Sample records for temperature applied potential

  1. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures

    ERIC Educational Resources Information Center

    Jakubowska, Anna

    2016-01-01

    A student-made galvanic cell is proposed for temperature measurements of cell potential. This cell can be easily constructed by students, the materials needed are readily available and nontoxic, and the solution applied is in an attractive color. For this cell, the potential values are excellently reproducible at each temperature, and the…

  2. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    NASA Astrophysics Data System (ADS)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  3. Ab initio calculation of finite-temperature charmonium potentials

    NASA Astrophysics Data System (ADS)

    Evans, P. W. M.; Allton, C. R.; Skullerud, J.-I.

    2014-04-01

    The interquark potential in charmonium states is calculated in both the zero and nonzero temperature phases from a first-principles lattice QCD calculation. Simulations with two dynamical quark flavors are used with temperatures T in the range 0.4Tc≲T≲1.7Tc, where Tc is the deconfining temperature. The correlators of point-split operators are analyzed to gain spatial information about the charmonium states. A method introduced by the HAL QCD Collaboration and based on the Schrödinger equation is applied to obtain the interquark potential. We find a clear temperature dependence with the central potential agreeing with the Cornell potential in the confined phase and becoming flatter (more screened) as the temperature increases past the deconfining temperature. This is the first time the interquark potential has been calculated for realistic quarks at finite temperature.

  4. Temperature scaling method for Markov chains.

    PubMed

    Crosby, Lonnie D; Windus, Theresa L

    2009-01-22

    The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.

  5. Interfacial ionic 'liquids': connecting static and dynamic structures

    DOE PAGES

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; ...

    2014-12-05

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. For this research, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. Lastly, the potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less

  6. Interfacial ionic 'liquids': connecting static and dynamic structures.

    PubMed

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul

    2015-01-28

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).

  7. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction

    PubMed Central

    Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508

  8. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    PubMed

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  9. Potential for temperature change during application of ultrasonic vibration to intra-radicular posts.

    PubMed

    Satterthwaite, Julian D; Stokes, Alastair N; Frankel, Nicholas T N

    2003-06-01

    The aim of this study was to assess the potential for heat production when intra-radicular posts were subjected to ultrasonic vibration. Thirty zirconium ceramic posts and thirty stainless steel posts were luted into canine roots. Ultrasonic vibration was applied to the top of each post for thirty minutes and temperature change on the root surface was measured. The mean peak temperature rise from baseline was 18.7 degrees C. Post type had no influence on peak temperature. Temperature increase on the external root surfaces increased as the thickness of dentine between post and root surface reduced.

  10. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    DOE PAGES

    Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.

    2016-10-17

    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less

  11. On the non-Arrhenius temperature dependence of the interwell electron tunneling rate in quasi two dimensional organic quantum wells

    NASA Astrophysics Data System (ADS)

    Jeong, I. S.; Scott, K.; Donovan, K. J.; Wilson, E. G.

    2000-11-01

    The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is measured as a function of the applied electrostatic potential difference between the layers as the temperature is varied between 300 and 4 K. This dependence is examined in light of the Marcus theory of charge transfer where the electrostatic potential replaces the chemical potential as the driving potential. The expectations of the Marcus theory are not met and the rate is effectively temperature independent, contrary to expectation. Other mechanisms are explored that may explain the lack of temperature dependence including the role of high frequency vibrations and the role of the zero point energy of those vibrations. The temperature dependence of the exciton dissociation probability is also examined.

  12. Temperature dependent structural and vibrational properties of liquid indium

    NASA Astrophysics Data System (ADS)

    Patel, A. B.; Bhatt, N. K.

    2018-05-01

    The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.

  13. Temporal and spatial temperature measurement in insulator-based dielectrophoretic devices.

    PubMed

    Nakano, Asuka; Luo, Jinghui; Ros, Alexandra

    2014-07-01

    Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer agreement with numerical simulations and further since it does not depend on the iDEP channel material. Overall, our study provides a thorough comparison of two experimental techniques for direct temperature measurement, which can be adapted to a variety of iDEP applications in the future. The good agreement between simulation and experiment will also allow one to assess temperature variations for iDEP devices prior to experiments.

  14. Finite-density transition line for QCD with 695 MeV dynamical fermions

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff; Höllwieser, Roman

    2018-06-01

    We apply the relative weights method to SU(3) gauge theory with staggered fermions of mass 695 MeV at a set of temperatures in the range 151 ≤T ≤267 MeV , to obtain an effective Polyakov line action at each temperature. We then apply a mean field method to search for phase transitions in the effective theory at finite densities. The result is a transition line in the plane of temperature and chemical potential, with an end point at high temperature, as expected, but also a second end point at a lower temperature. We cannot rule out the possibilities that a transition line reappears at temperatures lower than the range investigated, or that the second end point is absent for light quarks.

  15. Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.; Richardson, R. W.

    1976-01-01

    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring.

  16. Potential use of ceramic coating as a thermal insulation on cooled turbine hardware

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1976-01-01

    An analysis was made to determine the potential benefits of using a ceramic thermal insulation coating of calcia-stabilized zirconia on cooled engine parts. The analysis was applied to turbine vanes of a high temperature and high pressure core engine and a moderate temperature and low pressure research engine. Measurements made during engine operation showed that the coating substantially reduced vane metal wall temperatures. Evaluation of the durability of the coating on turbine vanes and blades in a furnace and engine were encouraging.

  17. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  18. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.

    PubMed

    Lian, Xiusheng; Zhao, Dian; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-12-28

    A near infrared pumped luminescent metal-organic framework thermometer Nd(0.577)Yb(0.423)BDC-F4, with near infrared fluorescence and excellent sensitivity in the physiological temperature range (293-313 K), has been first realized, and might be potentially applied for biomedical systems.

  19. Electrocatalytic Hydrogenation of Phenol over Platinum and Rhodium: Unexpected Temperature Effects Resolved

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirala; Song, Yang; Gutiérrez, Oliver Y.

    2016-11-04

    Both electrocatalytic hydrogenation (ECH) and thermal hydrogenation (TH) of phenol by Pt and Rh show a roll-over in rate with increasing temperature without changing the principal reaction pathways. The negative effect of temperature for aqueous-phase phenol H2 and electrocatalytic hydrogenation on Pt and Rh is deduced to be due to the unexpected buildup of dehydrogenated phenol adsorbates, which block active sites. Rates of ECH and TH increase similarly with increasing hydrogen chemical potential whether induced by applied potential or H2 pressure, both via increasing H coverage, and indirectly by removing site blockers, a very strong effect at high temperature. Thismore » enables unprecedented rates in the TH of phenol at these temperatures.« less

  20. Suitability of temperature sum models to simulate the flowering period of birches on regional scale as basis for realistic predictions of the allergenic potential of atmospheric pollen loads

    NASA Astrophysics Data System (ADS)

    Biernath, Christian; Hauck, Julia; Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2014-05-01

    Persons susceptible to allergenic pollen grains need to apply suppressive pharmacy before the occurrence of the first allergy symptoms. Patient targeted medication could be improved if forecasts of the allergenic potential of pollen (biochemical composition of the pollen grain) and the onset, duration, and end of the pollen season are precise on regional scale. In plant tissue the biochemical composition may change within hours due to the resource availability for plant growth and plant internal nutrient re-mobilization. As these processes highly depend on both, the environmental conditions and the development stage of a plant, precise simulations of the onset and duration of the flowering period are crucial to determine the allergenic potential of tissues and pollen. Here, dynamic plant models that consider the dependence of the chemical composition of tissue on the development stage of the plant embedded in process-based ecosystem models seem promising tools; however, today dynamic plant growth is widely ignored in simulations of atmospheric pollen loads. In this study we raise the question whether frequently applied temperature sum models (TSM) could precisely simulate the plant development stages in case of birches on regional scale. These TSM integrate average temperatures above a base temperature below which no further plant development is assumed. In this study, we therefore tested the ability of TSM to simulate the flowering period of birches on more than 100 sites in Bavaria, Germany over a period of three years (2010-2012). Our simulations indicate that the often applied base temperatures between 2.3°C and 3.5°C for the integration of daily or hourly average temperatures, respectively, in Europe are too high to adequately simulate the onset of birch flowering in Bavaria where a base temperature of 1°C seems more convenient. A more regional calibration of the models to sub-regions in Bavaria with comparable climatic conditions could further improve the simulation results if compared to simulations using a model that was adjusted to only one representative location in Bavaria. Our simulation results suggest that birch phenology needs to be modelled on a more regional scale to derive precise predictions of the flowering period. Some weak simulation results are suspected to be due to the high genetic diversity of birches and their high adaptive potential to a wide range of environmental conditions which indeed is a characteristic for many pioneer species. The high adaptive potential could be an explanation why authors who calibrate their models to other climatic regions observe better simulation results using higher base temperatures. However, our simulations indicate that the simulation results may be biased if the base temperatures are assumed constant for one species and transferred to larger or smaller scales, to other regions with different climatic conditions, or when applied to extrapolate birch pollen seasons to future climate conditions.

  1. Acceleration of high resolution temperature based optimization for hyperthermia treatment planning using element grouping.

    PubMed

    Kok, H P; de Greef, M; Bel, A; Crezee, J

    2009-08-01

    In regional hyperthermia, optimization is useful to obtain adequate applicator settings. A speed-up of the previously published method for high resolution temperature based optimization is proposed. Element grouping as described in literature uses selected voxel sets instead of single voxels to reduce computation time. Elements which achieve their maximum heating potential for approximately the same phase/amplitude setting are grouped. To form groups, eigenvalues and eigenvectors of precomputed temperature matrices are used. At high resolution temperature matrices are unknown and temperatures are estimated using low resolution (1 cm) computations and the high resolution (2 mm) temperature distribution computed for low resolution optimized settings using zooming. This technique can be applied to estimate an upper bound for high resolution eigenvalues. The heating potential of elements was estimated using these upper bounds. Correlations between elements were estimated with low resolution eigenvalues and eigenvectors, since high resolution eigenvectors remain unknown. Four different grouping criteria were applied. Constraints were set to the average group temperatures. Element grouping was applied for five patients and optimal settings for the AMC-8 system were determined. Without element grouping the average computation times for five and ten runs were 7.1 and 14.4 h, respectively. Strict grouping criteria were necessary to prevent an unacceptable exceeding of the normal tissue constraints (up to approximately 2 degrees C), caused by constraining average instead of maximum temperatures. When strict criteria were applied, speed-up factors of 1.8-2.1 and 2.6-3.5 were achieved for five and ten runs, respectively, depending on the grouping criteria. When many runs are performed, the speed-up factor will converge to 4.3-8.5, which is the average reduction factor of the constraints and depends on the grouping criteria. Tumor temperatures were comparable. Maximum exceeding of the constraint in a hot spot was 0.24-0.34 degree C; average maximum exceeding over all five patients was 0.09-0.21 degree C, which is acceptable. High resolution temperature based optimization using element grouping can achieve a speed-up factor of 4-8, without large deviations from the conventional method.

  2. Feasibility of Applying Ohmic Heating and Split-Phase Aseptic Processing for Ration Entree Preservation

    DTIC Science & Technology

    1994-08-01

    study demonstrated that either of these reduced- temperature sterilization processes will produce an acceptable product that is an alternative to thermal...and uniform heating of liquids and solids simultaneously, even of large particles, up to sterilization temperatures . Uniform heating means shorter...potential cost reduction by substitution of continuous processing of a high- temperature /short-time ( HTST ) nature for traditional batch retort

  3. Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guang; Li, Song; Atchison, Jennifer S.

    2013-04-12

    Molecular dynamics (MD) simulations of supercapacitors with single-walled carbon nanotube (SWCNT) electrodes in room-temperature ionic liquids were performed to investigate the influences of the applied electrical potential, the radius/curvature of SWCNTs, and temperature on their capacitive behavior. It is found that (1) SWCNTs-based supercapacitors exhibit a near-flat capacitance–potential curve, (2) the capacitance increases as the tube radius decreases, and (3) the capacitance depends little on the temperature. We report the first MD study showing the influence of the electrode curvature on the capacitance–potential curve and negligible dependence of temperature on capacitance of tubular electrode. The latter is in good agreementmore » with recent experimental findings and is attributed to the similarity of the electrical double layer (EDL) microstructure with temperature varying from 260 to 400 K. The electrode curvature effect is explained by the dominance of charge overscreening and increased ion density per unit area of electrode surface.« less

  4. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  5. Infrared imaging: a potential powerful tool for neuroimaging and neurodiagnostics

    PubMed Central

    Khoshakhlagh, Arezou; Gunapala, Sarath D.

    2017-01-01

    Abstract. Infrared (IR) imaging is used to detect the subtle changes in temperature needed to accurately detect and monitor disease. Technological advances have made IR a highly sensitive and reliable detection tool with strong potential in medical and neurophotonics applications. An overview of IR imaging specifically investigating quantum well IR detectors developed at Jet Propulsion Laboratory for a noninvasive, nonradiating imaging tool is provided, which could be applied for neuroscience and neurosurgery where it involves sensitive cellular temperature change. PMID:28382311

  6. Reversible Quantum Brownian Heat Engines for Electrons

    NASA Astrophysics Data System (ADS)

    Humphrey, T. E.; Newbury, R.; Taylor, R. P.; Linke, H.

    2002-08-01

    Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.

  7. Reversible quantum heat engines for electrons

    NASA Astrophysics Data System (ADS)

    Linke, Heiner; Humphrey, Tammy E.; Newbury, Richard; Taylor, Richard P.

    2002-03-01

    Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate at Carnot efficiency.

  8. Chemical potentials and thermodynamic characteristics of ideal Bose- and Fermi-gases in the region of quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.

    2017-01-01

    Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.

  9. Resonant tunneling modulation in quasi-2D Cu(2)O/SnO(2) p-n horizontal-multi-layer heterostructure for room temperature H(2)S sensor application.

    PubMed

    Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian

    2013-01-01

    Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu(2)O/SnO(2) p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu(2)O and SnO(2) selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H(2)S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing.

  10. Thermodynamic properties of water in confined environments: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gladovic, Martin; Bren, Urban; Urbic, Tomaž

    2018-05-01

    Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.

  11. Improved analysis techniques for cylindrical and spherical double probes.

    PubMed

    Beal, Brian; Johnson, Lee; Brown, Daniel; Blakely, Joseph; Bromaghim, Daron

    2012-07-01

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T(i)/T(e) ≪ 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 × 10(12)-1 × 10(17) m(-3) and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%∕-34% in density and +∕-30% in electron temperature.

  12. Varying potential silicon carbide gas sensor

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B. (Inventor); Ryan, Margaret A. (Inventor); Williams, Roger M. (Inventor)

    1997-01-01

    A hydrocarbon gas detection device operates by dissociating or electro-chemically oxidizing hydrocarbons adsorbed to a silicon carbide detection layer. Dissociation or oxidation are driven by a varying potential applied to the detection layer. Different hydrocarbon species undergo reaction at different applied potentials so that the device is able to discriminate among various hydrocarbon species. The device can operate at temperatures between 100.degree. C. and at least 650.degree. C., allowing hydrocarbon detection in hot exhaust gases. The dissociation reaction is detected either as a change in a capacitor or, preferably, as a change of current flow through an FET which incorporates the silicon carbide detection layers. The silicon carbide detection layer can be augmented with a pad of catalytic material which provides a signal without an applied potential. Comparisons between the catalytically produced signal and the varying potential produced signal may further help identify the hydrocarbon present.

  13. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials

    NASA Astrophysics Data System (ADS)

    Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran

    2017-03-01

    The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komppula, J., E-mail: jani.komppula@jyu.fi; Tarvainen, O.

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  15. Temperature dependency of state of charge inhomogeneities and their equalization in cylindrical lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Rheinfeld, A.; Rieger, B.; Hoster, H. E.; Jossen, A.

    2016-10-01

    The influence of cell temperature on the current density distribution and accompanying inhomogeneities in state of charge (SOC) during cycling is analyzed in this work. To allow for a detailed insight in the electrochemical behavior of the cell, commercially available 26650 cells were modified to allow for measuring local potentials at four different, nearly equidistant positions along the electrodes. As a follow-up to our previous work investigating local potentials within a cell, we apply this method for studying SOC deviations and their sensitivity to cell temperature. The local potential distribution was studied during constant current discharge operations for various current rates and discharge pulses in order to evoke local inhomogeneities for temperatures ranging from 10 °C to 40 °C. Differences in local potentials were considered for estimating local SOC variations within the electrodes. It could be observed that even low currents such as 0.1C can lead to significant inhomogeneities, whereas a higher cell temperature generally results in more pronounced inhomogeneities. A rapid SOC equilibration can be observed if the variation in the SOC distribution corresponds to a considerable potential difference defined by the open circuit voltage of either the positive or negative electrode. With increasing temperature, accelerated equalization effects can be observed.

  16. Density-to-Potential Inversions to Guide Development of Exchange-Correlation Approximations at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew

    The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.

  17. Assessing the prospective resource base for enhanced geothermal systems in Europe

    NASA Astrophysics Data System (ADS)

    Limberger, J.; Calcagno, P.; Manzella, A.; Trumpy, E.; Boxem, T.; Pluymaekers, M. P. D.; van Wees, J.-D.

    2014-12-01

    In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the amount of thermal energy available in the subsurface. Therefore, the first step in assessing the European resource base for EGS is the construction of a subsurface temperature model of onshore Europe. Subsurface temperatures were computed to a depth of 10 km below ground level for a regular 3-D hexahedral grid with a horizontal resolution of 10 km and a vertical resolution of 250 m. Vertical conductive heat transport was considered as the main heat transfer mechanism. Surface temperature and basal heat flow were used as boundary conditions for the top and bottom of the model, respectively. If publicly available, the most recent and comprehensive regional temperature models, based on data from wells, were incorporated. With the modeled subsurface temperatures and future technical and economic scenarios, the technical potential and minimum levelized cost of energy (LCOE) were calculated for each grid cell of the temperature model. Calculations for a typical EGS scenario yield costs of EUR 215 MWh-1 in 2020, EUR 127 MWh-1 in 2030, and EUR 70 MWh-1 in 2050. Cutoff values of EUR 200 MWh-1 in 2020, EUR 150 MWh-1 in 2030, and EUR 100 MWh-1 in 2050 are imposed to the calculated LCOE values in each grid cell to limit the technical potential, resulting in an economic potential for Europe of 19 GWe in 2020, 22 GWe in 2030, and 522 GWe in 2050. The results of our approach do not only provide an indication of prospective areas for future EGS in Europe, but also show a more realistic cost determined and depth-dependent distribution of the technical potential by applying different well cost models for 2020, 2030, and 2050.

  18. Oil well flow assurance through static electric potential: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Ihtsham Asmat

    Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.

  19. Applications of a New England stream temperature model to ...

    EPA Pesticide Factsheets

    We have applied a statistical stream network (SSN) model to predict stream thermal metrics (summer monthly medians, growing season maximum magnitude and timing, and daily rates of change) across New England nontidal streams and rivers, excluding northern Maine watersheds that extend into Canada (Detenbeck et al., in review). We excluded stream temperature observations within one kilometer downstream of dams from our model development, so our predictions for those reaches represent potential thermal regimes in the absence of dam effects. We used stream thermal thresholds for mean July temperatures delineating transitions between coldwater, transitional coolwater, and warmwater fish communities derived by Beauchene et al. (2014) to classify expected stream and river thermal regimes across New England. Within the model domain and based on 2006 land-use and air temperatures, the model predicts that 21.8% of stream + river kilometers would support coldwater fish communities (mean July water temperatures 22.3 degrees C mean July temperatures). Application of the model allows us to assess potential condition given full riparian zone restoration as well as potential loss of cold or coolwater habitat given loss of riparian shading. Given restoration of all ripa

  20. Room temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity.

    PubMed

    Cabañas, M V; Peña, J; Román, J; Vallet-Regí, M

    2006-09-01

    An original shaping technique has been applied to prepare porous bodies at room temperature. Agarose, a biodegradable polysaccharide, was added as binder of a sol-gel glass in powder form, yielding an easy to mold paste. Interconnected tailored porous bodies can be straightforwardly prepared by pouring the slurry into a polymeric scaffold, previously designed by stereolitography, which is subsequently eliminated by alkaline dissolution at room temperature. The so obtained pieces behave like a hydrogel with an enhanced consistency that makes them machinable and easy to manipulate. These materials generate an apatite-like layer when immersed in a simulated body fluid, indicating a potential in vivo bioactivity. The proposed method can be applied to different powdered materials to produce pieces, at room temperature, with various shapes and sizes and with tailored interconnected porosity.

  1. Photoacoustic imaging in both soft and hard biological tissue

    NASA Astrophysics Data System (ADS)

    Li, T.; Dewhurst, R. J.

    2010-03-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  2. Cross Linked Metal Particles for Low Noise Bolometer Materials

    DTIC Science & Technology

    2016-12-12

    Our results indicate that the CLMPs can simultaneously have a high temperature coefficient of resistivity and a low noise, and therefore have a...indicate that the CLMPs can simultaneously have a high temperature co- efficient of resistivity and a low noise, and therefore have a great potential...current as a function of the inverse of applied bias for CLMP films at different temperatures. It is seen that the I-V curves are highly nonlinear as 7 0

  3. Temperature dependence of the pressure broadening of spectral lines

    NASA Astrophysics Data System (ADS)

    Roston, G. D.; Helmi, M. S.

    2012-12-01

    The aim of this work is to obtain a formula relating the pressure broadening coefficient of the spectral line β with the temperature T, when the difference potential ΔV(R) between the upper and lower states of the emitting atom is represented by (Lennard - Jones) potential, The obtained formula is a power index law of β on T. This formula is applied for calculating β for different interactions of Ar, Ne, TI, Hg, Cd and Zn with the inert gases (Xe, Kr, Ar, Ne and He) at different temperatures. The results of these calculations are in good agreement with the corresponding values obtained before numerically. The obtained formula is considered very important in astrophysical problems.

  4. Flexible corner cube retroreflector array for temperature and strain sensing† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13284k

    PubMed Central

    Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.

    2018-01-01

    Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510

  5. Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal

    NASA Technical Reports Server (NTRS)

    Murthy, V. Rama

    1992-01-01

    If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.

  6. The importance of accurate interaction potentials in the melting of argon nanoclusters

    NASA Astrophysics Data System (ADS)

    Pahl, E.; Calvo, F.; Schwerdtfeger, P.

    The melting temperatures of argon clusters ArN (N = 13, 55, 147, 309, 561, and 923) and of bulk argon have been obtained from exchange Monte Carlo simulations and are compared using different two-body interaction potentials, namely the standard Lennard-Jones (LJ), Aziz and extended Lennard-Jones (ELJ) potentials. The latter potential has many advantages: while maintaining the computational efficiency of the commonly used LJ potential, it is as accurate as the Aziz potential but the computer time scales more favorably with increasing cluster size. By applying the ELJ form and extrapolating the cluster data to the infinite system, we are able to extract the melting point of argon already in good agreement with experimental measurements. By considering the additional Axilrod-Teller three-body contribution as well, we calculate a melting temperature of T meltELJ = 84.7 K compared to the experimental value of T meltexp = 83.85 K, whereas the LJ potential underestimates the melting point by more than 7 K. Thus melting temperatures within 1 K accuracy are now feasible.

  7. Freezing of simple systems using density functional theory

    NASA Astrophysics Data System (ADS)

    de Kuijper, A.; Vos, W. L.; Barrat, J.-L.; Hansen, J.-P.; Schouten, J. A.

    1990-10-01

    Density functional theory (DFT) has been applied to the study of the fluid-solid transition in systems with realistic potentials (soft cores and attractive forces): the purely repulsive WCA Lennard-Jones reference potential (LJT), the full Lennard-Jones potential (LJ) and the exponential-6 potential appropriate for helium and hydrogen. Three different DFT formalisms were used: the formulation of Haymet and Oxtoby (HO) and the new theories of Denton and Ashcroft (MWDA) and of Baus (MELA). The results for the melting pressure are compared with recent simulation and experimental data. The results of the HO version are always too high, the deviation increasing when going from the repulsive Lennard-Jones to the exponential-6 potential of H2. The MWDA gives too low results for the repulsive Lennard-Jones potential. At low temperatures, it fails for the full LJ potential while at high temperatures it is in good agreement. Including the attraction as a mean-field correction gives good results also for low temperatures. The MWDA results are too high for the exponential-6 potentials. The MELA fails completely for the LJT potential and the hydrogen exponential-6 potential, since it does not give a stable solid phase.

  8. Electrochemical nitridation of metal surfaces

    DOEpatents

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  9. Climate change-related temperature impacts on warm season heat mortality: a proof-of-concept methodology using BenMAP.

    PubMed

    Voorhees, A Scott; Fann, Neal; Fulcher, Charles; Dolwick, Patrick; Hubbell, Bryan; Bierwagen, Britta; Morefield, Philip

    2011-02-15

    Climate change is anticipated to raise overall temperatures and is likely to increase heat-related human health morbidity and mortality risks. The objective of this work was to develop a proof-of-concept approach for estimating excess heat-related premature deaths in the continental United States resulting from potential changes in future temperature using the BenMAP model. In this approach we adapt the methods and tools that the US Environmental Protection Agency uses to assess air pollution health impacts by incorporating temperature modeling and heat mortality health impact functions. This new method demonstrates the ability to apply the existing temperature-health literature to quantify prospective changes in climate-sensitive heat-related mortality. We compared estimates of future temperature with and without climate change and applied heat-mortality health functions to estimate relative changes in heat-related premature mortality. Using the A1B emissions scenario, we applied the GISS-II global circulation model downscaled to 36-km using MM5 and formatted using the Meteorology-Chemistry Interface Processor. For averaged temperatures derived from the 5 years 2048-2052 relative to 1999-2003 we estimated for the warm season May-September a national U.S. estimate of annual incidence of heat-related mortality to be 3700-3800 from all causes, 3500 from cardiovascular disease, and 21 000-27 000 from nonaccidental death, applying various health impact functions. Our estimates of mortality, produced to validate the application of a new methodology, suggest the importance of quantifying heat impacts in economic assessments of climate change.

  10. Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application

    PubMed Central

    Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian

    2013-01-01

    Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu2O/SnO2 p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu2O and SnO2 selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H2S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing. PMID:23409241

  11. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    PubMed

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.

  12. Competing bosonic condensates in optical lattice with a mixture of single and pair hoppings

    NASA Astrophysics Data System (ADS)

    Travin, V. M.; Kopeć, T. K.

    2017-01-01

    A system of ultra-cold atoms with single boson and pair tunneling of bosonic atoms is considered in an optical lattice at arbitrary temperature. A mean-field theory was applied to the extended Bose-Hubbard Hamiltonian describing the system in order to investigate the competition between superfluid and pair superfluid as a function of the chemical potential and the temperature. To this end we have applied a method based on the Laplace transform method for the efficient calculation of the statistical sum for the quantum Hamiltonian. These results may be of interest for experiments on cold atom systems in optical lattices.

  13. Nanostructure studies of strongly correlated materials.

    PubMed

    Wei, Jiang; Natelson, Douglas

    2011-09-01

    Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.

  14. Thermo physical Properties of Multiferroic Rare Earth Manganite GdMnO3

    NASA Astrophysics Data System (ADS)

    Choithrani, Renu; Gaur, N. K.

    2008-04-01

    We have investigated the thermophysical properties of multiferroic rare earth manganite GdMnO3 in the temperature range 15 K⩽T⩽300 K. We have applied interatomic potential to study the Specific heat (C) as a function of temperature. The calculated Specific heat values are closer to the available experimental data. At room temperature, the orthorhombic GdMnO3 phase is indicative of a strong Jahn-Teller distortion. In addition, we have reported the cohesive energy (φ), molecular force constant (f), compressibility (β), Restrahalen frequency (ν0), Debye temperature (ΘD) and Groneisen parameter (γ) at temperature 15 K⩽T⩽300 K.

  15. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    NASA Astrophysics Data System (ADS)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  16. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites

    PubMed Central

    Zeng, You; Lu, Guixia; Wang, Han; Du, Jinhong; Ying, Zhe; Liu, Chang

    2014-01-01

    In order to explore availability of carbon nanotube (CNT)-based positive temperature coefficient (PTC) thermistors in practical application, we prepared carbon nanotube (CNT) filled high density polyethylene (HDPE) composites by using conventional melt-mixing methods, and investigated their PTC effects in details. The CNT-based thermistors exhibit much larger hold current and higher hold voltage, increasing by 129% in comparison with the commercial carbon black (CB) filled HDPE thermistors. Such high current-bearing and voltage-bearing capacity for the CNT/HDPE thermistors is mainly attributed to high thermal conductivity and heat dissipation of entangled CNT networks. Moreover, the CNT/HDPE thermistors exhibit rapid electrical response to applied voltages, comparable to commercial CB-based thermistors. In light of their high current-bearing capacity and quick response, the CNT-based thermistors have great potential to be used as high-performance thermistors in practical application, especially in some critical circumstances of high temperature, large applied currents, and high applied voltages. PMID:25327951

  17. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  18. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    NASA Astrophysics Data System (ADS)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  19. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v

  20. Petit and grand ensemble Monte Carlo calculations of the thermodynamics of the lattice gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murch, G.E.; Thorn, R.J.

    1978-11-01

    A direct Monte Carlo method for estimating the chemical potential in the petit canonical ensemble was applied to the simple cubic Ising-like lattice gas. The method is based on a simple relationship between the chemical potential and the potential energy distribution in a lattice gas at equilibrium as derived independently by Widom, and Jackson and Klein. Results are presented here for the chemical potential at various compositions and temperatures above and below the zero field ferromagnetic and antiferromagnetic critical points. The same lattice gas model was reconstructed in the form of a restricted grand canonical ensemble and results at severalmore » temperatures were compared with those from the petit canonical ensemble. The agreement was excellent in these cases.« less

  1. A calibration model for screen-caged Peltier thermocouple psychrometers

    Treesearch

    Ray W. Brown; Dale L. Bartos

    1982-01-01

    A calibration model for screen-caged Peltier thermocouple psychrometers was developed that applies to a water potential range of 0 to-80 bars, over a temperature range of 0° to 40° C, and for cooling times of 15 to 60 seconds. In addition, the model corrects for the effects of temperature gradients over zero-offsets from -60 to + 60 microvolts. Complete details of...

  2. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method

    NASA Astrophysics Data System (ADS)

    Etesami, S. Alireza; Asadi, Ebrahim

    2018-01-01

    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  3. Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl D.; Conrad, Mark; Neupane, Ghanashayam

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources. Numerous hot springs with temperatures up to 75 ºC are scattered along the margins of the plain. Similarly, several hot-water producing wells and few hot springs are also present within the plain. The geothermal reservoirs in the area are likely to be hosted at depth in the felsic volcanic rocks underneath the thick sequences of basalts within the plainmore » and the Paleozoic rocks underneath both basalts and felsic volcanic rocks along the margins. The heat source to these geothermal resources is thought to be the mid-crustal sill complex which sustains high heat flow in the ESRP. Several thermal anomaly areas are believed to be associated with the local thermal perturbation because of the presence of favorable structural settings. However, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperatures are significant challenges for the evaluation of potential resource areas in the ESRP. To address this issue, this project, led by the Idaho National Laboratory (INL), aimed at applying advanced geothermometry tools including temperature-dependent mineral and isotopic equilibria with mixing models that account for processes such as boiling and dilution with shallow groundwater that could affect calculated temperatures of underlying deep thermal waters. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to the compositions of ESRP water samples. Geothermometric calculations based on principle of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for evaluation of reservoir temperatures. Similarly, sulfate-water oxygen isotope geothermometry was also applied to several samples in tandem with RTEst. In summary, geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Mount Bennet Hills and within the Camas Prairie in the southwestern portion of the ESRP suggest temperatures 140-190 °C. In the northern portion of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature ?140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host potentially economic geothermal resources; however, further detailed study is warranted to each site to evaluate hydrothermal suitability for economic use.« less

  4. Compact variable-temperature scanning force microscope.

    PubMed

    Chuang, Tien-Ming; de Lozanne, Alex

    2007-05-01

    A compact design for a cryogenic variable-temperature scanning force microscope using a fiber-optic interferometer to measure cantilever deflection is presented. The tip-sample coarse approach and the lateral tip positioning are performed by piezoelectric positioners in situ. The microscope has been operated at temperatures between 6 and 300 K. It is designed to fit into an 8 T superconducting magnet with the field applied in the out-of-plane direction. The results of scanning in various modes are demonstrated, showing contrast based on magnetic field gradients or surface potentials.

  5. Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition.

    PubMed

    Jiang, Xishun; Zhang, Miao; Shi, Shiwei; He, Gang; Song, Xueping; Sun, Zhaoqi

    2014-01-01

    Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (-0.1, -0.3, -0.5, -0.7, and -0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV-vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.

  6. Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration.

    PubMed

    Avrahami, Sharon; Bohannan, Brendan J M

    2007-02-01

    Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.

  7. Response of Nitrosospira sp. Strain AF-Like Ammonia Oxidizers to Changes in Temperature, Soil Moisture Content, and Fertilizer Concentration▿

    PubMed Central

    Avrahami, Sharon; Bohannan, Brendan J. M.

    2007-01-01

    Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature. PMID:17158615

  8. Sound beam manipulation based on temperature gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Feng; School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500; Quan, Li

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest tomore » fields such as noise control or acoustic cloaking.« less

  9. Prolonging thermal barrier coated specimen life by thermal cycle management

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Poolos, N. P.

    1981-01-01

    Thermal barrier coatings applied to the heated side of engine components such as seals, combustor, and blades of a gas turbine offer a potential increase in efficiency through the use of higher gas temperatures or less cooling air or benefits arising from extended component life by reducing component metal temperatures. The considered investigation has the objective to show that while a thermal barrier coated (TBC) specimen can be brought to a fixed temperature using various fuel-air ratio (F/A) values, lower calculated stresses are associated with lower (F/A) values. This implies that control of (F/A) values (i.e., rates of heat input) during the starting transient and to a lesser extent during shutdown and operation, offers a potential method of improving TBC lifetime through thermal cycle management.

  10. Modeling the Effect of Temperature and Potential on the In Vitro Corrosion Performance of Biomedical Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.

    2016-10-01

    CoCrMo biomedical alloys were coated with a hydroxyapatite layer to improve biocompatibility and in vitro corrosion performance. A fast electrodeposition process was completed in 5 minutes for the hydroxyapatite coating. Effect of the solution temperature and applied potential on the in vitro corrosion performance of the hydroxyapatite coatings was modeled by response surface methodology (RSM) coupled with central composite design (CCD). A 5-level-2-factor experimental plan designed by CCD was used; the experimental plan contained 13 coating experiments with a temperature range from 283 K to 347 K (10 °C to 74 °C) and potential range from -1.2 to -1.9 V. Corrosion potential ( E corr) of the coatings in a simulated body fluid solution was chosen as response for the model. Predicted and experimental values fitted well with an R 2 value of 0.9481. Response surface plots of the impedance and polarization resistance ( R P) were investigated. Optimized parameters for electrodeposition of hydroxyapatite were determined by RSM as solution temperature of 305.48 K (32.33 °C) and potential of -1.55 V. Hydroxyapatite coatings fabricated at optimized parameters showed excellent crystal formation and high in vitro corrosion resistance.

  11. Energy-free machine learning force field for aluminum.

    PubMed

    Kruglov, Ivan; Sergeev, Oleg; Yanilkin, Alexey; Oganov, Artem R

    2017-08-17

    We used the machine learning technique of Li et al. (PRL 114, 2015) for molecular dynamics simulations. Atomic configurations were described by feature matrix based on internal vectors, and linear regression was used as a learning technique. We implemented this approach in the LAMMPS code. The method was applied to crystalline and liquid aluminum and uranium at different temperatures and densities, and showed the highest accuracy among different published potentials. Phonon density of states, entropy and melting temperature of aluminum were calculated using this machine learning potential. The results are in excellent agreement with experimental data and results of full ab initio calculations.

  12. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron density is greater than or equal to 1037 m-3, the influence of the GUP becomes the dominant factor affecting the thermodynamic properties of the system.

  13. Synthesis, structure and temperature dependent luminescence of Eu3+ doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Luo, Xiaobing; Luo, Xiaoxia; Wang, Hongwei; Deng, Yue; Yang, Peixin; Tian, Yili

    2018-01-01

    A series of Eu3+ substituted hydroxyapatite (HA) were prepared by co-precipitation reactions. The phase, fluorescence and temperature dependent luminescence of the phosphors were investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that the doped Eu3+ ions have entered the hexagonal lattice with no obvious secondary phase were detected by XRD. The 5D0 → 7F0 transition was clearly split into two even at room temperature. The predominate 573 nm peak illustrates Eu3+ ions occupy more Ca(II) sites. The temperature dependent luminescent results show HA:xEu might be applied as one potential optical thermometry material.

  14. Use of high temperature superconductors in magnetoplasmadynamic systems

    NASA Technical Reports Server (NTRS)

    Reed, C. B.; Sovey, J. S.

    1988-01-01

    The use of Tesla-class high-temperature superconducting magnets may have an extremely large impact on critical development issues (erosion, heat transfer, and performance) related to magnetoplasmadynamic (MPD) thrusters and also may provide significant benefits in reducing the mass of magnetics used in the power processing system. These potential performance improvements, coupled with additional benefits of high-temperature superconductivity, provide a very strong motivation to develop high-temperature superconductivity (HTS) applied-field MPD thruster propulsion systems. The application of HTS to MPD thruster propulsion systems may produce an enabling technology for these electric propulsion systems. This paper summarizes the impact that HTS may have upon MPD propulsion systems.

  15. Dual-wavelengths photoacoustic temperature measurement

    NASA Astrophysics Data System (ADS)

    Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao

    2017-02-01

    Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.

  16. Photoacoustic Non-Destructive Evaluation and Imaging of Caries in Dental Samples

    NASA Astrophysics Data System (ADS)

    Li, T.; Dewhurst, R. J.

    2010-02-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 °C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  17. Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1995-01-01

    Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.

  18. Health monitoring system for a tall building with Fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  19. Plate tectonics on the terrestrial planets

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; Vlaar, N. J.; van den Berg, A. P.

    2004-05-01

    Plate tectonics is largely controlled by the buoyancy distribution in oceanic lithosphere, which correlates well with the lithospheric age. Buoyancy also depends on compositional layering resulting from pressure release partial melting under mid-ocean ridges, and this process is sensitive to pressure and temperature conditions which vary strongly between the terrestrial planets and also during the secular cooling histories of the planets. In our modelling experiments we have applied a range of values for the gravitational acceleration (representing different terrestrial planets), potential temperatures (representing different times in the history of the planets), and surface temperatures in order to investigate under which conditions plate tectonics is a viable mechanism for the cooling of the terrestrial planets. In our models we include the effects of mantle temperature on the composition and density of melt products and the thickness of the lithosphere. Our results show that the onset time of negative buoyancy for oceanic lithosphere is reasonable (less than a few hundred million years) for potential temperatures below ˜ 1500 ° C for the Earth and ˜ 1450 ° C for Venus. In the reduced gravity field of Mars a much thicker stratification is produced and our model indicates that plate tectonics could only operate on reasonable time scales at a potential mantle temperature below about 1300-1400 °C.

  20. Stress Corrosion Cracking Study of Aluminum Alloys Using Electrochemical Noise Analysis

    NASA Astrophysics Data System (ADS)

    Rathod, R. C.; Sapate, S. G.; Raman, R.; Rathod, W. S.

    2013-12-01

    Stress corrosion cracking studies of aluminum alloys AA2219, AA8090, and AA5456 in heat-treated and non heat-treated condition were carried out using electrochemical noise technique with various applied stresses. Electrochemical noise time series data (corrosion potential vs. time) was obtained for the stressed tensile specimens in 3.5% NaCl aqueous solution at room temperature (27 °C). The values of drop in corrosion potential, total corrosion potential, mean corrosion potential, and hydrogen overpotential were evaluated from corrosion potential versus time series data. The electrochemical noise time series data was further analyzed with rescaled range ( R/ S) analysis proposed by Hurst to obtain the Hurst exponent. According to the results, higher values of the Hurst exponents with increased applied stresses showed more susceptibility to stress corrosion cracking as confirmed in case of alloy AA 2219 and AA8090.

  1. Parameters controlling microstructures and resistance switching of electrodeposited cuprous oxide thin films

    NASA Astrophysics Data System (ADS)

    Yazdanparast, Sanaz

    2016-12-01

    Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.

  2. The equation of state of Song and Mason applied to fluorine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslami, H.; Boushehri, A.

    1999-03-01

    An analytical equation of state is applied to calculate the compressed and saturation thermodynamic properties of fluorine. The equation of state is that of Song and Mason. It is based on a statistical mechanical perturbation theory of hard convex bodies and is a fifth-order polynomial in the density. There exist three temperature-dependent parameters: the second virial coefficient, an effective molecular volume, and a scaling factor for the average contact pair distribution function of hard convex bodies. The temperature-dependent parameters can be calculated if the intermolecular pair potential is known. However, the equation is usable with much less input than themore » full intermolecular potential, since the scaling factor and effective volume are nearly universal functions when expressed in suitable reduced units. The equation of state has been applied to calculate thermodynamic parameters including the critical constants, the vapor pressure curve, the compressibility factor, the fugacity coefficient, the enthalpy, the entropy, the heat capacity at constant pressure, the ratio of heat capacities, the Joule-Thomson coefficient, the Joule-Thomson inversion curve, and the speed of sound for fluorine. The agreement with experiment is good.« less

  3. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  4. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A. D.

    2013-07-01

    surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  5. Application of Symmetry-Broken H2-H2 Potential Energy Surface to Low Energy o-/p-H2+HD Collisions of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Sultanov, R. A.; Guster, D.; Adhukari, S. K.

    2011-05-01

    A possibility of correct description of non-symmetrical HD+H2 collision at low temperatures (T≤300 K) is considered by applying symmetrical H2-H2 potential energy surface (PES) [Diep, P. & Johnson, K. 2000, J. Chem. Phys. 113, 3480 (DJ PES)]. With the use of a special mathematical transformation technique, which was applied to this surface, and a quantum dynamical method we obtained a quite satisfactory agreement with previous results when another H2-H2 PES was used [Boothroyd, A.I. et al. 2002, J. Chem. Phys. 116, 666 (BMKP PES)].

  6. On-Chip Electrophoresis in Supported Lipid Bilayer Membranes Achieved Using Low Potentials

    PubMed Central

    2013-01-01

    A micro supported lipid bilayer (SLB) electrophoresis method was developed, which functions at low potentials and appreciable operating times. To this end, (hydroxymethyl)-ferrocene (FcCH2OH) was employed to provide an electrochemical reaction at the anode and cathode at low applied potential to avoid electrolysis of water. The addition of FcCH2OH did not alter the SLB characteristics or affect biomolecule function, and pH and temperature variations and bubble formation were eliminated. Applying potentials of 0.25–1.2 V during flow gave homogeneous electrical fields and a fast, reversible, and strong build-up of a charged dye-modified lipid in the direction of the oppositely charged electrode. Moreover, streptavidin mobility could be modulated. This method paves the way for further development of analytical devices. PMID:24345193

  7. Consolidation of Partially Stabilized ZrO2 in the Presence of a Noncontacting Electric Field

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; van Benthem, Klaus

    2015-05-01

    Electric field-assisted sintering techniques demonstrate accelerated densification at lower temperatures than the conventional sintering methods. However, it is still debated whether the applied field and/or resulting currents are responsible for the densification enhancement. To distinguish the effects of an applied field from current flow, in situ scanning transmission electron microscopy experiments with soft agglomerates of partially stabilized yttria-doped zirconia particles are carried out. A new microelectromechanical system-based sample support is used to heat particle agglomerates while simultaneously exposing them to an externally applied noncontacting electric field. Under isothermal condition at 900 °C , an electric field strength of 500 V /cm shows a sudden threefold enhancement in the shrinkage of the agglomerates. The applied electrostatic potential lowers the activation energy for point defect formation within the space charge zone and therefore promotes consolidation. Obtaining similar magnitudes of shrinkage in the absence of any electric field requires a higher temperature and longer time.

  8. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland.

    PubMed

    Hu, Xiao Wen; Fan, Yan; Baskin, Carol C; Baskin, Jerry M; Wang, Yan Rong

    2015-05-01

    Temperature and water potential for germination based on the thermal and hydrotime models have been successfully applied in predicting germination requirements of physiologically dormant seeds as well as nondormant seeds. However, comparative studies of the germination requirements of physically dormant seeds from different ecosystems have not been done. Germination of scarified seeds of four legume species collected from the Qing-Tibetan Plateau and of four collected in the Alax Desert in China was compared over a range of temperatures and water potentials based on thermal time and hydrotime models. Seeds of species from the Qing-Tibetan Plateau had a lower base temperature (T b) and optimal temperature (T o) for germination than those from the Alax Desert. Seeds of the four species from the Qing-Tibetan Plateau germinated to high percentages at 5°C, whereas none of the four desert species did so. Seeds of species from the Alax Desert germinated to a high percentage at 35°C or 40°C, while no seeds of species from the Qing-Tibetan Plateau germinated at 35°C or 40°C. The base median water potential [Ψ b(50)] differed among species but not between the two habitats. The thermal time and hydrotime models accurately predicted the germination time course of scarified seeds of most of the eight species in response to temperature and water potential; thus, they can be useful tools in comparative studies on germination of seeds with physical dormancy. Habitat temperatures but not rainfall is closely related to germination requirements of these species. © 2015 Botanical Society of America, Inc.

  9. Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure.

    PubMed

    Giezendanner-Thoben, Robert; Meier, Ulrich; Meier, Wolfgang; Heinze, Johannes; Aigner, Manfred

    2005-11-01

    Two-line OH planar laser-induced fluorescence (PLIF) thermometry was applied to a swirling CH4/air flame in a gas turbine (GT) model combustor at atmospheric pressure, which exhibited self-excited combustion instability. The potential and limitations of the method are discussed with respect to applications in GT-like flames. A major drawback of using OH as a temperature indicator is that no temperature information can be obtained from regions where OH radicals are missing or present in insufficient concentration. The resulting bias in the average temperature is addressed and quantified for one operating condition by a comparison with results from laser Raman measurements applied in the same flame. Care was taken to minimize saturation effects by decreasing the spectral laser power density to a minimum while keeping an acceptable spatial resolution and signal-to-noise ratio. In order to correct for the influence of laser light attenuation, absorption measurements were performed on a single-shot basis and a correction procedure was applied. The accuracy was determined to 4%-7% depending on the location within the flame and on the temperature level. A GT model combustor with an optical combustion chamber is described, and phase-locked 2D temperature distributions from a pulsating flame are presented. The temperature variations during an oscillation cycle are specified, and the general flame behavior is described. Our main goals are the evaluation of the OH PLIF thermometry and the characterization of a pulsating GT-like flame.

  10. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  11. Role of electron temperature on charging of dust grains

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Chakraborty, M.; Saikia, B. K.

    2007-02-01

    Dust grains are produced by evaporation of silver in an experimental setup consisting of a dust chamber, a plasma chamber, and a deflection chamber. Due to differential pressure between the dust and plasma chambers, the dust grains move upward and after passing through plasma they become negatively charged. These charged dust grains are then deflected by a dc field applied across a pair of deflector plates in the deflection chamber. Both from the amount of deflection and also from the floating potential, the number of charges collected on the dust grains is calculated. As the gas pressure is changed, the plasma density and the electron temperature changes. Dust charge is then calculated at each value of pressure from the deflection and floating potential. It is found that the electron temperature has a profound effect in the accumulation of charge on dust grains.

  12. Thermal Recovery from Cold-Working in Type K Bare-Wire Thermocouples

    NASA Astrophysics Data System (ADS)

    Greenen, A. D.; Webster, E. S.

    2017-12-01

    Cold-working of most thermocouples has a significant, direct impact on the Seebeck coefficient which can lead to regions of thermoelectric inhomogeneity and accelerated drift. Cold-working can occur during the wire swaging process, when winding the wire onto a bobbin, or during handling by the end user—either accidentally or deliberately. Swaging-induced cold-work in thermocouples, if uniformly applied, may result in a high level of homogeneity. However, on exposure to elevated temperatures, the subsequent recovery process from the cold-working can then result in significant drift, and this can in turn lead to erroneous temperature measurements, often in excess of the specified manufacturer tolerances. Several studies have investigated the effects of cold-work in Type K thermocouples usually by bending, or swaging. However, the amount of cold-work applied to the thermocouple is often difficult to quantify, as the mechanisms for applying the strains are typically nonlinear when applied in this fashion. A repeatable level of cold-working is applied to the different wires using a tensional loading apparatus to apply a known yield displacement to the thermoelements. The effects of thermal recovery from cold-working can then be accurately quantified as a function of temperature, using a linear gradient furnace and a high-resolution homogeneity scanner. Variation in these effects due to differing alloy compositions in Type K wire is also explored, which is obtained by sourcing wire from a selection of manufacturers. The information gathered in this way will inform users of Type K thermocouples about the potential consequences of varying levels of cold-working and its impact on the Seebeck coefficient at a range of temperatures between ˜ 70°C and 600° C. This study will also guide users on the temperatures required to rapidly alleviate the effects of cold-working using thermal annealing treatments.

  13. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes.

    PubMed

    Campbell, Karen M; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V; Halsey, Eric S; Laguna-Torres, V Alberto; Yagui, Martín; Morrison, Amy C; Lin, Chii-Dean; Scott, Thomas W

    2015-01-01

    Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution. Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning.

  14. Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature

    NASA Astrophysics Data System (ADS)

    Barker, Joseph; Tretiakov, Oleg A.

    2016-04-01

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, Skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that Skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic Skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which, e.g., results in a complete cancellation of the Magnus force. We find that the composite nature of antiferromagnetic Skyrmions gives rise to different dynamical behavior due to both an applied current and temperature effects.

  15. The Effect of Temperature Changes in Vitreoretinal Surgery

    PubMed Central

    Romano, Mario R.; Romano, Vito; Mauro, Alessandro; Angi, Martina; Costagliola, Ciro; Ambrosone, Luigi

    2016-01-01

    Purpose Recent studies on temperature control in biology and medicine have found the temperature as a new instrument in healthcare. In this manuscript, we reviewed the effects of temperature and its potential role in pars plana vitrectomy. We also examined the relationship between intraocular pressure, viscosity, and temperature in order to determine the best balance to manipulate the tamponades during the surgery. Methods A literature review was performed to identify potentially relevant studies on intraocular temperature. Physics equations were applied to explain the described effects of temperature changes on the behavior of the endotamponades commonly used during vitreoretinal surgery. We also generated an operating diagram on the pressure–temperature plane for the values of both vapor–liquid equilibrium and intraocular pressure. Results The rapid circulation of fluid in the vitreous cavity reduces the heat produced by the retinal and choroidal surface, bringing the temperature toward room temperature (22°C, deep hypothermia). Temperature increases with endolaser treatment, air infusion, and the presence of silicone oil. The variations in temperature during vitreoretinal surgery are clinically significant, as the rheology of tamponades can be better manipulated by modulating intraocular pressure and temperature. Conclusions During vitreoretinal surgery, the intraocular temperature showed rapid and significant fluctuations at different steps of the surgical procedure inside the vitreous cavity. Temperature control can modulate the rheology of tamponades. Translational Relevance Intraoperative temperature control can improve neuroprotection during vitreoretinal surgery, induce the vaporization of perfluorcarbon liquid, and change the shear viscosity of silicone oil. PMID:26929884

  16. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  17. Wireless Infrared Data Link

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.

    1995-01-01

    Infrared transmitter and receiver designed for wireless transmission of information on measured physical quantity (for example, temperature) from transducer device to remote-acquisition system. In transmitter, output of transducer amplified and shifted with respect to bias or reference level, then fed to voltage-to-frequency converter to control frequency of repetition of current pulses applied to infrared-light-emitting diode. In receiver, frequency of repetition of pulses converted back into voltage indicative of temperature or other measured quantity. Potential applications include logging data while drilling for oil, transmitting measurements from rotors in machines without using slip rings, remote monitoring of temperatures and pressures in hazardous locations, and remote continuous monitoring of temperatures and blood pressures in medical patients, who thus remain mobile.

  18. Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites

    NASA Astrophysics Data System (ADS)

    Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Patra, Ajit K.; Kholkin, Andrei L.; Panwar, Neeraj

    2017-01-01

    We have synthesized SmCr0.85Mn0.15O3 (SCMO) chromites through the ceramic route. The compound crystallized into a distorted orthorhombic structure with the Pnma space group, which was confirmed from the Rietveld refinement of x-ray powder diffraction patterns. Neel temperature, noticed at 168 K from the temperature variation of magnetisation, smaller than that reported for SmCrO3, indicated the influence of Mn3+ substitution on decreasing the antiferromagnetic ordering. A phenomenon of magnetization reversal was observed in the SCMO compound. At low magnetic fields, i.e., 500 Oe, a single compensation temperature (defined as the temperature where magnetization became zero) around 106 K was observed in the field cooled magnetization curve. However, with the application of higher magnetic fields, i.e., under an applied field of 1000 Oe, a second compensation temperature was noticed around 8 K. With a further increase in the magnetic field, the magnetization remained positive in both field cooled and zero field cooled protocols. A normal magnetocaloric effect was observed through an indirect method of field dependence of magnetisation measured in the temperature range of 2-152 K. The magnetic entropy change (-ΔS) of ˜11.36 J kg-1 K-1 along with the relative cooling power (RCP) of ˜175.89 J kg-1 was obtained in the temperature range of 10-20 K for an applied field of 90 kOe, and their values at 50 kOe applied field were, respectively, almost twenty and forty times larger in magnitude in comparison to those for the SmCrO3 compound. The relatively large values of ΔS and RCP make the studied compound a potential candidate for magnetic refrigeration applications at low temperatures.

  19. Finite-temperature Gutzwiller approximation from the time-dependent variational principle

    NASA Astrophysics Data System (ADS)

    Lanatà, Nicola; Deng, Xiaoyu; Kotliar, Gabriel

    2015-08-01

    We develop an extension of the Gutzwiller approximation to finite temperatures based on the Dirac-Frenkel variational principle. Our method does not rely on any entropy inequality, and is substantially more accurate than the approaches proposed in previous works. We apply our theory to the single-band Hubbard model at different fillings, and show that our results compare quantitatively well with dynamical mean field theory in the metallic phase. We discuss potential applications of our technique within the framework of first-principle calculations.

  20. Temperature of the plasmasphere from Van Allen Probes HOPE

    NASA Astrophysics Data System (ADS)

    Genestreti, K. J.; Goldstein, J.; Corley, G. D.; Farner, W.; Kistler, L. M.; Larsen, B. A.; Mouikis, C. G.; Ramnarace, C.; Skoug, R. M.; Turner, N. E.

    2017-01-01

    We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional E→×B→ drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements—generally between 0.2 and 2 eV (2000-20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes.

  1. Effect of annealing on structural changes and oxygen diffusion in amorphous HfO2 using classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish

    2018-02-01

    Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.

  2. Resolving an anomaly in electron temperature measurement using double and triple Langmuir probes

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Barada, K. K.; Chattopadhyay, P. K.; Ghosh, J.; Bora, D.

    2015-02-01

    Langmuir probes with variants such as single, double and triple probes remain the most common method of electron temperature measurement in low-temperature laboratory plasmas. However, proper estimation of electron temperature mainly using triple probe configuration requires the proper choice of compensation factor (W). Determination of the compensating factor is not very straightforward as it depends heavily on plasma floating potential (Vf), electron temperature (Te), the type of gas used for plasma production and the bias voltage applied to probe pins, especially in cases where there are substantial variations in floating potential. In this paper we highlight the anomaly in electron temperature measurement using double and triple Langmuir probe techniques as well as the proper determination of the compensation factor (W) to overcome this anomaly. Experiments are carried out with helicon antenna producing inductive radiofrequency plasmas, where significant variation of floating potential along the axis enables a detailed study of deviations introduced in Te measurements using triple probes compared to double and single probes. It is observed that the bias voltage between the probe pins of the triple probes plays an important role in the accurate determination of the compensating factor (W) and should be in the range (5Vd2 < Vd3 < 10Vd2), where Vd2 and Vd3 are the voltage between floating probe pins 2 and 1 and the bias voltage, respectively.

  3. An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Quigley, K. W.; Roberts, D. A.; Miller, D.

    2017-12-01

    Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.

  4. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces

    NASA Astrophysics Data System (ADS)

    Hossain, Md I.; Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-07-01

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.

  5. Solar Pond Potential as A New Renewable Energy in South Sulawesi

    NASA Astrophysics Data System (ADS)

    Fadliah Baso, Nur; Chaerah Gunadin, Indar; Yusran

    2018-03-01

    Renewable energy sources need to be developed to maintain the electric energy availability by utilizing oceanic energy, namely solar pond energy. This energy is highly influenced by several factors including salinity, air temperature and solar radiation. This study was focused on finding the potential of solar pond in South Sulawesi, a region with fairly high solar radiation and abundant salt water raw materials availability. The method used in this study was analyzing the values from the mathematic models of daily horizontal solar radiation, air temperature, wind speed, relative humidity and atmospheric pressure for the last 22 years which were finalized using MATLAB. The findings of this study will show the areas with good potentials to apply solar pond in South Sulawesi that can be utilized in various fields including power generator, industrial heating process, desalination and heating for biomass conversion.

  6. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces.

    PubMed

    Hossain, Md I; Maksud, M; Palapati, N K R; Subramanian, A; Atulasimha, J; Bandyopadhyay, S

    2016-07-29

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.

  7. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water andmore » re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host potentially economic geothermal resources; however, further detailed study is warranted to each site to evaluate hydrothermal suitability for economic use.« less

  8. Shape Memory Alloys for Monitoring Minor Over-Heating/Cooling Based on the Temperature Memory Effect via Differential Scanning Calorimetry: A Review of Recent Progress

    NASA Astrophysics Data System (ADS)

    Wang, T. X.; Huang, W. M.

    2017-12-01

    The recent development in the temperature memory effect (TME) via differential scanning calorimetry in shape memory alloys is briefly discussed. This phenomenon was also called the thermal arrest memory effect in the literature. However, these names do not explicitly reveal the potential application of this phenomenon in temperature monitoring. On the other hand, the standard testing process of the TME has great limitation. Hence, it cannot be directly applied for temperature monitoring in most of the real engineering applications in which temperature fluctuation occurs mostly in a random manner within a certain range. However, as shown here, after proper modification, we are able to monitor the maximum or minimum temperature in either over-heating or over-cooling with reasonable accuracy.

  9. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.; Dewhurst, R. J.

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will causemore » pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.« less

  10. Origin of colossal dielectric response in (In + Nb) co-doped TiO2 rutile ceramics: a potential electrothermal material.

    PubMed

    Ke, Shanming; Li, Tao; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao

    2017-08-31

    (In + Nb) co-doped TiO 2 (TINO) rutile is an emerging material with a colossal dielectric permittivity (CP) and a low dielectric loss over wide temperature and frequency ranges. The electrical inhomogeneous nature of TINO ceramics is demonstrated by direct local current probing with high-resolution conductive atomic force microscopy (cAFM). The CP response in TINO is found to originate from the electron-pinned defect dipole induced conductive cluster effect and the electrode effect. Two types of dielectric relaxations are simultaneously observed due to these two effects. With the given synthesis condition, we found TINO shows a highly leaky feature that impairs its application as a dielectric material. However, the fast-temperature-rising phenomenon found in this work may open a new door for TINO to be applied as a potential electrothermal material with high efficiency, oxidation-proof, high temperature stability, and energy saving.

  11. Temperature dosimetry using MR relaxation characteristics of poly(vinyl alcohol) cryogel (PVA-C).

    PubMed

    Lukas, L A; Surry, K J; Peters, T M

    2001-11-01

    Hyperthermic therapy is being used for a variety of medical treatments, such as tumor ablation and the enhancement of radiation therapy. Research in this area requires a tool to record the temperature distribution created by a heat source, similar to the dosimetry gels used in radiation therapy to record dose distribution. Poly(vinyl alcohol) cryogel (PVA-C) is presented as a material capable of recording temperature distributions between 45 and 70 degrees C, with less than a 1 degrees C error. An approximately linear, positive relationship between MR relaxation times and applied temperature is demonstrated, with a maximum of 16.3 ms/ degrees C change in T(1) and 10.2 ms/ degrees C in T(2) for a typical PVA-C gel. Applied heat reduces the amount of cross-linking in PVA-C, which is responsible for a predictable change in T(1) and T(2) times. Temperature distributions in PVA-C volumes may be determined by matching MR relaxation times across the volumes to calibration values produced in samples subjected to known temperatures. Factors such as thermotolerance, perfusion effects, and thermal conductivity of PVA-C are addressed for potentially extending this method to modeling thermal doses in tissue. Copyright 2001 Wiley-Liss, Inc.

  12. The determination of temperature stability of silver nanotubes by the molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Filatov, O.; Soldatenko, S.; Soldatenko, O.

    2018-04-01

    Molecular dynamics simulation using the embedded-atom method is applied to study thermal stability of silver nanotubes and its coefficient of linear thermal expansion. The correspondence of face centered cubic structure potential for this task is tested. Three types of nanotubes are modelled: scrolled from graphene-like plane, scrolled from plane with cubic structure and cut from cylinder. It is established that only the last two of them are stable. The last one describes in details. There is critical temperature when free ends of the nanotube close but the interior surface retains. At higher temperatures, the interior surface collapses and the nanotube is unstable.

  13. Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat

    NASA Astrophysics Data System (ADS)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  14. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission.

    PubMed

    Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia

    2017-02-27

    The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K -1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  15. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    PubMed Central

    Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia

    2017-01-01

    The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential. PMID:28264427

  16. Sealing Materials for Use in Vacuum at High Temperatures

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace

    2012-01-01

    Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.

  17. Multivariable control of a rapid thermal processor using ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Dankoski, Paul C. P.

    The semiconductor manufacturing industry faces the need for tighter control of thermal budget and process variations as circuit feature sizes decrease. Strategies to meet this need include supervisory control, run-to-run control, and real-time feedback control. Typically, the level of control chosen depends upon the actuation and sensing available. Rapid Thermal Processing (RTP) is one step of the manufacturing cycle requiring precise temperature control and hence real-time feedback control. At the outset of this research, the primary ingredient lacking from in-situ RTP temperature control was a suitable sensor. This research looks at an alternative to the traditional approach of pyrometry, which is limited by the unknown and possibly time-varying wafer emissivity. The technique is based upon the temperature dependence of the propagation time of an acoustic wave in the wafer. The aim of this thesis is to evaluate the ultrasonic sensors as a potentially viable sensor for control in RTP. To do this, an experimental implementation was developed at the Center for Integrated Systems. Because of the difficulty in applying a known temperature standard in an RTP environment, calibration to absolute temperature is nontrivial. Given reference propagation delays, multivariable model-based feedback control is applied to the system. The modelling and implementation details are described. The control techniques have been applied to a number of research processes including rapid thermal annealing and rapid thermal crystallization of thin silicon films on quartz/glass substrates.

  18. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    NASA Astrophysics Data System (ADS)

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-12-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  19. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  20. Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm.

    PubMed

    Vidal-García, Francisca; Serio-Silva, Juan Carlos

    2011-07-01

    We developed a potential distribution model for the tropical rain forest species of primates of southern Mexico: the black howler monkey (Alouatta pigra), the mantled howler monkey (Alouatta palliata), and the spider monkey (Ateles geoffroyi). To do so, we applied the maximum entropy algorithm from the ecological niche modeling program MaxEnt. For each species, we used occurrence records from scientific collections, and published and unpublished sources, and we also used the 19 environmental coverage variables related to precipitation and temperature from WorldClim to develop the models. The predicted distribution of A. pigra was strongly associated with the mean temperature of the warmest quarter (23.6%), whereas the potential distributions of A. palliata and A. geoffroyi were strongly associated with precipitation during the coldest quarter (52.2 and 34.3% respectively). The potential distribution of A. geoffroyi is broader than that of the Alouatta spp. The areas with the greatest probability of presence of A. pigra and A. palliata are strongly associated with riparian vegetation, whereas the presence of A. geoffroyi is more strongly associated with the presence of rain forest. Our most significant contribution is the identification of areas with a high probability of the presence of these primate species, which is information that can be applied to planning future studies and then establishing criteria for the creation of areas to primate conservation in Mexico.

  1. Design and implementation of temperature and humidity monitoring system for poultry farm

    NASA Astrophysics Data System (ADS)

    Purnomo, Hindriyanto Dwi; Somya, Ramos; Fibriani, Charitas; Purwoko, Angga; Sadiyah, Ulfa

    2016-10-01

    Automatic monitoring system gains significant interest in poultry industry due to the need of consistent environment condition. Appropriate environment increase the feed conversion ratio as well as birds productivity. This will increase the competitiveness of the poultry industry. In this research, a temperature and humidity monitoring system is proposed to observer the temperature and relative humidity of a poultry house. The system is intended to be applied in the poultry industry with partnership schema. The proposed system is equipped with CCTV for visual monitoring. The measured temperature and humidity implement wireless sensor network technology. The experiment results reveals that proposed system have the potential to increase the effectiveness of monitoring of poultry house in poultry industry with partnership schema.

  2. Empirical Temperature Measurement in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Weaver, Erik; Isella, Andrea; Boehler, Yann

    2018-02-01

    The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.

  3. Modification and optimization of the united-residue (UNRES) potential-energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins

    PubMed Central

    Liwo, Adam; Khalili, Mey; Czaplewski, Cezary; Kalinowski, Sebastian; Ołdziej, Stanisław; Wachucik, Katarzyna; Scheraga, Harold A.

    2011-01-01

    We report the modification and parameterization of the united-residue (UNRES) force field for energy-based protein-structure prediction and protein-folding simulations. We tested the approach on three training proteins separately: 1E0L (β), 1GAB (α), and 1E0G (α + β). Heretofore, the UNRES force field had been designed and parameterized to locate native-like structures of proteins as global minima of their effective potential-energy surfaces, which largely neglected the conformational entropy because decoys composed of only lowest-energy conformations were used to optimize the force field. Recently, we developed a mesoscopic dynamics procedure for UNRES, and applied it with success to simulate protein folding pathways. How ever, the force field turned out to be largely biased towards α-helical structures in canonical simulations because the conformational entropy had been neglected in the parameterization. We applied the hierarchical optimization method developed in our earlier work to optimize the force field, in which the conformational space of a training protein is divided into levels each corresponding to a certain degree of native-likeness. The levels are ordered according to increasing native-likeness; level 0 corresponds to structures with no native-like elements and the highest level corresponds to the fully native-like structures. The aim of optimization is to achieve the order of the free energies of levels, decreasing as their native-likeness increases. The procedure is iterative, and decoys of the training protein(s) generated with the energy-function parameters of the preceding iteration are used to optimize the force field in a current iteration. We applied the multiplexing replica exchange molecular dynamics (MREMD) method, recently implemented in UNRES, to generate decoys; with this modification, conformational entropy is taken into account. Moreover, we optimized the free-energy gaps between levels at temperatures corresponding to a predominance of folded or unfolded structures, as well as to structures at the putative folding-transition temperature, changing the sign of the gaps at the transition temperature. This enabled us to obtain force fields characterized by a single peak in the heat capacity at the transition temperature. Furthermore, we introduced temperature dependence to the UNRES force field; this is consistent with the fact that it is a free-energy and not a potential-energy function. PMID:17201450

  4. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.

    PubMed

    Ji, Hongjun; Zhou, Junbo; Liang, Meng; Lu, Huajun; Li, Mingyu

    2018-03-01

    Sintering of low-cost Cu nanoparticles (NPs) for interconnection of chips to substrate at low temperature and in atmosphere conditions is difficult because they are prone to oxidation, but dramatically required in semiconductor industry. In the present work, we successfully synthesized Cu@Ag NPs paste, and they were successfully applied for joining Cu/Cu@Ag NPs paste/Cu firstly in air by the ultrasonic-assisted sintering (UAS) at a temperature of as low as 160 °C. Their sintered microstructures featuring with dense and crystallized cells are completely different from the traditional thermo-compression sintering (TCS). The optimized shear strength of the joints reached to 54.27 MPa, exhibiting one order of magnitude higher than TCS at the same temperature (180 °C) under the UAS. This ultra-low sintering temperature and high performance of the sintered joints were ascribed to ultrasonic effects. The ultrasonic vibrations have distinct effects on the metallurgical reactions of the joints, resulting in the contact and growth of Cu core and the stripping and connection of Ag shell, which contributes to the high shear strength. Thus, the UAS of Cu@Ag NPs paste has a great potential to be applied for high-temperature power device packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  6. A Rapid Process for Fabricating Gas Sensors

    PubMed Central

    Hsiao, Chun-Ching; Luo, Li-Siang

    2014-01-01

    Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696

  7. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes

    PubMed Central

    Campbell, Karen M.; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V.; Halsey, Eric S.; Laguna-Torres, V. Alberto; Yagui, Martín; Morrison, Amy C.; Lin, Chii-Dean; Scott, Thomas W.

    2015-01-01

    Background Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. Methodology/Principal Findings We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution. Conclusions/Significance Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning. PMID:26222979

  8. Optimization and characterization of liposome formulation by mixture design.

    PubMed

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  9. Characterizations and Electrical Modelling of Sensory Samples Formed from Synthesized Vanadium (V) Oxide and Copper Oxide Graphene Quantum Tunneling Composites (GQTC) Applied in Electrotribology

    PubMed Central

    Habdank-Wojewódzki, Tadeusz; Habdank, Josef; Cwik, Przemyslaw; Zimowski, Slawomir

    2016-01-01

    CuO and V2O5 graphene quantum tunneling composites (GQTC) presented in this article were produced and their sensory properties were analyzed. The composites were synthesised using two stage high-power milling process, which resulted in materials that have good temeprature and pressure sensory properties. Described production process defines internal structure of materials such that when used as sensor in the desired range, it exhibits a strong percolation effect. The experiment, with controlled changing physical conditions during electrotribological measurement, enabled analyzing of the composites’ conductivity as a function of the sensory properties: applied temperature, pressure, tangential force and wear. The sensory characteristic was successfully modelled by invertible generalized equations, and used to create sensor capable of estimating temperature or pressure in the real time. The developed materials have the potential to be applied in the areas where miniaturization is essential, due to the materials exhibiting good sensory properties in mini and micro scale. PMID:26742044

  10. Characterizations and Electrical Modelling of Sensory Samples Formed from Synthesized Vanadium (V) Oxide and Copper Oxide Graphene Quantum Tunneling Composites (GQTC) Applied in Electrotribology.

    PubMed

    Habdank-Wojewódzki, Tadeusz; Habdank, Josef; Cwik, Przemyslaw; Zimowski, Slawomir

    2016-01-05

    CuO and V₂O₅ graphene quantum tunneling composites (GQTC) presented in this article were produced and their sensory properties were analyzed. The composites were synthesised using two stage high-power milling process, which resulted in materials that have good temeprature and pressure sensory properties. Described production process defines internal structure of materials such that when used as sensor in the desired range, it exhibits a strong percolation effect. The experiment, with controlled changing physical conditions during electrotribological measurement, enabled analyzing of the composites' conductivity as a function of the sensory properties: applied temperature, pressure, tangential force and wear. The sensory characteristic was successfully modelled by invertible generalized equations, and used to create sensor capable of estimating temperature or pressure in the real time. The developed materials have the potential to be applied in the areas where miniaturization is essential, due to the materials exhibiting good sensory properties in mini and micro scale.

  11. Can we approach the gas-liquid critical point using slab simulations of two coexisting phases?

    PubMed

    Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-09-28

    In this paper, we demonstrate that it is possible to approach the gas-liquid critical point of the Lennard-Jones fluid by performing simulations in a slab geometry using a cut-off potential. In the slab simulation geometry, it is essential to apply an accurate tail correction to the potential energy, applied during the course of the simulation, to study the properties of states close to the critical point. Using the Janeček slab-based method developed for two-phase Monte Carlo simulations [J. Janec̆ek, J. Chem. Phys. 131, 6264 (2006)], the coexisting densities and surface tension in the critical region are reported as a function of the cutoff distance in the intermolecular potential. The results obtained using slab simulations are compared with those obtained using grand canonical Monte Carlo simulations of isotropic systems and the finite-size scaling techniques. There is a good agreement between these two approaches. The two-phase simulations can be used in approaching the critical point for temperatures up to 0.97 T C ∗ (T ∗ = 1.26). The critical-point exponents describing the dependence of the density, surface tension, and interfacial thickness on the temperature are calculated near the critical point.

  12. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  13. Dual stimuli-responsive smart beads that allow "on-off" manipulation of cancer cells.

    PubMed

    Kim, Young-Jin; Kim, Soo Hyeon; Fujii, Teruo; Matsunaga, Yukiko T

    2016-06-24

    Temperature- and electric field-responsive polymer-conjugated polystyrene beads, termed smart beads, are designed to isolate cancer cells. In smart beads, the reversible "on-off" antigen-antibody reaction and dielectrophoresis force on an electrode are accomplished to realize "on-off" remote manipulation of smart beads and cancer cells. Both the zeta-potential and the hydrodynamic diameter of the smart beads are sensitive to temperature, allowing "on-off" reversible capture and release of cancer cells. Cancer cell-captured smart beads are then localized on electrodes by applying an electrical signal.

  14. Low temperature electrodeposition of silicon layers

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Qi, Shuo; Viana, Bruno

    2018-02-01

    The electrodeposition of silicon at room temperature in 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids containing SiCl4 salt is shown. The electrodeposition window has been determined by cyclic voltammetry. Layers have been deposited in a three electrode cell placed in an inert atmosphere and at constant applied potential. The characterizations by x-ray diffraction and Raman spectroscopy showed the formation of a layer made of amorphous silicon. The scanning electron microscopy examination revealed that the layers were featureless and well-covering.

  15. Stochastic generators of multi-site daily temperature: comparison of performances in various applications

    NASA Astrophysics Data System (ADS)

    Evin, Guillaume; Favre, Anne-Catherine; Hingray, Benoit

    2018-02-01

    We present a multi-site stochastic model for the generation of average daily temperature, which includes a flexible parametric distribution and a multivariate autoregressive process. Different versions of this model are applied to a set of 26 stations located in Switzerland. The importance of specific statistical characteristics of the model (seasonality, marginal distributions of standardized temperature, spatial and temporal dependence) is discussed. In particular, the proposed marginal distribution is shown to improve the reproduction of extreme temperatures (minima and maxima). We also demonstrate that the frequency and duration of cold spells and heat waves are dramatically underestimated when the autocorrelation of temperature is not taken into account in the model. An adequate representation of these characteristics can be crucial depending on the field of application, and we discuss potential implications in different contexts (agriculture, forestry, hydrology, human health).

  16. Ion acceleration and non-Maxwellian electron distributions in a low collisionality, high power helicon plasma source

    NASA Astrophysics Data System (ADS)

    Li, Yan; Sung, Yung-Ta; Scharer, John

    2015-11-01

    Ion acceleration through plasma double layer and non-Maxwellian two temperature electron distributions have been observed in Madison Helicon Experiment (MadHeX) operated in high RF power (>1000 W) and low Ar pressure (0.17 mtorr) inductive mode. By applying Optical Emission Spectroscopy (OES) cross-checked with an RF-compensated Langmuir probe (at 13.56 MHz and its second and third harmonics), the fast (>80 eV), untrapped electrons downstream of the double layer have a higher temperature of 13 eV than the trapped bulk electrons upstream with a temperature of 4 eV. The reduction of plasma potential and density observed in the double layer region require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The hot tail electrons of the non-Maxwellian electron distribution affect the formation and the potential drop of the double layer region. The mechanism behind this has been explored via several non-invasive plasma diagnostics tools. The OES measured electron temperatures and densities are also cross-checked with Atomic Data and Analysis Structure (ADAS) and a millimeter wave interferometer respectively. The IEDF is measured by a four-grid RPA and also cross-checked with argon 668 nm Laser Induced Fluorescence (LIF). An emissive probe has been used to measure the plasma potential.

  17. Experimental measurements of thermoelectric and electrochemical potentials in sandstones saturated with NaCl electrolyte

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M.

    2013-12-01

    Measurements of the self-potential (SP) have been used to characterize subsurface flow in numerous settings, including volcanoes, earthquake zones, and geothermal fields. Thermoelectric (TE) and electrochemical (EC) potentials contribute to the measured SP if gradients in temperature and/or concentration are present, yet few experimental measurements of EC and TE potentials in natural porous media have been reported. Each is the sum of a diffusion and exclusion potential: the former arises when ions of contrasting mobility migrate at different rates down a temperature or concentration gradient; the latter arises when there is a temperature or concentration gradient across an electrically charged porous medium in which co-ions of the same polarity have been excluded from the pore-space. Here we report measurements of the SP arising from temperature or concentration gradients across clean (clay-free) sandstone samples saturated with NaCl electrolyte over the salinity range 5x10-5 to 1M. Electrical potentials are measured using non-polarizing Ag/AgCl electrodes, and temperature or salinity gradients are induced by placing the saturated samples in contact with electrolyte reservoirs of contrasting temperature or concentration. Our experimental methodology accounts for the temperature- and concentration-dependent electrode response. We find that the TE potential responds linearly to the applied temperature difference, allowing a TE potential coupling coefficient to be determined; the value of this decreases as the electrolyte concentration increases, from +0.056mV/K at 10-4 M to -0.126mV/K at 1M. The EC potential increases as the concentration ratio increases, from a minimum of 1.8mV at a salinity ratio of 1.13, to a maximum of 24.8mV at salinity ratio of 102, before decreasing to 19.5mV at salinity ratio of 103. In both cases, at high values of concentration (>0.01M) the measured potential is diffusion dominated, while at lower concentration the exclusion potential is evident. Moreover, the contribution of the exclusion potential increases as the permeability of the rock samples decreases. Our results demonstrate that the relative contribution of exclusion and diffusion potentials, expressed in terms of the macroscopic Hittorf transport number, is the same regardless of whether ion transport is in response to temperature or concentration gradients. Hence, it is possible to predict the contribution of TE potentials from EC potential measurements, and vice-versa. Moreover, it is often not valid to ignore the contribution of exclusion potentials, as has been assumed in previous studies; the relative contribution of exclusion and diffusion potentials depends upon the surface charge, the mobility contrast between the co- and counter ions, and the thickness of the electrical double layer relative to the pore-radius, and is predicted reasonably well by the simple model of Westermann-Clark and Christoforou [1986]. Finally, EC and TE potentials may be large in magnitude and make a significant contribution to the measured SP in many natural settings. Westermann-Clark, G.B. and C.C. Christoforou, (1986), The exclusion-diffusion potential in charged porous membranes, J. Electroanal. Chem. 198, 213-231.

  18. Effects of tissue susceptibility on brain temperature mapping.

    PubMed

    Maudsley, Andrew A; Goryawala, Mohammed Z; Sheriff, Sulaiman

    2017-02-01

    A method for mapping of temperature over a large volume of the brain using volumetric proton MR spectroscopic imaging has been implemented and applied to 150 normal subjects. Magnetic susceptibility-induced frequency shifts in gray- and white-matter regions were measured and included as a correction in the temperature mapping calculation. Additional sources of magnetic susceptibility variations of the individual metabolite resonance frequencies were also observed that reflect the cellular-level organization of the brain metabolites, with the most notable differences being attributed to changes of the N-Acetylaspartate resonance frequency that reflect the intra-axonal distribution and orientation of the white-matter tracts with respect to the applied magnetic field. These metabolite-specific susceptibility effects are also shown to change with age. Results indicate no change of apparent brain temperature with age from 18 to 84 years old, with a trend for increased brain temperature throughout the cerebrum in females relative for males on the order of 0.1°C; slightly increased temperatures in the left hemisphere relative to the right; and a lower temperature of 0.3°C in the cerebellum relative to that of cerebral white-matter. This study presents a novel acquisition method for noninvasive measurement of brain temperature that is of potential value for diagnostic purposes and treatment monitoring, while also demonstrating limitations of the measurement due to the confounding effects of tissue susceptibility variations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    NASA Astrophysics Data System (ADS)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature (frost) is incorporated in crop damage models. This data set provided by DTS allows a level of detail that is not possible to record with traditional temperature loggers and shows how this emerging technology can be applied to agricultural applications. This research was supported by the Grains Research and Development Corporation National Frost Initiative.

  20. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. This study will particularly focus on new results: The methodology has been applied to data from three cities in the Netherlands (Amsterdam, Rotterdam, and Utrecht) for the period June - August 2013. It is shown that on average 282 battery temperature readings per day are already sufficient to accurately estimate daily-averaged air temperatures. Results clearly deteriorate when on average only 80 battery temperature readings are available. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps over the continents.

  1. An equivalent potential vorticity theory applied to the analysis and prediction of severe storm dynamics

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Kaplan, M. L.

    1976-01-01

    Potential vorticity theory is developed in a description of an equivalent potential temperature topography, and a new theory suited to the description of scale interaction is elaborated. Macroscale triggering of ageostrophic flow fields at the mesoscale, in turn leading to release of convective instability along narrow zones at the microscale, is examined. Correlation of appreciable decrease in potential vorticity with such phenomena as cumulonimbi, tornados, and duststorms is examined. The relevance of a multiscale energy-momentum cascade in numerical prediction of severe mesoscale and microscale phenomena from radiosonde data is reviewed. Hypotheses for mesoscale dynamics are constructed.

  2. The acute effects of outdoor temperature on blood pressure in a panel of elderly hypertensive patients

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Lu, Jianxiong; Yu, Qun; Peng, Li; Yang, Dandan; Wang, Cuicui; Kan, Haidong

    2015-12-01

    Higher level of blood pressure (BP) in winter than in summer has been observed, but the association between temperature and BP and its potential modifiers with adjustment of individual confounders and time trends was rarely explored. We aimed to investigate the association between outdoor temperature and BP and its potential modification factors in a longitudinal panel study in Shanghai, China. From January 2011 to December 2012, we scheduled 54 follow-ups for BP measurements per subject via home visit every other week for 50 elderly hypertensive patients. We applied linear mixed-effect models to analyze the association between temperature and BP after controlling for individual characteristics, antihypertensive medication, comorbidities, and time trends. We evaluated the potential effect modifiers by stratification analyses. For a 1 °C decrease in the average temperature on concurrent day and previous day, systolic BP increased by 0.19 mmHg (95 % confidence interval = 0.06, 0.31) and diastolic BP increased by 0.12 mmHg (95 % confidence interval = 0.03, 0.21). The effect of temperature on BP was stronger among those with older age, female sex, low socioeconomic status, and obese physique. The effect was weak and even null for those taking the angiotensin receptor blockers, angiotensin-converting enzyme inhibitor, or its combination with calcium antagonists. Further, the effect was almost restricted within those having chronic comorbidities. Our results demonstrated that an acute decrease in outdoor temperature was significantly associated with a rise in BP among elderly hypertensive patients, in Shanghai, China. Individual characteristics, antihypertensive medications, and comorbidities may modify this effect.

  3. In-situ observation of the chemical erosion of graphite in the scrape-off-layer of TEXTOR

    NASA Astrophysics Data System (ADS)

    Philipps, V.; Vietzke, E.; Erdweg, M.

    1989-04-01

    A sniffer probe system has been used to investigate the chemical erosion during interaction of the TEXTOR scrape-off plasma with a pyrolytic graphite plate at temperatures up to 1400 °C. Floating potential conditions as well as 200 V bias has been applied at plasma ion fluxes of about 10 18ions/cm 2 sec.Methane formation was found to be 8 × 10 -3 CH 4/H and 1.5 × 10 -2 CD 4/D + for room temperature graphite and floating potential increasing by a factor of two at temperature around 500 °C. Biasing the graphite decreases the methane yield at room temperature and increase it in the maximum temperature range. CO formation due to chemical interaction of oxygen ions with the graphite reaches ratios between 3 and 6 × 10 -2 CO/D(H) near the limiter edge under normal TEXTOR scrape-off conditions and exceeds the chemical hydro-(deu-tero-carbon formation significantly. The results are discussed in view of the present status of hydro-(deutero-)carbon formation on graphite and carbon impurity observations made in fusion experiments.

  4. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  5. Comment on "Optical Imaging of Light-Induced Thermopower in Semiconductors"

    NASA Astrophysics Data System (ADS)

    Apertet, Y.

    2018-03-01

    In a recent article [Phys. Rev. Applied 5, 024005 (2016), 10.1103/PhysRevApplied.5.024005], Gibelli and co-workers proposed a method to determine the thermopower, i.e., the Seebeck coefficient, using photoluminescence measurements. The photoluminescence spectra are used to obtain the local gradients of both the electrochemical potential difference between electron and holes and the temperature of the electron-hole plasma. However, the definition of the thermopower given in that article seems erroneous due to a confusion between the different physical quantities needed to derive this parameter.

  6. Sustaining Health and Performance in the Cold: A Pocket Guide to Environmental Medicine Aspects Of Cold-Weather Operations

    DTIC Science & Technology

    1992-12-01

    4. DO NOT APPLY OINTMENTS , SNOW fumes into the tent or shelter. OR ICE TO THE BURN , AND DO NOT When Ignited, these gases BREAK BUSTERS may cause...surrounding temperature is, the greater the potential for body heat to escape. When the skin is exposed to cold, the brain signals the blood vessels in the...130C) and the 5. DO NOT POP BLISTERS, APPLY LOTIONS hands and feet cannot OR CREAMS, MASSAGE, EXPOSE TO be kept warm and dry. EXTREME HEAT OR ALLOW

  7. Prediction of brain tissue temperature using near-infrared spectroscopy.

    PubMed

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-04-01

    Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications.

  8. Determination of dosimetric and kinetic features of gamma irradiated solid calcium ascorbate dihydrate using ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuner, H.

    2013-01-01

    Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.

  9. Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat

    NASA Astrophysics Data System (ADS)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  10. Ballistic and Diffusive Thermal Conductivity of Graphene

    NASA Astrophysics Data System (ADS)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  11. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip

    NASA Astrophysics Data System (ADS)

    Ranjit, N. K.; Shit, G. C.

    2017-09-01

    This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).

  12. Industrial Tape

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Scotch Brand Tape 364 was developed for NASA by 3M Company to protect electrical instrumentation coils and fluid lines from rocket launch blast conditions. It is an aluminized glass cloth tape which can withstand very high temperatures, is easily applied to compound surfaces, has excellent solar energy reflectance, and does not present an electrostatic hazard. It has potential automotive, transportation, and building construction applications.

  13. Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction.

    PubMed

    Wang, Qiang; Li, Jianwei; Nie, Yihang; Xu, Fuming; Yu, Yunjin; Wang, Bin

    2018-06-13

    The experimental synthesis and characterization of enigmatic triangulene were reported for the first time recently. Based on this enigmatic molecule, we proposed a triangulene-based molecular junction and presented first principles calculations to investigate the electron and phonon thermoelectric transport properties. Numerical results show that the spin polarized electric transport properties of the triangulene-based molecular junction can be adjusted effectively by bias voltage and gate voltage. Through varying the gate voltage applied on the triangulene molecule, the system can exhibit a perfect spin filter effect. When a temperature gradient is applied between the two leads, spin up current and spin down current flow along opposite directions in the system simultaneously. Thus pure spin current can be obtained on a large scale by changing the temperature, temperature gradient, and gate voltage. When the phonon vibration effect is considered in thermal transport, the figure of merit is suppressed distinctively especially when the temperature is within the 10 K < T < 100 K range. More importantly, a large spin figure of merit can be achieved accompanied by a small charge figure of merit by adjusting the temperature, gate voltage and chemical potential in a wide range, which indicates a favorable application prospect of the triangulene-based molecular junction as a spin calorigenic device.

  14. Development of a Response Surface Thermal Model for Orion Mated to the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.; Meier, Eric J.

    2010-01-01

    A study was performed to determine if a Design of Experiments (DOE)/Response Surface Methodology could be applied to on-orbit thermal analysis and produce a set of Response Surface Equations (RSE) that accurately predict vehicle temperatures. The study used an integrated thermal model of the International Space Station and the Orion Outer mold line model. Five separate factors were identified for study: yaw, pitch, roll, beta angle, and the environmental parameters. Twenty external Orion temperatures were selected as the responses. A DOE case matrix of 110 runs was developed. The data from these cases were analyzed to produce an RSE for each of the temperature responses. The initial agreement between the engineering data and the RSE predictions was encouraging, although many RSEs had large uncertainties on their predictions. Fourteen verification cases were developed to test the predictive powers of the RSEs. The verification showed mixed results with some RSE predicting temperatures matching the engineering data within the uncertainty bands, while others had very large errors. While this study to not irrefutably prove that the DOE/RSM approach can be applied to on-orbit thermal analysis, it does demonstrate that technique has the potential to predict temperatures. Additional work is needed to better identify the cases needed to produce the RSEs

  15. Sensitivity of potential evapotranspiration and simulated flow to varying meteorological inputs, Salt Creek watershed, DuPage County, Illinois

    USGS Publications Warehouse

    Whitbeck, David E.

    2006-01-01

    The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.

  16. Self-generated Local Heating Induced Nanojoining for Room Temperature Pressureless Flexible Electronic Packaging

    PubMed Central

    Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman

    2015-01-01

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019

  17. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  18. A novel crack healing in steels by gas nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Li, Ai; Chen, Xing; Zhang, Chengsong; Cui, Guodong; Zhao, Hui; Yang, Chuan

    2018-06-01

    In this paper, the gas nitrocarburizing technique was applied for the first time to solve the challenge in crack healing of metallic materials. The crack-healing behavior of 42CrMo steel was investigated. The gas nitrocarburizing was carried out in two steps with the decrease of the healing temperature. The mechanical properties after healing were measured using the three-point blending test. X-ray diffraction, optical microscope and scanning electron microscopy were applied to characterize the phase composition and microstructure of crack healing area and analyze healing mechanisms involved. The results show that the optimal healing effect could be obtained when it is healed at 760 °C for 2 h and then at 550 °C for 4 h. The maximum healing degree reached to 63.68%. The crack healing process could be divided into two stages, i.e. healing in crack tips at high temperatures and then in crack openings at low temperatures. The volumetric expansion and filling of formed nitrides contributed to the rapid healing of the large-sized cracks. The healing efficiency could be improved by decreasing the healing temperature. Moreover, high pressure gas nitrocarburizing was considered as another potential way to improve the healing efficiency and healing degree.

  19. Process monitoring and visualization solutions for hot-melt extrusion: a review.

    PubMed

    Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-02-01

    Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.

  20. Temperature Modulation of Electric Fields in Biological Matter

    PubMed Central

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments. PMID:21695144

  1. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin P.; Roy, Pierre-Nicholas

    2018-03-01

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  2. Thermally actuated magnetization flux pump in single-grain YBCO bulk

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Li, Quan; Coombs, T. A.

    2009-10-01

    Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.

  3. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures.

    PubMed

    Bishop, Kevin P; Roy, Pierre-Nicholas

    2018-03-14

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  4. Hyperthermia with implanted electrodes.

    PubMed

    Brezovich, I A; Young, J H

    1981-01-01

    A general solution is given for the steady state form of the heat conduction equation applied to a simple tumor model which is imagined as being heated by means of electrical currents flowing between metallic electrodes. The model assumes a homogeneous tumor with no bloodflow. The solution for the special case of constant temperature and potential at the surface of the heated volume is examined in detail. The solution shows that there exists, independent of the particular tumor and electrode geometry, a close relationship between the steady state temperature distribution and the electrical potential. Among the more important implications of this relationship are that equipotential surfaces within the heated volume are also isothermal surfaces and that no areas of excessive heat at or near any sharp edges or corners of the electrodes should develop, despite the high electric field intensity. Based on the theory, a procedure is outlined which might greatly facilitate the determination of temperature distributions in phantoms. Finally, the usefulness and the limitations of the theoretical models in clinical hyperthermia are discussed.

  5. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    NASA Astrophysics Data System (ADS)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  6. Thermal Analysis of Brazing Seal and Sterilizing Technique to Break Contamination Chain for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-01-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  7. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  8. Skin temperature reveals the intensity of acute stress.

    PubMed

    Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F

    2015-12-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less

  10. Rapid ultrasonic stimulation of inflamed tissue with diagnostic intent

    PubMed Central

    McClintic, Abbi M.; Dickey, Trevor C.; Gofeld, Michael; Ray Illian, P.; Kliot, Michel; Kucewicz, John C.; Loeser, John D.; Richebe, Philippe G.; Mourad, Pierre D.

    2013-01-01

    Previous studies have observed that individual pulses of intense focused ultrasound (iFU) applied to inflamed and normal tissue can generate sensations, where inflamed tissue responds at a lower intensity than normal tissue. It was hypothesized that successively applied iFU pulses will generate sensation in inflamed tissue at a lower intensity and dose than application of a single iFU pulse. This hypothesis was tested using an animal model of chronic inflammatory pain, created by injecting an irritant into the rat hind paw. Ultrasound pulses were applied in rapid succession or individually to rats' rear paws beginning at low peak intensities and progressing to higher peak intensities, until the rats withdrew their paws immediately after iFU application. Focused ultrasound protocols consisting of successively and rapidly applied pulses elicited inflamed paw withdrawal at lower intensity and estimated tissue displacement values than single pulse protocols. However, both successively applied pulses and single pulses produced comparable threshold acoustic dose values and estimates of temperature increases. This raises the possibility that temperature increase contributed to paw withdrawal after rapid iFU stimulation. While iFU-induction of temporal summation may also play a role, electrophysiological studies are necessary to tease out these potential contributors to iFU stimulation. PMID:23927192

  11. Effects of impurity and Bose-Fermi interactions on the transition temperature of a dilute dipolar Bose-Einstein condensation in trapped Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.

    2014-03-01

    The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).

  12. Validation diagnostics for defective thermocouple circuits

    NASA Astrophysics Data System (ADS)

    Reed, R. P.

    Thermocouples, properly used under favorable conditions, can measure temperature with an accepted tolerance. However, when improperly applied or exposed to hostile mechanical, chemical, thermal, or radiation environments, they often fail without the error being evident in the temperature record. Conversely, features that appear to be unreasonable in temperature records can be authentic. When hidden failure occurs during measurement, deliberate recording of supplementary information is necessary to distinguish valid from faulty data. Loop resistance change, circuit isolation, isolated noise potential, and other measures can reveal symptoms of developing defects. Monitored continually along with temperature, they can reveal the occurrence, location, and natures of damage incurred during measurement. Special multiterminal branched thermocouple circuits and combinatorial multiplex switching allow detection of dc measurement noise and decalibration. Symptoms of insidious failure, often consequential, are illustrated by examples from field experience in measuring temperature of a propagating retorting front in underground coal gasification.

  13. High-temperature material characterization for multispectral window

    NASA Astrophysics Data System (ADS)

    Park, James; Arida, Marvin-Ray; Ku, Zahyun; Jang, Woo-Yong; Urbas, Augustine M.

    2017-05-01

    A microwave cylindrical cavity combined with a laser has been investigated to characterize the temperature dependence of widow materials in the Air Force Research Laboratory (AFRL). This paper discusses the requirements of high temperature RF material characterizations for transparent ceramic materials, such as ALON, that can potentially be used for multispectral windows. The RF cylindrical resonator was designed and the numerical model was studied to characterize the dielectric constant of materials. The dielectric constant can be extracted from the resonant frequency shift based on the cavity perturbation method (CPM), which is sensitive to the sample size and shape. Laser heating was applied to the material under test (MUT), which could easily be heated above 1000°C by the laser irradiation, in order to conduct CPM at high temperature. The temperature distribution in a material was also analyzed to investigate the impact of the thermal properties and the sample shape.

  14. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less

  15. Use of GLOBE Observations to Derive a Landsat 8 Split Window Algorithm for Urban Heat Island

    NASA Astrophysics Data System (ADS)

    Fagerstrom, L.; Czajkowski, K. P.

    2017-12-01

    Surface temperature has been studied to investigate the warming of urban climates, also known as urban heat islands, which can impact urban planning, public health, pollution levels, and energy consumption. However, the full potential of remotely sensed images is limited when analyzing land surface temperature due to the daunting task of correcting for atmospheric effects. Landsat 8 has two thermal infrared sensors. With two bands in the infrared region, a split window algorithm (SWA), can be applied to correct for atmospheric effects. This project used in situ surface temperature measurements from NASA's ground observation program, the Global Learning and Observations to Benefit the Environment (GLOBE), to derive the correcting coefficients for use in the SWA. The GLOBE database provided land surface temperature data that coincided with Landsat 8 overpasses. The land surface temperature derived from Landsat 8 SWA can be used to analyze for urban heat island effect.

  16. Experiments on the contact angle of n-propanol on differently prepared silver substrates at various temperatures and implications for the properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Winkler, P. M.; Vrtala, A. E.; Wagner, P. E.

    2011-08-01

    In this paper we present the results of contact angle measurements between n-propanol and silver substrates in the temperature range from -10 °C to 30 °C. The interest in a potential temperature dependence of contact angles originates from recent experiments by S. Schobesberger et al. (Schobesberger S., Strange temperature dependence observed for heterogeneous nucleation of n-propanol vapor on NaCl particles. Master's thesis, University of Vienna, 2008; Schobesberger S. et al., Experiments on the temperature dependence of heterogeneous nucleation on NaCl and Ag particles. In preparation.) investigating the temperature dependence for heterogeneous nucleation of n-propanol vapour on NaCl and on silver particles. We determined dynamic advancing θ a and receding θ r angles on variously prepared silver probes. The Dynamic Wilhelmy method (Wilhelmy L., Über die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Ann. Phys. Chem., 199:177-217, 1863) was applied using a Krüss K12 Tensiometer, with a refrigerated double-walled glass top. With respect to its potential influence on heterogeneous nucleation mainly the advancing angle is of interest. The uniform probe geometry required was achieved by accurate cutting and by multiple polishing stages up to the accomplishment of a 0.04 μm grain size. The original probes consist of 925 sterling silver including a 7.5% copper content. Additional coating with silver pro Analysi (p.A.) was applied making use of pure silver powder evaporation process via Physical Vapour Deposition (PVD). Results show that a surface contamination by copper cannot be neglected for the specification of contact angles. It turned out that additional PVD coatings not only change the values of θa but also their temperature dependence. With increasing the number of coatings of a plate the contact angle decreases and its temperature dependence inverts. Since the contact angle hysteresis θhyst. obtained for the variously often coated probes remained practically constant possible changes in surface roughness with increasing number of PVD layers could be excluded.

  17. Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.; Hwang, K. S.; Wu, S. T.

    1995-01-01

    Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.

  18. Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions

    NASA Astrophysics Data System (ADS)

    Hayati, Yazdan; Eskandari-Ghadi, Morteza

    2018-02-01

    An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.

  19. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  20. Thermal-stress analysis for a wood composite blade

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report.

  1. Bi-stability resistant to fluctuations

    NASA Astrophysics Data System (ADS)

    Caruel, M.; Truskinovsky, L.

    2017-12-01

    We study a simple micro-mechanical device that does not lose its snap-through behavior in an environment dominated by fluctuations. The main idea is to have several degrees of freedom that can cooperatively resist the de-synchronizing effect of random perturbations. As an inspiration we use the power stroke machinery of skeletal muscles, which ensures at sub-micron scales and finite temperatures a swift recovery of an abruptly applied slack. In addition to hypersensitive response at finite temperatures, our prototypical Brownian snap spring also exhibits criticality at special values of parameters which is another potentially interesting property for micro-scale engineering applications.

  2. Thermal management of an urban groundwater body

    NASA Astrophysics Data System (ADS)

    Epting, J.; Huggenberger, P.

    2012-06-01

    This study presents a management concept for the sustainable thermal use of an urban groundwater body. The concept is designed to be applied for shallow thermal groundwater use and is based on (1) a characterization of the present thermal state of the investigated urban groundwater body; (2) the definition of development goals for specific aquifer regions, including future aquifer use and urbanization; and (3) an evaluation of the thermal use potential for these regions. The investigations conducted in the city of Basel (Switzerland) focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the aquifer as well as the thermal influence of river-groundwater interaction. Investigation methods include: (1) short- and long-term data analysis; (2) high-resolution multilevel groundwater temperature monitoring; as well as (3) 3-D numerical groundwater flow and heat-transport modeling and scenario development. The combination of these methods allows quantifying the thermal influence on the investigated urban groundwater body, including the influences of thermal groundwater use and additional heat from urbanization. Subsequently, management strategies for minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal use potential are discussed.

  3. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    NASA Astrophysics Data System (ADS)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  4. On processing development for fabrication of fiber reinforced composite, part 2

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Hou, Gene J. W.; Sheen, Jeen S.

    1989-01-01

    Fiber-reinforced composite laminates are used in many aerospace and automobile applications. The magnitudes and durations of the cure temperature and the cure pressure applied during the curing process have significant consequences for the performance of the finished product. The objective of this study is to exploit the potential of applying the optimization technique to the cure cycle design. Using the compression molding of a filled polyester sheet molding compound (SMC) as an example, a unified Computer Aided Design (CAD) methodology, consisting of three uncoupled modules, (i.e., optimization, analysis and sensitivity calculations), is developed to systematically generate optimal cure cycle designs. Various optimization formulations for the cure cycle design are investigated. The uniformities in the distributions of the temperature and the degree with those resulting from conventional isothermal processing conditions with pre-warmed platens. Recommendations with regards to further research in the computerization of the cure cycle design are also addressed.

  5. Temperature estimation from molecular nitrogen UV spectra in atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Pepper, Keenan; Kim, Yongho; Kim, Jihun

    2008-11-01

    Atmospheric pressure plasmas have many potential applications to fuel processing, surface treatment, and manipulation of chemical reactions. These plasmas are often non-thermal, which means different species are not in equilibrium and have different effective temperatures. This is critical for many applications because it allows high concentrations of reactive species to be produced without using a prohibitive amount of power. In the present work, numerical software was developed to estimate the vibrational and rotational temperatures (Tvib and Trot) of N2 molecules from their ultraviolet emission spectra. The electron temperature Te can also be estimated by comparing the N2 spectrum to that of the N2^+ molecular ion. This technique is applied to several plasma sources including audio frequency, RF, and microwave devices. The results are presented and their implications for practical applications are discussed.

  6. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  7. Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita

    2005-01-01

    Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.

  8. Magnetic heat pumping

    NASA Technical Reports Server (NTRS)

    Brown, G. V. (Inventor)

    1978-01-01

    A ferromagnetic or ferrimagnetic element is used to control the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram to repeatedly traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four-sided, with two isotherms and two adiabats. Preferably, a regenerator is used to enhance desired cooling or heating effects, with varied magnetic fields, or varying temperatures including three-sided figures traversed by the representative point.

  9. A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow.

    PubMed

    Zhang, Wei; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2017-11-23

    Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.

  10. Engineered, Spatially Varying Isothermal Holds: Enabling Combinatorial Studies of Temperature Effects, as Applied to Metastable Titanium Alloy β-21S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Brian; Samimi, Peyman; Collins, Peter

    2017-06-01

    A novel method to systematically vary temperature and thus study the resulting microstructure of a material is presented. This new method has the potential to be used in a combinatorial fashion, allowing the rapid study of thermal holds on microstructures to be conducted. This is demonstrated on a beta titanium alloy, where the thermal history has a strong effect on microstructure. It is informed by simulation and executed using the resistive heating capabilities of a Gleeble 3800 thermomechanical simulator. Spatially varying isothermal holds of 4 h were affected, where the temperature range of the multiple isothermal holds varied by ~175more » °C.« less

  11. The scaling of relativistic double-year widths - Poisson-Vlasov solutions and particle-in-cell simulations

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Borovsky, Joseph E.

    1992-01-01

    The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.

  12. A potential half-Heusler thermoelectric material ScAuSn: A first principle study

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Rai, D. P.; Thapa, R. K.

    2018-04-01

    Density Functional Theory along with semi classical Boltzmann transport theory have been applied to study the electronic and thermoelectric property of the Heusler alloy ScAuSn. It has been found that ScAuSn is an indirect band gap semiconductor with a gap of 0.344 eV. The thermoelectric properties such as electrical conductivity (σ), Seebeck coefficient (S), electronic thermal conductivity (κ) etc. are reported as a function of chemical potential in the region ± 2.0 eV, with respect to constant temperature. The calculated ZT value is almost equal to 1, thus making ScAuSn a potential thermoelectric candidate.

  13. Application of a Novel DCPD Adjustment Method for the J-R Curve Characterization: A study based on ORNL and ASTM Interlaboratory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A; Nanstad, Randy K

    Material fracture toughness in the fully ductile region can be described by a J-integral vs. crack growth resistance curve (J-R curve). As a conventional J-R curve measurement method, the elastic unloading compliance (EUC) method becomes impractical for elevated temperature testing due to relaxation of the material and friction induced back-up shape of the J-R curve. One alternative solution of J-R curve testing applies the Direct Current Potential Drop (DCPD) technique for measuring crack extension. However, besides crack growth, potential drop can also be influenced by plastic deformation, crack tip blunting, etc., and uncertainties exist in the current DCPD methodology especiallymore » in differentiating potential drop due to stable crack growth and due to material deformation. Thus, using DCPD for J-R curve determination remains a challenging task. In this study, a new adjustment procedure for applying DCPD to derive the J-R curve has been developed for conventional fracture toughness specimens, including compact tension, three-point bend, and disk-shaped compact specimens. Data analysis has been performed on Oak Ridge National Laboratory (ORNL) and American Society for Testing and Materials (ASTM) interlaboratory results covering different specimen thicknesses, test temperatures, and materials, to evaluate the applicability of the new DCPD adjustment procedure for J-R curve characterization. After applying the newly-developed procedure, direct comparison between the DCPD method and the normalization method on the same specimens indicated close agreement for the overall J-R curves, as well as the provisional values of fracture toughness near the onset of ductile crack extension, Jq, and of tearing modulus.« less

  14. Density functional theory calculations of continuum lowering in strongly coupled plasmas.

    PubMed

    Vinko, S M; Ciricosta, O; Wark, J S

    2014-03-24

    An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.

  15. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    PubMed Central

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever. PMID:22163433

  16. An analytical model of joule heating in piezoresistive microcantilevers.

    PubMed

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  17. Objective correlate of subjective pain perception by contact heat-evoked potentials.

    PubMed

    Granovsky, Yelena; Granot, Michal; Nir, Rony-Reuven; Yarnitsky, David

    2008-01-01

    The method of pain-evoked potentials has gained considerable acceptance over the last 3 decades regarding its objectivity, repeatability, and quantifiability. The present study explored whether the relationship between pain-evoked potentials and pain psychophysics obtained by contact heat stimuli is similar to those observed for the conventionally used laser stimulation. Evoked potentials (EPs) were recorded in response to contact heat stimuli at different body sites in 24 healthy volunteers. Stimuli at various temperatures were applied to the forearm (43 degrees C, 46 degrees C, 49 degrees C, and 52 degrees C) and leg (46 degrees C and 49 degrees C). The amplitudes of both components (N2 and P2) were strongly associated with the intensity of the applied stimuli and with subjective pain perception. Yet, regression analysis revealed pain perception and not stimulus intensity as the major contributing factor. A significant correlation was found between the forearm and the leg for both psychophysics and EPs amplitude. Contact heat can generate readily distinguishable evoked potentials on the scalp, consistent between upper and lower limbs. Although these potentials bear positive correlation with both stimulus intensity and pain magnitude, the latter is the main contributor to the evoked brain response.

  18. The thermodynamic water retention capacity of solutions and gels.

    PubMed

    Borchard, W; Jablonski, P

    2003-01-01

    The thermodynamic water retention capacity (WRC) has been defined and applied to different heterogeneous phase equilibria. This definition includes others known from the literature for testing heterogeneous systems. For the type of a real solution it is shown that at constant values of temperature and pressure the WRC is related to the difference of the chemical potential of water between the original state and the state after having applied a constraint. The dependence of WRC on concentration of a solute is predicted to be described by an e-function which has been experimentally confirmed in the literature.

  19. Effects of high summer temperatures on mortality in 50 Spanish cities.

    PubMed

    Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio; Diaz, Julio

    2014-06-09

    Periods of high temperature have been widely found to be associated with excess mortality but with variable relationships in different cities. How these specifics depend on climatic and other characteristics of cities is not well understood. We assess summer temperature-mortality relationships using data from 50 provincial capitals in Spain, during the period 1990-2004. Poisson time series regression analyses were applied to daily temperature and mortality data, adjusting for potential confounding seasonal factors. Associations of heat with mortality were summarised for each city as the risk increments at the 99th compared to the 90th percentiles of the whole-year temperature distributions, as predicted from spline curves. Risk increments averaged 14.6% between both centiles, or 3.3% per 1 Celsius degree. Although risk increments varied substantially between cities, the range of temperature from the 90th to 99th centile was the only characteristic independently significantly associated with them. The heat increment did not depend on other city climatic, socio-demographic and geographic determinants. Cities in Spain are partially adapted to high mean summer temperatures but not to high variation in summer temperatures.

  20. Estimating future temperature maxima in lakes across the United States using a surrogate modeling approach

    PubMed Central

    Zi, Tan; Schmidt, Michelle; Johnson, Thomas E.; Nover, Daniel M.; Clark, Christopher M.

    2017-01-01

    A warming climate increases thermal inputs to lakes with potential implications for water quality and aquatic ecosystems. In a previous study, we used a dynamic water column temperature and mixing simulation model to simulate chronic (7-day average) maximum temperatures under a range of potential future climate projections at selected sites representative of different U.S. regions. Here, to extend results to lakes where dynamic models have not been developed, we apply a novel machine learning approach that uses Gaussian Process regression to describe the model response surface as a function of simplified lake characteristics (depth, surface area, water clarity) and climate forcing (winter and summer air temperatures and potential evapotranspiration). We use this approach to extrapolate predictions from the simulation model to the statistical sample of U.S. lakes in the National Lakes Assessment (NLA) database. Results provide a national-scale scoping assessment of the potential thermal risk to lake water quality and ecosystems across the U.S. We suggest a small fraction of lakes will experience less risk of summer thermal stress events due to changes in stratification and mixing dynamics, but most will experience increases. The percentage of lakes in the NLA with simulated 7-day average maximum water temperatures in excess of 30°C is projected to increase from less than 2% to approximately 22% by the end of the 21st century, which could significantly reduce the number of lakes that can support cold water fisheries. Site-specific analysis of the full range of factors that influence thermal profiles in individual lakes is needed to develop appropriate adaptation strategies. PMID:29121058

  1. Prediction of brain tissue temperature using near-infrared spectroscopy

    PubMed Central

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-01-01

    Abstract. Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of R2=0.713±0.157 (animal dataset) and R2=0.798±0.087 (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of 0.436±0.283°C (animal dataset) and 0.162±0.149°C (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications. PMID:28630878

  2. Development of an inverse heat conduction model and its application to determination of heat transfer coefficient during casting solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu

    2014-07-01

    The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.

  3. Bose–Einstein condensation temperature of finite systems

    NASA Astrophysics Data System (ADS)

    Xie, Mi

    2018-05-01

    In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.

  4. Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve; ...

    2017-10-18

    Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less

  5. End point of a first-order phase transition in many-flavor lattice QCD at finite temperature and density.

    PubMed

    Ejiri, Shinji; Yamada, Norikazu

    2013-04-26

    Towards the feasibility study of the electroweak baryogenesis in realistic technicolor scenario, we investigate the phase structure of (2+N(f))-flavor QCD, where the mass of two flavors is fixed to a small value and the others are heavy. For the baryogenesis, an appearance of a first-order phase transition at finite temperature is a necessary condition. Using a set of configurations of two-flavor lattice QCD and applying the reweighting method, the effective potential defined by the probability distribution function of the plaquette is calculated in the presence of additional many heavy flavors. Through the shape of the effective potential, we determine the critical mass of heavy flavors separating the first-order and crossover regions and find it to become larger with N(f). We moreover study the critical line at finite density and the first-order region is found to become wider as increasing the chemical potential. Possible applications to real (2+1)-flavor QCD are discussed.

  6. Using thermal phase curves to probe the climate of potentially habitable planets

    NASA Astrophysics Data System (ADS)

    Kataria, Tiffany

    2018-01-01

    Thermal phase-curve observations probe the variation in emitted flux of a planet with phase, or longitude. When conducted spectroscopically, they allow us to probe the two-dimensional temperature structure in both longitude and altitude, which directly relate to the planet’s circulation and chemistry. In the case of small, potentially habitable exoplanets, spectroscopic phase-curve observations can provide us with direct evidence that the planet is capable of sustaining liquid water from measurements of its brightness temperature, and allow us to distinguish between a ‘airless’ body and one that has an appreciable atmosphere. In this talk I will summarize efforts to characterize exoplanets smaller than Neptune with phase-curve observations and emission spectroscopy using the Spitzer and Hubble Space Telescopes. I will then discuss how these ‘lessons learned’ can be applied to future efforts to characterize potentially habitable planets with phase-curve observations using JWST and future facilities such as the Origins Space Telescope (OST).

  7. Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve

    Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less

  8. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    PubMed

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  9. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  10. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2012-01-01

    Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′−13Cα CSA/dipolar and 13C′/13C′−15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone. PMID:21416162

  11. Acute central effects of alarin on the regulation on energy homeostasis.

    PubMed

    Mikó, Alexandra; Füredi, Nóra; Tenk, Judit; Rostás, Ildikó; Soós, Szilvia; Solymár, Margit; Székely, Miklós; Balaskó, Márta; Brunner, Susanne M; Kofler, Barbara; Pétervári, Erika

    2017-08-01

    Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15μg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Report on FY15 Two-Bar Thermal Ratcheting Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Jetter, Robert I; Baird, Seth T

    2015-06-22

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits andmore » creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from ASME Code committees that the proposed EPP methodology should also apply to other Subsection NH materials throughout their allowed temperature range. To support these objectives, two suites of tests have been accomplished during this reporting period. One suite addresses the issue of the response of Alloy 617 at a lower temperature with tests in range of 500 800oC and a few at 350 650°C. The other suite addresses the response of SS316H up to its current maximum allowed temperature of 1500°F (815°C) In the two-bar test methodology, the two bars can be viewed as specimens taken out of a tubular component across the wall thickness representing the inner wall element and the outer wall element respectively. The two bars are alternately heated and cooled under sustained axial loading to generate ratcheting. A sustained hold time is introduced at the hot extreme of the cycle to capture the accelerated ratcheting and strain accumulation due to creep. Since the boundary conditions are a combination of strain control and load control it is necessary to use two coupled servo-controlled testing machines to achieve the key features of the two-bar representation of actual component behavior. Two-bar thermal ratcheting test results with combinations of applied mean stresses, transient temperature difference and heating and cooling rates were recorded. Tests performed at heating and cooling rates of 30°C/min are comparable to a strain rate of 10 ⁻⁵/sec. At high mean stresses in tension the direction of ratcheting was in-phase with the load, e.g. tensile strain ratcheting under high tensile loading; however, at lower loads, strain ratcheting in compression was observed under net tensile mean stresses. The strain accumulation was proportional to the applied thermal load. However, there was a narrow range of applied load in which the high applied thermal loading did not result in significant strain accumulation. Unfortunately, when the proposed EPP strain limit evaluation rules were applied to the loading history for the two-bar configuration, the predicted narrow range of low strain accumulation did not coincide with the experimental data. However, by the use of inelastic analysis in conjunction with an analytic experiment it was possible to show that the EPP strain limit code case rules could be applied to high temperature structures where the stress and temperature is not uniform throughout which is the general case. Interestingly, the suite of tests on Alloy 617 at the lower temperature range of 500°C to 800oC showed good agreement with the proposed EPP strain limit rules with a much wider band of applied load that exhibited minimal ratcheting. The four tests conducted at the lower temperature range of 350°C to 650°C showed no ratcheting. The suite of tests on SS316H at a temperature range of 515°C to 815°C resembled the results from the tests on Alloy 617 at 650°C to 950°C. Both exhibited a narrow band of applied load wher...« less

  13. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    DOE PAGES

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less

  14. Biofuel cell based on direct bioelectrocatalysis.

    PubMed

    Ramanavicius, Arunas; Kausaite, Asta; Ramanaviciene, Almira

    2005-04-15

    A biofuel cell, consisting of two 3mm diameter carbon rod electrodes and operating at ambient temperature in aqueous solution, pH 6, is described. Biofuel cell based on enzymes able to exchange directly electrons with carbon electrodes was constructed and characterized. Anode of the biofuel cell was based on immobilized Quino-hemoprotein alcohol dehydrogenase from Gluconobacter sp. 33 (QH-ADH), cathode on co-immobilized glucose oxidase from Aspergilus niger (GO(x)) and microperoxidase 8 from the horse heart (MP-8) acting in the consecutive mode. Two enzymes GO(x) and MP-8 applied in the design of biofuel cell cathode were acting in consecutive mode and by hydrogen peroxide oxidized MP-8 was directly accepting electrons from carbon rod electrode. If ethanol was applied as an energy source the maximal open circuit potential of the biofuel cell was -125 mV. If glucose was applied as energy source the open circuit potential of the cell was +145 mV. The maximal open circuit potential (270 mV) was achieved in the presence of extent concentration (over 2 mM) of both substrates (ethanol and glucose). Operational half-life period (tau(1/2)) of the biofuel cell was found to be 2.5 days.

  15. Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad

    2017-05-01

    The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30 °C, applied potential at 15 V, and KCl electrolyte concentration at 0.01 M. At such electrolysis condition, the energy efficiency was calculated to be 0,009 M-NaOH/Wh, or was equal to operating cost at 0.04/kg-NaOH.

  16. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de; Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in moremore » efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.« less

  18. A kinetic flux vector splitting scheme for shallow water equations incorporating variable bottom topography and horizontal temperature gradients.

    PubMed

    Saleem, M Rehan; Ashraf, Waqas; Zia, Saqib; Ali, Ishtiaq; Qamar, Shamsul

    2018-01-01

    This paper is concerned with the derivation of a well-balanced kinetic scheme to approximate a shallow flow model incorporating non-flat bottom topography and horizontal temperature gradients. The considered model equations, also called as Ripa system, are the non-homogeneous shallow water equations considering temperature gradients and non-uniform bottom topography. Due to the presence of temperature gradient terms, the steady state at rest is of primary interest from the physical point of view. However, capturing of this steady state is a challenging task for the applied numerical methods. The proposed well-balanced kinetic flux vector splitting (KFVS) scheme is non-oscillatory and second order accurate. The second order accuracy of the scheme is obtained by considering a MUSCL-type initial reconstruction and Runge-Kutta time stepping method. The scheme is applied to solve the model equations in one and two space dimensions. Several numerical case studies are carried out to validate the proposed numerical algorithm. The numerical results obtained are compared with those of staggered central NT scheme. The results obtained are also in good agreement with the recently published results in the literature, verifying the potential, efficiency, accuracy and robustness of the suggested numerical scheme.

  19. A kinetic flux vector splitting scheme for shallow water equations incorporating variable bottom topography and horizontal temperature gradients

    PubMed Central

    2018-01-01

    This paper is concerned with the derivation of a well-balanced kinetic scheme to approximate a shallow flow model incorporating non-flat bottom topography and horizontal temperature gradients. The considered model equations, also called as Ripa system, are the non-homogeneous shallow water equations considering temperature gradients and non-uniform bottom topography. Due to the presence of temperature gradient terms, the steady state at rest is of primary interest from the physical point of view. However, capturing of this steady state is a challenging task for the applied numerical methods. The proposed well-balanced kinetic flux vector splitting (KFVS) scheme is non-oscillatory and second order accurate. The second order accuracy of the scheme is obtained by considering a MUSCL-type initial reconstruction and Runge-Kutta time stepping method. The scheme is applied to solve the model equations in one and two space dimensions. Several numerical case studies are carried out to validate the proposed numerical algorithm. The numerical results obtained are compared with those of staggered central NT scheme. The results obtained are also in good agreement with the recently published results in the literature, verifying the potential, efficiency, accuracy and robustness of the suggested numerical scheme. PMID:29851978

  20. Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise.

    PubMed

    Ribeiro, Mauricio S; Nobre, Fernando D

    2016-08-01

    A recent proposal of an effective temperature θ, conjugated to a generalized entropy s_{q}, typical of nonextensive statistical mechanics, has led to a consistent thermodynamic framework in the case q=2. The proposal was explored for repulsively interacting vortices, currently used for modeling type-II superconductors. In these systems, the variable θ presents values much higher than those of typical room temperatures T, so that the thermal noise can be neglected (T/θ≃0). The whole procedure was developed for an equilibrium state obtained after a sufficiently long-time evolution, associated with a nonlinear Fokker-Planck equation and approached due to a confining external harmonic potential, ϕ(x)=αx^{2}/2 (α>0). Herein, the thermodynamic framework is extended to a quite general confining potential, namely ϕ(x)=α|x|^{z}/z (z>1). It is shown that the main results of the previous analyses hold for any z>1: (i) The definition of the effective temperature θ conjugated to the entropy s_{2}. (ii) The construction of a Carnot cycle, whose efficiency is shown to be η=1-(θ_{2}/θ_{1}), where θ_{1} and θ_{2} are the effective temperatures associated with two isothermal transformations, with θ_{1}>θ_{2}. The special character of the Carnot cycle is indicated by analyzing another cycle that presents an efficiency depending on z. (iii) Applying Legendre transformations for a distinct pair of variables, different thermodynamic potentials are obtained, and furthermore, Maxwell relations and response functions are derived. The present approach shows a consistent thermodynamic framework, suggesting that these results should hold for a general confining potential ϕ(x), increasing the possibility of experimental verifications.

  1. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    NASA Astrophysics Data System (ADS)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  2. Urea adsorption by activated carbon prepared from palm kernel shell

    NASA Astrophysics Data System (ADS)

    Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee

    2017-07-01

    Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.

  3. Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy

    PubMed Central

    2011-01-01

    Background The continuing spread of the Asian tiger mosquito Aedes albopictus in Europe is of increasing public health concern due to the potential risk of new outbreaks of exotic vector-borne diseases that this species can transmit as competent vector. We predicted the most favorable areas for a short term invasion of Ae. albopictus in north-eastern Italy using reconstructed daily satellite data time series (MODIS Land Surface Temperature maps, LST). We reconstructed more than 11,000 daily MODIS LST maps for the period 2001-09 (i.e. performed spatial and temporal gap-filling) in an Open Source GIS framework. We aggregated these LST maps over time and identified the potential distribution areas of Ae. albopictus by adapting published temperature threshold values using three variables as predictors (0°C for mean January temperatures, 11°C for annual mean temperatures and 1350 growing degree days filtered for areas with autumnal mean temperatures > 11°C). The resulting maps were integrated into the final potential distribution map and this was compared with the known current distribution of Ae. albopictus in north-eastern Italy. Results LST maps show the microclimatic characteristics peculiar to complex terrains, which would not be visible in maps commonly derived from interpolated meteorological station data. The patterns of the three indicator variables partially differ from each other, while winter temperature is the determining limiting factor for the distribution of Ae. albopictus. All three variables show a similar spatial pattern with some local differences, in particular in the northern part of the study area (upper Adige valley). Conclusions Reconstructed daily land surface temperature data from satellites can be used to predict areas of short term invasion of the tiger mosquito with sufficient accuracy (200 m pixel resolution size). Furthermore, they may be applied to other species of arthropod of medical interest for which temperature is a relevant limiting factor. The results indicate that, during the next few years, the tiger mosquito will probably spread toward northern latitudes and higher altitudes in north-eastern Italy, which will considerably expand the range of the current distribution of this species. PMID:21812983

  4. Lithosphere temperature model and resource assessment for deep geothermal exploration in Hungary

    NASA Astrophysics Data System (ADS)

    Bekesi, Eszter; van Wees, Jan-Diederik; Vrijlandt, Mark; Lenkey, Laszlo; Horvath, Ferenc

    2017-04-01

    The demand for deep geothermal energy has increased considerably over the past years. To reveal potential areas for geothermal exploration, it is crucial to have an insight into the subsurface temperature distribution. Hungary is one of the most suitable countries in Europe for geothermal development, as a result of Early and Middle Miocene extension and subsequent thinning of the lithosphere. Hereby we present the results of a new thermal model of Hungary extending from the surface down to the lithosphere-astenosphere boundary (LAB). Subsurface temperatures were calculated through a regular 3D grid with a horizontal resolution of 2.5 km, a vertical resolution of 200 m for the uppermost 7 km, and 3 km down to the depth of the LAB The model solves the heat equation in steady-state, assuming conduction as the main heat transfer mechanism. At the base, it adopts a constant basal temperature or heat flow condition. For the calibration of the model, more than 5000 temperature measurements were collected from the Geothermal Database of Hungary. The model is built up by five sedimentary layers, upper crust, lower crust, and lithospheric mantle, where each layer has its own thermal properties. The prior thermal properties and basal condition of the model is updated through the ensemble smoother with multiple data assimilation technique. The conductive model shows misfits with the observed temperatures, which cannot be explained by neglected transient effects related to lithosphere extension. These anomalies are explained mostly by groundwater flow in Mesozoic carbonates and other porous sedimentary rocks. To account for the effect of heat convection, we use a pseudo-conductive approach by adjusting the thermal conductivity of the layers where fluid flow may occur. After constructing the subsurface temperature model of Hungary, the resource base for EGS (Enhanced Geothermal Systems) is quantified. To this end, we applied a cash-flow model to translate the geological potential into economical potential for different scenarios in Hungary. The calculations were made for each grid cell of the model. Results of the temperature modeling together with the economical resource assessment provide an indication on the potential sites for future EGS in Hungary.

  5. Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method.

    PubMed

    Seebacher, Frank; Shine, Richard

    2004-01-01

    Given the importance of heat in most biological processes, studies on thermoregulation have played a major role in understanding the ecology of ectothermic vertebrates. It is, however, difficult to assess whether body temperature is actually regulated, and several techniques have been developed that allow an objective assessment of thermoregulation. Almost all recent studies on reptiles follow a single methodology that, when used correctly, facilitates comparisons between species, climates, and so on. However, the use of operative temperatures in this methodology assumes zero heat capacity of the study animals and is, therefore, appropriate for small animals only. Operative temperatures represent potentially available body temperatures accurately for small animals but can substantially overestimate the ranges of body temperature available to larger animals whose slower rates of heating and cooling mean that they cannot reach equilibrium if they encounter operative temperatures that change rapidly through either space or time. This error may lead to serious misinterpretations of field data. We derive correction factors specific for body mass and rate of movement that can be used to estimate body temperature null distributions of larger reptiles, thereby overcoming this methodological problem.

  6. Development of an effective and potentially scalable weather generator for temperature and growing degree days

    NASA Astrophysics Data System (ADS)

    Rahmani, Elham; Friederichs, Petra; Keller, Jan; Hense, Andreas

    2016-05-01

    The main purpose of this study is to develop an easy-to-use weather generator (WG) for the downscaling of gridded data to point measurements at regional scale. The WG is applied to daily averaged temperatures and annual growing degree days (GDD) of wheat. This particular choice of variables is motivated by future investigations on temperature impacts as the most important climate variable for wheat cultivation under irrigation in Iran. The proposed statistical downscaling relates large-scale ERA-40 reanalysis to local daily temperature and annual GDD. Long-term local observations in Iran are used at 16 synoptic stations from 1961 to 2001, which is the common period with ERA-40 data. We perform downscaling using two approaches: the first is a linear regression model that uses the ERA-40 fingerprints (FP) defined by the squared correlation with local variability, and the second employs a linear multiple regression (MR) analysis to relate the large-scale information at the neighboring grid points to the station data. Extending the usual downscaling, we implement a WG providing uncertainty information and realizations of the local temperatures and GDD by adding a Gaussian random noise. ERA-40 reanalysis well represents the local daily temperature as well as the annual GDD variability. For 2-m temperature, the FPs are more localized during the warm compared with the cold season. While MR is slightly superior for daily temperature time series, FP seems to perform best for annual GDD. We further assess the quality of the WGs applying probabilistic verification scores like the continuous ranked probability score (CRPS) and the respective skill score. They clearly demonstrate the superiority of WGs compared with a deterministic downscaling.

  7. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    NASA Astrophysics Data System (ADS)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  8. Far-infrared and 3D imaging for doneness assessment in chicken breast

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Ibarra, Juan G.

    2001-03-01

    Sensor fusion of infrared imaging and range imaging was proposed to estimate internal temperature on just cooked chicken breasts. An infrared camera operating at 8-12 microns registered surface temperature of cooked meat samples, while a single line structured light system located the thickest region of the meat target. In this region of interest, a combined time series/neural network method is applied to correlate the internal and external temperatures during the cool-down process. Experimental verification in a pilot plant oven is presented. To ensure food safety, a mandatory regulation requires all poultry processors in the U.S.A to verify that all ready-to-eat products reach a minimum endpoint temperature (71¦C for chicken breast), but no current assay can do a non-invasively inspection of all the samples. The proposed system has the potential for on-line inspection of ready-to-eat meat for food quality and safety.

  9. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Xiao, Wen-Chang; Ding, Xun-Lei; Ma, Yan-Ping; Xue, Wei; He, Sheng-Gui

    2008-12-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  10. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  11. Magnetic and magnetocaloric properties of La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherif, R., E-mail: cherifrim18@yahoo.fr; Hlil, E.K.; Ellouze, M.

    2014-07-01

    The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (x=0, 0.1, 0.2 and 0.3) samples have been elaborated by the solid-state reaction method. X-ray powder diffraction shows that all the samples crystallize in a rhombohedric phase with R3{sup ¯}c space group. The variation of magnetization as a function of temperature and applied magnetic field was carried out. The samples for x=0 and 0.1 exhibit a FM–PM transition at the Curie temperature T{sub C}, however, for x=0.2 and 0.3 exhibit an AFM–PM one at the Neel temperature T{sub N}, when the temperature increases. A magneto-caloric effect has been calculated in terms ofmore » isothermal magnetic entropy change. A large magneto-caloric effect has been observed, the maximum entropy change, |ΔS{sub M}{sup max}|, reaches the highest value of 3.28 J/kgK under a magnetic field change of 5 T with an RCP value of 220 J/kg for La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}MnO{sub 3} composition, which will be an interesting compound for application materials working as magnetic refrigerants near room temperature. - Graphical abstract: Magnetic entropy change versus temperature and applied magnetic field for x=0.1 (a) and RCP versus applied magnetic field for x=0, 0.1 (b). - Highlights: • The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) polycrystalline samples were prepared by the solid state reaction method. • Crystalline and magnetic structures were investigated using DRX and magnetization measurements. • The magnetocaloric (MC) effect was estimated versus magnetic field and temperatures. • Compounds with x=0, 0.1 exhibit great potential for magnetic refrigeration at room temperature.« less

  12. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    PubMed Central

    Zhang, Pengfei; Liu, Le; He, Yonghong; Zhou, Yanfei; Ji, Yanhong; Ma, Hui

    2015-01-01

    In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR) thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques. PMID:25871718

  13. On the sensitivity of annual streamflow to air temperature

    USGS Publications Warehouse

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  14. Study of the high-pressure helium phase diagram using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Koci, L.; Ahuja, R.; Belonoshko, A. B.; Johansson, B.

    2007-01-01

    The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range.

  15. Insight into structural phase transitions from the decoupled anharmonic mode approximation

    NASA Astrophysics Data System (ADS)

    Adams, Donat J.; Passerone, Daniele

    2016-08-01

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  16. Insight into structural phase transitions from the decoupled anharmonic mode approximation.

    PubMed

    Adams, Donat J; Passerone, Daniele

    2016-08-03

    We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T  =  0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.

  17. Freestanding, Fiber-Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring.

    PubMed

    Trung, Tran Quang; Le, Hoang Sinh; Dang, Thi My Linh; Ju, Sanghyun; Park, Sang Yoon; Lee, Nae-Eung

    2018-06-01

    Fiber-based sensors integrated on textiles or clothing systems are required for the next generation of wearable electronic platforms. Fiber-based physical sensors are developed, but the development of fiber-based temperature sensors is still limited. Herein, a new approach to develop wearable temperature sensors that use freestanding single reduction graphene oxide (rGO) fiber is proposed. A freestanding and wearable temperature-responsive rGO fiber with tunable thermal index is obtained using simple wet spinning and a controlled graphene oxide reduction time. The freestanding fiber-based temperature sensor shows high responsivity, fast response time (7 s), and good recovery time (20 s) to temperature. It also maintains its response under an applied mechanical deformation. The fiber device fabricated by means of a simple process is easily integrated into fabric such as socks or undershirts and can be worn by a person to monitor the temperature of the environment and skin temperature without interference during movement and various activities. These results demonstrate that the freestanding fiber-based temperature sensor has great potential for fiber-based wearable electronic platforms. It is also promising for applications in healthcare and biomedical monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul

    2016-07-01

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  19. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cellmore » circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.« less

  20. CCSD(T) potential energy and induced dipole surfaces for N2–H2(D2): retrieval of the collision-induced absorption integrated intensities in the regions of the fundamental and first overtone vibrational transitions.

    PubMed

    Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey

    2012-09-21

    The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.

  1. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2

    PubMed Central

    Flatten, Lucas C.; Coles, David M.; He, Zhengyu; Lidzey, David G.; Taylor, Robert A.; Warner, Jamie H.; Smith, Jason M.

    2017-01-01

    Exciton-polaritons are quasiparticles consisting of a linear superposition of photonic and excitonic states, offering potential for nonlinear optical devices. The excitonic component of the polariton provides a finite Coulomb scattering cross section, such that the different types of exciton found in organic materials (Frenkel) and inorganic materials (Wannier-Mott) produce polaritons with different interparticle interaction strength. A hybrid polariton state with distinct excitons provides a potential technological route towards in situ control of nonlinear behaviour. Here we demonstrate a device in which hybrid polaritons are displayed at ambient temperatures, the excitonic component of which is part Frenkel and part Wannier-Mott, and in which the dominant exciton type can be switched with an applied voltage. The device consists of an open microcavity containing both organic dye and a monolayer of the transition metal dichalcogenide WS2. Our findings offer a perspective for electrically controlled nonlinear polariton devices at room temperature. PMID:28094281

  2. Nonlinear responses of chiral fluids from kinetic theory

    NASA Astrophysics Data System (ADS)

    Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun

    2018-01-01

    The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.

  3. Flush-mounted probe diagnostics for argon glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges.more » These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.« less

  4. A Methodology for Calculating EGS Electricity Generation Potential Based on the Gringarten Model for Heat Extraction From Fractured Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad

    Existing methodologies for estimating the electricity generation potential of Enhanced Geothermal Systems (EGS) assume thermal recovery factors of 5% or less, resulting in relatively low volumetric electricity generation potentials for EGS reservoirs. This study proposes and develops a methodology for calculating EGS electricity generation potential based on the Gringarten conceptual model and analytical solution for heat extraction from fractured rock. The electricity generation potential of a cubic kilometer of rock as a function of temperature is calculated assuming limits on the allowed produced water temperature decline and reservoir lifetime based on surface power plant constraints. The resulting estimates of EGSmore » electricity generation potential can be one to nearly two-orders of magnitude larger than those from existing methodologies. The flow per unit fracture surface area from the Gringarten solution is found to be a key term in describing the conceptual reservoir behavior. The methodology can be applied to aid in the design of EGS reservoirs by giving minimum reservoir volume, fracture spacing, number of fractures, and flow requirements for a target reservoir power output. Limitations of the idealized model compared to actual reservoir performance and the implications on reservoir design are discussed.« less

  5. Angle-resolved effective potentials for disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2014-12-01

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  6. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    PubMed Central

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Dear, Keith; Liu, Qiyong; Lin, Shao; Lin, Aihua; Huang, Cunrui

    2017-01-01

    Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD interventions. PMID:29135955

  7. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China.

    PubMed

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Xiang, Hao; Dear, Keith; Liu, Qiyong; Lin, Shao; Lawrence, Wayne R; Lin, Aihua; Huang, Cunrui

    2017-11-14

    Background : The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods : We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010-2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results : In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0-21 days with a significant AF of 31.36% (95% eCI: 14.79-38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions : The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD interventions.

  8. Electro deposition of cuprous oxide for thin film solar cell applications

    NASA Astrophysics Data System (ADS)

    Shahrestani, Seyed Mohammad

    p and n type copper oxide semiconductor layers were fabricated by electrochemistry using new approaches for photovoltaic applications. Thin films were electroplated by cathodic polarization on a copper foil or indium tin oxide (ITO) substrates. The optimum deposition conditions (composition, pH and temperature of the electrolyte and applied potential) of the layers as thin films have been identified; in particular the conditions that allow getting the n-type layers have been well identified for the first time. The configuration of a photo - electrochemical cell was used to characterize the spectral response of the layers. It was shown that the p type layers exhibit a photocurrent in the cathode potential region and n layers exhibit photo current in the anode potential region. Measurements of electrical resistivity of electro chemically deposited layers of p and n type Cu2O, showed that the resistivity of p-type Cu2O varies from 3.2 x 105 to 2.0 x 108 Ocm. These values depend the electrodepositing conditions such as the pH of the solution, the deposition potential and temperature. The influence of several plating parameters of the p type layers of Cu2O, such as applied potential, pH and temperature of the bath on the chemical composition, degree of crystallinity, grain size and orientation parameters of the sample was systematically studied using X-ray diffraction and scanning electron microscopy. Depending of the electro-deposition potential, two different surface morphologies with various preferential crystal orientations were obtained for the temperatures of the electro-deposition of 30 °C and pH 9. For the same temperature, the layers of p type Cu2O of highly crystalline p type are obtained at pH 12, indicating that the crystallinity depends on the pH of the bath. Also, it has been shown that the morphology of Cu2O layers was changed by varying the potential and the duration of deposition, as well as the temperature of the solution. The conditions for the electro-deposition of Cu2O n-type were identified consistently for the first time. The electro-deposition electrolyte is based 0.01M acetate copper and 0.1 M sodium acetate: it has a pH between 6.3 and 4, a potential of from 0 to -0.25 V vs. Ag / AgCl and a temperature of 60oC. The optimum annealing temperature of the n-type Cu2O layers is between 120-150oC for the annealing time of 30 to 120 minutes. Resistivity of the n-type films varies between 5 x 103 and 5 x 104 at pH 4 to pH 6.4. We have shown for the first time that bubbling nitrogen gas in the electroplating cell improves significantly the spectral response of the electro-deposited n-type thin film. A two steps electro-deposition process was implemented to make the p-n homojunction cuprous oxide. Indium tin oxide (ITO) was used as a transparent conductive oxide substrate. A p-Cu2O was electrodeposited on ITO. After heat treatment a thin film layer of n-Cu 2O was electrodeposited on top of previous layer. The performance of a p-n homojunction photovoltaic solar cell of Cu2O was determined. The short-circuit current and the open circuit voltage were respectively determined to be as 0.35 volts and 235 muA/cm2. The fill factor (FF) and conversion efficiency of light into electricity were respectively measured to be 0.305 and 0.082%.

  9. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  10. Flux-induced Nernst effect in low-dimensional superconductors

    NASA Astrophysics Data System (ADS)

    Berger, Jorge

    2017-02-01

    A method is available that enables consistent study of the stochastic behavior of a system that obeys purely diffusive evolution equations. This method has been applied to a superconducting loop with nonuniform temperature, with average temperature close to Tc. It is found that a flux-dependent average potential difference arises along the loop, proportional to the temperature gradient and most pronounced in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 0.3Φ0, average temperatures slightly below the critical temperature, thermal coherence length of the order of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film.

  11. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel.

    PubMed

    Chen, Daquan; Yu, Hongyun; Mu, Hongjie; Wei, Junhua; Song, Zhenkun; Shi, Hong; Liang, Rongcai; Sun, Kaoxiang; Liu, Wanhui

    2013-04-15

    In this study, a novel liposome-loaded microbubble gel based on N-cholesteryl hemisuccinate-O-sulfate chitosan (NCHOSC) was designed. The structure of the NCHOSC was characterized by FTIR and (1)H NMR. The liposomal microbubble gel based on NCHOSC with a high encapsulation efficiency of curcumin was formed and improved the solubility of curcumin. The diameter of most liposomal microbubble was about 950 nm. The temperature-sensitive CS/GP gel could be formulated at room temperature and would form a gel at body temperature. Simultaneously, the ultrasound-sensitive induced release of curcumin was 85% applying ultrasound. The results of cytotoxicity assay indicated that encapsulated curcumin in Cur-LM or Cur-LM-G was less toxic. The anti-tumor efficacy in vivo suggested that Cur-LM-G by ultrasound suppressed tumor growth most efficiently. These findings have shed some light on the potential NCHOSC material used to liposome-loaded microbubble gel for temperature and ultrasound dual-sensitive drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Investigation on phase transitions of 1-decylammonium hydrochloride as the potential thermal energy storage material

    NASA Astrophysics Data System (ADS)

    Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu

    2011-02-01

    1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.

  13. The Retarding Potential Analyzer for Dynamics Explorer-B

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Heelis, R. A.; Power, R. A.; Lippincott, C. R.; Zuccaro, D. R.; Holt, B. J.; Harmon, L. H.; Sanatani, S.

    1981-01-01

    The Retarding Potential Analyzer for Dynamics Explorer B measures the bulk ion velocity in the direction of the spacecraft motion, the constituent ion concentrations and the ion temperature along the satellite path. These parameters are derived from a least squares fit to the ion number flux versus energy curve obtained by sweeping or stepping the voltage applied to the internal retarding grids of the RPA. In addition, the spectral characteristics of irregularities in the total ion concentration are determined by high time resolution measurements and by use of a comb filter. These data are obtained from a separate wide aperture-sensor.

  14. Optimal cure cycle design of a resin-fiber composite laminate

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.; Hou, Tan H.; Sheen, Jeen S.

    1987-01-01

    Fibers reinforced composites are used in many applications. The composite parts and structures are often manufactured by curing the prepreg or unmolded material. The magnitudes and durations of the cure temperature and the cure pressure applied during the cure process have significant consequences on the performance of the finished product. The goal of this study is to exploit the potential of applying the optimization technique to the cure cycle design. The press molding process of a polyester is used as an example. Various optimization formulations for the cure cycle design are investigated. Recommendations are given for further research in computerizing the cure cycle design.

  15. Effects of clinical infrared laser on superficial radial nerve conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greathouse, D.G.; Currier, D.P.; Gilmore, R.L.

    The purposes of this study were to demonstrate the effects of infrared laser radiation on the sensory nerve conduction of a specified peripheral nerve in man and determine temperature changes in the tissue surrounding the treated nerve. Twenty healthy adults were divided into three groups: control (n = 5); experimental (n = 10), infrared laser radiation at 20 sec/cm2; and experimental (n = 5), infrared laser radiation treatment at 120 sec/cm2. Antidromic sensory nerve conduction studies were performed on the superficial radial nerve of each subject's right forearm. The infrared laser radiation was applied at a fixed intensity for fivemore » 1-cm2 segments. Latency, amplitude, and temperature measurements were recorded pretest; posttest; and posttest intervals of 1, 3, 5, 10, and 15 minutes. An analysis of variance with repeated measures was used to examine the data. No significant change was noted in the distal sensory latency or amplitude of the evoked sensory potential in either experimental or control groups as a result of the applications of the infrared laser radiation treatment. This study demonstrates that infrared laser used at clinically applied intensities does not alter conduction of sensory nerves nor does it elevate the subcutaneous temperature.« less

  16. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    NASA Astrophysics Data System (ADS)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  17. DFT-derived reactive potentials for the simulation of activated processes: the case of CdTe and CdTe:S.

    PubMed

    Hu, Xiao Liang; Ciaglia, Riccardo; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda

    2014-06-19

    We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfaces) at finite temperature. In particular, we also consider cases with low sulfur concentration (CdTe:S). The analysis of DFT and classical molecular dynamics (MD) simulations performed with the same protocol leads to stringent performance tests and to a detailed comparison of the two schemes. Metadynamics techniques are used to empower both Car-Parrinello and classical molecular dynamics for the simulation of activated processes. For the latter, we consider surface reconstruction and sulfur diffusion in the bulk. The same procedures are applied using previously proposed force fields for CdTe and CdTeS materials, thus allowing for a detailed comparison of the various schemes.

  18. Nuclear Power Plant environment`s surveillance by satellite remote sensing and in-situ monitoring data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is a larger thermal plume up to 5-6 km far along Danube Black Sea Canal ,the temperature change is about 1.0 oC.

  19. Extended law of corresponding states for protein solutions

    NASA Astrophysics Data System (ADS)

    Platten, Florian; Valadez-Pérez, Néstor E.; Castañeda-Priego, Ramón; Egelhaaf, Stefan U.

    2015-05-01

    The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.

  20. Extended law of corresponding states for protein solutions.

    PubMed

    Platten, Florian; Valadez-Pérez, Néstor E; Castañeda-Priego, Ramón; Egelhaaf, Stefan U

    2015-05-07

    The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.

  1. A preliminary characterization of applied-field MPD thruster plumes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn

    1991-01-01

    Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.

  2. An optimized resistor pattern for temperature gradient control in microfluidics

    NASA Astrophysics Data System (ADS)

    Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline

    2009-06-01

    In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117-23, Erickson et al 2003 Lab Chip 3 141-9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors.

  3. First-principles study on elastic and superconducting properties of Nb3Sn and Nb3Al under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Gao, Peifeng; Wang, Xingzhe; Zhou, Youhe

    2015-10-01

    The low temperature superconducting materials, such as Nb3Sn and Nb3Al, have similar crystal structures and elastic properties. However, their critical-temperature degradations always show the distinct way under mechanical stresses. In this study, first-principles calculations for the low temperature superconductors based on plane-wave pseudo-potential density functional theory within the generalized gradient approximation are implemented, and the elastic moduli of Nb3Sn and Nb3Al and those superconductivities in the presence of hydrostatic pressure are evaluated. The Debye temperatures are obtained by the bulk moduli and shear moduli of superconducting materials. The MacMillan equation is further used to acquire the critical temperatures of Nb3Sn and Nb3Al under different hydrostatic pressures. It is found that the elastic constants and bulk moduli of the low temperature superconductors are enhanced by the applied hydrostatic pressure, while the critical temperatures usually are decreased with the pressure. Additionally, the decrease of critical-temperature for Nb3Sn is more sensitive to the hydrostatic pressure than the one for Nb3Al. The prediction results show good agreement with the experimental results in the literatures qualitatively.

  4. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.

    PubMed

    Wang, Jianping; Gong, Ming; Guo, Guang-Can; He, Lixin

    2012-11-28

    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single-particle energy levels in the QDs show a strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wavefunctions confined in QDs increase by about 1-5%, whereas the hole wavefunctions decrease by about 30-40% when the temperature increases from 0 to 300 K. The calculated recombination energies of excitons, biexcitons and charged excitons show red shifts with increasing temperature which are in excellent agreement with available experimental data.

  5. Impact of temperature on mortality in Hubei, China: a multi-county time series analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yunquan; Yu, Chuanhua; Bao, Junzhe; Li, Xudong

    2017-03-01

    We examined the impact of extreme temperatures on mortality in 12 counties across Hubei Province, central China, during 2009-2012. Quasi-Poisson generalized linear regression combined with distributed lag non-linear model was first applied to estimate county-specific relationship between temperature and mortality. A multivariable meta-analysis was then used to pool the estimates of county-specific mortality effects of extreme cold temperature (1st percentile) and hot temperature (99th percentile). An inverse J-shaped relationship was observed between temperature and mortality at the provincial level. Heat effect occurred immediately and persisted for 2-3 days, whereas cold effect was 1-2 days delayed and much longer lasting. Higher mortality risks were observed among females, the elderly aged over 75 years, persons dying outside the hospital and those with high education attainment, especially for cold effects. Our data revealed some slight differences in heat- and cold- related mortality effects on urban and rural residents. These findings may have important implications for developing locally-based preventive and intervention strategies to reduce temperature-related mortality, especially for those susceptible subpopulations. Also, urbanization should be considered as a potential influence factor when evaluating temperature-mortality association in future researches.

  6. Calcium Isotopes in Foraminifera Shells: Evaluation for Paleo-temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Revello, C. A.; Bullen, T. D.

    2002-12-01

    The Ca stable isotope ratio of foraminifera shells has been suggested as a potential paleo-temperature proxy and has recently been applied in several studies to reconstruct glacial interglacial fluctuations in seawater temperatures. The major advantage of using Ca isotopes for paleo-temperature reconstruction is the relatively long residence time of Ca in the ocean. Thus, no spatial or temporal change in the Ca isotopic composition of seawater is expected over time scales much shorter than a million years. Moreover, since Ca is a major constituent of carbonate, and an isotopic ratio rather than an element concentration or element-element ratio (e.g. Mg/Ca, Sr/Ca) is measured, the Ca isotope proxy is much less likely to be affected by post depositional diagenetic alteration. However, preliminary results indicate that kinetic effects might largely control the Ca isotope fractionation involved in calcite shell formation. Before this new and exciting proxy can be utilized routinely, a better understanding of the parameters controlling Ca isotope fractionation in carbonate minerals in general and in foraminifera and other carbonate-secreting organisms is required. We have measured the Ca stable isotope ratio of several foraminifera species from core top sediments from two well-studied sites to determine the inter-species and within-species variability in Ca isotopes. We assess the effects of water temperature, calcification rate, and vital effects on the Ca stable isotope ratio of modern foraminifera and evaluate the potential of this proxy for paleo-temperature reconstruction.

  7. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum.

    PubMed

    West, Robert G; Bína, David; Fuciman, Marcel; Kuznetsova, Valentyna; Litvín, Radek; Polívka, Tomáš

    2018-05-01

    We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100 fs) energy transfer channel from the fucoxanthin S 2 state is active and is complemented by the second pathway via the combined S 1 /ICT state. The S 1 /ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5 ps at room temperature and 6.6 ps at 77 K. The overall energy transfer via the S 1 /ICT is faster at 77 K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950 nm and applied at 2 ps after excitation, proved that the S 1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S 1 /ICT-Chl a route is the S 1 part of the S 1 /ICT potential surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities regardless of the water chemical potential. The equilibrium morphology of pyrophyllite crystals is also expected to be dependent on these two environmental variables. Surface defects may impact the surface reactivity. We discuss the thermodynamic stability of a possible Si cation vacancy defect which provides additional hydroxyl group on the surface.

  9. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  10. Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.

    2006-05-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about ?15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less

  11. Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.

    2006-01-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 degC. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL1703.« less

  12. Potential Problems with Ethylene-Vinyl Acetate for Photovoltaic Packaging (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K, M.

    2006-05-01

    Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support electrical isolation, optical coupling, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 C. Temperatures lower thanmore » this can be reached for extended periods of time in some climates. Due to increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.« less

  13. The experimental evaluation and application of high-temperature solid lubricants. Ph.D. Thesis - Case Western Reserve Univ., 1989 Final Report

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1990-01-01

    A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.

  14. Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7

    NASA Astrophysics Data System (ADS)

    Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2016-12-01

    We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.

  15. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  16. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  17. Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios.

    PubMed

    Weinberger, Kate R; Haykin, Leah; Eliot, Melissa N; Schwartz, Joel D; Gasparrini, Antonio; Wellenius, Gregory A

    2017-10-01

    There is an established U-shaped association between daily temperature and mortality. Temperature changes projected through the end of century are expected to lead to higher rates of heat-related mortality but also lower rates of cold-related mortality, such that the net change in temperature-related mortality will depend on location. We quantified the change in heat-, cold-, and temperature-related mortality rates through the end of the century across 10 large US metropolitan areas. We applied location-specific projections of future temperature from over 40 downscaled climate models to exposure-response functions relating daily temperature and mortality in 10 US metropolitan areas to estimate the change in temperature-related mortality rates in 2045-2055 and 2085-2095 compared to 1992-2002, under two greenhouse gas emissions scenarios (RCP 4.5 and 8.5). We further calculated the total number of deaths attributable to temperature in 1997, 2050, and 2090 in each metropolitan area, either assuming constant population or accounting for projected population growth. In each of the 10 metropolitan areas, projected future temperatures were associated with lower rates of cold-related deaths and higher rates of heat-related deaths. Under the higher-emission RCP 8.5 scenario, 8 of the 10 metropolitan areas are projected to experience a net increase in annual temperature-related deaths per million people by 2086-2095, ranging from a net increase of 627 (95% empirical confidence interval [eCI]: 239, 1018) deaths per million in Los Angeles to a net decrease of 59 (95% eCI: -485, 314) deaths per million in Boston. Applying these projected temperature-related mortality rates to projected population size underscores the large public health burden of temperature. Increases in the heat-related death rate are projected to outweigh decreases in the cold-related death rate in 8 out of 10 cities studied under a high emissions scenario. Adhering to a lower greenhouse gas emissions scenario has the potential to substantially reduce future temperature-related mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers

    USGS Publications Warehouse

    Kurylyk, Barret L.; MacQuarrie, Kerry T.B; Voss, Clifford I.

    2014-01-01

    Cold groundwater discharge to streams and rivers can provide critical thermal refuge for threatened salmonids and other aquatic species during warm summer periods. Climate change may influence groundwater temperature and flow rates, which may in turn impact riverine ecosystems. This study evaluates the potential impact of climate change on the timing, magnitude, and temperature of groundwater discharge from small, unconfined aquifers that undergo seasonal freezing and thawing. Seven downscaled climate scenarios for 2046–2065 were utilized to drive surficial water and energy balance models (HELP3 and ForHyM2) to obtain future projections for daily ground surface temperature and groundwater recharge. These future surface conditions were then applied as boundary conditions to drive subsurface simulations of variably saturated groundwater flow and energy transport. The subsurface simulations were performed with the U.S. Geological Survey finite element model SUTRA that was recently modified to include the dynamic freeze-thaw process. The SUTRA simulations indicate a potential rise in the magnitude (up to 34%) and temperature (up to 3.6°C) of groundwater discharge to the adjacent river during the summer months due to projected increases in air temperature and precipitation. The thermal response of groundwater to climate change is shown to be strongly dependent on the aquifer dimensions. Thus, the simulations demonstrate that the thermal sensitivity of aquifers and baseflow-dominated streams to decadal climate change may be more complex than previously thought. Furthermore, the results indicate that the probability of exceeding critical temperature thresholds within groundwater-sourced thermal refugia may significantly increase under the most extreme climate scenarios.

  19. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept

    NASA Astrophysics Data System (ADS)

    Guo, Shaoqiang; Shay, Nikolas; Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2017-12-01

    The fluoride molten salt such as FLiNaK and FLiBe is one of the coolant candidates for the next generation nuclear reactor concepts, for example, the fluoride salt cooled high temperature reactor (FHR). For mitigating corrosion of structural materials in molten fluoride salt, the redox condition of the salts needs to be monitored and controlled. This study investigates the feasibility of applying the Eu3+/Eu2+ couple for redox control. Cyclic voltammetry measurements of the Eu3+/Eu2+ couple were able to obtain the concentrations ratio of Eu3+/Eu2+ in the melt. Additionally, the formal standard potential of Eu3+/Eu2+ was characterized over the FHR's operating temperatures allowing for the application of the Nernst equation to establish a Eu3+/Eu2+ concentration ratio below 0.05 to prevent corrosion of candidate structural materials. A platinum quasi-reference electrode with potential calibrated by potassium reduction potential is shown as reliable for the redox potential measurement. These results show that the Eu3+/Eu2+ couple is a feasible redox buffering agent to control the redox condition in molten fluoride salts.

  20. Detection of topological phase transitions through entropy measurements: The case of germanene

    NASA Astrophysics Data System (ADS)

    Grassano, D.; Pulci, O.; Shubnyi, V. O.; Sharapov, S. G.; Gusynin, V. P.; Kavokin, A. V.; Varlamov, A. A.

    2018-05-01

    We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical potential may be considered as a fingerprint of the transition between topological and trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected to the external electric field is obtained from the first-principles calculation of the density of electronic states and the Maxwell relation. We demonstrate that, in agreement with the recent prediction of the analytical model, strong spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are observed at the values of the applied bias both below and above the critical value that corresponds to the transition between the topological insulator and trivial insulator phases, whereas the giant resonant feature in the vicinity of the zero chemical potential is strongly suppressed at the topological transition point, in the low-temperature limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves as zeros in the entropy per particle dependence on the chemical potential.

  1. The effect of combination of magnetic field and low temperature on doped quantum wells

    NASA Astrophysics Data System (ADS)

    de P. Abreu, E.; Serra, R. M.; Emmel, P. D.

    2001-10-01

    In this work, we study in the optical absorption of lightly doped and compensated GaAs-GaAlAs quantum wells in the presence of applied magnetic field at low temperatures. The maximum values of magnetic field and temperature are chosen to be 10 T and 5 K, respectively. The wave functions and energies of electrons bound to impurities are calculated variationally using hydrogen-like functions. The absorption coefficient is computed through the use of Fermi golden rule and the statistics of this system is made by a self-consistent calculation of the electrostatic potential generated by ionized impurities, while the convergence parameter is the electronic chemical potential. We focus our attention on 1s→2p ± transitions. The results show that the range of frequency absorbed by the system stays unaltered in 1s→2p - transition and changes for the 1s→2p + transition, presenting a shift to higher frequencies as the magnetic field increases. Another important result is the decrease of the absorption coefficient for the lowest part of the frequency range as the temperature decreases, turning the material almost transparent for those frequencies. This kind of information may be useful for further diagnosis of quantum well systems.

  2. Varistor piezotronics: Mechanically tuned conductivity in varistors

    NASA Astrophysics Data System (ADS)

    Baraki, Raschid; Novak, Nikola; Hofstätter, Michael; Supancic, Peter; Rödel, Jürgen; Frömling, Till

    2015-08-01

    The piezoelectric effect of ZnO has been investigated recently with the goal to modify metal/semiconductor Schottky-barriers and p-n-junctions by application of mechanical stress. This research area called "piezotronics" is so far focused on nano structured ZnO wires. At the same time, ZnO varistor materials are already widely utilized and may benefit from a piezotronic approach. In this instance, the grain boundary potential barriers in the ceramic can be tuned by mechanical stress. Polycrystalline varistors exhibit huge changes of resistivity upon applied electrical and mechanical fields and therefore offer descriptive model systems to study the piezotronic effect. If the influence of temperature is contemplated, our current mechanistic understanding can be interrogated and corroborated. In this paper, we present a physical model based on parallel conducting pathways. This affords qualitative and semi-quantitative rationalization of temperature dependent electrical properties. The investigations demonstrate that narrow conductive pathways contribute to the overall current, which becomes increasingly conductive with application of mechanical stress due to lowering of the barrier height. Rising temperature increases the thermionic current through the rest of the material with higher average potential barriers, which are hardly affected by the piezoelectric effect. Hence, relative changes in resistance due to application of stress are higher at low temperature.

  3. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation.

    PubMed

    Liu, Jian; Miller, William H

    2008-09-28

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  4. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer.more » We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.« less

  5. Rheological Characterization of Liquid Polymers Containing Ceramic Nanopowders for Use in Thermoelectric Devices.

    PubMed

    Brostow, Witold; Chang, Jack; Lobland, Haley E Hagg; Perez, Jose M; Shipley, Shannon; Wahrmund, Joshua; White, John B

    2015-09-01

    We have determined shear viscosities as a function of temperature for several liquid high temperature polymers (HTPs) as potential coatings for solid state thermoelectric generators (TEGs) as well as for TE coolers (TECs). To each HTP we added in turn several ceramic nanopowders: alumina, silica and multi-wall carbon nanotubes (MWCNTs). The shear rate applied range is from 0.0002 to 60 s(-1). The results are compared to those for neat HTPs. For a given HTP, we obtain for some nanopowders significant lowering of viscosity, or else a significant increase, or else a small effect only. Possible reasons for such differences in behavior are discussed in terms of the spatial structures of CNTs (random orientations at low temperatures), and the interactions between functional groups on HTPs and atoms in the nanoceramics.

  6. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less

  7. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  8. The conductivity measurements applied for the evaluation of controlled release of chlorhexidine from thermosensitive N-isopropylacrylamide derivative microgels.

    PubMed

    Musiał, Witold; Kokol, Vanja; Voncina, Bojana

    2009-01-01

    The aim of the work was the evaluation of the conductivity changes in aqueous environment, consisting of chlorhexidine, and N-isopropylacrylamide derivative microgel, during increasing the temperature between 25 degrees C and 42 degrees C, as a prerequisite to develop the this microgel for controlled release of chlorhexidine, when alterations in temperature are involved. Conductivity of studied systems underwent specific alterations, when temperature increased. For the system with polymer PNM I the values of conductivity were in the range 104,47 microS/cm - 134,70 microS/ cm, for temperature range 25 degrees C and 42 degrees C. In the case of PNM II - CX system, respective values reached 91,75 microS/cm - 135,95 microS/cm. The lowest conductivity values were observed when PNM III - CX mixture was studied: 96,90 microS/cm and 117,37 microS/cm. When a complex of derivatives of N-isopropylacrylamide with chlorhexidine undergoes thermal alteration, there is a potential to obtain controlled release of chlorhexidine from the polymeric bead in the range between 25 degrees C and 42 degrees C. The affinity of chlorhexidine to the polymer may be assessed in this systems applying the conductivity measurements. The solubility of chlorhexidine in the polymeric systems should be in future evaluated, to determine role of this factor in the conductivity alterations.

  9. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity & temperature profiles

    NASA Astrophysics Data System (ADS)

    Pooja, Pathania, Y.; Ahluwalia, P. K.

    2015-05-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  10. Health monitoring for subway station structure by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Wang, Yuan-Feng; Han, Bing; Zhou, Zhi

    2008-03-01

    Fiber Bragg grating (FBG) sensors hold a great deal of potential for structural monitoring because of their high sensitivity and exceptional stability for long-term monitoring. FBG sensors have been applied to sense a number of physical measurands including strain, temperature, pressure etc. These applications are based on the same principle, i.e. the measurement of Bragg wavelength shift caused by the measurands. The characters and principle of FBG sensors have been introduced in detail. The relative experiment is done. The results show that FBG sensors have high sensitivity and long-term stability. It is feasible to use the sensors to the structural health monitoring (SHM). Cement hydration produces heat, which may provoke important temperature rises in massive structures. Such a high temperature may be a factor for cracking during the cooling phase. Thus, it is important to be able to calculate and control the heat to be produced by a given concrete at the mixture-proportioning stage. Theory of heat of hydration is also introduced in this paper. FBG sensors have been applied successfully in health monitoring for Guomao subway station structure. Compared with results measured by vibrating wire sensors and computed by finite element method, the monitoring results show temperature and strains can be accurately measured by FBG sensors. It is convenient to study on heat of hydration of massive concrete and guide structural design.

  11. Frost risk for overwintering crops in a changing climate

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Weih, Martin

    2013-04-01

    Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.

  12. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Droste, Arjan; Pape, Jan-Jaap; Overeem, Aart; Leijnse, Hidde; Steeneveld, Gert-Jan; Van Delden, Aarnout; Uijlenhoet, Remko

    2017-04-01

    Crowdsourcing as a method to obtain and apply vast datasets is rapidly becoming prominent in meteorology, especially for urban areas where traditional measurements are scarce. Earlier studies showed that smartphone battery temperature readings allow for estimating the daily and city-wide air temperature via a straightforward heat transfer model. This study advances these model estimations by studying spatially and temporally smaller scales. The accuracy of temperature retrievals as a function of the number of battery readings is also studied. An extensive dataset of over 10 million battery temperature readings is available for São Paulo (Brazil), for estimating hourly and daily air temperatures. The air temperature estimates are validated with air temperature measurements from a WMO station, an Urban Fluxnet site, and crowdsourced data from 7 hobby meteorologists' private weather stations. On a daily basis temperature estimates are good, and we show they improve by optimizing model parameters for neighbourhood scales as categorized in Local Climate Zones. Temperature differences between Local Climate Zones can be distinguished from smartphone battery temperatures. When validating the model for hourly temperature estimates, initial results are poor, but are vastly improved by using a diurnally varying parameter function in the heat transfer model rather than one fixed value for the entire day. The obtained results show the potential of large crowdsourced datasets in meteorological studies, and the value of smartphones as a measuring platform when routine observations are lacking.

  13. Microscopic description of a drop on a solid surface.

    PubMed

    Ruckenstein, Eli; Berim, Gersh O

    2010-06-14

    Two approaches recently suggested for the treatment of macro- or nanodrops on smooth or rough, planar or curved, solid surfaces, based on fluid-fluid and fluid-solid interaction potentials are reviewed. The first one employs the minimization of the total potential energy of a drop by assuming that the drop has a well defined profile and a constant liquid density in its entire volume with the exception of the monolayer nearest to the surface where the density has a different value. As a result, a differential equation for the drop profile as well as the necessary boundary conditions are derived which involve the parameters of the interaction potentials and do not contain such macroscopic characteristics as the surface tensions. As a consequence, the macroscopic and microscopic contact angles which the drop profile makes with the surface can be calculated. The macroscopic angle is obtained via the extrapolation of the circular part of the drop profile valid at some distance from the surface up to the solid surface. The microscopic angle is formed at the intersection of the real profile (which is not circular near the surface) with the surface. The theory provides a relation between these two angles. The ranges of the microscopic parameters of the interaction potentials for which (i) the drop can have any height (volume), (ii) the drop can have a restricted height but unrestricted volume, and (iii) a drop cannot be formed on the surface were identified. The theory was also extended to the description of a drop on a rough surface. The second approach is based on a nonlocal density functional theory (DFT), which accounts for the inhomogeneity of the liquid density and temperature effects, features which are missing in the first approach. Although the computational difficulties restrict its application to drops of only several nanometers, the theory can be applied indirectly to macrodrops by calculating the surface tensions and using the Young equation to determine the contact angle. Employing the canonical ensemble version of the DFT, nanodrops on smooth and rough solid surfaces could be investigated and their characteristics, such as the drop profile, contact angle, as well as the fluid density distribution inside the drop can be determined as functions of the parameters of the interaction potentials and temperature. It was found that the contact angle of the drop has a simple (quasi)universal dependence on the energy parameter epsilon(fs) of the fluid-solid interaction potential and temperature. The main feature of this dependence is the existence of a fixed value theta(0) of the contact angle theta which separates the solid substrates (characterized by the energy parameter epsilon(fs) of the fluid-solid interaction potential) into two classes with respect to their temperature dependence. For theta>theta(0) the contact angle monotonously increases and for theta

  14. Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis.

    PubMed

    Mediouni, Mohamed; Schlatterer, Daniel R; Khoury, Amal; Von Bergen, Tobias; Shetty, Sunil H; Arora, Manit; Dhond, Amit; Vaughan, Neil; Volosnikov, Alexander

    2017-11-01

    The drilling bone may potentially cause excessive frictional heat, which can lead to local bone necrosis. This heat generation and local necrosis has been suggested to contribute to the resorption of bone around the placed screws, ending in loss of screw purchase in the bone and inadvertent loosening and/or the bone-implant construct. In vivo studies on this subject have inherent obstacles not the least of which is controlling the variables and real time bone temperature data acquisition. Theoretical models can be generated using computer software and the inclusion of known constants for the mechanical properties of metal and bone. These known Data points for the variables (drill bit and bone) enables finite element analysis of various bone drilling scenarios. An elastic-plastic three-dimensional (3D) acetabular bone mode was developed and finite element model analysis (FEA) was applied to various simulated drilling procedures. The FEA results clearly indicate that the depth of drilling and the drill speed both have a significant effect on the temperature during drilling procedures. The reduction of the feeding speed leads to a reduction in bone temperature. Our data suggests that reducing the feeding speed regardless of RPMs and pressure applied could be a simple useful and effective way to reduce drilling temperatures. This study is the first step in helping any surgeon who drills bone and places screws to better understand the ideal pressure to apply and drill speed to employ and advance rate to avoid osteonecrosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2386-2391, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Ignition of combustible/air mixtures by small radiatively heated surfaces.

    PubMed

    Welzel, M M; Schenk, S; Hau, M; Cammenga, H K; Bothe, H

    2000-02-01

    Optical radiation as an ignition source in potentially explosive atmospheres was investigated for a number of explosive mixtures with respect to the most important case occurring in practice, i.e., absorption of the radiation by a solid target. Iron oxide was used as the target material. The combustibles were selected in compliance with the well-known temperature classes and apparatus groups to allow a useful graduation of the power limits to be applied.

  16. Remote sensing applied to prospecting of thermomineral water in the county of Caldas Novas-Goias

    NASA Technical Reports Server (NTRS)

    Veneziani, P.; Eustaquiodosanjos, C.

    1978-01-01

    LANDSAT imagery of the region were studied allowing the placement of the area of study in the regional geological context. A geological mapping of the 1.60.000 scale was done. A methodology was developed which consisted in a regional temperature mapping using trend surface analysis. Through the correlation of all these data, four different areas were localized with a high potential as thermomineral sources.

  17. PVA:LiClO4: a robust, high Tg polymer electrolyte for adjustable ion gating of 2D materials

    NASA Astrophysics Data System (ADS)

    Kinder, Erich; Fullerton, Susan; CenterLow Energy Systems Technology Team

    2015-03-01

    Polymer electrolytes are an effective way to gate organic semiconductors and nanomaterials, such as nanotubes and 2D materials, by establishing an electrostatic double layer with large capacitance. Widely used solid electrolytes, such as those based on polyethylene oxide, have a glass transition temperature below room temperature. This permits relatively fast ion mobility at T = 23 °C, but requires a constant applied field to maintain a doping profile. Moreover, PEO-based electrolytes cannot withstand a variety of solvents, limiting its use. Here, we demonstrate a polymer electrolyte using polyvinyl alcohol (PVA) with Tg >23 °C, through which a doping profile can be defined by a potential applied when the polymer is heated above Tg, then ``locked-in'' by cooling the electrolyte to room temperature (

  18. Electrochemically-Induced Redox Reactions in Basalt at High Pressure and Temperature: An Iron and Vanadium K-edge XANES Study

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.; Newville, M.; Sutton, S. R.

    2005-12-01

    An applied electric field across a silicate sample at high pressures and temperatures in a piston cylinder apparatus can generate a wide range of oxidation states of polyvalent cations within a single experiment. If two or more polyvalent cations are included, this technique can be used to cross-calibrate oxybarometers within a single experiment. The redox state of Fe and V within a partially melted basaltic silicate was manipulated in situ in a piston-cylinder experiment with a DC power supply providing a source and sink of electrons to the sample. A 1V electrical potential differential was applied across vanadium-doped and Fe-bearing synthetic basalt samples for 24 hrs. at 20 kbar and 1400°C in a specially-designed piston cylinder sample assembly. Three experiments were performed: a control sample with no applied voltage, one with bottom cathode and top anode, and a third with top cathode and bottom anode. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy was used to provide spot analysis of iron and vanadium oxidation states with 5μm x 5μm spatial resolution throughout the recovered samples. Systematic spatial changes of increasing oxidation states of V and Fe were observed approaching the anode. The differences in oxidation states were mapped to a corresponding local effective oxygen fugacity by comparison and extension of a calibration of vanadium oxidation states as a function of controlled oxygen fugacity from a previous study (Sutton et al., 2005, GCA, vol. 69, pp. 2333-2348). The vanadium mapping indicates that a 1V potential drop across the sample induces effective oxygen fugacity perturbations in excess of ten orders of magnitude. The presence of both Fe and V within the same sample provides a wide range of oxygen fugacity cross-calibration in these recovered samples. A relationship between oxygen fugacity and electrochemical driving force is derived. The experimental results are in good agreement with the derived relationship between applied electrochemical potential difference (the 1V in this experiment), and corresponding calculated oxygen fugacity.

  19. Effects of subclinical footpad dermatitis and emotional arousal on surface foot temperature recorded with infrared thermography in turkey toms (Meleagris gallopavo).

    PubMed

    Moe, R O; Bohlin, J; Flø, A; Vasdal, G; Erlandsen, H; Guneriussen, E; Sjökvist, E C; Stubsjøen, S M

    2018-04-17

    Footpad dermatitis is a condition that causes lesions on the plantar surface of the footpads in growing turkeys. Potential inflammatory processes and pain associated with increasing severity of footpad dermatitis raise animal welfare concerns. This study investigated whether the temperature of the plantar surface of the foot (the footpads and the entire plantar foot including interdigital membranes) assessed with infrared thermography reflects severity of mild footpad dermatitis as assessed with a Visual Analogue Scale in 80 turkey toms at 10 weeks of age. In order to study effects of a potential emotional arousal due to the testing procedures, effects of sequential testing order and duration of handling of the turkeys was included in the model. Footpad temperatures were significantly lower than foot temperatures (P < 0.001, R2 = 0.57, -3.36°C ± 0.28°C), and higher visual analogue scale scores were anti-correlated with footpad (-0.06°C ± 0.037°C) and foot temperatures (-0.07°C ± 0.066°C). Furthermore, a negative association between footpad temperature and handling time (-0.02 ± 0.0227, P = 0.048), and a non-linear association between foot and footpad temperatures and sequential testing order, were found (P<0.001). The results indicate that severity of mild footpad dermatitis as scored visually was associated with the temperatures of the plantar surface of the foot and footpads, and that thermal imaging therefore represents a novel tool for the reliable and non-invasive early detection of subclinical foot pathologies in turkeys. The association was negative, and the findings therefore indicate that potential inflammatory processes in the epidermis at this early stage of footpad dermatitis are negligible, and/or that the hyperkeratosis of the surface keratin shielded heat emission from the footpads. The associations between surface temperatures, handling time, and sequential testing order suggest an emotional arousal in response to the experimental procedures, and these factors need to be considered when applying infrared thermography in future studies of leg health in turkeys.

  20. Structural, electronic and thermal properties of super hard ternary boride, WAlB

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-04-01

    A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.

  1. Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Mendez-González, Y.; Peláiz-Barranco, A.; Yang, Tongqing; Guerra, J. D. S.

    2018-03-01

    The electrocaloric effect (ECE) has been investigated in (Pb0.98La0.02)(Zr0.95Ti0.05)0.995O3 antiferroelectric ceramics obtained via the solid-state reaction method. The results from indirect measurements across the temperature range considered reveal a large electrocaloric temperature change (ΔT) of approximately 5 K at 373 K. The enhanced ECE, which is significantly higher than those reported for some lead-free and lead-based electro-ceramics, was obtained by applying an electric field of 60 kV/cm lower than what has been reported for commonly studied ceramic systems. This result suggests that this system is a potential candidate for practical electrocaloric device applications.

  2. Hamiltonian dynamics of thermostated systems: two-temperature heat-conducting phi4 chains.

    PubMed

    Hoover, Wm G; Hoover, Carol G

    2007-04-28

    We consider and compare four Hamiltonian formulations of thermostated mechanics, three of them kinetic, and the other one configurational. Though all four approaches "work" at equilibrium, their application to many-body nonequilibrium simulations can fail to provide a proper flow of heat. All the Hamiltonian formulations considered here are applied to the same prototypical two-temperature "phi4" model of a heat-conducting chain. This model incorporates nearest-neighbor Hooke's-Law interactions plus a quartic tethering potential. Physically correct results, obtained with the isokinetic Gaussian and Nose-Hoover thermostats, are compared with two other Hamiltonian results. The latter results, based on constrained Hamiltonian thermostats, fail to model correctly the flow of heat.

  3. Analysis and design of ferroelectric-based smart antenna structures

    NASA Astrophysics Data System (ADS)

    Ramesh, Prashanth; Washington, Gregory N.

    2009-03-01

    Ferroelectrics in microwave antenna systems offer benefits of electronic tunability, compact size and light weight, speed of operation, high power-handling, low dc power consumption, and potential for low loss and cost. Ferroelectrics allow for the tuning of microwave devices by virtue of the nonlinear dependence of their dielectric permittivity on an applied electric field. Experiments on the field-polarization dependence of ferroelectric thin films show variation in dielectric permittivity of up to 50%. This is in contrast to the conventional dielectric materials used in electrical devices which have a relatively constant permittivity, indicative of the linear field-polarization curve. Ferroelectrics, with their variable dielectric constant introduce greater flexibility in correction and control of beam shapes and beam direction of antenna structures. The motivation behind this research is applying ferroelectrics to mechanical load bearing antenna structures, but in order to develop such structures, we need to understand not just the field-permittivity dependence, but also the coupled electro-thermo-mechanical behavior of ferroelectrics. In this paper, two models are discussed: a nonlinear phenomenological model relating the applied fields, strains and temperature to the dielectric permittivity based on the Devonshire thermodynamic framework, and a phenomenological model relating applied fields and temperature to the dielectric loss tangent. The models attempt to integrate the observed field-permittivity, strain-permittivity and temperature-permittivity behavior into one single unified model and extend the resulting model to better fit experimental data. Promising matches with experimental data are obtained. These relations, coupled with the expression for operating frequency vs. the permittivity are then used to understand the bias field vs. frequency behavior of the antenna. Finally, the effect of the macroscopic variables on the antenna radiation efficiency is discussed.

  4. Effect of potential vorticity flux on the circulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Yaohua; Sun, Junchuan; Wang, Yonggang; Wei, Zexun; Yang, Dezhou; Qu, Tangdong

    2017-08-01

    This study analyzes temperature and salinity products from the U.S. Navy Generalized Digital Environment Model. To avoid the fictitious assumption of no-motion reference level, a P-vector inverse method is employed to derive geostrophic velocity. Line integral of geostrophic velocity shows evidence for the existence of a sandwiched circulation in the South China Sea (SCS), i.e., cyclonic circulation in the subsurface and deep layers and anticyclonic in the intermediate layer. To reveal the factors responsible for the sandwiched circulation, we derive the potential vorticity equation based on a four-and-a-half-layer quasi-geostrophic model and apply theoretical potential vorticity constraint to density layers. The result shows that the sandwiched circulation is largely induced by planetary potential vorticity flux through lateral boundaries, mainly the Luzon Strait. This dynamical mechanism lies in the fact that the net potential vorticity inflow in the subsurface and deep layers leads to a positive layer-average vorticity in the SCS basin, yielding vortex stretching and a cyclonic basin-wide circulation. On the contrary, the net potential vorticity outflow in the intermediate layer induces a negative layer-average vorticity, generating an anticyclonic basin-wide circulation in the SCS. Furthermore, by illustrating different consequence from depth/density layers, we clarify that density layers are essential for applying theoretical potential vorticity constraint to the isolated deep SCS basin.

  5. Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique

    NASA Astrophysics Data System (ADS)

    Neetzel, C.; Ohgai, T.; Yanai, T.; Nakano, M.; Fukunaga, H.

    2017-11-01

    Textured ferromagnetic Fe nanowire arrays were electrodeposited using a rectangular-pulsed potential deposition technique into anodized aluminum oxide nanochannels. During the electrodeposition of Fe nanowire arrays at a cathodic potential of - 1.2 V, the growth rate of the nanowires was ca. 200 nm s-1. The aspect ratio of Fe nanowires with a diameter of 30 ± 5 nm reached ca. 2000. The long axis of Fe nanowires corresponded with the <200> direction when a large overpotential during the on-time pulse was applied, whereas it orientated to the <110> direction under the potentiostatic condition with a small overpotential. By shifting the on-time cathode potential up to - 1.8 V, the texture coefficient for the (200) plane, TC200, reached up to 1.94. Perpendicular magnetization performance was observed in Fe nanowire arrays. With increasing TC200, the squareness of Fe nanowire arrays increased up to 0.95 with the coercivity maintained at 1.4 kOe at room temperature. This research result has opened a novel possibility of Fe nanowire arrays that can be applied for a new permanent magnetic material without rare-earth metals.

  6. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.

    PubMed

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-04-13

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  7. Effect of Milling Time on the Blocking Temperature of Nanoparticles of Magnetocaloric Gd5Si4

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Gupta, Shalbh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David; David C Jiles Team; Vitalij Pecharsky Collaboration

    Extensive research has been done on giant magnetocaloric material Gd5(SixGe1-x)4 to improve adiabatic temperature/isothermal entropy change. However, there have been only a few reports on fabrication of nanostructure/nanoparticles that can be used to tune various properties by changing the length scale. Recently we have reported fabrication of room temperature ferromagnetic nanoparticles of Gd5Si4 using high energy ball milling. These nanoparticles have potential applications in biomedical engineering such as better T2 MRI contrast agents and in hypothermia. Here we report the effect of milling time on the blocking temperature, micro-structure, crystal structure, and magnetic properties of these nanoparticles. Magnetization vs. temperature at an applied field of 100 Oe is measured for all the ball milled samples. Bulk Gd5Si4 has a transition temperature of ~340 K. There are two phase transitions observed in the nanoparticles, one near 300 K corresponding to the Gd5Si4 phase and another between 75-150 K corresponding to Gd5Si3. Zero Field Cooling (ZFC) and Field Cooling (FC) were measured. The blocking temperatures for the nanoparticles increase with decrease in milling time.

  8. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness.

    PubMed

    Lemoine, Nathan P; Burkepile, Deron E

    2012-11-01

    As physiological processes of ectotherms are coupled to environmental temperature, climate change will likely alter their fundamental biological rates, including metabolism, consumption, growth, and reproduction. Here we combine the metabolic theory of ecology (MTE) with metabolism and consumption measurements of a model organism, the urchin Lytechinus variegatus, to test how climate change will affect consumer fitness. Unexpectedly, we found that metabolism and consumption exhibit different scaling relationships with temperature and are mismatched at high temperatures. This led to a dramatic reduction in ingestion efficiency and potentially in consumer fitness. Using metaanalysis, we showed that such temperature-driven mismatches between consumption and metabolism are common across taxa and frequently lead to reduced consumer fitness. Our empirical and synthetic analyses identify a mechanism by which climate change reduces the fitness of ectotherm consumers that may be applied to a broad array of taxonomic groups. Moreover, we showed that the assumptions of MTE do not hold at temperatures near the upper range of species' thermal tolerances for a wide array of taxa. Models using MTE to predict the effects of climate change on consumer-resource dynamics may therefore be underestimating the consequences of rising temperatures on population and community dynamics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less

  10. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

    PubMed Central

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-01-01

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals. PMID:29652837

  11. Thermal transpiration: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    T, Joe Francis; Sathian, Sarith P.

    2014-12-01

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  12. A new surface-potential-based compact model for the MoS2 field effect transistors in active matrix display applications

    NASA Astrophysics Data System (ADS)

    Cao, Jingchen; Peng, Songang; Liu, Wei; Wu, Quantan; Li, Ling; Geng, Di; Yang, Guanhua; Ji, Zhouyu; Lu, Nianduan; Liu, Ming

    2018-02-01

    We present a continuous surface-potential-based compact model for molybdenum disulfide (MoS2) field effect transistors based on the multiple trapping release theory and the variable-range hopping theory. We also built contact resistance and velocity saturation models based on the analytical surface potential. This model is verified with experimental data and is able to accurately predict the temperature dependent behavior of the MoS2 field effect transistor. Our compact model is coded in Verilog-A, which can be implemented in a computer-aided design environment. Finally, we carried out an active matrix display simulation, which suggested that the proposed model can be successfully applied to circuit design.

  13. Burst temperature from conditional analysis in Texas Helimak and TCABR tokamak

    NASA Astrophysics Data System (ADS)

    Pereira, F. A. C.; Hernandez, W. A.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.

    2018-04-01

    The procedure to estimate the average local temperature, density, and plasma potential by conditionally selecting points of the Langmuir probe characteristic curve is revised and applied to the study of intermittent bursts in the Texas Helimak and TCABR tokamak. The improvements made allow us to distinguish the burst temperature from the turbulent background and to study burst propagation. Thus, in Texas Helimak, we identify important differences with respect to the burst temperature measured in the top and the bottom regions of the machine. While in the bottom region the burst temperatures are almost equal to the background, the bursts in the top region are hotter than the background with the temperature peak clearly shifted with respect to the density one. On the other hand, in the TCABR tokamak, we found that there is a temperature peak simultaneously with the density one. Moreover, the radial profile of bursts in the top region of Helimak and in the edge and scrape-off layer regions of TCABR shows that in both machines, there are spatial regions where the relative difference between the burst and the background temperatures is significant: up to 25% in Texas Helimak and around 50% in TCABR. However, in Texas Helimak, there are also regions where these temperatures are almost the same.

  14. Is there potential added value in COSMO-CLM forced by ERA reanalysis data?

    NASA Astrophysics Data System (ADS)

    Lenz, Claus-Jürgen; Früh, Barbara; Adalatpanah, Fatemeh Davary

    2017-12-01

    An application of the potential added value (PAV) concept suggested by Di Luca et al. (Clim Dyn 40:443-464, 2013a) is applied to ERA Interim driven runs of the regional climate model COSMO-CLM. They are performed for the time period 1979-2013 for the EURO-CORDEX domain at horizontal grid resolutions 0.11°, 0.22°, and 0.44° such that the higher resolved model grid fits into the next coarser grid. The concept of the potential added value is applied to annual, seasonal, and monthly means of the 2 m air temperature. Results show the highest potential added value at the run with the finest grid and generally increasing PAV with increasing resolution. The potential added value strongly depends on the season as well as the region of consideration. The gain of PAV is higher enhancing the resolution from 0.44° to 0.22° than from 0.22° to 0.11°. At grid aggregations to 0.88° and 1.76° the differences in PAV between the COSMO-CLM runs on the mentioned grid resolutions are maximal. They nearly vanish at aggregations to even coarser grids. In all cases the PAV is dominated by at least 80% by its stationary part.

  15. Thermal and structural alternations in CuAlMnNi shape memory alloy by the effect of different pressure applications

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu; Polat, Tercan

    2017-09-01

    In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.

  16. Determining spatially discretized surface flow and baseflow in the context of climate change and water quality management

    NASA Astrophysics Data System (ADS)

    Raimonet, M.; Oudin, L.; Rabouille, C.; Garnier, J.; Silvestre, M.; Vautard, R.; Thieu, V.

    2016-12-01

    Water quality management of fresh and marine aquatic systems requires modelling tools along the land-ocean continuum in order to evaluate the effect of climate change on nutrient transfer and on potential ecosystem dysfonctioning (e.g. eutrophication, anoxia). In addition to direct effects of climate change on water temperature, it is essential to consider indirect effects of precipitation and temperature changes on hydrology since nutrient transfers are particularly sensitive to the partition of streamflow between surface flow and baseflow. Yet, the determination of surface flow and baseflow, their spatial repartition on drainage basins, and their relative potential evolution under climate change remains challenging. In this study, we developed a generic approach to determine 10-day surface flow and baseflow using a regionalized hydrological model applied at a high spatial resolution (unitary catchments of area circa 10km²). Streamflow data at gauged basins were used to calibrate hydrological model parameters that were then applied on neighbor ungauged basins to estimate streamflow at the scale of the French territory. The proposed methodology allowed representing spatialized surface flow and baseflow that are consistent with climatic and geomorphological settings. The methodology was then used to determine the effect of climate change on the spatial repartition of surface flow and baseflow on the Seine drainage bassin. Results showed large discrepancies of both the amount and the spatial repartition of changes of surface flow and baseflow according to the several GCM and RCM used to derive projected climatic forcing. Consequently, it is expected that the impact of climate change on nutrient transfer might also be quite heterogeneous for the Seine River. This methodology could be applied in any drainage basin where at least several gauged hydrometric stations are available. The estimated surface flow and baseflow can then be used in hydro-ecological models in order to evaluate direct and indirect impacts of climate change on nutrient transfers and potential ecosystem dysfunctioning along the land-ocean continuum.

  17. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  18. Similarity Laws for the Lines of Ideal Free Energy and Chemical Potential in Supercritical Fluids.

    PubMed

    Apfelbaum, E M; Vorob'ev, V S

    2017-09-21

    We have found the curves on the density-temperature plane, along which the values of free energy and chemical potential correspond to ideal gas quantities. At first, we have applied the van der Waals equation to construct them and to derive their equations. Then we have shown that the same lines for real substances (Ar, N 2 , CH 4 , SF 6 , H 2 , H 2 O) and for the model Lennard-Jones system constructed on the basis of the measurements data and calculations are well matched with the derived equations. The validity and deviations from the obtained similarity laws are discussed.

  19. Magnetic field induced enhancement of resistance in polycrystalline ZrTe5

    NASA Astrophysics Data System (ADS)

    Behera, Prakash; Bera, Sumit; Patidar, Manju Mishra; Singh, Durgesh; Mishra, A. K.; Krishnan, M.; Gangrade, M.; Deshpande, U. P.; Venkatesh, R.; Ganesan, V.

    2018-04-01

    Transport properties of the polycrystalline ZrTe5 showing a considerable positive Magneto-Resistance (MR) in the intermediate temperatures has been reported. Substantial shift of peak temperature by approximately 65 K with an applied magnetic field of 13.5 Tesla has been observed. Magneto resistance of this polycrystalline sample (˜100%) is comparable with its single crystalline counterpart reported in literature. The peak intensity scales with peak temperature and obeys reasonably the Dionne relationship that is a clear indication of polaron mediated conduction in this system. Magneto Resistance (MR) in this system is attributed to the two carrier polaronic conduction model similar to the Holstein's approach. The results are further complemented with the Peak shift in magnetic field expected for a system having a fraction of localized carrier density. This observation places this famous thermoelectric material that displays a topological Dirac to Weyl transition in magnetic field in to the family of materials that have potential technological applications in the liquid nitrogen temperature range viz. 85-150 K.

  20. Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature

    NASA Astrophysics Data System (ADS)

    Yang, F. J.; Su, P.; Wei, C.; Chen, X. Q.; Yang, C. P.; Cao, W. Q.

    2011-12-01

    Ceramics of Nd/Co co-substituted Bi5Ti3FeO15, i.e., (Bi4Nd)Ti3(Fe0.5Co0.5)O15 were prepared by the conventional solid-state reaction method. The X-ray diffraction pattern demonstrates that the sample of the layered perovskite phase was successfully obtained, even if little Bi-deficient pyrochlore Bi2Ti2O7 also existed. The ferroelectric and magnetic Curie temperatures were determined to be 1077 K and 497 K, respectively. The multiferroic property of the sample at room temperature was demonstrated by ferroelectric and magnetic measurements. Remarkably, by Nd/Co co-substituting, the sample exhibited large magnetic response with 2Mr = 330 memu/g and 2Hc = 562 Oe at applied magnetic field of 8 kOe at room temperature. The present work suggests the possibility of doped Bi5Ti3FeO15 as a potential multiferroic.

  1. Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial

    NASA Astrophysics Data System (ADS)

    Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.

  2. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908

  3. Spin and charge thermopower effects in the ferromagnetic graphene junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahedi, Javad, E-mail: javahedi@gmail.com; Center for Theoretical Physics of Complex Systems, Institute for Basic Science; Barimani, Fattaneh

    2016-08-28

    Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchangemore » filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.« less

  4. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAMmore » potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.« less

  5. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.

  6. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing. PMID:24023616

  7. Anomalous metastability in a temperature-driven transition

    NASA Astrophysics Data System (ADS)

    Ibáñez Berganza, M.; Coletti, P.; Petri, A.

    2014-06-01

    The Langer theory of metastability provides a description of the lifetime and properties of the metastable phase of the Ising model field-driven transition, describing the magnetic-field-driven transition in ferromagnets and the chemical-potential-driven transition of fluids. An immediate further step is to apply it to the study of a transition driven by the temperature, as the one exhibited by the two-dimensional Potts model. For this model, a study based on the analytical continuation of the free energy (Meunier J. L. and Morel A., Eur. Phys. J. B, 13 (2000) 341) predicts the anomalous vanishing of the metastable temperature range in the large-system-size limit, an issue that has been controversial since the eighties. By a GPU algorithm we compare the Monte Carlo dynamics with the theory. For temperatures close to the transition we obtain agreement and characterize the dependence on the system size, which is essentially different with respect to the Ising case. For smaller temperatures, we observe the onset of stationary states with non-Boltzmann statistics, not predicted by the theory.

  8. Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode.

    PubMed

    Li, Song; Feng, Guang; Fulvio, Pasquale F; Hillesheim, Patrick C; Liao, Chen; Dai, Sheng; Cummings, Peter T

    2012-09-06

    An equimolar mixture of 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpy][Tf2N]), 1-methyl-1-butylpiperidinium bis(trifluoromethylsulfonyl)imide ([C4mpip][Tf2N]) was investigated by classic molecular dynamics (MD) simulation. Differential scanning calorimetry (DSC) measurements verified that the binary mixture exhibited lower glass transition temperature than either of the pure room-temperature ionic liquids (RTILs). Moreover, the binary mixture gave rise to higher conductivity than the neat RTILs at lower temperature range. In order to study its capacitive performance in supercapacitors, simulations were performed of the mixture, and the neat RTILs used as electrolytes near an onion-like carbon (OLC) electrode at varying temperatures. The differential capacitance exhibited independence of the electrical potential applied for three electrolytes, which is in agreement with previous work on OLC electrodes in a different RTILs. Positive temperature dependence of the differential capacitance was observed, and it was dominated by the electrical double layer (EDL) thickness, which is for the first time substantiated in MD simulation.

  9. Optimization of a horizontal-flow biofilm reactor for the removal of methane at low temperatures.

    PubMed

    Clifford, E; Kennelly, C; Walsh, R; Gerrity, S; Reilly, E O; Collins, G

    2012-10-01

    Three pilot-scale, horizontal-flow biofilm reactors (HFBRs 1-3) were used to treat methane (CH4)-contaminated air to assess the potential of this technology to manage emissions from agricultural activities, waste and wastewater treatment facilities, and landfills. The study was conducted over two phases (Phase 1, lasting 90 days and Phase 2, lasting 45 days). The reactors were operated at 10 degrees C (typical of ambient air and wastewater temperatures in northern Europe), and were simultaneously dosed with CH4-contaminated air and a synthetic wastewater (SWW). The influent loading rates to the reactors were 8.6 g CH4/m3/hr (4.3 g CH4/m2 TPSA/hr; where TPSA is top plan surface area). Despite the low operating temperatures, an overall average removal of 4.63 g CH4/m3/day was observed during Phase 2. The maximum removal efficiency (RE) for the trial was 88%. Potential (maximum) rates of methane oxidation were measured and indicated that biofilm samples taken from various regions in the HFBRs had mostly equal CH4 removal potential. In situ activity rates were dependent on which part of the reactor samples were obtained. The results indicate the potential of the HFBR, a simple and robust technology, to biologically treat CH4 emissions. The results of this study indicate that the HFBR technology could be effectively applied to the reduction of greenhouse gas emissions from wastewater treatment plants and agricultural facilities at lower temperatures common to northern Europe. This could reduce the carbon footprint of waste treatment and agricultural livestock facilities. Activity tests indicate that methanotrophic communities can be supported at these temperatures. Furthermore, these data can lead to improved reactor design and optimization by allowing conditions to be engineered to allow for improved removal rates, particularly at lower temperatures. The technology is simple to construct and operate, and with some optimization of the liquid phase to improve mass transfer, the HFBR represents a viable, cost-effective solution for these emissions.

  10. Advances in High Temperature Materials for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  11. Noise Abatement and Internal Vibrational Absorption in Potential Structural Materials

    DTIC Science & Technology

    1976-09-01

    Factor-Temperature Curves for Nitinol , Incramute I and Cobalt- Iron Alloys measured at a stress of 2000 psi in the Frequence Range from 150 to 250 Hertz...tion of these materials in specific military systems. Novel damping materials such as Nitinol (Ni-Ti) and copper-aluminum-nickel alloys which appear to...condition supplied by commercial vendors. The results for Nitinol displayed in Figure 1 have been optimized (2) by applying a 15% reduction in thickness

  12. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  13. Nonlinear and Interactive Effects of Temperature and Humidity on Childhood Hand, Foot and Mouth Disease in Hefei, China.

    PubMed

    Wu, Jinju; Cheng, Jian; Xu, Zhiwei; Zhao, Kefu; Zhao, Desheng; Xie, Mingyu; Yang, Huihui; Wen, Liying; Li, Kesheng; Su, Hong

    2016-10-01

    Hand, foot and mouth disease (HFMD) is one of the major infectious diseases among children and remains a health threat, especially among Asian countries. Many epidemiologic studies suggested significant association of air temperature and humidity with childhood HFMD; however, evidence on the temperature effects on childhood HFMD in temperate cities is limited, and the interactive effects of temperature and humidity have not been studied yet. Daily counts of HFMD in children younger than 15 years of age and daily meteorologic variables during 2010 to 2012 were obtained in Hefei, China. A distributed lag nonlinear model was applied to estimate the potential nonlinear association between temperature and childhood HFMD. The interactive effects between temperature and humidity on childhood HFMD were also investigated. Temperature rise was associated with higher risk of childhood HFMD. Within the incubation period of HFMD, temperature rise appeared to have the acute effects on childhood HFMD, and a 5°C increase of temperature at lag 0-6 days was associated with 24.8% (95% confidence interval: 11.94%-39.10%) increase of childhood HFMD. Females and children of 0-4 years of agewere more vulnerable to temperature rise. Notably, there were obvious combined effects between temperature and humidity on childhood HFMD-the risk of childhood HFMD elevated at higher temperature and humidity level. This study provides evidence that temperature and humidity may jointly affect childhood HFMD, and such interactive impact needs to be considered when evaluating the temperature-childhood HFMD relationship.

  14. Feasibility of Using the Mosquito Blood Meal for Rapid and Efficient Human and Animal Virus Surveillance and Discovery

    PubMed Central

    Yang, Yu; Garver, Lindsey S.; Bingham, Karen M.; Hang, Jun; Jochim, Ryan C.; Davidson, Silas A.; Richardson, Jason H.; Jarman, Richard G.

    2015-01-01

    Mosquito blood meals taken from humans and animals potentially represent a useful source of blood for the detection of blood-borne pathogens. In this feasibility study, Anopheles stephensi mosquitoes were fed with blood meals spiked with dengue virus type 2 (DENV-2) and harvested at serial time points. These mosquitoes are not competent vectors, and the virus is not expected to replicate. Ingested blood was spotted on Whatman FTA cards and stored at room temperature. Mosquito abdomens were removed and stored at −80°C. Control blood meal aliquots were stored in vials or applied onto FTA cards. After 4 weeks of storage, the samples were extracted using beadbeating and QIAamp Viral RNA kit (Qiagen Sciences, Germantown, MD). Recovered viral RNA was analyzed by DENV-2 TaqMan RT-PCR assay and next-generation sequencing (NGS). Overall viral RNA recovery efficiency was 15% from the directly applied dried blood spots and approximately 20% or higher for dried blood spots made by blotting mosquito midgut on FTA cards. Viral RNA in mosquito-ingested blood decreases over time, but remains detectable 24 hours after blood feeding. The viral sequences in FTA-stored specimens can be maintained at room temperature. The strategy has the potential utility in expedited zoonotic virus discovery and blood-borne pathogen surveillance. PMID:26416112

  15. Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts.

    PubMed

    Itoh, Hideki; Oyama, Kotaro; Suzuki, Madoka; Ishiwata, Shin'ichi

    2014-01-01

    Temperature-sensitive Ca(2+) dynamics occur primarily through transient receptor potential channels, but also by means of Ca(2+) channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca(2+) concentration ([Ca(2+)]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses (heating duration: 2 s or 150 s) on [Ca(2+)]cyt in single WI-38 fibroblasts, which are considered as normal cells. We found that Ca(2+) burst occurred immediately after short (2 s) heat pulse, which is similar to our previous report on HeLa cells, but with less thermosensitivity. The heat pulses originated from a focused 1455-nm infrared laser light were applied in the vicinity of cells under the optical microscope. Ca(2+) bursts induced by the heat pulse were suppressed by treating cells with inhibitors for sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) or inositol trisphosphate receptor (IP3R). Long (150 s) heat pulses also induced Ca(2+) bursts after the onset of heating and immediately after re-cooling. Cells were more thermosensitive at physiological (37°C) than at room (25°C) temperature; however, at 37°C, cells were responsive at a higher temperature (ambient temperature+heat pulse). These results strongly suggest that the heat pulse-induced Ca(2+) burst is caused by a transient imbalance in Ca(2+) flow between SERCA and IP3R, and offer a potential new method for thermally controlling Ca(2+)-regulated cellular functions.

  16. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    PubMed

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.

  17. Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y. Q.; Merzari, E.; Thomas, J. W.

    2017-02-01

    The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study,more » both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal–hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations.« less

  18. Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Yang; Fang, Te-Hua; Tsai, Ju-Hsuan

    2015-02-01

    A piezoelectric nanogenerator based on Al-doped ZnO (AZO) nanorods with a V-zigzag layer is investigated at a low temperature. The growth temperature, growth time, growth concentration, photoluminescence (PL) spectrum, and AZO epitaxial growth on the ITO glass substrate using aqueous solution are reported and the associated electromechanical and PL properties are discussed. In general, the properties of piezoelectric nanogenerators and their functionality at ultralow temperatures (near liquid helium temperature) are important for applications in extreme environments. A V-zigzag layer is used to enhance the bending and compression deformation of the piezoelectric nanogenerator. The electromechanical properties of AZO nanorods are tested using an ultrasonic wave generator. Results show that the percent transmittance decreases with increasing growth time and growth temperature. The intensities of the PL spectrum and the (002) peak orientation increases with increasing growth temperature. AZO at a low growth temperature of 90 C has good piezoelectric harvesting efficiency when the piezoelectric nanogenerator has a zigzag structure. The average current, voltage, and power density of the piezoelectric harvesting are 0.76 A, 1.35 mV, and 1.026 nW/mm, respectively. These results confirm the feasibility of growing AZO at low temperature. AZO nanorods have potential for energy harvester applications.

  19. From climate models to planetary habitability: temperature constraints for complex life

    NASA Astrophysics Data System (ADS)

    Silva, Laura; Vladilo, Giovanni; Schulte, Patricia M.; Murante, Giuseppe; Provenzale, Antonello

    2017-07-01

    In an effort to derive temperature-based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for the active metabolism and reproduction of multicellular poikilotherms on earth are approximately bracketed by the temperature interval 0°C <= T <= 50°C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures observable in exoplanets. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We therefore propose a habitability index for complex life, h 050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0°C <= T <= 50°C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h 050 as a function of planet insolation, S, and atmospheric columnar mass, N atm, for a few earth-like atmospheric compositions with trace levels of CO2. By displaying h 050 as a function of S and N atm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life habitable zone is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life habitable zone is significantly narrower than the habitable zone of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and N atm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.

  20. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams.

    PubMed

    McDonnell, T C; Sloat, M R; Sullivan, T J; Dolloff, C A; Hessburg, P F; Povak, N A; Jackson, W A; Sams, C

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species' distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.

  1. Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams

    PubMed Central

    Jackson, W. A; Sams, C.

    2015-01-01

    Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water temperature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions. PMID:26247361

  2. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  3. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  4. Investigating Trapped Particle Asymmetry Modes and Temperature Effects in the Lawrence Non-neutral Torus II

    NASA Astrophysics Data System (ADS)

    Nirwan, R.; Swanson, P.; Stoneking, M. R.

    2017-10-01

    Electron plasma is confined in the Lawrence Non-Neutral Torus II using a purely toroidal magnetic field (R0 = 18 cm, B < 1 kG) for confinement times exceeding 1 second. The LNT II can be configured for fully toroidal traps or variable-length partial toroidal traps. The behavior of the plasma is observed by monitoring the image charge on isolated wall sectors. The plasma is excited by application of a sinusoidal tone burst to selected wall sectors. Phase-space separatrices are introduced by applying squeeze potentials to toroidally localized, but poloidally continuous sectors and the resulting interaction between trapped and passing particles populations results in asymmetry modes and transport. These experiments provide a comparison with similar experiments in cylindrical traps. We also report on the development of temperature measurement techniques and assess temperature affects on diocotron and asymmetry modes. This work is supported by National Science Foundation Grant No. PHY-1202540.

  5. MLP based LOGSIG transfer function for solar generation monitoring

    NASA Astrophysics Data System (ADS)

    Hashim, Fakroul Ridzuan; Din, Muhammad Faiz Md; Ahmad, Shahril; Arif, Farah Khairunnisa; Rizman, Zairi Ismael

    2018-02-01

    Solar panel is one of the renewable energy that can reduce the environmental pollution and have a wide potential of application. The exact solar prediction model will give a big impact on the management of solar power plants and the design of solar energy systems. This paper attempts to use Multilayer Perceptron (MLP) neural network based transfer function. The MLP network can be used to calculate the temperature module (TM) in Malaysia. This can be done by simulating the collected data of four weather variables which are the ambient temperature (TA), local wind speed (VW), solar radiation flux (GT) and the relative humidity (RH) as the input into the neural network. The transfer function will be applied to the 14 types of training. Finally, an equation from the best training algorithm will be deduced to calculate the temperature module based on the input of weather variables in Malaysia.

  6. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1991-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  7. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  8. Low temperature conversion of plastic waste into light hydrocarbons.

    PubMed

    Shah, Sajid Hussain; Khan, Zahid Mahmood; Raja, Iftikhar Ahmad; Mahmood, Qaisar; Bhatti, Zulfiqar Ahmad; Khan, Jamil; Farooq, Ather; Rashid, Naim; Wu, Donglei

    2010-07-15

    Advance recycling through pyrolytic technology has the potential of being applied to the management of plastic waste (PW). For this purpose 1 l volume, energy efficient batch reactor was manufactured locally and tested for pyrolysis of waste plastic. The feedstock for reactor was 50 g waste polyethylene. The average yield of the pyrolytic oil, wax, pyrogas and char from pyrolysis of PW were 48.6, 40.7, 10.1 and 0.6%, respectively, at 275 degrees C with non-catalytic process. Using catalyst the average yields of pyrolytic oil, pyrogas, wax and residue (char) of 50 g of PW was 47.98, 35.43, 16.09 and 0.50%, respectively, at operating temperature of 250 degrees C. The designed reactor could work at low temperature in the absence of a catalyst to obtain similar products as for a catalytic process. 2010 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming

    In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less

  10. Iron Isotopic Fractionation in Igneous Systems: Looking for Anharmonicity

    NASA Astrophysics Data System (ADS)

    Dauphas, N.; Roskosz, M.; Hu, M. Y.; Neuville, D. R.; Alp, E. E.; Hu, J.; Heard, A.; Zhao, J.

    2017-12-01

    Igneous rocks display variations in their Fe isotopic compositions that can be used to trace partial melting, magma differentiation, the origin of mineral zoning, and metasomatic processes. While tremendous progress has been made in our understanding of how iron isotopes can be fractionated at equilibrium or during diffusion, significant work remains to be done to establish equilibrium fractionation factors between phases relevant to igneous petrology. A virtue of iron isotope systematics is that iron possesses a Mössbauer isotope, 57Fe, and one can use the method of NRIXS to measure the force constant of iron bonds, from which beta-factors can be calculated. These measurements are done at a few synchrotron beamlines around the world, such as sector 3ID of the APS (Argonne). Tremendous insights have already been gained by applying this technique to Earth science materials. It was shown for instance that significant equilibrium fractionation exists between Fe2+ and Fe3+ at magmatic temperature, that the iron isotopic fractionation resulting from core formation must be small, and that iron isotopic fractionation is influenced by the polymerization of the melt. Combining NRIXS and ab initio studies, there are approximately 130 geologically-relevant solids and aqueous species for which beta-factors have been reported. A potential limitation of applying published NRIXS data to igneous petrology is that all the force constants have been measured at room temperature and the beta-factors are extrapolated to magmatic temperatures assuming that the systems are harmonic, which has never been demonstrated. One way to test this critical assumption is to measure the apparent force constant of iron bonds at various temperatures, so that the interatomic potential of iron bonds can be probed. A further virtue of NRIXS is that the data also allows us to derive the mean square displacement. If significant anharmonicity is present, it should be manifested as a decrease in the apparent force constant with increasing temperature and increasing mean square displacement. We have measured the Fe force constant of basalt glass and olivine using a wire furnace. At the conference, we will report on these experiments and will discuss some implications for igneous petrology.

  11. Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Masters, M. D.; Wolz, K. J.; DeLucia, E. H.

    2016-12-01

    Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byproducts of enhanced weathering are expected accumulate in soil water and reduce soil acidity, reduce nitrogen loss as N2O, and increase availability of certain soil nutrients. To determine the potential of enhanced weathering to alter the greenhouse gas balance in both annual (high disturbance, high fertilizer) and perennial (low disturbance, low fertilizer) bioenergy crops, finely ground basalt was applied to fields of maize, soybeans, and miscanthus at the University of Illinois Energy Farm. All plots showed an immediate soil temperature response at 10 cm depth, with increases of 1- 4 °C at midday. Early season CO2 and N2O fluxes mirrored soil temperature prior to canopy closure in all crops, while total N2O fluxes from miscanthus were lower than corn and soybeans in both basalt treatment and control plots. Mid-season N2O production was reduced in basalt-treated corn compared to controls. Given the increasing footprint of bioenergy crops, the ability to reduce GHG emissions in basalt-treated fields has the potential to mitigate atmospheric warming while benefitting soil fertility with the byproducts of weathering.

  12. Development of wear resistant ceramic coatings for diesel engine components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  13. Development of wear resistant ceramic coatings for diesel engine components. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  14. Towards Understanding the Polymerization Process in Bitumen Bio-Fluxes.

    PubMed

    Król, Jan B; Niczke, Łukasz; Kowalski, Karol J

    2017-09-09

    Bitumen is a commonly used material for road construction. According to environmental regulations, vegetable-based materials are applied for binder modification. Fluxed road bitumen containing a bio-flux oxidation product increases the consistency over time. The efficiency of crosslinking depends on the number of double bonds and their position in the aliphatic chain of fatty acid. The main goal of this paper was to examine the structural changes taking place during hardening bitumen with bio-flux additives. Two types of road bitumens fluxed with two different oxidized methyl esters of rapeseed oil were used in this study. Various chemical and rheological tests were applied for the fluxed-bitumen at different stages of oxygen exposure. The oxidation of rapeseed oil methyl ester reduced the iodine amount by about 10%-30%. Hardening of the fluxed bitumen generally results in an increase of the resins content and a reduction of the aromatics and asphaltenes. In the temperature range of 0 °C to 40 °C, bio-flux results with a much higher increase in the phase angle than in temperatures above 40 °C in the bitumen binder. The increase in the proportion of the viscous component in the low and medium binder temperature is favorable due to the potential improvement of the fatigue resistance of the asphalt mixture with such binders.

  15. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  16. Ikh Turgen Mountain Glacier Change and 3d Surface Extents Prediction Using Long Term Landsat Image and Climate Data

    NASA Astrophysics Data System (ADS)

    Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj

    2018-04-01

    The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.

  17. Synthesis of One-Dimensional and Hyperbranched Nanomaterials for Lithium-Ion Battery Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Ting

    Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.

  18. Crystal structure and superconductivity in atomic hydrogen: Deformation between I41/amd and Fddd

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Nagara, H.; Oda, T.; Suzuki, N.; Shimizu, K.

    2017-10-01

    We investigated crystal structures of solid metallic hydrogen using the potential energy surface trekking for structure search. We applied this technique to a tetragonal I41/amd structure at pressures of 500 and 600 GPa and obtained the transformation into multiple orthorhombic Fddd structures, which are formed by distortions in the ab plane of I41/amd. The potential barriers are easily surmounted by few trekking steps, which indicates that in solid metallic hydrogen crystal structure is softened with respect to the distortion and is easily fluctuated among the I41/amd and Fddd structures. Calculated superconducting critical temperatures show 269 K for I41/amd and 263 K for Fddd at 500 GPa. The structures are softened and the electron-phonon coupling are enhanced with pressurization to 600 GPa. As the results, the superconducting critical temperature is increased to 281 K for I41/amd, whereas it is decreased to 252 K for Fddd owing to its larger phonon softening than that of I41/amd.

  19. A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-09-01

    Solid oxide fuel cells are characterized by very high efficiency, low emissions level, and large fuel flexibility. Unfortunately, their elevated costs and relatively short lifetimes reduce the economic feasibility of these technologies at the present time. Several mechanisms contribute to degrade fuel cell performance during time, and the study of these degradation modes and potential mitigation actions is critical to ensure the durability of the fuel cell and their long-term stability. In this work, localized degradation of a solid oxide fuel cell is modeled in real-time and its effects on various cell parameters are analyzed. Profile distributions of overpotential, temperature, heat generation, and temperature gradients in the stack are investigated during degradation. Several causes of failure could occur in the fuel cell if no proper control actions are applied. A local analysis of critical parameters conducted shows where the issues are and how they could be mitigated in order to extend the life of the cell.

  20. Computer simulation of the mechanical properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Gerasimov, R. A.; Eremeyev, V. A.; Petrova, T. O.; Egorov, V. I.; Maksimova, O. G.; Maksimov, A. V.

    2016-08-01

    For a hybrid discrete-continual model describing a system which consists of a substrate and polymer coating, we provide computer simulation of its mechanical properties for various levels of deformations. For the substrate, we apply the elastic model with the Hooke law while for the polymeric coating, we use a discrete model. Here we use the Stockmayer potential which is a Lennard-Jones potential with additional term which describes the dipole interactions between neighbour segments of polymer chains, that is Keesom energy. Using Monte-Carlo method with Metropolis algorithm for a given temperature the equilibrium state is determined. We obtain dependencies of the energy, force, bending moment and Young's modulus for various levels of deformations and for different values of temperature. We show that for the increase of the deformations level the influence of surface coating on the considered material parameters is less pronounced. We provide comparison of obtained results with experimental data on deformations of crystalline polymers (gutta-percha, etc.)

  1. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing

    NASA Astrophysics Data System (ADS)

    Feng, Zhihong; Xie, Yuan; Chen, Jiancui; Yu, Yuanyuan; Zheng, Shijun; Zhang, Rui; Li, Quanning; Chen, Xuejiao; Sun, Chongling; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2017-06-01

    The unique properties of two dimensional (2D) materials make them promising candidates for chemical and biological sensing applications. However, most 2D nanomaterial sensors suffer very long recovery time due to slow molecular desorption at room temperature. Here, we report a highly sensitive molybdenum ditelluride (MoTe2) gas sensor for NO2 and NH3 detection with greatly enhanced recovery rate. The effects of gate bias on sensing performance have been systematically studied. It is found that the recovery kinetics can be effectively adjusted by biasing the sensor to different gate voltages. Under the optimum biasing potential, the MoTe2 sensor can achieve more than 90% recovery after each sensing cycle well within 10 min at room temperature. The results demonstrate the potential of MoTe2 as a promising candidate for high-performance chemical sensors. The idea of exploiting gate bias to adjust molecular desorption kinetics can be readily applied to much wider sensing platforms based on 2D nanomaterials.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows amore » phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.« less

  3. Processing Techniques Developed to Fabricate Lanthanum Titanate Piezoceramic Material for High-Temperature Smart Structures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Farmer, Serene C.; Sayir, Ali

    2004-01-01

    Piezoelectric ceramic materials are potential candidates for use as actuators and sensors in intelligent gas turbine engines. For piezoceramics to be applied in gas turbine engines, they will have to be able to function in temperatures ranging from 1000 to 2500 F. However, the maximum use temperature for state-of-the-art piezoceramic materials is on the order of 300 to 400 F. Research activities have been initiated to develop high-temperature piezoceramic materials for gas turbine engine applications. Lanthanum titanate has been shown to have high-temperature piezoelectric properties with Curie temperatures of T(sub c) = 1500 C and use temperatures greater than 1000 C. However, the fabrication of lanthanum titanate poses serious challenges because of the very high sintering temperatures required for densification. Two different techniques have been developed at the NASA Glenn Research Center to fabricate dense lanthanum titanate piezoceramic material. In one approach, lower sintering temperatures were achieved by adding yttrium oxide to commercially available lanthanum titanate powder. Addition of only 0.1 mol% yttrium oxide lowered the sintering temperature by as much as 300 C, to just 1100 C, and dense lanthanum titanate was produced by pressure-assisted sintering. The second approach utilized the same commercially available powders but used an innovative sintering approach called differential sintering, which did not require any additive.

  4. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    USDA-ARS?s Scientific Manuscript database

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  5. Comparing generalized ensemble methods for sampling of systems with many degrees of freedom

    DOE PAGES

    Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa

    2016-11-03

    Here, we compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchangemore » (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-β peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium.« less

  6. Comparing generalized ensemble methods for sampling of systems with many degrees of freedom.

    PubMed

    Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa

    2016-11-07

    We compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchange (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-β peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium (http://www.omnia.md/).

  7. Light quality and temperature effects on antirrhinum growth and development

    PubMed Central

    Khattak, Abdul Mateen; Pearson, Simon

    2005-01-01

    An experiment was carried out to examine the effects of light quality on the growth and development of antirrhinum under three different temperatures 19 °C, 24 °C and 27 °C in glasshouses. Five different colour filters (i.e. ‘Red absorbing’, ‘Blue absorbing’, ‘Blue and Red absorbing’ and two ‘partially Blue absorbing’ materials) were tested, with one clear polythene as a control. Plant height, internode length and leaf area were significantly affected by the spectral filters as well as the temperature. Analysis of color filter’s effect on presumed photoreceptors to exist indicated that antirrhinum plant height was regulated by the action of a blue acting photoreceptor (BAP) and not the phytochrome. There was no evidence for an effect of phytochrome or BAP on time to flowering, however, increasing temperature levels effectively decreased the time to flowering. To predict the effects of different spectral qualities and temperature, simple models were created from data on plant height, internode length and time to flowering. These models were then applied to simulate the potential benefits of spectral filters and temperature in manipulation of growth control and flowering in antirrhinum. PMID:15633247

  8. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    NASA Astrophysics Data System (ADS)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  9. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2.

    PubMed

    Zhang, D; Spielmann, A; Wang, L; Ding, G; Huang, F; Gu, Q; Schwarz, W

    2012-01-01

    A characteristic of mast cells is the degranulation in response to various stimuli. Here we have investigated the effects of various physical stimuli in the human mast-cell line HMC-1. We have shown that HMC-1 express the transient receptor potential channels TRPV1, TRPV2 and TRPV4. In the whole-cell patch-clamp configuration, increasing mechanical stress applied to the mast cell by hydrostatic pressure (-30 to -90 cm H(2)O applied via the patch pipette) induced a current that could be inhibited by 10 microM of ruthenium red. This current was also inhibited by 20 microM SKF96365, an inhibitor that is among TRPV channels specific for the TRPV2. A characteristic of TRPV2 is its activation by high noxious temperature; temperatures exceeding 50 °C induced a similar ruthenium-red-sensitive current. As another physical stimulus, we applied laser light of 640 nm. Here we have shown for the first time that the application of light (at 48 mW for 20 min) induced an SKF96365-sensitive current. All three physical stimuli that led to activation of SKF96365-sensitive current also induced pronounced degranulation in the mast cells, which could be blocked by ruthenium red or SKF96365. The results suggest that TRPV2 is activated by the three different types of physical stimuli. Activation of TRPV2 allows Ca(2+) ions to enter the cell, which in turn will induce degranulation. We, therefore, suggest that TRPV2 plays a key role in mast-cell degranulation in response to mechanical, heat and red laser-light stimulation.

  10. Both low and high temperature may increase the risk of stroke mortality

    PubMed Central

    Chen, Renjie; Wang, Cuicui; Meng, Xia; Chen, Honglei; Thach, Thuan Quoc; Wong, Chit-Ming

    2013-01-01

    Objective: To examine temperature in relation to stroke mortality in a multicity time series study in China. Methods: We obtained data on daily temperature and mortality from 8 large cities in China. We used quasi-Poisson generalized additive models and distributed lag nonlinear models to estimate the accumulative effects of temperature on stroke mortality across multiple days, adjusting for long-term and seasonal trends, day of the week, air pollution, and relative humidity. We applied the Bayesian hierarchical model to pool city-specific effect estimates. Results: Both cold and hot temperatures were associated with increased risk of stroke mortality. The potential effect of cold temperature might last more than 2 weeks. The pooled relative risks of extreme cold (first percentile of temperature) and cold (10th percentile of temperature) temperatures over lags 0–14 days were 1.39 (95% posterior intervals [PI] 1.18–1.64) and 1.11 (95% PI 1.06–1.17), compared with the 25th percentile of temperature. In contrast, the effect of hot temperature was more immediate. The relative risks of stroke mortality over lags 0–3 days were 1.06 (95% PI 1.02–1.10) for extreme hot temperature (99th percentile of temperature) and 1.14 (95% PI 1.05–1.24) for hot temperature (90th percentile of temperature), compared with the 75th percentile of temperature. Conclusions: This study showed that both cold and hot temperatures were associated with increased risk of stroke mortality in China. Our findings may have important implications for stroke prevention in China. PMID:23946311

  11. Both low and high temperature may increase the risk of stroke mortality.

    PubMed

    Chen, Renjie; Wang, Cuicui; Meng, Xia; Chen, Honglei; Thach, Thuan Quoc; Wong, Chit-Ming; Kan, Haidong

    2013-09-17

    To examine temperature in relation to stroke mortality in a multicity time series study in China. We obtained data on daily temperature and mortality from 8 large cities in China. We used quasi-Poisson generalized additive models and distributed lag nonlinear models to estimate the accumulative effects of temperature on stroke mortality across multiple days, adjusting for long-term and seasonal trends, day of the week, air pollution, and relative humidity. We applied the Bayesian hierarchical model to pool city-specific effect estimates. Both cold and hot temperatures were associated with increased risk of stroke mortality. The potential effect of cold temperature might last more than 2 weeks. The pooled relative risks of extreme cold (first percentile of temperature) and cold (10th percentile of temperature) temperatures over lags 0-14 days were 1.39 (95% posterior intervals [PI] 1.18-1.64) and 1.11 (95% PI 1.06-1.17), compared with the 25th percentile of temperature. In contrast, the effect of hot temperature was more immediate. The relative risks of stroke mortality over lags 0-3 days were 1.06 (95% PI 1.02-1.10) for extreme hot temperature (99th percentile of temperature) and 1.14 (95% PI 1.05-1.24) for hot temperature (90th percentile of temperature), compared with the 75th percentile of temperature. This study showed that both cold and hot temperatures were associated with increased risk of stroke mortality in China. Our findings may have important implications for stroke prevention in China.

  12. Application of multi attribute failure mode analysis of milk production using analytical hierarchy process method

    NASA Astrophysics Data System (ADS)

    Rucitra, A. L.

    2018-03-01

    Pusat Koperasi Induk Susu (PKIS) Sekar Tanjung, East Java is one of the modern dairy industries producing Ultra High Temperature (UHT) milk. A problem that often occurs in the production process in PKIS Sekar Tanjung is a mismatch between the production process and the predetermined standard. The purpose of applying Analytical Hierarchy Process (AHP) was to identify the most potential cause of failure in the milk production process. Multi Attribute Failure Mode Analysis (MAFMA) method was used to eliminate or reduce the possibility of failure when viewed from the failure causes. This method integrates the severity, occurrence, detection, and expected cost criteria obtained from depth interview with the head of the production department as an expert. The AHP approach was used to formulate the priority ranking of the cause of failure in the milk production process. At level 1, the severity has the highest weight of 0.41 or 41% compared to other criteria. While at level 2, identifying failure in the UHT milk production process, the most potential cause was the average mixing temperature of more than 70 °C which was higher than the standard temperature (≤70 ° C). This failure cause has a contributes weight of 0.47 or 47% of all criteria Therefore, this study suggested the company to control the mixing temperature to minimise or eliminate the failure in this process.

  13. Advancing decadal-scale climate prediction in the North Atlantic sector.

    PubMed

    Keenlyside, N S; Latif, M; Jungclaus, J; Kornblueh, L; Roeckner, E

    2008-05-01

    The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.

  14. Can green roofs reduce urban heat stress in vulnerable urban communities: A coupled atmospheric and social modeling approach

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.

    2017-12-01

    Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.

  15. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  16. Thermally tunable-focus lenticular lens using liquid crystal.

    PubMed

    Heo, Kyong Chan; Yu, Seung Hun; Kwon, Jin Hyuk; Gwag, Jin Seog

    2013-12-10

    A thermally tunable focusing lenticular liquid crystal (LC) lens array was fabricated using a polymer LC component, including a polarizer that produces linearly polarized light. The focal length in the proposed structure could be tuned by temperature-adjusted applied voltage to a transparent heater in a lenticular LC lens cell because it alters the birefringence of the LC and varies the difference in refractive index between the LC and the polymer. The results showed that the focal length of the E7 LC used varied continuously with temperature from 5.6 to 8.7 mm from 25°C to 54°C, respectively. The proposed lenticular LC lens has potential use in photonic devices such as biological imaging, phone cameras, and optical sensors.

  17. Reliable aluminum contact formation by electrostatic bonding

    NASA Astrophysics Data System (ADS)

    Kárpáti, T.; Pap, A. E.; Radnóczi, Gy; Beke, B.; Bársony, I.; Fürjes, P.

    2015-07-01

    The paper presents a detailed study of a reliable method developed for aluminum fusion wafer bonding assisted by the electrostatic force evolving during the anodic bonding process. The IC-compatible procedure described allows the parallel formation of electrical and mechanical contacts, facilitating a reliable packaging of electromechanical systems with backside electrical contacts. This fusion bonding method supports the fabrication of complex microelectromechanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) structures with enhanced temperature stability, which is crucial in mechanical sensor applications such as pressure or force sensors. Due to the applied electrical potential of  -1000 V the Al metal layers are compressed by electrostatic force, and at the bonding temperature of 450 °C intermetallic diffusion causes aluminum ions to migrate between metal layers.

  18. Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Schwotzer, Gunter

    2005-09-01

    Different types of advanced optical fibre sensor systems using similar spectral interrogation principles and potential low-cost polychromator optoelectronic signal processing instrumentation will be presented, and examples of their industrial application are demonstrated. These are such sensors as multimode fibre based humidity, temperature, and pressure sensors with extrinsic microoptical Fabry-Perot transducers for process control in gas industry, UV absorption evanescent field sensors for organic pollution monitoring in groundwater, and single mode fibre Bragg grating (FBG) multiplexed strain & vibration and temperature sensor networks for structural health monitoring applications in electric power facilities, aerospace, railways, geotechnical and civil engineering. Recent results of current investigations applying FBGs and microstructured fibres for chemical sensing will be discussed.

  19. Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Sulka, Grzegorz D.; Ciepiela, Eryk; Jaskuła, Marian

    2014-02-01

    Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 ∘C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.

  20. Potential impacts of climate change on water quality in a shallow reservoir in China.

    PubMed

    Zhang, Chen; Lai, Shiyu; Gao, Xueping; Xu, Liping

    2015-10-01

    To study the potential effects of climate change on water quality in a shallow reservoir in China, the field data analysis method is applied to data collected over a given monitoring period. Nine water quality parameters (water temperature, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total nitrogen, total phosphorus, chemical oxygen demand, biochemical oxygen demand and dissolved oxygen) and three climate indicators for 20 years (1992-2011) are considered. The annual trends exhibit significant trends with respect to certain water quality and climate parameters. Five parameters exhibit significant seasonality differences in the monthly means between the two decades (1992-2001 and 2002-2011) of the monitoring period. Non-parametric regression of the statistical analyses is performed to explore potential key climate drivers of water quality in the reservoir. The results indicate that seasonal changes in temperature and rainfall may have positive impacts on water quality. However, an extremely cold spring and high wind speed are likely to affect the self-stabilising equilibrium states of the reservoir, which requires attention in the future. The results suggest that land use changes have important impact on nitrogen load. This study provides useful information regarding the potential effects of climate change on water quality in developing countries.

  1. The Statistical Mechanics of Solar Wind Hydroxylation at the Moon, Within Lunar Magnetic Anomalies, and at Phobos

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Hurley, D. M.; Esposito, V. J.; Mclain, J. L.; Zimmerman, M. I.

    2017-01-01

    We present a new formalism to describe the outgassing of hydrogen initially implanted by the solar wind protons into exposed soils on airless bodies. The formalism applies a statistical mechanics approach similar to that applied recently to molecular adsorption onto activated surfaces. The key element enabling this formalism is the recognition that the interatomic potential between the implanted H and regolith-residing oxides is not of singular value but possess a distribution of trapped energy values at a given temperature, F(U,T). All subsequent derivations of the outward diffusion and H retention rely on the specific properties of this distribution. We find that solar wind hydrogen can be retained if there are sites in the implantation layer with activation energy values exceeding 0.5eV. We especially examine the dependence of H retention applying characteristic energy values found previously for irradiated silica and mature lunar samples. We also apply the formalism to two cases that differ from the typical solar wind implantation at the Moon. First, we test for a case of implantation in magnetic anomaly regions where significantly lower-energy ions of solar wind origin are expected to be incident with the surface. In magnetic anomalies, H retention is found to be reduced due to the reduced ion flux and shallower depth of implantation. Second, we also apply the model to Phobos where the surface temperature range is not as extreme as the Moon. We find the H atom retention in this second case is higher than the lunar case due to the reduced thermal extremes (that reduces outgassing).

  2. Influence of temperature gradients on charge transport in asymmetric nanochannels.

    PubMed

    Benneker, Anne M; Wendt, Hans David; Lammertink, Rob G H; Wood, Jeffery A

    2017-10-25

    Charge selective asymmetric nanochannels are used for a variety of applications, such as nanofluidic sensing devices and energy conversion applications. In this paper, we numerically investigate the influence of an applied temperature difference over tapered nanochannels on the resulting charge transport and flow behavior. Using a temperature-dependent formulation of the coupled Poisson-Nernst-Planck and Navier-Stokes equations, various nanochannel geometries are investigated. Temperature has a large influence on the total ion transport, as the diffusivity of ions and viscosity of the solution are strongly affected by temperature. We find that the selectivity of the nanochannels is enhanced with increasing asymmetry ratios, while the total current is reduced at higher asymmetry cases. Most interestingly, we find that applying a temperature gradient along the electric field and along the asymmetry direction of the nanochannel enhances the selectivity of the tapered channels even further, while a temperature gradient countering the electric field reduces the selectivity of the nanochannel. Current rectification is enhanced in asymmetric nanochannels if a temperature gradient is applied, independent of the direction of the temperature difference. However, the degree of rectification is dependent on the direction of the temperature gradient with respect to the channel geometry and the electric field direction. The enhanced selectivity of nanochannels due to applied temperature gradients could result in more efficient operation in energy harvesting or desalination applications, motivating experimental investigations.

  3. Implications of plant acclimation for future climate-carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Kattge, Jens; Cox, Peter; Sitch, Stephen; Knorr, Wolfgang; Lloyd, Jon; Huntingford, Chris

    2010-05-01

    The response of land ecosystems to climate change and associated feedbacks are a key uncertainty in future climate prediction (Friedlingstein et al. 2006). However global models generally do not account for the acclimation of plant physiological processes to increased temperatures. Here we conduct a first global sensitivity study whereby we modify the Joint UK land Environment Simulator (JULES) to account for temperature acclimation of two main photosynthetic parameters, Vcmax and Jmax (Kattge and Knorr 2007) and plant respiration (Atkin and Tjoelker 2003). The model is then applied over the 21st Century within the IMOGEN framework (Huntingford et al. 2004). Model simulations will provide new and improved projections of biogeochemical cycling, forest resilience, and thus more accurate projections of climate-carbon cycle feedbacks and the future evolution of the Earth System. Friedlingstein P, Cox PM, Betts R et al. (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353. Kattge J and Knorr W (2007): Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment 30, 1176-1190 Atkin O.K and Tjoelker, M. G. (2003): Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8 (7), 343-351 Huntingford C, et al. (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78, 177-185.

  4. Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis

    NASA Astrophysics Data System (ADS)

    Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y.

    2017-07-01

    The development of cost-effective cathodes, operating at neutral pH and ambient temperatures, is a crucial challenge for the practical application of microbial electrolysis cell (MEC) technology. In this study, NiW and NiMo co-deposits produced by electroplating on Ni-foam are explored as cathodes in MEC. The fabricated electrodes exhibit higher corrosion stability and enhanced electrocatalytic activity towards hydrogen evolution reaction in neutral electrolyte compared to the bare Ni-foam. NiW/Ni-foam electrodes possess six times higher intrinsic catalytic activity, estimated from data obtained by linear voltammetry and chronoamperometry. The newly developed electrodes are applied as cathodes in single-chamber membrane-free MEC reactors, inoculated with wastewater and activated sludge from a municipal wastewater treatment plant. Cathodic hydrogen recovery of 79% and 89% by using NiW and NiMo cathodes, respectively, is achieved at applied voltage of 0.6 V. The obtained results reveal potential for practical application of used catalysts in MEC.

  5. Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation

    PubMed Central

    Suter, Clemens; Tomeš, Petr; Weidenkaff, Anke; Steinfeld, Aldo

    2010-01-01

    A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrical potential are formulated, discretized and solved numerically by applying the finite volume (FV) method. The model is validated in terms of experimentally measured temperatures and voltages/power using a set of TEC demonstrator modules, subjected to a peak radiative flux intensity of 300 suns. The heat transfer model is then applied to examine the effect of the geometrical parameters (e.g. length/width of legs) on the solar-to-electricity energy conversion efficiency.

  6. Estimating Long-Term Survival Temperatures at the Assemblage Level in the Marine Environment: Towards Macrophysiology

    PubMed Central

    Richard, Joëlle; Morley, Simon Anthony; Thorne, Michael A. S.; Peck, Lloyd Samuel

    2012-01-01

    Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming. PMID:22509340

  7. Bone heat generated using conventional implant drills versus piezosurgery unit during apical cortical plate perforation.

    PubMed

    Lajolo, Carlo; Valente, Nicola Alberto; Romandini, William Giuseppe; Petruzzi, Massimo; Verdugo, Fernando; D'Addona, Antonio

    2018-03-09

    The apical portion of the implant osteotomy receives less irrigation and cooling during surgical preparation. High bone temperatures, above the critical 10°C threshold, may impair osseointegration, particularly, around dense cortical bone. The aim of this study is to evaluate the apical cortical plate temperature increase with two different devices and pressure loads in a porcine rib ex-vivo model. Twenty-four implant sites were prepared on porcine ribs divided into 4 groups of 6 samples each according to the device used (conventional drill system or piezosurgery) and pressure load applied (1000 g or 1500 g). A rubber dam was used to isolate the apical cortical plate from the cooling effect of irrigation. Temperature variation measurements were taken using an infrared thermometer. The piezosurgery unit was 2 times more likely to increase the osteotomy temperature by 10.0°C (OR = 2; 95% CI = 1.136-3.522; p < 0.05). The average temperature increase was 0.07°C (SD = 0.10) for group 1 (drill system-1,000 g), 0.22°C (SD = 0.26) for group 2 (drill system-1,500 g), 9.18°C (SD = 4.51) for group 3 (piezosurgery-1000 g) and 8.17°C (SD = 6.12) for group 4 (piezosurgery-1,500 g). The piezosurgery site preparation caused significantly higher temperature increase than conventional drills (p < 0.05). There was no statistically significant difference in temperature change between the two pressure loads applied (p = 0.78). Temperature increases exceeded the critical 10°C threshold in half of the samples prepared with the piezoelectric device. Bone overheating using a piezosurgery unit is a potential risk during implant site preparation. The piezosurgical device reached significantly higher temperatures than conventional drilling at the apical cortical portion of the osteotomy. The temperature increase is often higher than the critical 10°C threshold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    USDA-ARS?s Scientific Manuscript database

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  9. Using the two-way shape memory effect of NiTi to control surface texture for cellular mechanotransduction

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Qin, Haifeng; Hou, Xiaoning; Doll, Gary L.; Ye, Chang; Dong, Yalin

    2018-07-01

    Mechanical force can crucially affect form and function of cells, and play critical roles in many diseases. While techniques to conveniently apply mechanical force to cells are limited, we fabricate a surface actuator prototype for cellular mechanotransduction by imparting severe plastic deformation into the surface of shape memory alloy (SMA). Using ultrasonic nanocrystal surface modification (UNSM), a deformation-based surface engineering technique with high controllability, micro surface patterns can be generated on the surface of SMA so that the micro-size cell can conform to the pattern; meanwhile, phase transformation can be induced in the subsurface by severe plastic deformation. By controlling plastic deformation and phase transformation, it is possible to establish a quantitative relation between deformation and temperature. When cells are cultured on the UNSM-treated surface, such surface can dynamically deform in response to external temperature change, and therefore apply controllable mechanical force to cells. Through this study, we demonstrate a novel way to fabricate a low-cost surface actuator that has the potential to be used for high-throughput cellular mechanotransduction.

  10. Validating Experimental and Theoretical Langmuir Probe Analyses

    NASA Astrophysics Data System (ADS)

    Pilling, Lawrence Stuart; Carnegie, Dale

    2004-11-01

    Analysis of Langmuir probe characteristics contains a paradox in that it is unknown a priori which theory is applicable before it is applied. Often theories are assumed to be correct when certain criteria are met although they may not validate the approach used. We have analysed the Langmuir probe data from cylindrical double and single probes acquired from a DC discharge plasma over a wide variety of conditions. This discharge contains a dual temperature distribution and hence fitting a theoretically generated curve is impractical. To determine the densities an examination of the current theories was necessary. For the conditions where the probe radius is the same order of magnitude as the Debye length, the gradient expected for orbital motion limited (OML) is approximately the same as the radial motion gradients. An analysis of the gradients from the radial motion theory was able to resolve the differences from the OML gradient value of two. The method was also able to determine whether radial or OML theories applied without knowledge of the electron temperature. Only the position of the space charge potential is necessary to determine the applicable theory.

  11. Unique sodium phosphosilicate glasses designed through extended topological constraint theory.

    PubMed

    Zeng, Huidan; Jiang, Qi; Liu, Zhao; Li, Xiang; Ren, Jing; Chen, Guorong; Liu, Fude; Peng, Shou

    2014-05-15

    Sodium phosphosilicate glasses exhibit unique properties with mixed network formers, and have various potential applications. However, proper understanding on the network structures and property-oriented methodology based on compositional changes are lacking. In this study, we have developed an extended topological constraint theory and applied it successfully to analyze the composition dependence of glass transition temperature (Tg) and hardness of sodium phosphosilicate glasses. It was found that the hardness and Tg of glasses do not always increase with the content of SiO2, and there exist maximum hardness and Tg at a certain content of SiO2. In particular, a unique glass (20Na2O-17SiO2-63P2O5) exhibits a low glass transition temperature (589 K) but still has relatively high hardness (4.42 GPa) mainly due to the high fraction of highly coordinated network former Si((6)). Because of its convenient forming and manufacturing, such kind of phosphosilicate glasses has a lot of valuable applications in optical fibers, optical amplifiers, biomaterials, and fuel cells. Also, such methodology can be applied to other types of phosphosilicate glasses with similar structures.

  12. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2017-07-01

    Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.

  13. Application of edible coating from cassava peel – bay leaf on avocado

    NASA Astrophysics Data System (ADS)

    Handayani, M. N.; Karlina, S.; Sugiarti, Y.; Cakrawati, D.

    2018-05-01

    Avocados have a fairly short shelf life and are included in climacteric fruits. Edible coating application is one alternative to maintain the shelf life of avocado. Cassava peel starch is potential to be used as raw material for edible coating making. Addition of bay leaf extract containing antioxidants can increase the functional value of edible coating. The purpose of this study is to know the shrinkage of weight, acid number, color change and respiration rate of avocado coated with edible coating from cassava peel starch with an addition of bay leaf extract. The study consisted of making cassava peel starch, bay leaf extraction, edible coating making, edible coating application on avocado, and analysis of avocado characteristics during storage at room temperature. The results showed that addition of bay leaf extract on cassava peel starch edible coating applied to avocado, an effect on characteristics of avocado. Avocado applied edible coating and stored at room temperatures had lower weight loss than avocado without edible coating, lower acid number, tend to be more able to maintain color rather than avocado without edible coating.

  14. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    PubMed

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  15. Automatic control of finite element models for temperature-controlled radiofrequency ablation.

    PubMed

    Haemmerich, Dieter; Webster, John G

    2005-07-14

    The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.

  16. A multi-state synthetic ferrimagnet with controllable switching near room temperature

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2018-06-01

    Ferrite composites with temperature-induced magnetization reversal, and synthetic ferrimagnets and antiferromagnets have been of great interest to the scientific community due to their uncommon thermal properties and potential applications in magnetic storage, spintronic devices, and several other fields. One of the advantages of these structures is the strong antiferromagnetic coupling, which stabilizes the magnetization state and gives access to interesting static and dynamical magnetic behaviors. Some of their drawbacks lie in that it is difficult to induce temperature-induced magnetization reversal at room temperature in composites, and that the strong interaction makes it difficult to induce a parallel magnetization state (and thus a high magnetic moment). In this work, we study numerically the magnetization behaviour of a Cu(1 0 0)/Ni/Pt/[Co/Pt]4 synthetic ferrimagnet and show that is possible to revert the sign of its magnetization by varying the temperature in ranges around room temperature. We also show that the four parallel and antiparallel magnetization states are stable at temperatures up to 360 K, and demonstrate that it is possible to change deterministically between these states by increasing the temperature of the device and/or applying a magnetic field, showcasing simultaneous non-hysteretic and hysteretic switching processes induced by temperature. Thus, this structure opens the possibility to have reconfigurable magnetic devices with multiple purposes based on the nature of the different switching events and the interplay between them.

  17. Towards an Electrochemical Immunosensor System with Temperature Control for Cytokine Detection.

    PubMed

    Metzner, Julia; Luckert, Katrin; Lemuth, Karin; Hämmerle, Martin; Moos, Ralf

    2018-04-24

    The cytokine interleukin-13 (IL-13) plays a major role in airway inflammation and is a target of new anti-asthmatic drugs. Hence, IL-13 determination could be interesting in assessing therapy success. Thus, in this work an electrochemical immunosensor for IL-13 was developed and integrated into a fluidic system with temperature control for read-out. Therefore, two sets of results are presented. First, the sensor was set up in sandwich format on single-walled carbon nanotube electrodes and was read out by applying the hydrogen peroxide⁻hydroquinone⁻horseradish peroxidase (HRP) system. Second, a fluidic system was built up with an integrated heating function realized by Peltier elements that allowed a temperature-controlled read-out of the immunosensor in order to study the influence of temperature on the amperometric read-out. The sensor was characterized at the temperature optimum of HRP at 30 °C and at 12 °C as a reference for lower performance. These results were compared to a measurement without temperature control. At the optimum operation temperature of 30 °C, the highest sensitivity (slope) was obtained compared to lower temperatures and a limit of detection of 5.4 ng/mL of IL-13 was calculated. Taken together, this approach is a first step towards an automated electrochemical immunosensor platform and shows the potential of a temperature-controlled read-out.

  18. Voltage tunability of thermal conductivity in ferroelectric materials

    DOEpatents

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  19. Dynamic Control of Radiative Heat Transfer with Tunable Materials for Thermal Management in Both Far and Near Fields

    NASA Astrophysics Data System (ADS)

    Yang, Yue

    The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping. (Abstract shortened by ProQuest.).

  20. Self-consistent mean-field approach to the statistical level density in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Kolomietz, V. M.; Sanzhur, A. I.; Shlomo, S.

    2018-06-01

    A self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skyrme forces is applied to the calculations of the statistical level density in spherical nuclei. Landau's concept of quasiparticles with the nucleon effective mass and the correct description of the continuum states for the finite-depth potentials are taken into consideration. The A dependence and the temperature dependence of the statistical inverse level-density parameter K is obtained in a good agreement with experimental data.

  1. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures

    PubMed Central

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  2. Trajectory dynamics study of the Ar + CH4 dissociation reaction at high temperatures: the importance of zero-point-energy effects.

    PubMed

    Marques, J M C; Martínez-Núñez, E; Fernandez-Ramos, A; Vazquez, S A

    2005-06-23

    Large-scale classical trajectory calculations have been performed to study the reaction Ar + CH4--> CH3 +H + Ar in the temperature range 2500 < or = T/K < or = 4500. The potential energy surface used for ArCH4 is the sum of the nonbonding pairwise potentials of Hase and collaborators (J. Chem. Phys. 2001, 114, 535) that models the intermolecular interaction and the CH4 intramolecular potential of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339), which has been modified to account for the H-H repulsion at small bending angles. The thermal rate coefficient has been calculated, and the zero-point energy (ZPE) of the CH3 product molecule has been taken into account in the analysis of the results; also, two approaches have been applied for discarding predissociative trajectories. In both cases, good agreement is observed between the experimental and trajectory results after imposing the ZPE of CH3. The energy-transfer parameters have also been obtained from trajectory calculations and compared with available values estimated from experiment using the master equation formalism; in general, the agreement is good.

  3. High-κ Al2O3 material in low temperature wafer-level bonding for 3D integration application

    NASA Astrophysics Data System (ADS)

    Fan, J.; Tu, L. C.; Tan, C. S.

    2014-03-01

    This work systematically investigated a high-κ Al2O3 material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al2O3 layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO2), a higher interfacial adhesion energy (˜11.93 J/m2) and a lower helium leak rate (˜6.84 × 10-10 atm.cm3/sec) were detected for samples bonded using Al2O3. More importantly, due to the excellent thermal conductivity performance of Al2O3, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  4. Linear and nonlinear analysis of kinetic Alfven waves in quantum magneto-plasmas with arbitrary temperature degeneracy

    NASA Astrophysics Data System (ADS)

    Sadiq, Nauman; Ahmad, Mushtaq; Farooq, M.; Jan, Qasim

    2018-06-01

    Linear and nonlinear kinetic Alfven waves (KAWs) are studied in collisionless, non-relativistic two fluid quantum magneto-plasmas by considering arbitrary temperature degeneracy. A general coupling parameter is applied to discuss the range of validity of the proposed model in nearly degenerate and nearly non-degenerate plasma limits. Linear analysis of KAWs shows an increase (decrease) in frequency with the increase in parameter ζ ( δ ) for the nearly non-degenerate (nearly degenerate) plasma limit. The energy integral equation in the form of Sagdeev potential is obtained by using the approach of the Lorentz transformation. The analysis reveals that the amplitude of the Sagdeev potential curves and soliton structures remains the same, but the potential depth and width of soliton structure change for both the limiting cases. It is further observed that only density hump structures are formed in the sub-alfvenic region for value Kz 2 > 1 . The effects of parameters ζ, δ on the nonlinear properties of KAWs are shown in graphical plots. New results for comparison with earlier work have also been highlighted. The significance of this work to astrophysical plasmas is also emphasized.

  5. Microcanonical ensemble simulation method applied to discrete potential fluids

    NASA Astrophysics Data System (ADS)

    Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro

    2015-09-01

    In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.

  6. Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator.

    PubMed

    Zhu, Jiu Yang; Thurgood, Peter; Nguyen, Ngan; Ghorbani, Kamran; Khoshmanesh, Khashayar

    2017-11-07

    Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.

  7. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Zhen; Wan, Xianhui; Xu, Min Nina; Hsiao, Silver Sung-Yun; Zhang, Yao; Zheng, Li-Wei; Wu, Yanhua; Zou, Wenbin; Kao, Shuh-Ji

    2017-09-01

    Despite being the only link between reduced and oxidized nitrogen, the impact of environmental factors on nitrification, temperature and particles, in particular, remains unclear for coastal zones. By using the 15NH4+-labeling technique, we determined nitrification rates in bulk (NTRB) and free-living (NTRF, after removing particles >3 μm) for water samples with varying particle concentrations (as sampled at different tidal stages) during autumn, winter, and summer in a eutrophic coastal bay in southern China. The highest NTRB occurred in autumn, when particle concentrations were highest. In general, particle-associated nitrification rates (NTRP, >3 μm) were higher than NTRF and increased with particle abundance. Regardless of seasonally distinctive temperature and particle concentrations, nitrification exhibited consistent temperature dependence in all cases (including bulk, particle-associated, and free-living) with a Q10 value of 2.2. Meanwhile, the optimum temperature for NTRP was 29°C, 5°C higher than that for NTRF although the causes for such a difference remained unclear. Strong temperature dependence and particle association suggest that nitrification is sensitive to temperature change (seasonality and global warming) and to ocean dynamics (wave and tide). Our results can potentially be applied to biogeochemical models of the nitrogen cycle for future predictions.

  8. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature

    NASA Astrophysics Data System (ADS)

    Zounemat-Kermani, Mohammad

    2012-08-01

    In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.

  9. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Guo, Xiangfeng; Jia, Lihua; Zhang, Yu; Zhao, Zhenlong; Lonshakov, Fedor

    2017-11-01

    A simple method was developed in the synthesis of fluorescent carbon dots (referred to as M-CDs), calcined treatment of mangosteen pulp in air, without the assistance of any chemical reagent. The M-CDs possess good-solubility, satisfactory chemical stability and can be applied as the fluorescent temperature probe. More strikingly, the fluorescence of M-CDs can be fleetly and selectively quenched by Fe3+ ions. The phenomenon was used to develop a fluorescent method for facile detection of Fe3+ with a linear range of 0-0.18 mM and a detection limit of 52 nM. Eventually, the M-CDs were applied for cell imaging, demonstrating their potential toward diverse applications.

  10. Time-Series Analysis: A Cautionary Tale

    NASA Technical Reports Server (NTRS)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  11. Coupled long term simulation of reach scale water and heat fluxes across the river groundwater interface and hyporheic temperature dynamics

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-04-01

    Flow pattern and seasonal as well as diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many microbial processes. In this study we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high frequent observations of hydraulic heads and temperatures for quantifying reach scale water and heat flux across the river groundwater interface and hyporheic temperature dynamics of a lowland gravel-bed river. The magnitude and dynamics of simulated temperatures matched the observed with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. Our results highlight that the average temperature in the hyporheic zone follows the temperature in the river which is characterized by distinct seasonal and daily temperature cycles. Individual hyporheic flow path temperature substantially varies around the average hyporheic temperature. Hyporheic flow path temperature was found to strongly depend on the flow path residence time and the temperature gradient between river and groundwater; that is, in winter the average flow path temperature of long flow paths is potentially higher compared to short flow paths. Based on the simulation results we derived a general empirical relationship, estimating the influence of hyporheic flow path residence time on hyporheic flow path temperature. Furthermore we used an empirical temperature relationship between effective temperature and respiration rate to estimate the influence of hyporheic flow path residence time and temperature on hyporheic oxygen consumption. This study highlights the relation between complex hyporheic temperature patterns, hyporheic residence times and their implications on temperature sensitive biogeochemical processes.

  12. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  13. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings.

    PubMed

    Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  14. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    PubMed Central

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-01-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328

  15. Evaluation of NLDAS 12-km and downscaled 1-km temperature products in New York State for potential use in health exposure response studies

    NASA Astrophysics Data System (ADS)

    Estes, M. G., Jr.; Insaf, T.; Crosson, W. L.; Al-Hamdan, M. Z.

    2017-12-01

    Heat exposure metrics (maximum and minimum daily temperatures,) have a close relationship with human health. While meteorological station data provide a good source of point measurements, temporal and spatially consistent temperature data are needed for health studies. Reanalysis data such as the North American Land Data Assimilation System's (NLDAS) 12-km gridded product are an effort to resolve spatio-temporal environmental data issues; the resolution may be too coarse to accurately capture the effects of elevation, mixed land/water areas, and urbanization. As part of this NASA Applied Sciences Program funded project, the NLDAS 12-km air temperature product has been downscaled to 1-km using MODIS Land Surface Temperature patterns. Limited validation of the native 12-km NLDAS reanalysis data has been undertaken. Our objective is to evaluate the accuracy of both the 12-km and 1-km downscaled products using the US Historical Climatology Network station data geographically dispersed across New York State. Statistical methods including correlation, scatterplots, time series and summary statistics were used to determine the accuracy of the remotely-sensed maximum and minimum temperature products. The specific effects of elevation and slope on remotely-sensed temperature product accuracy were determined with 10-m digital elevation data that were used to calculate percent slope and link with the temperature products at multiple scales. Preliminary results indicate the downscaled temperature product improves accuracy over the native 12-km temperature product with average correlation improvements from 0.81 to 0.85 for minimum and 0.71 to 0.79 for maximum temperatures in 2009. However, the benefits vary temporally and geographically. Our results will inform health studies using remotely-sensed temperature products to determine health risk from excessive heat by providing a more robust assessment of the accuracy of the 12-km NLDAS product and additional accuracy gained from the 1-km downscaled product. Also, the results will be shared with the National Weather Service to determine potential benefits to heat warning systems and evaluated for inclusion in the Centers of Disease Control and Prevention (CDC) Environmental Public Health Tracking Network as a resource for the health community.

  16. 'Enzyme Test Bench': A biochemical application of the multi-rate modeling

    NASA Astrophysics Data System (ADS)

    Rachinskiy, K.; Schultze, H.; Boy, M.; Büchs, J.

    2008-11-01

    In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new technique allows for both: the enzyme screening with regard to the long term stability and the choice of the optimal process temperature. The presented article gives a successful example for the application of multi-rate modeling, experimental design and parameter estimation within biochemical engineering. At the same time, it shows the limitations of the methods at the state of the art and addresses the current problems to the applied mathematics community.

  17. Electron dynamics and potential jump across slow mode shocks

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Douglas, Fraser T.; Thomsen, Michelle F.; Feldman, William C.

    1987-01-01

    In the de Hoffmann-Teller reference frame, the cross-shock electric field is simply the thermoelectric field responsible for preserving charge neutrality. As such, it gives information regarding the heating and dissipation occurring within the shock. The total cross-shock potential can be determined by integrating a weighted electron pressure gradient through the shock, but this requires knowledge of the density and temperature profiles. Here, a recently proposed alternative approach relying on particle dynamics is exploited to provide an independent estimate of this potential. Both determinations are applied to slow mode shocks which form the plasma sheet boundary in the deep geomagnetic tail as observed by ISEE 3. The two methods correlate well. There is no indication of the expected transition from resistive to viscous shocks, although the highest Mach number shocks show the highest potentials. The implications of these results for the electron dissipation mechanisms and turbulence at the shock are discussed.

  18. Electron heating and the potential jump across fast mode shocks. [in interplanetary space

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John

    1988-01-01

    Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.

  19. Comparison of interpretation methods of thermocouple psychrometer readouts

    NASA Astrophysics Data System (ADS)

    Guz, Łukasz; Majerek, Dariusz; Sobczuk, Henryk; Guz, Ewa; Połednik, Bernard

    2017-07-01

    Thermocouple psychrometers allow to determine the water potential, which can be easily recalculated into relative humidity of air in cavity of porous materials. The available typical measuring range of probe is very narrow. The lower limit of water potential measurements is about -200 kPa. On the other hand, the upper limit is approximately equal to -7000 kPa and depends on many factors. These paper presents a comparison of two interpretation methods of thermocouple microvolt output regarding: i) amplitude of voltage during wet-bulb temperature depression, ii) field under microvolt output curve. Previous results of experiments indicate that there is a robust correlation between water potential and field under microvolt output curve. In order to obtain correct results of water potential, each probe should be calibrated. The range of NaCl salt solutions with molality from 0.75M to 2.25M was used for calibration, which enable to obtain the osmotic potential from -3377 kPa to -10865 kPa. During measurements was applied 5mA heating current over a span 5 s and 5 mA cooling current aver a span 30s. The conducted study proves that using only different interpretation method based on field under microvolt output it is possible to achieve about 1000 kPa wider range of water potential. The average relative mean square error (RMSE) of this interpretation method is 1199 kPa while voltage amplitude based method yields average RMSE equaling 1378 kPa during calibration in temperature not stabilized conditions.

  20. Hot spots of wheat yield decline with rising temperatures.

    PubMed

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  1. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  2. Empirical potential influence and effect of temperature on the mechanical properties of pristine and defective hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2017-06-01

    The major objective of this work is to present results of a classical molecular dynamics study to investigate the effect of changing the cut-off distance in the empirical potential on the stress-strain relation and also the temperature dependent Young’s modulus of pristine and defective hexagonal boron nitride. As the temperature increases, the computed Young’s modulus shows a significant decrease along both the armchair and zigzag directions. The computed Young’s modulus shows a trend in keeping with the structural anisotropy of h-BN. The variation of Young’s modulus with system size is elucidated. The observed mechanical strength of h-BN is significantly affected by the vacancy and Stone-Wales type defects. The computed room temperature Young’s modulus of pristine h-BN is 755 GPa and 769 GPa respectively along the armchair and zigzag directions. The decrease of Young’s modulus with increase in temperature has been analyzed and the results show that the system with zigzag edge shows a higher value of Young’s modulus in comparison to that with armchair edge. As the temperature increases, the computed stiffness decreases and the system with zigzag edge possesses a higher value of stiffness as compared to the armchair counterpart and this behaviour is consistent with the variation of Young’s modulus. The defect analysis shows that presence of vacancy type defects leads to a higher Young’s modulus, in the studied range with different percentage of defect concentration, in comparison with Stone-Wales defect. The variations in the peak position of the computed radial distribution function reveals the changes in the structural features of systems with zigzag and armchair edges in the presence of applied stress.

  3. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  4. Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Goring, Simon

    2017-01-01

    Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uniquely challenging to model statistically. We reconstruct spatially explicit temperature surfaces from sparse and noisy measurements recorded at historical United States military forts and other observer stations from 1820 to 1894. One common method for reconstructing the paleoclimate from proxy data is principal component regression (PCR). With PCR, one learns a statistical relationship between the paleoclimate proxy data and a set of climate observations that are used as patterns for potential reconstruction scenarios. We explore PCR in a Bayesian hierarchical framework, extending classical PCR in a variety of ways. First, we model the latent principal components probabilistically, accounting for measurement error in the observational data. Next, we extend our method to better accommodate outliers that occur in the proxy data. Finally, we explore alternatives to the truncation of lower-order principal components using different regularization techniques. One fundamental challenge in paleoclimate reconstruction efforts is the lack of out-of-sample data for predictive validation. Cross-validation is of potential value, but is computationally expensive and potentially sensitive to outliers in sparse data scenarios. To overcome the limitations that a lack of out-of-sample records presents, we test our methods using a simulation study, applying proper scoring rules including a computationally efficient approximation to leave-one-out cross-validation using the log score to validate model performance. The result of our analysis is a spatially explicit reconstruction of spatio-temporal temperature from a very sparse historical record.

  5. Thermodynamic framework for compact q-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Souza, Andre M. C.; Andrade, Roberto F. S.; Nobre, Fernando D.; Curado, Evaldo M. F.

    2018-02-01

    Recent works have associated systems of particles, characterized by short-range repulsive interactions and evolving under overdamped motion, to a nonlinear Fokker-Planck equation within the class of nonextensive statistical mechanics, with a nonlinear diffusion contribution whose exponent is given by ν = 2 - q. The particular case ν = 2 applies to interacting vortices in type-II superconductors, whereas ν > 2 covers systems of particles characterized by short-range power-law interactions, where correlations among particles are taken into account. In the former case, several studies presented a consistent thermodynamic framework based on the definition of an effective temperature θ (presenting experimental values much higher than typical room temperatures T, so that thermal noise could be neglected), conjugated to a generalized entropy sν (with ν = 2). Herein, the whole thermodynamic scheme is revisited and extended to systems of particles interacting repulsively, through short-ranged potentials, described by an entropy sν, with ν > 1, covering the ν = 2 (vortices in type-II superconductors) and ν > 2 (short-range power-law interactions) physical examples. One basic requirement concerns a cutoff in the equilibrium distribution Peq(x) , approached due to a confining external harmonic potential, ϕ(x) = αx2 / 2 (α > 0). The main results achieved are: (a) The definition of an effective temperature θ conjugated to the entropy sν; (b) The construction of a Carnot cycle, whose efficiency is shown to be η = 1 -(θ2 /θ1) , where θ1 and θ2 are the effective temperatures associated with two isothermal transformations, with θ1 >θ2; (c) Thermodynamic potentials, Maxwell relations, and response functions. The present thermodynamic framework, for a system of interacting particles under the above-mentioned conditions, and associated to an entropy sν, with ν > 1, certainly enlarges the possibility of experimental verifications.

  6. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    NASA Astrophysics Data System (ADS)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  7. Thermal injury secondary to laparoscopic fiber-optic cables.

    PubMed

    Hindle, A Katharine; Brody, Fred; Hopkins, Vernon; Rosales, Greg; Gonzalez, Florencia; Schwartz, Arnold

    2009-08-01

    Laparoscopy requires a reliable light source to provide adequate visualization. However, thermal energy is produced as a by-product from the optical cable. This study attempts to quantify the degree of possible thermal damage secondary to the fiber-optic light source. Using a digital thermometer, temperature measurements were recorded at the tip of optical cables from five different light sources (Karl Storz, Inc., Tuttlingen, Germany). Temperature measurements were recorded with new and old bulbs. The tip of the cable was applied to surgical drapes and the time to charring was recorded. Subsequently, the tip of the optical cable was applied to a porcine model and tissue samples were obtained after varying amounts of time (5, 15, 30, 60, and 90 s). Sections of the damaged tissue were prepared for microscopic evaluation. Parameters for thermal injury included extent of epidermal, dermal, and subcutaneous fat damage and necrosis. The lateral extent and depth of injury were measured. The maximum temperature at the tip of the optical cable varied between 119.5 degrees C and 268.6 degrees C. When surgical drapes were exposed to the tip of the light source, the time to char was 3-6 s. The degree and volume of injury increased with longer exposure times, and significant injury was recorded with the optical cable 3 mm from the skin. This study demonstrates that the temperature at the tip of the optical light cord can induce extensive damage. The by-product of light, heat, can produce immediate superficial tissue necrosis that can extend into the subcutaneous fat even when the optical tip is not in direct contact with the skin. In addition, our study shows the variation in temperature that exists between light sources and bulb status. Overall, surgeons must realize and respect the potential complications associated with optical technology.

  8. 5-HT1a activation in PO/AH area induces therapeutic hypothermia in a rat model of intracerebral hemorrhage

    PubMed Central

    Liang, Tan; Chen, Qianwei; Li, Qiang; Li, Rongwei; Tang, Jun; Hu, Rong; Zhong, Jun; Ge, Hongfei; Liu, Xin; Hua, Feng

    2017-01-01

    Therapeutic hypothermia is widely applied as a neuroprotective measure on intracerebral hemorrhage (ICH). However, several clinical trials regarding physical hypothermia encountered successive failures because of its side-effects in recent years. Increasing evidences indicate that chemical hypothermia that targets hypothalamic 5-HT1a has potential to down-regulate temperature set point without major side-effects. Thus, this study examined the efficacy and safety of 5-HT1a stimulation in PO/AH area for treating ICH rats. First, the relationship between head temperature and clinical outcomes was investigated in ICH patients and rat models, respectively. Second, the expression and distribution of 5-HT1a receptor in PO/AH area was explored by using whole-cell patch and confocal microscopy. In the meantime, the whole-cell patch was subsequently applied to investigate the involvement of 5-HT1a receptors in temperature regulation. Third, we compared the efficacy between traditional PH and 5-HT1a activation-induced hypothermia for ICH rats. Our data showed that more severe perihematomal edema (PHE) and neurological deficits was associated with increased head temperature following ICH. 5-HT1a receptor was located on warm-sensitive neurons in PO/AH area and 8-OH-DPAT (5-HT1a receptor agonist) significantly enhanced the firing rate of warm-sensitive neurons. 8-OH-DPAT treatment provided a steadier reduction in brain temperature without a withdrawal rebound, which also exhibited a superior neuroprotective effect on ICH-induced neurological dysfunction, white matter injury and BBB damage compared with physical hypothermia. These findings suggest that chemical hypothermia targeting 5-HT1a receptor in PO/AH area could act as a novel therapeutic manner against ICH, which may provide a breakthrough for therapeutic hypothermia. PMID:29088731

  9. Hydrologic vulnerability of tribal reservation lands across the U.S.

    NASA Astrophysics Data System (ADS)

    Jones, C., Jr.; Leibowitz, S. G.; Sawicz, K. A.; Comeleo, R. L.; Stratton, L. E.

    2017-12-01

    We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability to climate of the United States (U.S.) with special emphasis on tribal lands. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We map climate vulnerability by integrating a retrospective analysis of historical climate and hydrology into the HL approach, comparing this baseline of variability with future projections of temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of the water surplus. Projections that are not within two standard deviations of the historical decadal average contribute to the vulnerability index for each metric. This allows stakeholders and/or water resource managers to understand the potential impacts of future conditions. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices across the U.S. including all tribal reservations. Precipitation vulnerability is not as spatially-uniform as temperature. Most areas with snow are projected to experience significant changes in future snow accumulation. The seasonality vulnerability map shows that mountainous areas in the West are most prone to changes in seasonality. This paper illustrates how the HL approach can help assess climatic and hydrologic vulnerability for disadvantaged groups across the U.S. By combining the HL concept and climate vulnerability analyses, we provide an approach that can assist tribal resource managers to perform vulnerability assessments and adaptation plans, which is a major priority for the tribes nationwide.

  10. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  11. Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts

    PubMed Central

    Itoh, Hideki; Oyama, Kotaro; Suzuki, Madoka; Ishiwata, Shin’ichi

    2014-01-01

    Temperature-sensitive Ca2+ dynamics occur primarily through transient receptor potential channels, but also by means of Ca2+ channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca2+ concentration ([Ca2+]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses (heating duration: 2 s or 150 s) on [Ca2+]cyt in single WI-38 fibroblasts, which are considered as normal cells. We found that Ca2+ burst occurred immediately after short (2 s) heat pulse, which is similar to our previous report on HeLa cells, but with less thermosensitivity. The heat pulses originated from a focused 1455-nm infrared laser light were applied in the vicinity of cells under the optical microscope. Ca2+ bursts induced by the heat pulse were suppressed by treating cells with inhibitors for sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) or inositol trisphosphate receptor (IP3R). Long (150 s) heat pulses also induced Ca2+ bursts after the onset of heating and immediately after re-cooling. Cells were more thermosensitive at physiological (37°C) than at room (25°C) temperature; however, at 37°C, cells were responsive at a higher temperature (ambient temperature+heat pulse). These results strongly suggest that the heat pulse-induced Ca2+ burst is caused by a transient imbalance in Ca2+ flow between SERCA and IP3R, and offer a potential new method for thermally controlling Ca2+-regulated cellular functions. PMID:27493505

  12. Nutrient losses from Fall and Winter-applied manure: Effects of timing and soil temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a major environmental factor that affects both the infiltration of meltwater and precipitation, and nutrient cycling. The objectives of this study were to determine nutrient losses in runoff and leachate from fall and winter-applied dairy manure based on the soil temperature at t...

  13. Nutrient losses from fall- and winter-applied manure: effects of timing and soil temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a major environmental factor that affects meltwater and precipitation infiltration and nutrient cycling. The objective of this study was to determine nutrient losses in runoff and leachate from fall- and winter-applied dairy manure as affected by soil temperature at the time of a...

  14. Temperature, traffic-related air pollution, and heart rate variability in a panel of healthy adults.

    PubMed

    Wu, Shaowei; Deng, Furong; Liu, Youcheng; Shima, Masayuki; Niu, Jie; Huang, Qinsheng; Guo, Xinbiao

    2013-01-01

    Both ambient temperature and air pollution have been associated with alterations in cardiac autonomic function, but the responsive patterns associated with temperature exposure and the interactive effects of temperature and air pollution remain largely unclear. We investigated the associations between personal temperature exposure and cardiac autonomic function as reflected by heart rate variability (HRV) in a panel of 14 healthy taxi drivers in the context of traffic-related air pollution. We collected real-time data on study subjects' in-car exposures to temperature and traffic-related air pollutants including particulate matter with an aerodynamic diameter ≤2.5 μm (PM(2.5)) and carbon monoxide (CO) and HRV indices during work time (8:30-21:00) on 48 sampling days in the warm season (May-September) and cold season (October-March). We applied mixed-effects models and loess models adjusting for potential confounders to examine the associations between temperature and HRV indices. We found nonlinear relationships between temperature and HRV indices in both the warm and cold seasons. Linear regression stratified by temperature levels showed that increasing temperature levels were associated with declines in standard deviation of normal-to-normal intervals over different temperature strata and increases in low-frequency power and low-frequency:high-frequency ratio in higher temperature range (>25 °C). PM(2.5) and CO modified these associations to various extents. Temperature was associated with alterations in cardiac autonomic function in healthy adults in the context of traffic-related air pollution. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Thermosensory perception regulates speed of movement in response to temperature changes in Drosophila melanogaster.

    PubMed

    Soto-Padilla, Andrea; Ruijsink, Rick; Sibon, Ody C M; van Rijn, Hedderik; Billeter, Jean-Christophe

    2018-04-12

    Temperature influences physiology and behavior of all organisms. For ectotherms, which lack central temperature regulation, temperature adaptation requires sheltering from or moving to a heat source. As temperature constrains the rate of metabolic reactions, it can directly affect ectotherm physiology and thus behavioral performance. This direct effect is particularly relevant for insects whose small body readily equilibrates with ambient temperature. In fact, models of enzyme kinetics applied to insect behavior predict performance at different temperatures, suggesting that thermal physiology governs behavior. However, insects also possess thermosensory neurons critical for locating preferred temperatures, showing cognitive control. This suggests that temperature-related behavior can emerge directly from a physiological effect, indirectly as consequence of thermosensory processing, or through both. To separate the roles of thermal physiology and cognitive control, we developed an arena that allows fast temperature changes in time and space, and in which animals' movements are automatically quantified. We exposed wild-type and thermosensory receptor mutants Drosophila melanogaster to a dynamic temperature environment and tracked their movements. The locomotor speed of wild-type flies closely matched models of enzyme kinetics, but the behavior of thermosensory mutants did not. Mutations in thermosensory receptor dTrpA1 ( Transient receptor potential ) expressed in the brain resulted in a complete lack of response to temperature changes, while mutation in peripheral thermosensory receptor Gr28b(D) resulted in diminished response. We conclude that flies react to temperature through cognitive control, informed by interactions between various thermosensory neurons, whose behavioral output resembles that of enzyme kinetics. © 2018. Published by The Company of Biologists Ltd.

  16. Prediction of human core body temperature using non-invasive measurement methods.

    PubMed

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  17. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    NASA Astrophysics Data System (ADS)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models. However, the NSE values were lower than those of the hydroclimatological model, indicating that more model verification needs to be done. The equilibrium temperature model uses existing SWAT meteorological data as input, can be calibrated using fewer parameters and less effort and has an overall better performance in stream temperature simulation. Thus, it can be used as an effective tool for predicting the changes in stream temperature regimes under varying hydrological and meteorological conditions. In addition, the impact of the stream temperature simulations on chemical reaction rates and concentrations was tested. The results indicate that the improved performance of the stream temperature simulation could significantly affect chemical reaction rates and the simulated concentrations, and the equilibrium temperature model could be a potential tool to model stream temperature in water quality simulations.

  18. Automatic control of finite element models for temperature-controlled radiofrequency ablation

    PubMed Central

    Haemmerich, Dieter; Webster, John G

    2005-01-01

    Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811

  19. Magnetic shielding of interplanetary spacecraft against solar flare radiation

    NASA Technical Reports Server (NTRS)

    Cocks, Franklin H.; Watkins, Seth

    1993-01-01

    The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.

  20. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  1. Disorder effects in the evolution from BCS to BEC superfluidity

    NASA Astrophysics Data System (ADS)

    Han, Li; de Melo, Carlos A. R. Sa

    2009-03-01

    We discuss the effects of disorder on the critical temperature of superfluids during the evolution from BCS to BEC. For s-wave superfluids we find that the critical temperature is weakly affected by disorder in the BCS regime as described in Anderson’s theorem, even less affected by disorder at zero chemical potential (near unitarity), but strongly affected by disorder in the BEC regime, where Anderson's theorem does not apply. This suggests that the superfluid is more robust to the effects of disorder at the interaction parameter where the chemical potential vanishes (close to unitarity). We construct a three dimensional phase diagram of critical temperature, disorder and interaction parameter [1], and show that there are regions of localized superfluidity, as well as insulating regions due to Anderson localization of fermions (BCS regime) and molecular bosons (BEC regime). The phase diagram for higher angular momentum (e.g. p-wave and d-wave) is also analyzed, where the effects of disorder are much more dramatic in the BCS regime in comparison to the s-wave case because pair breaking is strong, while the disorder effects in BEC regime are similar to what occurs in the s-wave case. [1] Li Han, C. A. R. Sa de Melo, arXiv:0812.xxxx

  2. Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration

    USGS Publications Warehouse

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2015-01-01

    Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.

  3. A novel low temperature soft reflow process for the fabrication of deep-submicron (<0.35 μm) T-gate pseudomorphic high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Ian, Ka Wa; Exarchos, Michael; Missous, Mohamed

    2013-02-01

    We report a new and simple low temperature soft reflow process using solvent vapour. The combination of this soft reflow and conventional i-line lithography enables low cost, highly efficient fabrication at the deep-submicron scale. Compared to the conventional thermal reflow process, the key benefits of the new soft reflow process are its low temperature operation (<50 °C), greater shrinkage of the structure size (up to 75%) and better controllability. Gate openings reflowed from 1 μm to 250 nm have been routinely and reproducibly achieved by utilizing the saturation characteristics of the process. The feasibility of this soft reflow process is demonstrated in the fabrication of a 350 nm T-gate pseudomorphic high electron mobility transistor. By shrinking the gate length by a factor of three (from a 1 μm initial opening), the output current is improved by 60% (500 mA mm-1 from 300 mA mm-1) and fT and fMAX are increased to 70 GHz (from 20 GHz) and 120 GHz (from 40 GHz) respectively. The proposed soft reflow could potentially be applied on other compatible substrates such as polymer based material for organic or thin film devices, potentially leading to many new possible applications.

  4. Predicting the Highly Nonlinear Mechanical Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Porter, David

    2009-06-01

    Over the past few years, we have developed models that calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular and morphological structure. A review of these models is presented here, with emphasis on combining the fundamental aspects of molecular physics that dictate these properties and the pragmatic need to make realistic predictions for our customers; the designer of new materials and the engineers who use these materials. The models calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular structure. The model is based upon the premise that mechanical properties are a direct consequence of energy stored and energy dissipated during deformation of a material. This premise is transformed into a consistent set of structure-property relations for the equation of state, EoS, and the engineering constitutive relations in a polymer by quantifying energy storage and loss at the molecular level of interactions between characteristic groups of atoms in a polymer. These relations are derived from a simple volumetric mean field Lennard-Jones potential function for the potential energy of intermolecular interactions in a polymer. First, properties such as temperature-volume relations and glass transition temperature are calculated directly from the potential function. Then, the `shock' EoS is derived simply by differentiating the potential function with respect to volume, assuming that the molecules cannot relax in the time scales of the deformation. The energy components are then used to predict the dynamic mechanical spectrum of a polymer in terms of temperature and rate. This can be transformed directly into the highly nonlinear stress-strain relations through yield. The constitutive relations are formulated as a set of analytical equations that predict properties directly in terms of a small set of structural parameters that can be calculated directly and independently from the chemical composition and morphology of a polymer. A number of examples are given to illustrate the model and also to show that the method can be applied, with appropriate modifications, to other materials.

  5. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor.

    PubMed

    Yoo, R H; Kim, J H; McCarty, P L; Bae, J H

    2014-01-01

    A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.

  6. Managing fish habitat for flow and temperature extremes ...

    EPA Pesticide Factsheets

    Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th

  7. Carbonyl sulfide produced by abiotic thermal and photodegradation of soil organic matter from wheat field substrate

    NASA Astrophysics Data System (ADS)

    Whelan, Mary E.; Rhew, Robert C.

    2015-01-01

    Carbonyl sulfide (COS) is a reduced sulfur gas that is taken up irreversibly in plant leaves proportionally with CO2, allowing its potential use as a tracer for gross primary production. Recently, wheat field soil at the Southern Great Plains Atmospheric Radiation Measurement site in Lamont, Oklahoma, was found to be a measureable source of COS to the atmosphere. To understand the mechanism of COS production, soil and root samples were collected from the site and incubated in the laboratory over a range of temperatures (15-34°C) and light conditions (light and dark). Samples exhibited mostly COS net uptake from the atmosphere in dark and cool (<22-25°C) trials. COS emission was observed during dark incubations at high temperatures (>25°C), consistent with field observations, and at a lower temperature (19°C) when a full spectrum lamp (max wavelength 600 nm) was applied. Sterilized soil and root samples yielded only COS production that increased with temperature, supporting the hypothesis that (a) COS production in these samples is abiotic, (b) production is directly influenced by temperature and light, and (c) some COS consumption in soil and root samples is biotic.

  8. Uncertainty in regional temperatures inferred from sparse global observations: Application to a probabilistic classification of El Niño

    NASA Astrophysics Data System (ADS)

    Ilyas, Maryam; Brierley, Christopher M.; Guillas, Serge

    2017-09-01

    Instrumental records showing increases in surface temperature are some of the robust and iconic evidence of climate change. But how much should we trust regional temperature estimates interpolated from sparse observations? Here we quantify the uncertainty in the instrumental record by applying multiresolution lattice kriging, a recently developed interpolation technique that leverages the multiple spatial scales of temperature anomalies. The probability of monthly anomalies across the globe is represented by an ensemble, based on HadCRUT4 and accounting for observational and coverage uncertainties. To demonstrate the potential of these new data, we investigate the area-averaged temperature anomalies over the Niño 3.4 region in the equatorial Pacific. Having developed a definition of the El Niño-Southern Oscillation (ENSO) able to cope with probability distribution functions, we classify the ENSO state for each year since 1851. We find that for many years it is ambiguous as to whether there was an El Niño or not from the Niño 3.4 region alone. These years are mainly before 1920, but also just after World War II.

  9. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE PAGES

    McFarland, James; Zhou, Yuyu; Clarke, Leon; ...

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  10. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance

    PubMed Central

    Wang, Yanfei; Zhou, Zhiling; Wu, Weijie; Gong, Jianming

    2017-01-01

    Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e., 50, 80 and 100 °C), and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel, but simultaneously significantly increased the HE susceptibility of the steel, since α′ martensite was induced by the pre-strain, causing the pre-existence of α′ martensite, which provided “highways” for hydrogen to transport deep into the steel during the hydrogen-charging. Although the warm pre-strains did not strengthen the steel as significantly as the 20 °C pre-strain, they retained the HE resistance of the steel. This is because the higher temperatures, particularly 80 and 100 °C, suppressed the α′ martensite transformation during the pre-straining. Pre-strain at a temperature slightly higher than room temperature has a potential to strengthen the metastable 304L austenitic stainless steel without compromising its initial HE resistance. PMID:29160830

  11. Optical fiber evanescent absorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice

    2012-10-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  12. The connection characteristics of flux pinned docking interface

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Han, Yanjun; Guo, Xing; Zhao, Cunbao; Deng, Feiyue

    2017-03-01

    This paper presents the mechanism and potential advantages of flux pinned docking interface mainly composed of a high temperature superconductor and an electromagnet. In order to readily assess the connection characteristics of flux pinned docking interface, the force between a high temperature superconductor and an electromagnet needs to be investigated. Based on the magnetic dipole method and the Ampere law method, the force between two current coils can be compared, which shows that the Ampere law method has the higher calculated accuracy. Based on the improved frozen image model and the Ampere law method, the force between high temperature superconductor bulk and permanent magnet can be calculated, which is validated experimentally. Moreover, the force between high temperature superconductor and electromagnet applied to flux pinned docking interface is able to be predicted and analyzed. The connection stiffness between high temperature superconductor and permanent magnet can be calculated based on the improved frozen image model and Hooke's law. The relationship between the connection stiffness and field cooling height is analyzed. Furthermore, the connection stiffness of the flux pinned docking interface is predicted and optimized, and its effective working range is defined and analyzed in case of some different parameters.

  13. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range.

    PubMed

    Choi, Sinho; Cho, Yoon-Gyo; Kim, Jieun; Choi, Nam-Soon; Song, Hyun-Kon; Wang, Guoxiu; Park, Soojin

    2017-04-01

    Porous structured materials have unique architectures and are promising for lithium-ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium-ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from -20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at -20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO 4 cathode show an excellent cyclability at -20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ultrasonic Investigations on Polonides of Ba, Ca, and Pb

    NASA Astrophysics Data System (ADS)

    Singh, Devraj; Bhalla, Vyoma; Bala, Jyoti; Wadhwa, Shikha

    2017-10-01

    The temperature-dependent mechanical and ultrasonic properties of barium, calcium, and lead polonides (BaPo, CaPo, and PbPo) were investigated in the temperature range 100-300 K. The second- and third-order elastic constants (SOECs and TOECs) were computed using Coulomb and Born-Mayer potential and these in turn have been used to estimate other secondary elastic properties such as strength, anisotropy, microhardness, etc. The theoretical approach followed the prediction that BaPo, CaPo, and PbPo are brittle in nature. PbPo is found to be the hardest amongst the chosen compounds. Further the SOECs and TOECs are applied to determine ultrasonic velocities, Debye temperature, and acoustic coupling constants along <100>, <110>, and <111> orientations at room temperature. Additionally thermal conductivity has been computed using Morelli and Slack's approach along different crystallographic directions at room temperature. Finally ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms has been computed for BaPo, CaPo, and PbPo. The behaviour of these compounds is similar to that of semi-metals with thermal relaxation time of the order 10-11 s. The present computation study is reasonably in agreement with the available theoretical data for the similar type of materials.

  15. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals

    PubMed Central

    Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika

    2016-01-01

    In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393

  16. Giant coercivity and high magnetic blocking temperatures for N 2 3- radical-bridged dilanthanide complexes upon ligand dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Selvan; Gonzalez, Miguel I.; Darago, Lucy E.

    Increasing the operating temperatures of single-molecule magnets—molecules that can retain magnetic polarization in the absence of an applied field—has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Here in this paper, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (Cp Me4H) capping ligands with strong magnetic exchange coupling provided by an N 2 3- radical bridging ligand results in amore » series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(Cp Me4H 2Tb) 2(μ-N∙ 2« less

  17. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  18. Giant coercivity and high magnetic blocking temperatures for N 2 3- radical-bridged dilanthanide complexes upon ligand dissociation

    DOE PAGES

    Demir, Selvan; Gonzalez, Miguel I.; Darago, Lucy E.; ...

    2017-12-15

    Increasing the operating temperatures of single-molecule magnets—molecules that can retain magnetic polarization in the absence of an applied field—has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Here in this paper, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (Cp Me4H) capping ligands with strong magnetic exchange coupling provided by an N 2 3- radical bridging ligand results in amore » series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(Cp Me4H 2Tb) 2(μ-N∙ 2« less

  19. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    NASA Astrophysics Data System (ADS)

    Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.

    2017-08-01

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

  20. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni 2MnGa

    DOE PAGES

    Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; ...

    2016-05-17

    Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in amore » nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni 2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.« less

  1. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  2. Barium strontium titanate thin film growth with variation of lanthanum dopant compatibility as sensor prototype in the satellite technology

    NASA Astrophysics Data System (ADS)

    Mulyadi; Wahyuni, Rika; Hardhienata, Hendradi; Irzaman

    2018-05-01

    Electrical properties of barium strontium titanate thin films were investigated. Three layers of barium strontium titanate thin films have been prepared by chemical solution deposition method and spin coating technique at 8000 rpm rotational speed for 30 seconds and temperature of annealing at 850°C for eight hours with temperature increment of 1.67°C/minute. Materials produced by the process of lanthanum dopant with doping variations of 2%, 4% and 6% above type-p silicon (100) substrates. Film obtained was then carried out the characterization using USB 2000 VIS-NIR and tauc plot method. As a result, the barium strontium titanate thin film has the value of band gap energy of 1.58 eV, 1.92 eV and 2.24 eV respectively. The characterization of electrical properties shows that the band gap value of barium strontium titanate thin film with lanthanum dopant was in the range of semiconductor value. Barium strontium titanate thin films with lanthanum dopant are sensitive to temperature changes, so it potentially to be applied to temperature monitoring on satellite technology.

  3. Development of a Modified Embedded Atom Force Field for Zirconium Nitride Using Multi-Objective Evolutionary Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Badri; Sasikumar, Kiran; Mei, Zhi-Gang

    2016-07-07

    Zirconium nitride (ZrN) exhibits exceptional mechanical, chemical, and electrical properties, which make it attractive for a wide range of technological applications, including wear-resistant coatings, protection from corrosion, cutting/shaping tools, and nuclear breeder reactors. Despite its broad usability, an atomic scale understanding of the superior performance of ZrN, and its response to external stimuli, for example, temperature, applied strain, and so on, is not well understood. This is mainly due to the lack of interatomic potential models that accurately describe the interactions between Zr and N atoms. To address this challenge, we develop a modified embedded atom method (MEAM) interatomic potentialmore » for the Zr–N binary system by training against formation enthalpies, lattice parameters, elastic properties, and surface energies of ZrN (and, in some cases, also Zr3N4) obtained from density functional theory (DFT) calculations. The best set of MEAM parameters are determined by employing a multiobjective global optimization scheme driven by genetic algorithms. Our newly developed MEAM potential accurately reproduces structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of Zr–N compounds, in excellent agreement with DFT calculations and experiments. As a representative application, we employed molecular dynamics simulations based on this MEAM potential to investigate the atomic scale mechanisms underlying fracture of bulk and nanopillar ZrN under applied uniaxial strains, as well as the impact of strain rate on their mechanical behavior. These simulations indicate that bulk ZrN undergoes brittle fracture irrespective of the strain rate, while ZrN nanopillars show quasi-plasticity owing to amorphization at the crack front. The MEAM potential for Zr–N developed in this work is an invaluable tool to investigate atomic-scale mechanisms underlying the response of ZrN to external stimuli (e.g, temperature, pressure etc.), as well as other interesting phenomena such as precipitation.« less

  4. Transport through correlated systems with density functional theory

    NASA Astrophysics Data System (ADS)

    Kurth, S.; Stefanucci, G.

    2017-10-01

    We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB)  +  DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB  +  DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.

  5. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.

  6. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  7. Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results.

    PubMed

    Naghshine, Babak B; Kiani, Amirkianoosh

    2017-01-01

    In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper can have many potential applications including patterning the cell growth for biomedical applications and controlling the grain size in fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs).

  8. Modeling of the Thermoelectric Properties of p-Type IrSb(sub 3)

    NASA Technical Reports Server (NTRS)

    Fleurial, J.

    1994-01-01

    IrSb(sub 3) is a compound of the skutterudite family of materials now being investigated at JPL. A combination of experimental and theoretical approaches has been recently applied at JPL to evaluate the potential of several thermoelectric materials such as n-type and p-type Si(sub 80) Ge(sub 20) alloys, n-type and p-type Bi(sub 2) Te(sub 3)-based alloys and p-type Ru(sub 2) Ge(sub 3) compound. The use of a comprehensive model for the thermal and electrical transport properties of a given material over its full temperature range of usefulness is a powerful tool for guiding experimental optimization of the composition, temperature and doping level as well as for predicting the maximum ZT value likely to be achieved.

  9. Modeling and simulation of temperature effect in polycrystalline silicon PV cells

    NASA Astrophysics Data System (ADS)

    Marcu, M.; Niculescu, T.; Slusariuc, R. I.; Popescu, F. G.

    2016-06-01

    Due to the human needs of energy, there is a need to apply new technologies in energy conversion to supply the demand of clean and cheap energy in the context of environmental issues. Renewable energy sources like solar energy has one of the highest potentials. In this paper, solar panel is the key part of a photovoltaic system which converts solar energy to electrical energy. The purpose of this paper is to give a MATLAB/ Simulink simulation for photovoltaic module based on the one-diode model of a photovoltaic cell made of polycrystalline silicon. This model reveals the effect of the ambient temperature and the heating of the panel due to the solar infrared radiation. Also the measurements on the solar cell exposed to solar radiation can confirm the simulation.

  10. Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

    2011-01-01

    This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

  11. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating

    PubMed Central

    Sun, Dandan; Wang, Guanjun

    2017-01-01

    A compact and label-free optical fiber sensor based on a taper interferometer cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for detection of a breast cancer biomarker (HER2). The tapered fiber-optic interferometer is extremely sensitive to the ambient refractive index (RI). In addition, being insensitive to the RI variation, the FBG can be applied as a temperature thermometer due to its independent response to the temperature. Surface functionalization to the sensor is carried out to achieve specific targeting of the unlabeled biomarkers. The result shows that the proposed sensor presents a low limit-of-detection (LOD) of 2 ng/mL, enabling its potentials of application in early diagnosis on the breast cancer. PMID:29113127

  12. Magnetic enhancement of photoluminescence from blue-luminescent graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Shi, Chentian; Zhang, Chunfeng; Pu, Songyang; Wang, Rui; Wu, Xuewei; Wang, Xiaoyong; Xue, Fei; Pan, Dengyu; Xiao, Min

    2016-02-01

    Graphene quantum-dots (GQDs) have been predicted and demonstrated with fascinating optical and magnetic properties. However, the magnetic effect on the optical properties remains experimentally unexplored. Here, we conduct a magneto-photoluminescence study on the blue-luminescence GQDs at cryogenic temperatures with magnetic field up to 10 T. When the magnetic field is applied, a remarkable enhancement of photoluminescence emission has been observed together with an insignificant change in circular polarization. The results have been well explained by the scenario of magnetic-field-controlled singlet-triplet mixing in GQDs owing to the Zeeman splitting of triplet states, which is further verified by temperature-dependent experiments. This work uncovers the pivotal role of intersystem crossing in GQDs, which is instrumental for their potential applications such as light-emitting diodes, photodynamic therapy, and spintronic devices.

  13. Tunable transport gap in narrow bilayer graphene nanoribbons

    PubMed Central

    Yu, Woo Jong; Duan, Xiangfeng

    2013-01-01

    The lack of a bandgap makes bulk graphene unsuitable for room temperature transistors with a sufficient on/off current ratio. Lateral constriction of charge carriers in graphene nanostructures or vertical inversion symmetry breaking in bilayer graphene are two potential strategies to mitigate this challenge, but each alone is insufficient to consistently achieve a large enough on/off ratio (e.g. > 1000) for typical logic applications. Herein we report the combination of lateral carrier constriction and vertical inversion symmetry breaking in bilayer graphene nanoribbons (GNRs) to tune their transport gaps and improve the on/off ratio. Our studies demonstrate that the on/off current ratio of bilayer GNRs can be systematically increased upon applying a vertical electric field, to achieve a largest on/off current ratio over 3000 at room temperature. PMID:23409239

  14. Regional Climate Change across North America in 2030 Projected from RCP6.0

    NASA Astrophysics Data System (ADS)

    Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.

  15. Solid State Gas Sensor Research in Germany – a Status Report

    PubMed Central

    Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo

    2009-01-01

    This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529

  16. Tunable ferroelectricity and anisotropic electric transport in monolayer β -GeSe

    NASA Astrophysics Data System (ADS)

    Guan, Shan; Liu, Chang; Lu, Yunhao; Yao, Yugui; Yang, Shengyuan A.

    2018-04-01

    Low-dimensional ferroelectricity has attracted tremendous attention due to its huge potential in device applications. Here, based on first-principles calculations, we predict the existence of spontaneous in-plane electrical polarization and ferroelectricity in monolayer β -GeSe, a polymorph of GeSe with a boat conformation newly synthesized in experiment. The magnitude of the polarization is about 0.16 n C /m , which is comparable to that of monolayer SnTe studied in recent experiment, and the intrinsic Curie temperature is estimated to be above 200 K. Interestingly, owing to its puckered structure, the physical properties of β -GeSe can be easily controlled by strain. The Curie temperature can be raised above room temperature by applying a 1% tensile strain, and the magnitude of polarization can be largely increased by strains in either the armchair or zigzag direction. Furthermore, we find that for the case with electron doping, applying strain can readily tune the anisotropic electric transport with the preferred conducting direction rotated by 90∘, which is connected to a strain-induced Lifshitz transition. The ratio between the effective masses along the two in-plane directions can undergo a dramatic change of two orders of magnitude even by a 2% strain. Our result reveals monolayer β -GeSe is a promising platform for exploring ferroelectricity in two dimensions and for nanoscale mechanoelectronic device applications.

  17. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  18. Gas Hydrate Petroleum System Modeling in western Nankai Trough Area

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Aung, T. T.; Fujii, T.; Wada, N.; Komatsu, Y.

    2017-12-01

    Since 2003, we have been conducting Gas Hydrate (GH) petroleum system models covering the eastern Nankai Trough, Japan, and results of resource potential from regional model shows good match with the value depicted from seismic and log data. In this year, we have applied this method to explore GH potential in study area. In our study area, GH prospects have been identified with aid of bottom simulating reflector (BSR) and presence of high velocity anomalies above the BSR interpreted based on 3D migration seismic and high density velocity cubes. In order to understand the pathway of biogenic methane from source to GH prospects 1D-2D-3D GH petroleum system models are built and investigated. This study comprises lower Miocene to Pleistocene, deep to shallow marine sedimentary successions of Pliocene and Pleistocene layers overlain the basement. The BSR were interpreted in Pliocene and Pleistocene layers. Based on 6 interpreted sequence boundaries from 3D migration seismic and velocity data, construction of a depth 3D framework model is made and distributed by a conceptual submarine fan depositional facies model derived from seismic facies analysis and referring existing geological report. 1D models are created to analyze lithology sensitivity to temperature and vitrinite data from an exploratory well drilled in the vicinity of study area. The PSM parameters are applied in 2D and 3D modeling and simulation. Existing report of the explanatory well reveals that thermogenic origin are considered to exist. For this reason, simulation scenarios including source formations for both biogenic and thermogenic reaction models are also investigated. Simulation results reveal lower boundary of GH saturation zone at pseudo wells has been simulated with sensitivity of a few tens of meters in comparing with interpreted BSR. From sensitivity analysis, simulated temperature was controlled by different peak generation temperature models and geochemical parameters. Progressive folding and updipping layers including paleostructure can effectively assist biogenic gas migration to upward. Biogenic and Thermogenic mixing model shows that kitchen center only has a potential for generating thermogenic hydrocarbon. Our Prospect based on seismic interpretation is consistent with high GH saturation area based on 3D modeling results.

  19. An ab initio-based Er–He interatomic potential in hcp Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; ye, Yeting; Fan, K. M.

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less

  20. Concentration and Separation of Active Proteins from Potato Industry Waste Based on Low-Temperature Evaporation and Ethanol Precipitation

    PubMed Central

    Ahokas, Mikko; Järvinen, Juho; Toivanen, Juho; Tanskanen, Juha P.

    2017-01-01

    Purpose. Potato fruit juice, a residue of starch industry, contains up to 2.5% [w/w] of proteins that are potentially valuable raw-materials of food, cosmetic, and pharma industries. The recovery of protein from the potato fruit juice is limited by the lack of industrially feasible concentration and separation technologies. The present research thus aimed at development of such process for the separation of active protease inhibitors from potato fruit juice. Methods. Low temperature mechanical vapor recompression evaporation was applied for concentration of potato fruit juice followed by ethanol precipitation for recovery of active proteins. The effects of precipitation temperature and precipitative agents were investigated employing response surface modeling methodology. Results. Concentration of potato fruit juice by evaporation was successful without loss of trypsin inhibition activity. Precipitation using 6.5 M ethanol at low temperature (0–+4°C) was found suitable for the recovery of active protease inhibitors from the concentrate. Piloting at starch industry yielded 50% of total proteins, with a high quantity of active protease inhibitors and a minor inclusion of other proteins. Conclusion. Concentration by low-temperature evaporation, followed by ethanol precipitation of protease inhibitors at optimized temperature, is an attractive option for valorization of potato fruit juice. PMID:28299232

  1. Conductance of closed and open long Aharonov-Bohm-Kondo rings

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Komijani, Yashar

    2017-02-01

    We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.

  2. Predicting the thermal effects of dam removal on the Klamath River

    USGS Publications Warehouse

    Bartholow, J.M.; Campbell, S.G.; Flug, M.

    2004-01-01

    The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river’s water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river’s seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river’s thermal regime during certain conditions for over 200 km of the mainstem.

  3. Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry.

    PubMed

    Simonis, Frank F J; Petersen, Esben T; Bartels, Lambertus W; Lagendijk, Jan J W; van den Berg, Cornelis A T

    2015-03-01

    MR thermometry (MRT) is a noninvasive method for measuring temperature that can potentially be used for radio frequency (RF) safety monitoring. This application requires measuring absolute temperature. In this study, a multigradient-echo (mGE) MRT sequence was used for that purpose. A drawback of this sequence, however, is that its accuracy is affected by background gradients. In this article, we present a method to minimize this effect and to improve absolute temperature measurements using MRI. By determining background gradients using a B0 map or by combining data acquired with two opposing readout directions, the error can be removed in a homogenous phantom, thus improving temperature maps. All scans were performed on a 3T system using ethylene glycol-filled phantoms. Background gradients were varied, and one phantom was uniformly heated to validate both compensation approaches. Independent temperature recordings were made with optical probes. Errors correlated closely to the background gradients in all experiments. Temperature distributions showed a much smaller standard deviation when the corrections were applied (0.21°C vs. 0.45°C) and correlated well with thermo-optical probes. The corrections offer the possibility to measure RF heating in phantoms more precisely. This allows mGE MRT to become a valuable tool in RF safety assessment. © 2014 Wiley Periodicals, Inc.

  4. Thermal stress characterization using the electro-mechanical impedance method

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2017-04-01

    This study examines the potential of the Electro-Mechanical Impedance (EMI) method to provide an estimation of the developed thermal stress in constrained bar-like structures. This non-invasive method features the easiness of implementation and interpretation, while it is notoriously known for being vulnerable to environmental variability. A comprehensive analytical model is proposed to relate the measured electric admittance signatures of the PZT element to temperature and uniaxial stress applied to the underlying structure. The model results compare favorably to the experimental ones, where the sensitivities of features extracted from the admittance signatures to the varying stress levels and temperatures are determined. Two temperature compensation frameworks are proposed to characterize the thermal stress states: (a) a regression model is established based on temperature-only tests, and the residuals from the thermal stress tests are then used to isolate the stress measurand; (b) the temperature-only tests are decomposed by Principle Components Analysis (PCA) and the feature vectors of the thermal stress tests are reconstructed after removal of the temperaturesensitive components. For both methods, the features were selected based on their performance in Receiver Operating Characteristic (ROC) curves. Experimental results on the Continuous Welded Rails (CWR) are shown to demonstrate the effectiveness of these temperature compensation methods.

  5. Chemical compatibility of some ceramic matrix composite structures with fusion reactor helium coolant at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, F.J.; Ghoniem, N.M.

    The thermodynamic stability of SiC/SiC composite structures proposed for fusion applications is presented in this paper. Minimization of the free energy for reacting species in the temperature range 773-1273 K is achieved by utilizing the NASA-Lewis Chemical Equilibrium Thermodynamics Code (CET). The chemical stability of the matrix (SiC), as well as several potential fiber coatings are studied. Helium coolant is assumed to contain O{sub 2} and water moisture impurities in the range 100-1000 ppm. The work is applied to recent Magnetic and Inertial Confinement Conceptual designs. The present study indicated that the upper useful temperature limit for SiC/SiC composites, frommore » the standpoint of high-temperature corrosion, will be in the neighborhood of 1273 K. Up to this temperature, corrosion of SiC is shown to be negligible. The main mechanism of weight loss will be by evaporation to the plasma side. The presence of a protective SiO{sub 2} condensed phase is discussed, and is shown to result in further reduction of high-temperature corrosion. The thermodynamic stability of C and BN is shown to be very poor under typical fusion reactor conditions. Further development of chemically stable interface materials is required.« less

  6. Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching

    NASA Astrophysics Data System (ADS)

    Kosyak, V.; Postnikov, A. V.; Scragg, J.; Scarpulla, M. A.; Platzer-Björkman, C.

    2017-07-01

    Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of (" separators="|VCu --ZnC u + ) complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like ZnC u + antisites are involved in the formation of (" separators="|VCu --ZnC u + ) complex making CuZ n - dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.

  7. Prophylactic augmentation of the proximal femur: an investigation of two techniques.

    PubMed

    Raas, Christoph; Hofmann-Fliri, Ladina; Hörmann, Romed; Schmoelz, Werner

    2016-03-01

    Osteoporotic hip fractures are an increasing problem in an ageing population. They result in high morbidity, mortality and high socioeconomic costs. For patients with poor bone quality, prophylactic augmentation of the proximal femur might be an option for fracture prevention. In two groups of paired human femora the potential of limited polymethyl-methacrylate (PMMA) augmentation (11-15 ml) in a V-shape pattern and the insertion of a proximal femur nail antirotation (PFNA) blade were investigated. The testing was carried out pair wise simulating the single leg stand. The untreated femur in each pair served as control. An axial load was applied until failure. Load displacement parameters and temperature increase during the augmentation process were recorded. In the PMMA group no significant difference was found between the augmented and non-augmented specimen concerning load to failure (p = 0.35) and energy to failure (p = 0.9). A median temperature increase of 9.5 °C was observed in the augmented specimen. A significant correlation was found between the amount of applied PMMA and the temperature increase (Cor. Coef. = 0.82, p = 0.042). In the PFNA group, a significant decrease of load to failure and a non-significant decrease of energy to failure were observed (p = 0.037 and p = 0.075). Limited V-shaped PMMA augmentation and PFNA blade insertion did not show any improvement in failure load or energy to failure. Volumes of up to 15 ml PMMA did not cause a critical surface temperature increase.

  8. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  9. A Regionally-Specific Assessment of the Carbon Abatement Potential of Biochar

    NASA Astrophysics Data System (ADS)

    Birch, G.; Field, J.; Keske, C.; DeFoort, M.; Cotrufo, M.

    2012-12-01

    Biochar, the solid carbon-rich co-product of certain bioenergy conversion technologies, is receiving a great deal of attention as a strategy for sequestering carbon in soils and improving the performance of agricultural systems. Several studies have attempted to quantify the lifecycle carbon abatement potential of biochar systems, considering emissions associated with feedstock provisioning and processing, energy co-production, agronomic system impacts (yield increases and nitrous oxide emission suppression), and the recalcitrance of biochar in soil, as well as accounting for the carbon abatement value of using the char as a fuel that is foregone when it is used as a soil amendment instead. These assessments typically focus on biochar production in advanced, efficient slow pyrolysis systems, despite the fact that much biochar is currently produced through small-scale carbonization or gasification systems that lack energy recovery or even emission control capability. Here, a mechanistic biochar system assessment model is presented, capable of estimating system carbon abatement value and profitability for different feedstocks, conversion technologies and temperatures, and application into different agricultural soils. The variation of biochar recalcitrance in soil as a function of production temperature is considered, and agricultural impacts are assessed in the context of biochar's liming value, an effect that is straightforward to quantify and that has often been implicated in observed crop yield increases or nitrous oxide emission reductions. The analysis is rigorous in that tradeoffs between biochar production quantity and quality are endogenized, but conservative in that other potential agronomic benefits of biochar (e.g. improved soil water holding capacity) are not considered. This model is applied to a case study of bioenergy and biochar co-production in northern Colorado using beetle-killed pine wood and slash as a feedstock. Preliminary results suggest that a) high system carbon abatement potentials are possible in the case study scenario, but only in systems that control air pollutant emissions and recover energy; b) biochar has more value as a soil amendment than a fuel when produced at high temperatures and applied to soils of low pH and low buffering capacity; and c) the carbon abatement value of agronomic impacts in temperate systems is relatively minor compared to other parts of the lifecycle. Additional results will be presented for which an optimal system design is identified and the analysis scaled-up to reflect the total beetle-kill feedstock availability in the state of Colorado in order to estimate the total regional carbon-mitigation potential of the technology.

  10. A study of helium atmospheric-pressure guided streamers for potential biological applications

    NASA Astrophysics Data System (ADS)

    Gazeli, K.; Noël, C.; Clément, F.; Daugé, C.; Svarnas, P.; Belmonte, T.

    2013-04-01

    The origin of differences in the rotational temperatures of various molecules and ions ( N_{2}^{+} (B), OH(A) and N2(C)) is studied in helium atmospheric-pressure guided streamers. The rotational temperature of N_{2}^{+} (B) is room temperature. It is estimated from the emission band of the first negative system at 391.4 nm, and it is governed by the temperature of N2(X) in the surrounding air. N2(X) is ionized by direct electron impact in the outer part of the plasma. N_{2}^{+} (B) is deactivated by collisions with N2 and O2. The rotational temperature of OH(A), estimated from the OH band at 306.4 nm, is slightly higher than that of N_{2}^{+} (B). OH(A) is excited by electron impact with H2O during the first 100 ns of the applied voltage pulse. Next, OH(A) is produced by electron impact with OH(X) created by the quenching of OH(A) by N2 and O2. H2O diffuses deeper than N2 into the plasma ring and the rotational temperature of OH(A) is slightly higher than that of N_{2}^{+} (B). The rotational temperature of N2(C), estimated from the emission of the second positive system at 315.9 nm, is governed by its collisions with helium. The gas temperature of helium at the beginning of the pulse is predicted to be several hundred kelvin higher than room temperature.

  11. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates.

    PubMed

    Marañón, Emilio; Lorenzo, María P; Cermeño, Pedro; Mouriño-Carballido, Beatriz

    2018-04-25

    Climate warming has the potential to alter ecosystem function through temperature-dependent changes in individual metabolic rates. The temperature sensitivity of phytoplankton metabolism is especially relevant, since these microorganisms sustain marine food webs and are major drivers of biogeochemical cycling. Phytoplankton metabolic rates increase with temperature when nutrients are abundant, but it is unknown if the same pattern applies under nutrient-limited growth conditions, which prevail over most of the ocean. Here we use continuous cultures of three cosmopolitan and biogeochemically relevant species (Synechococcus sp., Skeletonema costatum and Emiliania huxleyi) to determine the temperature dependence (activation energy, E a ) of metabolism under different degrees of nitrogen (N) limitation. We show that both CO 2 fixation and respiration rates increase with N supply but are largely insensitive to temperature. E a of photosynthesis (0.11 ± 0.06 eV, mean ± SE) and respiration (0.04 ± 0.17 eV) under N-limited growth is significantly smaller than E a of growth rate under nutrient-replete conditions (0.77 ± 0.06 eV). The reduced temperature dependence of metabolic rates under nutrient limitation can be explained in terms of enzyme kinetics, because both maximum reaction rates and half-saturation constants increase with temperature. Our results suggest that the direct, stimulating effect of rising temperatures upon phytoplankton metabolic rates will be circumscribed to ecosystems with high-nutrient availability.

  12. