow separation of climatic- from anthropogenic signals. Here, we present long-term growth trends for the broadleaved tree species common beech, pedunculate oak and sycamore maple, from two protected old-growth forests in northern Germany (one with a documented last logging activity dating back to 1527), and compare those with well-replicated regional chronologies from other, mostly managed forests. Our results indicate that several low frequency trends that can be found in many regional chronologies are likely caused by synchronous periods of heavy loggings as for example during the years following World War II, and do not relate to climatic drivers. In addition, elemental wood composition of trees growing on an island relatively isolated from agricultural depositions or direct atmospheric pollution is compared to elemental concentrations in the wood of trees from a forest surrounded by intensive agriculture in the vicinity of Greifswald, a medium-sized town in Germany. The aim is to detect historical changes in soil chemistry attributable to either atmospheric depositions or groundwater input of nitrogen or sulphur. Therefore, high-resolution (50 µm) X-ray fluorescence (XRF) analysis is carried out and species-specific annual chronologies of relative concentrations of the most abundant elements as well as of different indicative element-ratios are built. We discuss our findings in the light of ongoing soil acidification that might be responsible for some of the detected trends (e.g. decrease in base cations like Ca or Mn), while considering possible radial translocation processes in the wood that might blur the obtained dendrochemical data.
Churski, Marcin; Bubnicki, Jakub W; Jędrzejewska, Bogumiła; Kuijper, Dries P J; Cromsigt, Joris P G M
2017-04-01
Plant biomass consumers (mammalian herbivory and fire) are increasingly seen as major drivers of ecosystem structure and function but the prevailing paradigm in temperate forest ecology is still that their dynamics are mainly bottom-up resource-controlled. Using conceptual advances from savanna ecology, particularly the demographic bottleneck model, we present a novel view on temperate forest dynamics that integrates consumer and resource control. We used a fully factorial experiment, with varying levels of ungulate herbivory and resource (light) availability, to investigate how these factors shape recruitment of five temperate tree species. We ran simulations to project how inter- and intraspecific differences in height increment under the different experimental scenarios influence long-term recruitment of tree species. Strong herbivore-driven demographic bottlenecks occurred in our temperate forest system, and bottlenecks were as strong under resource-rich as under resource-poor conditions. Increased browsing by herbivores in resource-rich patches strongly counteracted the increased escape strength of saplings in these patches. This finding is a crucial extension of the demographic bottleneck model which assumes that increased resource availability allows plants to more easily escape consumer-driven bottlenecks. Our study demonstrates that a more dynamic understanding of consumer-resource interactions is necessary, where consumers and plants both respond to resource availability. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
Bonan, Gordon B
2008-06-13
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
NASA Astrophysics Data System (ADS)
Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle
2017-04-01
Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve terrestrial carbon cycling models and estimate forest ecosystem feedbacks to climate change.
Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869
Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.
J.S. Norman; J.E. Barrett
2016-01-01
We sought to investigate the drivers of richness of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in temperate forest soils. We sampled soils across four experimental watersheds in the Coweeta Hydrologic Laboratory, North Carolina USA. These watersheds are geographically close, but vary in soil chemistry due to differences in land use history. While we...
Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols
2005-01-01
Management indicator species (MIS) often are selected because their life history and demographics are thought to reflect a suite of ecosystem conditions that are too difficult or costly to measure directly. The northern flying squirrel (Glaucomys sabrinus) has been proposed as an MIS of temperate rain forest of southeastern Alaska based on previous...
Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil
J.S. Norman; J.E. Barrett
2014-01-01
Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...
D. F. Karnosky; D. R. Zak; K. S. Pregitzer; C. S. Awmack; J. G. Bockheim; R. E. Dickson; G. R. Hendrey; G. E. Host; J. S. King; B. J. Kopper; E. L. Kruger; M. E. Kubiske; R. L. Lindroth; W. J. Mattson; E. P. McDonald; A. Noormets; E. Oksanen; W. F. J. Parsons; K. E. Percy; G. K. Podila; D. E. Riemenschneider; P. Sharma; R. Thakur; A. S& #244ber; J. S& #244ber; W. S. Jones; S. Anttonen; E. Vapaavuori; B. Mankovska; W. Heilman; J. G. Isebrands
2003-01-01
1. The impacts of elevated atmospheric CO2 and/or O3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, 03-sensitive species Trembling Aspen, Populus tremuloides...
Grizelle Gonzalez; William Gould; Andrew T. Hudak; Teresa Nettleton Hollingsworth
2008-01-01
In this study, we set up a wood decomposition experiment to i) quantify the percent of mass remaining, decay constant and performance strength of aspen stakes (Populus tremuloides) in dry and moist boreal (Alaska and Minnesota, USA), temperate (Washington and Idaho, USA), and tropical (Puerto Rico) forest types, and ii) determine the effects of...
Tedersoo, Leho; Sadam, Ave; Zambrano, Milton; Valencia, Renato; Bahram, Mohammad
2010-04-01
Information about the diversity of tropical microbes, including fungi is relatively scarce. This study addresses the diversity, spatial distribution and host preference of ectomycorrhizal fungi (EcMF) in a neotropical rainforest site in North East Ecuador. DNA sequence analysis of both symbionts revealed relatively low richness of EcMF as compared with the richness of temperate regions that contrasts with high plant (including host) diversity. EcMF community was positively autocorrelated up to 8.5+/-1.0-m distance-roughly corresponding to the canopy and potentially rooting area of host individuals. Coccoloba (Polygonaceae), Guapira and Neea (Nyctaginaceae) differed by their most frequent EcMF. Two-thirds of these EcMF preferred one of the host genera, a feature uncommon in boreal forests. Scattered distribution of hosts probably accounts for the low EcMF richness. This study demonstrates that the diversity of plants and their mycorrhizal fungi is not always related and host preference among EcMF can be substantial outside the temperate zone.
NASA Astrophysics Data System (ADS)
Cornelis, J.; Delvaux, B.; Cardinal, D.; André, L.; Ranger, J.; Opfergelt, S.
2010-12-01
Understand the biogeochemical cycle of silicon (Si) in the Earth’s critical zone and the dissolved Si transfer from the litho-pedosphere into the hydrosphere is of great interest for the global balance of biogeochemical processes, including the global C cycle. Indeed, the interaction between Si and C cycles regulates the atmospheric CO2 through the chemical weathering of silicate minerals, the C sequestration in stable organo-mineral compounds and the Si nutrition of phytoplankton CO2-consumers in oceans. H4SiO4 released by mineral dissolution contributes to the critical zone evolution through neoformation of secondary minerals, adsorption onto hydroxyl-bearing phases and recycling by vegetation and return of phytoliths on topsoil. The neoformation of secondary precipitates (clay minerals and phytoliths polymerized in plants) and adsorption of Si onto Fe and Al (hydr)oxides are processes favoring the light Si isotope incorporation, generating rivers enriched in heavy Si isotopes. On the other hand, clay minerals and phytoliths display contrasting Ge/Si ratios since clay-sized weathering products are enriched in Ge and phytoliths are depleted in Ge. Thus stable Si isotope and Ge/Si ratios constitute very interesting proxies to trace transfer of Si in the critical zone. Here we report Si isotopic and Ge/Si ratios of the different Si pools in a temperate soil-tree system (Breuil experimental forest, France) involving various tree species grown on Alumnic Cambisol derived from granitic bedrock. Relative to granitic bedrock (δ30Si = -0.07 ‰; Ge/Si = 2.5 µmol/mol), clay-sized minerals are enriched in 28Si (-1.07 ‰) and Ge (6.2 µmol/mol) while phytoliths are enriched in 28Si (-0.28 to -0.64 ‰) and depleted in Ge (0.1 to 0.3 µmol/mol). This contrast allows us to infer the relative contribution of litho/pedogenic and biogenic mineral dissolution on the release of H4SiO4 in soil surface solutions. The Si-isotope signatures and Ge/Si ratios of forest floor solutions evolve towards lighter values (-1.38 and -2.05 ‰) and higher Ge/Si ratios (2.7 µmol/mol) relative to granite bedrock. This suggests a partial dissolution of 28Si and Ge-enriched secondary clays minerals incorporated by bioturbation in organic-rich horizons, with a fractionation releasing preferentially light Si isotopes. Without considering that organic acids promote dissolution of minerals, clay minerals detected in the organic layer (vermiculite, chlorite, illite and Ca-montmorillonite) are not stable and could have been partially dissolved and transformed in the chemical environment of forest floor. Sources of H4SiO4 in forest floor solutions are influenced by tree species which control the extent of clay-sized minerals mixed in organic horizons by bioturbation and, to a lesser extent, the Si recycling by forest vegetation.
Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico
2012-01-01
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083
Local-scale drivers of tree survival in a temperate forest.
Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang
2012-01-01
Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.
Zhu, JianXiao; Hu, XueYang; Yao, Hui; Liu, GuoHua; Ji, ChenJun; Fang, JingYun
2015-11-01
Numerous efforts have been made to characterize forest carbon (C) cycles and stocks in various ecosystems. However, long-term observation on each component of the forest C cycle is still lacking. We measured C stocks and fluxes in three permanent temperate forest plots (birch, oak and pine forest) during 2011–2014, and calculated the changes of the components of the C cycle related to the measurements during 1992–1994 at Mt. Dongling, Beijing, China. Forest net primary production in birch, oak, and pine plots was 5.32, 4.53, and 6.73 Mg C ha-1 a-1, respectively. Corresponding net ecosystem production was 0.12, 0.43, and 3.53 Mg C ha-1 a-1. The C stocks and fluxes in 2011–2014 were significantly larger than those in 1992–1994 in which the biomass C densities in birch, oak, and pine plots increased from 50.0, 37.7, and 54.0 Mg C ha-1 in 1994 to 101.5, 77.3, and 110.9 Mg C ha-1 in 2014; soil organic C densities increased from 207.0, 239.1, and 231.7 Mg C ha-1 to 214.8, 241.7, and 238.4 Mg C ha-1; and soil heterotrophic respiration increased from 2.78, 3.49, and 1.81 Mg C ha-1 a-1 to 5.20, 4.10, and 3.20 Mg C ha-1 a-1. These results suggest that the mountainous temperate forest ecosystems in Beijing have served as a carbon sink in the last two decades. These observations of C stocks and fluxes provided field-based data for a long-term study of C cycling in temperate forest ecosystems.
Tng, David Y P; Jordan, Greg J; Bowman, David M J S
2013-01-01
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.
Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale?
NASA Astrophysics Data System (ADS)
Alfaro Reyna, Teresa; Retana, Javier; Martínez-Vilalta, Jordi
2018-07-01
Reports on forest decline, changes in species composition and the distribution of forests in response to changes in climate and land use are increasing worldwide. Temperate forests are largely dominated by two tree families: Pinaceae and Fagaceae. These two families have distinct functional properties and different responses to environmental factors. Several local and regional assessments, particularly in Europe, have found that species of Fagaceae are invading areas previously dominated by Pinaceae. The main aim of this synthesis study is to analyze the relative dynamics of Pinaceae and Fagaceae species in temperate forests around the world, with the following specific objectives: (1) establish if there is a consistent directional substitution of Pinaceae by Fagaceae worldwide; and (2) determine whether these directional changes are associated with specific climatic conditions or certain geographic regions, reflecting differences in historical forest management and land use. A bibliographic review was performed and 51 papers were found that met the search criteria, including a total of 121 case studies in which the relative dynamics of Pinaceae and Fagaceae were evaluated. Our results show that the relative abundance of Fagaceae increased in 71% of cases (P → F dynamics), whereas Pinaceae relative abundance increased in 17% of cases (F → P) and 12% of cases did not show clear changes. Increases of Fagaceae relative to Pinaceae were less clear in areas where vegetation dynamics were driven by natural disturbances. Our results indicate a widespread increase in dominance of Fagaceae species at the expense of Pinaceae across northern temperate forests, with the exception of Eastern North America. The potential implications for ecosystem function and forest resilience under ongoing climate change are large and clearly deserve further study.
Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.
2013-01-01
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359
Local-Scale Drivers of Tree Survival in a Temperate Forest
Wang, Xugao; Comita, Liza S.; Hao, Zhanqing; Davies, Stuart J.; Ye, Ji; Lin, Fei; Yuan, Zuoqiang
2012-01-01
Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1–20 cm dbh) and medium trees (20–40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management. PMID:22347996
Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S
2015-10-01
In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.
He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun
2017-07-01
Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.
Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans
2008-12-01
Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.
Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto
2016-06-01
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone. © 2015 John Wiley & Sons Ltd.
Jolly, William M; Nemani, Ramakrishna; Running, Steven W
2004-09-01
Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.
USDA-ARS?s Scientific Manuscript database
We compared nearly continuously from 1998 until 2006 rates of soil atmosphere CH4 exchange at permanently established sampling sites in a temperate loblolly pine (Pinus taeda) forest exposed to ambient (control plots; approx. 380 uL L-1) or elevated (ambient + 200 uL L-1) CO2. Net atmospheric CH4 co...
David Medvigy; Su-Jong Jeong; Kenneth L. Clark; Nicholas S. Skowronski; Karina V. R. Schäfer
2013-01-01
Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem...
Forest dynamics in the temperate rainforests of Alaska: from individual tree to regional scales
Tara M. Barrett
2015-01-01
Analysis of remeasurement data from 1079 Forest Inventory and Analysis (FIA) plots revealed multi-scale change occurring in the temperate rainforests of southeast Alaska. In the western half of the region, including Prince William Sound, aboveground live tree biomass and carbon are increasing at a rate of 8 ( ± 2 ) percent per decade, driven by an increase in Sitka...
Management of forest fires to maximize carbon sequestration in temperate and boreal forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggenheim, D.E.
1996-12-31
This study examines opportunities for applying prescribed burning strategies to forest stands to enhance net carbon sequestration and compared prescribed burning strategies with more conventional forestry-based climate change mitigation alternatives, including fire suppression and afforestation. Biomass burning is a major contributor to greenhouse gas accumulation in the atmosphere. Biomass burning has increased by 50% since 1850. Since 1977, the annual extent of burning in the northern temperate and boreal forests has increased dramatically, from six- to nine-fold. Long-term suppression of fires in North America, Russia, and other parts of the world has led to accumulated fuel load and an increasemore » in the destructive power of wildfires. Prescribed burning has been used successfully to reduce the destructiveness of wildfires. However, across vast areas of Russia and other regions, prescribed burning is not a component of forest management practices. Given these factors and the sheer size of the temperate-boreal carbon sink, increasing attention is being focused on the role of these forests in mitigating climate change, and the role of fire management strategies, such as prescribed burning, which could work alongside more conventional forestry-based greenhouse gas offset strategies, such as afforestation.« less
Root water uptake and lateral interactions among root systems in a temperate forest
NASA Astrophysics Data System (ADS)
Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.
2016-12-01
A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.
Impact of Land Use Change on the Temperate Forest of South Central Chile
NASA Astrophysics Data System (ADS)
Fernandez, A.; Fuentes, R.; Jaque, E.; Fernandez, S.
2017-12-01
Chilean temperate forests is a biological hotspot because its high diversity and endemism. Nevertheless, in the last few decades the spatial extent of this forest has been decimated, portraying potentially harmful impacts on the regional biodiversity. In this work, we present our ongoing study on the rate of temperate forest shrinkage and their causes in a section of the BioBío region (37°S), South Central Chile. We derived land cover maps from satellite imagery acquired over 20 years (1990 and 2010) and assessed the effects of changes in land use on native forest. Between 1990 and 2010, there was a 59% reduction in native forest area, which is equivalent to an annual forest loss rate of 4.4% per year. Forest fragmentation was associated with a decrease in forest patch size and proximity, and an increase in the number of forest patches. During this study period native forest loss was correlated with an expansion of plantations of exotic species, which in turn was associated with substantial changes in the spatial configuration of the landscape. We will also present an update of this pattern including the period 2010-2017. The assessment of deforestation and fragmentation provides a basis for future research on the impacts of forest fragmentation on the different components of biodiversity. We suggest that conservation strategies and land use planning are necessary in the study area; this should consider the spatial pattern of native forest patches and the change of these over time at a landscape level.
Observational evidence for cloud cover enhancement over western European forests.
Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-11
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.
Observational evidence for cloud cover enhancement over western European forests
Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-01
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840
Microclimate moderates plant responses to macroclimate warming.
De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A; Kelly, Daniel L; Kirby, Keith J; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Peterken, George; Petrík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M; Walther, Gian-Reto; White, Peter S; Woods, Kerry D; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris
2013-11-12
Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass--e.g., for bioenergy--may open forest canopies and accelerate thermophilization of temperate forest biodiversity.
Microclimate moderates plant responses to macroclimate warming
De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D.; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M.; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S.; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A.; Kelly, Daniel L.; Kirby, Keith J.; Mitchell, Fraser J. G.; Naaf, Tobias; Newman, Miles; Peterken, George; Petřík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M.; Walther, Gian-Reto; White, Peter S.; Woods, Kerry D.; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris
2013-01-01
Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., “thermophilization” of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that “climatic lags” may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12–67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass—e.g., for bioenergy—may open forest canopies and accelerate thermophilization of temperate forest biodiversity. PMID:24167287
Morphological response of songbirds to 100 years of landscape change in North America.
Desrochers, A
2010-06-01
Major landscape changes caused by humans may create strong selection pressures and induce rapid evolution in natural populations. In the last 100 years, eastern North America has experienced extensive clear-cutting in boreal areas, while afforestation has occurred in most temperate areas. Based on museum specimens, I show that wings of several boreal forest songbirds and temperate songbirds of non-forest habitats have become more pointed over the last 100 years. In contrast, wings of most temperate forest and early-successional boreal forests species have become less pointed over the same period. In contrast to wing shape, the bill length of most species did not change significantly through time. These results are consistent with the "habitat isolation hypothesis", i.e., songbirds evolved in response to recent changes in the amount of available habitat and associated implications for mobility. Rapid morphological evolution may mitigate, without necessarily preventing, negative consequences of habitat loss caused by humans through direct exploitation or climate change.
Development of deforestation and land cover database for Bhutan (1930-2014).
Reddy, C Sudhakar; Satish, K V; Jha, C S; Diwakar, P G; Murthy, Y V N Krishna; Dadhwal, V K
2016-12-01
Bhutan is a mountainous country located in the Himalayan biodiversity hotspot. This study has quantified the total area under land cover types, estimated the rate of forest cover change, analyzed the changes across forest types, and modeled forest cover change hotpots in Bhutan. The topographical maps and satellite remote sensing images were analyzed to get the spatial patterns of forest and associated land cover changes over the past eight decades (1930-1977-1987-1995-2005-2014). Forest is the largest land cover in Bhutan and constitutes 68.3% of the total geographical area in 2014. Subtropical broad leaved hill forest is predominant type occupies 34.1% of forest area in Bhutan, followed by montane dry temperate (20.9%), montane wet temperate (18.9%), Himalayan moist temperate (10%), and tropical moist sal (8.1%) in 2014. The major forest cover loss is observed in subtropical broad leaved hill forest (64.5 km 2 ) and moist sal forest (9.9 km 2 ) from 1977 to 2014. The deforested areas have mainly been converted into agriculture and contributed for 60.9% of forest loss from 1930 to 2014. In spite of major decline of forest cover in time interval of 1930-1977, there is no net rate of deforestation is recorded in Bhutan since 1995. Forest cover change analysis has been carried out to evaluate the conservation effectiveness in "Protected Areas" of Bhutan. Hotspots that have undergone high transformation in forest cover for afforestation and deforestation were highlighted in the study for conservation prioritisation. Forest conservation policies in Bhutan are highly effective in controlling deforestation as compared to neighboring Asian countries and such service would help in mitigating climate change.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming
2018-02-01
In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.
Latitude, elevational climatic zonation and speciation in New World vertebrates
Cadena, Carlos Daniel; Kozak, Kenneth H.; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M.; Bowie, Rauri C. K.; Carnaval, Ana C.; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E.; Sanders, Nathan J.; Schneider, Christopher J.; VanDerWal, Jeremy; Zamudio, Kelly R.; Graham, Catherine H.
2012-01-01
Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions. PMID:21632626
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
Derivation of a northern-hemispheric biomass map for use in global carbon cycle models
NASA Astrophysics Data System (ADS)
Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane
2013-04-01
Quantifying the state and the change of the World's forests is crucial because of their ecological, social and economic value. Concerning their ecological importance, forests provide important feedbacks on the global carbon, energy and water cycles. In addition to their influence on albedo and evapotranspiration, they have the potential to sequester atmospheric carbon dioxide and thus to mitigate global warming. The current state and inter-annual variability of forest carbon stocks remain relatively unexplored, but remote sensing can serve to overcome this shortcoming. While for the tropics wall-to-wall estimates of above-ground biomass have been recently published, up to now there was a lack of similar products covering boreal and temperate forests. Recently, estimates of forest growing stock volume (GSV) were derived from ENVISAT ASAR C-band data for latitudes above 30° N. Utilizing a wood density and a biomass compartment database, a forest carbon density map covering North-America, Europe and Asia with 0.01° resolution could be derived out of this dataset. Allometric functions between stem, branches, root and foliage biomass were fitted and applied for different leaf types (broadleaf, needleleaf deciduous, needleleaf evergreen forest). Additionally, this method enabled uncertainty estimation of the resulting carbon density map. Intercomparisons with inventory-based biomass products in Russia, Europe and the USA proved the high accuracy of this approach at a regional scale (r2 = 0.70 - 0.90). Based on the final biomass map, the forest carbon stocks and densities (excluding understorey vegetation) for three biomes were estimated across three continents. While 40.7 ± 15.7 Gt of carbon were found to be stored in boreal forests, temperate broadleaf/mixed forests and temperate conifer forests contain 24.5 ± 9.4 Gt(C) and 14.5 ± 4.8 Gt(C), respectively. In terms of carbon density, most of the carbon per area is stored in temperate conifer (62.1 ± 20.7 Mg(C)/ha(Forest)) and broadleaf/mixed forests (58.0 ± 22.1 Mg(C)/ha(Forest)), whereas boreal forests have a carbon density of only 40.0 ± 15.4 Mg(C)/ha(Forest). While European forest carbon stocks are relatively small, the carbon density is higher compared to the other continents. The derived biomass map substantially improves the knowledge on the current carbon stocks of the northern-hemispheric boreal and temperate forests, serving as a new benchmark for spatially explicit and consistent biomass mapping with moderate spatial resolution. This product can be of great value for global carbon cycle models as well as national carbon monitoring systems. Further investigations concentrate on improving biomass parameterizations and representations in such kind of models. The presented map will help to improve the simulation of biomass spatial patterns and variability and enables identifying the dominant influential factors like climatic conditions and disturbances.
Plasmodium vivax malaria: a re-emerging threat for temperate climate zones?
Petersen, Eskild; Severini, Carlo; Picot, Stephane
2013-01-01
Plasmodium vivax was endemic in temperate areas in historic times up to the middle of last century. Temperate climate P. vivax has a long incubation time of up to 8-10 months, which partly explain how it can be endemic in temperate areas with a could winter. P. vivax disappeared from Europe within the last 40-60 years, and this change was not related to climatic changes. The surge of P. vivax in Northern Europe after the second world war was related to displacement of refugees and large movement of military personnel exposed to malaria. Lately P. vivax has been seen along the demilitarized zone in South Korea replication a high endemicity in North Korea. The potential of transmission of P. vivax still exist in temperate zones, but reintroduction in a larger scale of P. vivax to areas without present transmission require large population movements of P. vivax infected people. The highest threat at present is refugees from P. vivax endemic North Korea entering China and South Korea in large numbers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Veselý, Lukáš; Buřič, Miloš; Kouba, Antonín
2015-01-01
The spreading of new crayfish species poses a serious risk for freshwater ecosystems; because they are omnivores they influence more than one level in the trophic chain and they represent a significant part of the benthic biomass. Both the environmental change through global warming and the expansion of the pet trade increase the possibilities of their spreading. We investigated the potential of four “warm water” highly invasive crayfish species to overwinter in the temperate zone, so as to predict whether these species pose a risk for European freshwaters. We used 15 specimens of each of the following species: the red swamp crayfish (Procambarus clarkii), the marbled crayfish (Procambarus fallax f. virginalis), the yabby (Cherax destructor), and the redclaw (Cherax quadricarinatus). Specimens were acclimatized and kept for 6.5 months at temperatures simulating the winter temperature regime of European temperate zone lentic ecosystems. We conclude that the red swamp crayfish, marbled crayfish and yabby have the ability to withstand low winter temperatures relevant for lentic habitats in the European temperate zone, making them a serious invasive threat to freshwater ecosystems. PMID:26572317
NASA Astrophysics Data System (ADS)
Enquist, B. J.
