Sample records for temperature application final

  1. Magnetocaloric cycle with six stages: Possible application of graphene at low temperature

    NASA Astrophysics Data System (ADS)

    Reis, M. S.

    2015-09-01

    The present work proposes a thermodynamic hexacycle based on the magnetocaloric oscillations of graphene, which has either a positive or negative adiabatic temperature change depending on the final value of the magnetic field change. For instance, for graphenes at 25 K, an applied field of 2.06 T/1.87 T promotes a temperature change of ca. -25 K/+3 K. The hexacycle is based on the Brayton cycle and instead of the usual four steps, it has six stages, taking advantage of the extra cooling provided by the inverse adiabatic temperature change. This proposal opens doors for magnetic cooling applications at low temperatures.

  2. A Physics-Based Temperature Stabilization Criterion for Thermal Testing

    NASA Technical Reports Server (NTRS)

    Rickman, Steven L.; Ungar, Eugene K.

    2009-01-01

    Spacecraft testing specifications differ greatly in the criteria they specify for stability in thermal balance tests. Some specify a required temperature stabilization rate (the change in temperature per unit time, dT/dt), some specify that the final steady-state temperature be approached to within a specified difference, delta T , and some specify a combination of the two. The particular values for temperature stabilization rate and final temperature difference also vary greatly between specification documents. A one-size-fits-all temperature stabilization rate requirement does not yield consistent results for all test configurations because of differences in thermal mass and heat transfer to the environment. Applying a steady-state temperature difference requirement is problematic because the final test temperature is not accurately known a priori, especially for powered configurations. In the present work, a simplified, lumped-mass analysis has been used to explore the applicability of these criteria. A new, user-friendly, physics-based approach is developed that allows the thermal engineer to determine when an acceptable level of temperature stabilization has been achieved. The stabilization criterion can be predicted pre-test but must be refined during test to allow verification that the defined level of temperature stabilization has been achieved.

  3. Effects of internal electrode cooling on irreversible electroporation using a perfused organ model.

    PubMed

    O'Brien, Timothy J; Bonakdar, Mohammad; Bhonsle, Suyashree; Neal, Robert E; Aardema, Charles H; Robertson, John L; Goldberg, S Nahum; Davalos, Rafael V

    2018-05-28

    This study evaluates the effects of active electrode cooling, via internal fluid circulation, on the irreversible electroporation (IRE) lesion, deployed electric current and temperature changes using a perfused porcine liver model. A bipolar electrode delivered IRE electric pulses with or without activation of internal cooling to nine porcine mechanically perfused livers. Pulse schemes included a constant voltage, and a preconditioned delivery combined with an arc-mitigation algorithm. After treatment, organs were dissected, and treatment zones were stained using triphenyl-tetrazolium chloride (TTC) to demonstrate viability. Thirty-nine treatments were performed with an internally cooled applicator and 21 with a non-cooled applicator. For the constant voltage scenario, the average final electrical current measured was 26.37 and 29.20 A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 33.01 and 42.43 °C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.88-by-2.08 cm and 3.86-by-2.12 cm for the cooled and uncooled electrode respectively ([Formula: see text], [Formula: see text]). Similarly, the preconditioned/arc-mitigation scenario yielded an average final electrical current measurement of a 41.07 and 47.20 A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 34.93 and 44.90 °C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.67-by-2.27 cm and 3.58-by-2.09 cm for the cooled and uncooled applicators ([Formula: see text]). The internally-cooled bipolar applicator offers advantages that could improve clinical outcomes. Thermally mitigating internal perfusion technology reduced tissue temperatures and electric current while maintaining similar lesion sizes.

  4. Magnetocaloric cycle with six stages: Possible application of graphene at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, M. S., E-mail: marior@if.uff.br

    2015-09-07

    The present work proposes a thermodynamic hexacycle based on the magnetocaloric oscillations of graphene, which has either a positive or negative adiabatic temperature change depending on the final value of the magnetic field change. For instance, for graphenes at 25 K, an applied field of 2.06 T/1.87 T promotes a temperature change of ca. −25 K/+3 K. The hexacycle is based on the Brayton cycle and instead of the usual four steps, it has six stages, taking advantage of the extra cooling provided by the inverse adiabatic temperature change. This proposal opens doors for magnetic cooling applications at low temperatures.

  5. Metamaterials as a Platform for the Development of Novel Materials for Energy Applications. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, Willie

    2016-02-11

    Final report detailing the work performed on DESC0005240 at Boston College. Report details research into metamaterial absorber theory, thermophotovoltaics a dynamic 3 state material capable of switching between transmissive, reflective, and absorptive states. Also high temperature NIR metamaterials are explored.

  6. Development of Sintered Si3N4 for High Performance Thermomechanical Applications.

    DTIC Science & Technology

    1984-01-01

    noted( 17) that final grain size of sintered Si3 N4 is quite sensitive to both temperature and time at temperature. The sintering of Si NI containing...Characterization of Ube-SN-E0 Si3 N4 Chemical Analysis Lot A-10 Lot A-18 N (alkali fusion) wt . % 38 38 0 (inert gas fusion) wt . % 1.2 1.4 C (inert gas fusion) wt ...temperature stutral applications except for the high creep rate, Which is of the ame order a NC-13. The sintering of -qfiN4ontaning 5 wt % LiAIq0 1and

  7. 40 CFR 86.156-98 - Calculations; refueling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used... methanol (if applicable) concentrations in ppm carbon, initial and final enclosure ambient temperatures... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel...

  8. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  9. Application of wide-field optical coherence tomography to monitoring of viability of rat brain in vivo

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Nishidate, Izumi

    2014-05-01

    We investigated the feasibility of OCT in monitoring the viability of the brain. It was confirmed that after an overdose of pentobarbital sodium salt for an euthanasia, the OCT signal intensity increased before cardiac arrest and finally became 2.7 times, and by periodically changing the tissue temperature from 20 to 32 °C in vivo, average correlation coefficients between the ratio of signal intensity (RSI) and temperature were determined to be -0:42 to -0:50. RSI reversibly changed with subsequent variations of temperatures and finally increased rapidly just before cardiac arrest. These results indicate that RSI could correspond to decreases in viability.

  10. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    DOEpatents

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  11. Analysis of impact melt and vapor production in CTH for planetary applications

    DOE PAGES

    Quintana, S. N.; Crawford, D. A.; Schultz, P. H.

    2015-05-19

    This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less

  12. Analysis of impact melt and vapor production in CTH for planetary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintana, S. N.; Crawford, D. A.; Schultz, P. H.

    This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less

  13. Economic analysis of the unified heliostat array. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-31

    The Unified Heliostat Array (UHA) was investigated as to cost and optical performance. Two heliostats, the Veda Industrial Heliostat (VIH) and the Repowering Heliostat were investigated in conjunction with the UHA. The UHA was found to be a viable candidate for solar thermal central receiver applications. The UHA-VIH combination was shown to provide very high flux densities and to be suitable for high temperature applications in the 1000/sup 0/K to 2000/sup 0/K range. These temperatures were shown to be achievable even with very small (1 MWt) collector fields.

  14. Cryogenics and its application with reference to spice grinding: a review.

    PubMed

    Balasubramanian, S; Gupta, Manoj Kumar; Singh, K K

    2012-01-01

    Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce the desired low temperature, generally liquid nitrogen (LN₂) is used in food grinding. The application of low temperature shows a promising pathway to produce higher quality end product with higher flavor and volatile oil retention. Cryogenic grinders generally consist of precoolers and grinder with the cryogen distribution system. In such grinding systems, cryogens subject the raw material up to or lower than glass transition temperature before it is ground, thus eliminating much of the material and quality hassles of traditional grinding. At present, the capital investment including cryogen and handling costs escalate the final cost of the product. Thus, for large-scale production, a proper design to optimize and make it feasible is the need of the hour and understanding the behavior of different food materials at these low temperature conditions. This article reviews the scenario and application of cryogenics in different sectors, especially to spice grinding.

  15. Application Specific Electronic Module Program (ASEM), Final Technical Report.

    DTIC Science & Technology

    1994-12-14

    relatively high temperatures , may induce a metal break or other continuity problems. Secondly, the improved electrical environment at the module level vs...wafer probe can permit higher speed tests to be applied, isolating marginal die. Thirdly, high reliability screens, such as temperature cycling, bum-in...The high temperature aging is done at 150’ C for 500 hours. The thermal cycle treatments are from 0- 100 0 C and 3 cycles per hour are done. The

  16. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    PubMed

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  17. High Temperature Falling Particle Receiver (2012 - 2016) - Final DOE Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.

    The objective of this work was to advance falling particle receiver designs for concentrating solar power applications that will enable higher temperatures (>700 °C) and greater power-cycle efficiencies (≥50% thermal-to-electric). Modeling, design, and testing of components in Phases 1 and 2 led to the successful on-sun demonstration in Phase 3 of the world’s first continuously recirculating high-temperature 1 MW t falling particle receiver that achieved >700 °C particle outlet temperatures at mass flow rates ranging from 1 – 7 kg/s.

  18. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  19. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  20. Prospects for small cryocoolers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, R.

    1982-01-01

    Small cryocoolers are commonly used in the areas of infrared detection, satellite communication, and cryopumps. Some emerging application areas deal with SQUID and Josephson junction devices, which require temperatures of about 8 K or below. The need for high reliability in these small cryocoolers has dictated the use of regenerative-cycle machines, but such machines are presently limited to temperatures above about 8 K. This paper discusses some of the research being done to improve reliability, decrease noise, and reduce the low-temperature limit of small cryocoolers.

  1. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  2. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1994-01-01

    The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.

  3. A simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Hadjisavvas, V.; Damianou, C.

    2011-09-01

    In this paper a simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound is presented. A single element spherically focused transducer of 5 cm diameter, focusing at 10 cm and operating at either 0.5 MHz or 1 MHz was considered. The power field was estimated using the KZK model. The temperature was estimated using the bioheat equation. The goal was to extract the acoustic parameters (power, pulse duration, duty factor and pulse repetition frequency) that maintain a temperature increase of less than 1 °C during the application of a pulse ultrasound protocol. It was found that the temperature change increases linearly with duty factor. The higher the power, the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. The higher the frequency the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. Finally, the deeper the target, the higher the duty factor needed to keep the temperature change to the safe limit of 1 °C. The simulation model was tested in brain tissue during the application of pulse ultrasound and the measured temperature was in close agreement with the simulated temperature. This simulation model is considered to be very useful tool for providing acoustic parameters (frequency, power, duty factor, pulse repetition frequency) during the application of pulsed ultrasound at various depths in tissue so that a safe temperature is maintained during the treatment. This model could be tested soon during stroke clinical trials.

  4. Advances in the high performance polymer electrolyte membranes for fuel cells.

    PubMed

    Zhang, Hongwei; Shen, Pei Kang

    2012-03-21

    This critical review tersely and concisely reviews the recent development of the polymer electrolyte membranes and the relationship between their properties and affecting factors like operation temperature. In the first section, the advantages and shortcomings of the corresponding polymer electrolyte membrane fuel cells are analyzed. Then, the limitations of Nafion membranes and their alternatives to large-scale commercial applications are discussed. Secondly, the concepts and approaches of the alternative proton exchange membranes for low temperature and high temperature fuel cells are described. The highlights of the current scientific achievements are given for various aspects of approaches. Thirdly, the progress of anion exchange membranes is presented. Finally, the perspectives of future trends on polymer electrolyte membranes for different applications are commented on (400 references).

  5. Measurement Marker Recognition In A Time Sequence Of Infrared Images For Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Fiorini, A. R.; Fumero, R.; Marchesi, R.

    1986-03-01

    In thermographic measurements, quantitative surface temperature evaluation is often uncertain. The main reason is in the lack of available reference points in transient conditions. Reflective markers were used for automatic marker recognition and pixel coordinate computations. An algorithm selects marker icons to match marker references where particular luminance conditions are satisfied. Automatic marker recognition allows luminance compensation and temperature calibration of recorded infrared images. A biomedical application is presented: the dynamic behaviour of the surface temperature distributions is investigated in order to study the performance of two different pumping systems for extracorporeal circulation. Sequences of images are compared and results are discussed. Finally, the algorithm allows to monitor the experimental environment and to alert for the presence of unusual experimental conditions.

  6. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  7. Evaluation of quality of precipitation products: A case study using WRF and IMERG data over the central United States

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lin, L. F.; Bras, R. L.

    2017-12-01

    Hydrological applications rely on the availability and quality of precipitation products, specially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products are complementary—model-based products exhibiting high quality during winters while satellite-based products seem to be better during summers. To explore that behavior, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°×0.1° every hour) precipitation products from Weather Research and Forecasting (WRF) simulations and from version-4 Integrated Multi-satellite Retrievals for GPM (IMERG) early and final runs. The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States in 2016. The results show that the WRF and IMERG final-run estimates are nearly unbiased while the IMERG early-run estimates positively biased. The results also show that the WRF estimates exhibit high correlations with the reference data when the temperature falls below 280°K and the IMERG estimates (i.e., both early and final runs) do so when the temperature exceeds 280°K. Moreover, the temperature threshold of 280°K, which distinguishes the quality of the WRF and the IMERG products, does not vary significantly with either season or location. This study not only adds insight into current precipitation research on the quality of precipitation products but also suggests a simple way for choosing either a model- or satellite-based product or a hybrid model/satellite product for applications.

  8. Practical application of thermoreversibly Cross-linked rubber products

    NASA Astrophysics Data System (ADS)

    Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.

    2017-07-01

    Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.

  9. A CONTINUOUS-PURGE PULSED VALVE SUITABLE FOR HIGH-TEMPERATURE APPLICATIONS. (R825412)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  11. Millisecond laser ablation of molybdenum target in reactive gas toward MoS2 fullerene-like nanoparticles with thermally stable photoresponse.

    PubMed

    Song, Shu-Tao; Cui, Lan; Yang, Jing; Du, Xi-Wen

    2015-01-28

    As a promising material for photoelectrical application, MoS2 has attracted extensive attention on its facile synthesis and unique properties. Herein, we explored a novel strategy of laser ablation to synthesize MoS2 fullerene-like nanoparticles (FL-NPs) with stable photoresponse under high temperature. Specifically, we employed a millisecond pulsed laser to ablate the molybdenum target in dimethyl trisulfide gas, and as a result, the molybdenum nanodroplets were ejected from the target and interacted with the highly reactive ambient gas to produce MoS2 FL-NPs. In contrast, the laser ablation in liquid could only produce core-shell nanoparticles. The crucial factors for controlling final nanostructures were found to be laser intensity, cooling rate, and gas reactivity. Finally, the MoS2 FL-NPs were assembled into a simple photoresponse device which exhibited excellent thermal stability, indicating their great potentialities for high-temperature photoelectrical applications.

  12. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOEpatents

    Rawers, James C.; Alman, David E.; Petty, Jr., Arthur V.

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  13. Static analysis of C-shape SMA middle ear prosthesis

    NASA Astrophysics Data System (ADS)

    Latalski, Jarosław; Rusinek, Rafał

    2017-08-01

    Shape memory alloys are a family of metals with the ability to change specimen shape depending on their temperature. This unique property is useful in many areas of mechanical and biomechanical engineering. A new half-ring middle ear prosthesis design made of a shape memory alloy, that is undergoing initial clinical tests, is investigated in this research paper. The analytical model of the studied structure made of nonlinear constitutive material is solved to identify the temperature-dependent stiffness characteristics of the proposed design on the basis of the Crotti-Engesser theorem. The final integral expression for the element deflection is highly complex, thus the solution has to be computed numerically. The final results show the proposed shape memory C-shape element to behave linearly in the analysed range of loadings and temperatures. This is an important observation that significantly simplifies the analysis of the prototype structure and opens wide perspectives for further possible applications of shape memory alloys.

  14. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  15. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams

    USGS Publications Warehouse

    Johnson, Zachary C.; Snyder, Craig D.; Hitt, Nathaniel P.

    2017-01-01

    Headwater stream responses to climate change will depend in part on groundwater‐surface water exchanges. We used linear modeling techniques to partition likely effects of shallow groundwater seepage and air temperature on stream temperatures for 79 sites in nine focal watersheds using hourly air and water temperature measurements collected during summer months from 2012 to 2015 in Shenandoah National Park, Virginia, USA. Shallow groundwater effects exhibited more variation within watersheds than between them, indicating the importance of reach‐scale assessments and the limited capacity to extrapolate upstream groundwater influences from downstream measurements. Boosted regression tree (BRT) models revealed intricate interactions among geomorphological landform features (stream slope, elevation, network length, contributing area, and channel confinement) and seasonal precipitation patterns (winter, spring, and summer months) that together were robust predictors of spatial and temporal variation in groundwater influence on stream temperatures. The final BRT model performed well for training data and cross‐validated samples (correlation = 0.984 and 0.760, respectively). Geomorphological and precipitation predictors of groundwater influence varied in their importance between watersheds, suggesting differences in spatial and temporal controls of recharge dynamics and the depth of the groundwater source. We demonstrate an application of the final BRT model to predict groundwater effects from landform and precipitation covariates at 1075 new sites distributed at 100 m increments within focal watersheds. Our study provides a framework to estimate effects of groundwater seepage on stream temperature in unsampled locations. We discuss applications for climate change research to account for groundwater‐surface water interactions when projecting future thermal thresholds for stream biota.

  16. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams

    NASA Astrophysics Data System (ADS)

    Johnson, Zachary C.; Snyder, Craig D.; Hitt, Nathaniel P.

    2017-07-01

    Headwater stream responses to climate change will depend in part on groundwater-surface water exchanges. We used linear modeling techniques to partition likely effects of shallow groundwater seepage and air temperature on stream temperatures for 79 sites in nine focal watersheds using hourly air and water temperature measurements collected during summer months from 2012 to 2015 in Shenandoah National Park, Virginia, USA. Shallow groundwater effects exhibited more variation within watersheds than between them, indicating the importance of reach-scale assessments and the limited capacity to extrapolate upstream groundwater influences from downstream measurements. Boosted regression tree (BRT) models revealed intricate interactions among geomorphological landform features (stream slope, elevation, network length, contributing area, and channel confinement) and seasonal precipitation patterns (winter, spring, and summer months) that together were robust predictors of spatial and temporal variation in groundwater influence on stream temperatures. The final BRT model performed well for training data and cross-validated samples (correlation = 0.984 and 0.760, respectively). Geomorphological and precipitation predictors of groundwater influence varied in their importance between watersheds, suggesting differences in spatial and temporal controls of recharge dynamics and the depth of the groundwater source. We demonstrate an application of the final BRT model to predict groundwater effects from landform and precipitation covariates at 1075 new sites distributed at 100 m increments within focal watersheds. Our study provides a framework to estimate effects of groundwater seepage on stream temperature in unsampled locations. We discuss applications for climate change research to account for groundwater-surface water interactions when projecting future thermal thresholds for stream biota.

  17. MOLECULAR DYNAMICS STUDY OF SILVER PARTICLES FOR LOW TEMPERATURE LEAD FREE INTERCONNECT APPLICATIONS. (R831489)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Thermal Flow Sensors for Harsh Environments.

    PubMed

    Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-09-08

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

  19. Thermal Flow Sensors for Harsh Environments

    PubMed Central

    Dinh, Toan; Dao, Dzung Viet

    2017-01-01

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application. PMID:28885595

  20. Low Cost Cryocoolers for High Temperature Superconductor Communication Filters

    NASA Technical Reports Server (NTRS)

    Brown, Davina

    1998-01-01

    This final report describes the work performed by a consortium of Industry and Government to develop low cost cryocoolers. The specific application was for low cost commercial based high temperature superconductor communication filters. This program was initiated in January 1995 and resulted in the successful demonstration of an HTS filter dewar cooled by a low cost pulse tube cryocooler. Further development of this cryocooler technology is proceeding through various contracts underway and proposed at this time.

  1. Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity.

    PubMed

    Zhang, Hemin; Tsuchiya, Takashi; Liang, Changhao; Terabe, Kazuya

    2015-08-12

    Nanoscaled ionic conductors are crucial for future nanodevices. A well-known ionic conductor, AgI, exhibited conductivity greater than 1 Ω(-1) cm(-1) in α-phase and transformed into poorly conducting β-/γ-phase below 147 °C, thereby limiting applications. Here, we report that transition temperatures both from the β-/γ- to α-phase (Tc↑) and the α- to β-/γ-phase (Tc↓) are tuned by AgI/Ag heteronanowires embedded in anodic aluminum oxide (AAO) membranes with 10-30 nm pores. Tc↑ and Tc↓ shift to correspondingly higher and lower temperature as pore size decreases, generating a progressively enlarged thermal hysteresis. Tc↑ and Tc↓ specifically achieve 185 and 52 °C in 10 nm pores, and the final survived conductivity reaches ∼8.3 × 10(-3) Ω(-1) cm(-1) at room temperature. Moreover, the low-temperature stabilizing α-phase (down to 21 °C, the lowest in state of the art temperatures) is reproducible and survives further thermal cycling. The low-temperature phase stabilization and enhancement conductivity reported here suggest promising applications in silver-ion-based future nanodevices.

  2. NEW PROCEDURES TO ESTIMATE WATER TEMPERATURES AND WATER DEPTHS FOR APPLICATION IN CLIMATE-DENGUE MODELING. (R824995)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure - Application to solar cell interconnect welding

    NASA Astrophysics Data System (ADS)

    Oh, J. E.; Ianno, N. J.; Ahmed, A. U.

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO2 laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained.

  4. Positive ion temperature effect on the plasma-wall transition

    NASA Astrophysics Data System (ADS)

    Morales Crespo, R.

    2018-06-01

    This paper analyses the plasma-wall interaction of a plasma in contact with a conducting planar surface when the positive-ion temperature is not negligible compared with the electron one. The electric potential from the plasma to the wall is obtained by the appropriate formulation of the model as an initial-value problem as well as some features useful for experimental applications, such as the positive current-to-voltage characteristics, the saturation current density, the floating potential or an estimation of the sheath thickness. Finally, it is analysed how all these quantities depend on the ionization degree and the positive-ion temperature.

  5. Technology and education: First approach for measuring temperature with Arduino

    NASA Astrophysics Data System (ADS)

    Carrillo, Alejandro

    2017-04-01

    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  6. Birmingham Urban Climate Laboratory (BUCL): Experiences, Challenges and Applications of an Urban Temperature Network

    NASA Astrophysics Data System (ADS)

    Muller, Catherine; Chapman, Lee; Young, Duick; Grimmond, Sue; Cai, Xiaoming

    2013-04-01

    The Birmingham Urban Climate Laboratory (BUCL) has recently been established by the University of Birmingham. BUCL is an in-situ, real-time urban network that will incorporate 3 nested networks - a wide-array of 25 weather stations, a dense array of 131 low-cost air temperature sensors and a fine-array of temperature sensor across the city-centre (50/km^2) - with the primary aim of monitoring air temperatures across a morphologically-heterogeneous urban conurbation for a variety of applications. During its installation there have been a number of challenges to overcome, including siting equipment in suitable urban locations, ensuring that the measurements were 'representative' of the local-scale climate, managing a large, near real-time data set and implementing QA/QC procedures. From these experiences, the establishment of a standardised urban meteorological network metadata protocol has been proposed in order to improve data quality, to ensure the end-user has access to all the supplementary information they would require for conducting valid analyses and to encourage the adequate recording and documentation of any changes to in-situ urban networks over time. This paper will provide an introduction to the BUCL in-situ network, give an overview of the challenges and experiences gained from its implementation, and finally discuss the proposed applications of the network, including its use in remote sensing observations of urban temperatures, as well as health and infrastructure applications.

  7. Piezotronic Effect: An Emerging Mechanism for Sensing Applications

    PubMed Central

    Jenkins, Kory; Nguyen, Vu; Zhu, Ren; Yang, Rusen

    2015-01-01

    Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlighting important applications for strain sensors, pressure sensors, chemical sensors, photodetectors, humidity sensors and temperature sensors. Finally, the review offers some perspectives and outlook for this new field of multi-functional sensing enabled by the piezotronic effect. PMID:26378536

  8. Stimuli-responsive magnetic particles for biomedical applications.

    PubMed

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Materials process and applications of single grain (RE)-Ba-Cu-O bulk high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Li, Beizhan; Zhou, Difan; Xu, Kun; Hara, Shogo; Tsuzuki, Keita; Miki, Motohiro; Felder, Brice; Deng, Zigang; Izumi, Mitsuru

    2012-11-01

    This paper reviews recent advances in the melt process of (RE)-Ba-Cu-O [(RE)BCO, where RE represents a rare earth element] single grain high-temperature superconductors (HTSs), bulks and its applications. The efforts on the improvement of the magnetic flux pinning with employing the top-seeded melt-growth process technique and using a seeded infiltration and growth process are discussed. Which including various chemical doping strategies and controlled pushing effect based on the peritectic reaction of (RE)BCO. The typical experiment results, such as the largest single domain bulk, the clear TEM observations and the significant critical current density, are summarized together with the magnetization techniques. Finally, we highlight the recent prominent progress of HTS bulk applications, including Maglev, flywheel, power device, magnetic drug delivery system and magnetic resonance devices.

  10. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  11. Constant-Pressure Combustion Charts Including Effects of Diluent Addition

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Bogart, Donald

    1949-01-01

    Charts are presented for the calculation of (a) the final temperatures and the temperature changes involved in constant-pressure combustion processes of air and in products of combustion of air and hydrocarbon fuels, and (b) the quantity of hydrocarbon fuels required in order to attain a specified combustion temperature when water, alcohol, water-alcohol mixtures, liquid ammonia, liquid carbon dioxide, liquid nitrogen, liquid oxygen, or their mixtures are added to air as diluents or refrigerants. The ideal combustion process and combustion with incomplete heat release from the primary fuel and from combustible diluents are considered. The effect of preheating the mixture of air and diluents and the effect of an initial water-vapor content in the combustion air on the required fuel quantity are also included. The charts are applicable only to processes in which the final mixture is leaner than stoichiometric and at temperatures where dissociation is unimportant. A chart is also included to permit the calculation of the stoichiometric ratio of hydrocarbon fuel to air with diluent addition. The use of the charts is illustrated by numerical examples.

  12. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  13. Improvements in geothermometry. Final technical report. Rev

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, J.; Dibble, W.; Parks, G.

    1982-08-01

    Alkali and alkaline earth geothermometers are useful for estimating geothermal reservoir temperatures, though a general theoretical basis has yet to be established and experimental calibration needs improvement. Equilibrium cation exchange between feldspars provided the original basis for the Na-K and Na-K-Ca geothermometers (Fournier and Truesdell, 1973), but theoretical, field and experimental evidence prove that neither equilibrium nor feldspars are necessary. Here, evidence is summarized in support of these observations, concluding that these geothermometers can be expected to have a surprisingly wide range of applicability, but that the reasons behind such broad applicability are not yet understood. Early experimental work provedmore » that water-rock interactions are slow at low temperatures, so experimental calibration at temperatures below 150/sup 0/ is impractical. Theoretical methods and field data were used instead for all work at low temperatures. Experimental methods were emphasized for temperatures above 150/sup 0/C, and the simplest possible solid and solution compositions were used to permit investigation of one process or question at a time. Unexpected results in experimental work prevented complete integration of the various portions of the investigation.« less

  14. The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning

    NASA Astrophysics Data System (ADS)

    Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.

    2017-01-01

    In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.

  15. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    NASA Technical Reports Server (NTRS)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  16. Carbon Film Electrodes For Super Capacitor Applications

    DOEpatents

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  17. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  18. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  19. Improving the efficiency of the Finite Temperature Density Matrix Renormalization Group method

    NASA Astrophysics Data System (ADS)

    Nocera, Alberto; Alvarez, Gonzalo

    I review the basics of the finite temperature DMRG method, and then show how its efficiency can be improved by working on reduced Hilbert spaces and by using canonical approaches. My talk explains the applicability of the ancilla DMRG method beyond spins systems to t-J and Hubbard models, and addresses the computation of static and dynamical observables at finite temperature. Finally, I discuss the features of and roadmap for our DMRG + + codebase. Work done at CNMS, sponsored by the SUF Division, BES, U.S. DOE under contract with UT-Battelle. Support by the early career research program, DSUF, BES, DOE.

  20. Treatments To Produce Stabilized Aluminum Mirrors for Cryogenic Uses

    NASA Technical Reports Server (NTRS)

    Zewari, Wahid; Barthelmy, Michael; Ohl, Raymond

    2005-01-01

    Five metallurgical treatments have been tested as means of stabilizing mirrors that are made of aluminum alloy 6061 and are intended for use in cryogenic applications. Aluminum alloy 6061 is favored as a mirror material by many scientists and engineers. Like other alloys, it shrinks upon cool-down from room temperature to cryogenic temperature. This shrinkage degrades the optical quality of the mirror surfaces. Hence, the metallurgical treatments were tested to determine which one could be most effective in minimizing the adverse optical effects of cooldown to cryogenic temperatures. Each of the five metallurgical treatments comprises a multistep process, the steps of which are interspersed with the steps of the mirror-fabrication process. The five metallurgical-treatment/fabrication.- process combinations were compared with each other and with a benchmark fabrication process, in which a mirror is made from an alloy blank by (1) symmetrical rough machining, (2) finish machining to within 0.006 in. (. 0.15 mm) of final dimensions, and finally (3) diamond turning to a mirror finish.

  1. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    PubMed Central

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-01-01

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884

  2. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    PubMed

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  3. High-Temperature Properties of Mold Flux Observed and Measured In Situ by Single/Double Hot-Thermocouple Technique

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lyu, Peisheng; Zhou, Lejun; Li, Huan; Zhang, Tongsheng

    2018-05-01

    Mold flux plays very important roles in the continuous casting process, and its high-temperature properties affect the quality of the final as-cast product greatly. Investigations on the melting, isothermal and nonisothermal crystallization, and phase evolution behaviors under a simulated temperature field for the mold flux system using the single/double hot-thermocouple technique (S/DHTT) were reviewed. Meanwhile, further in situ observations on the wetting behavior and heat transfer ability of the mold flux system were also carried out using the S/DHTT. The results summarized here provide a clear understanding of both the high-temperature properties of mold flux and the detailed application of advanced real-time visual high-temperature S/DHTT to this molten slag system.

  4. The electrical transport properties of liquid Rb using pseudopotential theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, A. B., E-mail: amit07patel@gmail.com; Bhatt, N. K., E-mail: amit07patel@gmail.com; Thakore, B. Y., E-mail: amit07patel@gmail.com

    2014-04-24

    Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms themore » applicability of pseudopotential at very high temperature via temperature dependent pair potential.« less

  5. A review of thermal methods and technologies for diabetic foot assessment.

    PubMed

    Sousa, Paula; Felizardo, Virginie; Oliveira, Daniel; Couto, Rafael; Garcia, Nuno M

    2015-07-01

    Temperature analysis has been considered as a complementary method in medical evaluation and diagnosis. Several studies demonstrated that monitoring the temperature variations of the feet of diabetic patients can be helpful in the early identification of diabetic foot manifestations, and also in changing behaviors, which may contribute to reducing its incidence. In this review, several and most used techniques for assessing the temperature of the feet are presented, along with original published work on specific applications in diabetic foot complications. A review of solutions and equipment that operate according to the temperature assessment techniques is also presented. Finally, a comparison between the various technologies is presented, and the authors share their perspective on what will be the state of affairs in 5 years.

  6. Relations between heat exchange and Rényi divergences

    NASA Astrophysics Data System (ADS)

    Wei, Bo-Bo

    2018-04-01

    In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the Rényi divergences between the initial thermodynamic equilibrium state and the final nonequilibrium state of the total system. The relation tells us that the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium state and the final nonequilibrium state of the global system. In particular the average heat exchange is quantified by the relative entropy between the initial equilibrium state and the final nonequilibrium state of the global system. The relation is applicable to both finite classical systems and finite quantum systems.

  7. Relations between heat exchange and Rényi divergences.

    PubMed

    Wei, Bo-Bo

    2018-04-01

    In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the Rényi divergences between the initial thermodynamic equilibrium state and the final nonequilibrium state of the total system. The relation tells us that the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium state and the final nonequilibrium state of the global system. In particular the average heat exchange is quantified by the relative entropy between the initial equilibrium state and the final nonequilibrium state of the global system. The relation is applicable to both finite classical systems and finite quantum systems.

  8. Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications

    NASA Astrophysics Data System (ADS)

    Fereshteh-Saniee, Faramarz; Asgari, Mohammad; Fakhar, Naeimeh

    2016-08-01

    Despite valuable electrical characteristics, the use of pure aluminum in different applications has been limited due to its low strength. Non-equal channel angular pressing (NECAP) is a recently proposed severe plastic deformation process with greater induced plastic strain and, consequently, better grain refinement in the product, compared with the well-known equal channel angular pressing technique. This research is concerned with the effects of the process temperature and ram velocity on the mechanical, workability and electrical properties of AA1060 aluminum alloy. Increasing the process temperature can concurrently increase the workability, ductility and electrical conductivity, while it has a reverse influence on the strength of the NECAPed specimen, although the strengths of all the products are higher than the as-received alloy. The influence of the ram speed on the mechanical properties of the processed samples is lower than the process temperature. Finally, a compromised process condition is introduced in order to attain a good combination of workability and strength with well-preserved electrical conductivity for electrical applications of components made of pure aluminum.

  9. Passenger Carrying Submersibles: System Safety Analysis

    DTIC Science & Technology

    1989-08-01

    General Provisions Subpart B Commercial Diving Operations 33 CFR NAVIGATION (As Applicable) Subchapter 0 - Pollution Part 155 Oil Pollution...and Materials: Specifications and Approvals; Subchapter S, Subdivision and Stability; and finally, 33 CFR Subchapter 0, Part 155 Oil Pollution...contamination. Air contamination could also result from inadequate air circulation, loss of temperature/humidity control, or refrigerant or oil leakage

  10. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  11. Use of a Multiwavelength Pyrometer in Several Elevated Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Fralick, Gustave

    2001-01-01

    A multiwavelength pyrometer was developed for applications unique to aerospace environments. It was shown to be a useful and versatile technique for measuring temperature, even when the emissivity is unknown. It has also been used to measure the surface temperatures of ceramic zircomia thermal barrier coatings and alumina. The close agreement between pyrometer and thin film thermocouple temperatures provided an independent check. Other applications of the multiwavelength pyrometer are simultaneous surface and bulk temperature measurements of a transparent material, and combustion gas temperature measurement using a special probe interfaced to the multiwavelength pyrometer via an optical fiber. The multiwavelength pyrometer determined temperature by transforming the radiation spectrum in a broad wavelength region to produce a straight line (in a certain spectral region), whose intercept in the vertical axis gives the temperature. Implicit in a two-color pyrometer is the assumption of wavelength independent emissivity. Though the two data points of a two-color pyrometer similarly processed would result immediately in a similar straight line to give the unknown temperature, the two-color pyrometer lacks the greater data redundancy of the multiwavelength pyrometer, which enables it to do so with improved accuracy. It also confirms that emissivity is indeed wavelength independent, as evidenced by a multitude of the data lying on a simple straight line. The multiwavelength pyrometer was also used to study the optical transmission properties of a nanostructured material from which a quadratic exponential functional frequency dependence of its spectral transmission was determined. Finally, by operating the multiwavelength pyrometer in a very wide field of view mode, the surface temperature distribution of a large hot surface was obtained through measurement of just a single radiation spectrum.

  12. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures

    PubMed Central

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  13. A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.

    1995-01-01

    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.

  14. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    PubMed

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  15. White light upconversion emissions in Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoping; Xu, Wei; Zhu, Shuang; Song, Qiutong; Wu, Xijun; Liu, Hailong

    2015-10-01

    Rare earth ions doped glasses producing visible upconversion emissions are of great interest due to their potential applications in the photonics filed. In fact, practical application of upconversion emissions has been used to obtain color image displays and white light sources. However, there are few reports on the thermal effect on tuning the emission color of the RE doped materials. In this work, the Er3+/Tm3+/Yb3+ tridoped oxyfluoride glasses were prepared through high temperature solid-state method. Under a 980 nm diode laser excitation, the upconversion emissions from the samples were studied. At room-temperature, bright white luminescence, whose CIE chromaticity coordinate was about (0.28, 0.31), can be obtained when the excitation power was 120 mW. The emission color was changed by varying the intensity ratios between RGB bands, which are strongly dependent on the rare earth ions concentration. The temperature dependent color emissions were also investigated. As temperature increased, the intensities for the emission bands presented different decay rates, finally resulting in the changing of the CIE coordinate. When the temperature was 573 K, white light with color coordinate of (0.31, 0.33) was achieved, which matches well with the white reference (0.33, 0.33). The color tunability, high quality of white light and intense emission intensity make the transparent oxyfluoride glasses excellent candidates for applications in solid-state lighting.

  16. Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.

  17. Low Temperature Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  18. Layout and results from the initial operation of the high-resolution x-ray imaging crystal spectrometer on the Large Helical Device.

    PubMed

    Pablant, N A; Bitter, M; Delgado-Aparicio, L; Goto, M; Hill, K W; Lazerson, S; Morita, S; Roquemore, A L; Gates, D; Monticello, D; Nielson, H; Reiman, A; Reinke, M; Rice, J E; Yamada, H

    2012-08-01

    First results of ion and electron temperature profile measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the first application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature profiles in LHD with a spatial resolution of 2 cm and a maximum time resolution of 5 ms (typically 20 ms). Ion temperature profiles from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar(16 +). The final hardware design and configuration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.

  19. The silicon-glass microreactor with embedded sensors—technology and results of preliminary qualitative tests, toward intelligent microreaction plant

    NASA Astrophysics Data System (ADS)

    Knapkiewicz, P.

    2013-03-01

    The technology and preliminary qualitative tests of silicon-glass microreactors with embedded pressure and temperature sensors are presented. The concept of microreactors for leading highly exothermic reactions, e.g. nitration of hydrocarbons, and design process-included computer-aided simulations are described in detail. The silicon-glass microreactor chip consisting of two micromixers (multistream micromixer), reaction channels, cooling/heating chambers has been proposed. The microreactor chip was equipped with a set of pressure and temperature sensors and packaged. Tests of mixing quality, pressure drops in channels, heat exchange efficiency and dynamic behavior of pressure and temperature sensors were documented. Finally, two applications were described.

  20. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  1. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  2. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  3. Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators

    NASA Astrophysics Data System (ADS)

    Luo, E.; Gong, M.; Wu, J.; Zhou, Y.

    2004-06-01

    The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.

  4. Analysis on the impact of FBG reflectance spectrum with different optical fiber connection in vacuum thermal environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan

    2018-01-01

    To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).

  5. Electrocaloric effects in the lead-free Ba (Zr ,Ti )O3 relaxor ferroelectric from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhijun; Prokhorenko, Sergei; Prosandeev, Sergey; Nahas, Y.; Wang, D.; Íñiguez, Jorge; Defay, E.; Bellaiche, L.

    2017-07-01

    Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free Ba (Zr0.5Ti0.5)O3 (BZT) relaxor ferroelectric. We find that the EC coefficient varies nonmonotonically with the field at any temperature, presenting a maximum that can be traced back to the behavior of BZT's polar nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that, for low temperatures (i.e., in nonergodic conditions), the usual indirect approach to measure the EC response provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.

  6. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    1996-01-01

    A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.

  7. Low Temperature Cure Powder Coatings

    DTIC Science & Technology

    2013-05-01

    operations Minimize worker exposure to VOCs, HAPs, and hexavalent chrome Passed objective AF Engr Qual Plan = Air Force Engineer Quality Plan MIL-PRF...Inconclusive • Inconclusive • Not applicable (N/A) • Passed criteria Reduction of hexavalent chromium use • Passed objective Reduction of hazardous...compliance. The implementation of the OSHA Final Rule designating the permissible exposure limit (PEL) for hexavalent chromium is a significant

  8. Temperature dependence of Er³⁺ ionoluminescence and photoluminescence in Gd₂O₃:Bi nanopowder.

    PubMed

    Boruc, Zuzanna; Gawlik, Grzegorz; Fetliński, Bartosz; Kaczkan, Marcin; Malinowski, Michał

    2014-06-01

    Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er(3+)) in Gd2O3 nanopowder host activated with Bi(3+) ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H2 (+) 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10(-3) °C(-1). The analysis of the Er(3+) energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.

  9. Fabrication of Titanium-Niobium-Zirconium-Tantalium Alloy (TNZT) Bioimplant Components with Controllable Porosity by Spark Plasma Sintering

    PubMed Central

    Rechtin, Jack; Torresani, Elisa; Ivanov, Eugene; Olevsky, Eugene

    2018-01-01

    Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder—based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of the fabricated TNZT components are also investigated and microstructural analysis of the processed material is conducted. A densification model is proposed and used to calculate the TNZT alloy creep activation energy. The obtained experimental data can be utilized for the optimized fabrication of TNZT components with specific microstructural and mechanical properties suitable for biomedical applications. PMID:29364165

  10. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  11. Study of thermomechanical treatment on mechanical-induced phase transformation of NiTi and TiNiCu wires.

    PubMed

    Seyyed Aghamiri, S M; Nili Ahmadabadi, M; Shahmir, H; Naghdi, F; Raygan, Sh

    2013-05-01

    The nickel-titanium shape memory alloys have been used in orthodontic application due to their unique properties like superelasticity and biocompatibility. The phase transformation behavior of these alloys can be changed by alloying elements and thermomechanical processing conditions. In this study, two types of NiTi and TiNiCu wires of 0.4mm diameter were produced via thermomechanical treatments with final step of 20% cold drawing followed by annealing at different temperatures of 300 and 400 °C for varying times of 10, 30 and 60 min. The processed wires were characterized by oral cavity configuration three point bending (OCTPB) test at 37 °C to specify the mechanical transformation features. Also, differential scanning calorimetry (DSC) was used to analyze the thermal transformation temperatures of selected wires. The results showed the thermomechanical treatment at 300 °C for 30 min was the suitable process in terms of superelasticity and transformation temperatures for orthodontic application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Silicon strain gages bonded on stainless steel using glass frit for strain sensor applications

    NASA Astrophysics Data System (ADS)

    Zhang, Zongyang; Cheng, Xingguo; Leng, Yi; Cao, Gang; Liu, Sheng

    2014-05-01

    In this paper, a steel pressure sensor using strain gages bonded on a 17-4 PH stainless steel (SS) diaphragm based on glass frit technology is proposed. The strain gages with uniform resistance are obtained by growing an epi-silicon layer on a single crystal silicon wafer using epitaxial deposition technique. The inorganic glass frits are used as the bonding material between the strain gages and the 17-4 PH SS diaphragm. Our results show that the output performances of sensors at a high temperature of 125 °C are almost equal those at room temperature, which indicates that the glass frit bonding is a good method and may lead to a significant advance in the high temperature applicability of silicon strain gage sensors. Finally, the microstructure of the cured organic adhesive and the fired glass frit are compared. It may be concluded that the defects of the cured organic adhesive deteriorate the hysteresis and repeatability errors of the sensors.

  13. Friction of hard surfaces and its application in earthquakes and rock slope stability

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  14. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control.

    PubMed

    Kim, Jinseon; Kwon, Sanghyuk; Cho, Dae-Hyun; Kang, Byunggil; Kwon, Hyukjoon; Kim, Youngchan; Park, Sung O; Jung, Gwan Yeong; Shin, Eunhye; Kim, Wan-Gu; Lee, Hyungdong; Ryu, Gyeong Hee; Choi, Minseok; Kim, Tae Hyeong; Oh, Junghoon; Park, Sungjin; Kwak, Sang Kyu; Yoon, Suk Wang; Byun, Doyoung; Lee, Zonghoon; Lee, Changgu

    2015-09-15

    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.

  15. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1985-01-01

    An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.

  16. Toroidal transformer design program with application to inverter circuitry

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.

    1972-01-01

    Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.

  17. Reverse Aging of Composite Materials for Aeronautical Applications

    NASA Astrophysics Data System (ADS)

    lannone, Michele

    2008-08-01

    Hygro-thermal ageing of polymer matrix composite materials is a major issue for all the aeronautical structures. For carbon-epoxy composites generally used in aeronautical applications the major effect of ageing is the humidity absorption, which induces a plasticization effect, generally decreasing Tg and elastic moduli, and finally design allowables. A thermodynamical and kinetic study has been performed, aimed to establish a program of periodic heating of the composite part, able to reversing the ageing effect by inducing water desorption. The study was founded on a simple model based on Fick's law, coupled with a concept of "relative saturation coefficient" depending on the different temperature of the composite part and the environment. The behaviour of some structures exposed to humidity and "reverse aged" by heating has been virtually tested. The conclusion of the study allowed to issue a specific patent application for aeronautical structures to be designed on the basis of a "humidity free" concept which allows the use of higher design allowables; having as final results lighter composite structures with a simplified certification process.

  18. Practical ultrasonic transducers for high-temperature applications using bismuth titanate and Ceramabind 830

    NASA Astrophysics Data System (ADS)

    Xu, Janet L.; Batista, Caio F. G.; Tittmann, Bernhard R.

    2018-04-01

    Structural health monitoring of large valve bodies in high-temperature environments such as power plants faces several limitations: commercial transducers are not rated for such high temperatures, gel couplants will evaporate, and measurements cannot be made in-situ. To solve this, we have furthered the work of Ledford in applying a practical transducer in liquid form which hardens and air dries directly onto the substrate. The transducer material is a piezoceramic film composed of bismuth titanate and a high-temperature binding agent, Ceramabind 830. The effects of several fabrication conditions were studied to optimize transducer performance and ensure repeatability. These fabrication conditions include humidity, binder ratio, water ratio, substrate roughness, and film thickness. The final product is stable for both reactive and non-reactive substrates, has a quick fabrication time, and has an operating temperature up to the Curie temperature of BIT, 650°C, well beyond the safe operating temperature of PZT (150°C).

  19. A drain current model for amorphous InGaZnO thin film transistors considering temperature effects

    NASA Astrophysics Data System (ADS)

    Cai, M. X.; Yao, R. H.

    2018-03-01

    Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.

  20. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOEpatents

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  1. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less

  2. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies

    NASA Astrophysics Data System (ADS)

    Rashidi, Saman; Esfahani, Javad Abolfazli; Maskaniyan, Mahla

    2017-10-01

    Magnetohydrodynamic (MHD) fluid flow in different geometries relevant to human body parts is an interesting and important scientific area due to its applications in medical sciences. This article performs a comprehensive review on the applications of MHD and their numerical modelling in biological systems. Applications of MHD in medical sciences are classified into four categories in this paper. Applications of MHD in simple flow, peristaltic flow, pulsatile flow, and drag delivery are these categories. The numerical researches performed for these categories are reviewed and summarized separately. Finally, some conclusions and suggestions for future works based on the literature review are presented. The results indicated that during a surgery when it is necessary to drop blood flow or reduce tissue temperature, it may be achieved by using a magnetic field. Moreover, the review showed that the trapping is an important phenomenon in peristaltic flows that causes the formation of thrombus in blood and the movement of food bolus in gastrointestinal tract. This phenomenon may be disappeared by using a proper magnetic field. Finally, the concentration of particles that are delivered to the target region increases with an increase in the magnetic field intensity.

  3. FINAL REPORT. DOE Grant Award Number DE-SC0004062

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiesa, Luisa

    With the support of the DOE-OFES Early Career Award and the Tufts startup support the PI has developed experimental and analytical expertise on the electromechanical characterization of Low Temperature Superconductor (LTS) and High Temperature Superconductor (HTS) for high magnetic field applications. These superconducting wires and cables are used in fusion and high-energy physics magnet applications. In a short period of time, the PI has built a laboratory and research group with unique capabilities that include both experimental and numerical modeling effort to improve the design and performance of superconducting cables and magnets. All the projects in the PI’s laboratory exploremore » the fundamental electromechanical behavior of superconductors but the types of materials, geometries and operating conditions are chosen to be directly relevant to real machines, in particular fusion machines like ITER.« less

  4. Mineral resource of the month: talc

    USGS Publications Warehouse

    Virta, Robert; Van Gosen, Brad

    2007-01-01

    When most people think of talc, they probably think of talcum and baby powder. However, these uses of talc are quite minor compared to its wide variety of applications in manufacturing. The leading use of talc is in the production of ceramics, where it acts as a source of magnesium oxide, serves as a flux to reduce firing temperatures and improves thermal shock characteristics of the final product.

  5. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  6. Calibration and energy measurement of optically levitated nanoparticle sensors

    NASA Astrophysics Data System (ADS)

    Hebestreit, Erik; Frimmer, Martin; Reimann, René; Dellago, Christoph; Ricci, Francesco; Novotny, Lukas

    2018-03-01

    Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the optimal measurement time required to determine the said temperature.

  7. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes

    PubMed Central

    Santiago, Margarita; Ramírez-Sarmiento, César A.; Zamora, Ricardo A.; Parra, Loreto P.

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications. PMID:27667987

  8. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes.

    PubMed

    Santiago, Margarita; Ramírez-Sarmiento, César A; Zamora, Ricardo A; Parra, Loreto P

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.

  9. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanotechnology Based Green Energy Conversion Devices with Multifunctional Materials at Low Temperatures.

    PubMed

    Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen

    2017-07-10

    Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. [Time-Temperature indicators (TTI). A means of quality control of produce].

    PubMed

    Durand, M P

    1996-11-01

    The author, after having dwelt on the mediatic importance of bacterial food poisonings, analyses their reasons, insisting on the importance of the temperature as a factor of bacterial growth. Among the cures for the association temperature-bacterial growth, the author draws attention to the benefits of the use of the time temperature indicators (TTI). He describes the purposes, the required qualities, the principles of activity. The "Lifelines TTI" proves to be interesting. The author describes the principles of activity, the directions for reading the results, the practical application. Finally he describes the remarks following on its use in large scale in a group of chain-stores. In the conclusion, the author points that these TTI are an attractive technical innovation regarding to the fresh foods, for the control of coldness in the human nutrition.

  12. Chiral dynamics in the low-temperature phase of QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel

    2014-09-01

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,m=0) in the temperature vs quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the maximum entropy method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point (T=0,m=0) for the temperature dependence of static observables.

  13. Applications of Some Artificial Intelligence Methods to Satellite Soundings

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Jakubowicz, O.

    1985-01-01

    Hard clustering of temperature profiles and regression temperature retrievals were used to refine the method using the probabilities of membership of each pattern vector in each of the clusters derived with discriminant analysis. In hard clustering the maximum probability is taken and the corresponding cluster as the correct cluster are considered discarding the rest of the probabilities. In fuzzy partitioned clustering these probabilities are kept and the final regression retrieval is a weighted regression retrieval of several clusters. This method was used in the clustering of brightness temperatures where the purpose was to predict tropopause height. A further refinement is the division of temperature profiles into three major regions for classification purposes. The results are summarized in the tables total r.m.s. errors are displayed. An approach based on fuzzy logic which is intimately related to artificial intelligence methods is recommended.

  14. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis.

    PubMed

    Jiang, S C; Zhang, X X

    2005-12-01

    A two-dimensional model was developed to model the effects of dynamic changes in the physical properties on tissue temperature and damage to simulate laser-induced interstitial thermotherapy (LITT) treatment procedures with temperature monitoring. A modified Monte Carlo method was used to simulate photon transport in the tissue in the non-uniform optical property field with the finite volume method used to solve the Pennes bioheat equation to calculate the temperature distribution and the Arrhenius equation used to predict the thermal damage extent. The laser light transport and the heat transfer as well as the damage accumulation were calculated iteratively at each time step. The influences of different laser sources, different applicator sizes, and different irradiation modes on the final damage volume were analyzed to optimize the LITT treatment. The numerical results showed that damage volume was the smallest for the 1,064-nm laser, with much larger, similar damage volumes for the 980- and 850-nm lasers at normal blood perfusion rates. The damage volume was the largest for the 1,064-nm laser with significantly smaller, similar damage volumes for the 980- and 850-nm lasers with temporally interrupted blood perfusion. The numerical results also showed that the variations in applicator sizes, laser powers, heating durations and temperature monitoring ranges significantly affected the shapes and sizes of the thermal damage zones. The shapes and sizes of the thermal damage zones can be optimized by selecting different applicator sizes, laser powers, heating duration times, temperature monitoring ranges, etc.

  15. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    PubMed Central

    2013-01-01

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502

  16. Final Report Auto/Steel Partnership Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cady, C.M.; Chen, S.R.; Gray, G.T. III

    1999-06-09

    This is the final report in which effects of strain-rate, temperature, and stress-state on the yield stress and the strain hardening behavior of many common steels used in automobile construction were investigated. The yield and flow stresses were found to exhibit very high rate sensitivities for most of the steels while the hardening rates were found to be insensitive to strain rate and temperature at lower temperatures or at higher strain rates. This behavior is consistent with the observation that overcoming the intrinsic Peierls stress is shown to be the rate-controlling mechanism in these materials at low temperatures. The dependencemore » of the yield stress on temperature and strain rate was found to decrease while the strain hardening rate increased. The Mechanical Threshold Stress (MTS) model was adopted to model the stress-strain behavior of the steels. Parameters for the constitutive relations were derived for the MTS model and also for the Johnson-Cook (JC) and the Zerilli-Armstrong (ZA) models. The results of this study substantiate the applicability of these models for describing the high strain-rate deformation of these materials. The JC and ZA models, however, due to their use of a power strain hardening law were found to yield constitutive relations for the materials which are strongly dependent on the range of strains for which the models were optimized.« less

  17. Analysis of Wear Behavior of Graphene OXIDE — Polyamide Gears for Engineering Applications

    NASA Astrophysics Data System (ADS)

    Rajamani, Geetha; Paulraj, Jawahar; Krishnan, Kanny

    Recent advances in polymer nanocomposites open a wide range of applications in various industrial sectors. Due to their high potential properties, these materials are replacing the usage of metals for many heavier components in automobile industries. In this experimental work, the tribological performance of Graphene oxide (GO) — Polyamide is investigated against pristine polyamide by fabricating gears for the usage in engineering applications. A gear test rig was developed in-house for analysis to study the specific wear rate and temperature gradient at different conditions of load and speeds. The wear resistance of the polyamide gears with the addition of 0.03wt.% of graphene oxide is better than the pristine polyamide gears and the specific wear rate is reduced significantly. The reduced specific wear rate of these polymer nanocomposite gears is attributed to the superior properties of graphene oxide such as High specific surface area, good adhesion properties and enhanced glass transition temperatures. The GO nanocomposite gear seems to be a potential alternative against conventional gears for engineering applications. Finally, the wear mechanisms and the potential of GO-based polyamide nanocomposite gears were proposed tentatively in the development of transmission gears for engineering applications.

  18. Research on precise control of 3D print nozzle temperature in PEEK material

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Wang, Gong; Huo, Yu; Zhao, Wei

    2017-10-01

    3D printing technology has shown more and more applicability in medication, designing and other fields for its low cost and high timeliness. PEEK (poly-ether-ether-ketone), as a typical high-performance special engineering plastic, become one of the most excellent materials to be used in 3D printing technology because of its excellent mechanical property, good lubricity, chemical resistance, and other properties. But the nozzle of 3D printer for PEEK has also a series of very high requirements. In this paper, we mainly use the nozzle temperature control as the research object, combining with the advantages and disadvantages of PID control and fuzzy control. Finally realize a kind of fuzzy PID controller to solve the problem of the inertia of the temperature system and the seriousness of the temperature control hysteresis in the temperature control of the nozzle, and to meet the requirements of the accuracy of the nozzle temperature control and rapid reaction.

  19. Thermal buffering performance of composite phase change materials applied in low-temperature protective garments

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Jiao, Mingli; Yu, Yuanyuan; Zhu, Xueying; Liu, Rangtong; Cao, Jian

    2017-07-01

    Phase change material (PCM) is increasingly being applied in the manufacturing of functional thermo-regulated textiles and garments. This paper investigated the thermal buffering performance of different composite PCMs which are suitable for the application in functional low-temperature protective garments. First, according to the criteria selecting PCM for functional textiles/garments, three kinds of pure PCM were selected as samples, which were n-hexadecane, n-octadecane and n-eicosane. To get the adjustable phase change temperature range and higher phase change enthalpy, three kinds of composite PCM were prepared using the above pure PCM. To evaluate the thermal buffering performance of different composite PCM samples, the simulated low-temperature experiments were performed in the climate chamber, and the skin temperature variation curves in three different low temperature conditions were obtained. Finally composite PCM samples’ thermal buffering time, thermal buffering capacity and thermal buffering efficiency were calculated. Results show that the comprehensive thermal buffering performance of n-octadecane and n-eicosane composite PCM is the best.

  20. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope.

    PubMed

    Neděla, Vilém; Tihlaříková, Eva; Hřib, Jiří

    2015-01-01

    The use of non-standard low-temperature conditions in environmental scanning electron microscopy might be promising for the observation of coniferous tissues in their native state. This study is aimed to analyse and evaluate the method based on the principle of low-temperature sample stabilization. We demonstrate that the upper mucous layer is sublimed and a microstructure of the sample surface can be observed with higher resolution at lower gas pressure conditions, thanks to a low-temperature method. An influence of the low-temperature method on sample stability was also studied. The results indicate that high-moisture conditions are not suitable for this method and often cause the collapse of samples. The potential improvement of stability to beam damage has been demonstrated by long-time observation at different operation parameters. We finally show high applicability of the low-temperature method on different types of conifers and Oxalis acetosella. © 2014 Wiley Periodicals, Inc.

  1. Experimental investigation of anisotropy evolution of AZ31 magnesium alloy sheets under tensile loading

    NASA Astrophysics Data System (ADS)

    Tari, D. Ghaffari; Worswick, M. J.

    2011-05-01

    Increasing demand for lighter final products has created new opportunities for the application of new light weight materials. Due to high strength to density ratio and good magnetic resistance properties, magnesium alloys are good candidates to replace steel and aluminum for same application. However, limited numbers of active slip deformation mechanisms, result in a decreased formability at room temperature. Furthermore, wrought magnesium alloys have an initial crystallographic texture, remained from the prior rolling operations, which makes them highly anisotropic. In this paper, tensile tests are performed at room temperature and 200° C at different strain rates and orientations relative to the rolling direction, including rolling, 30°, 45°, 60° and transverse orientation. The strain rates adopted for these experiments varied from 0.001 to 1.0. The testing results show the effect of temperature on the strain rate sensitivity of AZ31 sheets. The extent of deformation is continuously recorded using two separate high temperature extensometers. The results of testing show an increase in the r-values with the plastic deformation. The strain rate sensitivity of AZ31 increased as the temperature was elevated. At higher strain rates the measured r-values are larger and the slope of its evolution with the plastic strain is steeper.

  2. Research on influence of different cover to the characteristic of FBG reflectance spectrum in vacuum thermal environment

    NASA Astrophysics Data System (ADS)

    Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu

    2018-01-01

    To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .

  3. Stainless Steel Corrosion Studies Final Report: FY17 End of-Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Daniel; Milenski, Helen Marie; Martinez, Destiny

    Two materials are being considered in applications requiring their contact against stainless steel surfaces. These materials include the solvent methyl ethyl ketone (MEK), and the polymer neoprene (polychloroprene). There is concern that contact of these materials with stainless steel substrates may lead to corrosion. To address these concerns we have undertaken corrosion studies under conditions expected to be more aggressive than in intended applications. These conditions include elevated temperature and humidity, and submersion and suspension in solvent vapors, in an attempt to accelerate any potential deleterious interactions. Corrosion rates below 0.1 mpy have historically been deemed INSIGNIFICANT from a WRmore » Production standpoint; corresponding guidelines for non-production applications are lacking.« less

  4. Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Liu, Zhuang; Wang, Yanan; Rolfe, Bernard; Wang, Liang; Zhang, Yisheng

    2018-04-01

    Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.

  5. ASME Material Challenges for Advanced Reactor Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less

  6. Infrared camera assessment of skin surface temperature--effect of emissivity.

    PubMed

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Development of Isotropic, Micro-Toughened Titanium-Base Intermetallic Composites for High-Temperature Service Final Report CRADA No. TC-0497-93A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieh, T. G.; Waltz, Z. R.

    The purpose of this Cooperative Research and Development Agreement (CRADA) between LLNL and P&W is to develop advanced composites and their processing technologies, resulting in major improviements in the ductility and toughnes of high-strength, high-stiffness TiAl-base composite materials for commercial jet engines and U.S. Department of Energy (DOE) Defense Program applications.

  8. Net shape processing of alnico magnets by additive manufacturing

    DOE PAGES

    White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah; ...

    2017-06-07

    Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah

    Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less

  10. Infrared thermography applied to the study of heated and solar pavement: from numerical modeling to small scale laboratory experiments

    NASA Astrophysics Data System (ADS)

    Le Touz, N.; Toullier, T.; Dumoulin, J.

    2017-05-01

    The present study addresses the thermal behaviour of a modified pavement structure to prevent icing at its surface in adverse winter time conditions or overheating in hot summer conditions. First a multi-physic model based on infinite elements method was built to predict the evolution of the surface temperature. In a second time, laboratory experiments on small specimen were carried out and the surface temperature was monitored by infrared thermography. Results obtained are analyzed and performances of the numerical model for real scale outdoor application are discussed. Finally conclusion and perspectives are proposed.

  11. A continuous dry 300 mK cooler for THz sensing applications.

    PubMed

    Klemencic, G M; Ade, P A R; Chase, S; Sudiwala, R; Woodcraft, A L

    2016-04-01

    We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped (3)He cooling systems. This closed dry system uses only 5 l of (3)He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement of a far infrared camera.

  12. Phase transformation in SiOx/SiO₂ multilayers for optoelectronics and microelectronics applications.

    PubMed

    Roussel, M; Talbot, E; Pratibha Nalini, R; Gourbilleau, F; Pareige, P

    2013-09-01

    Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO₂ layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. High Tensile Strength Amalgams for In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.

  14. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this research. Finally, analysis of emission spectra obtained from the OH(A-X) band at 308 nm by the excited hydroxyl radical was performed to quantify the temperature parameters of the plasma. Boltzmann analysis was performed to quantify the rotational temperature of OH which correlates well to the liquid temperature, and Stark broadening of the ionic lines belonging to hydrogen and oxygen was analysed to estimate electron temperature. It was found that the liquid temperature remained close to bulk temperature with T_(n,i)<500 K, and that the electron temperature was very high Te˜6-10 eV. Finally, based on the characterization of the plasma parameters, several potential avenues for applications of this regime of plasma will be suggested. The complex physical and chemical dynamics established when plasma is generated within a liquid medium has unlocked new and fascinating possibilities in the areas of biomedicine, water treatment, material synthesis and nanoscience. The high density, low temperature plasma formed could potentially be harnessed to unlock new applications across these fields and more.

  15. Activated Carbon-hydrogen based Continuous Sorption Cooling in Single Adsorbent Bed with LN2 Heat Sink

    NASA Astrophysics Data System (ADS)

    Koley, Susmita; Ghosh, Indranil

    Quick and periodic inflow-outflow of adsorbate in an adsorbent column createsa differential temperature between the two ends of it, allowing for the generation of continuous sorption cooling in a single adsorbent tube. The concept has been proven experimentally and theoretically for near room temperature applications using activated carbon-nitrogen. The feasibility of generating continuous solid sorption cooling in a single adsorbent tube in the cryogenic domainhas been studied theoretically with a different adsorbent-adsorbate pair, namely, activated carbon-hydrogen. Precooling of gaseous hydrogen (before it enters the adsorbent column) and removal of the heat of adsorption has been achieved using liquid nitrogen. Theoretical estimation shows nearly 20 K temperature difference between the two ends under no load condition. Finally, parametric variations have been performed.

  16. Hydrogen retention in lithium and lithium oxide films

    DOE PAGES

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.; ...

    2018-02-09

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  17. Hydrogen retention in lithium and lithium oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  18. Contribution to the application of two-colour imaging to diesel combustion

    NASA Astrophysics Data System (ADS)

    Payri, F.; Pastor, J. V.; García, J. M.; Pastor, J. M.

    2007-08-01

    The two-colour method (2C) is a well-known methodology for the estimation of flame temperature and the soot-related KL factor. A 2C imaging system has been built with a single charge-coupled device (CCD) camera for visualization of the diesel flame in a single-cylinder 2-stroke engine with optical accesses. The work presented here focuses on methodological aspects. In that sense, the influence of calibration uncertainties on the measured temperature and KL factor has been analysed. Besides, a theoretical study is presented that tries to link the true flame temperature and soot distributions with those derived from the 2C images. Finally, an experimental study has been carried out in order to show the influence of injection pressure, air density and temperature on the 2C-derived parameters. Comparison with the expected results has shown the limitations of this methodology for diesel flame analysis.

  19. A Web-based vital sign telemonitor and recorder for telemedicine applications.

    PubMed

    Mendoza, Patricia; Gonzalez, Perla; Villanueva, Brenda; Haltiwanger, Emily; Nazeran, Homer

    2004-01-01

    We describe a vital sign telemonitor (VST) that acquires, records, displays, and provides readings such as: electrocardiograms (ECGs), temperature (T), and oxygen saturation (SaO2) over the Internet to any site. The design of this system consisted of three parts: sensors, analog signal processing circuits, and a user-friendly graphical user interface (GUI). The first part involved selection of appropriate sensors. For ECG, disposable Ag/AgCl electrodes; for temperature, LM35 precision temperature sensor; and for SaO2 the Nonin Oximetry Development Kit equipped with a finger clip were selected. The second part consisted of processing the analog signals obtained from these sensors. This was achieved by implementing suitable amplifiers and filters for the vital signs. The final part focused on development of a GUI to display the vital signs in the LabVIEW environment. From these measurements, important values such as heart rate (HR), beat-to-beat (RR) intervals, SaO2 percentages, and T in both degrees Celsius and Fahrenheit were calculated The GUI could be accessed through the Internet in a Web-page facilitating the possibility of real-time patient telemonitoring. The final system was completed and tested on volunteers with satisfactory results.

  20. Novel designs for application specific MEMS pressure sensors.

    PubMed

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  1. Enhanced broadband (11-15 µm) QWIP FPAs for space applications

    NASA Astrophysics Data System (ADS)

    Nedelcu, Alexandru; de l'Isle, Nadia B.; Truffer, Jean-Patrick; Belhaire, Eric; Costard, Eric; Bois, Philippe; Merken, Patrick; Saint-Pé, Olivier

    2017-11-01

    A thirty months ESA project started in March 2008, whose purpose is to expand and assess the performance of broadband (11-15μm) quantum detectors for spectro-imaging applications: Fourier Transform Spectrometers and Dispersive Spectrometers. We present here the technical requirements, the development approach chosen as well as preliminary signal to noise ratio (SNR) calculations. Our approach is fully compatible with the final array format (1024x256, pitch 50-60μm). We expect the requested uniformity, operability and SNR levels to be achieved at the goal temperatures (60K for FTS applications and 50K for DS applications). The performance level will be demonstrated on 256x256, 50μm pitch arrays. Also, operability and uniformity issues will be addressed on large mechanical 1024x256 hybrid arrays.

  2. Comparative numerical study on the optimal vulcanization of rubber compounds through traditional curing and microwaves

    NASA Astrophysics Data System (ADS)

    Milani, Gabriele; Milani, Federico

    2012-12-01

    The main problem in the industrial production process of thick EPM/EPDM elements is constituted by the different temperatures which undergo internal (cooler) and external regions. Indeed, while internal layers remain essentially under-vulcanized, external coating is always over-vulcanized, resulting in an overall average tensile strength insufficient to permit the utilization of the items in several applications where it is required a certain level of performance. Possible ways to improve rubber output mechanical properties include a careful calibration of exposition time and curing temperature in traditional heating or a vulcanization through innovative techniques, such as microwaves. In the present paper, a comprehensive numerical model able to give predictions on the optimized final mechanical properties of vulcanized 2D and 3D thick rubber items is presented and applied to a meaningful example of engineering interest. A detailed comparative numerical study is finally presented in order to establish pros and cons of traditional vulcanization vs microwaves curing.

  3. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application.

    PubMed

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-07-28

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate.

  4. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application

    PubMed Central

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-01-01

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757

  5. Design and market considerations for axial flux superconducting electric machine design

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.

    2014-05-01

    In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

  6. TDNiCr (ni-20Cr-2ThO2) forging studies

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1974-01-01

    Elevated temperature tensile and stress rupture properties were evaluated for forged TDNiCr (Ni-20Cr-2ThO2) and related to thermomechanical history and microstructure. Forging temperature and final annealed condition had pronounced influences on grain size which, in turn, was related to high temperature strength. Tensile strength improved by a factor of 8 as grain size changed from 1 to 150 microns. Stress-rupture strength was improved by a factor of 3 to 5 by a grain size increase from 10 to 1000 microns. Some contributions to the elevated temperature strength of very large grain material may also occur from the development of a strong texture and a preponderance of small twins. Other conditions promoting the improvement of high temperature strength were: an increase of total reduction, forging which continued the metal deformation inherent in the starting material, a low forging speed, and prior deformation by extrusion. The mechanical properties of optimally forged TDNiCr compared favorably to those of high strength sheet developed for space shuttle application.

  7. Vigilance system in rails for train hot point temperatures during circulation

    NASA Astrophysics Data System (ADS)

    Meca Meca, Francisco J.; Rodriguez Sanchez, Francisco J.; Mazo Quintas, Manuel; Garcia Dominguez, Juan J.; Fonolla Navarro, Rafael; Sebastian Martinez, Eduardo; Jimenez Calvo, Jose A.; Lillo Rodriguez, Diego; Garcia Garrido, Miguel A.

    2000-06-01

    Wheels, hubs and brake discs in a train during its circulation are under mechanical strains that make its temperature increase above the environment temperature. Mechanical defects in those elements produce an excessive friction and, as a consequence of it, an important increment of its temperature in relation to normal values. Detecting these anomalies is essential to avoid accidents and it is performed by fixed systems located next to rails which make infrared temperature measurements of hot points and send them to a supervisory station that takes the proper steps. The paper introduces the most important problems which must be dealt with during the designing stage of the measurement system. It also explains the solutions taken by the authors in order to assure the minimum operative aims demanded by the application. These problems includes: the choice of the detector and measurement method, communication with the supervisory station, and the environment conditions. Finally, the research lines followed by the authors in order to improve and extend the system's capabilities are explained.

  8. Biobased Carbon Fibers and Thermosetting Resins for Use in DOD Composites Applications: SERDP WP 1758 Final Report

    DTIC Science & Technology

    2017-03-01

    RESPONSIBLE PERSON John J La Scala a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified 19b. TELEPHONE NUMBER (Include area...25 and 45 ° C ...........................................................................................102 Fig. 80 Standard viscosity test run with...anhydride. The reaction was run at 80 ° C for 4 h. The flask was cooled down to room temperature and left to stand to precipitate an undissolved

  9. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    DTIC Science & Technology

    2015-05-05

    equation for electron distribution, and finally -- a major cosmology for mula for the temporal dynamics of redshift and CMB temperature that incorporate...non-relativistic matter, radiation, and dark energy components. - 10 - In application to astrophysics and cosmology , our theory can describe the...remnants of past high-T sources. Both of these results may bring up a significant change of paradigm in astrophysics and cosmology , especially if the

  10. Helmet-mounted uncooled FPA camera for use in firefighting applications

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Feng, Shengrong; Li, Kai; Pan, Shunchen; Su, Junhong; Jin, Weiqi

    2000-05-01

    From the concept and need background of firefighters to the thermal imager, we discuss how the helmet-mounted camera applied in the bad environment of conflagration, especially at the high temperature, and how the better matching between the thermal imager with the helmet will be put into effect in weight, size, etc. Finally, give a practical helmet- mounted IR camera based on the uncooled focal plane array detector for in firefighting.

  11. Copolymers for Drag Reduction in Marie Propulsion: New Molecular Structures with Enhanced Effectiveness

    DTIC Science & Technology

    1991-05-31

    Soluble Polymers: Synthesis, Solution Properties, and Applications, ACS Symposium Series 467, Chapter 22, page 338 (1991). "Molecular- Weight -Distribution...Mississippi 39406-0076 at room temperature to remove low molecular weight polymers and excess KOH. The final products were obtained by freeze-drying...polyelectrolytes due to the presence of the were conducted on a Contraves LS 30 low shear rheometer at a shear long hydrophobic side chains in the polymer

  12. A high temperature testing system for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  13. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  14. Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite

    NASA Astrophysics Data System (ADS)

    Kolhatkar, Gitanjali; Boucherif, Abderraouf; Rahim Boucherif, Abderrahim; Dupuy, Arthur; Fréchette, Luc G.; Arès, Richard; Ruediger, Andreas

    2018-04-01

    We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

  15. Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable

    NASA Astrophysics Data System (ADS)

    Graves, Catherine E.; Dávila, Noraica; Merced-Grafals, Emmanuelle J.; Lam, Si-Ty; Strachan, John Paul; Williams, R. Stanley

    2017-03-01

    Applications of memristor devices are quickly moving beyond computer memory to areas of analog and neuromorphic computation. These applications require the design of devices with different characteristics from binary memory, such as a large tunable range of conductance. A complete understanding of the conduction mechanisms and their corresponding state variable(s) is crucial for optimizing performance and designs in these applications. Here we present measurements of low bias I-V characteristics of 6 states in a Ta/ tantalum-oxide (TaOx)/Pt memristor spanning over 2 orders of magnitude in conductance and temperatures from 100 K to 500 K. Our measurements show that the 300 K device conduction is dominated by a temperature-insensitive current that varies with non-volatile memristor state, with an additional leakage contribution from a thermally-activated current channel that is nearly independent of the memristor state. We interpret these results with a parallel conduction model of Mott hopping and Schottky emission channels, fitting the voltage and temperature dependent experimental data for all memristor states with only two free parameters. The memristor conductance is linearly correlated with N, the density of electrons near EF participating in the Mott hopping conduction, revealing N to be the dominant state variable for low bias conduction in this system. Finally, we show that the Mott hopping sites can be ascribed to oxygen vacancies, where the local oxygen vacancy density responsible for critical hopping pathways controls the memristor conductance.

  16. A review of high magnetic moment thin films for microscale and nanotechnology applications

    DOE PAGES

    Scheunert, Gunther; Heinonen, O.; Hardeman, R.; ...

    2016-02-17

    Here, the creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density M S in a solenoid. In addition to large M S, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard diskmore » drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on M S for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large M S, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.« less

  17. History and modern applications of nano-composite materials carrying GA/cm2 current density due to a Bose-Einstein Condensate at room temperature produced by Focused Electron Beam Induced Processing for many extraordinary novel technical applications

    NASA Astrophysics Data System (ADS)

    Koops, Hans W. P.

    2015-12-01

    The discovery of Focused Electron Beam Induced Processing and early applications of this technology led to the possible use of a novel nanogranular material “Koops-GranMat®” using Pt/C and Au/C material. which carries at room temperature a current density > 50 times the current density which high TC superconductors can carry. The explanation for the characteristics of this novel material is given. This fact allows producing novel products for many applications using Dual Beam system having a gas supply and X.Y.T stream data programming and not using GDSII layout pattern control software. Novel products are possible for energy transportation. -distribution.-switching, photon-detection above 65 meV energy for very efficient energy harvesting, for bright field emission electron sources used for vacuum electronic devices like amplifiers for HF electronics, micro-tubes, 30 GHz to 6 THz switching amplifiers with signal to noise ratio >10(!), THz power sources up to 1 Watt, in combination with miniaturized vacuum pumps, vacuum gauges, IR to THz detectors, EUV- and X-Ray sources. Since focusing electron beam induced deposition works also at low energy, selfcloning multibeam-production machines for field emitter lamps, displays, multi-beam - lithography, - imaging, and - inspection, energy harvesting, and power distribution with switches controlling field-emitter arrays for KA of currents but with < 100 V switching voltage are possible. Finally the replacement of HTC superconductors and its applications by the Koops-GranMat® having Koops-Pairs at room temperature will allow the investigation devices similar to Josephson Junctions and its applications now called QUIDART (Quantum interference devices at Room Temperature). All these possibilities will support a revolution in the optical, electric, power, and electronic technology.

  18. Temperature Measurement Inside Protective Headgear: Comparison With Core Temperatures and Indicators of Physiological Strain During Exercise in a Hot Environment.

    PubMed

    Mitchell, Joel B; Goldston, Kelly R; Adams, Amy N; Crisp, Kelli M; Franklin, Brian B; Kreutzer, Andreas; Montalvo, Diego X; Turner, Marcell G; Phillips, Melody D

    2015-01-01

    Non-invasive temperature monitoring with a sensor inside protective headgear may be effective in detecting temperatures that are associated with heat illness. The purpose was to establish the relationship between in-hardhat temperatures (Tih) and core temperature (Tc) as measured by rectal (Tre) and esophageal (Tes) probes. Thirty males (age 24.57 ± 4.32 yrs.) completed two trials: continuous submaximal exercise (CSE) and a series of high intensity 30-s sprints (HIE) with a one-minute rest between each. Exercise in both conditions was in a 36(°)C environment (40% RH) while wearing a standard hardhat with sensors mounted on the forehead that were monitored remotely. Exercise continued until voluntary termination or until Tc reached 39.5(°)C. Temperatures, heart rate, cardiorespiratory, and perceptual responses were monitored throughout. A physiological strain index (PSI) was calculated from Tc and HR. The final temperatures in the CSE condition were 38.77 ± 0.41, 38.90 ± 0.49 and 39.29 ± 0.58(°)C and in the HIE condition, final temperatures were 38.76 ± 0.37, 38.91 ± 0.47, and 39.19 ± 0.57 f (o)C for Tih, Tre, and Tes, respectively. The PSI in CSE was 9.62 ± 062, 9.18 ± 1.11, and 10.04 ± 1.05, and in the HIE condition 9.67 ± 068, 9.29 ± 0.99. and 9.86 ± 1.02 based on Tih, Tre and Tes, respectively. The general agreement between the Tih and other temperature measures along with the consistency as indicated by a low coefficient of variation (approx. 1%) in the recordings of the Tih sensors at the point of termination suggest that this device, or similar devices, may have application as a warning system for impending heat-related problems.

  19. Nonimaging applications for microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon

    2001-10-01

    In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.

  20. Denitrification of combustion gases. [Patent application

    DOEpatents

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  1. A continuous dry 300 mK cooler for THz sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemencic, G. M., E-mail: Georgina.Klemencic@astro.cf.ac.uk; Ade, P. A. R.; Sudiwala, R.

    We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped {sup 3}He cooling systems. This closed dry system uses only 5 l of {sup 3}He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement ofmore » a far infrared camera.« less

  2. Ion temperature fluctuation measurements using a retarding field analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedzelskiy, I. S.; Silva, C.; Duarte, P.

    2011-04-15

    The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying regionmore » of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T{sub i}= 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within {approx}25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic.« less

  3. [Intradiscal temperature variation resulting from radiofrequency thermal therapy. Cadaver study].

    PubMed

    Ramírez-León, J F; Rugeles-Ortiz, J G; Barreto-perea, J A; Alonso-cuéllar, G O

    2014-01-01

    Disc disease is one of the most common causes of lumbar pain. The new era of treatments for degenerative disc disease involves the use of minimally-invasive thermal technologies allowing for collagen remodeling and destruction of nociceptors in the annulus. However, a better understanding of the treatment pathophysiology is needed. The purpose of this study was to measure intradiscal temperature variation after thermodiscoplasty. A human cadaver spine specimen was obtained and divided into blocks, each composed of two intervertebral plates and an intact disc. Radio frequency was applied at five spots with three different time intervals. Temperature was measured in each of the combinations. Units were weighed before and after treatment. Finally, the disc was exposed and the tightening achieved with each radio frequency application was measured. Data were analyzed with the SPSS software. The mean weight reduction obtained was 1.4 g on average (SD 0.599), with values between 0.5 and 2.6 grams. Mean temperature in the posterior rim of the annulus was 37.6 degrees C and mean temperature variation was 3.0 degrees C (SD 6.407). Mean tightening achieved in all blocks overall was 1.4 mm. The results obtained show the effectiveness of radio frequency thermodiscoplasty when performed within the safety parameters. Temperature values with radio frequency were lower than those found in comparable studies. The weight and the tightening show the effect of disc shrinking and dehydration. This report is an effective tool to define time parameters for the application of this technology.

  4. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.

    PubMed

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-05

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  5. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  6. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhiyao; Liu, Xiaobing; Gluesenkamp, Kyle R

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproducedmore » water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.« less

  7. Analysis, compensation, and correction of temperature effects on FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis

    2013-05-01

    One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.

  8. Estimation of Geotropic Currents in the Bay of Bengal using In-situ Observations.

    NASA Astrophysics Data System (ADS)

    T, V. R.

    2014-12-01

    Geostraphic Currents (GCs) can be estimated from temperature and salinity observations. In this study an attempt has been made to compute GC using temperature and salinity observations from Expendable Bathy Thermograph (XBT) and CTD over Bay of Bengal (BoB). Although in recent time we have Argo observations but it is for a limited period and coarse temporal resolutions. In BoB Bengal, where not enough simultaneous hydrographic temperature and salinity data are available with reasonable spatial resolution (~one degree spatial resolution) and for a longer period. To overcome the limitations of GC computed from XBT profiles, temperature-salinity relationships were used from simultaneous temperature and salinity observations. We have demonstrated that GCs can be computed with an accuracy of less than 8.5 cm/s (root mean square error) at the surface with respect to temperature from XBT and salinity from climatological record. This error reduces with increasing depth. Finally, we demonstrated the application of this approach to study the temporal variation of the GCs during 1992 to 2012 along an XBT transect.

  9. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz

    We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  10. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE PAGES

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz; ...

    2017-03-25

    We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  11. Evaluation and analysis of Seasat-A scanning multichannel Microwave Radiometer (SMMR) Antenna Pattern Correction (APC) algorithm

    NASA Technical Reports Server (NTRS)

    Kitzis, J. L.; Kitzis, S. N.

    1979-01-01

    The brightness temperature data produced by the SMMR final Antenna Pattern Correction (APC) algorithm is discussed. The algorithm consisted of: (1) a direct comparison of the outputs of the final and interim APC algorithms; and (2) an analysis of a possible relationship between observed cross track gradients in the interim brightness temperatures and the asymmetry in the antenna temperature data. Results indicate a bias between the brightness temperature produced by the final and interim APC algorithm.

  12. Freeze drying of orally disintegrating tablets containing taste masked naproxen sodium granules in blisters.

    PubMed

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2014-09-15

    Abstract Orally disintegrating tablets (ODTs) were freeze dried in blisters using the Lyostar® II SMART™ Freeze Dryer Technology. ODT formulations either without non-water soluble particles (placebo) or containing large fractions (717 mg) of taste-masked naproxen sodium (NaS) granules were freeze dried. The process data revealed differences between ODTs with and without embedded granules in the pressure rise curves as well as in the shelf (inlet) temperature adjustments during freeze-drying. Pressure rise curves of the placebo ODTs from eight hours process time showed no distinct temperature-dominated part, and the last optimization step of the shelf temperature to achieve -24.4 °C might be prone to errors. The final shelf temperature of ODTs containing granules was -23.3 °C. The detection of primary drying endpoints using SMART™ Technology or comparative pressure measurements was reliable for both ODT formulations, whereas the application of thermocouples resulted in premature endpoint indication. Product resistance of ODTs containing granules was generally elevated in comparison to ODTs without granules, but increased only slightly over the course of the drying process. In summary, the developed freeze-drying cycle was found applicable for production of elegant ODTs with incorporated taste masked NaS granules.

  13. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

    PubMed

    Lin, Mei; Huang, Junxing; Sha, Min

    2014-01-01

    This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.

  14. Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes

    NASA Astrophysics Data System (ADS)

    Fonseca Flores, Luis Diego

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.

  15. Temperatures and Stresses on Hollow Blades For Gas Turbines

    NASA Technical Reports Server (NTRS)

    Pollmann, Erich

    1947-01-01

    The present treatise reports on theoretical investigations and test-stand measurements which were carried out in the BMW Flugmotoren GMbH in developing the hollow blade for exhaust gas turbines. As an introduction the temperature variation and the stress on a turbine blade for a gas temperature of 900 degrees and circumferential velocities of 600 meters per second are discussed. The assumptions onthe heat transfer coefficients at the blade profile are supported by tests on an electrically heated blade model. The temperature distribution in the cross section of a blade Is thoroughly investigated and the temperature field determined for a special case. A method for calculation of the thermal stresses in turbine blades for a given temperature distribution is indicated. The effect of the heat radiation on the blade temperature also is dealt with. Test-stand experiments on turbine blades are evaluated, particularly with respect to temperature distribution in the cross section; maximum and minimum temperature in the cross section are ascertained. Finally, the application of the hollow blade for a stationary gas turbine is investigated. Starting from a setup for 550 C gas temperature the improvement of the thermal efficiency and the fuel consumption are considered as well as the increase of the useful power by use of high temperatures. The power required for blade cooling is taken into account.

  16. Auto Indexer Auto-Indexer for Percussive Hammers: Vane Motor Dynamometer Testing

    DOE Data Explorer

    Su, Jiann

    2012-01-01

    Objectives Options associated with geothermal drilling operations are generally limited by factors such as formation temperature and rock strength. The objective of the research is to expand the "tool box" available to the geothermal driller by furthering the development of a high-temperature drilling motor that can be used in directional drilling applications for drilling high temperature geothermal formations. The motor is specifically designed to operate in conjunction with a pneumatic down-the-hole-hammer. It provides a more compact design compared to traditional drilling motors such as PDMs (positive displacement motors). The packaging can help to enhance directional drilling capabilities. It uses no elastomeric components, which enables it to operate in higher temperatures ( >250 °F). Current work on the motor has shown that is a capable of operating under pneumatic power with a down-the-hole-hammer. Further development work will include continued testing and refining motor components and evaluating motor capabilities. Targets/Milestones Complete testing current motor - 12/31/2010 Make final material and design decisions - 01/31/2011 Build and test final prototype - 04/31/2011 Final demonstration - 07/31/2011 Impacts The development of the motor will help to achieve program technical objectives by improving well construction capabilities. This includes enabling high-temperature drilling as well as enhancing directional drilling. A key component in the auto indexer is the drive motor. It is an air-driven vane motor that converts the energy stored in the compressed air to mechanical energy. The motor is attached to hammer-like components which impart an impulsive load onto the drive shaft. The impulsive force on the drive shaft in turn creates an indexing action. A controlled test was performed to characterize the performance of the the vane motor for a given pressure. The Sandia dynamometer test station was used to determine the performance of the motor for a given input pressure.

  17. Novel Designs for Application Specific MEMS Pressure Sensors

    PubMed Central

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V.

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0–350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed. PMID:22163425

  18. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.

  19. Status of Complex Langevin

    NASA Astrophysics Data System (ADS)

    Seiler, Erhard

    2018-03-01

    I review the status of the Complex Langevin method, which was invented to make simulations of models with complex action feasible. I discuss the mathematical justification of the procedure, as well as its limitations and open questions. Various pragmatic measures for dealing with the existing problems are described. Finally I report on the progress in the application of the method to QCD, with the goal of determining the phase diagram of QCD as a function of temperature and baryonic chemical potential.

  20. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    NASA Astrophysics Data System (ADS)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  1. Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement.

    PubMed

    Selani, Miriam Mabel; Brazaca, Solange Guidolin Canniatti; Dos Santos Dias, Carlos Tadeu; Ratnayake, Wajira S; Flores, Rolando A; Bianchini, Andreia

    2014-11-15

    This study characterised pineapple pomace (PP) and evaluated its application in extrusion to enhance fibre content of the final product. The pomace had low fat (0.61%) and high dietary fibre (45.22%), showing its potential for fibre enrichment of nutritionally poor products, as some extruded snacks. Results also showed low microbiological counts, water activity, and pH indicating good microbiological quality and low risk of physicochemical deterioration. During extrusion, pomace (0%, 10.5% and 21%), moisture (14%, 15% and 16%) and temperature (140 and 160°C) were evaluated. The PP addition decreased expansion and luminosity; while increasing redness of the extrudates compared to the control (0% pomace/14% moisture/140°C). When hardness, yellowness, water absorption, and bulk density were compared to the control, there was no effect (p>0.05) of 10.5% PP addition on the extrudates, indicating that, at this level, PP could be added without affecting the properties of the final extruded product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Resistive-Type Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Martini, L.; Bocchi, M.; Angeli, G.

    Among the wide range of High-Temperature Superconducting (HTS) materials presently known Bismuth Strontium Calcium Copper Oxide (BSCCO) is a very suitable candidate for power applications either at low temperature (e.g. <30K) at any field or at high temperature (e.g. 77K) in self-field conditions. This is due to several advantages of BSCCO from an electrical, thermal, mechanical and economic point of view. In particular, BSCCO has been proven to be particularly suitable for hybrid current leads and HTS cables. However, BSCCO-based Superconducting Fault Current Limiter (SFCL) applications have been an important issue within the Ricerca sul Sistema Energetico (RSE) S.p.A. R&D portfolio in the last decade. The SFCL project, funded in the framework of a R&D national project, started focusing on a preliminary single-phase device, which was submitted to dielectric and short-circuit current testing. The first success paved the way for the finalization of the remaining two phases and the final result was a three-phase resistive-type 9 kV/3.4 MVA SFCL device, based on first generation (1G) BSCCO tapes that was installed in the S. Dionigi substation, belonging to the Italian utility A2A Reti Elettriche S.p.A. (A2A), in the Milan MV distribution grid. The in-field activity lasted for more than two years, demonstrating the SFCL capability to cope with the grid in every-day operating conditions. Moreover, at the end of the experimentation, the SFCL device was able to perform a true limitation during a three-phase fault, thereby becoming one of the first SFCL devices in the world (the first in Italy) installed in a real grid and to have limited a real short-circuit current.

  3. The effective Tolman temperature in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Kim, Wontae

    We review a recently proposed effective Tolman temperature and present its applications to various gravitational systems. In the Unruh state for the evaporating black holes, the free-fall energy density is found to be negative divergent at the horizon, which is in contrast to the conventional calculations performed in the Kruskal coordinates. We resolve this conflict by invoking that the Kruskal coordinates could be no longer proper coordinates at the horizon. In the Hartle-Hawking-Israel state, despite the negative finite proper energy density at the horizon, the Tolman temperature is divergent there due to the infinite blueshift of the Hawking temperature. However, a consistent Stefan-Boltzmann law with the Hawking radiation shows that the effective Tolman temperature is eventually finite everywhere and the equivalence principle is surprisingly restored at the horizon. Then, we also show that the firewall necessarily emerges out of the Unruh vacuum, so that the Tolman temperature in the evaporating black hole is naturally divergent due to the infinitely blueshifted negative ingoing flux crossing the horizon, whereas the outgoing Hawking radiation characterized by the effective Tolman temperature indeed originates from the quantum atmosphere, not just at the horizon. So, the firewall and the atmosphere for the Hawking radiation turn out to be compatible, once we discard the fact that the Hawking radiation in the Unruh state originates from the infinitely blueshifted outgoing excitations at the horizon. Finally, as a cosmological application, the initial radiation energy density in warm inflation scenarios has been assumed to be finite when inflation starts. We successfully find the origin of the nonvanishing initial radiation energy density in the warm inflation by using the effective Tolman temperature.

  4. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  5. Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  6. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    NASA Astrophysics Data System (ADS)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  7. GaN-Based Laser Wireless Power Transfer System.

    PubMed

    De Santi, Carlo; Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Cesca, Tiziana; Meneghesso, Gaudenzio; Zanoni, Enrico

    2018-01-17

    The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.

  8. GaN-Based Laser Wireless Power Transfer System

    PubMed Central

    Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Meneghesso, Gaudenzio; Zanoni, Enrico

    2018-01-01

    The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications. PMID:29342114

  9. Infrared thermal imaging in medicine.

    PubMed

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  10. COL Application Content Guide for HTGRs: Revision to RG 1.206, Part 1 - Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne Moe

    2012-08-01

    A combined license (COL) application is required by the Nuclear Regulatory Commission (NRC) for all proposed nuclear plants. The information requirements for a COL application are set forth in 10 CFR 52.79, “Contents of Applications; Technical Information in Final Safety Analysis Report.” An applicant for a modular high temperature gas-cooled reactor (HTGR) must develop and submit for NRC review and approval a COL application which conforms to these requirements. The technical information necessary to allow NRC staff to evaluate a COL application and resolve all safety issues related to a proposed nuclear plant is detailed and comprehensive. To this, Regulatorymore » Guide (RG) 1.206, “Combined License Applications for Nuclear Power Plants” (LWR Edition), was developed to assist light water reactor (LWR) applicants in incorporating and effectively formatting required information for COL application review (Ref. 1). However, the guidance prescribed in RG 1.206 presumes a LWR design proposal consistent with the systems and functions associated with large LWR power plants currently operating under NRC license.« less

  11. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    PubMed

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  12. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  13. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications.

    NASA Astrophysics Data System (ADS)

    Lawrence, Mark G.

    2005-02-01

    The relative humidity (RH) and the dewpoint temperature (td) are two widely used indicators of the amount of moisture in air. The exact conversion from RH to td, as well as highly accurate approximations, are too complex to be done easily without the help of a calculator or computer. However, there is a very simple rule of thumb that can be very useful for approximating the conversion for moist air (RH > 50%) which does not appear to be widely known by the meteorological community: td decreases by about 1°C for every 5% decrease in RH (starting at td = t, the dry bulb temperature, when RH = 100%). This article examines the mathematical basis and accuracy of this and other relationships between the dewpoint and relative humidity. Several useful applications of the simple conversion are presented, in particular the computation of the cumulus cloud-base level (or lifting condensation level) as zLCL (20 + t/5) (100 - RH), where zLCL is in meters when t is in degrees Celcius and RH in percent. Finally, a historical perspective is given with anecdotes about some of the early work in this field.

  14. Temperature-assisted photochemical construction of CdS-based ordered porous films with photocatalytic activities on solution surfaces.

    PubMed

    Huang, Zhenxun; Sun, Fengqiang; Zhang, Yu; Gu, Kaiyuan; Zou, Xueqiong; Huang, Yuying; Wu, Qingsong; Zhang, Zihe

    2011-04-15

    Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Li, Lin

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  16. Effect of Meat Type, Animal Fatty Acid Composition, and Isothermal Temperature on the Viscoelastic Properties of Meat Batters.

    PubMed

    Glorieux, Seline; Steen, Liselot; De Brabanter, Jos; Foubert, Imogen; Fraeye, Ilse

    2018-05-22

    The aim of this research was to simultaneously study the effect of meat type (chicken breast and leg meat), animal fatty acid composition (selected pork backfats having a low and high degree of saturation, respectively), and isothermal temperature (50, 60, 70, and 80 °C) on the viscoelastic properties of meat batters during and after application of different time-temperature profiles. Gelation of meat proteins contributed most to the viscoelastic properties of meat batters during heating, whereas crystallization of the lipids especially contributed to the viscoelastic properties during the cooling phase. Although the meat type had little effect on the final viscoelastic properties of the meat product, the fatty acid composition had a clear impact on the melting peak area (and therefore solid fat content) of lard, and subsequently on the final viscoelastic properties of meat batters prepared with different types of fats, with higher G' (elastic modulus) values for the most saturated animal fat. The crystallization of the fat clearly transcended the effect of the meat type with regard to G' at the end of the process. With increasing (isothermal) temperature, G' of meat batters increased. Therefore, it could be concluded that the structural properties of heated meat batters mainly depend on the heating temperature and the fatty acid composition, rather than the meat type. Quality characteristics of cooked sausages depend on multiple factors such as the meat and fat type, non-meat ingredients and processing conditions. From this study it could be concluded that the structural properties of cooked sausage batters mainly depend on the heating temperature and the fatty acid composition, rather than the meat type. Because the fatty acid composition of different animal fats differs widely, these results may be a concern for all manufactures of cooked sausages products with regard to the product structure and final texture, keeping in mind that rendered fat was used in this study, which is not common in sausage making. © 2018 Institute of Food Technologists®.

  17. Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.

    2018-02-01

    We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.

  18. High Tensile Strength Amalgams for In-Space Repair and Fabrication

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2005-01-01

    Amalgams are defined as an alloy of mercury with one or more other metals. These, along with those based on gallium (also liquid at near room temperature), are widely used in dental practice as a tooth filling material. Amalgams have a number of useful attributes that indude room temperature compounding. corrosion resistance, dimensional stability, and good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits their applications. The work presented here demonstrates how, by modifying particle geometry, the tensile strength of amalgams can be increased and thus extending the range of potential applications. This is relevant to, for example, the freeform fabrication of replacement parts that might be necessary during an extended space mission. Advantages, i.e. Figures-of-Merit. include the ability to produce complex parts, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption.

  19. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-10-01

    The applicability of irregular prealloyed Ti-6Al-4V powder for the fabrication of titanium products by pressing and sintering and its employment as a master alloy to obtain the Ti-3Al-2.5V alloy was studied. To this end, the starting powders were characterised by dilatometry, differential thermal analysis and XRD. Green samples were obtained by cold uniaxial pressing, and the evolution of the microstructure over the sintering temperature range 900-1400°C was studied. The variation of the final density and mechanical properties with the sintering temperature was considered. Based on the study carried out, it can be stated that more reliable powders are needed to open the titanium market to new applications. A relative density of 95% and diverse microstructural features and mechanical properties equivalent to those of biomedical devices can be obtained by the pressing and sintering route. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Modeling and fabrication of 4H-SiC Schottky junction

    NASA Astrophysics Data System (ADS)

    Martychowiec, A.; Pedryc, A.; Kociubiński, A.

    2017-08-01

    The rapidly growing demand for electronic devices requires using of alternative semiconductor materials, which could replace conventional silicon. Silicon carbide has been proposed for these harsh environment applications (high temperature, high voltage, high power conditions) because of its wide bandgap, its high temperature operation ability, its excellent thermal and chemical stability, and its high breakdown electric field strength. The Schottky barrier diode (SBD) is known as one of the best refined SiC devices. This paper presents prepared model, simulations and description of technology of 4H-SiC Schottky junction as well as characterization of fabricated structures. The future aim of the application of the structures is an optical detection of an ultraviolet radiation. The model section contains a comparison of two different solutions of SBD's construction. Simulations - as a crucial process of designing electronic devices - have been performed using the ATLAS device of Silvaco TCAD software. As a final result the paper shows I-V characteristics of fabricated diodes.

  1. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    NASA Astrophysics Data System (ADS)

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-11-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.

  2. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    PubMed Central

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-01-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current–voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research. PMID:27819264

  3. Scanning Probe Microscopies and Their Applications Towards the Study of Superconductors

    NASA Astrophysics Data System (ADS)

    Helfrich, Jennifer Ann

    1995-11-01

    The invention of the scanning tunneling microscope (STM) in 1982 made it possible to study surfaces and structures at resolutions previously believed unattainable. Adapting the STM for low temperatures makes it possible to study superconductors with new methods and to obtain valuable information. This thesis describes a novel low temperature STM (LTSTM) that was designed and built at Northwestern University for the purpose of studying superconductors in the mixed state. At low temperatures, this LTSTM has a scan range an order of magnitude larger than other LTSTM's designed elsewhere. It is capable of low temperature imaging and obtaining dI/dV vs. V curves. A detailed study of magnetic force microscopy (MFM) probes is also presented. The fields and forces between probe and surface were computer modeled. These results are compared with results from electron holographs of MFM probes. The final section of the thesis describes an a.c. susceptibility measurement on a UPt_3 sphere. Results are presented and discussed.

  4. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene.

    PubMed

    Pawlak, Ryszard; Lebioda, Marcin; Rymaszewski, Jacek; Szymanski, Witold; Kolodziejczyk, Lukasz; Kula, Piotr

    2016-12-28

    Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common -65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications-superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).

  5. The research of full automatic oil filtering control technology of high voltage insulating oil

    NASA Astrophysics Data System (ADS)

    Gong, Gangjun; Zhang, Tong; Yan, Guozeng; Zhang, Han; Chen, Zhimin; Su, Chang

    2017-09-01

    In this paper, the design scheme of automatic oil filter control system for transformer oil in UHV substation is summarized. The scheme specifically includes the typical double tank filter connection control method of the transformer oil of the UHV substation, which distinguishes the single port and the double port connection structure of the oil tank. Finally, the design scheme of the temperature sensor and respirator is given in detail, and the detailed evaluation and application scenarios are given for reference.

  6. Collaborative Research: Atmospheric Pressure Microplasma Chemistry-Photon Synergies Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, David

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources shows greatly expanded range of applications of each of them. The plasma sources create active chemical species and these can be activated further by addition of photons and associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. The project combines construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling.

  7. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  8. Investigation of consolidation kinetics and microstructure evolution of Al alloys in direct metal laser sintering using phase field simulation

    NASA Astrophysics Data System (ADS)

    Bimal Satpathy, Bubloom; Nandy, Jyotirmoy; Sahoo, Seshadev

    2018-03-01

    Direct metal laser sintering is one of the very efficient processes which comes under the field of additive manufacturing and is capable of producing products of good mechanical and physical properties. The process parameters affect the physical and mechanical properties of the final products. Rapid solidification plays an important role in the consolidation kinetics as the powdered material sinters and forms a polycrystalline structure. In the recent times, the enormous use of computational modeling has helped in examining the utility of final products in a wide range of applications. In this study, a phase field model has been implemented to foresee the consolidation kinetics during the liquid state sintering. Temperature profiles have been used to study the densification behavior and neck growth which is caused by the surface diffusion of particles at initial stage. Later, importance of grain boundary and the volume diffusion during densification process is analyzed. It is also found that with rise in temperature, neck growth also increases rapidly due to the interaction of adjacent grains through grain boundary diffusion and stabilization of grain growth.

  9. Fabrication of biopolymer-based staple electrospun fibres for nanocomposite applications by particle-assisted low temperature ultrasonication.

    PubMed

    Mulky, Elias; Yazgan, Gökçe; Maniura-Weber, Katharina; Luginbuehl, Reto; Fortunato, Giuseppino; Bühlmann-Popa, Ana-Maria

    2014-12-01

    We demonstrate the fabrication of staple polymer-based fibres by the ultrasound-assisted processing of electrospun meshes. Bioabsorbable Poly-L-Lactic Acid (PLLA) was electrospun from organic solvent mixtures, yielding continuous fibres with diameters in the range of 244±78 nm. Subsequently, the obtained fibres were sonicated at low temperatures in the presence of nanoparticles in order to obtain fibres with small aspect ratios. The influence of the dispersion medium, the sonication process parameters (temperature and time) and the dimensions of the particles used on the respective length distribution of the obtained nanofibres was investigated. Hexane was identified as an optimal dispersion medium for the system studied in this work. When a cooling bath temperature of 0°C was used, a slight increase in the obtained fibres' average length and distribution was observed as compared to cooling at -80°C (54±43 μm vs 44±31 μm). Moreover, in the presence of hydroxyapatite and hydrophilic and hydrophobic TiO2 nanoparticles in the dispersion medium longer fibres were obtained (44±31 μm, 63±47 μm, and 51±52 μm). Finally, the application of the obtained PLLA-fibre-hydroxyapatite (HA) nanoparticle precursors for the fabrication of a fibre-reinforced Brushite-based cement with high compressive strength is shown. This method of obtaining nanoscaled fibre-reinforced materials opens up a wide range of perspectives for the fabrication of composites for tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  11. Numerical Study of a 10 K Two Stage Pulse Tube Cryocooler with Precooling Inside the Pulse Tube

    NASA Astrophysics Data System (ADS)

    Xiaomin, Pang; Xiaotao, Wang; Wei, Dai; Jianyin, Hu; Ercang, Luo

    2017-02-01

    High efficiency cryocoolers working below 10 K have many applications such as cryo-pump, superconductor cooling and cryogenic electronics. This paper presents a thermally coupled two-stage pulse tube cryocooler system and its numeric analysis. The simulation results indicate that temperature distribution in the pulse tube has a significant impact on the system performance. So a precooling heat exchanger is put inside the second stage pulse tube for a deep investigation on its influence on the system performance. The influences of operating parameters such as precooling temperature, location of the precooling heat exchanger are discussed. Comparison of energy losses apparently show the advantages of the configuration which leads to an improvement on the efficiency. Finally, the cryocooler is predicted to be able to reach a relative Carnot efficiency of 10.7% at 10 K temperature.

  12. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE PAGES

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; ...

    2018-02-15

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  13. Isolating the anthropogenic component of Arctic warming

    DOE PAGES

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less

  14. Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids

    DOE PAGES

    Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei; ...

    2017-11-28

    Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less

  15. MLP based LOGSIG transfer function for solar generation monitoring

    NASA Astrophysics Data System (ADS)

    Hashim, Fakroul Ridzuan; Din, Muhammad Faiz Md; Ahmad, Shahril; Arif, Farah Khairunnisa; Rizman, Zairi Ismael

    2018-02-01

    Solar panel is one of the renewable energy that can reduce the environmental pollution and have a wide potential of application. The exact solar prediction model will give a big impact on the management of solar power plants and the design of solar energy systems. This paper attempts to use Multilayer Perceptron (MLP) neural network based transfer function. The MLP network can be used to calculate the temperature module (TM) in Malaysia. This can be done by simulating the collected data of four weather variables which are the ambient temperature (TA), local wind speed (VW), solar radiation flux (GT) and the relative humidity (RH) as the input into the neural network. The transfer function will be applied to the 14 types of training. Finally, an equation from the best training algorithm will be deduced to calculate the temperature module based on the input of weather variables in Malaysia.

  16. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  17. Integrated multispectral high-power laser platform for the defeat of heat-seeking missiles

    NASA Astrophysics Data System (ADS)

    Tadjikov, Boris; Tsekoun, Alexei; Lyakh, Arkadiy; Maulini, Richard; Barron, Rodolfo; Patel, C. Kumar N.

    2011-06-01

    Quantum cascade lasers are finding rapid acceptance in many defense and security applications. Our new multispectral laser platform providing watt-level outputs near 2.0 μm, 4.0 μm and 4.6 μm in continuous wave regime at room temperature. Individual lasers are spectrally beam combined into a single output beam with excellent quality. Our rugged, compact (11 × 10 × 6.5 inches), and highly reliable, air-cooled multispectral laser platform is already finding acceptance at system level. Our uncooled devices produce > 2W at 4.6 μm and >1.5W at 4.0 μm at room temperature, and maintain watt-level output at 67°C with real wallplug efficiencies >10%. Finally, all of our QCLs undergo 100-hour pre-delivery burn-in and pass shock, vibration, and temperature testing according to MIL-STD-810G.

  18. Method for making carbon films

    DOEpatents

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  19. Method for making carbon films

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  20. Development of an improved GTA (gas tungsten arc) weld temperature monitor fixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollar, D.L.

    1990-05-01

    An initial design weld temperature control fixture was implemented into final closure of an electronic assembly in November 1986. Use of this fixture indicated several areas that could be improved. Review of these areas with the process engineer and the weld operator provided the ideas to be incorporated into the new design Phase 2 fixture. Some primary areas of change and improvement included fixture mobility to provide better accessibility to the weld joint area, automatic timed blow cooling of the weld joint, and a feature to assure proper thermocouple placement. The resulting Phase 2 fixture design provided all of themore » essential weld temperature monitoring features in addition to several significant improvements. Technology developed during this project will pave the way to similar process monitoring of other manual gas tungsten arc (GTA) welding applications. 9 figs.« less

  1. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium

    DOE PAGES

    Brygoo, Stephanie; Millot, Marius; Loubeyre, Paul; ...

    2015-11-16

    Megabar (1 Mbar = 100 GPa) laser shocks on precompressed samples allow reaching unprecedented high densities and moderately high ~10 3–10 4 K temperatures. We describe in this paper a complete analysis framework for the velocimetry (VISAR) and pyrometry (SOP) data produced in these experiments. Since the precompression increases the initial density of both the sample of interest and the quartz reference for pressure-density, reflectivity, and temperature measurements, we describe analytical corrections based on available experimental data on warm dense silica and density-functional-theory based molecular dynamics computer simulations. Finally, using our improved analysis framework, we report a re-analysis of previouslymore » published data on warm dense hydrogen and helium, compare the newly inferred pressure, density, and temperature data with most advanced equation of state models and provide updated reflectivity values.« less

  2. Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei

    Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less

  3. Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat.

    PubMed

    Vaikousi, Hariklia; Biliaderis, Costas G; Koutsoumanis, Konstantinos P

    2009-08-15

    The applicability of a microbial Time Temperature Indicator (TTI) prototype, based on the growth and metabolic activity of a Lactobacillus sakei strain developed in a previous study, in monitoring quality of modified atmosphere packed (MAP) minced beef was evaluated at conditions simulating the chill chain. At all storage temperatures examined (0, 5, 10, 15 degrees C), the results showed that lactic acid bacteria (LAB) were the dominant bacteria and can be used as a good spoilage index of MAP minced beef. The end of product's shelf life as revealed by the sensory evaluation coincided with a LAB population level of 7 log(10) CFU/g. For all temperatures tested, the growth of L. sakei in the TTI resembled closely the growth of LAB in the meat product, with similar temperature dependence of the micro(max) and thus similar activation energy values calculated as 111.90 and 106.90 kJ/mol, for the two systems, respectively. In addition, the end point of TTI colour change coincided with the time of sensory rejection point of the beef product during its storage under isothermal chilled temperature conditions. The estimated activation energy, E(alpha), values obtained for parameters related to the response of DeltaE (total colour change of the TTI) describing the kinetics of colour change of the TTI during isothermal storage (i.e. the maximum specific rate of DeltaEpsilon evolution curve, micro(DeltaEpsilon), and also the reciprocal of t(i), time at which half of the maximum DeltaEpsilon is reached), were 112.77 and 127.28 kJ/mol, respectively. Finally, the application of the microbial TTI in monitoring the quality deterioration of MAP minced beef due to spoilage was further evaluated under dynamic conditions of storage, using two separate low temperature periodic changing scenarios, resembling the actual conditions occurring in the distribution chill chain. The results showed that the end point of TTI, after storage at those fluctuating temperature conditions, was noted very close to the end of product's sensorial shelf life. This finding points to the applicability of the developed microbial TTI as a valuable tool for monitoring the quality status during distribution and storage of chilled meat products, which are spoiled by lactic acid bacteria or other bacteria exhibiting similar kinetic responses and spoilage potential.

  4. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-08-01

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  5. Diffracted wavefront measurement of a volume phase holographic grating at cryogenic temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; Habraken, Serge; Lemaire, Philippe

    2006-09-20

    Flatness of the wavefront diffracted by grating can be mandatory for some applications. At ambient temperature, the wavefront diffracted by a volume phase holographic grating (VPHG) is well mastered by the manufacturing process and can be corrected or shaped by post polishing. However, to be used in cooled infrared spectrometers, VPHGs have to stand and work properly at low temperatures.We present the measurement of the wavefront diffracted by atypical VPHG at various temperatures down to 150 K and at several thermal inhomogeneity amplitudes. The particular grating observed was produced using a dichromated gelatine technique and encapsulated between two glass blanks.more » Diffracted wavefront measurements show that the wavefront is extremely stable according to the temperature as long as the latter is homogeneous over the grating stack volume. Increasing the thermal inhomogeneity increases the wavefront error that pinpoints the importance of the final instrument thermal design. This concludes the dichromated gelatine VPHG technology, used more and more in visible spectrometers, can be applied as it is to cooled IR spectrometers.« less

  6. Enhancement of the dark matter abundance before reheating: Applications to gravitino dark matter

    NASA Astrophysics Data System (ADS)

    Garcia, Marcos A. G.; Mambrini, Yann; Olive, Keith A.; Peloso, Marco

    2017-11-01

    In the first stages of inflationary reheating, the temperature of the radiation produced by inflaton decays is typically higher than the commonly defined reheating temperature TR H˜(ΓϕMP)1/2 where Γϕ is the inflaton decay rate. We consider the effect of particle production at temperatures at or near the maximum temperature attained during reheating. We show that the impact of this early production on the final particle abundance depends strongly on the temperature dependence of the production cross section. For ⟨σ v ⟩˜Tn/Mn +2, and for n <6 , any particle produced at Tmax is diluted by the later generation of entropy near TR H. This applies to cases such as gravitino production in low scale supersymmetric models (n =0 ) or NETDM models of dark matter (n =2 ). However, for n ≥6 the net abundance of particles produced during reheating is enhanced by over an order of magnitude, dominating over the dilution effect. This applies, for instance to gravitino production in high scale supersymmetry models where n =6 .

  7. Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models

    NASA Astrophysics Data System (ADS)

    Samadian, P.; Parsa, M. H.; Mirzadeh, H.

    2015-02-01

    Nowadays, the application of kinetics models for predicting microstructures of steels subjected to thermo-mechanical treatments has increased to minimize direct experimentation, which is costly and time consuming. In the current work, the final microstructures of AISI 4140 steel sheets after the hot stamping process were predicted using the Kirkaldy and Li kinetics models combined with new thermodynamically based models in order for the determination of the appropriate process temperatures. In this way, the effect of deformation during hot stamping on the Ae3, Acm, and Ae1 temperatures was considered, and then the equilibrium volume fractions of phases at different temperatures were calculated. Moreover, the ferrite transformation rate equations of the Kirkaldy and Li models were modified by a term proposed by Åkerström to consider the influence of plastic deformation. Results showed that the modified Kirkaldy model is satisfactory for the determination of appropriate austenitization temperatures for the hot stamping process of AISI 4140 steel sheets because of agreeable microstructure predictions in comparison with the experimental observations.

  8. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    PubMed

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  9. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  10. Hypergeometric Series Solution to a Class of Second-Order Boundary Value Problems via Laplace Transform with Applications to Nanofluids

    NASA Astrophysics Data System (ADS)

    Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.

    2017-03-01

    Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.

  11. Laser-induced regeneration of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey

    2011-08-01

    Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.

  12. Whispering gallery resonators for optical sensing

    NASA Astrophysics Data System (ADS)

    Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle

    2017-04-01

    In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.

  13. Cadmium migration in aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1976-01-01

    The effects of temperature, the nature of separator material, charge and discharge, carbonate contamination, and the mode of storage are studied with respect to the migration of active material from the negative toward the positive plate. A theoretical model is proposed which takes into account the solubility of cadmium in various concentrations of hydroxide and carbonate at different temperatures, the generation of the cadmiate ion, Cd(OH)3(-), during discharge, the migration of the cadmiate ion and particulate Cd(OH)2 due to electrophoretic effects and the movement of electrolyte in and out of the negative plate and, finally, the recrystallization of cadmiate ion in the separator as Cd(OH)2. Application of the theoretical model to observations of cadmium migration in cycled cells is also discussed.

  14. Investigation on Two-Stage 300 HZ Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Cai, H. K.; Yang, L. W.; Hong, G. T.; Luo, E. C.; Zhou, Y.

    2010-04-01

    In the past few years, ultra-high frequency pulse tube cryocoolers are becoming a research hotspot for their portability and compactness in aerospace and aviation applications. For preliminary research, a two-stage pulse tube cryocooler working at 300 Hz driven by a thermoacoustic engine is established to investigate the problems due to ultra high frequency, and several results have been derived in our early reports. In order to study the effect of thermal penetration depth, this paper presents the cooler adopting copper mesh as the regenerator, and comparison with stainless steel mesh is given. In addition, the influence of inertance tube on the lowest possible cooler temperature is also tested. Finally, we discuss the improvement for getting a lower temperature.

  15. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    NASA Astrophysics Data System (ADS)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  16. Effect of Heat Treatment Parameters on the Microstructure and Properties of Inconel-625 Superalloy

    NASA Astrophysics Data System (ADS)

    Sukumaran, Arjun; Gupta, R. K.; Anil Kumar, V.

    2017-07-01

    Inconel-625 is a solid solution-strengthened alloy used for long-duration applications at high temperatures and moderate stresses. Different heat treatment cycles (temperatures of 625-1025 °C and time of 2-6 h) have been studied to obtain optimum mechanical properties suitable for a specific application. It has been observed that room temperature strength and, hardness decreased and ductility increased with increase in heat treatment temperature. The rate of change of these properties is found to be moderate for the samples heat-treated up to 850 °C, and thereafter, it increases rapidly. It is attributed to the microstructural changes like dissolution of carbides, recrystallization and grain growth. Microstructures are found to be predominantly single-phase austenitic with the presence of fine alloy carbides. The presence of twins is observed in samples heat-treated at lower temperature, which act as nucleation sites for recrystallization at 775 °C. Beyond 850 °C, the role of carbides present in the matrix is subsided by the coarsening of recrystallized grains and finally at 1025 °C, significant dissolution of carbide results in substantial reduction in strength and increase in ductility. Elongation to an extent of >71% has been obtained in sample heat-treated at 1025 °C indicating excellent tendency for cold workability. Failure of heat-treated specimens is found to be mainly due to carbide particle-matrix decohesion which acts as locations for crack initiation.

  17. Selection of High Temperature Organic Materials for Future Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Shin, Euy-Sik Eugene

    2017-01-01

    In the future higher temperature Stirling convertors for improved efficiency and performance, various high temperature organic materials have been demanded as essential components for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The higher temperature capabilities would also allow current state-of-the-art (SOA) convertors to be used in additional missions, particularly those that require a Venus flyby for a gravity assist. Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of comprehensive structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, o-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This paper presents results of the three-step candidate evaluation processes, their application limitations, and the final selection recommendations.

  18. Infrared Cephalic-Vein to Assist Blood Extraction Tasks: Automatic Projection and Recognition

    NASA Astrophysics Data System (ADS)

    Lagüela, S.; Gesto, M.; Riveiro, B.; González-Aguilera, D.

    2017-05-01

    Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms. This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.

  19. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    DTIC Science & Technology

    2016-09-07

    AFRL-AFOSR-UK-TR-2016-0021 Distributed Low Temperature Combustion 133024 Peter Lindstedt IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY & MEDICINE Final...TYPE Final 3. DATES COVERED (From - To) 01 Feb 2013 to 31 Jul 2016 4. TITLE AND SUBTITLE Distributed Low Temperature Combustion: Fundamental...identification of five separate fluid states. 15. SUBJECT TERMS EOARD, Low Temperature Combustion, Combustion Regime Transitions 16. SECURITY

  20. Design and development of NiTi-based precipitation-strengthened high-temperature shape memory alloys for actuator applications

    NASA Astrophysics Data System (ADS)

    Hsu, Derek Hsen Dai

    As a vital constituent in the field of smart materials and structures, shape memory alloys (SMAs) are becoming ever-more important due to their wide range of commercial and industrial applications such as aircraft couplings, orthodontic wires, and eyeglasses frames. However, two major obstacles preventing SMAs from fulfilling their potential as excellent actuator materials are: 1) the lack of commercially-viable SMAs that operate at elevated temperatures, and 2) the degradation of mechanical properties and shape memory behavior due to thermal cyclic fatigue. This research utilized a thermodynamically-driven systems design approach to optimize the desired properties by controlling the microstructure and processing of high-temperature SMAs (HTSMAs). To tackle the two aforementioned problems with HTSMAs, the introduction of Ni2TiAl coherent nanoprecipitates in a Ni-Ti-Zr/Hf HTSMA matrix is hypothesized to strengthen the martensite phase while simultaneously increasing the transformation temperature. Differential scanning calorimetry (DSC) was used to determine the transformation temperatures and thermal cyclic stability of each alloy. Also, microstructural characterization was performed using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Lastly, compression testing was used to assess the mechanical behavior of the alloys. From the investigation of the first set of Ni48.5Ti31.5-X Zr20AlX (X = 0, 1, 2, 3) prototype alloys, Al addition was found to decrease the transformation temperatures, decrease the thermal cyclic stability, but also increase the strength due to the nucleation and growth of embrittling NiTi2 and NiTiZr Laves phases. However, the anticipated Heusler phase precipitation did not occur. The next study focused on Ni50Ti30-XHf20Al X (X = 0, 1, 2, 3, 4, 5) prototype alloys which replaced Zr with Hf to avoid the formation of brittle Laves phases. Heusler precipitation was successfully demonstrated in the aged 4 and 5% Al alloys, but no transformation was detected. Finally, the last investigation explored the potential of high transformation temperatures in Ni50Ti25-XHf25AlX and Ni50Ti20-XHf30AlX (X = 0, 1, 2, 3, 4, 5) prototype alloys. The final design was narrowed down to a Ni 50Ti20Hf25Al5 alloy aged at 800°C that is expected to exhibit high transformation temperatures while concurrently strengthened by Heusler nanoprecipitates.

  1. Temperature preference of the white perch, Morone americana, collected in the Wicomico River, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W. Jr.; Hocutt, C.H.; Stauffer, J.R. Jr.

    1979-06-01

    Temperature preference tests were conducted on fresh water white perch (Morone americana), collected from the Wicomico River, Maryland. Collection temperature was 27/sup 0/C and acclimation temperatures used in temperature preference tests were 6, 12, 18, 24, 30, and 33/sup 0/C. The following methods were used to determine the final temperature preference:linear regression, quadratic equation, and eyeball plots. Recorded final temperature preference values were 28.9, 29.3, and 30.6/sup 0/C using each method respectively.

  2. Microwave application on air drying of apple (var. Granny Smith). The influence of vacuum impregnation pretreatment

    NASA Astrophysics Data System (ADS)

    Martin Esparza, Maria Eugenia

    Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).

  3. Toward continuous glucose monitoring with planar modified biosensors and microdialysis. Study of temperature, oxygen dependence and in vivo experiment.

    PubMed

    Ricci, Francesco; Caprio, Felice; Poscia, Alessandro; Valgimigli, Francesco; Messeri, Dimitri; Lepori, Elena; Dall'Oglio, Giorgio; Palleschi, Giuseppe; Moscone, Danila

    2007-04-15

    Glucose biosensors based on the use of planar screen-printed electrodes modified with an electrochemical mediator and with glucose oxidase have been optimised for their application in the continuous glucose monitoring in diabetic patients. A full study of their operative stability and temperature dependence has been accomplished, thus giving useful information for in vivo applications. The effect of dissolved oxygen concentration in the working solution was also studied in order to evaluate its effect on the linearity of the sensors. Glucose monitoring performed with serum samples was performed to evaluate the effect of matrix components on operative stability and demonstrated an efficient behaviour for 72 h of continuous monitoring. Finally, these studies led to a sensor capable of detecting glucose at concentrations as low as 0.04 mM and with a good linearity up to 2.0 mM (at 37 degrees C) with an operative stability of ca. 72 h, thus demonstrating the possible application of these sensors for continuous glucose monitoring in conjunction with a microdialysis probe. Moreover, preliminary in vivo experiments for ca. 20 h have demonstrated the feasibility of this system.

  4. Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Richard James; Voter, Arthur F.; Perez, Danny

    Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling time scales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The Temperature Accelerated Dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiplemore » states. Here we utilize a discrete event-based application simulator to introduce and explore a new Speculatively Parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Finally, following this method, we discover that a nontrivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.« less

  5. Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics

    DOE PAGES

    Zamora, Richard James; Voter, Arthur F.; Perez, Danny; ...

    2016-12-01

    Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling time scales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The Temperature Accelerated Dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiplemore » states. Here we utilize a discrete event-based application simulator to introduce and explore a new Speculatively Parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Finally, following this method, we discover that a nontrivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.« less

  6. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  7. Elevated temperature alters proteomic responses of individual organisms within a biofilm community

    DOE PAGES

    Mosier, Annika C.; Li, Zhou; Thomas, Brian C.; ...

    2014-07-22

    Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. In this paper, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entiremore » community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Finally, overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.« less

  8. Novel erbia-yttria co-doped zirconia fluorescent thermal history sensor

    NASA Astrophysics Data System (ADS)

    Copin, E. B.; Massol, X.; Amiel, S.; Sentenac, T.; Le Maoult, Y.; Lours, P.

    2017-01-01

    Thermochromic pigments are commonly used for off-line temperature mapping on components from systems operating at a temperature higher than 1073 K. However, their temperature resolution is often limited by the discrete number of color transitions they offer. This paper investigates the potential of erbia-yttria co-doped zirconia as a florescent thermal history sensor alternative to thermochromic pigments. Samples of yttria-stabilized zirconia powder (YSZ, 8.3 mol% YO1.5) doped with 1.5 mol% ErO1.5 and synthesized by a sol-gel route are calcined for 15 minutes under isothermal conditions between 1173 and 1423 K. The effects of temperature on their crystal structure and room temperature fluorescence properties are then studied. Results show a steady increase of the crystallinity of the powders with temperature, causing a significant and permanent increase of the emission intensity and fluorescence lifetime which could be used to determine temperature with a calculated theoretical resolution lower than 1 K for intensity. The intensity ratio obtained using a temperature insensitive YSZ:Eu3+ reference phosphor is proposed as a more robust parameter regarding experimental conditions for determining thermal history. Finally, the possibilities for integrating this fluorescent marker into sol-gel deposited coatings for future practical thermal history sensing applications is also discussed.

  9. Relationship between structural and dynamic properties of Al-rich Al-Cu melts: Beyond the Stokes-Einstein relation

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2016-12-01

    We perform ab initio molecular dynamics simulations to study structural and transport properties in liquid A l1 -xC ux alloys, with copper composition x ≤0.4 , in relation to the applicability of the Stokes-Einstein (SE) equation in these melts. To begin, we find that self-diffusion coefficients and viscosity are composition dependent, while their temperature dependence follows an Arrhenius-type behavior, except for x =0.4 at low temperature. Then, we find that the applicability of the SE equation is also composition dependent, and its breakdown in the liquid regime above the liquidus temperature can be related to different local ordering around each species. In this case, we emphasize the difficulty of extracting effective atomic radii from interatomic distances found in liquid phases, but we see a clear correlation between transport properties and local ordering described through the structural entropy approximated by the two-body contribution. We use these findings to reformulate the SE equation within the framework of Rosenfeld's scaling law in terms of partial structural entropies, and we demonstrate that the breakdown of the SE relation can be related to their temperature dependence. Finally, we also use this framework to derive a simple relation between the ratio of the self-diffusivities of the components and the ratio of their partial structural entropies.

  10. Structural studies on aqueous gelatin solutions: Implications in designing a thermo-responsive nanoparticulate formulation.

    PubMed

    Ahsan, Saad M; Rao, Ch Mohan

    2017-02-01

    Gelatin as a polymer has found extensive application in the pharmaceutical industry. It is also being used, as a matrix molecule, for nanoparticle based drug delivery applications. Gelatin nanoparticles synthesised, keeping the native structure intact, show interesting properties. Synthesizing such nanoparticles requires an understanding of the structural features of gelatin under conditions of nanoparticle synthesis and preserving them during the process. To address this we have carried out an extensive characterization of gelatin using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) under various reaction conditions that are utilized in the desolvation method for gelatin nanoparticle synthesis. We investigated the gel-sol transition, hysteresis and gelatin fibre morphology under different pH and temperature conditions. We also investigated the temperature and pH dependence of triple-helix to random-coil transition in gelatin. We finally demonstrate the synthesis of gelatin nanoparticles with native gelatin. These nanoparticles show shrinkage in size (∼90nm) with increase in temperature from 30°C (369.4 ±19.8) to 40°C (282.3±9.8). Our results suggest that by carefully selecting the reaction conditions, it is possible to synthesise nanoparticles having partially folded structures and with a varying degree of sensitivity towards temperature and pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bulk Al-Al3Zr composite prepared by mechanical alloying and hot extrusion for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Pourkhorshid, E.; Enayati, M. H.; Sabooni, S.; Karimzadeh, F.; Paydar, M. H.

    2017-08-01

    Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600°C for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550°C. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600°C for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300°C is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.

  12. Programmed temperature gasification study. Final report, October 1, 1979-November 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spoon, M.J.; Gardner, M.P.; Starkovich, J.A.

    An experimental, modeling and conceptual engineering analysis study has been performed to assess the feasibility of TRW's Programmed Temperature Gasification (PTG) concept for carbonizing caking coals without severe agglomeration. The concept involves control of carbonizing heating rate to maintain metaplast concentration at a level equal to or slightly below that which causes agglomeration. The experimental studies required the contruction of a novel programmed temperature, elevated pressure, hot stage video microscope for observation of coal particle changes during heating. This system was used to develop a minimum-time heating schedule capable of carbonizing the coal at elevated pressures in the presence ofmore » hydrogen without severe agglomeration. Isothermal fixed heating rate data for a series of coals were subsequently used to calibrate and verify the mathematical model for the PTG process. These results showed good correlation between experimental data and mathematical predictions. Commercial application of the PTG concept to batch, moving bed and fluid bed processing schemes was then evaluated. Based on the calibrated model programmed temperature gasification of the coal without severe agglomeration could be carried out on a commercial batch reaction in 4 to 12 minutes. The next step in development of the PTG concept for commercial application would require testing on a bench scale (3-inch diameter) gasifier coupled with a full commercial assessment to determine size and cost of various gasification units.« less

  13. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    NASA Astrophysics Data System (ADS)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  14. Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch.

    PubMed

    Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-09-01

    Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of Natural Air Drying on Shelled Corn in Timor

    NASA Astrophysics Data System (ADS)

    Nino, J.; Nelwan, L. O.; Purwanto, Y. A.

    2018-05-01

    A study of the application of natural air drying on shelled corn in Timor using a bed- type dryer has been performed. The study aspects were limited to obtain the suitable air flow rate requirement and duration of the drying operation per day. For each aspect, the treatments were carried out simultaneously. The results showed that at the average ambient air temperature of 30.6°C and relative humidity (RH) of 73.0% the air flow rate of 0.83 L/s-kg provided the highest drying rate. Subsequently, by using the same air flow rate, three scheme of drying operations duration were used, i.e., 8 hours per day (08.00-16.00), 6 hours per day (09.00-15.00) and 4 hours per day (10.00-14.00). The average temperature and RH of ambient air condition at the second experiment were 30.3°C and 73.3% respectively. After 4 days of drying, the 8 hours per day (first scheme) treatment was able to dry the shelled corn from the initial moisture content of 27.24% w.b. to the final moisture content of 14.05% w.b. The specific energy consumption (SEC) of the first scheme was 1.75 MJ/kg. The final moisture content of the second and third schemes were 15.08 % w.b. and 18.45 % w.b. respectively with SEC of 1.41 MJ/kg and 1.21 MJ/kg respectively.

  16. Thin film battery/fuel cell power generating system. Final report of the continuation contract (Tasks 1-4), April 1, 1978-March 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-30

    Research on the design, development, and testing of a high-temperature solid electrolyte (HTSOE) fuel cell is described in detail. Task 1 involves the development and refinement of fabrication processes for the porous support tube, fuel electrode, solid electrolyte, air electrode, and interconnection. Task 2 includes the life testing of cell components and the stack; task 3 involves the stack performance evaluation; task 4 includes demonstrating the reproducibility of 10 watt stacks. A cost, design and benefit study to evaluate the nature and worth of an industrial cogeneration application of the HTSOE fuel cell is underway. Here, promisng applications are nowmore » being considered, from which a single application has been selected as a basis for the study - an integrated aluminum production facility. (WHK)« less

  17. Synthesis of Helical Carbon Fibers and Related Materials: A Review on the Past and Recent Developments

    PubMed Central

    Raghubanshi, Himanshu; Dikio, Ezekiel Dixon

    2015-01-01

    Helical carbon fibers (HCFs) have been widely studied due to their unique helical morphology and superior properties, which make them efficient materials for several potential applications. This review summarizes the past and current advancement on the synthesis of HCFs. The review focuses and discusses synthesis strategies and effect of experimental parameters on the growth of HCFs. The effect of preparation method of catalyst, catalyst nature, catalyst composition, catalyst size, catalyst initial and final shape, reaction temperature, reaction time, carbon source, impurities, and electromagnetic field on the growth of HCFs is reviewed. We also discuss the growth mechanism for HCFs and the synthesis of HCFs related materials. Finally, we conclude with a brief summary and an outlook on the challenges and future prospects of HCFs. PMID:28347045

  18. High temperature annealing of ion irradiated tungsten

    DOE PAGES

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W + ions, 500°C, 1014 W +/cm 2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View themore » MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding E a=1.34±0.2 eV for the 700–1100°C range.« less

  19. Synthesis, characterization and ellipsometric study of ultrasonically sprayed Co3O4 films

    NASA Astrophysics Data System (ADS)

    Gençyılmaz, O.; Taşköprü, T.; Atay, F.; Akyüz, İ.

    2015-10-01

    In the present study, cobalt oxide (Co3O4) films were produced using ultrasonic spray pyrolysis technique onto the glass substrate at different temperatures (200-250-300-350 °C). The effect of substrate temperature on the structural, optical, surface and electrical properties of Co3O4 films was reported. Thickness, refractive index and extinction coefficient of the films were determined by spectroscopic ellipsometry, and X-ray diffraction analyses revealed that Co3O4 films were polycrystalline fcc structure and the substrate temperature significantly improved the crystal structure of Co3O4 films. The films deposited at 350 °C substrate temperature showed the best structural quality. Transmittance, absorbance and reflectance spectra were taken by means of UV-Vis spectrophotometer, and optical band gap values were calculated using optical method. Surface images and roughness values of the films were taken by atomic force microscopy to see the effect of deposition temperature on surface properties. The resistivity of the films slightly decreases with increase in the substrate temperature from 1.08 × 104 to 1.46 × 102 Ω cm. Finally, ultrasonic spray pyrolysis technique allowed production of Co3O4 films, which are alternative metal oxide film for technological applications, at low substrate temperature.

  20. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures.

    PubMed

    Sudhaus, Nadine; Pina-Pérez, Maria Consuelo; Martínez, Antonio; Klein, Günter

    2012-05-01

    The purpose of this study was to assess the effect of a commercial peracetic acid-based disinfectant against spores of Bacillus cereus, to identify the most influential factor for the final number of microorganisms after different disinfection procedures, and to evaluate the nature of the inactivation kinetics. The spores of four different strains of B. cereus (DSM 318, 4312, 4313, and 4384) were treated with five different disinfectant concentrations (0.25%, 0.5%, 1.0%, 1.5%, and 2.0% [w/v]) at three different temperatures (10°C, 15°C, and 20°C) with or without protein load. A higher temperature and PES 15/23 concentration resulted in a higher inactivation. Inactivation of B. cereus strain 4312 was around 2 log₁₀ cycles at 10°C and around 7 log₁₀ at 20°C (conc=1% [w/v] PAA; t=60 min; without protein). The protein load at higher concentrations did not significantly reduce the efficacy of the disinfectant (p>0.05). This article indicates the applicability of the Weibull model to fit the B. cereus disinfectant survival curves. A Monte Carlo simulation was used to carry out a sensitivity analysis, which revealed the most influential factors affecting the final number of microorganisms after the disinfection process.

  1. Enhancement in transport critical current density of ex situ PIT Ag/(Ba, K)Fe2As2 tapes achieved by applying a combined process of flat rolling and uniaxial pressing

    NASA Astrophysics Data System (ADS)

    Togano, Kazumasa; Gao, Zhaoshun; Matsumoto, Akiyoshi; Kumakura, Hiroaki

    2013-11-01

    We report that the transport critical current density Jc of ex situ powder-in-tube (PIT) processed (Ba, K)Fe2As2 (Ba-122) tapes can be significantly enhanced by applying uniaxial cold pressing at the final stage of deformation. The tapes were prepared by packing high quality precursor powder into a Ag tube, cycles of rolling and intermediate annealing, and pressing followed by the final heat treatment for sintering. The Jc values in applied magnetic fields were increased by almost one order of magnitude compared to the tapes processed without pressing, exceeding 104 A cm-2 at 4.2 K. We achieved the highest Jc (at 4.2 K and 10 T) of 2.1×104 A cm-2 among PIT-processed Fe-based wires and tapes reported so far. The Jc-H curves measured at higher temperatures maintain small field dependence up to around 20 K, suggesting that these tapes are promising for applications at higher temperatures as well as at liquid helium temperature. The microstructure investigations reveal that there are two possible causes of the large Jc enhancement by pressing: one is densification and the other is the change of crack structure. Optimization of processing parameters such as the reduction ratio of rolling and pressing is expected to yield further Jc enhancement.

  2. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2013-01-01 2013-01-01 false Contents of applications; technical information in final...

  3. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2012-01-01 2012-01-01 false Contents of applications; technical information in final...

  4. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2014-01-01 2014-01-01 false Contents of applications; technical information in final...

  5. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2011-01-01 2011-01-01 false Contents of applications; technical information in final...

  6. Effects of temperature variations on guided waves propagating in composite structures

    NASA Astrophysics Data System (ADS)

    Shoja, Siavash; Berbyuk, Viktor; Boström, Anders

    2016-04-01

    Effects of temperature on guided waves propagating in composite materials is a well-known problem which has been investigated in many studies. The majority of the studies is focused on effects of high temperature. Understanding the effects of low temperature has major importance in composite structures and components which are operating in cold climate conditions such as e.g. wind turbines operating in cold climate regions. In this study first the effects of temperature variations on guided waves propagating in a composite plate is investigated experimentally in a cold climate chamber. The material is a common material used to manufacture rotor blades of wind turbines. The temperature range is 25°C to -25°C and effects of temperature variations on amplitude and phase shift of the received signal are investigated. In order to apply the effects of lowering the temperature on the received signal, the Baseline Signal Stretch (BSS) method is modified and used. The modification is based on decomposing the signal into symmetric and asymmetric modes and applying two different stretch factors on each of them. Finally the results obtained based on the new method is compared with the results of application of BSS with one stretch factor and experimental measurements. Comparisons show that an improvement is obtained using the BSS with the mode decomposition method at temperature variations of more than 25°C.

  7. A Review of PAT Strategies in Secondary Solid Oral Dosage Manufacturing of Small Molecules.

    PubMed

    Laske, Stephan; Paudel, Amrit; Scheibelhofer, Otto

    2017-03-01

    Pharmaceutical solid oral dosage product manufacturing is a well-established, yet revolutionizing area. To this end, process analytical technology (PAT) involves interdisciplinary and multivariate (chemical, physical, microbiological, and mathematical) methods for material (e.g., materials, intermediates, products) and process (e.g., temperature, pressure, throughput, etc.) analysis. This supports rational process modeling and enhanced control strategies for improved product quality and process efficiency. Therefore, it is often difficult to orient and find the relevant, integrated aspects of the current state-of-the-art. Especially, the link between fundamental research, in terms of sensor and control system development, to the application both in laboratory and manufacturing scale, is difficult to comprehend. This review compiles a nonexhaustive overview on current approaches from the recognized academia and industrial practices of PAT, including screening, selection, and final implementations in solid oral dosage manufacturing, through a wide diversity of use cases. Finally, the authors attempt to extract a common consensus toward developing PAT application guidance for different unit operations of drug product manufacturing. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Increasing Patient Safety by Closing the Sterile Production Gap-Part 3-Moist Heat Resistance of Bioburden.

    PubMed

    Agalloco, James P

    2017-01-01

    Terminal sterilization is considered the preferred means for the production of sterile drug products, as it affords enhanced safety for the patient because the formulation is sterilized in its sealed, final container. Despite the obvious patient benefits, the use of terminal sterilization is artificially constrained by unreasonable expectations for the minimum time-temperature process to be used. The core misunderstanding with terminal sterilization is the notion that destruction of a high population of a resistant biological indicator microorganism is required. More contemporary thinking on sterilization acknowledges that the bioburden is the actual target in sterilization and its destruction must be assured. In the application of low-temperature moist heat for terminal sterilization, especially subsequent to aseptic processing, establishing the pre-sterilization bioburden to consider has proven challenging. Environmental monitoring survey data has determined the identity of potential microorganisms but not their resistance to sterilization. This review article provides information on the moist heat resistance of vegetative and sporeforming microorganisms that might be present. The first paper in this series provided the overall background and described the benefits to patient, producer, and regulator of low-temperature moist heat for terminal sterilization. The second paper outlined validation and operational advice that can be used in the implementation. This final effort concludes the series and provides insight into potential bioburden and its resistance. LAY ABSTRACT: Terminal sterilization is considered the preferred means for the production of sterile drug products as it affords enhanced safety for the patient as the formulation is filled into its final container, sealed and sterilized. Despite the obvious patient benefits, the use of terminal sterilization is artificially constrained by unreasonable expectations for the minimum time-temperature process to be used. The primary consideration in terminal sterilization is the reliable destruction of the bioburden. The earlier manuscripts in this series described the principles and implementation of low temperature terminal sterilization processes where the sterilization conditions would destroy the expected bioburden present. To accomplish that reliably knowledge of the bioburden expected resistance to moist heat is necessary. This review article will identify publications where that data can be found. © PDA, Inc. 2017.

  9. Study on photoelectric parameter measurement method of high capacitance solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, Junchao; Xiong, Limin; Meng, Haifeng; He, Yingwei; Cai, Chuan; Zhang, Bifeng; Li, Xiaohui; Wang, Changshi

    2018-01-01

    The high efficiency solar cells usually have high capacitance characteristic, so the measurement of their photoelectric performance usually requires long pulse width and long sweep time. The effects of irradiance non-uniformity, probe shielding and spectral mismatch on the IV curve measurement are analyzed experimentally. A compensation method for irradiance loss caused by probe shielding is proposed, and the accurate measurement of the irradiance intensity in the IV curve measurement process of solar cell is realized. Based on the characteristics that the open circuit voltage of solar cell is sensitive to the junction temperature, an accurate measurement method of the temperature of solar cell under continuous irradiation condition is proposed. Finally, a measurement method with the characteristic of high accuracy and wide application range for high capacitance solar cell is presented.

  10. Effect of bending on the room-temperature tensile strengths of structural ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, M.G.

    1992-01-01

    Results for nearly fifty, room-temperature tensile tests conducted on two advanced, monolithic silicon nitride ceramics are evaluated for the effects of bending and application of various Weibull statistical analyses. Two specimen gripping systems (straight collet and tapered collet) were evaluated for both success in producing gage section failures and tendency to minimize bending at failure. Specimen fabrication and grinding technique consderations are briefly reviewed and related to their effects on successful tensile tests. Ultimate tensile strengths are related to the bending measured at specimen failure and the effects of the gripping system on bending are discussed. Finally, comparisons are mademore » between the use of censored and uncensored data sample sets for determining the maximum likelihood estimates of the Weibull parameters from the tensile strength distributions.« less

  11. Effect of bending on the room-temperature tensile strengths of structural ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, M.G.

    1992-07-01

    Results for nearly fifty, room-temperature tensile tests conducted on two advanced, monolithic silicon nitride ceramics are evaluated for the effects of bending and application of various Weibull statistical analyses. Two specimen gripping systems (straight collet and tapered collet) were evaluated for both success in producing gage section failures and tendency to minimize bending at failure. Specimen fabrication and grinding technique consderations are briefly reviewed and related to their effects on successful tensile tests. Ultimate tensile strengths are related to the bending measured at specimen failure and the effects of the gripping system on bending are discussed. Finally, comparisons are mademore » between the use of censored and uncensored data sample sets for determining the maximum likelihood estimates of the Weibull parameters from the tensile strength distributions.« less

  12. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering

    DOE PAGES

    Huang, Hailong; Wu, Yuan; He, Junyang; ...

    2017-06-07

    High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. In this paper, the “metastability-engineering” strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. Finally, this not only sheds new insights on the development of HEAs with excellent combination of strengthmore » and ductility, but also has great implications on overcoming the long-standing strength–ductility tradeoff of metallic materials in general.« less

  13. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hailong; Wu, Yuan; He, Junyang

    High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. In this paper, the “metastability-engineering” strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. Finally, this not only sheds new insights on the development of HEAs with excellent combination of strengthmore » and ductility, but also has great implications on overcoming the long-standing strength–ductility tradeoff of metallic materials in general.« less

  14. Application of the Ecosystem Assessment Model to Lake Norman: A cooling lake in North Carolina: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porcella, D.B.; Bowie, G.L.; Campbell, C.L.

    The Ecosystem Assessment Model (EAM) of the Cooling Lake Assessment Methodology was applied to the extensive ecological field data collected at Lake Norman, North Carolina by Duke Power Company to evaluate its capability to simulate lake ecosystems and the ecological effects of steam electric power plants. The EAM provided simulations over a five-year verification period that behaved as expected based on a one-year calibration. Major state variables of interest to utilities and regulatory agencies are: temperature, dissolved oxygen, and fish community variables. In qualitative terms, temperature simulation was very accurate, dissolved oxygen simulation was accurate, and fish prediction was reasonablymore » accurate. The need for more accurate fisheries data collected at monthly intervals and non-destructive sampling techniques was identified.« less

  15. Status and improvement of CLAM for nuclear application

    NASA Astrophysics Data System (ADS)

    Huang, Qunying

    2017-08-01

    A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.

  16. A Robust, Gravity-Insensitive, High-Temperature Condenser for Water Recovery

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Conboy, Thomas; Ewert, Michael

    2016-01-01

    Regenerative life support systems are vital for NASA's future long-duration human space exploration missions. A Heat Melt Compactor (HMC) system is being developed by NASA to dry and compress trash generated during space missions. The resulting water vapor is recovered and separated from the process gas flow by a gravity-insensitive condenser. Creare is developing a high-temperature condenser for this application. The entire condenser is constructed from metals that have excellent resistance to chemical attack from contaminants and is suitable for high-temperature operation. The metal construction and design configuration also offer greatest flexibility for potential coating and regeneration processes to reduce biofilm growth and thus enhancing the reliability of the condenser. The proposed condenser builds on the gravity-insensitive phase separator technology Creare developed for aircraft and spacecraft applications. This paper will first discuss the design requirements for the condenser in an HMC system that will be demonstrated on the International Space Station (ISS). Then, it will present the overall design of the condenser and the preliminary thermal test results of a subscale condenser. Finally, this paper will discuss the predicted performance of the full-size condenser and the development plan to mature the technology and enhance its long-term reliability for a flight system.

  17. Interferometry-based free space communication and information processing

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil Arshad

    This dissertation studies, analyzes, and experimentally demonstrates the innovative use of interference phenomenon in the field of opto-electronic information processing and optical communications. A number of optical systems using interferometric techniques both in the optical and the electronic domains has been demonstrated in the filed of signal transmission and processing, optical metrology, defense, and physical sensors. Specifically it has been shown that the interference of waves in the form of holography can be exploited to realize a novel optical scanner called Code Multiplexed Optical Scanner (C-MOS). The C-MOS features large aperture, wide scan angles, 3-D beam control, no moving parts, and high beam scanning resolution. A C-MOS based free space optical transceiver for bi-directional communication has also been experimentally demonstrated. For high speed, large bandwidth, and high frequency operation, an optically implemented reconfigurable RF transversal filter design is presented that implements wide range of filtering algorithms. A number of techniques using heterodyne interferometry via acousto-optic device for optical path length measurements have been described. Finally, a whole new class of interferometric sensors for optical metrology and sensing applications is presented. A non-traditional interferometric output signal processing scheme has been developed. Applications include, for example, temperature sensors for harsh environments for a wide temperature range from room temperature to 1000°C.

  18. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  19. Nonlinear derating of high-intensity focused ultrasound beams using Gaussian modal sums.

    PubMed

    Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Soneson, Joshua E; Myers, Matthew R

    2013-11-01

    A method is introduced for using measurements made in water of the nonlinear acoustic pressure field produced by a high-intensity focused ultrasound transducer to compute the acoustic pressure and temperature rise in a tissue medium. The acoustic pressure harmonics generated by nonlinear propagation are represented as a sum of modes having a Gaussian functional dependence in the radial direction. While the method is derived in the context of Gaussian beams, final results are applicable to general transducer profiles. The focal acoustic pressure is obtained by solving an evolution equation in the axial variable. The nonlinear term in the evolution equation for tissue is modeled using modal amplitudes measured in water and suitably reduced using a combination of "source derating" (experiments in water performed at a lower source acoustic pressure than in tissue) and "endpoint derating" (amplitudes reduced at the target location). Numerical experiments showed that, with proper combinations of source derating and endpoint derating, direct simulations of acoustic pressure and temperature in tissue could be reproduced by derating within 5% error. Advantages of the derating approach presented include applicability over a wide range of gains, ease of computation (a single numerical quadrature is required), and readily obtained temperature estimates from the water measurements.

  20. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  1. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    PubMed Central

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  2. Features of the phase composition and morphology of the particles of sialon synthesized from silicon and aluminum nitrides

    NASA Astrophysics Data System (ADS)

    Ivicheva, S. N.; Lysenkov, A. S.; Ovsyannikov, N. A.; Titov, D. D.; Kargin, Yu F.

    2018-04-01

    The phase composition and morphological features of sialons were studied under the same conditions of firing (duration, temperature) using different initial components, silicon nitride, aluminum nitride, and a mixture of silicon nitrides and aluminum with the application of nitrides of the corresponding oxide (aluminum or silicon) sol-gel method. The effect of the initial reagents composition on the phase composition of the final product and the morphological features of the sialon powders obtained in a single firing step in a nitrogen atmosphere is shown.

  3. Nanowebs and nanocables of silicon carbide

    NASA Astrophysics Data System (ADS)

    Shim, Hyun Woo; Huang, Hanchen

    2007-08-01

    This paper presents two novel hierarchical structures of SiC-SiO2 core-shell nanowires: (a) nanocables in the form of multi-core and single shell and (b) nanowebs in the form of intersecting nanowires and nanocables, augmented by variable amounts of SiO2 membranes. The two structures are controllable through variations of substrate temperature and source chemistry. The hierarchical nanostructures, together with the controllability, may offer superb mechanical properties in composite applications. Finally, the authors propose a model of nanowebs and nanocables formation, as a result of nanowires intersection and alignment.

  4. Gold ink coating of thermocouple sheaths

    DOEpatents

    Ruhl, H. Kenneth

    1992-01-01

    A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.

  5. Magnetism and the interior of the moon

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    The application of lunar magnetic field measurements to the study of properties of the lunar crust and deep interior is reviewed. Following a brief description of lunar magnetometers and the lunar magnetic environment, measurements of lunar remanent fields and their interaction with the solar plasma are discussed. The magnetization induction mode is considered with reference to lunar magnetic permeability and iron abundance calculations. Finally, electrical conductivity and temperature calculations from analyses of poloidal induction, for data taken in both the solar wind and in the geomagnetic tail, are reviewed.

  6. Effects of cooking method and final core-temperature on cooking loss, lipid oxidation, nucleotide-related compounds and aroma volatiles of Hanwoo brisket

    PubMed Central

    2018-01-01

    Objective This study observed the effects of cooking method and final core temperature on cooking loss, lipid oxidation, aroma volatiles, nucleotide-related compounds and aroma volatiles of Hanwoo brisket (deep pectoralis). Methods Deep pectoralis muscles (8.65% of crude fat) were obtained from three Hanwoo steer carcasses with 1+ quality grade. Samples were either oven-roasted at 180°C (dry heat) or cooked in boiling water (moist heat) to final core temperature of 70°C (medium) or 77°C (well-done). Results Boiling method reduced more fat but retained more moisture than did the oven roasting method (p<0.001), thus no significant differences were found on cooking loss. However, samples lost more weight as final core temperature increased (p<0.01). Further, total saturated fatty acid increased (p = 0.02) while total monounsaturated fatty acid decreased (p = 0.03) as final core temperature increased. Regardless the method used for cooking, malondialdehyde (p<0.01) and free iron contents (p<0.001) were observed higher in samples cooked to 77°C. Oven roasting retained more inosinic acid, inosine and hypoxanthine in samples than did the boiling method (p<0.001), of which the concentration decreased as final core temperature increased except for hypoxanthine. Samples cooked to 77°C using oven roasting method released more intense aroma than did the others and the aroma pattern was discriminated based on the intensity. Most of aldehydes and pyrazines were more abundant in oven-roasted samples than in boiled samples. Among identified volatiles, hexanal had the highest area unit in both boiled and oven-roasted samples, of which the abundance increased as the final core temperature increased. Conclusion The boiling method extracted inosinic acid and rendered fat from beef brisket, whereas oven roasting intensified aroma derived from aldehydes and pyrazines and prevented the extreme loss of inosinic acid. PMID:28728407

  7. Genetic particle filter application to land surface temperature downscaling

    NASA Astrophysics Data System (ADS)

    Mechri, Rihab; Ottlé, Catherine; Pannekoucke, Olivier; Kallel, Abdelaziz

    2014-03-01

    Thermal infrared data are widely used for surface flux estimation giving the possibility to assess water and energy budgets through land surface temperature (LST). Many applications require both high spatial resolution (HSR) and high temporal resolution (HTR), which are not presently available from space. It is therefore necessary to develop methodologies to use the coarse spatial/high temporal resolutions LST remote-sensing products for a better monitoring of fluxes at appropriate scales. For that purpose, a data assimilation method was developed to downscale LST based on particle filtering. The basic tenet of our approach is to constrain LST dynamics simulated at both HSR and HTR, through the optimization of aggregated temperatures at the coarse observation scale. Thus, a genetic particle filter (GPF) data assimilation scheme was implemented and applied to a land surface model which simulates prior subpixel temperatures. First, the GPF downscaling scheme was tested on pseudoobservations generated in the framework of the study area landscape (Crau-Camargue, France) and climate for the year 2006. The GPF performances were evaluated against observation errors and temporal sampling. Results show that GPF outperforms prior model estimations. Finally, the GPF method was applied on Spinning Enhanced Visible and InfraRed Imager time series and evaluated against HSR data provided by an Advanced Spaceborne Thermal Emission and Reflection Radiometer image acquired on 26 July 2006. The temperatures of seven land cover classes present in the study area were estimated with root-mean-square errors less than 2.4 K which is a very promising result for downscaling LST satellite products.

  8. Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications.

    PubMed

    Vynckier, An-Katrien; Dierickx, Lien; Voorspoels, Jody; Gonnissen, Yves; Remon, Jean Paul; Vervaet, Chris

    2014-02-01

    Co-extrusion implies the simultaneous hot-melt extrusion of two or more materials through the same die, creating a multi-layered extrudate. It is an innovative continuous production technology that offers numerous advantages over traditional pharmaceutical processing techniques. This review provides an overview of the co-extrusion equipment, material requirements and medical and pharmaceutical applications. The co-extrusion equipment needed for pharmaceutical production has been summarized. Because the geometrical design of the die dictates the shape of the final product, different die types have been discussed. As one of the major challenges at the moment is shaping the final product in a continuous way, an overview of downstream solutions for processing co-extrudates into drug products is provided. Layer adhesion, extrusion temperature and viscosity matching are pointed out as most important requirements for material selection. Examples of medical and pharmaceutical applications are presented and some recent findings considering the production of oral drug delivery systems have been summarized. Co-extrusion provides great potential for the continuous production of fixed-dose combination products which are gaining importance in pharmaceutical industry. There are still some barriers to the implementation of co-extrusion in the pharmaceutical industry. The optimization of downstream processing remains a point of attention. © 2013 Royal Pharmaceutical Society.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filinov, A.V.; Golubnychiy, V.O.; Bonitz, M.

    Extending our previous work [A.V. Filinov et al., J. Phys. A 36, 5957 (2003)], we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: (i) the diagonal Kelbg potential, (ii) the off-diagonal Kelbg potential, (iii) the improved diagonal Kelbg potential, (iv) an effective potential obtained with the Feynman-Kleinert variational principle, and (v) the 'exact' quantum pair potential derived from the two-particle density matrix. For the improved diagonal Kelbg potential, a simple temperature-dependent fit is derived which accurately reproduces the 'exact' pair potential in the whole temperature range. The derivedmore » pseudopotentials are then used in path integral Monte Carlo and molecular-dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60 000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective potentials used in density-functional theory.« less

  10. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  11. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni 2MnGa

    DOE PAGES

    Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; ...

    2016-05-17

    Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in amore » nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni 2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.« less

  12. Data Concentrator

    NASA Technical Reports Server (NTRS)

    Willett, Mike

    2015-01-01

    Orbital Research, Inc., developed, built, and tested three high-temperature components for use in the design of a data concentrator module in distributed turbine engine control. The concentrator receives analog and digital signals related to turbine engine control and communicates with a full authority digital engine control (FADEC) or high-level command processor. This data concentrator follows the Distributed Engine Controls Working Group (DECWG) roadmap for turbine engine distributed controls communication development that operates at temperatures at least up to 225 C. In Phase I, Orbital Research developed detailed specifications for each component needed for the system and defined the total system specifications. This entailed a combination of system design, compiling existing component specifications, laboratory testing, and simulation. The results showed the feasibility of the data concentrator. Phase II of this project focused on three key objectives. The first objective was to update the data concentrator design modifications from DECWG and prime contractors. Secondly, the project defined requirements for the three new high-temperature, application-specific integrated circuits (ASICs): one-time programmable (OTP), transient voltage suppression (TVS), and 3.3V. Finally, the project validated each design by testing over temperature and under load.

  13. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    DOE PAGES

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less

  14. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

    1992-01-01

    Testing of the metal oxide semiconductor (MOS)-controlled thyristor (MCT) has uncovered a failure mechanism at elevated temperature. The failure appears to be due to breakdown of the gate oxide. Further testing is underway to verify the failure mode. Higher current level inverters were built to demonstrate 200 C operation of the N-MOSFET's and insulated-gate-bipolar transistors (IGBT's) and for life testing. One MOSFET failed early in testing. The origin of this failure is being studied. No IGBT's have failed. A prototype 28-to-42 V converter was built and is being tested at room temperature. The control loop is being finalized. Temperature stable, high value (10 micro-F) capacitors appear to be the limiting factor in the design at this time. In this application, the efficiency will be lower for the IGBT version due to the large V sub(cesat) (3.5-4 V) compared to the input voltage of 28 V. The MOSFET version should have higher efficiency; however, the MOSFET does not appear to be as robust at 200 C. Both versions are built for comparison.

  15. Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Schweiger, A.; Maslanik, J.; Key, J.; Haefliger, M.; Weaver, R.

    1991-01-01

    In the past six months, work has continued on energy flux sensitivity studies, ice surface temperature retrievals, corrections to Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies. We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice concentration and type to improve our shorter term energy flux estimates. SSM/I derived parameters may still be applicable in longer term climatological flux characterizations. We hold promise for a system coupling observation to a ice deformation model. Such a model may provide information on ice distribution which can be used in energy flux calculations. Considerable variation was found in modelled energy flux estimates when bulk transfer coefficients are modulated by lead fetch. It is still unclear what the optimum formulation is and this will be the subject of further work. Data sets for ice surface temperature retrievals were assembled and preliminary data analysis was started. Finally, construction of a conceptual framework for further modelling of the Arctic radiation flux climatology was started.

  16. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review.

    PubMed

    Alassi, Abdulrahman; Benammar, Mohieddine; Brett, Dan

    2017-12-05

    Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO₄ crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications.

  17. Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach

    NASA Astrophysics Data System (ADS)

    Bhaumik, Ria; Mondal, Naba Kumar

    2016-06-01

    The present work highlighted the effective application of banana peel dust (BPD) for removal of fluoride (F-) from aqueous solution. The effects of operating parameters such as pH, initial concentration, adsorbent dose, contact time, agitation speed and temperature were analysed using response surface methodology. The significance of independent variables and their interactions were tested by the analysis of variance and t test statistics. Experimental results revealed that BPD has higher F- adsorption capacity (17.43, 26.31 and 39.5 mg/g). Fluoride adsorption kinetics followed pseudo-second-order model with high correlation of coefficient value (0.998). On the other hand, thermodynamic data suggest that adsorption is favoured at lower temperature, exothermic in nature and enthalpy driven. The adsorbents were characterised through scanning electron microscope, Fourier transform infrared spectroscopy and point of zero charges (pHZPC) ranges from pH 6.2-8.2. Finally, error analysis clearly demonstrates that all three adsorbents are well fitted with Langmuir isotherm compared to the other isotherm models. The reusable properties of the material support further development for commercial application purpose.

  18. The application of silicon sol-gel technology to forensic blood substitute development: Mimicking aspects of whole human blood rheology.

    PubMed

    Stotesbury, Theresa; Illes, Mike; Wilson, Paul; Vreugdenhil, Andrew J

    2017-01-01

    Solution-gelation chemistry has promising applications in forensic synthetic blood substitute development. This research offers a silicon-based sol-gel approach to creating stable materials that share similar rheological properties to that of whole human blood samples. Room temperature, high water content, silicon sol-gels were created using the organosilane precursors 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate along with various concentrations of filler and pigment. Shear-thinning non-Newtonian properties were observed within most formulations of the presented materials. The effects of colloidal concentration, temperature, age and filler addition on the viscosity of the sol-gels were investigated. SEM-EDS analysis was used to identify the behavior of the fillers within the film and support their inclusion for basic bloodstain pattern simulation. A final proposed candidate sol-gel was assessed using a previously reported passive drip simulation test on a hard, dry surface and passed. This works represents encouraging development in providing safe material alternatives to using whole human blood for forensic training and research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Nanoparticle-stabilized CO₂ foam for CO₂ EOR application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Lee, Robert; Yu, Jianjia

    The purpose of this project was to develop nanoparticle-stabilized CO₂ foam for CO₂ -EOR application, in which nanoparticles instead of surfactants are used for stabilizing CO₂ foam to improve the CO₂ sweep efficiency and increase oil recovery. The studies included: (1) investigation of CO₂ foam generation nanoparticles, such as silica nanoparticles, and the effects of particle concentration and surface properties, CO₂/brine ratio, brine salinity, pressure, and temperature on foam generation and foam stability; (2) coreflooding tests to understand the nanoparticle-stabilized CO₂ foam for waterflooded residual oil recovery, which include: oil-free coreflooding experiments with nanoparticle-stabilized CO₂ foam to understand the transportationmore » of nanoparticles through the core; measurements of foam stability and CO₂ sweep efficiency under reservoir conditions to investigate temperature and pressure effects on the foam performance and oil recovery as well as the sweep efficiency in different core samples with different rock properties; and (3) long-term coreflooding experiments with the nanoparticle- stabilized CO₂ foam for residual oil recovery. Finally, the technical and economical feasibility of this technology was evaluated.« less

  20. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review

    PubMed Central

    Benammar, Mohieddine; Brett, Dan

    2017-01-01

    Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO4 crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications. PMID:29206212

  1. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. Wemore » demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.« less

  2. Significance of circadian rhythms in severely brain-injured patients

    PubMed Central

    Lechinger, Julia; Santhi, Nayantara; del Giudice, Renata; Gnjezda, Maria-Teresa; Pichler, Gerald; Scarpatetti, Monika; Donis, Johann; Michitsch, Gabriele; Schabus, Manuel

    2017-01-01

    Objective: To investigate the relationship between the presence of a circadian body temperature rhythm and behaviorally assessed consciousness levels in patients with disorders of consciousness (DOC; i.e., vegetative state/unresponsive wakefulness syndrome or minimally conscious state). Methods: In a cross-sectional study, we investigated the presence of circadian temperature rhythms across 6 to 7 days using external skin temperature sensors in 18 patients with DOC. Beyond this, we examined the relationship between behaviorally assessed consciousness levels and circadian rhythmicity. Results: Analyses with Lomb-Scargle periodograms revealed significant circadian rhythmicity in all patients (range 23.5–26.3 hours). We found that especially scores on the arousal subscale of the Coma Recovery Scale–Revised were closely linked to the integrity of circadian variations in body temperature. Finally, we piloted whether bright light stimulation could boost circadian rhythmicity and found positive evidence in 2 out of 8 patients. Conclusion: The study provides evidence for an association between circadian body temperature rhythms and arousal as a necessary precondition for consciousness. Our findings also make a case for circadian rhythms as a target for treatment as well as the application of diagnostic and therapeutic means at times when cognitive performance is expected to peak. PMID:28424270

  3. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  4. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  5. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario

    NASA Astrophysics Data System (ADS)

    Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele

    2018-03-01

    In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.

  6. Ground State and Finite Temperature Lanczos Methods

    NASA Astrophysics Data System (ADS)

    Prelovšek, P.; Bonča, J.

    The present review will focus on recent development of exact- diagonalization (ED) methods that use Lanczos algorithm to transform large sparse matrices onto the tridiagonal form. We begin with a review of basic principles of the Lanczos method for computing ground-state static as well as dynamical properties. Next, generalization to finite-temperatures in the form of well established finite-temperature Lanczos method is described. The latter allows for the evaluation of temperatures T>0 static and dynamic quantities within various correlated models. Several extensions and modification of the latter method introduced more recently are analysed. In particular, the low-temperature Lanczos method and the microcanonical Lanczos method, especially applicable within the high-T regime. In order to overcome the problems of exponentially growing Hilbert spaces that prevent ED calculations on larger lattices, different approaches based on Lanczos diagonalization within the reduced basis have been developed. In this context, recently developed method based on ED within a limited functional space is reviewed. Finally, we briefly discuss the real-time evolution of correlated systems far from equilibrium, which can be simulated using the ED and Lanczos-based methods, as well as approaches based on the diagonalization in a reduced basis.

  7. Transition temperature range of thermally activated nickel-titanium archwires

    PubMed Central

    SPINI, Tatiana Sobottka; VALARELLI, Fabrício Pinelli; CANÇADO, Rodrigo Hermont; de FREITAS, Karina Maria Salvatore; VILLARINHO, Denis Jardim

    2014-01-01

    Objectives The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR). The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC) over the temperature range from -100°C to 150°C at 10°C/min. Results All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af) ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible. PMID:24676581

  8. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.

    PubMed

    Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M

    2005-07-01

    Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.

  9. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.

    PubMed

    Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina

    2017-01-01

    Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    DOEpatents

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  11. Selection of fiber-optical components for temperature measurement for satellite applications

    NASA Astrophysics Data System (ADS)

    Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.

    2017-11-01

    The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to investigate the radiation induced wavelength shift. The FBGs react on temperature and strain change, so a decoupling of both physical effects must be assured to allow a precise measurement over large temperature ranges and corresponding potential mechanical stress, passed from the structure to the sensor. This potential source of error is addressed with the design of a strain-decoupled temperature transducer to which the FBGs are glued. The design of the transducer and measurement results of a bending test are provided within this paper. An outlook of the usage of fiber-optical sensing in space applications will be given. One promising field of application are the so called photonically-wired spacecraft panels, where optical fibers with integrated FBGs are being integrated in panels for temperature measurements and high-speed data transfer at the same time.

  12. Liquid crystals in tribology.

    PubMed

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  13. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  14. Nanoporous alumina as templates for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  15. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS,more » 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.« less

  16. Investigation and Application of Nb Microalloying Technology in Seamless Steel Tube with High Performance

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanyou; Wang, Qian; Sun, Yu; Wang, Huibin; Zhang, Wei; Wang, Qingfeng; Guo, Aimin; Sun, Kaiming

    Extensive investigations of metallurgical roles played by Nb microalloying in advanced products of seamless steel tube have been carried out. The results show that with Nb microalloyed , the recrystallized austenite grain (RAG) and final ferrite grain of tubular steel are evidently refined even experiencing a piercing and a continuous rolling at very high temperature, and a certain quantity of (Nb,V)(C,N) and (Ti,Nb,V)(C,N) particles form on air cooling. Moreover, for quenching (Q) & tempering (T) treated tubular steels, the nanoscale particles of (Nb,V) (C,N) further precipitate on heating stage of Q at 900-1000°C, leading to a significant refinement of prior austenite grain (PAG) and final martensitic or bainitic packet/block structures, and during subsequent T at 600-700°C, producing an improved resistance to softening.

  17. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incropera, F.P.; Prescott, P.J.

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, bymore » reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.« less

  18. An Integrated Thermal Compensation System for MEMS Inertial Sensors

    PubMed Central

    Chiu, Sheng-Ren; Teng, Li-Tao; Chao, Jen-Wei; Sue, Chung-Yang; Lin, Chih-Hsiou; Chen, Hong-Ren; Su, Yan-Kuin

    2014-01-01

    An active thermal compensation system for a low temperature-bias-drift (TBD) MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG) process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 μm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system. PMID:24599191

  19. Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.

    PubMed

    Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik

    2010-01-01

    We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.

  20. Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.

    Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less

  1. Electrical properties of lanthanum chromite based ceramics in hydrogen and oxidizing atmospheres at high temperatures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, V.H.

    1981-06-01

    Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less

  2. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference.

    PubMed

    Sun, Bing; Fang, Fang; Zhang, Zuxing; Xu, Jing; Zhang, Lin

    2018-03-15

    A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP 01 and LP 11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2  pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.

  3. Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime

    DOE PAGES

    Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.; ...

    2017-12-08

    Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less

  4. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging

    PubMed Central

    Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (<1 month). This work significantly increases the shelf life of the new-generation ICG-NPs (>6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging. PMID:27775014

  5. Growth, carcass characteristics, and incidence of ascites in broilers exposed to environmental fluctuations and oiled litter.

    PubMed

    McGovern, R H; Feddes, J J; Robinson, F E; Hanson, J A

    2000-03-01

    The effects of diurnal temperature fluctuations and removal of respirable dust, by application of canola oil to straw litter, on growth, carcass traits, and the degree of ascites was evaluated with 1,200 male broilers studied in two replicated 6-wk trials. Each trial used four pens of 150 birds. The temperature treatment consisted of a fluctuation of 3 C in temperature above the required temperature during the day (0600 to 1800 h) and 3 C below the required temperature at night (1800 to 0600 h) for a 6 C change in daily temperature. The control temperature was constant. All pens had the same mean daily temperature. In each trial, one control temperature pen and one fluctuation temperature pen received bi-weekly applications of canola oil to the litter (1.1 L/m2 of oil over 6 wk). At 6 wk of age, 30 birds from each pen were killed for determination of breast muscle, fatpad, and heart weights. All birds were scored for lesions of ascites at time of processing. A score of 0 or 1 represented slight pericardial effusion, slight pulmonary congestion, and edema. A score of 4 represented birds with marked accumulation of ascitic fluid in one or more ceolomic cavities (other than the pericardium) and advanced liver lesions. A cross-sectional image of each 4-mm heart slice (cross-section of the ventricles) was digitally recorded, and with image analysis we determined the right ventricular area (RVA), left ventricular area (LVA), and total heart area (HA). The final BW of the broilers were significantly different, the oiled-litter treatment (2,249 g) had lower weight gain compared with the nonoiled litter treatment (2,293 g). There were no differences in fatpad weight, shank length, lung weight, and percentage breast muscle between the main treatments. The Pectoralis minor and Pectoralis major weight were significantly heavier in the temperature fluctuation treatment than in the control temperature treatment by 3.0 and 12.0 g, respectively. The birds subjected to the control temperature treatment had a lower RVW than the birds subjected to the fluctuating temperature treatment. Temperature fluctuations also resulted in a 1.4% increase in the incidence of mortality. Temperature fluctuations negatively impact broiler growth due to heat loss when litter oiling was excessive.

  6. Evaluation and application of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry for complex sample analysis.

    PubMed

    Denawaka, Chamila J; Fowlis, Ian A; Dean, John R

    2014-04-18

    An evaluation of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS) has been undertaken to assess its applicability for the determination of 32 volatile compounds (VCs). The key experimental variables of sample incubation time and temperature have been evaluated alongside the MCC-GC variables of column polarity, syringe temperature, injection temperature, injection volume, column temperature and carrier gas flow rate coupled with the IMS variables of temperature and drift gas flow rate. This evaluation resulted in six sets of experimental variables being required to separate the 32 VCs. The optimum experimental variables for SHS-MCC-GC-IMS, the retention time and drift time operating parameters were determined; to normalise the operating parameters, the relative drift time and normalised reduced ion mobility for each VC were determined. In addition, a full theoretical explanation is provided on the formation of the monomer, dimer and trimer of a VC. The optimum operating condition for each VC calibration data was obtained alongside limit of detection (LOD) and limit of quantitation (LOQ) values. Typical detection limits ranged from 0.1ng bis(methylthio)methane, ethylbutanoate and (E)-2-nonenal to 472ng isovaleric acid with correlation coefficient (R(2)) data ranging from 0.9793 (for the dimer of octanal) through to 0.9990 (for isobutyric acid). Finally, the developed protocols were applied to the analysis of malodour in sock samples. Initial work involved spiking an inert matrix and sock samples with appropriate concentrations of eight VCs. The average recovery from the inert matrix was 101±18% (n=8), while recoveries from the sock samples were lower, that is, 54±30% (n=8) for sock type 1 and 78±24% (n=6) for sock type 2. Finally, SHS-MCC-GC-IMS was applied to sock malodour in a field trial based on 11 volunteers (mixed gender) over a 3-week period. By applying the SHS-MCC-GC-IMS database, four VCs were identified and quantified: ammonia, dimethyl disulphide, dimethyl trisulphide and butyric acid. A link was identified between the presence of high ammonia and dimethyl disulphide concentrations and a high malodour odour grading, that is, ≥ 6. Statistical analysis did not find any correlation between the occurrence of dimethyl disulphide and participant gender. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Nanometre-scale thermometry in a living cell

    NASA Astrophysics Data System (ADS)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2013-08-01

    Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz-1/2) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.

  8. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  9. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  10. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    NASA Astrophysics Data System (ADS)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  11. Spatial regression test for ensuring temperature data quality in southern Spain

    NASA Astrophysics Data System (ADS)

    Estévez, J.; Gavilán, P.; García-Marín, A. P.

    2018-01-01

    Quality assurance of meteorological data is crucial for ensuring the reliability of applications and models that use such data as input variables, especially in the field of environmental sciences. Spatial validation of meteorological data is based on the application of quality control procedures using data from neighbouring stations to assess the validity of data from a candidate station (the station of interest). These kinds of tests, which are referred to in the literature as spatial consistency tests, take data from neighbouring stations in order to estimate the corresponding measurement at the candidate station. These estimations can be made by weighting values according to the distance between the stations or to the coefficient of correlation, among other methods. The test applied in this study relies on statistical decision-making and uses a weighting based on the standard error of the estimate. This paper summarizes the results of the application of this test to maximum, minimum and mean temperature data from the Agroclimatic Information Network of Andalusia (southern Spain). This quality control procedure includes a decision based on a factor f, the fraction of potential outliers for each station across the region. Using GIS techniques, the geographic distribution of the errors detected has been also analysed. Finally, the performance of the test was assessed by evaluating its effectiveness in detecting known errors.

  12. Surface modification: advantages, techniques, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.

    2000-03-01

    Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliabilitymore » of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.« less

  13. Couches minces supraconductrices à haute température critique pour l'électronique

    NASA Astrophysics Data System (ADS)

    Guilloux-Viry, M.; Perrin, A.

    1998-08-01

    High critical temperature superconductors (HTCS) are very promising for applications in microelectronics due to the control of high quality epitaxial thin films, in spite of a number of specific constraints. Active and passive devices are already available in various laboratories, prooving that applications are actually expected soon. We report here on the interest of HTCS thin films, on preparation processes including materials and substrates choice, and also on characterization methods which are required in order to chek the quality of the samples. Finally some illustrative examples of applications are presented. Les supraconducteurs à haute température critique ouvrent des perspectives prometteuses dans le domaine de l'électronique en raison de la maîtrise de la croissance de films minces de haute qualité cristalline et physique, malgré des difficultés spécifiques. Des dispositifs, aussi bien actifs que passifs, commencent à être réalisés dans divers laboratoires, montrant que des applications peuvent être effectivement envisagées à relativement court terme.

  14. Evaluation of supercapacitors for space applications under thermal vacuum conditions

    NASA Astrophysics Data System (ADS)

    Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.

    2018-03-01

    Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.

  15. The application of high temperature superconductors to space electrical power distribution components

    NASA Technical Reports Server (NTRS)

    Aron, Paul R.; Myers, Ira T.

    1988-01-01

    Some important space based electrical power distribution systems and components are examined to determine what might be achieved with the introduction of high temperature superconductors (HTS). Components that are compared in a before-and-after fashion include transformers, transmission lines, and capacitors. It is concluded that HTS has its greatest effect on the weight associated with transmission lines, where the weight penalty could be reduced by as much as 130 kg/kW/km of cable. Transformers, because 28 percent of their mass is in the conductor, are reduced in weight by the same factor. Capacitors are helped the least with only negligible savings possible. Finally, because HTS can relax the requirement to use alternating current in order to reduce conductor mass, it will be possible to generate significant savings by eliminating most transformers and capacitors.

  16. Determination of process parameters for curcumin - dextrose cocrystallization

    NASA Astrophysics Data System (ADS)

    Katherine; Nugroho, Denny; Sugih, Asaf K.

    2018-01-01

    Curcumin is a polyphenol that could act as anti-oxidant and anti - inflammation agent. It is usually isolated from rhizome plants such as turmeric and temulawak. Despite its many favorable properties, curcumin is practically insoluble in water, thus limiting its application. In the present investigation, variables affecting preparation of curcumin-dextrose cocrystal were examined with the aim to increase the solubility of curcumin. The effect of different processing conditions, such as water to dextrose ratio, final heating temperature and water bath temperature to the formation of cocrystal, were studied and the yield and solubility of curcumin - dextrose cocrystal products were analyzed. The morphology of the cocrystals were also analyzed using SEM and fluorescence microscopy.. Curcumin - dextrose cocrystals showed a significant increase in solubility up to 25 mg curcumin per mL water compared to pure curcumin.

  17. Improvement of Bipolar Switching Properties of Gd:SiOx RRAM Devices on Indium Tin Oxide Electrode by Low-Temperature Supercritical CO2 Treatment.

    PubMed

    Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M

    2016-12-01

    Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.

  18. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    DOE PAGES

    Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less

  19. Ensuring near-optimum homogeneity and densification levels in nano-reinforced ceramics

    NASA Astrophysics Data System (ADS)

    Dassios, Konstantinos G.; Barkoula, Nektaria-Marianthi; Alafogianni, Panagiota; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2016-04-01

    The development of a new generation of high temperature ceramic materials for aerospace applications, reinforced at a scale closer to the molecular level and three orders of magnitude less than conventional fibrous reinforcements, by embedded carbon nanotubes, has recently emerged as a uniquely challenging scientific effort. The properties of such materials depend strongly on two main factors: i) the homogeneity of the dispersion of the hydrophobic medium throughout the ceramic volume and ii) the ultimate density of the resultant product after sintering of the green body at the high-temperatures and pressures required for ceramic consolidation. The present works reports the establishment of two independent experimental strategies which ensure achievement of near perfect levels of tube dispersion homogeneity and fully dense final products. The proposed methodologies are validated across non-destructive evaluation data of materials performance.

  20. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.

    PubMed

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-08-25

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.

  1. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process

    PubMed Central

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-01-01

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined. PMID:28841188

  2. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement.

    PubMed

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ∼6nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  3. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  4. The application of high temperature superconductors to space electrical power distribution components

    NASA Technical Reports Server (NTRS)

    Aron, Paul R.; Myers, Ira T.

    1988-01-01

    Some important space based electrical power distribution systems and components are examined to determine what might be achieved with the introduction of high temperature superconductors (HTS). Components that are compared in a before and after fashion include transformers, transmission lines, and capacitors. It is concluded that HTS has its greatest effect on the weight associated with transmission lines, where the weight penalty could be reduced by as much as 130 kg/kW/km of cable. Transformers, because 28 percent of their mass is in the conductor, are reduced in weight by the same factor. Capacitors are helped the least with only negligible savings possible. Finally, because HTS can relax the requirement to use alternating current in order to reduce conductor mass, it will be possible to generate significant savings by eliminating most transformers and capacitors.

  5. A high sensitivity ultralow temperature RF conductance and noise measurement setup.

    PubMed

    Parmentier, F D; Mahé, A; Denis, A; Berroir, J-M; Glattli, D C; Plaçais, B; Fève, G

    2011-01-01

    We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milli-Kelvin temperatures. The setup relies on the combination of an interferometric amplification scheme and a quarter-wave impedance transformer, allowing the measurement of noise power spectral densities with gigahertz bandwidth up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwidth make it suitable for applications manipulating single charges at GHz frequencies.

  6. Influence of Regenerator Material on Performance of a 6K High Frequency Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    J, Quan; YJ, Liu; XY, Li; JT, Liang

    2017-12-01

    As very low temperature high frequency pulse tube cryocooler has been a hot topic in the field of pulse tube cryocooler, improving the cryocooler’s performance is a common goal of researchers. By integrating the former results, we found that regenerator material is a key factor for the improvement of pulse tube cryocooler’s efficiency. In this paper, methods of simulation and experiment were used to investigate the influence of stacking style on performance of 6K high frequency pulse tube cryocooler. Finally, the lowest temperature has dropped from 8.8K to 6.7K and more than 10mW of cooling power is achieved at 8K with a two-stage thermally coupled high frequency pulse tube cryocooler. The results make the space application of NbN terahertz detectors possible.

  7. Direct solar heating for Space Station application

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.

  8. Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays

    NASA Technical Reports Server (NTRS)

    Slifer, Luther W., Jr.

    1991-01-01

    One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.

  9. Bilateral asymmetry of skin temperature is not related to bilateral asymmetry of crank torque during an incremental cycling exercise to exhaustion

    PubMed Central

    Formenti, Damiano; Ludwig, Nicola; Gargano, Marco; Bosio, Andrea; Rampinini, Ermanno; Alberti, Giampietro

    2018-01-01

    Although moderate relationships (|r| ∼ 0.5) were reported between skin temperature and performance-related variables (e.g., kinetic), it remains unclear whether skin temperature asymmetry reflects muscle force imbalance in cycling. Therefore, the aim of this study was to assess whether a relationship exists between kinetic and thermal asymmetry during a fatiguing exercise. Ten elite cyclists were enrolled and tested on a maximal incremental cycling test. Peak crank torques of both legs were obtained at the initial and final workload. Likewise, bilateral skin temperatures were recorded before and after exercise. Asymmetric indexes were also calculated for kinetic (AIK) and skin temperature (AIT) outcomes. The bilateral peak crank torques showed a larger difference at the final compared to the initial workload (p < 0.05) of the incremental exercise. Conversely, the bilateral skin temperature did not show any differences at both initial and final workload (p > 0.05). Additionally, trivial relationships were reported between AIK and AIT (−0.3 < r < 0.2) at the initial and final workload. The obtained results showed that changes in bilateral kinetic values did not reflect concurrent changes in bilateral skin temperatures. This finding emphasizes the difficulty of associating the asymmetry of skin temperature with those of muscle effort in elite cyclists. Lastly, our study also provided further insights on thermal skin responses during exhaustive cycling exercise in very highly-trained athletes. PMID:29507831

  10. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical properties, these measurements suggest that NV center sensors could be employed in a diverse range of applications such as intracellular thermometry, microfuidic thermometry, and scanning thermal microscopy. Finally, while the development of NV center technologies is motivated by the desirable properties of isolated defects in bulk diamond, the realization of many of these technologies, such as those using the spin as a proximal sensor, require a means to control the placement of NV centers within the diamond lattice. We demonstrate a method to pattern defect formation on sub-100-nm length scales using ion implantation and electron beam lithography techniques. The ability to engineer large scale arrays of NV centers with this method holds promise for a variety of applications in quantum information science and nanoscale sensing.

  11. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  12. Integrity of nuclear genomic deoxyribonucleic acid in cooked meat: Implications for food traceability.

    PubMed

    Aslan, O; Hamill, R M; Sweeney, T; Reardon, W; Mullen, A M

    2009-01-01

    It is essential to isolate high-quality DNA from muscle tissue for PCR-based applications in traceability of animal origin. We wished to examine the impact of cooking meat to a range of core temperatures on the quality and quantity of subsequently isolated genomic (specifically, nuclear) DNA. Triplicate steak samples were cooked in a water bath (100 degrees C) until their final internal temperature was 75, 80, 85, 90, 95, or 100 degrees C, and DNA was extracted. Deoxyribonucleic acid quantity was significantly reduced in cooked meat samples compared with raw (6.5 vs. 56.6 ng/microL; P < 0.001), but there was no relationship with cooking temperature. Quality (A(260)/A(280), i.e., absorbance at 260 and 280 nm) was also affected by cooking (P < 0.001). For all 3 genes, large PCR amplicons (product size >800 bp) were observed only when using DNA from raw meat and steak cooked to lower core temperatures. Small amplicons (<200 bp) were present for all core temperatures. Cooking meat to high temperatures thus resulted in a reduced overall yield and probable fragmentation of DNA to sizes less than 800 bp. Although nuclear DNA is preferable to mitochondrial DNA for food authentication, it is less abundant, and results suggest that analyses should be designed to use small amplicon sizes for meat cooked to high core temperatures.

  13. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)

    EPA Science Inventory

    This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...

  14. Motion control in free-standing shape-memory actuators

    NASA Astrophysics Data System (ADS)

    Belmonte, Alberto; Lama, Giuseppe C.; Cerruti, Pierfrancesco; Ambrogi, Veronica; Fernández-Francos, Xavier; De la Flor, Silvia

    2018-07-01

    In this work, free-standing shape-memory thermally triggered actuators are developed by laminating ‘thiol-epoxy’-based glassy thermoset (GT) and stretched liquid-crystalline network (LCN) films. A sequential curing process was used to obtain GTs with tailored thermomechanical properties and network relaxation dynamics, and also to assemble the final actuator. The actuation extent, rate and time were studied by varying the GT and the heating rate in thermo-actuation with an experimental approach. The results demonstrate that it is possible to tailor the actuation rate and time by designing GT materials with a glass transition temperature close to that of the liquid-crystalline-to-isotropic phase transition of the LCN, thus making it possible to couple the two processes. Such coupling is also possible in rapid heating processes even when the glass transition temperature of the GT is clearly lower than the isotropization temperature of the LCN, depending on the network relaxation dynamics of the GT and the presence of thermal gradients within the actuators. Interestingly, varying the GT network relaxation dynamics does not affect the actuation extent. As predicted by the analytical model developed in our previous work, the modulus of the GT layer is mainly responsible for the actuation extent. Finally, to demonstrate the enhanced control of the actuation, specifically designed actuators were assembled in a three-dimensional actuating device able to make complex motions (including ‘S-type’ bending). This approach makes it possible to engineer advanced functional materials for application in self-adaptable structures and soft robotics.

  15. Wide Tunability of Magnetron Sputtered Titanium Nitride and Titanium Oxynitride for Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Zgrabik, Christine Michelle

    Transition metal nitrides have recently garnered much interest as alternative materials for robust plasmonic device architecture including potential applications in solar absorbers, photothermal medical therapy, and heat-assisted magnetic recording. Titanium nitride (TiN) is one such potential candidate. One advantage of the transition metal nitrides is that their optical properties are tunable according to the deposition conditions. The controlled achievement of tunability, however, is also a challenge. Although the formation of TiN has been the subject of numerous previous studies, a thorough analysis of the deposition parameters necessary to form metallic TiN films optimized for plasmonic applications had not been demonstrated. Similarly, such TiN films had not been subjected to detailed optical measurements which could be used in FDTD device simulations to optimize plasmonic device designs. To be able to design, simulate and build robust and optimal device structures, in this work a systematic and thorough examination of the effect of varied substrates, temperatures, and reactive gas compositions on magnetron sputtered TiN was conducted. In addition, the effects of application of an additional substrate bias were studied. The resulting optical properties at visible to near-infrared frequencies were the focus of this thesis. The optical properties of each film were measured via spectroscopic ellipsometry with more "metallic" films demonstrating a larger negative value of the real part of the permittivity. These optical measurements were correlated with both the films' deposition conditions and microstructural measurements including x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) measurements; the different deposition conditions resulted in TiN and TiOxNy films with widely tunable optical responses. By sputtering under different conditions, the value of the real part of the permittivity was tuned from small positive values, through small and moderate negative values, and finally all of the way to large negative values which are comparable to those measured in gold. It was determined that both the chemical composition as well as the film crystallinity had a significant effect on the resulting properties with the most metallic films in general exhibiting a Ti:N ratio close to 1:1, low oxygen incorporation, more N bound as TiN rather than in oxynitride form, and better crystallinity. Increased substrate temperature in general increased the metallic character while application of a substrate bias reduced crystalline order, however also reduced oxygen incorporation and allowed for deposition of metallic TiN at room temperature. The close lattice match of TiN and MgO allowed for heteroepitaxial growth on this substrate under carefully controlled conditions. Finally, to demonstrate the viability of the optimized TiN thin films for plasmonic applications, three benchmark plasmonic structures were simulated using the measured, optimized optical properties including a plasmonic grating coupler, infrared nanoantennas, and a nanopyramidal array. The devices were successfully fabricated and preliminary measurements show promise for plasmonic applications for example in solar conversion and photothermal medical therapy.

  16. Impact and Collisional Processes in the Solar System

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    In the past year, we have successfully developed the techniques necessary to conduct impact experiments on ice at very low temperatures. We employ the method of embedding gauges within a target to measure the shock wave and material properties. This means that our data are not model dependent; we directly measure the essential parameters needed for numerical simulations of impact cratering. Since then we have developed a new method for temperature control of icy targets that ensures temperature equilibrium throughout a porous target. Graduate student, Sarah Stewart-Mukhopadhyay, is leading the work on ices and porous materials as the main thrust of her thesis research. Our previous work has focused on icy materials with no porosity, and we propose to extend our research to include porous ice and porous ice-silicate mixtures. There is little shockwave data for porous ice, and none of the data was acquired under conditions applicable to the outer solar system. The solid ice Hugoniot is only defined for initial temperatures above -20 C. Our program uniquely measures the properties of ice at temperatures directly applicable to the solar system. Previous experiments were conducted at ambient temperatures soon after removing the target from a cold environment, usually just below freezing, or in a room just below freezing. Since ice has an extremely complicated phase diagram, it is important to conduct experiments at lower temperatures to determine the true outcome of impacts in the outer solar system. This research is complementary to other programs on icy materials. Our work focuses on the inherent material properties by measuring the shock wave directly; this complements the macroscopic observations and immediately provides the parameters necessary to extend this research to the gravity regime. Our numerical simulations of impacts in porous ice under very low gravity conditions, such as found on comets, show that the final crater size and shape is very dependent on the dynamic strength of the material.

  17. Remarkable lowering in the synthesis temperature of LiMn2O4via citrate solution-gel synthesis facilitated by ethanol.

    PubMed

    Maino, G; Carleer, R; Marchal, W; Bonneux, G; Hardy, A; Van Bael, M K

    2017-11-07

    LiMn 2 O 4 (LMO) is interesting from the viewpoint of its energy storage applications as it is a cathode in lithium ion batteries (LIB), which contains no rare, toxic or expansive elements, while it provides a high theoretical capacity (148 mA h g -1 ) at a reasonable voltage (4 V region) and a higher thermal stability compared to cobalt based cathodes and has a good rechargeability and cycling stability due to its spinel structure. Low temperature synthesis routes for cathode materials are currently gaining attention, in order to decrease the ecological footprint of the final LIB. Here, the crystallization temperature of LMO by a citrate based solution-gel synthesis was significantly lowered, to as low as 250 °C by the addition of ethanol to the precursor. The role of ethanol in this synthesis process was explored. It was found to lead to a considerable increase in the oxidation rate of the redox couple Mn 2+ /Mn 3+ , a lowering of the precursor decomposition temperature by 200 °C, besides a drastic decrease in the crystallization temperature (reaching 250 °C). Moreover, the main cause was identified to be an esterification reaction of ethanol with the carboxylic acid in the precursor complexes, taking place before the oxide formation. The insights obtained strengthen the knowledge regarding citrato-Mn 2+ /Mn 3+ complexes present in aqueous solution-gel synthesis routes and are relevant for the preparation of various manganese containing oxides. Moreover, the precursor developed opens up a new possibility for the low temperature synthesis of LMO powders and thin films for application in LIB. In the case of thin film batteries, the low temperature processing provides compatibility with other materials in the thin film battery stack, avoiding undesired oxidations or interfacial reactions.

  18. Human mortality seasonality in Castile-León, Spain, between 1980 and 1998: the influence of temperature, pressure and humidity

    NASA Astrophysics Data System (ADS)

    Fernández-Raga, María; Tomás, Clemente; Fraile, Roberto

    2010-07-01

    This study was carried out in the region of Castile and Leon, Spain, from 1980 to 1998 and analyzes the relationship between the number of monthly deaths caused by cardiovascular, respiratory and digestive diseases and three meteorological variables: temperature, pressure and humidity. One of the innovations in this study is the application of principal component analysis in a way that differs from its usual application: one single series representing the whole region was constructed for each meteorological variable from the series of eight weather stations. Annual and seasonal mortality trends were also studied. Cardiovascular diseases are the leading cause of death in Castile and Leon. The mortality related to cardiovascular, respiratory and digestive systems shows a statistically significant rising trend across the study period (an annual increase of 6, 16 and 4‰, respectively). The pressure at which mortality is lowest is approximately the same for all causes of death (about 915 hPa), but temperature values vary greatly (16.8-19.7°C for the mean, 10.9-18.1°C for the minimum, and 24.1-27.2°C for the maximum temperature). The most comfortable temperatures for patients with cardiovascular diseases (16.8°C) are apparently lower than those for patients with respiratory diseases (18.1°C), which are, in turn, lower than in the case of diseases of the digestive system (19.7°C). Finally, the optimal humidity for patients with respiratory diseases is the lowest (24%) among the diseases, and the highest (51%) corresponds to diseases of the digestive system, while the optimal relative humidity for the cardiovascular system is 45%.

  19. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars

    DOE PAGES

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg; ...

    2017-02-20

    Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. Here in this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars.more » Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (E a) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D 0) spanning three orders of magnitude from 2.4 ×10 -3 to 8.9 × 10 -1 cm 2 s -1. Finally, as a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest.« less

  20. Screening of High Temperature Organic Materials for Future Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Shin, Euy-sik E.; Scheiman, Daniel A.

    2017-01-01

    Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection recommendations.

  1. Direct application of geothermal energy at the L'eggs Product Plant, Las Cruces, New Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-02-01

    The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpmmore » flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.« less

  2. A 868MHz-based wireless sensor network for ground truthing of soil moisture for a hyperspectral remote sensing campaign - design and preliminary results

    NASA Astrophysics Data System (ADS)

    Näthe, Paul; Becker, Rolf

    2014-05-01

    Soil moisture and plant available water are important environmental parameters that affect plant growth and crop yield. Hence, they are significant parameters for vegetation monitoring and precision agriculture. However, validation through ground-based soil moisture measurements is necessary for accessing soil moisture, plant canopy temperature, soil temperature and soil roughness with airborne hyperspectral imaging systems in a corresponding hyperspectral imaging campaign as a part of the INTERREG IV A-Project SMART INSPECTORS. At this point, commercially available sensors for matric potential, plant available water and volumetric water content are utilized for automated measurements with smart sensor nodes which are developed on the basis of open-source 868MHz radio modules, featuring a full-scale microcontroller unit that allows an autarkic operation of the sensor nodes on batteries in the field. The generated data from each of these sensor nodes is transferred wirelessly with an open-source protocol to a central node, the so-called "gateway". This gateway collects, interprets and buffers the sensor readings and, eventually, pushes the data-time series onto a server-based database. The entire data processing chain from the sensor reading to the final storage of data-time series on a server is realized with open-source hardware and software in such a way that the recorded data can be accessed from anywhere through the internet. It will be presented how this open-source based wireless sensor network is developed and specified for the application of ground truthing. In addition, the system's perspectives and potentials with respect to usability and applicability for vegetation monitoring and precision agriculture shall be pointed out. Regarding the corresponding hyperspectral imaging campaign, results from ground measurements will be discussed in terms of their contributing aspects to the remote sensing system. Finally, the significance of the wireless sensor network for the application of ground truthing shall be determined.

  3. Formation of particulate matter monitoring during combustion of wood pellete with additives

    NASA Astrophysics Data System (ADS)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  4. Power and Thermal Technologies for Air and Space -- Scientific Research Program. Delivery Order 0016: Developing and Processing High Energy Density Polymer Film Dielectrics for High Temperature Air Force Power Electronic Applications

    DTIC Science & Technology

    2010-01-01

    a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was

  5. Development of the Sunpower 35 We Free-Piston Stirling Convertor

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Lane, Neill

    2005-02-01

    This paper describes the development and performance of the Sunpower 35 We free-piston Stirling convertor. Exceptional thermodynamic performance has been achieved in a small lightweight machine. Efficiency of over 30 percent, at a temperature ratio of 2.6 has been achieved. Specific power of the convertor in final low mass hermetically-sealed form is projected to exceed 90 watts/Kg. This convertor was developed under NASA SBIR funding. Potential applications for this convertor include highly efficient and low mass radioisotope fueled space power systems, as well as terrestrial use as a fuel fired battery replacement.

  6. Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Kan, Wentao; Xiong, Xiaoling; Wei, Hongyuan

    2017-08-01

    The preparation of a deuterated polymer was performed in order to simulate the production of the corresponding tritiated polymer as a solid tritium radioactive source. Substitution and addition reaction were used to introduce deuterium into the polymer. Proton nuclear magnetic resonance and FT-IR spectroscopy were used to investigate the extent and location of deuterium in the polymer, indicating an effectively deuterated polymer was produced. The thermal analysis showed that the final polymer product could tolerate the environmental temperature below 125 °C in its application. This research provides a prosperous method to prepare solid tritium radioactive source.

  7. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  8. Zero thermal expansion and semiconducting properties in PbTiO 3 –Bi(Co, Ti)O 3 ferroelectric solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zhao; Chen, Jun; Jiang, Xingxing

    Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Up to now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in semiconducting ferroelectric of 0.6PbTiO 3-0.4Bi(Co 0.55Ti 0.45)O 3-δ. Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied bymore » negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ionic (Ti 3+) to another (Ti 4+). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relative lower band-gap (E g) value of 1.5 eV, while ferroelectric property can be well maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. Finally, the present multifunctional material containing ZTE, semiconducting and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.« less

  9. Superconducting Meissner effect bearings for cryogenic turbomachines, phase 2

    NASA Astrophysics Data System (ADS)

    Valenzuela, Javier A.; Martin, Jerry L.

    1994-02-01

    This is the final report of a Phase 2 SBIR project to develop Meissner effect bearings for miniature cryogenic turbomachines. The bearing system was designed for use in miniature cryogenic turboexpanders in reverse-Brayton-cycle cryocoolers. The cryocoolers are designed to cool sensors on satellites. Existing gas bearings for this application run in a relatively warm state. The heat loss from the bearings into the shaft and into the cold process gas imposes a penalty on the cycle efficiency. By using cold Meissner effect bearings, this heat loss could be minimized, and the input power per unit of cooling for these cryocoolers could be reduced. Two bearing concepts were explored in this project. The first used an all-magnetic passive radial suspension to position the shaft over a range of temperatures from room temperature to 77 K. This bearing concept was proven to be feasible, but impractical for the miniature high-speed turbine application since it lacked the required shaft positioning accuracy. A second bearing concept was then developed. In this concept, the Meissner effect bearings are combined with self-acting gas bearings. The Meissner effect bearing provides the additional stiffness and damping required to stabilize the shaft at low temperature, while the gas bearing provides the necessary accuracy to allow very small turbine tip clearances (5mm) and high speeds (greater than 500,000 rpm).

  10. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  11. Zero thermal expansion and semiconducting properties in PbTiO 3 –Bi(Co, Ti)O 3 ferroelectric solid solutions

    DOE PAGES

    Pan, Zhao; Chen, Jun; Jiang, Xingxing; ...

    2017-02-16

    Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Up to now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in semiconducting ferroelectric of 0.6PbTiO 3-0.4Bi(Co 0.55Ti 0.45)O 3-δ. Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied bymore » negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ionic (Ti 3+) to another (Ti 4+). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relative lower band-gap (E g) value of 1.5 eV, while ferroelectric property can be well maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. Finally, the present multifunctional material containing ZTE, semiconducting and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.« less

  12. Effect of warm compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  13. Effect of cold compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.

  14. Microstructure of Hot Rolled 1.0C-1.5Cr Bearing Steel and Subsequent Spheroidization Annealing

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Xing; Li, Chang-Sheng; Zhang, Jian; Li, Bin-Zhou; Pang, Xue-Dong

    2016-07-01

    The effect of final rolling temperature and cooling process on the microstructure of 1.0C-1.5Cr bearing steel was studied, and the relationship between the microstructure parameters and subsequent spheroidization annealing was analyzed. The results indicate that the increase of water-cooling rate after hot rolling and the decrease of final cooling temperature are beneficial to reducing both the pearlite interlamellar spacing and pearlite colony size. Prior austenite grain size can be reduced by decreasing the final rolling temperature and increasing the water-cooling rate. When the final rolling temperature was controlled around 1103 K (830 °C), the subsequent cooling rate was set to 10 K/s and final cooling temperature was 953 K (680 °C), the precipitation of grain boundary cementite was suppressed effectively and lots of rod-like cementite particles were observed in the microstructure. Interrupted quenching was employed to study the dissolution behavior of cementite during the austenitizing at 1073 K (800 °C). The decrease of both pearlite interlamellar spacing and pearlite colony size could facilitate the initial dissolution and fragmentation of cementite lamellae, which could shorten the spheroidization time. The fragmentation of grain boundary cementite tends to form large-size undissolved cementite particles. With the increase of austenitizing time from 20 to 300 minutes, mean diameter of undissolved cementite particles increases, indicating the cementite particle coarsening and cementite dissolution occuring simultaneously. Mean diameter of cementite particles in the final spheroidized microstructure is proportional to the mean diameter of undissolved cementite particles formed during partial austenitizing.

  15. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application. Final report. [For us to 2400F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, W.E.

    1977-04-01

    A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniquesmore » succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.« less

  16. High temperature process steam application at the Southern Union Refining Company, Hobbs, New Mexico. Solar energy in the oil patch. Final report, Phase III: operation, maintenance, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, L.E.; McGuire, D.R.

    1984-05-01

    This final report summarizes the technical reports for Phase III of this project. The third phase included the operation, maintenance, upgrade and performance reporting of a 10,080 square foot Solar Industrial Process Heat System installed at the Famariss Energy Refinery of Southern Union Refining Company near Hobbs, New Mexico. This report contains a description of the upgraded system, and a summary of the overall operation, maintenance and performance of the installed system. The results of the upgrade activities can be seen in the last two months of operational data. Steam production was significantly greater in peak flow and monthly totalmore » than at any previous time. Also monthly total cost savings was greatly improved even though natural gas costs remain much lower than originally anticipated.« less

  17. Application of FT-IR Classification Method in Silica-Plant Extracts Composites Quality Testing

    NASA Astrophysics Data System (ADS)

    Bicu, A.; Drumea, V.; Mihaiescu, D. E.; Purcareanu, B.; Florea, M. A.; Trică, B.; Vasilievici, G.; Draga, S.; Buse, E.; Olariu, L.

    2018-06-01

    Our present work is concerned with the validation and quality testing efforts of mesoporous silica - plant extracts composites, in order to sustain the standardization process of plant-based pharmaceutical products. The synthesis of the silica support were performed by using a TEOS based synthetic route and CTAB as a template, at room temperature and normal pressure. The silica support was analyzed by advanced characterization methods (SEM, TEM, BET, DLS and FT-IR), and loaded with Calendula officinalis and Salvia officinalis standardized extracts. Further desorption studies were performed in order to prove the sustained release properties of the final materials. Intermediate and final product identification was performed by a FT-IR classification method, using the MID-range of the IR spectra, and statistical representative samples from repetitive synthetic stages. The obtained results recommend this analytical method as a fast and cost effective alternative to the classic identification methods.

  18. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    NASA Technical Reports Server (NTRS)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to future NASA missions. The Global Atmospheric Composition Mission (GACM) in the NRC Decadel Survey will need low-noise amplifiers with extremely low noise temperatures, either at room temperature or for cryogenic applications, for atmospheric remote sensing.

  19. Intelligent neonatal monitoring based on a virtual thermal sensor

    PubMed Central

    2014-01-01

    Background Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Methods Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate’s geometry. Results The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate’s body surface. Conclusions This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate’s skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming. PMID:24580961

  20. Intelligent neonatal monitoring based on a virtual thermal sensor.

    PubMed

    Abbas, Abbas K; Leonhardt, Steffen

    2014-03-02

    Temperature measurement is a vital part of daily neonatal care. Accurate measurements are important for detecting deviations from normal values for both optimal incubator and radiant warmer functioning. The purpose of monitoring the temperature is to maintain the infant in a thermoneutral environmental zone. This physiological zone is defined as the narrow range of environmental temperatures in which the infant maintains a normal body temperature without increasing his or her metabolic rate and thus oxygen consumption. Although the temperature measurement gold standard is the skin electrode, infrared thermography (IRT) should be considered as an effortless and reliable tool for measuring and mapping human skin temperature distribution and assist in assessing thermoregulatory reflexes. Body surface temperature was recorded under several clinical conditions using an infrared thermography imaging technique. Temperature distributions were recorded as real-time video, which was analyzed to evaluate mean skin temperatures. Emissivity variations were considered for optimal neonatal IRT correction for which the compensation vector was overlaid on the tracking algorithm to improve the temperature reading. Finally, a tracking algorithm was designed for active follow-up of the defined region of interest over a neonate's geometry. The outcomes obtained from the thermal virtual sensor demonstrate its ability to accurately track different geometric profiles and shapes over the external anatomy of a neonate. Only a small percentage of the motion detection attempts failed to fit tracking scenarios due to the lack of a properly matching matrix for the ROI profile over neonate's body surface. This paper presents the design and implementation of a virtual temperature sensing application that can assist neonatologists in interpreting a neonate's skin temperature patterns. Regarding the surface temperature, the influence of different environmental conditions inside the incubator has been confirming.

  1. Final Report, January 1991 - July 1992

    NASA Astrophysics Data System (ADS)

    Ferrara, Jon

    1992-07-01

    This report covers final schedules, expenses and billings, monthly reports, testing, and deliveries for this contract. The goal of the detector development program for the Solar and Heliospheric Spacecraft (SOHO) EUV Imaging Telescope (EIT) is an Extreme UltraViolet (EUV) CCD (Change Collecting Device) camera. As a part of the CCD screening effort, the quantum efficiency (QE) of a prototype CCD has been measured in the NRL EUV laboratory over the wavelength range of 256 to 735 Angstroms. A simplified model has been applied to these QE measurements to illustrate the relevant physical processes that determine the performance of the detector. The charge transfer efficiency (CTE) characteristics of the Tektronix 1024 X 1024 CCD being developed for STIS/SOHO space imaging applications have been characterized at different signal levels, operating conditions, and temperatures using a variety of test methods. A number of CCD's have been manufactured using processing techniques developed to improve CTE, and test results on these devices will be used in determining the final chip design. In this paper, we discuss the CTE test methods used and present the results and conclusions of these tests.

  2. Facile Synthesis of Robust Free-Standing TiO2 Nanotubular Membranes for Biofiltration Applications

    PubMed Central

    Schweicher, Julien; Desai, Tejal A.

    2014-01-01

    Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO2 nanotubular membranes with through-hole morphology. It consists in a 3-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO2 nanotubes that will constitute the final membrane. A higher voltage anodization (3-5 minutes at 180 V) is finally applied to detach the TiO2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 minutes in a buffered oxide etch solution. The overall process produces 60 μm-thick TiO2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications. PMID:24634542

  3. Facile Synthesis of Robust Free-Standing TiO2 Nanotubular Membranes for Biofiltration Applications.

    PubMed

    Schweicher, Julien; Desai, Tejal A

    2014-03-01

    Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO 2 nanotubular membranes with through-hole morphology. It consists in a 3-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO 2 nanotubes that will constitute the final membrane. A higher voltage anodization (3-5 minutes at 180 V) is finally applied to detach the TiO 2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 minutes in a buffered oxide etch solution. The overall process produces 60 μm-thick TiO 2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO 2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications.

  4. Microgenerateurs electriques a base d'oscillateurs thermiques

    NASA Astrophysics Data System (ADS)

    Leveille, Etienne

    Dans un contexte de developpement durable et d'automatisation de notre environnement, l'utilisation de capteurs sans-fil distribues est croissante. Hors l'usage et le remplacement de piles s'avere couteux. La consommation energetique de plus en plus faible de l'electronique rend l'extraction energetique de l'energie ambiante envisageable. La chaleur residuelle est une source d'energie interessante puisqu'elle est la forme finale de la majeure partie de l'energie utilisee par l'humain. Cependant, a petite echelle, seuls les elements thermoelectriques sont disponibles. Les presents travaux s'interessent donc a explorer et comparer des mecanismes de generation alternatifs. Puisque la majorite des mecanismes de transduction alternatifs sont dynamiques, leur utilisation requiert une transformation de l'energie thermique continue en oscillations. Les mecanismes etudies ont donc tous en commun de posseder un oscillateur thermique en plus d'un mecanisme de transduction vers la forme d'energie electrique. Parmi les divers mecanismes identifies, deux sont etudies en details pour comprendre leurs comportements ainsi que connaitre leur efficacite et leur puissance potentielle. Le premier generateur etudie theoriquement est base sur le changement de ferromagnetisme d'une masse suspendue par des ressorts au-dessus d'un aimant. Les comportements du modele developpe correspondent aux comportements reportes dans la litterature. Deux parametres de conception principaux ont ete identifies, permettant un controle de la frequence, de la plage de temperatures d'operation. De plus le mecanisme peut operer avec de faibles differences de temperature et des temperatures proches de l'ambiant, ouvrant la porte a des applications utilisant la chaleur du corps humain. L'utilisation de materiau pyroelectrique comme mecanisme de transduction pourrait offrir des densites de puissance electrique envisageables de l'ordre de 1mW/cm3. Le second generateur etudie experimentalement est base sur l'evaporation explosive d'un liquide surchauffe en absence de sites de nucleation. Un premier prototype a permis de demontrer, pour la premiere fois, le fonctionnement d'un tel cycle. Une etude de l'effet de la temperature de la source de chaleur et de l'effet du debit de liquide montre qu'une zone d'operation ideale est presente. La puissance de sortie maximale mesuree est de l'ordre de 1.6muW. Des ameliorations sont proposees pour faire croitre cette puissance de deux ordres de grandeur. Finalement, l'utilisation du pompage capillaire pour rendre le systeme autonome est demontre, mais reste sensible aux variations de conditions. Finalement, l'etude des dispositifs montre que les microgenerateurs a base d'oscillateurs thermiques peuvent presenter un interet, par rapport aux elements thermoelectriques, dans les applications ou les temperatures sont faibles ou incertaines. Cependant, ces mecanismes souffrent d'une tres faible efficacite causee par les multiples transformations energetiques a faible couplage. Mots-cles : microgenerateur, oscillateur thermique, cycle thermodynamique, thermoelectricite, microsystemes electromecaniques, MEMS

  5. Significance of circadian rhythms in severely brain-injured patients: A clue to consciousness?

    PubMed

    Blume, Christine; Lechinger, Julia; Santhi, Nayantara; del Giudice, Renata; Gnjezda, Maria-Teresa; Pichler, Gerald; Scarpatetti, Monika; Donis, Johann; Michitsch, Gabriele; Schabus, Manuel

    2017-05-16

    To investigate the relationship between the presence of a circadian body temperature rhythm and behaviorally assessed consciousness levels in patients with disorders of consciousness (DOC; i.e., vegetative state/unresponsive wakefulness syndrome or minimally conscious state). In a cross-sectional study, we investigated the presence of circadian temperature rhythms across 6 to 7 days using external skin temperature sensors in 18 patients with DOC. Beyond this, we examined the relationship between behaviorally assessed consciousness levels and circadian rhythmicity. Analyses with Lomb-Scargle periodograms revealed significant circadian rhythmicity in all patients (range 23.5-26.3 hours). We found that especially scores on the arousal subscale of the Coma Recovery Scale-Revised were closely linked to the integrity of circadian variations in body temperature. Finally, we piloted whether bright light stimulation could boost circadian rhythmicity and found positive evidence in 2 out of 8 patients. The study provides evidence for an association between circadian body temperature rhythms and arousal as a necessary precondition for consciousness. Our findings also make a case for circadian rhythms as a target for treatment as well as the application of diagnostic and therapeutic means at times when cognitive performance is expected to peak. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  6. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    PubMed Central

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-01-01

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas. PMID:27136564

  7. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.

    PubMed

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-04-29

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas.

  8. Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni3Al

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.

    2018-01-01

    The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.

  9. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  10. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  11. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction

    PubMed Central

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  12. A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures

    NASA Astrophysics Data System (ADS)

    Nonnenmann, Stephen S.

    2016-02-01

    Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end.

  13. Chemical degradation and morphological instabilities during focused ion beam prototyping of polymers.

    PubMed

    Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H

    2014-01-28

    Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.

  14. Phase coexistence and electric-field control of toroidal order in oxide superlattices.

    PubMed

    Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  15. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    NASA Astrophysics Data System (ADS)

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  16. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    DOE PAGES

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; ...

    2017-08-07

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3/SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1/a 2 phase. At room temperature, the coexisting vortexmore » and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.« less

  17. Quasi-biennial modulation of the Northern Hemisphere tropopause height and temperature

    NASA Astrophysics Data System (ADS)

    Ribera, P.; PeñA-Ortiz, C.; AñEl, J. A.; Gimeno, L.; de la Torre, L.; Gallego, D.

    2008-04-01

    The influence of the quasi-biennial oscillation (QBO) on the tropopause pressure and temperature is studied through the application of the multitaper-singular value decomposition method (MTM-SVD). Reanalysis data (ERA-40) from the European Centre for Medium-Range Weather Forecasts (ECMWF) and radiosonde data from the Integrated Global Radiosonde Archive (IGRA) covering the period 1979-1999 are used. The results show a strong response of the height and temperature of the tropopause to the QBO not limited to the equatorial latitudes but affecting the entire Northern Hemisphere. A cooling (warming) of the tropopause temperature over polar (equatorial) latitudes during a QBO positive phase is observed, being particularly noticeable over polar latitudes. The anomalies in the tropopause height confirm these results, with the tropopause being at higher (lower) levels in polar (equatorial) latitudes during QBO positive phase. Results for the QBO negative phase are of opposite sign. We also found that the results obtained using raw radiosonde data and reanalysis are in very good agreement. Finally, the evolution of the mass stream function through a QBO cycle is used to justify the differences observed in the evolution of the tropopause characteristics at low and high latitudes through the QBO cycle.

  18. Analysis of curing of a sustained release coating formulation by application of NIR spectroscopy to monitor changes associated with glyceryl monostearate.

    PubMed

    Howland, Harris; Fahmy, Raafat; Hoag, Stephen W

    2015-01-01

    For controlled release, latex or pseudolatex coatings to function as designed, it must be cured at temperatures at or slightly above the polymer's glass transition temperature. The focus of this study is to develop an understanding of the curing process and to develop near infrared spectroscopy as a tool for monitoring curing. Differential scanning calorimetry studies were used to determine how the thermal properties of glyceryl monostearate (GMS) and its polymorphic forms relate to the extent of Eudragit® polymer coat curing at different curing temperatures. The different GMS melting endotherms were used to monitor the extent of curing and as references for model development. The calculated melting peak areas for the GMS were plotted versus time and found to be dependent on time and temperature used for curing. Principal component analysis and parallel factor analysis were used to investigate the effect of curing on the films and showed that spectral changes could be could be directly related to the changes associated with the GMS during curing. Partial least square models developed could predict the extent of curing and the final state of GMS post curing.

  19. A novel interferometric characterization technique for 3D analyses at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Bardong, Jochen; Pulko, Jozef; Binder, Alfred

    2018-04-01

    Advanced optical measurement techniques are always of interest for the characterization of engineered surfaces. When pressure or temperature modules are also incorporated, these techniques will turn into robust and versatile methodologies for various applications such as performance monitoring of devices in service conditions. However, some microelectromechanical systems (MEMS) and MOEMS devices require performance monitoring at their final stage, i.e. enclosed or packaged. That necessitates measurements through a protective liquid, plastic, or glass, whereas the conventional objective lenses are not designed for such media. Correspondingly, in the current study, the development and tailoring of a 3D interferometer as a means for measuring the topography of reflective surfaces under transmissive media is sought. For topography measurements through glass, water and oil, compensation glass plates were designed and incorporated into the Michelson type interferometer objectives. Moreover, a customized chamber set-up featuring an optical access for the observation of the topographical changes at increasing pressure and temperature conditions was constructed and integrated into the apparatus. Conclusively, the in situ monitoring of the elastic deformation of sensing microstructures inside MEMS packages was achieved. These measurements were performed at a defined pressure (0–100 bar) and temperature (25 °C–180 °C).

  20. Effect of Particle Morphology on Cold Spray Deposition of Chromium Carbide-Nickel Chromium Cermet Powders

    NASA Astrophysics Data System (ADS)

    Fernandez, Ruben; Jodoin, Bertrand

    2017-08-01

    Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.

  1. Structure and Thermal Expansion of YSZ and La 2Zr 2O 7 Above 1500°C from Neutron Diffraction on Levitated Samples

    DOE PAGES

    Ushakov, Sergey V.; Navrotsky, Alexandra; Weber, Richard J. K.; ...

    2015-07-28

    High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6/K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZmore » are similar and within (7 ± 2) × 10 -6/K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6/K at 2350°C–2550°C with oxygen displacement parameters (U iso) reaching 0.1 Å 2, similar to behavior observed in UO 2. Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.« less

  2. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  3. Antimicrobial hydrogels: promising materials for medical application

    PubMed Central

    Yang, Kerong; Han, Qing; Chen, Bingpeng; Zheng, Yuhao; Zhang, Kesong; Li, Qiang; Wang, Jincheng

    2018-01-01

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Local application of antibiotics might be a solution. In local application, materials need to act as the drug delivery system. The drug delivery system should be biodegradable and prolonged antibacterial effect should be provided to satisfy clinical demand. Hydrogel is a promising material for local antibacterial application. Hydrogel refers to a kind of biomaterial synthesized by a water-soluble natural polymer or a synthesized polymer, which turns into gel according to the change in different signals such as temperature, ionic strength, pH, ultraviolet exposure etc. Because of its high hydrophilicity, unique three-dimensional network, fine biocompatibility and cell adhesion, hydrogel is one of the suitable biomaterials for drug delivery in antimicrobial areas. In this review, studies from the past 5 years were reviewed, and several types of antimicrobial hydrogels according to different ingredients, different preparations, different antimicrobial mechanisms, different antimicrobial agents they contained and different applications, were summarized. The hydrogels loaded with metal nanoparticles as a potential method to solve antibiotic resistance were highlighted. Finally, future prospects of development and application of antimicrobial hydrogels are suggested. PMID:29695904

  4. Nanometer scale thermometry in a living cell

    PubMed Central

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  5. A Study of Thermistor Performance within a Textile Structure.

    PubMed

    Hughes-Riley, Theodore; Lugoda, Pasindu; Dias, Tilak; Trabi, Christophe L; Morris, Robert H

    2017-08-05

    Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01-0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients.

  6. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  7. Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations.

    PubMed

    Wang, Fuping; Chen, Lang; Geng, Deshen; Wu, Junying; Lu, Jianying; Wang, Chen

    2018-04-26

    Hexanitrohexaazaisowurtzitane (CL-20) has a high detonation velocity and pressure, but its sensitivity is also high, which somewhat limits its applications. Therefore, it is important to understand the mechanism and characteristics of thermal decomposition of CL-20. In this study, a ε-CL-20 supercell was constructed and ReaxFF-lg reactive molecular dynamics simulations were performed to investigate thermal decomposition of ε-CL-20 at various temperatures (2000, 2500, 2750, 3000, 3250, and 3500 K). The mechanism of thermal decomposition of CL-20 was analyzed from the aspects of potential energy evolution, the primary reactions, and the intermediate and final product species. The effect of temperature on thermal decomposition of CL-20 is also discussed. The initial reaction path of thermal decomposition of CL-20 is N-NO 2 cleavage to form NO 2 , followed by C-N cleavage, leading to the destruction of the cage structure. A small number of clusters appear in the early reactions and disappear at the end of the reactions. The initial reaction path of CL-20 decomposition is the same at different temperatures. However, as the temperature increases, the decomposition rate of CL-20 increases and the cage structure is destroyed earlier. The temperature greatly affects the rate constants of H 2 O and N 2 , but it has little effect on the rate constants of CO 2 and H 2 .

  8. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  9. Fabricating continuous electroconductive polyacrylonitrile fibers with thermosensitive property via wet-spinning

    NASA Astrophysics Data System (ADS)

    Liu, Wanwan; Jin, Yang; Wang, Yangyi; Ge, Mingqiao; Gao, Qiang

    2017-12-01

    In this work, conductive polyacrylonitrile (PAN) composite fiber with thermosensitive property was successfully prepared via wet-spinning. Thermochromic pigment (TCP) microsphere capsules were applied to manufacture color-changing fibers. Meanwhile, light-colored conductive whiskers (ATO@TiO2) were employed to endow polyacrylonitrile fibers with conductivity without prejudicing their thermosensitive property. Interestingly, unlike other conductive fibers in dark color, this kind of conductive composite fiber can be dyed by thermosensitive pigment. The obtained composite fiber containing 20 vol% ATO@TiO2 whiskers shows a resistivity of 105 Ω · cm and could generate heat by Joule heating when being applied under a certain voltage. The composite fiber shows a red color at room temperature, while the color of the composite fiber fades gradually and finally becomes white as temperature rise. This simple and cost-effective approach is expected to inspire more research into the applications of multifunctional conductive fibers.

  10. Electronic excitations and defects in fluoroperovskite LiBaF3

    NASA Astrophysics Data System (ADS)

    Springis, Maris; Brikmane, Liga; Tale, Ivar; Kulis, Peteris

    2003-08-01

    A survey of the present situation with respect to knowledge of lattice defects, electronic excitations, such as excitons and localized excitons, as well as energy storage and transfer phenomena in LiBaF3 crystals is given. Both phenomenological models and experimental interpretations of optical absorption bands, tentatively associated with F-type (electron) centers created by X-ray or electron irradiation, is reviewed. Interpretation of three radiative processes (super-fast core-valence transitions, slow trapped exciton luminescence and luminescence of structure defects) observed in undoped LiBaF3 crystals is analyzed with respect to practical application. Attention is paid to the behavior of ultraviolet emission so far ascribed to self-trapped exciton luminescence and also observed as a result of electron recombination with localized hole at various temperatures (even at room temperature), depending on crystal purity and growth conditions. Finally, some aspects of ionic processes in thermal relaxation of defects are pointed to.

  11. Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less

  12. A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef

    2016-04-01

    This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.

  13. Passive films on magnesium anodes in primary batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.

    1988-01-01

    The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined nondestructively from an analysis of the transient and steady-state response of the electrode potential to low amplitude galvanostatic polarization under various experimental conditions viz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.

  14. Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids.

    PubMed

    Nguyen, Hung D; Reddy, Vijay S; Brooks, Charles L

    2007-02-01

    Self-assembly of viral proteins into icosahedral capsids is an interesting yet poorly understood phenomenon of which elucidation may aid the exploration of beneficial applications of capsids in materials science and medicine. Using molecular dynamics simulations of coarse-grained models for capsid proteins, we show that the competition between the formation of full capsids and nonidealized structures is strongly dependent upon the protein concentration and temperature, occurring kinetically as a cascade of elementary reactions in which free monomers are added to the growing oligomers on a downhill free-energy landscape. However, the insertion of the final subunits is the rate-limiting, energetically unfavorable step in viral capsid assembly. A phase diagram has been constructed to show the regions where capsids or nonidealized structures are stable at each concentration and temperature. We anticipate that our findings will provide guidance in identifying suitable conditions required for in vitro viral capsid assembly experiments.

  15. Use of smart photochromic indicator for dynamic monitoring of the shelf life of chilled chicken based products.

    PubMed

    Brizio, Ana Paula Dutra Resem; Prentice, Carlos

    2014-03-01

    This study evaluated the applicability of a photochromic time temperature indicator (TTI) to monitor the time-temperature history and shelf life of chilled boneless chicken breast. The results showed that the smart indicator showed good reproducibility during the discoloring process in all the conditions investigated. The response was not only visibly interpretable but also well adaptable to measurement using appropriate equipment. For an activation configuration of 4 s of ultraviolet light (UV) per label, the TTI's rate of discoloration was similar to the quality loss of the meat samples analyzed. Thus, the photochromic label (4 s UV/label) attached to the samples set out to be a dynamic shelf-life label, assuring consumers the final point of quality of chilled boneless chicken breast in an easy and precise form, providing a reliable tool to monitor the supply chain of this product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A Fiber-Optic Probe Design for Combustion Chamber Flame Detection Applications-Design Criteria, Performance Specifications, and Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; Harper, Samuel E.

    2001-01-01

    This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.

  17. Hygrothermal properties of composites

    NASA Technical Reports Server (NTRS)

    Arsenovic, Petar

    1996-01-01

    The testing procedure and acceptance criteria for outgassing selection of materials to be used in spacecraft has been reviewed. Outgassing testing should be conducted according to ASTM Standard E 595-90. In general, materials with CVCM less than or equal to 0.10% and TML less than or equal to 1.00% are acceptable for space applications. Next, test data on several types of graphite-epoxy composite materials are presented over time at various relative humidity levels at room temperature for moisture absorption, and under vacuum at several temperatures for moisture desorption (outgassing). The data can be accurately represented by simple equations which are useful for materials characterization. Finally, a laser dilatometer systems of extremely high sensitivity and accuracy was assembled and used to measure the coefficient of thermal expansion (CTE) of several types of graphite-epoxy structures, culminating in the ability to perform loading and thermal expansion tests on a prototype optical bench.

  18. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1991-01-01

    It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.

  19. Construction and Application of a Terahertz Scanning Near-Field Microscope for Study of Correlated Electron Materials at Cryogenic Temperatures and Nanometer Length Scales

    NASA Astrophysics Data System (ADS)

    Stinson, Harry Theodore, III

    This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.

  20. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  1. Assimilation of NUCAPS Retrieved Profiles in GSI for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily Beth; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral IR profiles can be assimilated in GSI as a separate observation other than radiosondes with only changes to tables in the fix directory. Assimilation of profiles does produce changes to analysis fields and evidenced by: Innovations larger than +/-2.0 K are present and represent where individual profiles impact the final temperature analysis.The updated temperature analysis is colder behind the cold front and warmer in the warm sector. The updated moisture analysis is modified more in the low levels and tends to be drier than the original model background Analysis of model output shows: Differences relative to 13-km RAP analyses are smaller when profiles are assimilated with NUCAPS errors. CAPE is under-forecasted when assimilating NUCAPS profiles, which could be problematic for severe weather forecasting Refining the assimilation technique to incorporate an error covariance matrix and creating a separate GSI module to assimilate satellite profiles may improve results.

  2. Progress in high-power continuous-wave quantum cascade lasers [Invited].

    PubMed

    Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy

    2017-11-01

    Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

  3. Combined bending and thermal fatigue of high-temperature metal-matrix composites - Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, Christos C.

    1992-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  4. Vortices in high-performance high-temperature superconductors

    DOE PAGES

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; ...

    2016-09-21

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. In this paper, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Finally, we discuss an emerging new paradigm of criticalmore » current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg–Landau approach to simulating vortex dynamics.« less

  5. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient

    NASA Astrophysics Data System (ADS)

    Basso, L.; Gorrini, F.; Bazzanella, N.; Cazzanelli, M.; Dorigoni, C.; Bifone, A.; Miotello, A.

    2018-01-01

    Nanodiamonds have attracted considerable interest for their potential applications in quantum computation, sensing, and bioimaging. However, synthesis of nanodiamonds typically requires high pressures and temperatures, and is still a challenge. Here, we demonstrate production of nanodiamonds by pulsed laser ablation of graphite and diamond-like carbon in water. Importantly, this technique enables production of nanocrystalline diamonds at room temperature and standard pressure conditions. Moreover, we propose a method for the purification of nanodiamonds from graphitic and amorphous carbon phases that do not require strong acids and harsh chemical conditions. Finally, we present a thermodynamic model that describes the formation of nanodiamonds during pulsed laser ablation. We show that synthesis of the crystalline phase is driven by a graphite-liquid-diamond transition process that occurs at the extreme thermodynamic conditions reached inside the ablation plume.

  6. High temperature static strain gage alloy development program

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Bailey, R. S.; Lemkey, F. D.

    1985-01-01

    The literature, applicable theory and finally an experimental program were used to identify new candidate alloy systems for use as the electrical resistance elements in static strain gages up to 1250K. The program goals were 50 hours of use in the environment of a test stand gas turbine engine with measurement accuracies equal to or better than 10 percent of full scale for strains up to + or - 2000 microstrain. As part of this effort, a computerized electrical resistance measurement system was constructed for use at temperatures between 300K and 1250K and heating and cooling rates of 250K/min and 10K/min. The two best alloys were an iron-chromium-aluminum alloy and a palladium base alloy. Although significant progress was made, it was concluded that a considerable additional effort would be needed to fully optimize and evaluate these candidate systems.

  7. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    USGS Publications Warehouse

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  8. Status of high temperature superconductor development for accelerator magnets

    NASA Technical Reports Server (NTRS)

    Hirabayashi, H.

    1995-01-01

    High temperature superconductors are still under development for various applications. As far as conductors for magnets are concerned, the development has just been started. Small coils wound by silver sheathed Bi-2212 and Bi-2223 oxide conductors have been reported by a few authors. Essential properties of high T(sub c) superconductors like pinning force, coherent length, intergrain coupling, weak link, thermal property, AC loss and mechanical strength are still not sufficiently understandable. In this talk, a review is given with comparison between the present achievement and the final requirement for high T(sub c) superconductors, which could be particularly used in accelerator magnets. Discussions on how to develop high T(sub c) superconductors for accelerator magnets are included with key parameters of essential properties. A proposal of how to make a prototype accelerator magnet with high T(sub c) superconductors with prospect for future development is also given.

  9. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    PubMed

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  10. Recovery behaviour of shape memory polyurethane based laminates after thermoforming

    NASA Astrophysics Data System (ADS)

    Wu, Shuiliang; Xu, Wensen; Prasath Balamurugan, G.; Thompson, Michael R.; Nielsen, Kent E.; Brandys, Frank A.

    2017-11-01

    Shape memory polymers (SMPs) can be used to produce a new class of decorative films capable of improved formability and shape recovery in polymer laminates, which are increasingly being used for automotive, aerospace, construction and commercial applications. As a relatively new field there is little knowledge on the shape recovery behaviour of laminates with a SMP film and few methods of quantify that behaviour. The influences of different variables that affect the recovery behaviour of thermoplastic shape memory polyurethanes based laminates including ambient temperature (45 °C and 65 °C), material modulus, and adhesive strength were investigated after thermoforming, through both experimental and modelling methods. The empirical model assisted in identifying the contributions of the adhesive to transfer stresses, which dampened the recovery of the laminate with lower shear strength adhesives. Increasing ambient temperature and the film modulus increased both the final angle recovery ratios and recovery rates.

  11. Combined thermal and bending fatigue of high-temperature metal-matrix composites: Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.

    1991-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  12. Structure-mechanics property relationship of waste derived biochars.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X-ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900°C and 60min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01GPa, respectively. It was shown that a combination of higher heat treatment (≥500°C) temperature and longer residence time (~60min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Room temperature ionic liquids interacting with bio-molecules: an overview of experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Benedetto, Antonio; Ballone, Pietro

    2016-03-01

    We briefly review experimental and computational studies of room temperature ionic liquids (RTILs) interacting with important classes of biomolecules, including phospholipids, peptides and proteins, nucleic acids and carbohydrates. Most of these studies have been driven by the interest for RTILs applications as solvents. Thus, available experimental data cover primarily thermodynamic properties such as the reciprocal solubility of RTILs and bio-molecules, as well as phase boundaries. Less extensive data are also available on transport properties such as diffusion and viscosity of homogeneous binary (RTILs/biomolecules) and ternary (RTIL/biomolecules/water) solutions. Most of the structural information at the atomistic level, of interest especially for biochemical, pharmaceutical and nanotechnology applications, has been made available by molecular dynamics simulations. Major exceptions to this statement are represented by the results from NMR and circular dichroism spectroscopy, by selected neutron and X-ray scattering data, and by recent neutron reflectometry measurements on lipid bilayers on surfaces, hydrated by water-RTIL solutions. A final section of our paper summarizes new developments in the field of RTILs based on amino acids, that combine in themselves the two main aspects of our discussion, i.e. ionic liquids and bio-molecules.

  14. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    PubMed

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  15. The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust

    NASA Astrophysics Data System (ADS)

    Reicher, Naama; Segev, Lior; Rudich, Yinon

    2018-01-01

    The WeIzmann Supercooled Droplets Observation on Microarray (WISDOM) is a new setup for studying ice nucleation in an array of monodisperse droplets for atmospheric implications. WISDOM combines microfluidics techniques for droplets production and a cryo-optic stage for observation and characterization of freezing events of individual droplets. This setup is designed to explore heterogeneous ice nucleation in the immersion freezing mode, down to the homogeneous freezing of water (235 K) in various cooling rates (typically 0.1-10 K min-1). It can also be used for studying homogeneous freezing of aqueous solutions in colder temperatures. Frozen fraction, ice nucleation active surface site densities and freezing kinetics can be obtained from WISDOM measurements for hundreds of individual droplets in a single freezing experiment. Calibration experiments using eutectic solutions and previously studied materials are described. WISDOM also allows repeatable cycles of cooling and heating for the same array of droplets. This paper describes the WISDOM setup, its temperature calibration, validation experiments and measurement uncertainties. Finally, application of WISDOM to study the ice nucleating particle (INP) properties of size-selected ambient Saharan dust particles is presented.

  16. Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design

    PubMed Central

    Giuntini, Diletta; Olevsky, Eugene A.; Garcia-Cardona, Cristina; Maximenko, Andrey L.; Yurlova, Maria S.; Haines, Christopher D.; Martin, Darold G.; Kapoor, Deepak

    2013-01-01

    The present paper shows the application of a three-dimensional coupled electrical, thermal, mechanical finite element macro-scale modeling framework of Spark Plasma Sintering (SPS) to an actual problem of SPS tooling overheating, encountered during SPS experimentation. The overheating phenomenon is analyzed by varying the geometry of the tooling that exhibits the problem, namely by modeling various tooling configurations involving sequences of disk-shape spacers with step-wise increasing radii. The analysis is conducted by means of finite element simulations, intended to obtain temperature spatial distributions in the graphite press-forms, including punches, dies, and spacers; to identify the temperature peaks and their respective timing, and to propose a more suitable SPS tooling configuration with the avoidance of the overheating as a final aim. Electric currents-based Joule heating, heat transfer, mechanical conditions, and densification are imbedded in the model, utilizing the finite-element software COMSOL™, which possesses a distinguishing ability of coupling multiple physics. Thereby the implementation of a finite element method applicable to a broad range of SPS procedures is carried out, together with the more specific optimization of the SPS tooling design when dealing with excessive heating phenomena. PMID:28811398

  17. Moist Adiabats with Multiple Condensing Species: A New Theory with Application to Giant-Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Ingersoll, Andrew P.; Oyafuso, Fabiano

    2018-04-01

    We derived a new formula for calculating the moist adiabatic temperature profile of an atmosphere consisting of ideal gases with multiple condensing species. This expression unifies various formulas published in the literature and can be generalized to account for chemical reactions. Unlike previous methods, it converges to machine precision independent of mesh size. It accounts for any ratio of condensable vapors to dry gas, from zero to infinity, and for variable heat capacities as a function of temperature. Because the derivation is generic, the new formula is not only applicable to planetary atmosphere in the solar system, but also to hot Jupiters and brown dwarfs in which a variety of alkali metals, silicates and exotic materials condense. We demonstrate that even though the vapors are ideal gases, they interact in their effects on the moist adiabatic lapse rate. Finally, we apply the new thermodynamic model to study the effects of downdrafts on the distribution of minor constituents and thermal profile in the Galileo probe hotspot. We find that the Galileo Probe measurements can be interpreted as a strong downdraft that displaces an air parcel from 1 bar to the 4 bar level.

  18. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering

    PubMed Central

    Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-01-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method. PMID:27877777

  19. Temperature, Pulse, and Respiration. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This instructor's packet accompanies the learning activity package (LAP) on temperature, pulse, and respiration. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to…

  20. Design, Fabrication and Characterization of Thin Film Structures through Oxidation Kinetics

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan Jose

    Materials science and engineering is devoted to the understanding of the physics and chemistry of materials at the mesoscale and to applying that knowledge into real-life applications. In this work, different oxide materials and different oxidation methods are studied from a materials science point of view and for specific applications. First, the deposition of complex metal oxides is explored for solar energy concentration. This requires a number of multi-cation oxide structures such as thin-film dielectric barriers, low loss waveguides or the use of continuously graded composition oxides for antireflection coatings and light concentration. Then, oxidation via Joule heating is used for the self-alignment of a selector on top of a memristor structure on a nanovia. Simulations are used to explore the necessary voltage for the insulator-to-metal transition temperature of NbO2 using finite element analysis, followed by the fabrication and the characterization of such a device. Finally, long-term copper oxidation at room temperature and pressure is studied using optical techniques. Alternative characterization techniques are used to confirm the growth rate and phase change, and an application of copper oxide as a volatile conductive bridge is shown. All these examples show how the combination of novel simulation, fabrication and characterization techniques can be used to understand physical mechanisms and enable disruptive technologies in fields such as solar cells, light emitting diodes, photodetectors or memory devices.

  1. TOPICAL REVIEW: Plasma assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  2. Surface microstructure evolution of highly transparent and conductive Al-doped ZnO thin films and its application in CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang

    2017-07-01

    Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.

  3. Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Park, Hanbit; Reddy, D. Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Lim, Manho; Kim, Tae Kyu

    2017-04-01

    Ultra-dispersed bimetallic nanomaterials have attracted much attention in the hydrogenation of highly toxic aromatic nitro compounds to aromatic amines owing to their high stability, superior activity, reusability, and unique optical and electronic properties, as compared to monometalic nanocrystals. However, the lack of facile and economically controllable strategies of producing highly pure ultra-dispersed bimetallic nanocatalysts limits their practical industrial applications. Considering the above obstacles, we present a simple and effective strategy for the formation of bimetallic (PdCu) nanocrystals by liquid phase pulsed laser ablation using a bulk Pd metal plate submerged in CuCl2 solutions with different concentrations, in contrast to the complex and costly experimental methods used previously. The microstructural and optical properties of the synthesized nanocrystals indicate that the obtained bimetallic nanostructures are highly pure and monodispersed. Moreover, bimetallic PdCu nanostructures show a higher catalytic activity than monometallic Pd nanocrystals for the hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature, also exhibiting high stability for up to four recycles. The mechanism of the enhanced catalytic activity and stability of bimetallic nanocrystals is discussed in detail. Finally, we believe that the presented design strategy and utilization of bimetallic nanocrystals for catalytic applications enables the development of novel bimetallic nanostructures by liquid phase pulsed laser ablation and their catalytic application for environmental remediation.

  4. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications

    PubMed Central

    Rémy, Benjamin; Plener, Laure; Poirier, Laetitia; Elias, Mikael; Daudé, David; Chabrière, Eric

    2016-01-01

    Extremozymes have gained considerable interest as they could meet industrial requirements. Among these, SsoPox is a hyperthermostable enzyme isolated from the archaeon Sulfolobus solfataricus. This enzyme is a lactonase catalyzing the hydrolysis of acyl-homoserine lactones; these molecules are involved in Gram-negative bacterial communication referred to as quorum sensing. SsoPox exhibits promiscuous phosphotriesterase activity for the degradation of organophosphorous chemicals including insecticides and chemical warfare agents. Owing to its bi-functional catalytic abilities as well as its intrinsic stability, SsoPox is appealing for many applications, having potential uses in the agriculture, defense, food and health industries. Here we investigate the biotechnological properties of the mutant SsoPox-W263I, a variant with increased lactonase and phosphotriesterase activities. We tested enzyme resistance against diverse process-like and operating conditions such as heat resistance, contact with organic solvents, sterilization, storage and immobilization. Bacterial secreted materials from both Gram-negative and positive bacteria were harmless on SsoPox-W263I activity and could reactivate heat-inactivated enzyme. SsoPox showed resistance to harsh conditions demonstrating that it is an extremely attractive enzyme for many applications. Finally, the potential of SsoPox-W263I to be active at subzero temperature is highlighted and discussed in regards to the common idea that hyperthermophile enzymes are nearly inactive at low temperatures. PMID:27876889

  5. Infrared imaging of the crime scene: possibilities and pitfalls.

    PubMed

    Edelman, Gerda J; Hoveling, Richelle J M; Roos, Martin; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-09-01

    All objects radiate infrared energy invisible to the human eye, which can be imaged by infrared cameras, visualizing differences in temperature and/or emissivity of objects. Infrared imaging is an emerging technique for forensic investigators. The rapid, nondestructive, and noncontact features of infrared imaging indicate its suitability for many forensic applications, ranging from the estimation of time of death to the detection of blood stains on dark backgrounds. This paper provides an overview of the principles and instrumentation involved in infrared imaging. Difficulties concerning the image interpretation due to different radiation sources and different emissivity values within a scene are addressed. Finally, reported forensic applications are reviewed and supported by practical illustrations. When introduced in forensic casework, infrared imaging can help investigators to detect, to visualize, and to identify useful evidence nondestructively. © 2013 American Academy of Forensic Sciences.

  6. TiO2 nanotube platforms for smart drug delivery: a review

    PubMed Central

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun

    2016-01-01

    Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided. PMID:27703349

  7. TiO2 nanotube platforms for smart drug delivery: a review.

    PubMed

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun

    Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

  8. Comparative study of the mechanical properties of different tungsten materials for fusion applications

    NASA Astrophysics Data System (ADS)

    Krimpalis, S.; Mergia, K.; Messoloras, S.; Dubinko, A.; Terentyev, D.; Triantou, K.; Reiser, J.; Pintsuk, G.

    2017-12-01

    The mechanical properties of tungsten produced in different forms before and after neutron irradiation are of considerable interest for their application in fusion devices such as ITER. In this work the mechanical properties and the microstructure of two tungsten (W) products with different microstructures are investigated using depth sensing nano/micro-indentation and transmission electron microscopy, respectively. Neutron irradiation of these materials for different doses, in the temperature range 600 °C-1200 °C, is underway within the EUROfusion project in order to progress our basic understanding of neutron irradiation effects on W. The hardness and elastic modulus are determined as a function of the penetration depth, loading/unloading rate, holding time at maximum load and the final surface treatment. The results are correlated with the microstructure as investigated by SEM and TEM measurements.

  9. Supercritical fluid extraction. Principles and practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, M.A.; Krukonis, V.J.

    This book is a presentation of the fundamentals and application of super-critical fluid solvents (SCF). The authors cover virtually every facet of SCF technology: the history of SCF extraction, its underlying thermodynamic principles, process principles, industrial applications, and analysis of SCF research and development efforts. The thermodynamic principles governing SCF extraction are covered in depth. The often complex three-dimensional pressure-temperature composition (PTx) phase diagrams for SCF-solute mixtures are constructed in a coherent step-by-step manner using the more familiar two-dimensional Px diagrams. The experimental techniques used to obtain high pressure phase behavior information are described in detail and the advantages andmore » disadvantages of each technique are explained. Finally, the equations used to model SCF-solute mixtures are developed, and modeling results are presented to highlight the correlational strengths of a cubic equation of state.« less

  10. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    NASA Astrophysics Data System (ADS)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  11. The use of precious-metal-modified nickel-based superalloys for thin gage applications

    NASA Astrophysics Data System (ADS)

    Ballard, Donna L.; Pilchak, Adam L.

    2010-10-01

    Precious-metal-modified nickel-based superalloys are being investigated for use in thin gage applications, such as thermal protection systems or heat exchangers, due to their strength and inherent oxidation resistance at temperatures in excess of 1,050°C. This overview paper summarizes the Air Force Research Laboratory (AFRL) interest in experimental two-phase γ-Ni + γ'-Ni3Al superalloys. The AFRL is interested in alloys with a based composition of Ni-15Al-5Cr (at. %) with carbon, boron, and zirconium additions for grain-boundary refinement and strengthening. The alloys currently being evaluated also contain 4-5 at.% of platinum-group metals, in this case platinum and iridium. The feasibility of hot rolling these alloys to a final thickness of 0.12-0.25 mm and obtaining a nearly fully recrystallized microstructure was demonstrated.

  12. Formulation and shelf life stability of water-borne lecithin nanoparticles for potential application in dietary supplements field.

    PubMed

    Edris, Amr E

    2012-09-01

    ABSTRACT The objective of the present investigation is to formulate commercial soybean lecithin as nanoparticles in solvent-free aqueous system for potential supplementary applications. A mechanical method, which involved two major steps, was used for that purpose. First, lecithin submicron particles (~ 0.5 μm) have been prepared by gradual hydration of lecithin powder using mechanical agitation. Finally, the size of these particles was further reduced to < 100 nm by using high-pressure microfluidization. The physical stability (appearance, particle size distribution, ζ-potential) and the chemical stability (lipid oxidation) of the dispersions carrying lecithin nanoparticles were assessed every 15 days during the 3-month shelf life period at two different temperatures. Results showed that the final particle size of lecithin in the freshly prepared aqueous dispersion was 79.8 ± 1.0 nm and the amount of peroxide detected was 3.5 ± 0.2 meq/kg lipid. At the end of the storage period, dispersions stored at 4°C exhibited physical and chemical stability as evident from the translucent appearance, the small change in particle size (84.1 ± 1.3 nm), and the small amount of generated peroxides (4.1 ± 0.2 meq/kg lipid). On the other hand, dispersions stored at 25°C were physically stable up to 60 days. Over that period, samples became turbid and the particle size increased to 145.0 ± 1.7 nm with a bimodal distribution pattern. This behavior was due to phospholipids (PLs) degradation and hydrolysis under acidic conditions, which proceeds faster at a relatively high temperature (25°C) than at (4°C). The outcome of this investigation may help in developing water-based dispersions carrying lecithin nanoparticles for dietary supplement of PLs.

  13. Growth and characterization of n-AlGaN 1-D structures with varying Al composition using u-GaN seeds

    NASA Astrophysics Data System (ADS)

    Kang, San; Chatterjee, Uddipta; Um, Dae-Young; Seo, In Seok; Lee, Cheul-Ro

    2017-12-01

    Like all the ternary alloys in III-nitride materials family, aluminum gallium nitride (AlGaN) has unique band gap tuning property which enables the alloy to be suitable for many opto-electronic applications. The direct band gap of AlGaN can be tuned from 3.4 to 6.2 eV by changing the composition. In this article, the growth of ternary n-AlGaN micro and nano structures on Si (1 1 1) substrate is demonstrated via 2-step growth method employing metal organic chemical vapor deposition. During the growth flow of Trimethygallium is varied to modulate the final Al/Ga ratio. After the growth, various morphological, crystalline and optical characterizations are carried out to probe in the properties of the grown structures. Recorded X-ray diffraction patterns reveal that the realized structures are wurtzite single crystalline n-AlGaN having a near homogeneous Al distribution and validated by energy dispersive X-ray spectroscopy. Low temperature cathodoluminescence spectra show band edge emission in deep UV region which enables the grown n-AlGaN structures to efficiently find opto-electronic applications in the aforementioned region. Finally, planar photoconductive devices are fabricated using the grown 1-D structures and photocurrent evolution is measured. Structure bearing highest Al content shows a manifold enhancement in photo activity compared to other grown samples. Absolute photoresponsivities of the grown samples are calculated to be 301.47, 116 and 38.13 mA/W which is in accord with the findings of low temperature cathodoluminescence investigation. Therefore, it can be concluded that the successful realization of n-AlGaN 1-D structures varying Al content facilitates the further developments of the field concerning nano- and opto-electronic devices.

  14. Electron Beam Welding of Gear Wheels by Splitted Beam

    NASA Astrophysics Data System (ADS)

    Dřímal, Daniel

    2014-06-01

    This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.

  15. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  16. High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structure

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Feng; Sun, Xu-Guang; Wu, Di; Xu, Ting-Ting; Zhuang, Shi-Wei; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Recently, perovskite-based light-emitting diodes based on organometal halide emitters have attracted much attention because of their excellent properties of high color purity, tunable emission wavelength and a low-temperature processing technique. As is well-known, organic light-emitting diodes have shown powerful capabilities in this field; however, the fabrication of these devices typically relies on high-temperature and high-vacuum processes, which increases the final cost of the product and renders them uneconomical for use in large-area displays. Organic/inorganic hybrid halide perovskites match with these material requirements, as it is possible to prepare such materials with high crystallinity through solution processing at low temperature. Herein, we demonstrated a high-brightness green light-emitting diode based on PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structures by a spin-coating method combined with a sputtering system. Under forward bias, a dominant emission peak at ~530 nm with a low full width of half-maximum (FWHM) of 30 nm can be achieved at room temperature. Owing to the high surface coverage of the CH3NH3PbBr3 layer and a device design based on carrier injection and a confinement configuration, the proposed diode exhibits good electroluminescence performance, with an external quantum efficiency of 0.0645%. More importantly, we investigated the working stability of the studied diode under continuous operation to verify the sensitivity of the electroluminescence performance to ambient atmosphere and to assess the suitability of the diode for practical applications. Moreover, the underlying reasons for the undesirable emission decay are tentatively discussed. This demonstration of an effective green electroluminescence based on CH3NH3PbBr3 provides valuable information for the design and development of perovskites as efficient emitters, thus facilitating their use in existing applications and suggesting new potential applications.

  17. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    NASA Astrophysics Data System (ADS)

    Guzinski, R.; Anderson, M. C.; Kustas, W. P.; Nieto, H.; Sandholt, I.

    2013-07-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise) when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observations from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, generally satisfactory agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish Hydrological ObsErvatory (HOBE) in western Denmark, indicating realistic patterns based on land use.

  18. Properties and biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, Rajesh Kumar

    Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to determine the size of Ni clusters, which plays important role on catalyzing the electrochemical reaction and powering Ni-MH batteries.

  19. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely made this area of investigation more exciting. Particularly fascinating are their structural and physiological features allowing them to withstand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA-polymerase, thermostable enzymes), the search and applications successful exceeded preliminary expectations, but certainly further exploitations are still needed. PMID:25370030

  20. Anesthetic complications in dogs undergoing hepatic surgery: cholecystectomy versus non-cholecystectomy.

    PubMed

    Burns, Brigid R; Hofmeister, Erik H; Brainard, Benjamin M

    2014-03-01

    To determine if dogs that undergo laparotomy for cholecystectomy suffer from a greater number or magnitude of perianesthetic complications, including hypotension, hypothermia, longer recovery time, and lower survival rate, than dogs that undergo laparotomy for hepatic surgery without cholecystectomy. Retrospective cohort study. One hundred and three dogs, anesthetised between January 2007 and October 2011. The variables collected from the medical record included age, weight, gender, surgical procedure, pre-operative bloodwork, American Society of Anesthesiologists (ASA) status, emergency status, total bilirubin concentration, anesthetic agents administered, body temperature nadir, final body temperature, hypotension, duration of hypotension, blood pressure nadir, intraoperative drugs, anesthesia duration, surgery duration, time to extubation, final diagnosis, days spent in the intensive care unit (ICU), total bill, survival to discharge, and survival to follow-up. No significant difference in body temperature nadir, final temperature, presence of hypotension, duration of hypotension, blood pressure nadir, the use of inotropes, or final outcome was found between dogs undergoing cholecystectomy and dogs undergoing exploratory laparotomy for other hepatic disease. Dogs that had cholecystectomy had longer anesthesia durations and longer surgery durations than dogs that did not have cholecystectomy. No significant differences existed for temperature nadir (34.8 versus 35.3°C; non-cholecystectomy versus cholecystectomy), final temperature (35.6 versus 35.9°C), time to extubation (30 versus 49 minutes), duration of hypotension (27 versus 21 minutes), or MAP nadir (56 versus 55 mmHg). Hypotension occurred in 66% and 74% and inotropes were used in 64% and 53%, for non-cholecystectomy and cholecystectomy patients, respectively. Dogs that underwent cholecystectomies did not suffer a greater number of anesthesia complications than did dogs undergoing hepatic surgery without cholecystectomies. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  1. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  2. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  3. Development of a thermal and structural model for a NASTRAN finite-element analysis of a hypersonic wing test structure

    NASA Technical Reports Server (NTRS)

    Lameris, J.

    1984-01-01

    The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.

  4. RPM-WEBBSYS: A web-based computer system to apply the rational polynomial method for estimating static formation temperatures of petroleum and geothermal wells

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.

    2015-12-01

    A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.

  5. Lightning Applications in Weather and Climate Research

    NASA Astrophysics Data System (ADS)

    Price, Colin G.

    2013-11-01

    Thunderstorms, and lightning in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. Lightning causes great damage and death every year but also tells us about the inner working of storms. Since lightning can be monitored from great distances from the storms themselves, lightning may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. Lightning itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in lightning and thunderstorm activity? Many studies show that higher surface temperatures produce more lightning, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, lightning itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between lightning, temperature, upper tropospheric water vapor, and cloud cover.

  6. Temperature-controlled chameleonlike cloak

    DOE PAGES

    Peng, Ruiguang; Xiao, Zongqi; Zhao, Qian; ...

    2017-03-21

    Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO 3 ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignatedmore » cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Finally, our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.« less

  7. SiC Integrated Circuits for Power Device Drivers Able to Operate in Harsh Environments

    NASA Astrophysics Data System (ADS)

    Godignon, P.; Alexandru, M.; Banu, V.; Montserrat, J.; Jorda, X.; Vellvehi, M.; Schmidt, B.; Michel, P.; Millan, J.

    2014-08-01

    The currently developed SiC electronic devices are more robust to high temperature operation and radiation exposure damage than correspondingly rated Si ones. In order to integrate the existent SiC high power and high temperature electronics into more complex systems, a SiC integrated circuit (IC) technology capable of operation at temperatures substantially above the conventional ones is required. Therefore, this paper is a step towards the development of ICs-control electronics that have to attend the harsh environment power applications. Concretely, we present the development of SiC MESFET-based digital circuitry, able to integrate gate driver for SiC power devices. Furthermore, a planar lateral power MESFET is developed with the aim of its co-integration on the same chip with the previously mentioned SiC digital ICs technology. And finally, experimental results on SiC Schottky-gated devices irradiated with protons and electrons are presented. This development is based on the Tungsten-Schottky interface technology used for the fabrication of stable SiC Schottky diodes for the European Space Agency Mission BepiColombo.

  8. High performance and thermally stable tandem solar selective absorber coating for concentrated solar thermal power (CSP) application

    NASA Astrophysics Data System (ADS)

    Prasad, M. Shiva; Kumar, K. K. Phani; Atchuta, S. R.; Sobha, B.; Sakthivel, S.

    2018-05-01

    A novel tandem absorber system (Mn-Cu-Co-Ox-ZrO2/SiO2) developed on an austenitic stainless steel (SS-304) substrate to show an excellent optical performance (αsol: 0.96; ɛ: 0.23@500 °C). In order to achieve this durable tandem, we experimented with two antireflective layers such as ZrO2-SiO2 and nano SiO2 layer on top of Mn-Cu-Co-Ox-ZrO2 layer. We optimized the thickness of antireflective layers to get good tandem system in terms of solar absorptance and emittance. Field emission scanning electron microscopy (FESEM), UV-Vis-NIR and Fourier transform infrared spectroscopy (FTIR) were used to characterize the developed coatings. Finally, the Mn-Cu-Co-Ox-ZrO2/SiO2 exhibits high temperature resistance up to 800 °C, thus allow an increase in the operating temperature of CSP which may lead to high efficiency. We successfully developed a high temperature resistant tandem layer with easy manufacturability at low cost which is an attractive candidate for concentrated solar power generation (CSP).

  9. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  10. An experimental study on pseudoelasticity of a NiTi-based damper for civil applications

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Bassani, Enrico; Della Torre, Davide; Donnini, Riccardo; Villa, Elena; Passaretti, Francesca

    2017-10-01

    In this work, a pseudoelastic damper composed by NiTi wires is tested at 0.5, 1 and 2 Hz for 1000 mechanical cycles. The damping performances were evaluated by three key parameters: the damping capacity, the dissipated energy per cycle and the maximum force. During testing, the temperature of the pseudoelastic elements was registered as well. Results show that the damper assures a bi-directional motion throughout the 1000 cycles together with the maintenance of the recentering. It was observed a stabilization process in the first 50 mechanical cycles, where the key parameters reach stable values; in particular it was found that the damping capacity and the dissipated energy both decrease with frequency. Besides, the mean temperature of the pseudoleastic elements reaches a stable value during tests and confirms the different response of the pseudoelastic wires accordingly with the specific length and stain. Finally, interesting thermal effects were observed at 1 and 2 Hz: at these frequencies and at high strains, the maximum force increases but the temperature of the NiTi wire decreases being in contraddiction with the Clausius-Clapeyron law.

  11. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul

    2016-07-01

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  12. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    NASA Astrophysics Data System (ADS)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  13. Micromechanisms of thermomechanical fatigue: A comparison with isothermal fatigue

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1986-01-01

    Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the crack initiation process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. For instance, high temperature cracking around grain boundary carbides in Mar-M 200 resulted in short in-phase TMF lives compared to either out-of-phase or isothermal lives. In single crystal PWA-1480, the type of coating applied was seen to be the controlling factor in determining sensitivity to the type of TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF.

  14. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review

    PubMed Central

    2018-01-01

    Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application. PMID:29695076

  15. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review.

    PubMed

    Šavija, Branko

    2018-04-24

    Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application.

  16. Chip morphology as a performance predictor during high speed end milling of soda lime glass

    NASA Astrophysics Data System (ADS)

    Bagum, M. N.; Konneh, M.; Abdullah, K. A.; Ali, M. Y.

    2018-01-01

    Soda lime glass has application in DNA arrays and lab on chip manufacturing. Although investigation revealed that machining of such brittle material is possible using ductile mode under controlled cutting parameters and tool geometry, it remains a challenging task. Furthermore, ability of ductile machining is usually assed through machined surface texture examination. Soda lime glass is a strain rate and temperature sensitive material. Hence, influence on attainment of ductile surface due to adiabatic heat generated during high speed end milling using uncoated tungsten carbide tool is investigated in this research. Experimental runs were designed using central composite design (CCD), taking spindle speed, feed rate and depth of cut as input variable and tool-chip contact point temperature (Ttc) and the surface roughness (Rt) as responses. Along with machined surface texture, Rt and chip morphology was examined to assess machinability of soda lime glass. The relation between Ttc and chip morphology was examined. Investigation showed that around glass transition temperature (Tg) ductile chip produced and subsequently clean and ductile final machined surface produced.

  17. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  18. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.

    PubMed

    Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao

    2018-04-02

    Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

  19. Optimising mobile phase composition, its flow-rate and column temperature in HPLC using taboo search.

    PubMed

    Guillaume, Y C; Peyrin, E

    2000-03-06

    A chemometric methodology is proposed to study the separation of seven p-hydroxybenzoic esters in reversed phase liquid chromatography (RPLC). Fifteen experiments were found to be necessary to find a mathematical model which linked a novel chromatographic response function (CRF) with the column temperature, the water fraction in the mobile phase and its flow rate. The CRF optimum was determined using a new algorithm based on Glover's taboo search (TS). A flow-rate of 0.9 ml min(-1) with a water fraction of 0.64 in the ACN-water mixture and a column temperature of 10 degrees C gave the most efficient separation conditions. The usefulness of TS was compared with the pure random search (PRS) and simplex search (SS). As demonstrated by calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimisation, this procedure is generally applicable, easy to implement, derivative free, conceptually simple and could be used in the future for much more complex optimisation problems.

  20. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silicamore » high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.« less

  1. Stimulus-responsive hydrogels: Theory, modern advances, and applications

    PubMed Central

    Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A.

    2016-01-01

    Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry. PMID:27134415

  2. Development and Application of Integrated Optical Sensors for Intense E-Field Measurement

    PubMed Central

    Zeng, Rong; Wang, Bo; Niu, Ben; Yu, Zhanqing

    2012-01-01

    The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs) have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI), coupler interferometer (CI) and common path interferometer (CPI). The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics. PMID:23112663

  3. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashayekh, Shahriar; Rajaee, Hajar; Hassan, Zuhir M.

    2015-09-15

    A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry weremore » used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF{sub 2} crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.« less

  4. Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction.

    PubMed

    Ortiz, Gastón E; Ponce-Mora, María C; Noseda, Diego G; Cazabat, Gabriela; Saravalli, Celina; López, María C; Gil, Guillermo P; Blasco, Martín; Albertó, Edgardo O

    2017-02-01

    The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl 2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min -1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.

  5. Solubilization of phenanthrene above cloud point of Brij 30: a new application in biodegradation.

    PubMed

    Pantsyrnaya, T; Delaunay, S; Goergen, J L; Guseva, E; Boudrant, J

    2013-06-01

    In the present study a new application of solubilization of phenanthrene above cloud point of Brij 30 in biodegradation was developed. It was shown that a temporal solubilization of phenanthrene above cloud point of Brij 30 (5wt%) permitted to obtain a stable increase of the solubility of phenanthrene even when the temperature was decreased to culture conditions of used microorganism Pseudomonas putida (28°C). A higher initial concentration of soluble phenanthrene was obtained after the cloud point treatment: 200 against 120μM without treatment. All soluble phenanthrene was metabolized and a higher final concentration of its major metabolite - 1-hydroxy-2-naphthoic acid - (160 against 85μM) was measured in the culture medium in the case of a preliminary cloud point treatment. Therefore a temporary solubilization at cloud point might have a perspective application in the enhancement of biodegradation of polycyclic aromatic hydrocarbons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Wavelet neural networks: a practical guide.

    PubMed

    Alexandridis, Antonios K; Zapranis, Achilleas D

    2013-06-01

    Wavelet networks (WNs) are a new class of networks which have been used with great success in a wide range of applications. However a general accepted framework for applying WNs is missing from the literature. In this study, we present a complete statistical model identification framework in order to apply WNs in various applications. The following subjects were thoroughly examined: the structure of a WN, training methods, initialization algorithms, variable significance and variable selection algorithms, model selection methods and finally methods to construct confidence and prediction intervals. In addition the complexity of each algorithm is discussed. Our proposed framework was tested in two simulated cases, in one chaotic time series described by the Mackey-Glass equation and in three real datasets described by daily temperatures in Berlin, daily wind speeds in New York and breast cancer classification. Our results have shown that the proposed algorithms produce stable and robust results indicating that our proposed framework can be applied in various applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Novel Materials, Processing and Device Technologies for Space Exploration with Potential Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K.V.; Hanson, W.; Amos, D.; hide

    2014-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multiwalled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be repurposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual-use or terrestrial applications.

  8. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual-use or terrestrial applications.

  9. Diamond nanostructures for drug delivery, bioimaging, and biosensing.

    PubMed

    Chen, Xianfeng; Zhang, Wenjun

    2017-02-06

    Diamond features an attractive combination of outstanding mechanical, optical, thermal and electrical properties; tunable surface characteristics; and unprecedented biocompatibility. Additionally, diamond can possess unique nitrogen-vacancy emission centers that are highly photostable and extremely sensitive to magnetic fields, temperatures, ion concentrations, and spin densities. With these inherent merits, diamond in various nanoscale configurations has demonstrated a variety of distinctive applications in a broad range of fields. In particular, research on diamond nanoparticles (0-dimensional structures) and arrays of diamond nanoneedles/nanowires (1-dimensional structures) has witnessed important and exciting progress in recent years. Here, we systematically review the superior properties of diamond nanomaterials and the nitrogen-vacancy centers they contain as well as their uses in biomedical applications, including biosensing, bioimaging and drug delivery. Moreover, systematic studies of the biocompatibility and toxicity of diamond nanostructures, which constitute an important issue for the biomedical applications of diamond that has not yet been thoroughly addressed in previous reviews, are also discussed. Finally, we present our insights into the key issues concerning these diamond nanomaterials and their future development for applications.

  10. SQUID magnetometers for low-frequency applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryhaenen, T.; Seppae, H.; Ilmoniemi, R.

    1989-09-01

    The authors present a novel formulation for SQUID operation, which enables them to evaluate and compare the sensitivity and applicability of different devices. SQUID magnetometers for low-frequency applications are analyzed, taking into account the coupling circuits and electronics. They discuss nonhysteretic and hysteretic single-junction rf SQUIDs, but the main emphasis is on the dynamics, sensitivity, and coupling considerations of dc-SQUID magnetometers. A short review of current ideas on thin-film, dc-SQUID design presents the problems in coupling and the basic limits of sensitivity. The fabrication technology of tunnel-junction devices is discussed with emphasis on how it limits critical current densities, specificmore » capacitances of junctions, minimum linewidths, conductor separations, etc. Properties of high-temperature superconductors are evaluated on the basis of recently published results on increased flux creep, low density of current carriers, and problems in fabricating reliable junctions. The optimization of electronics for different types of SQUIDs is presented. Finally, the most important low-frequency applications of SQUIDs in biomagnetism, metrology, geomagnetism, and some physics experiments demonstrate the various possibilities that state-of-the-art SQUIDs can provide.« less

  11. Kinetics of degradation of enalapril maleate in dosage forms.

    PubMed

    Stanisz, Beata

    2004-01-01

    The effect of humidity and temperature on the stability of enalapril maleate (ENA) in tablets have been studied. Tablets with ENA were stored in final packs (blisters) and without final packs in the atmosphere of increased humidity (76.4 % RH) and in the temperature range from 313 K to 333 K (forced degradation test). Degradation of ENA in tablets stored in final packs and without final packs followed the first order reaction model. During this study, the product of hydrolysis of the ester group and intramolecular cyclization have been observed. Thermodynamic parameters (activation energies, enthalpy and entropy) for the decomposition of ENA in tablets were calculated.

  12. Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment (Final Report)

    EPA Science Inventory

    EPA released the final report, Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment as announced in a September 22 2006 Federal Register Notice.This final report addresses the application and evaluati...

  13. Heated fiber optic distributed temperature sensing: a tool for measuring soil water content

    NASA Astrophysics Data System (ADS)

    Rodriguez-Sinobas, Leonor; Zubelzu, Sergio; Sánchez-Calvo, Raúl; Horcajo, Daniel

    2016-04-01

    The use of Distributed Fiber Optic Temperature Measurement (DFOT) method for estimating temperature variation along a cable of fiber optic has been assessed in multiple environmental applications. Recently, the application of DFOT combined with an active heating pulses technique has been reported as a sensor to estimate soil moisture. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content . This study presents the application of the Active Heated DFOT method to determine the soil water retention curve under experimental conditions. The experiment was conducted in a rectangular methacrylate box of 2.5 m x 0.25 m x 0.25 m which was introduced in a larger box 2.8 m x 0.3 m x 0.3 m of the same material. The inner box was filled with a sandy loamy soil collected from the nearest garden and dried under ambient temperature for 30 days. Care was taking to fill up the box maintaining the soil bulk density determined "in-situ". The cable was deployed along the box at 10 cm depth. At the beginning of the experiment, the box was saturated bottom-up, by filling the outer box with water, and then it kept dried for two months. The circulation of heated air at the bottom box accelerated the drying process. In addition, fast growing turf was also sowed to dry it fast. The DTS unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) and has spatial and temporal resolution of 0.29 m and 5 s, respectively. In this study, heat pulses of 7 W/m for 2 1/2 min were applied uniformly along the fiber optic cable and the thermal response on an adjacent cable was monitored in different soil water status. Then, the heating and drying phase integer (called Tcum) was determined following the approach of Sayde et al., (2010). For each water status,  was measured by the gravimetric method in several soil samples collected in three box locations at the same depth that the fiber optic cable and after each heat pulse. Finally, the soil water retention curve was estimated by fitting pairs of Tcum- values. Results showed the feasibility of heated fiber optics with distributed temperature sensing to estimate soil water content, and suggest its potential for its application under field conditions

  14. Coherent control of diamond defects for quantum information science and quantum sensing

    NASA Astrophysics Data System (ADS)

    Maurer, Peter

    Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells. This opens the door for the engineering of nano-scaled chemical reactions to the study of temperature dependent biological processes. Finally, a novel technique is introduced that facilitates optical spin detection with nanoscale resolution based on an optical far-field technique; by combining this with a 'quantum Zeno' like effect coherent manipulation of nominally identical spins at a nanoscale is achieved.

  15. Demonstrating antiphase domain boundary-free GaAs buffer layer on zero off-cut Si (0 0 1) substrate for interfacial misfit dislocation GaSb film by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2017-08-01

    High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1  ×  106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.

  16. Development of transition edge sensors with rf-SQUID based multiplexing system for the HOLMES experiment

    NASA Astrophysics Data System (ADS)

    Puiu, A.; Becker, D.; Bennett, D.; Faverzani, M.; Ferri, E.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Maino, M.; Mates, J.; Nucciotti, A.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2017-09-01

    Measuring the neutrino mass is one the most compelling issue in particle physics. HOLMES is an experiment funded by the European Research Council for a direct measurement of neutrino mass. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity as low as 1 eV. HOLMES, in its final configuration will deploy a 1000 pixel array of low temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a Transition Edge Sensor thermometer. The detectors will be kept at the working temperature of ˜70 mK using a dilution refrigerator. In order to gather the required 3 × 1013 events in a three year long data taking with a pile up fraction as low as 10-4, detectors must fulfill rather high speed and resolution requirements, i.e. 10 µs rise time and 4 eV resolution. To ensure such performances with an efficient read out technique for very large detectors array kept at low temperature inside a cryostat is no trivial matter: at the moment, the most appealing read out technique applicable to large arrays of Transition Edge Sensors is rf-SQUID multiplexing. It is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearisation purposes; the rf-SQUID is then coupled to a super-conductive λ/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique.

  17. Development challenges for Low Temperature Plasma Sources ``from Idea to Prototype''

    NASA Astrophysics Data System (ADS)

    Gerling, T.; Baudler, J.-S.; Horn, S.; Schmidt, M.; Weltmann, K.-D.

    2015-09-01

    While plasma medicine is a well-motivated and intensively investigated topic, the requirements on the plasma sources change for individual applications. For example in dermatology, a large scale treatment is favored, while in dentistry, a localized application of plasma sources is required. Meanwhile, plasma source development is based on feasibility and not on the application. When a source is developed, it is usually motivated towards an application instead of considering an application and designing a plasma source to fit its needs. Each approach has its advantage and can lead to an advance in the field. With this contribution, we will present an approach from idea to prototype and show challenges in the plasma source development. For example, the consideration of legal regulations, adaption of the plasma source for a specific field of application and the interplay of gas flow dynamics with electrical field distribution. The solution was developed within several iterations to optimize it for different requirements. The obstacles that occurred during the development process will be highlighted and discussed. Afterwards the final source is characterized for a potential medical application and compared directly with a plasma source certified as a medical product. Acknowledging grants: AU 11 038; ESF/IV-BM-B35-0010/13.

  18. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  19. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the five pounds/inch and ten psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  20. X-ray sensing materials stability: influence of ambient storage temperature on essential thermal properties of undoped vitreous selenium

    NASA Astrophysics Data System (ADS)

    Tonchev, D.; Mani, H.; Belev, G.; Kostova, I.; Kasap, S.

    2014-12-01

    Amorphous selenium (a-Se) is currently used in x-ray image detectors as an x-ray photoconductor. Normally a-Se films used in device applications are fabricated by the evaporation of vitreous bulk material loaded into boats in a typical vacuum deposition system. The resistance against crystallization is an important factor in both film and bulk forms of a-Se. Previous work has indicted that the resistance to crystallization is surprisingly more pronounced around 35 °C [1]. In this work we have therefore examined the essential thermal properties of vitreous selenium (99.999%) samples that have been stored at different temperatures. The thermal characterization experiments involved a series of DSC (Differential Scanning Calorimetry) measurements in which have monitored the glass transition and melting endotherms, and the crystallization exotherm in heating-cooling-heating scans. In DSC experiments, a sample would be heated to a temperature above the melting temperature, equilibrated, then cooled at a fixed rate down to 20 °C, then equilibrated and finally scanned again under a heating schedule. The samples were isothermally stored at temperatures corresponding to 18, 35 and 55 °C. The thermal analysis results show that there are distinct differences in the thermal properties. We have examined the stability in terms of the difference in the crystallization onset temperature (Tc) and the onset of glass transition temperature (Tg). We also examined the Hruby coefficient (Kgl) of these samples, that is Kgl = (Tc - Tg)/(Tm - Tc) where Tc is the crystallization onset temperature and Tm is the melting onset temperature. We have found Kgl to depend on the storage temperature. Surprisingly, we observed that the Hruby coefficient is actually larger at 35 °C compared to the values at 18 and 55 °C.

Top