2017-12-01
Tropical and temperate elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based metabolic scaling theory including whether observed shifts in forest traits across a broad tropical temperature gradient is consistent with local phenotypic optima and adaptive compensation for temperature. We tested a new anaytical theory - Trait Driver Theory - that is capable of scaling from traits to entire stands and ecosystems across several elevation gradients spanning 3300m. Each gradient consists of thousands of tropical and temperate tree trait measures taken from forest plots. In several of these plots, in particular in southern Perú, gross and net primary productivity (GPP and NPP) were measured. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within forests with simultaneous measures of ecosystem net and gross primary productivity. Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependency appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. The observed shift in traits of trees that dominant more cold environments appear to reflect `adaptive/acclimatory' compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance due to warming from climate change. Trait-based metabolic scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of temperate and tropical forests.
Mark A Friedl; Josh M Gray; Eli K Melaas; Andrew D Richardson; Koen Hufkens; Trevor F Keenan; Amey Bailey; John O' Keefe
2014-01-01
By the end of this century, mean annual temperatures in the Northeastern United States are expected to warm by 3-5 °C, which will have significant impacts on the structure and function of temperate forests in this region. To improve understanding of these impacts, we exploited two recent climate anomalies to explore how the springtime phenology of Northeastern...
Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin
2007-01-01
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...
MONTES (“Woodlands”) was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Wester...
Shigeo Kuramoto; Shigenori Oshioka; Takahisa Hirayama; Kaori Sato; Yasumasa Hirata
2007-01-01
We characterized the tree species composition of a 30 ha old-growth and neighboring shelterbelt (reserved buffer strips among conifer plantations) in warm-temperate forests in the Shikoku region of southwestern Japan. Using a two-way indicator species analysis of data from 28 plots, we identified four structural groups in terms of relative basal area. These structural...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e
The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less
Net ecosystem carbon exchange of a dry temperate eucalypt forest
NASA Astrophysics Data System (ADS)
Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.
2017-08-01
Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest was not water limited. Our results show the potential of temperate eucalypt forests to sequester large amounts of carbon when not water limited. However, further studies using bottom-up approaches are needed to validate measurements from the eddy covariance flux tower and to account for a possible underestimation in ER due to advection fluxes.
Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4
NASA Technical Reports Server (NTRS)
Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.
1991-01-01
Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.
Tree-mediated methane emissions from tropical and temperate peatlands.
NASA Astrophysics Data System (ADS)
Pangala, S. R.; Gauci, V.; Hornibrook, E. R. C.; Gowing, D. J.
2012-04-01
Methane production and transport processes in peatlands are fairly well understood, but growing evidence for emission of methane through trees has highlighted the need to revisit methane transport processes. In wetland trees, morphological adaptations such as development of hypertrophied lenticels, aerenchyma and adventitious roots in response to soil anoxia mediates gas transport, transporting both oxygen from the atmosphere to oxygen-deprived roots and soil-produced methane from the root-zone to the atmosphere. Although, tree-mediated methane emissions from temperate tree species have been confirmed, methane emissions from tropical tree species and processes that control tree-mediated methane emissions remain unclear. This study explains the role of trees in transporting soil-produced methane to the atmosphere and uncovers the principal mechanisms of tree-mediated methane emissions. Methane emissions from eight tropical tree species and two temperate tree species were studied in situ. The mechanisms and controls on tree-mediated methane emissions were investigated using three year old common alder (Alnus glutinosa; 50 trees) grown under two artificially controlled water-table positions. Methane fluxes from whole mesocosms, the soil surface and tree stems were measured using static closed chambers. Both temperate and tropical tree species released significant quantities of methane, with tropical trees dominating ecosystem level methane fluxes. In temperate peatlands, both the methane gas transport mechanism and quantity of methane emitted from stems is tree-species dependent. In Alnus glutinosa, no correlations were observed between stomatal behaviour and tree-mediated methane emissions, however, stem methane emissions were positively correlated with both stem lenticel density and dissolved soil methane concentration. In Alnus glutinosa, no emissions were observed from leaf surfaces. The results demonstrate that exclusion of tree-mediated methane emissions from flux measurement campaigns in forested peatlands will lead to an underestimation of ecosystem-wide methane emissions.
Breeding biology of passerines in a subtropical montane forest in northwestern Argentina
Auer, S.K.; Bassar, R.D.; Fontaine, J.J.; Martin, T.E.
2007-01-01
The breeding ecology of south temperate bird species is less widely known than that of north temperate species, yet because they comprise a large portion of the world's avian diversity, knowledge of their breeding ecology can contribute to a more comprehensive understanding of the geographic diversity of avian reproductive traits and life history strategies. We provide the first detailed examination of the reproductive strategies of 18 forest passerines of subtropical, northwestern Argentina. Mean clutch sizes were smaller and egg mass was greater than for north temperate birds, but differed among species and nest types, with cavity-nesters having larger clutches than species with open-cup and enclosed nests. Across all species, the average breeding season duration was 50 days; thus, the common perception that southern species have smaller clutch sizes because of longer breeding seasons is not supported in this community. Daily nest predation rates were influenced by nest type, cavity nests suffering the least from predation, as found in north temperate systems. Only females incubated eggs in all but one species, whereas both parents fed and cared for nestlings in all species. Mean nest attentiveness was low compared to north temperate passerines. Mean hourly nestling feeding rates differed among species and were negatively related to nest predation risk. In short, coexisting species in this subtropical forest varied in their life history strategies, in part correlated with variation in nest predation risk, but also differing from north temperate species. ?? The Cooper Ornithological Society 2007.
Forest production dynamics along a wood density spectrum in eastern US forests
C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; K. Zhu; S.S. Saatchi
2015-01-01
Emerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand's mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.
NASA Astrophysics Data System (ADS)
Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil
2015-05-01
This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.
G.A. Bauer; F.A. Bazzaz; R. Minocha; S. Long; A. Magill; J. Aber; G.M. Berntson
2004-01-01
Temperate forests are predicted to play a key role as important sinks for atmospheric carbon dioxide, which could be enhanced by nitrogen (N) deposition. However, experimental evidence suggests that the impact of N deposition on temperate forest productivity may not be as great as originally assumed. We investigated how chronic N addition affects needle morphology,...
Decomposition of New Woody Inputs as a Dry Tropical Forest Regenerates
NASA Astrophysics Data System (ADS)
Schilling, J. S.; Powers, J. S.; Ayres, A.; Kaffenberger, J. T.
2015-12-01
Modeling deadwood dynamics is limited by our empirical understanding of decomposition patterns and drivers. This gap is significant in dry tropical forests (and in the tropics, broadly) where forest regeneration is a management priority but where decision-making lacks resources. Our goal was to track decomposition and its biological drivers in tree boles added to the forest floor of a regenerating dry forest. We cut and then placed logs (~18 cm dia) of eight representative tree species in ground contact at two different sites (n=8, per site). We tracked density loss and element import/export in both sapwood and heartwood each 6 months over two years. We measured initial and final lignin, structural carbohydrates, nitrogen, and extractives. We also quantified insect gallery volumes, and used two residue 'signatures' to determine dominant fungal rot type: 1) dilute alkali solubility (DAS) and lignin:glucan loss. By year 2, mean density losses in sapwood were 11.6 - 44.4% among tree species, excluding one species that decomposed completely. The best predictor of density loss in sapwood was initial pH, but the correlation was negative rather than positive, as has been reported in temperate systems. Decay was consistently more advanced in sapwood than in heartwood, and although extractives were as high as 16.4% in heartwood, trait-density loss correlations were insignificant. Insects contributed little at this stage to density loss (<3%), and both lignin:glucan loss and DAS confirmed that white rot fungi dominated decomposition. Although element import dynamics broadly resembled those from temperate studies (e.g., Ca gain, P, K loss), there was high spatial variability. This perhaps related to zone line (spalting) complexity, suggesting intense competition among fungi colonizing small territories within the wood. Estimated CO2 fluxes from the test logs ranged from ~25 to 75% of the annual fluxes from litter fall at these sites. Collectively, these results implicate wood decomposition as an important component of dry forest carbon cycling. Emergent patterns from decomposers are also interesting in this case, where fungi assigned as a single functional group (white rot type) produced little variability in decay rates (Function 1) but high variability in element translocation (Function 2).
Thom, Dominik; Rammer, Werner; Dirnböck, Thomas; Müller, Jörg; Kobler, Johannes; Katzensteiner, Klaus; Helm, Norbert; Seidl, Rupert
2017-02-01
1. The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species. Here, we (i) investigated the potential long-term effect of climate change on biodiversity in a mountain forest landscape, (ii) assessed the effects of different disturbance frequencies, severities and sizes and (iii) identified biodiversity hotspots at the landscape scale to facilitate conservation management. 2. We employed the model iLand to dynamically simulate the tree vegetation on 13 865 ha of the Kalkalpen National Park in Austria over 1000 years, and investigated 36 unique combinations of different disturbance and climate scenarios. We used simulated changes in tree cover and composition as well as projected temperature and precipitation to predict changes in the diversity of Araneae, Carabidae, ground vegetation, Hemiptera, Hymenoptera, Mollusca, saproxylic beetles, Symphyta and Syrphidae, using empirical response functions. 3. Our findings revealed widely varying responses of biodiversity indicators to climate change. Five indicators showed overall negative effects, with Carabidae, saproxylic beetles and tree species diversity projected to decrease by more than 33%. Six indicators responded positively to climate change, with Hymenoptera, Mollusca and Syrphidae diversity projected to increase more than twofold. 4. Disturbances were generally beneficial for the studied indicators of biodiversity. Our results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect. Spatial hotspots of biodiversity were currently found in low- to mid-elevation areas of the mountainous study landscape, but shifted to higher-elevation zones under changing climate conditions. 5. Synthesis and applications . Our results highlight that intensifying disturbance regimes may alleviate some of the impacts of climate change on forest biodiversity. However, the projected shift in biodiversity hotspots is a challenge for static conservation areas. In this regard, overlapping hotspots under current and expected future conditions highlight priority areas for robust conservation management.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago
Marchant, R.; Cleef, A.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.; Duivenvoorden, J.; Flenley, J.; De Oliveira, P.; Van Gee, B.; Graf, K.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.; Horn, S.; Kuhry, P.; Ledru, M.-P.; Mayle, F.; Leyden, B.; Lozano-Garcia, S.; Melief, A.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G.; Salgado-Labouriau, M.; Schabitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000??500 and 18 000??1000 radiocarbon years before present ( 14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000??500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000??500 14C yr BP reconstruction are comparatively small; change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America show a change in biome assignment, but to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000??1000 14C yr BP 61 samples from 34 sites record vegetation reflecting a generally cool and dry environment. Cool grass/shrubland is prevalent in southeast Brazil whereas Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central Mexico and lowland Colombia remain unchanged in the biome assignments of warm mixed forest and tropical dry forest respectively, although the affinities that these sites have to different biomes do change between 18000??1000 14C yr BP and present. The "unresponsive" nature of these sites results from their location and the impact of local edaphic influence. ?? Author(s) 2009.
Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments.
Norby, Richard J; De Kauwe, Martin G; Domingues, Tomas F; Duursma, Remko A; Ellsworth, David S; Goll, Daniel S; Lapola, David M; Luus, Kristina A; MacKenzie, A Rob; Medlyn, Belinda E; Pavlick, Ryan; Rammig, Anja; Smith, Benjamin; Thomas, Rick; Thonicke, Kirsten; Walker, Anthony P; Yang, Xiaojuan; Zaehle, Sönke
2016-01-01
The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity. © UT-Battelle, LLC New Phytologist © 2015 New Phytologist Trust.
Model-data synthesis for the next generation of forest free-air CO 2 enrichment (FACE) experiments
Norby, Richard J.; De Kauwe, Martin G.; Domingues, Tomas F.; ...
2015-08-06
The first generation of forest free-air CO 2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO 2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range ofmore » climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model–data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.« less
Model-data synthesis for the next generation of forest free-air CO 2 enrichment (FACE) experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, Richard J.; De Kauwe, Martin G.; Domingues, Tomas F.
The first generation of forest free-air CO 2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO 2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range ofmore » climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model–data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.« less
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO 2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO 2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km 2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr -1 during the last half of the 21 st century. An NPP increase of about 24 Mt C by the end of the 21 st century was estimated with the combined effects of increasing CO 2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr -1. NEP will increase to about 5 Mt C yr -1 by the end of the 21 st century with the increasing atmospheric CO 2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO 2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
NASA Astrophysics Data System (ADS)
Fest, Benedikt J.; Hinko-Najera, Nina; Wardlaw, Tim; Griffith, David W. T.; Livesley, Stephen J.; Arndt, Stefan K.
2017-01-01
Well-drained, aerated soils are important sinks for atmospheric methane (CH4) via the process of CH4 oxidation by methane-oxidising bacteria (MOB). This terrestrial CH4 sink may contribute towards climate change mitigation, but the impact of changing soil moisture and temperature regimes on CH4 uptake is not well understood in all ecosystems. Soils in temperate forest ecosystems are the greatest terrestrial CH4 sink globally. Under predicted climate change scenarios, temperate eucalypt forests in south-eastern Australia are predicted to experience rapid and extreme changes in rainfall patterns, temperatures and wild fires. To investigate the influence of environmental drivers on seasonal and inter-annual variation of soil-atmosphere CH4 exchange, we measured soil-atmosphere CH4 exchange at high-temporal resolution (< 2 h) in a dry temperate eucalypt forest in Victoria (Wombat State Forest, precipitation 870 mm yr-1) and in a wet temperature eucalypt forest in Tasmania (Warra Long-Term Ecological Research site, 1700 mm yr-1). Both forest soil systems were continuous CH4 sinks of -1.79 kg CH4 ha-1 yr-1 in Victoria and -3.83 kg CH4 ha-1 yr-1 in Tasmania. Soil CH4 uptake showed substantial temporal variation and was strongly controlled by soil moisture at both forest sites. Soil CH4 uptake increased when soil moisture decreased and this relationship explained up to 90 % of the temporal variability. Furthermore, the relationship between soil moisture and soil CH4 flux was near-identical at both forest sites when soil moisture was expressed as soil air-filled porosity (AFP). Soil temperature only had a minor influence on soil CH4 uptake. Soil nitrogen concentrations were generally low and fluctuations in nitrogen availability did not influence soil CH4 uptake at either forest site. Our data suggest that soil MOB activity in the two forests was similar and that differences in soil CH4 exchange between the two forests were related to differences in soil moisture and thereby soil gas diffusivity. The differences between forest sites and the variation in soil CH4 exchange over time could be explained by soil AFP as an indicator of soil moisture status.
NASA Astrophysics Data System (ADS)
Návar, José
2011-09-01
SummaryStemflow hydro-ecological importance was measured in trees and assessed in Mexico's northeast forest stands by answering three basic questions: (a) what are the intra and inter-specific stemflow variations; (b) is the stemflow coefficient constant from tree level to stand scales? and (c) what is the stemflow area and wetted soil volume in individual trees and the stemflow volume discharged at the stand scale in two plant communities of northeastern Mexico? Gross rainfall and stemflow flux measurements were conducted on 78 trees of semi-arid, sub-tropical (31 Diospyros texana; 14 Acacia rigidula; four Bumelia celastrina; five Condalia hookeri; three Cordia bioissieri; three Pithecellobium pallens) and temperate forest communities (six Pinus pseudostrobus Lindl. and 12 Quercus spp.). Stemflow was extrapolated from individual trees to the stand scale using 98 inventory plots (1600 m 2 ha -1 each) placed in oak-pine forests and 37 quadrats (5 m × 5 m each) distributed across the Tamaulipan thornscrub forest range. Stemflow infiltration flux and infiltration area measurements assessed the wetted soil volume. Daily measurements were conducted from May of 1997 to November of 1998. Results showed that stemflow coefficients varied between plant communities since they averaged (confidence intervals, α = 0.05) 2.49% (0.57), 0.30% (0.09), and 0.77% (0.27) of the bulk precipitation for Tamaulipan thornscrub, pine, and oak forests, respectively. Intra-specific stemflow variations could not be identified in Tamaulipan although in temperate tree species. Basal diameter explained intra-specific stemflow variation in both plant communities. Stemflow increased threefold since it accounted for by 6.38% and 2.19% of the total bulk rainfall for Tamaulipan thornscrub quadrats and temperate oak-pine inventory plots, respectively. Small shrubs growing underneath large trees, in combination with the presence of small-diameter trees that recorded the largest stemflow coefficients appear to explain the increase of the stemflow coefficient from trees to stands. Stemflow replenishes soil moisture on the average 4.5 (1.4) times larger than does incident rainfall in open soils and appear to contribute to aquifer recharge in temperate forests due to a combination of shallow soils, high infiltration fluxes and the stemflow volume generated during rainfalls with depths >15 mm. Tracing studies should be conducted to test the hypothesis of the stemflow contribution to aquifer recharge in temperate forests of northeastern Mexico.
Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong
2018-01-01
The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660
Forest structure and downed woody debris in boreal temperate, and tropical forest fragments
William A. Gould; Grizelle Gonzalez; Andrew T. Hudak; Teresa Nettleton Hollingsworth; Jamie Hollingsworth
2008-01-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve...
Forest health status in Russia
Vladislav A. Alexeyev
1998-01-01
About 886.5 Mha in Russia is occupied by forests, including 763.5 Mha of tree stands and 123 Mha of nonstocked lands. The Russian forests comprise about 22 percent of the earth's forest area or 43 percent of the earth's temperate and boreal forests. Main forest-forming species are Larix sp. (32 percent of the growing stock), Pinus...
Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests
John Kirkland; Tara Barrett
2016-01-01
The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...
Predicting Pleistocene climate from vegetation
NASA Astrophysics Data System (ADS)
Loehle, C.
2006-10-01
Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder than those produced by climate simulations. Biogeographic evidence also argues against these inferred cold climates. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were very cold or that temperate species had to migrate far to the south. Similar anomalies exist in Europe and on tropical mountains. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare. These results mean that climate reconstruction based on terrestrial plant indicators will not be valid for periods with markedly different CO2 levels.
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.
Adamo, Shelley A; Baker, Jillian L; Lovett, Maggie M E; Wilson, Graham
2012-12-01
Climate change will result in warmer temperatures and an increase in the frequency and severity of extreme weather events. Given that higher temperatures increase the reproductive rate of temperate zone insects, insect population growth rates are predicted to increase in the temperate zone in response to climate. This consensus, however, rests on the assumption that food is freely available. However, under conditions of limited food, the reproductive output of the Texan cricket Gryllus texensis (Cade and Otte) was highest at its current normal average temperature and declined with increasing temperature. Moreover, low food availability decreased survival during a simulated heat wave. Therefore, the effects of climate change on this species, and possibly on many others, are likely to hinge on food availability. Extrapolation from our data suggests that G. texensis will show larger yearly fluctuations in population size as climate change continues, and this will also have ecological repercussions. Only those temperate zone insects with a ready supply of food (e.g., agricultural pests) are likely to experience the predicted increase in population growth in response to climate change; food-limited species are likely to experience a population decline.
Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.
Assis, Jorge; Araújo, Miguel B; Serrão, Ester A
2018-01-01
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.
Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.
Li, Pin; Feng, Zhaozhong; Catalayud, Vicent; Yuan, Xiangyang; Xu, Yansen; Paoletti, Elena
2017-10-01
The carbon-sink strength of temperate and boreal forests at midlatitudes of the northern hemisphere is decreased by ozone pollution, but knowledge on subtropical evergreen broadleaved forests is missing. Taking the dataset from Chinese studies covering temperate and subtropical regions, effects of elevated ozone concentration ([O 3 ]) on growth, biomass, and functional leaf traits of different types of woody plants were quantitatively evaluated by meta-analysis. Elevated mean [O 3 ] of 116 ppb reduced total biomass of woody plants by 14% compared with control (mean [O 3 ] of 21 ppb). Temperate species from China were more sensitive to O 3 than those from Europe and North America in terms of photosynthesis and transpiration. Significant reductions in chlorophyll content, chlorophyll fluorescence parameters, and ascorbate peroxidase induced significant injury to photosynthesis and growth (height and diameter). Importantly, subtropical species were significantly less sensitive to O 3 than temperate ones, whereas deciduous broadleaf species were significantly more sensitive than evergreen broadleaf and needle-leaf species. These findings suggest that carbon-sink strength of Chinese forests is reduced by present and future [O 3 ] relative to control (20-40 ppb). Given that (sub)-tropical evergreen broadleaved species dominate in Chinese forests, estimation of the global carbon-sink constraints due to [O 3 ] should be re-evaluated. © 2017 John Wiley & Sons Ltd.
Valerie Rapp
2004-01-01
The Maybeso Experimental Forest is in southeast Alaska within the Tongass National Forest, the largest national forest in the United States and home to the Northern Hemi-sphere's largest temperate rain forest. Located about 42 miles west of Ketchikan, Alaska, it is on Prince of Wales Island, the largest island of the Alexander Archipelago and the third largest...
How is FIA helping other countries monitor their forests?
Charles T. Scott
2012-01-01
The demand for forest monitoring is growing rapidly with emphasis on carbon dynamics, due in part by incentives being negotiated under the United Nation's Reducing Emissions from Deforestation and Forest Degradation (REDO+) process. While much of the temperate and boreal forest in developed countries is being monitored as part of national forest inventories,...
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.-P.; Mayle, F.E.; Leyden, B.W.; Lozano-Garcia, S.; Melief, A.B.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G. B.; Salgado-Labouriau, M. L.; Schasignbitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.
At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded.
At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
NASA Astrophysics Data System (ADS)
Sakabe, A.; Kosugi, Y.; Ueyama, M.; Hamotani, K.; Takahashi, K.; Iwata, H.; Itoh, M.
2013-12-01
Forests are generally assumed to be an atmospheric methane (CH4) sink (Le Mer and Roger, 2001). However, under Asian monsoon climate, forests are subject to wide spatiotemporal range in soil water status, where forest soils often became water-saturated condition heterogeneously. In such warm and humid conditions, forests may act as a CH4 source and/or sink with considerable spatiotemporal variations. Micrometeorological methods such as eddy covariance (EC) method continuously measure spatially-representative flux at a canopy scale without artificial disturbance. In this study, we measured CH4 fluxes over a temperate forest during four-year period using a CH4 analyzer based on tunable diode laser spectroscopy detection with a relaxed eddy accumulation (REA) method (Hamotani et al., 1996, 2001). We revealed the amplitude and seasonal variations of canopy-scale CH4 fluxes. The REA method is the attractive alternative to the EC method to measure trace-gas flux because it allows the use of analyzers with an optimal integration time. We also conducted continuous chamber measurements on forest floor to reveal spatial variations in soil CH4 fluxes and its controlling processes. The observations were made in an evergreen coniferous forest in central Japan. The site has a warm temperate monsoon climate with wet summer. Some wetlands were located in riparian zones along streams within the flux footprint area. For the REA method, the sonic anemometer (SAT-550, Kaijo) was mounted on top of the 29-m-tall tower and air was sampled from just below the sonic anemometer to reservoirs according to the direction of vertical wind velocity (w). After accumulating air for 30 minutes, the air in the reservoirs was pulled into a CO2/H2O gas analyzer (LI-840, Li-Cor) and a CH4 analyzer (FMA-200, Los Gatos Research). Before entering the analyzers, the sampled air was dried using a gas dryer (PD-50 T-48; Perma Pure Inc.). The REA flux is obtained from the difference in the mean concentrations of the reservoirs. In the chamber method, automated dynamic-closed chambers were located at three points of water-unsaturated forest floor. Soil CO2 and CH4 fluxes were measured using the same analyzers with the REA method. CH4 fluxes showed seasonal variations at both canopy and plot scales. Based on the chamber measurements, water-unsaturated forest floor mostly consumed CH4 throughout a year. In contrast, canopy-scale CH4 fluxes by the REA method seasonally fluctuated between emission and absorption. The seasonal variation of canopy-scale CH4 fluxes varied at years to years. Every year, no notable emission nor absorption was observed during winter when daily average air temperature was less than about 10°C. In this forest, the canopy-scale CH4 fluxes could be determined by a balance between sources by methanogens and sinks by methanotrophs. Since these two processes were influenced by soil conditions (e.g., soil temperature and soil moisture), canopy-scale CH4 fluxes were influenced by CH4 fluxes from wetlands within the forest, because magnitude of wetland emission was a few order larger than those of absorption. We will discuss the factors of interannual variation of the canopy- and plot-scale CH4 fluxes in terms of precipitation patterns.
Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto
2016-01-01
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.
NASA Astrophysics Data System (ADS)
Itoh, M.; Katsuyama, C.; Kondo, N.; Ohte, N.; Kato, K.
2009-12-01
Generally, forest soils act as a sink for methane (CH4). However, wetlands in riparian zones are recently reported to be “hot spots” of CH4 emissions, especially in forests under a humid climate. To understand how environmental conditions (i.e. hydrological and/or geomorphic condition) control on CH4 production, we investigated both methanogenic pathways (CO2/H2 reduction and acetate fermentation) and metahanogenic microbial communities in a wetland in a temperate forest catchment, central Japan. We used stable carbon isotopic analysis for detecting change in methanogenic pathways, and applied microbiological analysis for understanding the structure of methanogenic community. CH4 emission rates in wetland were strongly dependent on soil temperatures, and were highest in summer and lowest in winter. δ13CO2 increased with CH4 production in every summer, suggesting preferential use of 12CO2 as substrate for CO2/H2 reduction methanogenesis during high CH4 production period. δ13CH4 also increased in summer with δ13CO2. δ13CH4 changed more wildly than δ13CO2 did in summer with normal precipitation when CH4 production was strongly activated under high temperature and high groundwater table condition. This indicates increase in acetoclastic methanogenesis under hot and wet condition, considering that acetclastic methnogens produce heavier CH4 than that from CO2/H2 reducing pathway. Methanogen community composition estimated by cloning and sequence analyses implied that both acetoclastic and CO2/H2 reducing methanogens prevailed in wetland soil sampled in summer. This was consistent with the results of isotope measuremaents. Our results contribute to understand fully how the CH4 production changes with environmental conditions, with considering the activities of both main methanogenic pathway (from CO2 and acetate).
Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J
2013-01-01
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps. PMID:24198956
Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J
2013-10-01
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.
Iain Davidson-Hunt; Luc C. Duchesne; John C., eds. Zasada
2001-01-01
Contains a wide variety of papers given at the first international conference on non-timber forest products (NTFP) in cold temperate and boreal forests. Focuses on many facets of NTFPs: economics, society, biology, resource management, business development, and others.
A Fair Trade Approach to Community Forest Certification? A Framework for Discussion
ERIC Educational Resources Information Center
Taylor, Peter Leigh
2005-01-01
Forest certification has gained growing attention as a market-based instrument to make globalizing markets a force for mitigating rather than fostering environmental degradation. Yet in practice, market mechanisms currently appear to encourage concentration of forest certification in Northern temperate and boreal forests, rather than in the…
Mechanisms of nitrogen deposition effects on temperate forest lichens and trees
Carter, Therese S.; Clark, Christopher M.; Fenn, Mark E.; Jovan, Sarah E.; Perakis, Steven; Riddell, Jennifer; Schaberg, Paul G.; Greaver, Tara; Hastings, Meredith
2017-01-01
We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one another, and with other dimensions of global change, remains essential for predicting ongoing changes in lichen and tree populations across North American temperate forests.
NASA Astrophysics Data System (ADS)
Kellman, Lisa; Kumar, Sanjeev; Diochon, Amanda
2014-07-01
This study investigates whether clear-cut forest harvesting leads to alterations in the decadal-scale biogeochemical nitrogen (N) cycles of moist temperate forest ecosystems. Using a harvested temperate red spruce (Picea rubens Sarg.) forest chronosequence in Nova Scotia, Canada, representing <1 to >80 year old postharvest conditions, alongside a reference old-growth (125+ year old) site with no documented history of disturbance, we examine harvesting-related changes in soil N pools and fluxes. Specifically, we quantify soil N storage with depth and age across the forest chronosequence, examine changes in physical fractions and δ15N of soil N through depth and time, and quantify gross soil N transformation rates through depth and time using a 15N isotope dilution technique. Our findings point to a large loss of total N in the soil pool, particularly within the deep soil (>20 cm) and organomineral fractions. A pulse of available mineralized N (as ammonium) was observed following harvesting (mean residence time (MRT) > 6 days), but its MRT dropped to <1 day 80 years following harvesting, in contrast to the MRT of 2-3 days observed in the reference old-growth forest site. These mineralization patterns coupled with inferred leaching losses to groundwater are consistent with storage estimates that suggest soil N may not reaccrue for almost a century following this disturbance.
Climate and Vegetation Effects on Temperate Mountain Forest Evapotranspiration
Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use h...
Changes in forest productivity across Alaska consistent with biome shift
Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz
2011-01-01
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...
Harvest impacts on soil carbon storage in temperate forests
L.E. Nave; E.D. Vance; C.W. Swanston; P.S. Curtis
2010-01-01
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of...
Introduction to: The Forest Health monitoring program
Barbara L. Conkling
2011-01-01
The National Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, produces an annual technical report on forest health as one of its products. The report is organized using the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests (Montréal Process Working Group 2007) as a...
Examining spring phenology of forest understory using digital photography
Liang Liang; Mark D. Schwartz; Songlin Fei
2011-01-01
Phenology is an important indicator of forest health in relation to energy/nutrient cycles and species interactions. Accurate characterization of forest understory phenology is a crucial part of forest phenology observation. In this study, ground plots set up in a temperate mixed forest in Wisconsin were observed with a visible-light digital camera during spring 2007....
Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph
2016-01-01
Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016
Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.
Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena
2015-05-06
Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.
Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances
NASA Astrophysics Data System (ADS)
Nelson, P.; Wheeler, T. B.
2015-12-01
Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (<10 cm) tephra (17-20 species). Gravel rain (preexisting rock ejected by eruption initiation), gravel rain + pumice and flooded forests (fluvially reworked volcanic material entrained by heavy rains) were species-rich (25-42 species). In 2014, the blast and deep tephra had regained 2-3 times the number of lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to different volcanic disturbances were attributable to varying degrees of mortality and subsequent availability of substrate, quantity of light and removal of competitors. While sensitive to disturbance, lichens are apparently resilient to and can quickly recolonize after a variety of large, violent volcanic disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.
2008-01-01
The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationshipsmore » for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.« less
Land use strategies to mitigate climate change in carbon dense temperate forests.
Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E
2018-04-03
Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.
Land use strategies to mitigate climate change in carbon dense temperate forests
Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.
2018-01-01
Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758
The potential role of kelp forests on iodine speciation in coastal seawater
Gonzales, Jennifer; Tymon, Teresa; Küpper, Frithjof C.; Edwards, Matthew S.
2017-01-01
Kelps have a major role in marine and atmospheric iodine cycling in the coastal zone of temperate regions, with potential wide-ranging impacts on ozone destruction in the coastal marine boundary layer. However, little is known about the impact of kelp forests on iodine speciation in coastal sea water. To address this, we examined iodide and iodate concentrations in seawater in and around a giant kelp forest near San Diego, CA, USA, and a nearby site that was not influenced by kelp biology. Our data shows that while both iodide and iodate concentrations remained unchanged during the year at the nearby site, these concentrations changed significantly in and around the kelp forest, and were strongly related to changes in kelp canopy biomass. In particular, iodide reached its highest concentration and iodate reached its lowest concentration during the summer when the kelp canopies were near their maximum, while the opposite pattern was observed during the winter and spring when the kelp canopies were near their minimum. Further, comparisons of these changes with corresponding changes in seawater temperature and wind speed indicated that these relationships were relatively small compared to those with changes in kelp biomass. Together, our data show a strong relationship between kelp biomass and iodine metabolism. PMID:28800586
Pei, Nancai; Erickson, David L; Chen, Bufeng; Ge, Xuejun; Mi, Xiangcheng; Swenson, Nathan G; Zhang, Jin-Long; Jones, Frank A; Huang, Chun-Lin; Ye, Wanhui; Hao, Zhanqing; Hsieh, Chang-Fu; Lum, Shawn; Bourg, Norman A; Parker, John D; Zimmerman, Jess K; McShea, William J; Lopez, Ida C; Sun, I-Fang; Davies, Stuart J; Ma, Keping; Kress, W John
2015-10-12
To determine how well DNA barcodes from the chloroplast region perform in forest dynamics plots (FDPs) from global CTFS-ForestGEO network, we analyzed DNA barcoding sequences of 1277 plant species from a wide phylogenetic range (3 FDPs in tropics, 5 in subtropics and 5 in temperate zone) and compared the rates of species discrimination (RSD). We quantified RSD by two DNA barcode combinations (rbcL + matK and rbcL + matK + trnH-psbA) using a monophyly-based method (GARLI). We defined two indexes of closely-related taxa (Gm/Gt and S/G ratios) and correlated these ratios with RSD. The combination of rbcL + matK averagely discriminated 88.65%, 83.84% and 72.51% at the local, regional and global scales, respectively. An additional locus trnH-psbA increased RSD by 2.87%, 1.49% and 3.58% correspondingly. RSD varied along a latitudinal gradient and were negatively correlated with ratios of closely-related taxa. Successes of species discrimination generally depend on scales in global FDPs. We suggested that the combination of rbcL + matK + trnH-psbA is currently applicable for DNA barcoding-based phylogenetic studies on forest communities.
The potential role of kelp forests on iodine speciation in coastal seawater.
Gonzales, Jennifer; Tymon, Teresa; Küpper, Frithjof C; Edwards, Matthew S; Carrano, Carl J
2017-01-01
Kelps have a major role in marine and atmospheric iodine cycling in the coastal zone of temperate regions, with potential wide-ranging impacts on ozone destruction in the coastal marine boundary layer. However, little is known about the impact of kelp forests on iodine speciation in coastal sea water. To address this, we examined iodide and iodate concentrations in seawater in and around a giant kelp forest near San Diego, CA, USA, and a nearby site that was not influenced by kelp biology. Our data shows that while both iodide and iodate concentrations remained unchanged during the year at the nearby site, these concentrations changed significantly in and around the kelp forest, and were strongly related to changes in kelp canopy biomass. In particular, iodide reached its highest concentration and iodate reached its lowest concentration during the summer when the kelp canopies were near their maximum, while the opposite pattern was observed during the winter and spring when the kelp canopies were near their minimum. Further, comparisons of these changes with corresponding changes in seawater temperature and wind speed indicated that these relationships were relatively small compared to those with changes in kelp biomass. Together, our data show a strong relationship between kelp biomass and iodine metabolism.
Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects
NASA Astrophysics Data System (ADS)
Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.
2017-12-01
Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.
Fred H. Everest; Douglas N. Swanston; Charles G. Shaw; Winston P. Smith; Kent R. Julin; Stewart D. Allen
1997-01-01
The Tongass National Forest is the largest remaining relatively unaltered coastal temperate rain forest in the world. The Forest consists of 16.9 million acres of land distributed across more that 22,000 islands and a narrow strip of mainland in southeast Alaska. The Forest contains abundant timber, wildlife, fisheries, mineral, and scenic resources. The authors...
Forest health monitoring: 2006 national technical report
Mark J. Ambrose; Barbara L. Conkling
2009-01-01
The Forest Health Monitoring Programâs annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the...
What is forest landscape restoration?
David Lamb; John Stanturf; Palle Madsen
2012-01-01
The extent and distribution of global forests is a matter of considerable concern. The overall rate of deforestation remains high although recent reports suggest it is fi nally beginning to decline (FAO 2011 ) . But this hides regional differences. In temperate regions net forest cover is increasing because of afforestation and natural expansion of forests. By contrast...
Forest health monitoring: 2003 national technical report
John W. Coulston; Mark J. Ambrose; Kurt H. Riitters; Barbara L. Conkling; William D. Smith
2005-01-01
The Forest Health Monitoring Programâs annual national reports present results from forest health data analyses focusing on a national perspective. The Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests are used as a reporting framework. This report has five main sections. The first contains introductory material....
Kas Dumroese; Mary I. Williams; John A. Stanturf; Brad St. Clair
2015-01-01
Tomorrowâs forests face extreme pressures from contemporary climate change, invasive pests, and anthropogenic demands for other land uses. These pressures, collectively, demand land managers to reassess current and potential forest management practices. We discuss three considerations, functional restoration, assisted migration, and bioengineering, which are currently...
Forest health monitoring: 2005 national technical report
Mark J. Ambrose; Barbara L. Conkling
2007-01-01
The Forest Health Monitoring program's annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the Santiago Declaration. The results...
Kirk M. Stueve; Charles H. (Hobie) Perry; Mark D. Nelson; Sean P. Healey; Andrew D. Hill; Gretchen G. Moisen; Warren B. Cohen; Dale D. Gormanson; Chengquan Huang
2011-01-01
Exogenous disturbances are critical agents of change in temperate forests capable of damaging trees and influencing forest structure, composition, demography, and ecosystem processes. Forest disturbances of intermediate magnitude and intensity receive relatively sparse attention, particularly at landscape scales, despite influencing most forests at least once per...
Short- and long-term effects of fire on carbon in US dry temperate forest systems
Hurteau, Matthew D.; Brooks, Matthew L.
2011-01-01
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.
Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632
Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko
2015-12-18
The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.
NASA Technical Reports Server (NTRS)
Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.
1990-01-01
Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.
Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei
2013-01-01
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515
K. R. Sherrill; M. A. Lefsky; J. B. Bradford; M. G. Ryan
2008-01-01
This study evaluates the relative ability of simple light detection and ranging (lidar) indices (i.e., mean and maximum heights) and statistically derived canonical correlation analysis (CCA) variables attained from discrete-return lidar to estimate forest structure and forest biomass variables for three temperate subalpine forest sites. Both lidar and CCA explanatory...
K.R. Sherrill; M.A. Lefsky; J.B. Bradford; M.G. Ryan
2008-01-01
This study evaluates the relative ability of simple light detection and ranging (lidar) indices (i.e., mean and maximum heights) and statistically derived canonical correlation analysis (CCA) variables attained from discrete-return lidar to estimate forest structure and forest biomass variables for three temperate subalpine forest sites. Both lidar and CCA explanatory...
Centennial-scale reductions in nitrogen availability in temperate forests of the United States
McLauchlan, Kendra K.; Gerhart, Laci M.; Battles, John J.; Craine, Joseph M.; Elmore, Andrew J.; Higuera, Phil E.; Mack, Michelle M; McNeil, Brendan E.; Nelson, David M.; Pederson, Neil; Perakis, Steven
2017-01-01
Forests cover 30% of the terrestrial Earth surface and are a major component of the global carbon (C) cycle. Humans have doubled the amount of global reactive nitrogen (N), increasing deposition of N onto forests worldwide. However, other global changes—especially climate change and elevated atmospheric carbon dioxide concentrations—are increasing demand for N, the element limiting primary productivity in temperate forests, which could be reducing N availability. To determine the long-term, integrated effects of global changes on forest N cycling, we measured stable N isotopes in wood, a proxy for N supply relative to demand, on large spatial and temporal scales across the continental U.S.A. Here, we show that forest N availability has generally declined across much of the U.S. since at least 1850 C.E. with cool, wet forests demonstrating the greatest declines. Across sites, recent trajectories of N availability were independent of recent atmospheric N deposition rates, implying a minor role for modern N deposition on the trajectory of N status of North American forests. Our results demonstrate that current trends of global changes are likely to be consistent with forest oligotrophication into the foreseeable future, further constraining forest C fixation and potentially storage.
Feller, Ilka C; Dangremond, Emily M; Devlin, Donna J; Lovelock, Catherine E; Proffitt, C Edward; Rodriguez, Wilfrid
2015-11-01
Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes. These stressors will likely interact, but the outcome of that interaction is uncertain. Here, we examined potential interaction between nutrient over-enrichment and the September 2004 hurricanes. Hurricanes Frances and Jeanne made landfall along Florida's Indian River Lagoon and caused extensive damage to a long-term fertilization experiment in a mangrove forest, which previously revealed that productivity was nitrogen (N) limited across the forest and, in particular, that N enrichment dramatically increased growth rates and aboveground biomass of stunted Avicennia germinans trees in the interior scrub zone. During the hurricanes, these trees experienced significant defoliation with three to four times greater reduction in leaf area index (LAI) than control trees. Over the long-term, the +N scrub trees took four years to recover compared to two years for controls. In the adjacent fringe and transition zones, LAI was reduced by > 70%, but with no differences based on zone or fertilization treatment. Despite continued delayed mortality for at least five years after the storms, LAI in the fringe and transition returned to pre-hurricane conditions in two years. Thus, nutrient over-enrichment of the coastal zone will increase the productivity of scrub mangroves, which dominate much of the mangrove landscape in Florida and the Caribbean; however, that benefit is offset by a decrease in their resistance and resilience to hurricane damage that has the potential to destabilize the system.
Radiative and precipitation controls on root zone soil moisture spectra
Nakai, Taro; Katul, Gabriel G.; Kotani, Ayumi; ...
2014-10-20
Here, we present that temporal variability in root zone soil moisture content (w) exhibits a Lorentzian spectrum with memory dictated by a damping term when forced with white-noise precipitation. In the context of regional dimming, radiation and precipitation variability are needed to reproduce w trends prompting interest in how the w memory is altered by radiative forcing. A hierarchy of models that sequentially introduce the spectrum of precipitation, net radiation, and the effect of w on evaporative and drainage losses was used to analyze the spectrum of w at subtropical and temperate forested sites. Reproducing the w spectra at longmore » time scales necessitated simultaneous precipitation and net radiation measurements depending on site conditions. The w memory inferred from observed w spectra was 25–38 days, larger than that determined from maximum wet evapotranspiration and field capacity. Finally, the w memory can be reasonably inferred from the Lorentzian spectrum when precipitation and evapotranspiration are in phase.« less
Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song
2013-10-01
Zoning seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid zones under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in southern China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in southern China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the southern China into four primary zones, including semi-arid zone, sub-humid zone, humid zone, and super-humid zone. On this basis, the four primary zones were subdivided into nine second-level zones, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level zones were further divided into 29 third-level zones. The distribution of each seasonal drought zone was illustrated, and the zonal drought characteristics and their impacts on the agricultural production were assessed. Accordingly, the drought prevention measures were proposed.
Predicting Pleistocene climate from vegetation in North America
NASA Astrophysics Data System (ADS)
Loehle, C.
2007-02-01
Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder for eastern North America than those produced by climate simulations. It has been suggested that low CO2 levels could account for this discrepancy. In this study biogeographic evidence is used to test the CO2 effect model. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were extremely cold or that temperate species had to migrate far to the south. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Thus climate reconstruction from pollen data is probably biased and needs to incorporate CO2 effects. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare. These results mean that climate reconstructions based on terrestrial plant indicators will not be valid for periods with markedly different CO2 levels.
Leaf-out phenology of temperate woody plants: from trees to ecosystems.
Polgar, Caroline A; Primack, Richard B
2011-09-01
Leafing-out of woody plants begins the growing season in temperate forests and is one of the most important drivers of ecosystem processes. There is substantial variation in the timing of leaf-out, both within and among species, but the leaf development of almost all temperate tree and shrub species is highly sensitive to temperature. As a result, leaf-out times of temperate forests are valuable for observing the effects of climate change. Analysis of phenology data from around the world indicates that leaf-out is generally earlier in warmer years than in cooler years and that the onset of leaf-out has advanced in many locations. Changes in the timing of leaf-out will affect carbon sequestration, plant-animal interactions, and other essential ecosystem processes. The development of remote sensing methods has expanded the scope of leaf-out monitoring from the level of an individual plant or forest to an entire region. Meanwhile, historical data have informed modeling and experimental studies addressing questions about leaf-out timing. For most species, onset of leaf-out will continue to advance, although advancement may be slowed for some species because of unmet chilling requirements. More information is needed to reduce the uncertainty in predicting the timing of future spring onset. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Forest health monitoring in the Ngangao Forest, Taita Tills, Kenya: A five year assessment of change
Paul C. Rogers; Barbara O' Connell; James Mwang' ombe; Seif Madoffe; Gerard Hertel
2008-01-01
Forest Health Monitoring (FHM) provides a standardized detection-level survey of forest and tree characteristics for large forested areas. We have adopted FHM methods from this temperate-based program to tropical forests in the Eastern Arc Mountains (EAM) of Kenya and Tanzania. This paper reports the first assessment of trend data in the EAM over a period from 2001 to...
Katherine O' Neill; Michael Amacher; Craig Palmer; Barbara Conkling; Greg C. Liknes
2003-01-01
The Montreal Process was formed in 1994 to develop an internationally agreed upon set of criteria and indicators for the conservation and sustainable management of temperate and boreal forests. In response to this effort, the USDA Forest Service Forest Inventory and Analysis (FIA) and Forest Health Monitonhg (FHM) programs implemented a national soil monitoring program...
A novel plant-fungal mutualism associated with fire
USDA-ARS?s Scientific Manuscript database
Morchella, the genus of true morels, produces highly-prized edible fruiting bodies in temperate and boreal forests following fire, and other disturbances. Morels are not known to fruit in regions too dry to support forest. This restriction to forest may also be linked to the facult...
An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests
Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...
NASA Technical Reports Server (NTRS)
Arp, G. K.; Phinney, D. E. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Through a series of contrasts, the statistical significance of differences in emissivity was determined for vegegation in dry and humid deserts, montane and deciduous rain forests, and the temperate region. No significant differences were found between the two types of desert vegetation or among the types of nondesert vegetation. However, the rain forest vegetation was significantly different from that of the temperate region. On a community-wide level, there is some physiological adaptation in plants to their radiational environment.
Masaki, T; Hata, S; Ide, Y
2015-03-01
In the present study, we analysed the habitat association of tree species in an old-growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6-ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10-m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well-scattered seed distribution via wind and bird dispersal, as well as conspecific density-dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
D. F. Cusack
2013-01-01
Urban areas in tropical regions are expanding rapidly, with significant potential to affect local ecosystem dynamics. In particular, nitrogen (N) availability may increase in urban-proximate forests because of atmospheric N deposition. Unlike temperate forests, many tropical forests on highly weathered soils have high background N availability, so plant growth is...
Eric J. Gustafson; Arjan M. G. De Bruijn; Brian R. Miranda; Brian R. Sturtevant; J. Thompson
2016-01-01
The incidence of drought is expected to increase worldwide as a factor structuring forested landscapes. Ecophysiological mechanisms are being added to Forest Landscape Models (FLMs) to increase their robustness to the novel environmental conditions of the future (including drought), but their behavior has not been evaluated for mixed temperate forests. We evaluated...
Initial responses of forest understories to varying levels and patterns of green-tree retention.
Charles B. Halpern; Donald McKenzie; Shelley A. Evans; Douglas A. Maguire
2005-01-01
Timber harvest with "green-tree" retention has been adopted in many temperate and boreal forest ecosystems, reflecting growing appreciation for the ecological values of managed forests. On federal forest lands in the Pacific Northwest, standards and guidelines for green-tree retention have been adopted, but systematic assessments of ecosystem response have...
Robert T. Brooks
2000-01-01
Seasonal forest ponds (SFPs) are isolated, ephemeral lentic habitats in upland forest ecosystems. These ponds occur commonly throughout temperate forests. Faunal communities of these ponds are dominated by invertebrates. Composition of these communities varies temporally both between years and also seasonally within a single hydrologic year, composition is most...
Long-term vegetation changes in a temperate forest impacted by climate change
Lauren E. Oakes; Paul E. Hennon; Kevin L. O' Hara; Rodolfo Dirzo
2014-01-01
Pervasive forest mortality is expected to increase in future decades as a result of increasing temperatures. Climate-induced forest dieback can have consequences on ecosystem services, potentially mediated by changes in forest structure and understory community composition that emerge in response to tree death. Although many dieback events around the world have been...
Owls of old forests of the world.
Bruce G. Marcot
1995-01-01
A review of literature on habitat associations of owls of the world revealed that about 83 species of owls among 18 genera are known or suspected to be closely associated with old forests. Old forest is defined as old-growth or undisturbed forests, typically with dense canopies. The 83 owl species include 70 tropical and 13 temperate forms. Specific habitat...
NASA Astrophysics Data System (ADS)
García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko
2018-04-01
Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important variable, with Landsat Tasselled Cap Transformation components barely contributing to the models for two of the study sites whereas it had a significant contribution at the third one. Over the temperate conifer forests, Landsat Tasselled Cap variables contributed more than the ALOS-PALSAR HV band to predict the landscape height variability. In all cases, incorporation of multispectral data improved the retrieval of forest canopy height and reduced the estimation uncertainty for tall forests. Finally, we concluded that models trained at one study site had higher uncertainty when applied to other sites, but a model developed from multiple sites performed equally to site-specific models to predict forest canopy height. This result suggest that a biome level model developed from several study sites can be used as a reliable estimator of biome-level forest structure from existing satellite imagery.
NASA Astrophysics Data System (ADS)
Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.
2015-12-01
In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.
Ahmad Dar, Javid; Somaiah, Sundarapandian
2015-02-01
Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.
Therese A. Thompson; R. Greg Thorn; Kevin T. Smith
2012-01-01
Fungi in the Agaricomycetes (Basidiomycota) are the primary decomposers in temperate forests of dead wood on and in the forest soil. Through the use of isolation techniques selective for saprotrophic Agaricomycetes, a variety of wood decay fungi were isolated from a northern hardwood stand in the Bartlett Experimental Forest, New Hampshire, USA. In particular,
W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets
2014-01-01
Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...
Non-timber forest products: local livelihoods and integrated forest management
Iain Davidson-Hunt; Luc C. Duchesne; John C. Zasada
2001-01-01
In October of 1999 a conference was held in Kenora, Ontario, Canada, to explore the non-timber forest products (NTFPs) of boreal and cold temperate forests. Up to this time, the concept of NTFP, was one that had been developed largely for tropical and subtropical forests. An extensive body of literature exists on a wide range of topics for the NTFPs of tropical and...
NASA Astrophysics Data System (ADS)
Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.
2013-12-01
Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.
Scarification and gap size have interacting effects on northern temperate seedling establishment
John L. Willis; Michael B. Walters; Kurt W. Gottschalk
2015-01-01
After decades focused on promoting economically valuable species, management of northern temperate forests has increasingly become focused on promoting tree species diversity. Unfortunately, many formerly common species that could contribute to diversity including yellow birch (Betula alleghaniensis Britton.), paper birch (Betula papyrifera...
Qiu, Ying-Xiong; Fu, Cheng-Xing; Comes, Hans Peter
2011-04-01
The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora. Copyright © 2011 Elsevier Inc. All rights reserved.
Restoration of temperate savannas and woodlands
Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp
2017-01-01
Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...
Most scenario‐based climate modeling studies indicate that replacing temperate forest with cropland will promote cooling by reducing surface air temperatures. These results are inconsistent with fieldbased microclimate studies that have found that forests are cooler, wetter, and...
UAVSAR Radar Imagery of Boreal Forests Around Quebec City, Canada
2009-09-01
JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar collected this composite radar image around Québec City, Canada, during an 11-day campaign to study the structure of temperate and boreal forests.
NASA Astrophysics Data System (ADS)
Gonzalez, P.; Eigenbrod, F.; Early, R.; Wang, F.; Notaro, M.; Williams, J. W.
2016-12-01
U.S. national parks conserve globally unique biodiversity. Yet, historical impacts of climate change and future vulnerabilities threaten species and ecosystems across this system of protected areas. Spatial analyses of historical climate and downscaled future climate projections show climate trends across the system. Spatial analyses of vegetation and wildfire (using a dynamic global vegetation model), habitat fragmentation (using remote sensing-derived land cover), and invasive species introduction and establishment show patterns of future vulnerability across the 50 U.S. states and 412 U.S. national parks. Results reveal high historical and projected temperature increases and precipitation changes, projected increases of wildfire across western U.S. national parks, high vulnerability to biome shifts and habitat fragmentation of up to one-third of National Park System area, and high vulnerability to invasive species of one-ninth of National Park System area. Ecosystems in the Sierra Nevada, Cascade Range, desert Southwest, and Laurentian Great Lakes are highly vulnerable to upslope and poleward shifts of the North America sequence of biomes: temperate shrubland - temperate broadleaf forest - temperate mixed forest - temperate conifer forest - subalpine and boreal forest - alpine and tundra. These areas include Grand Canyon, Mount Rainier, and Yosemite National Parks. The southwestern U.S., including Grand Canyon and Sequoia National Parks, is vulnerable to increases in wildfire. The eastern and midwestern U.S., including Great Smokey Mountains and Voyageurs National Parks, are highly vulnerable to invasive species. These results identify vulnerable areas and potential refugia to help prioritize areas for future natural resource management actions and biodiversity conservation in U.S. national parks.
Freeman, Benjamin G.; Class Freeman, Alexandra M.
2014-01-01
Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460
Estimates of carbon allocation to ectomycorrhizal fungi in a temperate forest
NASA Astrophysics Data System (ADS)
Ouimette, A.; Ollinger, S. V.; Vadeboncoeur, M. A.; Hobbie, E. A.
2012-12-01
The capacity of temperate and boreal forests to grow and sequester carbon (C) is limited by the amount of available nitrogen (N) in soils. While the importance of N to carbon storage is well known, we lack a thorough understanding of the mechanisms of N acquisition and the belowground carbon investment required for trees to compete for N. Resolving these uncertainties is critical for predicting future carbon budgets, given expected changes in climate, N deposition, atmospheric CO2, and tree species distribution. Some of the greatest uncertainties surrounding belowground C-N interactions involve the symbiotic fungi that serve as an interface between trees and various forms of N they acquire. Nearly all temperate and boreal forest trees have associations with one of two types of fungi: ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Both types of fungi provide trees with soil nitrogen and other nutrients necessary for growth and in return receive carbon (sugars) from trees. Understanding the differences between these fungal groups is important because they differ dramatically in their carbon requirements and in their ability to access different forms of N. ECM fungi have higher carbon demand, more extensive hyphae (fungal roots), and much stronger capabilities to break down soil organic matter than AM fungi. Despite their importance in the terrestrial C cycle, mycorrhizal fungi are distinctly absent from forest ecosystem C and N models, primarily due to a lack of quantitative data on carbon allocation to mycorrhizal fungi in forests. Quantifying carbon allocation to mycorrhizal fungi is inherently difficult given their small (microscopic) size and lack of specific quantitative biomarkers. Here we present simple measurements that make use of natural abundance N stable isotope data (δ15N) of plant and soil pools, as well as forest C and N budget data, to provide estimates of C allocation to ECM fungi across temperate forest stands with a range of soil N availabilities and species composition. Results show that the fraction of NPP allocated to ECM fungi is related to soil N availability and tree functional type (coniferous vs. broadleaf). These estimates of C allocation will help parameterize ecosystem models to specifically include ECM fungi.
Fire effects on temperate forest soil C and N storage.
Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S
2011-06-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.
Complementary models of tree species-soil relationships in old-growth temperate forests
Cross, Alison; Perakis, Steven S.
2011-01-01
Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and context-dependent tree species-soil relationships occur simultaneouslyinold-grow the temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weather able elements with in organic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed species old-growth temperate forests.
Effects of different definitions on forest area estimation in national forest inventories in Europe
Berthold Traub; Michael Kohl; Risto Paivinen; Olaf Kugler
2000-01-01
International forest statistics such as those provided by the UN/ECE-FAO Temperate and Boreal Forest Resource Assessment (TBFRA) are typically compiled from national surveys. However, the national systems of nomenclature as well as the definition of the attributes often vary considerably. The European Commission, DG VI, initiated a study to investigate the potential of...
Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell
2016-01-01
Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...
State of mid-atlantic region forests in 2000
Kenneth W. Stolte; Barbara L. Conkling; Stephanie Fulton; M. Patricia Bradley
2012-01-01
Wet and warm climate, mountainous topography, and deep rich soils produced one of the most magnificent and diverse temperate forests in the world. In 1650 the Mid-Atlantic forests covered 95 percent of the region, but were greatly reduced in 1900 by extensive tree harvesting, and conversion to farms and pastures. Settlement of forests also led to severe wildfires, soil...
State of mid-atlantic region forests in 2000-Summary Report
Kenneth W. Stolte
2012-01-01
Wet and warm climate, mountainous topography, and deep rich soils produced one of the most magnificent and diverse temperate forests in the world. In 1650 the Mid-Atlantic forests covered 95 percent of the region, but were greatly reduced in 1900 by extensive tree harvesting, and conversion to farms and pastures. Settlement of forests also led to severe wildfires, soil...
An integrated taxonomic approach to survey Armillaria in Iran
Saeideh Jafarpour; Khalil-Berdi Fotouhifar; Mohammad Javan-Nikhhah; Mohhamad Reza Asef; Anthony S. Davis; Amy L. Ross-Davis; John W. Hanna; Simona Margaritescu; Jean-Marc Moncalvo; Ned B. Klopfenstein
2016-01-01
Iran's most valuable forests are located on the coast of the Caspian Sea and cover 1.85 million ha in the northern region of the Alborz mountain range, which is the highest mountain range in the Middle East. Dense forests cover two major provinces, Gilan and Mazandaran; however, less than 10% of Iran is forested. These forests comprise temperate,...
Distribution and role of mat-forming saprobic basidiomycetes in a tropical forest
D. Jean Lodge; William H. McDowell; Jordan Macy; Sarah Katherine Ward; Rachel Leisso; Karla Claudio-Campos; Kerstin Kuhnert
2007-01-01
This chapter provides a brief synopsis of previous studies on the ecology of agaric decomposers that form litter 'mats' in tropical forests, augmented by data from temperate forest studies. Description of several experiments in tropical forests of the Luquillo Mountains in Puerto Rico is included. These studies showed higher rates of mass loss in leaves that...
Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...
Area and percent of forest affected by abiotic agents beyond reference conditions
2012-01-01
Criterion 3, Indicator 16, of the Montréal Process Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests was designed to assess the impact of abiotic agents upon forests (Montréal Process Working Group 2007). Various abiotic agents, both natural and human-induced, can change forest structure and species composition....
Fuel load modeling from mensuration attributes in temperate forests in northern Mexico
Maricela Morales-Soto; Marín Pompa-Garcia
2013-01-01
The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...
Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001-2010
J. M. Tucker Lima; C. L. Staudhammer; T. J. Brandeis; F. J. Escobedo; W. Zipperer
2013-01-01
Several studies report urban tree growth and mortality rates as well as species composition, structural dynamics, and other characteristics of urban forests in mostly temperate, inland urban areas. Temporal dynamics of urban forests in subtropical and tropical forest regions are, until now, little explored and represent a new and important direction for study and...
Will more nitrogen enhance carbon storage in young forest stands in central Appalachia?
Zachariah K. Fowler; Mary Beth Adams; William T. Peterjohn
2015-01-01
Many temperate deciduous forests in the Eastern US are secondary, regrowing forests and have experienced decades of elevated inputs of acidic compounds and biologically available nitrogen (N) from the atmosphere. These young forests play an important role in the global carbon (C) cycle as C sinks, and it is possible that acidic deposition will influence the strength...
NASA Astrophysics Data System (ADS)
Shao, G.; Gallion, J.; Fei, S.
2016-12-01
Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.
Thomas Brandeis; Stanley Zarnoch; Christopher Oswalt; Jeffery Stringer
2017-01-01
Hardwood lumber harvested from the temperate broadleaf and mixed broadleaf/conifer forests of the east-central United States is an important economic resource. Forest industry stakeholders in this region have a growing need for accurate, reliable estimates of high-quality wood volume. While lower-graded timber has an increasingly wide array of uses, the forest products...
Management impacts on forest floor and soil organic carbon in northern temperate forests of the US
Coeli M. Hoover
2011-01-01
The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...
High-resolution vegetation dynamics reconstitution in the Zaire/Congo watershed since MIS 6
NASA Astrophysics Data System (ADS)
Dalibard, Mathieu; Popescu, Speranta-Maria; Maley, Jean; Pittet, Bernard; Marsset, Tania; Baudin, François; Dennielou, Bernard; Sionneau, Thomas; Escarguel, Gilles; Droz, Laurence
2010-05-01
The present-day latitudinal migrations of the Intertropical Convergence Zone (ITCZ) are controlled by ocean/atmosphere dynamics impact seasonality of monsoon influence on the intertropical eastern Atlantic and western Africa. The geographical position of the Zaire/Congo drainage basin spanning the Northern and Southern hemispheres makes it a key area to study variation of the climatic parameters (temperature and monsoon activity) through time. To identify the ITCZ variability during the last 180 ka, a multiproxy analysis (pollen grains, elemental ratio derived from XRF analysis, organic matter content, clay mineralogy) was performed on the core KZAI-02, drilled offshore Angola at 3418 m water depth. Pollen record indicates a very high plant diversity (327 taxa representative of 106 families). They have been grouped as follow with respect to their ecological requirements: (1) mangrove, (2) rain forest, (3) warm-temperate forest, (4) pioneer forest, (5) afromontane forest, (6) savannah, (7) marshes. The relative fluctuation of these ecological groups during the last 180 ka allows us to reconstruct the dynamics of vegetation and its response to global climate forcing. Generally the glacial periods are characterized by the development of the afromontane forest (mainly Podocarpus) on reliefs while in lower altitudes the savannah (Fabaceae Papilionoidae, Poaceae, Zygophyllum, etc.) spreads in response to the relative precipitation decrease. During interglacials our records indicate a progressive development of forest environments, the pioneer forest (Alchornea, Bridelia, Cnestis, etc.) being progressively replaced by the tropical rain forest (Acanthaceae, Fabaceae Caesalpinoideae, Sapotaceae, etc.). This evolution indicates an increase in temperature and humidity. At the stadial/interglacial transitions the development of the mangrove (Rhizophoraceae, Avicenia, Sonneratia, etc.) seems to respond principally to sea level rise. The maximum extension of Cyperaceae marshes contemporaneously with a significant presence of afromontane forest in MIS 6 may be correlated with rainfall increase probably related to changes in the monsoon activity. The information in term of humidity obtained from some other proxies (clay mineralogy, organic carbon, and elemental ratio measured by XRF, such as Br, etc.) shows a similar trend with the pollen record. A spectral analysis has been performed and reveals that the reconstructed climatic parameters from the Zaire/Congo watershed correlated with Milankovitch cycles, including semi-precession cycles (10 kyrs) characteristic of the Equatorial zone.
Elevational Patterns in Archaeal Diversity on Mt. Fuji
Singh, Dharmesh; Takahashi, Koichi; Adams, Jonathan M.
2012-01-01
Little is known of how archaeal diversity and community ecology behaves along elevational gradients. We chose to study Mount Fuji of Japan as a geologically and topographically uniform mountain system, with a wide range of elevational zones. PCR-amplified soil DNA for the archaeal 16 S rRNA gene was pyrosequenced and taxonomically classified against EzTaxon-e archaeal database. At a bootstrap cut-off of 80%, most of the archaeal sequences were classified into phylum Thaumarchaeota (96%) and Euryarchaeota (3.9%), with no sequences classified into other phyla. Archaeal OTU richness and diversity on Fuji showed a pronounced ‘peak’ in the mid-elevations, around 1500 masl, within the boreal forest zone, compared to the temperate forest zone below and the alpine fell-field and desert zones above. Diversity decreased towards higher elevations followed by a subtle increase at the summit, mainly due to an increase in the relative abundance of the group I.1b of Thaumarchaeota. Archaeal diversity showed a strong positive correlation with soil NH4 +, K and NO3 − . Archaeal diversity does not parallel plant diversity, although it does roughly parallel bacterial diversity. Ecological hypotheses to explain the mid diversity bulge on Fuji include intermediate disturbance effects, and the result of mid elevations combining a mosaic of upper and lower slope environments. Our findings show clearly that archaeal soil communities are highly responsive to soil environmental gradients, in terms of both their diversity and community composition. Distinct communities of archaea specific to each elevational zone suggest that many archaea may be quite finely niche-adapted within the range of soil environments. A further interesting finding is the presence of a mesophilic component of archaea at high altitudes on a mountain that is not volcanically active. This emphasizes the importance of microclimate – in this case solar heating of the black volcanic ash surface – for the ecology of soil archaea. PMID:22970233
Vertical heterogeneity in predation pressure in a temperate forest canopy
Aikens, Kathleen R.; Buddle, Christopher M.
2013-01-01
The forest canopy offers a vertical gradient across which variation in predation pressure implies variation in refuge quality for arthropods. Direct and indirect experimental approaches were combined to assess whether canopy strata differ in ability to offer refuge to various arthropod groups. Vertical heterogeneity in impact of avian predators was quantified using exclosure cages in the understory, lower, mid, and upper canopy of a north-temperate deciduous forest near Montreal, Quebec. Bait trials were completed in the same strata to investigate the effects of invertebrate predators. Exclusion of birds yielded higher arthropod densities across all strata, although treatment effects were small for some taxa. Observed gradients in predation pressure were similar for both birds and invertebrate predators; the highest predation pressure was observed in the understory and decreased with height. Our findings support a view of the forest canopy that is heterogeneous with respect to arthropod refuge from natural enemies. PMID:24010017
Isotopic signals of summer denitrification in a northern hardwood forested catchment.
Wexler, Sarah K; Goodale, Christine L; McGuire, Kevin J; Bailey, Scott W; Groffman, Peter M
2014-11-18
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ(15)NNO3 and δ(18)ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments.
Isotopic signals of summer denitrification in a northern hardwood forested catchment
Wexler, Sarah K.; Goodale, Christine L.; Bailey, Scott W.; Groffman, Peter M.
2014-01-01
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ15NNO3 and δ18ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments. PMID:25368188
Bai, Xuejiao; Queenborough, Simon A; Wang, Xugao; Zhang, Jian; Li, Buhang; Yuan, Zuoqiang; Xing, Dingliang; Lin, Fei; Ye, Ji; Hao, Zhanqing
2012-11-01
Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ≥ 4 years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.
Guan, Bi-Cai; Fu, Cheng-Xing; Qiu, Ying-Xiong; Zhou, Shi-Liang; Comes, Hans Peter
2010-01-01
To evaluate the role of Quaternary refugial isolation in allopatric (incipient) speciation of East Asian temperate forest biotas, we analyzed amplified fragment length polymorphisms (AFLPs) and the breeding system in Dysosma versipellis. The study revealed that D. versipellis is mostly self-incompatible, genetically highly subdivided and depauperate at the population level (e.g., Φ(ST) = 0.572/H(E) = 0.083), and characterized by a low pollen-to-seed migration ratio (r ≈ 4.0). The latter outcome likely reflects limited pollen flow in a low-seed disperser whose hypothesized "sapromyophilous" flowers undergo scarce, inefficient, and likely specialized cross-pollination by small Anoplodera beetles, rather than carrion flies as assumed previously. In consequence, fruit set in D. versipellis was strongly pollen-limited. Our AFLP data support the hypothesis of a long-standing cessation of gene flow between western and central eastern populations, consistent with previous chloroplast DNA data. This phylogeographic pattern supports the role of the Sichuan Basin as a floristic boundary separating the Sino-Himalayan vs. Sino-Japanese Forest subkingdoms. Our genetic data of D. versipellis also imply that temperate deciduous forest elements to the west and the east of this basin responded differently to Quaternary climate change, which may have triggered or is leading to allopatric (incipient) speciation.
NASA Astrophysics Data System (ADS)
Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.
2016-12-01
The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.
Yang, Jie; Swenson, Nathan G; Cao, Min; Chuyong, George B; Ewango, Corneille E N; Howe, Robert; Kenfack, David; Thomas, Duncan; Wolf, Amy; Lin, Luxiang
2013-01-01
Ecologists have historically used species-area relationships (SARs) as a tool to understand the spatial distribution of species. Recent work has extended SARs to focus on individual-level distributions to generate individual species area relationships (ISARs). The ISAR approach quantifies whether individuals of a species tend have more or less species richness surrounding them than expected by chance. By identifying richness 'accumulators' and 'repellers', respectively, the ISAR approach has been used to infer the relative importance of abiotic and biotic interactions and neutrality. A clear limitation of the SAR and ISAR approaches is that all species are treated as evolutionarily independent and that a large amount of work has now shown that local tree neighborhoods exhibit non-random phylogenetic structure given the species richness. Here, we use nine tropical and temperate forest dynamics plots to ask: (i) do ISARs change predictably across latitude?; (ii) is the phylogenetic diversity in the neighborhood of species accumulators and repellers higher or lower than that expected given the observed species richness?; and (iii) do species accumulators, repellers distributed non-randomly on the community phylogenetic tree? The results indicate no clear trend in ISARs from the temperate zone to the tropics and that the phylogenetic diversity surrounding the individuals of species is generally only non-random on very local scales. Interestingly the distribution of species accumulators and repellers was non-random on the community phylogenies suggesting the presence of phylogenetic signal in the ISAR across latitude.
Aziz Ebrahimi; AbdolKarim Zarei; James R. McKenna; Geza Bujdoso; Keith E. Woeste
2017-01-01
We compared the genetic diversity of Juglans regia L. growing in the cold temperate region of the eastern U.S. with J. regia growing in the cold-temperate and Mediterranean regions of Europe. Ten microsatel-lite (SSR) loci were used to assess the genetic relationships among 114 total trees originating from the Midwestern USA (n...
Export of dissolved organic matter in relation to land use along a European climatic gradient.
Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal
2009-03-01
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.
Special forest products: biodiversity meets the marketplace.
Nan C. Vance; Jane Thomas
1997-01-01
Although North American forests traditionally have been viewed as a source of wood and paper,a variety of profitable products are being discovered that come not only from trees, but from nonwoody plants, lichens, fungi, algae, and microorganisms. The northern temperate forestsâ abundant biotic resources are being transformed into medicinals, botanicals, decoratives,...
Wildlife of southern forests habitat & management: Introduction
James G. Dickson
2003-01-01
The temperate climate, productive soils, and lush forests of the South support an abundant and diverse wildlife community. But these forests and the wildlife that inhabit them have never been stable. They have continually been molded by a variety of forces. Early, during the Pleistocene period, drastic periodic climatic shifts wrought wholesale changes to the nature...
Western North Carolina report card on forest sustainability
Susan Fox; Bill Jackson; Sarah Jackson; Gary Kauffmann; Mary Carol Koester; Robert Mera; Terry Seyden; Charles Van Sickle; Sealy Chipley; Jim Fox; Jeff Hicks; Matt Hutchins; Karin Lichtenstein; Kelsie Nolan; Todd Pierce; Beth Porter
2011-01-01
Western North Carolina encompasses 4.8 million acres of highly valued temperate forests. To help address future management and conservation decisions surrounding these resources, the report card evaluates environmental, social, and economic conditions in recent decades across an 18 county area. The report card describes the status of indicators of forest sustainability...
Restoration of temperate savannas and woodlands [Chapter 11
Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp
2017-01-01
Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...
Preface to spatial and temporal reflections of disturbances in boreal and temperate forests
Kalev Jogiste; Timo Kuuluvainen; W. Keith Moser
2009-01-01
Disturbances are a natural part of all ecosystems and they are important for the maintenance of biodiversity in forest ecosystems (Attiwill 1994). Periodicity and intensity of disturbances shape the structural characteristics and dynamics of forest landscape mosaics (Turner et al. 2001). Natural disturbances increase habitat availability and diversity, particularly for...
Michaeleen Gerken Golay; Janette Thompson; Randall Kolka; Kris Verheyen
2016-01-01
Question: Herbaceous plant communities in hardwood forests are important for maintaining biodiversity and associated ecosystem services, such as nutrient storage. Are there differences in herbaceous layer nutrient storage for urban park and state preserve forests, and is there seasonal variation? Location:...
Regeneration complexities of Pinus gerardiana in dry temperate forests of Indian Himalaya.
Kumar, Raj; Shamet, G S; Mehta, Harsh; Alam, N M; Kaushal, Rajesh; Chaturvedi, O P; Sharma, Navneet; Khaki, B A; Gupta, Dinesh
2016-04-01
Pinus gerardiana is considered an important species in dry temperate forests of North-Western Indian Himalaya because of its influence on ecological processes and economic dependence of local people in the region. But, large numbers of biotic and abiotic factors have affected P. gerardiana in these forests; hence, there is a crucial need to understand the regeneration dynamics of this tree species. The present investigation was conducted in P. gerardiana forests to understand vegetation pattern and regeneration processes on different sites in the region. Statistical analysis was performed to know variability in growing stock and regeneration on sample plots, while correlation coefficients and regression models were developed to find the relationship between regeneration and site factors. The vegetation study showed dominance of P. gerardiana, which is followed by Cedrus deodara, Pinus wallichiana and Quercus ilex in the region. The growing stock of P. gerardiana showed steep increasing and then steadily declining trend from lower to higher diameter class. The distribution of seedling, sapling, pole and trees was not uniform at different sites and less number of plots in each site were observed to have effective conditions for continuous regeneration, but mostly showed extremely limited regeneration. Regeneration success ranging from 8.44 to 15.93 % was recorded in different sites of the region, which suggests that in different sites regeneration success is influenced by collection of cone for extracting seed, grazing/browsing and physico-chemical properties of soil. Regeneration success showed significant correlation and relationship with most of abiotic and biotic factors. The regeneration success is lower than the requirement of sustainable forest, but varies widely among sites in dry temperate forests of Himalaya. More forest surveys are required to understand the conditions necessary for greater success of P. gerardiana in the region.
NASA Technical Reports Server (NTRS)
Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.
1989-01-01
Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.
Xie, Yingying; Wang, Xiaojing; Silander, John A
2015-11-03
Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.
Kelch, Nina-S.; Neves, Frederico S.; Fernandes, G. Wilson
2016-01-01
Edge effects play key roles in the anthropogenic transformation of forested ecosystems and their biota, and are therefore a prime field of contemporary fragmentation research. We present the first empirical study to address edge effects on the population level of a widespread galling herbivore in a temperate deciduous forest. By analyzing edge effects on abundance and trophic interactions of beech gall midge (Mikiola fagi Htg.), we found 30% higher gall abundance in the edge habitat as well as lower mortality rates due to decreased top-down control, especially by parasitoids. Two GLM models with similar explanatory power (58%) identified habitat specific traits (such as canopy closure and altitude) and parasitism as the best predictors of gall abundance. Further analyses revealed a crucial influence of light exposure (46%) on top-down control by the parasitoid complex. Guided by a conceptual framework synthesizing the key factors driving gall density, we conclude that forest edge proliferation of M. fagi is due to a complex interplay of abiotic changes and trophic control mechanisms. Most prominently, it is caused by the microclimatic regime in forest edges, acting alone or in synergistic concert with top-down pressure by parasitoids. Contrary to the prevailing notion that specialists are edge-sensitive, this turns M. fagi into a winner species in fragmented temperate beech forests. In view of the increasing proportion of edge habitats and the documented benefits from edge microclimate, we call for investigations exploring the pest status of this galling insect and the modulators of its biological control. PMID:27310599
NASA Astrophysics Data System (ADS)
Phillips, R.; Brzostek, E. R.; Fisher, J. B.; Sulman, B. N.; Midgley, M.; Craig, M.; Keller, A. B.
2016-12-01
While it has long been known that ecosystems dominated by arbuscular mycorrhizal (AM) plants (e.g., grasslands, tropical forests) cycle carbon (C) and nutrients differently than those dominated by ectomycorrhizal (ECM) plants (e.g., boreal and subarctic forests), demonstrations of these patterns in ecosystems where both mycorrhizal types co-occur are rare. We tested the hypothesis that variation between AM and ECM nutrient use traits (e.g., litter quality) promote distinct microbial traits that track biogeochemical syndromes in temperate forests. We then explored whether such belowground dynamics influence ecosystem responses to elevated CO2. To do this, we calculated the C to N ratios of litter, soil microbes and soil organic matter in AM- and ECM-dominated forests throughout the temperate region. We then used these data to parameterize a coupled plant uptake-microbial decomposition model, in order to determine how belowground interactions feedback to affect ecosystem C and N cycling in forests exposed to elevated CO2. We found support for our hypothesis: AM litters decomposed 50% faster than ECM litters (p < 0.05), and litter decay rates were negatively correlated with the C:N of soils (including the microbial biomass and mineral soil; p < 0.05 for both) and positively correlated with net nitrification rates (p < 0.01). However, faster nitrogen (N) cycling in AM plots was also associated with a greater amount of physcially protected N in soil, suggesting that nutrient stabilizing mechanisms may constrain NPP in response to elevated CO2. Our model results supported this prediction. We found that while the C cost of acquiring of N is cheaper for AM trees than ECM trees, this cost difference is reduced under rising atmospheric CO2 owing to the enhanced protection of soil N in AM soils. Taken together, our results demonstrate that variation in AM- and ECM-associated plant and microbial traits promote predictable biogeochemical syndromes in temperate forests that can impact decomposition and NPP. Given that AM species are predicted to increase in abundance across much of the temperate region, our modeling results suggest that more N may get locked up in soils - a process that would induce progressive nutrient limitation of NPP and reduce the strength of the C sink in these forests.
Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad; Sakthi Subburayalu
2014-01-01
Forests provide key ecosystem services (ES) and the extent to which the ES are realized varies spatially, with forest composition and cultural context, and in breadth, depending on the dominant tree species inhabiting an area. We address the question of how climate change may impact ES within the temperate and diverse forests of the eastern United States. We quantify...
C.W. Woodall; J.A. Westfall; K. Zhu; D.J. Johnson
2013-01-01
National-scale forest inventories have endeavoured to include holistic measurements of forest health inclusive of attributes such as downed dead wood and tree regeneration that occur in the forest understory. Inventories may require year-round measurement of inventory plots with some of these measurements being affected by seasonal obstructions (e.g. snowpacks and...
Berry, Z Carter; Johnson, Daniel M; Reinhardt, Keith
2015-09-01
Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and roots of species across a temperate, mountain fog ecotone. Because cloud forests are often dark, cool and very moist, we expected cloud forest species to have less drought-tolerant characteristics (i.e., lower Pe and P50-the pressures required to induce a 12 and 50% loss in hydraulic conductivity, respectively) relative to non-cloud forest species in adjacent (lower elevation) forests. Additionally, due to the ability of cloud forest species to absorb cloud-fog water, we predicted greater improvements in hydraulic functioning during fog in cloud forest species relative to non-cloud forest species. Across the cloud forest ecotone, most species measured were very resistant to losses in conductivity with branch P50 values from -4.5 to -6.0 MPa, hydraulic safety margins (Ψmin - P50) >1.5 MPa and low calculated hydraulic conductivity losses. Roots had greater vulnerabilities, with P50 values ranging from -1.4 to -2.5 MPa, leading to greater predicted losses in conductivity (∼20%). Calculated values suggested strong losses of midday leaf hydraulic conductance in three of the four species, supporting the hydraulic segmentation hypothesis. In both cloud forest and hardwood species, Ψs were greater on foggy days than sunny days, demonstrating the importance of fog periods to plant water balance across fog regimes. Thus, frequent fog did not result in systemic changes in hydraulic functioning or vulnerability to embolism across our temperate cloud forest ecotone. Finally, roots functioned with lower hydraulic conductivity than branches, suggesting that they may serve as more sensitive indicators of hydraulic functioning in these mesic, foggy ecosystems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
NASA Astrophysics Data System (ADS)
Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans
2017-05-01
Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.
Occurrence and activity of subterranean termites in temperate forest soils: United States and Spain
NASA Astrophysics Data System (ADS)
Jurgensen, M.; Page-Dumroese, D.; Cerdà, A.; Forschler, B.; Trettin, C.; Cook, S.; Kard, B.
2009-04-01
Termites are an important component of many tropical, sub-tropical, and temperate soil invertebrate communities, and they have an impact on soil hydrological, chemical and biological processes. Termites also emit methane and could be an important factor in the production of this important atmospheric greenhouse gas. Many studies have been conducted on mound-building termites in tropical ecosystems, but much less is known on the ecology of subterranean termites in temperate soils. Most of the information about the subterranean termites is derived from work focused on protecting dwellings, which does not necessarily translate to ecosystem-level functions. We have developed an international network across diverse biomes to assess wood decomposition in forests; this presentation will summarize findings on the effects role of termites. Their occurrence is much more prevalent than commonly thought, and their role in mediating wood turnover appears to be significant.
Space Radar Image of Raco, Michigan
1999-01-27
This image is a false-color composite of Raco, Michigan, centered at 46.39 degrees north latitude, 84.88 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its sixth orbit and during the first full-capability test of the instrument on April 9, 1994. This image was produced using both L-band and C-band data. The area shown is approximately 20 kilometers by 50 kilometers (12 by 30 miles). Raco is located at the eastern end of Michigan's upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. The site is located at the boundary between the boreal forests and the northern temperate forests, a transitional zone that is expected to be ecologically sensitive to anticipated global changes resulting from climatic warming. On any given day, there is a 60 percent chance that this area will be obscured to some extent by cloud clover which makes it difficult to image using optical sensors. http://photojournal.jpl.nasa.gov/catalog/PIA01700
Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy
NASA Astrophysics Data System (ADS)
Wang, An; Liu, Zhiyi; Liu, Meng; Wu, Wenting; Bai, Song; Yang, Rongxian
2017-05-01
Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.
Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico
2014-06-01
Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.
NASA Astrophysics Data System (ADS)
Roth, Travis R.; Nolin, Anne W.
2017-11-01
Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow-forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4-26 and 11-33 days, respectively). However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15-29 days relative to the nearby Open site. Canopy interception efficiency (CIE) values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.
Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler
2011-01-01
The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...
Colin M. Beier; Scott E. Sink; Paul E. Hennon; David V. D' Amore; Glenn P. Juday
2008-01-01
Decline of yellow-cedar (Chamaecyparis nootkatensis((D. Don) Spach) has occurred on 200 000 ha of temperate rainforests across southeastern Alaska. Because declining forests appeared soon after the Little Ice Age and are limited mostly to low elevations (whereas higher elevation forests remain healthy), recent studies have hypothesized a climatic...
Constance I. Millar
1987-01-01
Tremendous species diversity, together with accelerating deforestation and land development, has been a formula for rampant extinction and community collapse in tropical forests. Conservationists have brought the crisis of tropical forests to the attention of the international community, showing that continued efforts are needed to conserve the biotic riches of these...
Monitoring Insects to Maintain Biodiversity in Ogawa Forest Reserve
S. Makino; T. Inoue; K. Hamaguchi; K. Okabe; I. Okochi; H. Tanaka; H. Goto; M. Hasegawa; M. Sueyoshi
2006-01-01
The results of a biodiversity monitoring program conducted in the Ogawa Forest Reserve and its vicinity, situated in a temperate region of Japan, identified three different patterns for species richness. Forests of the region are characterized by a mosaic of secondary deciduous stands of various ages scattered among plantations of conifers. The three different types of...
John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan
2010-01-01
Assessing forest carbon storage and cycling over large areas is a growing challenge that is complicated by the inherent heterogeneity of forest systems. Field measurements must be conducted and analyzed appropriately to generate precise estimates at scales large enough for mapping or comparison with remote sensing data. In this study we examined...
Julia I. Burton; Adrian Ares; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity...
Michael D. Ulyshen; Villu Soon; James L. Hanula
2011-01-01
Efforts to investigate the vertical dimension of forests continue to refine our thinking on issues of biodiversity and ecology. Arthropod communities exhibit a high degree of vertical stratification in forests worldwide but the vertical distribution patterns of most taxa remain largely unexplored or poorly understood. For example, only 2 studies provide information on...
Interrupting the telos: locating subsistence in contemporary US forests
Marla R. Emery; Alan R. Pierce
2005-01-01
People continue to hunt, fish, trap, and gather for subsistence purposes in the contemporary United States. This fact has implications for forest policy, as suggested by an international convention on temperate and boreal forests, commonly known as the Montreal Process. Three canons of law provide a legal basis for subsistence activities by designated social groups in...
Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O' Keefe
2009-01-01
Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux...
Modeling insect disturbance across forested landscapes: Insights from the spruce budworm
Brian R. Sturtevant; Barry J. Cooke; Daniel D. Kneeshaw; David A. MacLean
2015-01-01
Insects are important disturbance agents affecting temperate and boreal biomes (Wermelinger 2004; Johnson et al. 2005; Cooke et al. 2007; Raffa et al. 2008). Defoliating insects in particular have historically affected a staggering area of North American forests, particularly across the boreal biome (Fig. 5.1). Principal among these boreal forest defoliators is the...
Colin M. Beier; Scot E. Sink; Paul E. Hennon; David V. D' amore; Glenn P. Juday
2008-01-01
Decline of yellow-cedar (Chamaecyparis nootkatensis D. Don) Spach) has occurred on 200 000 ha of temperate rainforests across southeastern Alaska. Because declining forests appeared soon after the Little Ice Age and are limited mostly to low elevations (whereas higher elevation forests remain healthy), recent studies have hypothesized a climatic...
NASA Astrophysics Data System (ADS)
Li, Q.; Wu, H.; Yu, Y.; Sun, A.; Luo, Y.
2017-12-01
Reconstructing patterns of past vegetation change on a large-scale facilitates a better understanding of the interactions and feedbacks between climate change and the terrestrial biosphere. In addition, reducing the uncertainty in predictions of vegetation change under global warming highlights the importance of reconstructing vegetation patterns during past warming intervals. Here, we present a quantitative regional vegetation reconstruction for China during three intervals: Last Glacial Maximum (LGM, 18±2 14C kyr B.P.), early Holocene (8.5±0.5 14C kyr B.P.), and mid-Holocene (6±0.5 14C kyr B.P.). The biomization method, based on 249 pollen records, was used for the reconstructions. The results demonstrate that during the LGM, steppe and desert expanded eastwards and southwards, reaching the present-day temperate deciduous forest (TEDE) zone, and dominated northern China. In contrast, the forest in Eastern China underwent a substantial southwards retreat and the percentage of forest-type sites was at a minimum. In addition, the warm mixed forest (WAMF) and TEDE shifted southwards of 10° N relative to the present-day, and tropical seasonal rain forest (TSFO) was almost absent. At the same time, the forest-steppe boundary shifted southwards to near the middle and lower reaches of Yangtze River. For the early Holocene and mid-Holocene, the TSFO, WAMF, and TEDE shifted northwards by 2-5° relative to today, and the percentage of forest sites increased and reached a maximum in the mid-Holocene. The slight expansion of forest from the early Holocene to the mid-Holocene caused the forest-steppe boundary to shift northwestwards to near the present-day 300 mm isohyet by the mid-Holocene. Our results also indicate that climatic warming since the LGM, which strengthened the East Asian summer monsoon, favored the development of forest in China. This is potentially an important finding for evaluating the possible response of forest in China to future global warming.
NASA Astrophysics Data System (ADS)
Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane
2016-04-01
Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in models and estimating their impact on the land carbon balance.
Ruiliang Pu; Zhanqing Li; Peng Gong; Ivan Csiszar; Robert Fraser; Wei-Min Hao; Shobha Kondragunta; Fuzhong Weng
2007-01-01
Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire...
On the vertical distribution of bees in a temperate deciduous forest
Michael Ulyshen; Villa Soon; James Hanula
2010-01-01
1. Despite a growing interest in forest canopy biology, very few studies have examined the vertical distribution of forest bees. In this study, bees were sampled using 12 pairs of flight-intercept traps suspended in the canopy (â¡15 m) and near the ground (0.5 m) in a bottomland hardwood forest in the southeastern United States. 2. In total, 6653 bees from 5 families...
Scott Harris; Jeffrey Barnard
2017-01-01
This study assesses the understory plant response and associated effects on forage resources available to Sitka black-tailed deer (Odocoileus hemionus sitkensis), to the creation of artificial canopy gaps in a young-growth forest stand in the coastal temperate rain forest of southeast Alaska. The forest stand was approximately 58 years old when gaps were created and...
Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong
2015-01-01
Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121
Roosevelt elk selection of temperate rain forest seral stages in western Washington
Schroer, Greg L.; Jenkins, Kurt J.; Moorhead, Bruce B.
1993-01-01
We studied habitat selection by Roosevelt elk (Cervus elaphus roosevelti) in a temperate rain forest in the lower Queets River Valley of the western Olympic Peninsula, Washington from June 1986-July 1987. Elk annual home ranges included predominantly unlogged forests protected within Olympic National Park and logged, regenerating forests adjacent to the park. Radio-collared elk selected valley floors during all seasons except winter, when elk frequently used an adjoining plateau 60 m above the floodplain. In winder, radio-collared elk selected 6-15 year-old clearcuts, which were available on the plateau. Elk selected mature deciduous forests of the valley floor during spring, summer, and autumn, and generally they selected old-age Sitka spruce forests during autumn and winter. Young clearcuts (1-5 years old) and even-aged, regenerating stands (16-150 years old) generally were avoided during all seasons. Management practices that retain preferred habitat of elk, such as deciduous forests, 6-15 yr-old coniferous stands, and old-age coniferous bottomland forests will benefit elk, particularly on elk ranges managed for short-rotation, even-aged stands. Silvicultural alternatives to typical even-aged stand management, such as uneven-aged management and commercial thinning, should also be considered for improving and maintaining interspersion of forage and cover.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
Satellite assessment of increasing tree cover 1982-2016
NASA Astrophysics Data System (ADS)
Song, X. P.; Hansen, M.
2017-12-01
The Earth's vegetation has undergone dramatic changes as we enter the Anthropocene. Recent studies have quantified global forest cover dynamics and resulting biogeochemical and biophysical impacts to the climate for the post-2000 time period. However, long-term gradual changes in undisturbed forests are less well quantified. We mapped annual tree cover using satellite data and quantified tree cover change during 1982-2016. The dataset was produced by combining optical observations from multiple satellite sensors, including the Advanced Very High Resolution Radiometer, the Moderate Resolution Imaging Spectroradiometer, the Landsat Enhanced Thematic Mapper Plus and various very high spatial resolution sensors. Contrary to current understanding of forest area change, global tree cover increased by 7%. The overall net gain in tree cover is a result of net loss in the tropics overweighed by net gain in the subtropical, temperate and boreal zones. All mountain systems, regardless of climate domain, experienced increases in tree cover. Regional patterns of tree cover gain including eastern United States, eastern Europe and southern China, indicate profound influences of socioeconomic, political or land management changes in shaping long-term environmental change. Results provide the first comprehensive record of global tree cover dynamics over the past four decades and may be used to reduce uncertainties in the quantification of the global carbon cycle.
2017-01-01
Age- and size-related life-history traits of anuran amphibians are thought to vary systematically with latitude and altitude. Because the available data base is strongly biased towards temperate-zone species, we provide new estimates on eight afrotropical Reed Frog species. A meta-analysis of the demographic traits in 44 tropical anuran species aims to test for the predicted clinal variation and to contrast results with variation detected in temperate-zone species. The small-sized reed frogs reach sexual maturity during the first or second year of life, but longevity does not exceed three to four years. Latitudinal effects on demographic life-history traits are not detectable in tropical anurans, and altitudinal effects are limited to a slight size reduction at higher elevations. Common features of anuran life-history in the tropics are early sexual maturation at small size and low longevity resulting in low lifetime fecundity. This pattern contrasts with that found in temperate-zone anurans which mature later at larger size and grow considerably older yielding greater lifetime fecundity than in the tropics. Latitudinal and altitudinal contraction of the yearly activity period shape the evolution of life-history traits in the temperate region, while trait variation in the tropics seems to be driven by distinct, not yet identified selective forces. PMID:28182738
Climate change and response of geosystems of the Russian North (Invited)
NASA Astrophysics Data System (ADS)
Drozdov, D. S.; Korostelev, Y. V.; Malkova, G. V.; Melnikov, V. P.; Orekhov, P. T.; Ukraintseva, N. G.
2010-12-01
The study of climate change, mainly air temperature and snow cover depth, is a key to understanding of modern trends in evolution of cryolithozone and response of geosystems of the North. Greenhouse and technogenic effects influence the cryolithozone and permafrost as well. Scenarios of substantial warming, temperate warming, and cooling were considered in our research. Weather station records show that the last so called “Earth Global Warming”, which started in 1960-1970s was initially most pronounced in Subarctic and Temperate zones. Maximum warming rate was observed in the 1980s. In Russia, the areas of warming in 20th century were Central Yakutia and Transbaikal, while in the European and Far East Russia the rate of warming was rather small. Later, the warming trend was observed only locally and new areas of maximum rates of warming appear within Russian cryolithozone. In 2000s, warming gradually extends to the Arctic regions while it slows down in Subarctic. Thermal regime of permafrost generally follows the climate change. Geocryological monitoring data evidence the rise of ground temperature at the depth of zero annual amplitude in the north of West Siberia by 0.2 to 1.4°C and in European Russia by 0.1 to 0.7°C. In these regions, slight trend of snow accumulation growth was also observed. At the same time, in Central Yakutia, though climate warms, permafrost temperature does not show increase due to reduction of snow depth in the last decades. In West Siberia, Urengoi gas field, ground temperatures in 1975-1993 increased by 1 to 1.5°C due to natural climate fluctuations (some times up to 2 to 3.5°C). Human impact added 1 to 1.5°C, this last being tightly linked to the effect of engineering structures. Some slowing of thaw and stabilization of ground temperature around 0°C is observed as incoming heat is consumed by phase transition in the near-surface layer. I was instrumentally detected that permafrost table lowered by 5-8 m and more at the forested and shrubby sites. According to our calculations, during the last 30 years, the southern limit of patchy near-surface permafrost shifted northward by 100-120 km in West Siberia, and by 20-50 km in European Russia. Continuous permafrost area in Russia reduced by 1,000,000 km2 (15%) compared to 1960-70-s. This also means changes in hydrology and hydrogeology, occurrence of new and activation of existing exogenic processes, reduction of bearing capacity of the ground used as foundations for roads, pipelines and so on. Climate change became evident also in the landscape appearance of geosystems of the North. In 1975-1980 at the left bank of Pur-river (West Siberia) thin larch forests could be met only at the hill tops of southern forest-tundra zone. Observations in 2007-2008 showed a mass expansion of larch northward into the former forest-free hilltops of northern forest-tundra. Moreover, in 1999 in southern tundra sub-zone at the hill tops 2-3-year old larch undergrowth 10-20 cm high was observed as well, though during several subsequent cold, with little snow winters those larch trees were frost-killed. In High Russian Arctic the ground temperature is not uniform: at Belyi Island (73.5° N) it varies from 11 to 7°C; at Frantz-Joseph Zemlia Archipelago (80.5° N) - from 11.5 to 10.5°C.
Contrasting effects of insect exclusion on wood loss in a temperate forest
Michael Ulyshen; Terry Wagner; Joseph E. Mulrooney
2014-01-01
Experimental efforts to determine how insects influence terrestrial wood decomposition are few, especially in temperate regions. To address this need, a five-year exclusion study was conducted in northern Mississippi, U.S.A., to quantify insect contributions to wood decay using one-meter loblolly pine (Pinus taeda L.) bolts. The study included three...
Survey of subterranean termite (Isoptera: Rhinotermitidae) utilization of temperate forests
USDA-ARS?s Scientific Manuscript database
Both native and invasive subterranean termites (Isoptera: Rhinotermitidae), including the Formosan subterranean termite, are well known pests of urban areas, but little is known about their distribution or impact in forest ecosystems of the southeastern United States. Recently harvested timber stump...
NASA Astrophysics Data System (ADS)
Jennings, Katie; McIntire, Cameron; Coble, Adam; Vandeboncoeur, Matthew; Rustad, Lindsay; Templer, Pamela; Absbjornsen, Heidi
2017-04-01
Climate change is likely to affect Northeastern U.S. forests through the increased frequency and severity of drought events. However, our understanding of how these humid temperate forests will respond to moderate to extreme droughts is limited. Given the important role that these forests play in providing ecosystem services and in supplying forest products, enhancing our knowledge about the impacts of drought is critical to guiding forest management and climate change adaptation efforts. We conducted 50% throughfall removal experiments at two contrasting sites in the Northeastern US (Hubbard Brook Experimental Forest and Thompson Farm, NH, USA), which were superimposed on the severe natural drought occurring in August-September 2016. Preliminary analysis suggests that the two sites respond differently to simulated drought. Pinus strobus trees at Thompson Farm reduced their transpiration rates in response to both the natural and experimental drought, particularly evident during a 5-day period at the height of the drought were transpiration nearly ceased. Both P. strobus and Quercus rubra trees increased their water use efficiency in response to reduced soil water availability, with Q. rubra allowing its midday water potential to reach more negative values, consistent with its more drought tolerant strategy compared to P. strobus. In contrast, we did not detect any significant differences in tree transpiration rates or growth in the dominant tree species, Acer rubrum, in response to the experimental drought treatment at Hubbard Brook. However, both soil respiration and fine root biomass production were lower in the drought treatment plots relative to the control plots at Hubbard Brook. We plan to continue these throughfall removal experiments for at least two more years to better understand the implications of future drought in these humid temperate forests and identify differences in species' physiological adaptations and threshold responses.
Effects of stand age on the demography of a temperate forest herb in post-agricultural forests.
Jacquemyn, Hans; Brys, Rein
2008-12-01
Changes in land use have been shown to have profound effects on forest plant community structure and diversity. Dispersal limitation has been invoked as a major factor hampering colonization of forest plant species, while seed-sowing experiments and performance observations have provided some evidence for recruitment limitation determining forest plant distribution in post-agricultural forests. However, most of these studies were relatively short-term, and very few studies have investigated long-term growth rates of populations occurring in recent and ancient forests. In this study, matrix models using demographic data collected for four consecutive years were used to study the effect of forest age on population dynamics of the temperate forest herb Primula elatior. A life table response experiment (LTRE) and elasticity analysis were used to analyze the effect of forest age on population growth rate (lambda) and to decompose the effect of forest age on lambda into contributions from each matrix element. Population growth increased logarithmically with increasing forest age. Bootstrap analyses showed that populations located in very recent forests (< 50-years-old) had growth rates that were significantly < 1, whereas populations located in forests > 150-years-old had growth rates that were significantly > 1. Summed elasticities for individual growth significantly decreased with increasing forest age, whereas summed elasticities for survival and fertility significantly increased with increasing forest age. The LTRE analysis showed that the increase in lambda with increasing forest age was mainly due to increased seedling and juvenile growth and increased juvenile and adult survival. Our results indicate that past agricultural land use has long-lasting effects on the demography of forest herbs and may provide an additional mechanistic explanation for the poor colonization capacity of many forest herbs in post-agricultural forests.
NASA Astrophysics Data System (ADS)
Guérette, Elise-Andrée; Paton-Walsh, Clare; Desservettaz, Maximilien; Smith, Thomas E. L.; Volkova, Liubov; Weston, Christopher J.; Meyer, Carl P.
2018-03-01
We characterised trace gas emissions from Australian temperate forest fires through a mixture of open-path Fourier transform infrared (OP-FTIR) measurements and selective ion flow tube mass spectrometry (SIFT-MS) and White cell FTIR analysis of grab samples. We report emission factors for a total of 25 trace gas species measured in smoke from nine prescribed fires. We find significant dependence on modified combustion efficiency (MCE) for some species, although regional differences indicate that the use of MCE as a proxy may be limited. We also find that the fire-integrated MCE values derived from our in situ on-the-ground open-path measurements are not significantly different from those reported for airborne measurements of smoke from fires in the same ecosystem. We then compare our average emission factors to those measured for temperate forest fires elsewhere (North America) and for fires in another dominant Australian ecosystem (savanna) and find significant differences in both cases. Indeed, we find that although the emission factors of some species agree within 20 %, including those of hydrogen cyanide, ethene, methanol, formaldehyde and 1,3-butadiene, others, such as acetic acid, ethanol, monoterpenes, ammonia, acetonitrile and pyrrole, differ by a factor of 2 or more. This indicates that the use of ecosystem-specific emission factors is warranted for applications involving emissions from Australian forest fires.
Adaptive root foraging strategies along a boreal-temperate forest gradient.
Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak
2017-08-01
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie
2014-01-01
Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844
Fleshy fruit characteristics in a temperate deciduous forest of Japan: how unique are they?
Masaki, Takashi; Takahashi, Kazuaki; Sawa, Ayako; Kado, Tomoyuki; Naoe, Shoji; Koike, Shinsuke; Shibata, Mitsue
2012-01-01
This study investigated the fleshy fruit characteristics of 28 woody species in a Japanese temperate forest where large sedentary seed-dispersing mammals are present. We tested whether the findings in previous studies in temperate forests of Europe and North America are universal or not. Results have suggested that fruits of all species were eaten both by birds and mammals except for four species with larger fruits, which were eaten only by mammals. A gradient was found from a syndrome characterized by small, oily, and large-seeded fruits to a syndrome characterized by large, succulent, non-oily, and small-seeded fruits. The sizes and colors of the fruits were not conspicuously different from previous findings in Europe and North America. On the other hand, nitrogen and lipids in the fleshy part did not show seasonally increasing trends, or even seasonally decreasing trends in terms of dry weight. This result, suggesting the absence of community-level adaptation of fruit traits to migratory bird dispersers, contrasted with findings in Europe and North America. Large sedentary arboreal or tree-climbing mammals may have a greater effect on the evolution of fruit-disperser relations than opportunistic migratory birds.
Fernández, Natalia Verónica; Messuti, María Inés; Fontenla, Sonia Beatriz
2013-06-01
Arbuscular mycorrhizas (AM) are one of the most widespread types of symbiotic associations. Pteridophytes occupy an important position in the evolution of vascular plants. However, their mycorrhizal state remains poorly understood. The aim of this work was to describe the general mycorrhizal status and the occurrence of dark septate endophytes (DSE) in the pteridophytic flora of a Valdivian temperate forest in Patagonia, Argentina. First, the roots of nine terrestrial species representing six families were examined, and this information was then compared with other surveys concerning the occurrence of AM in other pteridophytic species within the same Valdivian temperate forest. AM were recorded in 98.6% of the samples analyzed in this work and all of them corresponded to the Paris-type morphology. DSEs were also present within the roots of all terrestrial species. A comparison to published results in other ferns and lycophytes that have been studied in this Valdivian temperate forest (161 sporophytes, 21 species and 10 families) was made. Clear differences in colonization patterns between eusporangiate/leptosporangiate and epiphytic/terrestrial species became evident and are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Williams, Christopher A; Vanderhoof, Melanie K; Khomik, Myroslava; Ghimire, Bardan
2014-03-01
Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest. © 2013 John Wiley & Sons Ltd.
Bähner, K W; Zweig, K A; Leal, I R; Wirth, R
2017-10-01
Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.
The formation and fate of chlorinated organic substances in temperate and boreal forest soils.
Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav
2009-03-01
Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect the chlorine cycle, although little is at present known about how. The present data on the apparently considerable size of the pool of OCls indicate its importance for the functioning of the forest soil system and its stability, but factors controlling their formation, degradation and transport are not clearly understood. It would be useful to estimate the significance and rates of key processes to be able to judge the importance of OCls in SOM and litter degradation. Effects of forest management processes affecting SOM and chloride deposition are likely to affect OCls as well. Further standardisation and harmonisation of sampling and analytical procedures is necessary. More work is necessary in order to understand and, if necessary, develop strategies for mitigating the environmental impact of OCls in temperate and boreal forest soils. This includes both intensified research, especially to understand the key processes of formation and degradation of chlorinated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on OCls, as management can be used to produce desired effects.
Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests
Duncanson, L.; Rourke, O.; Dubayah, R.
2015-01-01
Accurate quantification of forest carbon stocks is required for constraining the global carbon cycle and its impacts on climate. The accuracies of forest biomass maps are inherently dependent on the accuracy of the field biomass estimates used to calibrate models, which are generated with allometric equations. Here, we provide a quantitative assessment of the sensitivity of allometric parameters to sample size in temperate forests, focusing on the allometric relationship between tree height and crown radius. We use LiDAR remote sensing to isolate between 10,000 to more than 1,000,000 tree height and crown radius measurements per site in six U.S. forests. We find that fitted allometric parameters are highly sensitive to sample size, producing systematic overestimates of height. We extend our analysis to biomass through the application of empirical relationships from the literature, and show that given the small sample sizes used in common allometric equations for biomass, the average site-level biomass bias is ~+70% with a standard deviation of 71%, ranging from −4% to +193%. These findings underscore the importance of increasing the sample sizes used for allometric equation generation. PMID:26598233
Vertical distribution of haematophagous Diptera in temperate forests of the southeastern U.S.A.
Swanson, D A; Adler, P H
2010-06-01
The vertical distribution of blood-feeding flies in two temperate forests in the southeastern U.S.A. was determined by placing 15 Centers for Disease Control and Prevention miniature light traps (12 CO(2)-baited, three unbaited controls), without lights, at three heights (1.5 m, 5.0 m, 10.0 m). More than 6550 haematophagous flies, representing 49 species in four families, were collected. Eighteen species were taken almost exclusively (90-100%) at 1.5 m or 10.0 m, and the mean number of flies per trap differed significantly with height for another six species. Five species exhibited shifts in vertical distribution between the two forests, indicating that forest structure could influence the height of host searching. Most (52.5%) mammalophilic flies were collected at 1.5 m, whereas most (56.4%) ornithophilic flies were taken at 10.0 m, suggesting that host associations influence vertical distributions. The significant differences in the composition of haematophagous fly populations among forest strata emphasize the importance of trap placement in vector surveillance and of understanding the ecological relationships of blood-feeding flies.
Mogi, Motoyoshi; Armbruster, Peter; Tuno, Nobuko; Campos, Raúl; Eritja, Roger
2015-07-01
Aedes albopictus (Skuse) has expanded its distribution worldwide during the past decades. Despite attempts to explain and predict its geographic occurrence, analyses of the distribution of Ae. albopictus in the context of broad climatic regions (biomes) has not been performed. We analyzed climate conditions at its distribution sites in the range before the worldwide invasions (from the easternmost Hawaii through westernmost Madagascar) by using thermal and aridity-humidity indices descriptive of major biomes. A significant advantage of this approach is that it uses simple indices clearly related to the population dynamics of Ae. albopictus. Although Ae. albopictus has been regarded as a forest species preferring humid climate, in areas with significant human habitation, the distribution sites extended from the perhumid, rain forest zone to the semiarid, steppe zone. This pattern was common from the tropics through the temperate zone. Across the distribution range, there was no seasonal discordance between temperature and precipitation; at sites where winter prevents Ae. albopictus reproduction (monthly means<10°C), precipitation was concentrated in warm months (>10°C) under the Asian summer monsoon. Absence of the species in northern and eastern coastal Australia and eastern coastal Africa was not attributable solely to climate conditions. However, Asia west of the summer monsoon range was climatically unsuitable because of low precipitation throughout the year or in warm months favorable to reproduction (concentration of precipitation in winter). We hypothesized that Ae. albopictus originated in continental Asia under the monsoon climate with distinct dry seasons and hot, wet summer, enabling rapid population growth. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Bounoua, Lahouri; Wolfe, Robert E.
2011-01-01
Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales.
Urrutia-Jalabert, Rocio; Malhi, Yadvinder; Lara, Antonio
2015-01-01
Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1) and 448-517 Mg C ha(-1) in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1) year(-1) in AC and 2.22-2.54 Mg C ha(-1) year(-1) in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1) year(-1) in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.
Urrutia-Jalabert, Rocio; Malhi, Yadvinder; Lara, Antonio
2015-01-01
Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113–114 Mg C ha-1 and 448–517 Mg C ha-1 in AC and AA, respectively. Aboveground productivity was 3.35–3.36 Mg C ha-1 year-1 in AC and 2.22–2.54 Mg C ha-1 year-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21–4.24 and 3.78–4.10 Mg C ha-1 year-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539–640 years for the whole forest in the Andes and 1368–1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia. PMID:26353111
Thorsten Zeppenfeld; Miroslav Svoboda; R. Justin DeRose; Marco Heurich; Jorg Muller; Pavla Cizkova; Martin Stary; Radek Bace; Daniel C. Donato
2015-01-01
Large, severe disturbances drive many forest ecosystems over the long term, but pose management uncertainties when human experience with them is limited. Recent continent-scale outbreaks of bark beetles across the temperate Northern Hemisphere have raised major concerns as to whether coniferous forests will regenerate back towards pre-outbreak condition and...
Silviculture of forests in the Eastern United States
Daniel C. Dey; John C. Brissette; Callie J. Schweitzer; James M. Guldin
2012-01-01
The forests of the Eastern United States are diverse and provide many products and amenities for people living in the area and beyond. Eastern temperate forests play an important role in determining water yield and quality. They have the potential to sequester large quantities of carbon and influence air quality, and thus climate. Our standard of living is very much...
Logging legacies affect insect pollinator communities in southern Appalachian forests
Michelle M. Jackson; Monica G. Turner; Scott M. Pearson
2014-01-01
Many temperate deciduous forests are recovering from past logging, but the effects of logging legacies and environmental gradients on forest insect pollinators have not been well studied. In this study, we asked how pollinator abundance and community composition varied with distance from logging roads and elevation in old (logged >90 years ago) and young (logged 20â...
The enigmatic fire regime of coast redwood forests and why it matters
J. Morgan Varner; Erik S. Jules
2017-01-01
Of perhaps all forests in North America, the fire regime of coast redwoods (Sequoia sempervirens (D. Don) Endl.) is most enigmatic. Widely considered a temperate rainforest, a large number of fire history studies depict a forest dominated by frequent surface fire regimes. Coast redwood also has a long list of traits that allow it to persist and...
A resource at the crossroads: a history of the central hardwoods
Ray R., Jr. Hicks
1997-01-01
The Central Hardwood Forest is an oak dominated deciduous forest that stretches from Massachusetts to Arkansas and occurs in hilly to mountainous terrain. It is the largest and most extensive temperate deciduous forest in the world. During the past 20 million years or so, angiosperms have been gradually replacing gymnosperms as the dominant plant form on earth, and...
Wen J. Wang; Hong S. He; Frank R. Thompson; Jacob S. Fraser; Brice B. Hanberry; William D. Dijak
2015-01-01
Most temperate forests in U.S. are recovering from heavy exploitation and are in intermediate successional stages where partial tree harvest is the primary disturbance. Changes in regional forest composition in response to climate change are often predicted for plant functional types using biophysical process models. These models usually simplify the simulation of...
Regional distribution and dynamics of coarse woody debris in Midwestern old-growth forests
Martin A. Spetich; Stephen R. Shifley; George R. Parker
1999-01-01
Old-growth forests have been noted for containing significant quantities of deadwood. However, there has been no coordinated effort to quantify the deadwood component of old-growth remnants across large regions of temperate deciduous forest. We present results of a regional inventory that quantifies and examines regional and temporal trends for deadwood in upland old-...
Matthew G. Olson; Benjamin O. Knapp; John M. Kabrick
2017-01-01
Landscape forest management is an approach to meeting diverse objectives that collectively span multiple spatial scales. It is critical that we understand the long-term effects of landscape management on the structure and composition of forest tree communities to ensure that these practices are sustainable. Furthermore, it is increasingly important to also consider...
Frank S. Gilliam; Nicole Turrill Welch; Anne Hockenberry Phillips; Jake H. Billmyer; William T. Peterjohn; Zachariah K. Fowler; Christopher A. Walter; Mark B. Burnham; Jeffrey D. May; Mary Beth Adams; D. P. C. Peters
2016-01-01
Increasing rates of atmospheric deposition of nitrogen (N) present a novel threat to the biodiversity of terrestrial ecosystems. Many forests are particularly susceptible to excess N given their proximity to sources of anthropogenic N emissions. This study summarizes results of a 25-yr treatment of an entire central Appalachian hardwood forest watershed via aerial...
Wildfire and fuel treatment effects on forest carbon dynamics in the western United States
Joseph C. Restiano; David L. Peterson
2013-01-01
Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity arc expected to...
Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett
2012-01-01
Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...
Mantilla-Contreras, Jasmin
2018-01-01
Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae) in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient. PMID:29373542
Albert, David M; Schoen, John W
2013-08-01
The forests of southeastern Alaska remain largely intact and contain a substantial proportion of Earth's remaining old-growth temperate rainforest. Nonetheless, industrial-scale logging has occurred since the 1950s within a relatively narrow range of forest types that has never been quantified at a regional scale. We analyzed historical patterns of logging from 1954 through 2004 and compared the relative rates of change among forest types, landform associations, and biogeographic provinces. We found a consistent pattern of disproportionate logging at multiple scales, including large-tree stands and landscapes with contiguous productive old-growth forests. The highest rates of change were among landform associations and biogeographic provinces that originally contained the largest concentrations of productive old growth (i.e., timber volume >46.6 m³/ha). Although only 11.9% of productive old-growth forests have been logged region wide, large-tree stands have been reduced by at least 28.1%, karst forests by 37%, and landscapes with the highest volume of contiguous old growth by 66.5%. Within some island biogeographic provinces, loss of rare forest types may place local viability of species dependent on old growth at risk of extirpation. Examination of historical patterns of change among ecological forest types can facilitate planning for conservation of biodiversity and sustainable use of forest resources. © 2013 Society for Conservation Biology.
Forest aging, disturbance and the carbon cycle.
Curtis, Peter S; Gough, Christopher M
2018-05-16
Contents Summary I. Introduction II. Forest aging and carbon storage III. Successional trends of NEP in northern deciduous forests IV. Mechanisms sustaining NEP in aging deciduous forests Acknowledgements References SUMMARY: Large areas of forestland in temperate North America, as well as in other parts of the world, are growing older and will soon transition into middle and then late successional stages exceeding 100 yr in age. These ecosystems have been important regional carbon sinks as they recovered from prior anthropogenic and natural disturbance, but their future sink strength, or annual rate of carbon storage, is in question. Ecosystem development theory predicts a steady decline in annual carbon storage as forests age, but newly available, direct measurements of forest net CO 2 exchange challenge that prediction. In temperate deciduous forests, where moderate severity disturbance regimes now often prevail, there is little evidence for any marked decline in carbon storage rate during mid-succession. Rather, an increase in physical and biological complexity under these disturbance regimes may drive increases in resource-use efficiency and resource availability that help to maintain significant carbon storage in these forests well past the century mark. Conservation of aging deciduous forests may therefore sustain the terrestrial carbon sink, whilst providing other goods and services afforded by these biologically and structurally complex ecosystems. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
2004-01-01
forests, alpine forests, and so forth); (2) had a range of sampling frequency and dura- tion, such as during and immediately following a fire (from the...1) were done in a variety of environments (savannas, grass- lands, temperate forests, alpine forests, and so forth), (2) had a range of sampling...of Nutrients in Surface Waters Gresswell, R.E., 1999, Fire and aquatic ecosystems in forested biomes of North America: Transactions of the American
NASA Astrophysics Data System (ADS)
Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi
2016-04-01
Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated. The retrieval of understory signal can be used e.g. to improve the estimates of leaf area index (LAI), fAPAR in sparsely vegetated areas, and also to study the phenology of understory layer. Our results are particularly useful to producing Northern hemisphere maps of seasonal dynamics of forests, allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons of vegetation dynamics.
Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.
2014-01-01
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065
Horton, Bryony M; Glen, Morag; Davidson, Neil J; Ratkowsky, David A; Close, Dugald C; Wardlaw, Tim J; Mohammed, Caroline
2017-01-01
Fungal diversity of Australian eucalypt forests remains underexplored. We investigated the ectomycorrhizal (EcM) fungal community characteristics of declining temperate eucalypt forests in Tasmania. Within this context, we explored the diversity of EcM fungi of two forest types in the northern highlands in the east and west of the island. We hypothesised that EcM fungal community richness and composition would differ between forest type but that the Cortinariaceae would be the dominant family irrespective of forest type. We proposed that EcM richness would be greater in the wet sclerophyll forest than the dry sclerophyll forest type. Using both sporocarps and EcM fungi from root tips amplified by PCR and sequenced in the rDNA ITS region, 175 EcM operational taxonomic units were identified of which 97 belonged to the Cortinariaceae. The Cortinariaceae were the most diverse family, in both the above and below ground communities. Three distinct fungal assemblages occurred within the wet and dry sclerophyll forest types and two geographic regions that were studied, although this pattern did not remain when only the root tip data were analysed. EcM sporocarp richness was unusually higher than root tip richness and EcM richness did not significantly differ among forest types. The results are discussed in relation to the importance of the Cortinariaceae and the drivers of EcM fungal community composition within these forests.
NASA Astrophysics Data System (ADS)
Silver, W. L.; Smith, W. K.; Parton, W. J.; Wieder, W. R.; DelGrosso, S.
2016-12-01
Surface litter decomposition represents the largest annual carbon (C) flux to the atmosphere from terrestrial ecosystems (Esser et al. 1982). Using broad-scale long-term datasets we show that litter decomposition rates are largely predicted by a climate-decomposition index (CDI) at a global scale, and use CDI to estimate patterns in litter decomposition over the 110 years from 1901-2011. There were rapid changes in CDI over the last 30 y of the record amounting to a 4.3% increase globally. Boreal forests (+13.9%), tundra (+12.2%), savannas (+5.3%), and temperate (+2.4%) and tropical (+2.1%) forests all experienced accelerated decomposition. During the same period, most biomes experienced corresponding increases in a primary production index (PPI) estimated from an ensemble of long-term, observation-based productivity indices. The percent increase in PPI was only half that of decomposition globally. Tropical forests and savannas showed no increase in PPI to offset greater decomposition rates. Temperature-limited ecosystems (i.e., tundra, boreal, and temperate forests) showed the greatest differences between CDI and PPI, highlighting potentially large decoupling of C fluxes in these biomes. Precipitation and actual evapotranspiration were the best climate predictors of CDI at a global scale, while PPI varied consistently with actual evapotranspiration. As expected, temperature was the best predictor of PPI across temperature limited ecosystems. Our results show that climate change could be leading to a decoupling of C uptake and losses, potentially resulting in lower C storage in northern latitudes, temperate and tropical forests, and savannas.
Palma, R. Eduardo; Boric-Bargetto, Dusan; Torres-Pérez, Fernando; Hernández, Cristián E.; Yates, Terry L.
2012-01-01
The long-tailed pygmy rice rat Oligoryzomys longicaudatus (Sigmodontinae), the major reservoir of Hantavirus in Chile and Patagonian Argentina, is widely distributed in the Mediterranean, Temperate and Patagonian Forests of Chile, as well as in adjacent areas in southern Argentina. We used molecular data to evaluate the effects of the last glacial event on the phylogeographic structure of this species. We examined if historical Pleistocene events had affected genetic variation and spatial distribution of this species along its distributional range. We sampled 223 individuals representing 47 localities along the species range, and sequenced the hypervariable domain I of the mtDNA control region. Aligned sequences were analyzed using haplotype network, Bayesian population structure and demographic analyses. Analysis of population structure and the haplotype network inferred three genetic clusters along the distribution of O. longicaudatus that mostly agreed with the three major ecogeographic regions in Chile: Mediterranean, Temperate Forests and Patagonian Forests. Bayesian Skyline Plots showed constant population sizes through time in all three clusters followed by an increase after and during the Last Glacial Maximum (LGM; between 26,000–13,000 years ago). Neutrality tests and the “g” parameter also suggest that populations of O. longicaudatus experienced demographic expansion across the species entire range. Past climate shifts have influenced population structure and lineage variation of O. longicaudatus. This species remained in refugia areas during Pleistocene times in southern Temperate Forests (and adjacent areas in Patagonia). From these refugia, O. longicaudatus experienced demographic expansions into Patagonian Forests and central Mediterranean Chile using glacial retreats. PMID:22396751
Palma, R Eduardo; Boric-Bargetto, Dusan; Torres-Pérez, Fernando; Hernández, Cristián E; Yates, Terry L
2012-01-01
The long-tailed pygmy rice rat Oligoryzomys longicaudatus (Sigmodontinae), the major reservoir of Hantavirus in Chile and Patagonian Argentina, is widely distributed in the Mediterranean, Temperate and Patagonian Forests of Chile, as well as in adjacent areas in southern Argentina. We used molecular data to evaluate the effects of the last glacial event on the phylogeographic structure of this species. We examined if historical Pleistocene events had affected genetic variation and spatial distribution of this species along its distributional range. We sampled 223 individuals representing 47 localities along the species range, and sequenced the hypervariable domain I of the mtDNA control region. Aligned sequences were analyzed using haplotype network, bayesian population structure and demographic analyses. Analysis of population structure and the haplotype network inferred three genetic clusters along the distribution of O. longicaudatus that mostly agreed with the three major ecogeographic regions in Chile: Mediterranean, Temperate Forests and Patagonian Forests. Bayesian Skyline Plots showed constant population sizes through time in all three clusters followed by an increase after and during the Last Glacial Maximum (LGM; between 26,000-13,000 years ago). Neutrality tests and the "g" parameter also suggest that populations of O. longicaudatus experienced demographic expansion across the species entire range. Past climate shifts have influenced population structure and lineage variation of O. longicaudatus. This species remained in refugia areas during Pleistocene times in southern Temperate Forests (and adjacent areas in Patagonia). From these refugia, O. longicaudatus experienced demographic expansions into Patagonian Forests and central Mediterranean Chile using glacial retreats.
Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords
NASA Astrophysics Data System (ADS)
Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.
2017-11-01
Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.
The effect of latitudinal gradient on the species diversity of Chinese litter-dwelling thrips
Wang, Jun; Tong, Xiaoli; Wu, Donghui
2014-01-01
Abstract To understand the global distribution patterns of litter-dwelling thrips, a total 150 leaf litter samples were collected from 6 natural reserves located in three climatic regions, temperate, subtropical and tropical. The results showed the relative abundance of Thysanoptera was over 3.0% in 4 natural reserves from subtropical and tropical zone, and reached 5.9% in one tropical reserve, only less than Acarina and Collembola. In contrast it was only 0.3% in the warm temperate natural reserves, and no thrips were collected in a mid temperate reserve. The order on the average species numbers per plot of litter thrips was tropic > subtropics > temperate (n=25, p<0.05). Mean density of litter thrips per plots in the tropics and subtropics was significantly higher than that in the temperate region (n=25, p<0.05), but the average density was not significantly different between tropical and subtropical zones (n=25, p>0.05). The diversity of litter thrips in the tropics and subtropics was much higher than that in the temperate area based on comparsions of Shannon-Wiener diversity index (H’), Pielou eveness index (J), and Simpson dominance index (D). All of these results indicated that litter-dwelling thrips lived mainly in tropical and subtropical regions; meanwhile, species number and relative abundance increased with decreasing latitude. PMID:25061351
Harvey, Brian J; Donato, Daniel C; Turner, Monica G
2016-09-01
Increasing rates of natural disturbances under a warming climate raise important questions about how multiple disturbances interact. Escalating wildfire activity in recent decades has resulted in some forests re-burning in short succession, but how the severity of one wildfire affects that of a subsequent wildfire is not fully understood. We used a field-validated, satellite-derived, burn-severity atlas to assess interactions between successive wildfires across the US Northern Rocky Mountains a 300,000-km 2 region dominated by fire-prone forests. In areas that experienced two wildfires between 1984 and 2010, we asked: (1) How do overall frequency distributions of burn-severity classes compare between first and second fires? (2) In a given location, how does burn severity of the second fire relate to that of the first? (3) Do interactions between successive fires vary by forest zone or the interval between fires? (4) What factors increase the probability of burning twice as stand-replacing fire? Within the study area, 138,061 ha burned twice between 1984 and 2010. Overall, frequency distributions of burn severity classes (low, moderate, high; quantified using relativized remote sensing indices) were similar between the first and second fires; however burn severity was 5-13% lower in second fires on average. Negative interactions between fires were most pronounced in lower-elevation forests and woodlands, when fire intervals were <10 yr, and when burn severity was low in the first fire. When the first fire burned as high severity and fire intervals exceeded 10-12 yr, burn-severity interactions switched from negative to positive, with high-severity fire begetting subsequent high-severity fire. Locations most likely to experience successive stand-replacing fires were high-elevation forests, which are adapted to high-severity fire, and areas conducive to abundant post-fire tree regeneration. Broadly similar severities among short-interval "re-burns" and other wildfires indicate that positive severity feedbacks, an oft-posited agent of ecosystem decline or state shift, are not an inevitable outcome of re-burning. Nonetheless, context-dependent shifts in both the magnitude and direction of wildfire interactions (associated with forest zone, initial burn-severity, and disturbance interval) illustrate complexities in disturbance interactions and can inform management and predictions of future system dynamics. © 2016 by the Ecological Society of America.
Urban spring phenology in the middle temperate zone of China: dynamics and influence factors.
Liang, Shouzhen; Shi, Ping; Li, Hongzhong
2016-04-01
Urbanization and its resultant urban heat island provide a means for evaluating the impact of climate warming on vegetation phenology. To predict the possible response of vegetation phenology to rise of temperature, it is necessary to investigate factors influencing vegetation phenology in different climate zones. The start of growing season (SOS) in seven cities located in the middle temperate humid, semi-humid, semi-arid, and arid climate zones in China was extracted based on satellite-derived normalized difference vegetation index (NDVI) data. The dynamics of urban SOS from 2000 to 2009 and the correlations between urban SOS and land surface temperatures (LST), precipitation, and sunshine duration, respectively, were analyzed. The results showed that there were no obvious change trends for urban SOS, and the heat island induced by urbanization can make SOS earlier in urban areas than that in adjacent rural areas. And the impact of altitude on SOS was also not negligible in regions with obvious altitude difference between urban and adjacent rural areas. Precipitation and temperature were two main natural factors influencing urban SOS in the middle temperate zone, but their impacts varied with climate zones. Only in Harbin city with lower sunshine duration in spring, sunshine duration had more significant impact than temperature and precipitation. Interference of human activities on urban vegetation was non-negligible, which can lower the dependence of urban SOS on natural climatic factors.
Michael H. McClellan
2004-01-01
In the old-growth temperate rainforests of southeast Alaska, concerns over clearcutting effects on habitat, visual quality, slope stability, and biodiversity have created a demand for the use of other silvicultural systems. The forest vegetation and animal taxa of southeast Alaska appear to be well adapted to frequent, widespread, small-scale disturbance, suggesting...
D.M. Olson; T.J. Griffis; A. Noormets; R. Kolka; J. Chen
2013-01-01
Three years (2009-2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO...
L. Heneghan; D.C. Coleman; X. Zou; D.A. Crossley; B.L. Hines
1998-01-01
The influence of climate, substrate quality and microarthropods on decomposition was studied by comparing the mass loss of litter at three forested sites: two tropical and one temperate. At each site,litter bags containing a dominant local litter were placed in the field in replicated plots. Half the bags were treated with naphthalene to reduce microarthropod...
Warming alters the energetic structure and function but not resilience of soil food webs
Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico
2017-01-01
Climate warming is predicted to alter the structure, stability, and functioning of food webs1–5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, warming effects on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments testing the interactive effects of warming with forest canopy disturbance and drought on energy fluxes in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7°C, +3.4°C) to closed canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy fluxes to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates reductions in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses of ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests. PMID:29218059
Warming alters energetic structure and function but not resilience of soil food webs
NASA Astrophysics Data System (ADS)
Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico
2017-12-01
Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.
Temperate radiations and dying embers of a tropical past: the diversification of Viburnum.
Spriggs, Elizabeth L; Clement, Wendy L; Sweeney, Patrick W; Madriñán, Santiago; Edwards, Erika J; Donoghue, Michael J
2015-07-01
We used a near-complete phylogeny for the angiosperm clade Viburnum to assess lineage diversification rates, and to examine possible morphological and ecological factors driving radiations. Maximum-likelihood and Bayesian approaches identified shifts in diversification rate and possible links to character evolution. We inferred the ancestral environment for Viburnum and changes in diversification dynamics associated with subsequent biome shifts. Viburnum probably diversified in tropical forests of Southeast Asia in the Eocene, with three subsequent radiations in temperate clades during the Miocene. Four traits (purple fruits, extrafloral nectaries, bud scales and toothed leaves) were statistically associated with higher rates of diversification. However, we argue that these traits are unlikely to be driving diversification directly. Instead, two radiations were associated with the occupation of mountainous regions and a third with repeated shifts between colder and warmer temperate forests. Early-branching depauperate lineages imply that the rare lowland tropical species are 'dying embers' of once more diverse lineages; net diversification rates in Viburnum likely decreased in these tropical environments after the Oligocene. We suggest that 'taxon pulse' dynamics might characterize other temperate plant lineages. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Weintraub, S. R.
2016-12-01
A dominant paradigm in ecosystem ecology holds that nitrogen (N) cycles as an excess nutrient in old tropical landscapes but is a scarce, limiting resource in young, temperate ecosystems. However, recent work suggests that both biotic and abiotic state factors can promote unexpected patterns of N cycling across complex landscapes. Here, I present two case studies demonstrating how topography and vegetation shape patterns of N cycling and loss in heterogeneous terrain. In a geomorphically dynamic, high-diversity tropical rainforest, flat ridge tops display open N cycling, yet eroding hillslopes are surprisingly N-poor with multiple indicators implying conservative N cycling. Soil mineralogy indicates slope soils are less developed than adjacent flat ridge counterparts, and the accumulation of cosmogenic 10Be in surface soil suggests residence times are only half as long. Together, these observations suggest erosion resets soil development, with constant N-removal promoting tight N-cycling. Further, soil δ15N is negatively correlated with slope angle across the landscape, and mass balance modeling supports an increasing role for erosive N loss in steep regions. In a temperate montane landscape with lower physical erosion rates, vegetation interacts with hydro-topographic position to mediate local N dynamics. Upslope, forests display conservative N-cycling, yet in adjacent herbaceous areas, multiple indicators point toward an open N cycle. Downslope, both vegetation types show an increase in N-richness. In downslope forests, this is confined to the near-surface, stemming from higher foliar N content due to lateral N transport and uptake. In herbaceous sites, deeper vadose-zone N transport occurs but with no change in foliar N, implying differences in the degree of N limitation between vegetation types. In this landscape, soil nitrate leaching rates track N availability, though δ15N-NO3- does not suggest a similar pattern for gaseous losses, instead reflecting nitrification and/or transport dynamics. Pervasive human alteration of the N cycle underscores the need to unravel these state-factor controls on N availability and loss in order to predict and model ecosystem biogeochemical dynamics in the face of global change.
Charbonnier, Yohan M; Barbaro, Luc; Barnagaud, Jean-Yves; Ampoorter, Evy; Nezan, Julien; Verheyen, Kris; Jactel, Hervé
2016-10-01
Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.
High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region
Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin
2014-01-01
Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529
Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...
Northern goshawk (Accipiter gentilis)
John R. Squires; Richard T. Reynolds
1997-01-01
The Northern Goshawk (hereafter referred to as Goshawk) is a large forest raptor, occupying boreal and temperate forests throughout the Holarctic. In North America, it breeds from Alaska to Newfoundland and south (Fig. 1). This partial migrant winters throughout its breeding range including occasionally the Great Plains and southeastern states; some...
Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun
2015-08-01
In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.
Lianas as invasive species in North America: Chapter 28
Leicht-Young, Stacey A.; Pavlovic, Noel B.
2015-01-01
Liana diversity is typically low in the temperate zones; however, the influx of non-native invasive liana species in North America has increased local diversity at the expense of native habitats and species. Some of the most illustrative studies of invasive lianas in temperate North America compared the biological traits of invasive lianas with native congeners or ecological analogs. The majority of these studies focused on two species, Celastrus orbiculatus (oriental bittersweet) and Lonicera japonica (Japanese honeysuckle). Temperate zone lianas generally have higher photosynthetic rates than other early successional species and their host trees. Invasive lianas are having an increasing impact on the dynamics and trajectories of North American plant communities. They often exhibit superior growth and survival compared to their native counterparts, and in some cases, invasive lianas may directly contribute to the decline of their native correlates.
Dripps, W.R.; Bradbury, K.R.
2007-01-01
Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating recharge distributions are data intensive, require extensive parameterization, and take a significant investment of time in order to establish. The Wisconsin Geological and Natural History Survey (WGNHS) has developed a simple daily soil-water balance (SWB) model that uses readily available soil, land cover, topographic, and climatic data in conjunction with a geographic information system (GIS) to estimate the temporal and spatial distribution of groundwater recharge at the watershed scale for temperate humid areas. To demonstrate the methodology and the applicability and performance of the model, two case studies are presented: one for the forested Trout Lake watershed of north central Wisconsin, USA and the other for the urban-agricultural Pheasant Branch Creek watershed of south central Wisconsin, USA. Overall, the SWB model performs well and presents modelers and planners with a practical tool for providing recharge estimates for modeling and water resource planning purposes in humid areas. ?? Springer-Verlag 2007.
Lin, Shiwei; Wu, Ruidong; Hua, Chaolang; Ma, Jianzhong; Wang, Wenli; Yang, Feiling; Wang, Junjun
2016-01-01
Protecting wilderness areas (WAs) is a crucial proactive approach to sustain biodiversity. However, studies identifying local-scale WAs for on-ground conservation efforts are still very limited. This paper investigated the spatial patterns of wilderness in a global biodiversity hotspot – Three Parallel Rivers Region (TPRR) in southwest China. Wilderness was classified into levels 1 to 10 based on a cluster analysis of five indicators, namely human population density, naturalness, fragmentation, remoteness, and ruggedness. Only patches characterized by wilderness level 1 and ≥1.0 km2 were considered WAs. The wilderness levels in the northwest were significantly higher than those in the southeast, and clearly increased with the increase in elevation. The WAs covered approximately 25% of TPRR’s land, 89.3% of which was located in the >3,000 m elevation zones. WAs consisted of 20 vegetation types, among which temperate conifer forest, cold temperate shrub and alpine ecosystems covered 79.4% of WAs’ total area. Most WAs were still not protected yet by existing reserves. Topography and human activities are the primary influencing factors on the spatial patterns of wilderness. We suggest establishing strictly protected reserves for most large WAs, while some sustainable management approaches might be more optimal solutions for many highly fragmented small WAs. PMID:27181186
Zhao, Jing-Jing; Liu, Liang-Yun
2013-02-01
Flux tower method can effectively monitor the vegetation seasonal and phenological variation processes. At present, the differences in the detection and quantitative evaluation of various phenology extraction methods were not well validated and quantified. Based on the gross primary productivity (GPP) and net ecosystem productivity (NEP) data of temperate forests from 9 forest FLUXNET sites in North America, and by using the start dates (SOS) and end dates (EOS) of the temperate forest growth seasons extracted by different phenology threshold extraction methods, in combining with the forest ecosystem carbon source/sink functions, this paper analyzed the effects of different threshold standards on the extraction results of the vegetations phenology. The results showed that the effects of different threshold standards on the stability of the extracted results of deciduous broadleaved forest (DBF) phenology were smaller than those on the stability of the extracted results of evergreen needleleaved forest (ENF) phenology. Among the extracted absolute and relative thresholds of the forests GPP, the extracted threshold of the DBF daily GPP= 2 g C.m-2.d-1 had the best agreement with the DBF daily GPP = 20% maximum GPP (GPPmax) , the phenological metrics with a threshold of daily GPP = 4 g C.m-2.d-1 was close to that between daily GPP = 20% GPPmax and daily GPP = 50% GPPmax, and the start date of ecosystem carbon sink function was close to the SOS metrics between daily GPP = 4 g C.m-2.d-1 and daily GPP= 20% GPPmax. For ENF, the phenological metrics with a threshold of daily GPP = 2 g C.m-2.d-1 and daily GPP = 4 g C.m-2.d-1 had the best agreement with the daily GPP = 20% GPPmax and daily GPP = 50% GPPmax, respectively, and the start date of the ecosystem carbon sink function was close to the SOS metrics between daily GPP = 2 g C.m-2.d-1 and daily GPP= 10% GPPmax.
NASA Astrophysics Data System (ADS)
Yoshikawa, K.; Ueyama, M.; Takagi, K.; Kominami, Y.
2015-12-01
Methane (CH4) budget in forest ecosystems have not been accurately quantified due to limited measurements and considerable spatiotemporal heterogeneity. In order to quantify CH4 fluxes at temperate forest at various spatiotemporal scales, we have continuously measured CH4 fluxes at two upland forests based on the micrometeorological hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods.The measurements have been conducted at Teshio experimental forest (TSE) since September 2013 and Yamashiro forest meteorology research site (YMS) since November 2014. Three automated chambers were installed on each site. Our system can measure CH4 flux by the micrometeorological HREA, vertical concentration profile at four heights, and chamber measurements by a laser-based gas analyzer (FGGA-24r-EP, Los Gatos Research Inc., USA).Seasonal variations of canopy-scale CH4 fluxes were different in each site. CH4 was consumed during the summer, but was emitted during the fall and winter in TSE; consequently, the site acted as a net annual CH4 source. CH4 was steadily consumed during the winter, but CH4 fluxes fluctuated between absorption and emission during the spring and summer in YMS. YMS acted as a net annual CH4 sink. CH4 uptake at the canopy scale generally decreased with rising soil temperature and increased with drying condition for both sites. CH4 flux measured by most of chambers showed the consistent sensitivity examined for the canopy scale to the environmental variables. CH4 fluxes from a few chambers located at a wet condition were independent of variations in soil temperature and moisture at both sites. Magnitude of soil CH4 uptake was higher than the canopy-scale CH4 uptake. Our results showed that the canopy-scale CH4 fluxes were totally different with the plot-scale CH4 fluxes by chambers, suggesting the considerable spatial heterogeneity in CH4 flux at the temperate forests.
Fajardo, Alex; Siefert, Andrew
2016-01-01
Background and Aims Ecologists are increasingly using plant functional traits to predict community assembly, but few studies have linked functional traits to species’ responses to fine-scale resource gradients. In this study, it was tested whether saplings of woody species partition fine-scale gradients in light availability based on their leaf mass per area (LMA) in three temperate rain forests and one Mediterranean forest in southern Chile. Methods LMA was measured under field conditions of all woody species contained in approx. 60 plots of 2 m2 in each site, and light availability, computed as the gap light index (GLI), was determined. For each site, species’ pairwise differences in mean LMA (Δ LMA) and abundance-weighted mean GLI (Δ light response) of 2 m2 plots were calculated and it was tested whether they were positively related using Mantel tests, i.e. if species with different LMA values differed in their response to light availability. Additionally linear models were fitted to the relationship between plot-level mean LMA and GLI across plots for each site. Key Results A positive and significant relationship was found between species’ pairwise differences in mean LMA and differences in light response across species for all temperate rain forests, but not for the Mediterranean forest. The results also indicated a significant positive interspecific link between LMA and light availability for all forests. This is in contrast to what is traditionally reported and to expectations from the leaf economics spectrum. Conclusions In environments subjected to light limitation, interspecific differences in a leaf trait (LMA) can explain the fine-scale partitioning of light availability gradients by woody plant species. This niche partitioning potentially facilitates species coexistence at the within-community level. The high frequency of evergreen shade-intolerant species in these forests may explain the positive correlation between light availability and LMA. PMID:27604280
When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback
Štursová, Martina; Šnajdr, Jaroslav; Cajthaml, Tomáš; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr
2014-01-01
Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio. PMID:24671082
Baker, William L
2015-01-01
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.
Guillemot, Joannès; Delpierre, Nicolas; Vallet, Patrick; François, Christophe; Martin-StPaul, Nicolas K; Soudani, Kamel; Nicolas, Manuel; Badeau, Vincent; Dufrêne, Eric
2014-09-01
The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.
Robert T. Brooks; Robert T. Brooks
2005-01-01
Seasonal forest pools (SFPs) are geographically- and hydrologically- isolated ponded wetlands, in that they are topographically isolated from other surface waters. SFPs occur commonly throughout the temperate forests of the eastern United States and adjacent Canada. SFPs are ephemeral in occurrence, typically drying annually. The regular drying of SFPs excludes fish...
W. Keith Moser; Dale D. Wade
2005-01-01
Forest fires are a disturbance where the effects can range from benign to extreme devastation within a given ecosystem. The stage of stand development coupled with prior management dictates the amount and composition of potential fuels. Thus, fire policy exerts a strong influence on fire effects. Changes in cultural acceptance and use of tire typically drive fire...
Karis J. McFarlane; Margaret S. Torn; Paul J. Hanson; Rachel C. Porras; Christopher W. Swanston; Mac A. Callaham; Thomas P. Guilderson
2013-01-01
Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine,...
Russell T. Graham; Theresa B. Jain; James L. Kingery
2010-01-01
In many boreal and temperate forests, ungulates are an important feature valued by many stakeholders. However, conflicts often arise due to the use of a forest by both domestic and wild ungulates and other uses such as timber production, recreation and conservation. In this paper, we present and synthesize several concepts and suggestions that have applicability for...
Marie-Louise Smith; Mary E. Martin; Lucie Plourde; Scott V. Ollinger
2003-01-01
Field studies among diverse biomes demonstrate that mass-based nitrogen concentration at leaf and canopy scales is strongly related to carbon uptake and cycling. Combined field and airborne imaging spectrometry studies demonstrate the capacity for accurate empirical estimation of forest canopy N concentration and other biochemical constituents at scales from forest...
Assessing forest windthrow damage using single-date, post-event airborne laser scanning data
Gherardo Chirici; Francesca Bottalico; Francesca Giannetti; Barbara Del Perugia; Davide Travaglini; Susanna Nocentini; Erico Kutchartt; Enrico Marchi; Cristiano Foderi; Marco Fioravanti; Lorenzo Fattorini; Lorenzo Bottai; Ronald McRoberts; Erik Næsset; Piermaria Corona; Bernardo Gozzini
2017-01-01
One of many possible climate change effects in temperate areas is the increase of frequency and severity of windstorms; thus, fast and cost efficient new methods are needed to evaluate wind-induced damages in forests. We present a method for assessing windstorm damages in forest landscapes based on a two-stage sampling strategy using single-date, post-event airborne...
Eric S. Fabio; Mary A. Arthur; Charles C. Rhoades
2009-01-01
Understanding how natural factors interact across the landscape to influence nitrogen (N) cycling is an important focus in temperate forests because of the great inherent variability in these forests. Site-specific attributes, including local topography, soils, and vegetation, can exert important controls on N processes and retention. Seasonal monitoring of N cycling...
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Bretfeld, M.; Millar, D.; Hall, J. S.; Beverly, D.; Hall, J. S.; Ogden, F. L.; Mackay, D. S.
2016-12-01
Process-based models of tree impacts on the hydrologic cycle must include not only plant hydraulic limitations but also photosynthetic controls because plants lose water to gain carbon. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) is one such model. TREES includes a Bayesian model-data fusion approach that provides rigorous tests of patterns in tree transpiration data against biophysical processes in the model. TREES has been extensively tested against many temperate tree data sets including those experiencing severe and lethal drought. We test TREES against data from sap flow-scaled transpiration in 76 tropical trees (representing 42 different species) in secondary forests of three different ages (8, 25, and 80+ years) located in the Panama Canal Watershed. These data were collected during the third driest El Niño-Southern Oscillation (ENSO) event on record in Panama during 2015/2016. Tree transpiration response to vapor pressure deficit and solar radiation was the same in the two older forests, but showed an additional response to limited soil moisture in the youngest forest. Volumetric water content at 30 and 50 cm depths was 8% lower in the 8 year old forest than in the 80+ year old forest. TREES could not simulate this difference in soil moisture without increasing simulated root area. TREES simulations were improved by including light response curves of leaf photosynthesis, root vulnerability to cavitation and canopy position impacts on light. TREES was able to simulate the anisohydric (loose stomatal regulation of leaf water potential) and isohydric (tight stomatal regulation) of the 73 trees species a priori indicating that species level information is not required. Analyses of posterior probability distributions indicates TREES model predictions of individual tree transpiration would likely be improved with more detailed root and soil moisture in all forest ages data with the most improvement likely in the 8 year old forest. Our results suggest that a biophysical tree transpiration model developed in temperate forests can be applied to the tropics and could be used to improve predictions of evapotranspiration from changing land cover in tropical hydrology models.
Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania.
Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M
2016-04-01
We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. © The Author 2015. Published by Oxford University Press.
Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania
Gaines, Katie P.; Stanley, Jane W.; Meinzer, Frederick C.; McCulloh, Katherine A.; Woodruff, David R.; Chen, Weile; Adams, Thomas S.; Lin, Henry; Eissenstat, David M.
2016-01-01
We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. PMID:26546366
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chuankuan; Han, Yi; Chen, Jiquan
2013-08-15
Changes in characteristics of snowfall and spring freeze–thaw-cycle (FTC) events under the warming climate make it critical to understand biophysical controls on soil CO2 efflux (RS) in seasonally snow-covered ecosystems. We conducted a snow removal experiment and took year-round continuous automated measurements of RS, soil temperature (T5) and soil volumetric water content at the 5 cm depth (W5) with a half-hour interval in a Chinese temperate forest in 2010–2011. Our objectives were to: (1) develop statistical models to describe the seasonality of RS in this forest; (2) quantify the contribution of seasonal RS to the annual budget; (3) examine biophysicalmore » effects of snowpack on RS; and (4) test the hypothesis that an FTC-induced enhancement of RS is jointly driven by biological and physical processes.« less
Bottomland hardwood forest recovery following tornado disturbance and salvage logging
John L. Nelson; John W. Groninger; Loretta L. Battaglia; Charles M. Ruffner
2008-01-01
Catastrophic wind events, including tornado, hurricane. and linear winds. are significant disturbances in temperate forested wetlands. Information is lacking on how post-disturbance salvage logging may impact short and long-term objectives in conservation areas where natural stands are typically managed passively. Woody regeneration and herbaceous cover were assessed...
Malcolm North; Brandon M. Collins; Hugh Safford; Nathan L. Stephenson
2016-01-01
Californiaâs montane forests include some of the most productive and diverse temperate ecosystems in the world, containing the largest single stem tree (the 1487 m3 General Sherman giant sequoia [Sequoiadendron giganteum]) (Van Pelt 2001) and highest conifer diversity (30 plus species in the Klamath-Siskiyou mountain range) (Sawyer 2006)....
VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE
Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...
Mark Schulze; James Grogan; R. Matthew Landis; Edson Vidal
2008-01-01
Tropical forests are characterized by diverse assemblages of plant and animal species compared to temperate forests. Corollary to this general rule is that most tree species, whether valued for timber or not, occur at low densities (
USDA-ARS?s Scientific Manuscript database
Earthworm species with different feeding, burrowing, and/or casting behaviors can lead to distinct microbial communities through complex direct and indirect processes. European earthworm invasion into temperate deciduous forests in North America has been shown to alter microbial biomass in the soil ...
Altered performance of forest pests under atmospheres enriched by C02 and O3
Kevin E. Percy; Caroline S. Awmack; Richard L. Lindroth; Mark E. Kubiske; Brian J. Kopper; J. G. Isebrands; Kurt S. Pregitzer; George R. Hendrey; Richard E. Dickson; Donald R. Zak; Elina Oksanen; Jaak Sober; Richard Harrington; David F. Karnosky
2002-01-01
Human activity causes increasing background concentrations of the greenhouse gases C02 and O3. Increased levels of C02 can be found in all terrestrial ecosystems. Damaging O3 concentrations currently occur over 29% of the world's temperate and subpolar forests but are...
Vegetation data collection in temperate forest research natural areas.
Lewis F. Ohmann
1973-01-01
Despite a long history of research natural area preservation by the USDA Forest Service and other governmental agencies, ecological baseline data have been gathered for few areas. This report presents a framework, including possible sampling schemes for ecological baseline data collection by nonprofessionals working under the consulting supervision of professional...
NASA Astrophysics Data System (ADS)
Zegrar, Ahmed
2010-05-01
The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.
Soil quality indicators of a mature alley-cropping agroforestry system in temperate North America
USDA-ARS?s Scientific Manuscript database
Although agroforestry practices are believed to improve soil quality, reports on long-term effects of alley cropping on soils within agroforestry in the temperate zone are limited. The objective of this study was to examine effects of management, landscape, and soil depth of an established agrofores...
Soil quality differences in a mature alley cropping system in temperate North America
USDA-ARS?s Scientific Manuscript database
Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...
Texture-based segmentation of temperate-zone woodland in panchromatic IKONOS imagery
NASA Astrophysics Data System (ADS)
Gagnon, Langis; Bugnet, Pierre; Cavayas, Francois
2003-08-01
We have performed a study to identify optimal texture parameters for woodland segmentation in a highly non-homogeneous urban area from a temperate-zone panchromatic IKONOS image. Texture images are produced with the sum- and difference-histograms depend on two parameters: window size f and displacement step p. The four texture features yielding the best discrimination between classes are the mean, contrast, correlation and standard deviation. The f-p combinations 17-1, 17-2, 35-1 and 35-2 are those which give the best performance, with an average classification rate of 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercher, J.R.; Chambers, J.Q.
1995-10-01
We have developed a geographically-distributed ecosystem model for the carbon, nitrogen, and water dynamics of the terrestrial biosphere TERRA. The local ecosystem model of TERRA consists of coupled, modified versions of TEM and DAYTRANS. The ecosystem model in each grid cell calculates water fluxes of evaporation, transpiration, and runoff; carbon fluxes of gross primary productivity, litterfall, and plant and soil respiration; and nitrogen fluxes of vegetation uptake, litterfall, mineralization, immobilization, and system loss. The state variables are soil water content; carbon in live vegetation; carbon in soil; nitrogen in live vegetation; organic nitrogen in soil and fitter; available inorganic nitrogenmore » aggregating nitrites, nitrates, and ammonia; and a variable for allocation. Carbon and nitrogen dynamics are calibrated to specific sites in 17 vegetation types. Eight parameters are determined during calibration for each of the 17 vegetation types. At calibration, the annual average values of carbon in vegetation C, show site differences that derive from the vegetation-type specific parameters and intersite variation in climate and soils. From calibration, we recover the average C{sub v} of forests, woodlands, savannas, grasslands, shrublands, and tundra that were used to develop the model initially. The timing of the phases of the annual variation is driven by temperature and light in the high latitude and moist temperate zones. The dry temperate zones are driven by temperature, precipitation, and light. In the tropics, precipitation is the key variable in annual variation. The seasonal responses are even more clearly demonstrated in net primary production and show the same controlling factors.« less
Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system
NASA Astrophysics Data System (ADS)
Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál
2018-01-01
In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.
Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests
NASA Technical Reports Server (NTRS)
Peduzzi, Alicia; Wynne, Randolph Hamilton; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark
2012-01-01
The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.
2007-12-01
In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.
Internal strains after recovery of hardness in tempered martensitic steels for fusion reactors
NASA Astrophysics Data System (ADS)
Brunelli, L.; Gondi, P.; Montanari, R.; Coppola, R.
1991-03-01
After tempering, with recovery of hardness, MANET steels present internal strains; these residual strains increase with quenching rate prior to tempering, and they remain after prolonged tempering times. On account of their persistence, after thermal treatments which lead to low dislocation and sub-boundary densities, the possibility has been considered that the high swelling resistance of MANET is connected with these centres of strain, probably connected with the formation, in ferrite, of Cr-enriched and contiguous Cr-depleted zones which may act as sinks for interstitials. Comparative observations on the internal strain behaviour of cold worked 316L stainless steel appear consistent with this possibility.
King, Joshua R.; Warren, Robert J.; Bradford, Mark A.
2013-01-01
Earthworms, termites, and ants are common macroinvertebrates in terrestrial environments, although for most ecosystems data on their abundance and biomass is sparse. Quantifying their areal abundance is a critical first step in understanding their functional importance. We intensively sampled dead wood, litter, and soil in eastern US temperate hardwood forests at four sites, which span much of the latitudinal range of this ecosystem, to estimate the abundance and biomass m−2 of individuals in macroinvertebrate communities. Macroinvertebrates, other than ants and termites, differed only slightly among sites in total abundance and biomass and they were similar in ordinal composition. Termites and ants were the most abundant macroinvertebrates in dead wood, and ants were the most abundant in litter and soil. Ant abundance and biomass m−2 in the southernmost site (Florida) were among the highest values recorded for ants in any ecosystem. Ant and termite biomass and abundance varied greatly across the range, from <1% of the total macroinvertebrate abundance (in the northern sites) to >95% in the southern sites. Our data reveal a pronounced shift to eusocial insect dominance with decreasing latitude in a temperate ecosystem. The extraordinarily high social insect relative abundance outside of the tropics lends support to existing data suggesting that ants, along with termites, are globally the most abundant soil macroinvertebrates, and surpass the majority of other terrestrial animal (vertebrate and invertebrate) groups in biomass m−2. Our results provide a foundation for improving our understanding of the functional role of social insects in regulating ecosystem processes in temperate forest. PMID:24116079
Deljouei, Azade; Abdi, Ehsan; Marcantonio, Matteo; Majnounian, Baris; Amici, Valerio; Sohrabi, Hormoz
2017-08-01
Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.
Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems
NASA Astrophysics Data System (ADS)
Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.
2017-12-01
The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with beech bark (lichens, mosses and algae) was quantified. All the organisms were net N2O sinks at full rehydration with consumption rates comparable to stem consumption rates. All tree species studied contribute to N2O exchange in forest ecosystems and these fluxes have to be included in the forest N2O emission inventories.
NASA Astrophysics Data System (ADS)
Nyman, P.; Duff, T. J.; Sheridan, G. J.
2016-12-01
Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.
Liana habitat and host preferences in northern temperate forests
Leicht-Young, S. A.; Pavlovic, N.B.; Frohnapple, K.J.; Grundel, R.
2010-01-01
Lianas and other climbers are important ecological and structural components of forest communities. Like other plants, their abundance in a given habitat depends on a variety of factors, such as light, soil moisture and nutrients. However, since lianas require external support, host tree characteristics also influence their distribution. Lianas are conspicuous life forms in tropical regions, but in temperate areas, where they are less prominent, little is known about factors that control their distributions in these forests. We surveyed the climbing plant species in 20 mature (100 years and greater) forested habitats in the Midwest USA at a variety of levels from simple presence/absence, to ground layer abundances, to those species that had ascended trees. We also examined attributes of the tree species with climbers attached to them. Using cluster analysis, we distinguished five different tree communities in our survey locations. We determined that 25% of the trees we surveyed had one or more lianas attached to it, with Parthenocissus quinquefolia (Virginia creeper) the most common climbing species encountered. Canopy cover and soil attributes both influenced climber species presence/absence and ground layer climber abundance. The proportion of liana species of a given climbing type (roots, stem twiner, tendril climber) was significantly related to the DBH of the host tree, with more root climbers and fewer stem and tendril climbers on large trees. In general, the DBH of climbing lianas had a significant positive relationship to the DBH of the host tree; however this varied by the identity of the liana and the tree species. The greater the DBH of the host tree, the higher the probability that it was colonized by one or more lianas, with tree species such as Pinus banksiana (jack pine) and Quercus alba (white oak) being more susceptible to liana colonization than others. Finally, some liana species such as Celastrus scandens (American bittersweet) showed a preference for certain tree species (i.e., P. banksiana) as hosts. The information obtained about the relationship between the tree and climber community in this study provides insight into some of the factors that influence liana distributions in understudied temperate forest habitats and how lianas contribute to the structure of these mature forests. In addition, these data can provide a point of comparison to other liana communities in both temperate and tropical regions.
Perakis, S.S.; Hedin, L.O.
2007-01-01
We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng
2014-11-01
Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.
Long-term changes of tree species composition and distribution in Korean mountain forests
NASA Astrophysics Data System (ADS)
Lee, Boknam; Lee, Hoontaek; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok
2017-04-01
Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated how tree species composition and stand distribution change across temperate mountainous forests using the species composition and DBH size collected over the past 15 years (1998-2012) across 130 permanent forest plots of 0.1 ha in Jiri and Baegun mountains in South Korea. The overall net change of tree communities over the years showed positive in terms of stand density, richness, diversity, and evenness. At the species level, the change of relative species composition has been led by intermediate and shade-tolerant species, such as Quercus mongolica, Carpinus laxiflora, Quercus serrate, Quercus variabilis, Styrax japonicus, Lindera erythrocarpa, and Pinus densiflora and was categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. At the community level, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species density, pole growth rate, adult growth rate, and adult stature. Based on the additive models, the distribution of species diversity was significantly related to topographical variables including elevation, latitude, longitude, slope, topographic wetness index, and curvature where elevation was the most significant driver, followed by latitude and longitude. However, the change in distribution of species diversity was only significantly influenced by latitude and longitude. This is the first study to reveal the long-term dynamics of change in tree species composition and distribution, which are important to broaden our understanding of temperate mountainous forest ecosystem in South Korea.
Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Aber, John D.; Peterson, David L.; Melillo, Jerry M.
1988-01-01
The use of images acquired by the Airborne Imaging Spectrometer, an experimental high-spectral resolution imaging sensor developed by NASA, to estimate the lignin concentration of whole forest canopies in Wisconsin is reported. The observed strong relationship between canopy lignin concentration and nitrogen availability in seven undisturbed forest ecosystems on Blackhawk Island, Wisconsin, suggests that canopy lignin may serve as an index for site nitrogen status. This predictive relationship presents the opportunity to estimate nitrogen-cycling rates across forested landscapes through remote sensing.
Robert T. Brooks; W. Mark Ford
2006-01-01
Forest bats of eastern North America select habitats for roosting, foraging, and winter hibernation/migration over a myriad of scales. An understanding of forest-bat habitat use over scales of time and space is important for their conservation and management. The papers in this Special Section report studies of bat habitat use across multiple scales from locations...
Andrew J. Chapeskie
2001-01-01
This paper highlights the environmental pressures that have historically been brought to bear on the northern forests of Canada. It then presents the idea of the northern frontier forests of Canada as Indigenous landscapes whose ecological diversity and abundance have historically been nurtured in no small measure by their original inhabitants. It then proposes how...
NASA Astrophysics Data System (ADS)
Qiu, T.; Song, C.
2017-12-01
Many studies have examined the urbanization-induced vegetation phenology changes in urban environments at regional scales. However, relatively few studies have investigated the effects of urban expansion on vegetation phenology at global scale. In this study, we used times series of NASA Vegetation Index and Phenology (VIP) and ESA Climate Change Initiative Land Cover datasets to quantify how urban expansion affects growing seasons of vegetation in 14 different biomes along both latitude and urbanization gradients from 1993 to 2014. First, we calculated the percentages of impervious surface area (ISA) at 0.05˚ grid to match the spatial resolution of VIP dataset. We then applied logistic models to the ISA series to characterize the time periods of stable ISA, pre-urbanization and post-urbanization for each grid. The amplitudes of urbanization were also derived from the fitted ISA series. We then calculated the mean values of the Start of Season (SOS), End of Season (EOS) and Length of Season (LOS) from VIP datasets within each period. Linear regressions were used to quantify the correlations between ISA and SOS/EOS/LOS in 14 biomes along the latitude gradient for each period. We also calculated the differences of SOS/EOS/LOS between pre-urbanization and post-urbanization periods and applied quantile regressions to characterize the relationships between amplitudes of urbanization and those differences. We found significant correlations (p-value < 0.05) between ISA and the growing seasons of a) boreal forests at 55-60 ˚N; b) temperate broadleaf and mixed forests at 30-55 ˚N; c) temperate coniferous forests at 30-45 ˚N; d) temperate grasslands, savannas, and shrublands at 35-60 ˚N and 30-35 ˚S. We also found a significant positive correlation (p-value <0.05) between amplitudes of urbanization and LOS as well as a significant negative correlation (p-value<0.05) between amplitudes of urbanization and SOS in temperate broadleaf and mixed forest.
NASA Astrophysics Data System (ADS)
Velkavrh, Igor; Kafexhiu, Fevzi; Klien, Stefan; Diem, Alexander; Podgornik, Bojan
2017-01-01
Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.
Willner, Wolfgang; Kuzemko, Anna; Dengler, Jürgen; Chytrý, Milan; Bauer, Norbert; Becker, Thomas; Biţă-Nicolae, Claudia; Botta-Dukát, Zoltán; Čarni, Andraž; Csiky, János; Igić, Ruzica; Kącki, Zygmunt; Korotchenko, Iryna; Kropf, Matthias; Krstivojević-Ćuk, Mirjana; Krstonošić, Daniel; Rédei, Tamás; Ruprecht, Eszter; Schratt-Ehrendorfer, Luise; Semenishchenkov, Yuri; Stančić, Zvjezdana; Vashenyak, Yulia; Vynokurov, Denys; Janišová, Monika
2017-01-01
What are the main floristic patterns in the Pannonian and western Pontic steppe grasslands? What are the diagnostic species of the major subdivisions of the class Festuco-Brometea (temperate Euro-Siberian dry and semi-dry grasslands)? Carpathian Basin (E Austria, SE Czech Republic, Slovakia, Hungary, Romania, Slovenia, N Croatia and N Serbia), Ukraine, S Poland and the Bryansk region of W Russia. We applied a geographically stratified resampling to a large set of relevés containing at least one indicator species of steppe grasslands. The resulting data set of 17 993 relevés was classified using the TWINSPAN algorithm. We identified groups of clusters that corresponded to the class Festuco-Brometea . After excluding relevés not belonging to our target class, we applied a consensus of three fidelity measures, also taking into account external knowledge, to establish the diagnostic species of the orders of the class. The original TWINSPAN divisions were revised on the basis of these diagnostic species. The TWINSPAN classification revealed soil moisture as the most important environmental factor. Eight out of 16 TWINSPAN groups corresponded to Festuco-Brometea . A total of 80, 32 and 58 species were accepted as diagnostic for the orders Brometalia erecti , Festucetalia valesiacae and Stipo-Festucetalia pallentis , respectively. In the further subdivision of the orders, soil conditions, geographic distribution and altitude could be identified as factors driving the major floristic patterns. We propose the following classification of the Festuco-Brometea in our study area: (1) Brometalia erecti (semi-dry grasslands) with Scabioso ochroleucae-Poion angustifoliae (steppe meadows of the forest zone of E Europe) and Cirsio-Brachypodion pinnati (meadow steppes on deep soils in the forest-steppe zone of E Central and E Europe); (2) Festucetalia valesiacae (grass steppes) with Festucion valesiacae (grass steppes on less developed soils in the forest-steppe zone of E Central and E Europe) and Stipion lessingianae (grass steppes in the steppe zone); (3) Stipo-Festucetalia pallentis (rocky steppes) with Asplenio septentrionalis-Festucion pallentis (rocky steppes on siliceous and intermediate soils), Bromo-Festucion pallentis (thermophilous rocky steppes on calcareous soils), Diantho-Seslerion (dealpine Sesleria caerulea grasslands of the Western Carpathians) and Seslerion rigidae (dealpine Sesleria rigida grasslands of the Romanian Carpathians).
Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K
2014-08-22
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Width of forest streamside zones and breeding bird abundance in eastern Texas
Richard N. Conner; James G. Dickson; J. Howard Williamson; Brent Ortego
2004-01-01
We evaluated breeding bird communities in forested streamside zones in eastern Texas to determine threshold widths of riparian forest that were associated with the addition of mature-forest-breeding birds and loss of shrub-breeding birds. We observed an association of shrub-breeding birds with narrow streamside zones and an increasing number of mature forest species...
NASA Astrophysics Data System (ADS)
Zhu, Likai; Meng, Jijun; Li, Feng; You, Nanshan
2017-10-01
Spring onset has generally shifted earlier in China over the past several decades in response to the warming climate. However, future changes in spring onset and false springs, which will have profound effects on ecosystems, are still not well understood. Here, we used the extended form of the Spring Indices model (SI-x) to project changes in the first leaf and first bloom dates, and predicted false springs for the historical (1950-2005) and future (2006-2100) periods based on the downscaled daily maximum/minimum temperatures under two emission scenarios from 21 General Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5). On average, first leaf and first bloom in China were projected to occur 21 and 23 days earlier, respectively, by the end of the twenty-first century in the Representative Concentration Pathway (RCP) 8.5 scenario. Areas with greater earlier shifts in spring onset were in the warm temperate zone, as well as the north and middle subtropical zones of China. Early false spring risk increased rapidly in the warm temperate and north subtropical zones, while that declined in the cold temperate zone. Relative to early false spring risk, late false spring risk showed a common increase with smaller magnitude in the RCP 8.5 scenario but might cause greater damage to ecosystems because plants tend to become more vulnerable to the later occurrence of a freeze event. We conclude that future climate warming will continue to cause earlier occurrence of spring onset in general, but might counterintuitively increase plant damage risk in natural and agricultural systems of the warm temperate and subtropical China.
Freestone, Amy L; Inouye, Brian D
2015-01-01
A persistent challenge for ecologists is understanding the ecological mechanisms that maintain global patterns of biodiversity, particularly the latitudinal diversity gradient of peak species richness in the tropics. Spatial and temporal variation in community composition contribute to these patterns of biodiversity, but how this variation and its underlying processes change across latitude remains unresolved. Using a model system of sessile marine invertebrates across 25 degrees of latitude, from the temperate zone to the tropics, we tested the prediction that spatial and temporal patterns of taxonomic richness and composition, and the community assembly processes underlying these patterns, will differ across latitude. Specifically, we predicted that high beta diversity (spatial variation in composition) and high temporal turnover contribute to the high species richness of the tropics. Using a standardized experimental approach that controls for several confounding factors that hinder interpretation of prior studies, we present results that support our predictions. In the temperate zone, communities were more similar across spatial scales from centimeters to tens of kilometers and temporal scales up to one year than at lower latitudes. Since the patterns at northern latitudes were congruent with a null model, stochastic assembly processes are implicated. In contrast, the communities in the tropics were a dynamic spatial and temporal mosaic, with low similarity even across small spatial scales and high temporal turnover at both local and regional scales. Unlike the temperate zone, deterministic community assembly processes such as predation likely contributed to the high beta diversity in the tropics. Our results suggest that community assembly processes and temporal dynamics vary across latitude and help structure and maintain latitudinal patterns of diversity.
Zhu, Likai; Meng, Jijun; Li, Feng; You, Nanshan
2017-10-28
Spring onset has generally shifted earlier in China over the past several decades in response to the warming climate. However, future changes in spring onset and false springs, which will have profound effects on ecosystems, are still not well understood. Here, we used the extended form of the Spring Indices model (SI-x) to project changes in the first leaf and first bloom dates, and predicted false springs for the historical (1950-2005) and future (2006-2100) periods based on the downscaled daily maximum/minimum temperatures under two emission scenarios from 21 General Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5). On average, first leaf and first bloom in China were projected to occur 21 and 23 days earlier, respectively, by the end of the twenty-first century in the Representative Concentration Pathway (RCP) 8.5 scenario. Areas with greater earlier shifts in spring onset were in the warm temperate zone, as well as the north and middle subtropical zones of China. Early false spring risk increased rapidly in the warm temperate and north subtropical zones, while that declined in the cold temperate zone. Relative to early false spring risk, late false spring risk showed a common increase with smaller magnitude in the RCP 8.5 scenario but might cause greater damage to ecosystems because plants tend to become more vulnerable to the later occurrence of a freeze event. We conclude that future climate warming will continue to cause earlier occurrence of spring onset in general, but might counterintuitively increase plant damage risk in natural and agricultural systems of the warm temperate and subtropical China.
USDA-ARS?s Scientific Manuscript database
The objectives of this work were to: 1) estimate heterosis and breed direct effects for cow reproduction traits of Romosinuano, Angus, and F1 cows in a temperate climate, and 2) assess the effects of the type of forage grazed (bermudagrass, endophyte-infected and endophyte-free tall fescue) durin...
Blake R. Hossack; Winsor H. Lowe; R. Ken Honeycutt; Sean A. Parks; Paul Stephen Corn
2013-01-01
Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host-parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could...
Vegetation, Soil, and Flooding Relationships in a Blackwater Floodplain Forest
Sammy L. King; David Gartner; Mark H. Eisenbies
2003-01-01
Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study. we characterized the soils....
Isotopic signals of summer denitrification in a northern hardwood forested catchment
Sarah K. Wexler; Christine L. Goodale; Kevin J. McGuire; Scott W. Bailey; Peter M. Groffman
2014-01-01
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide...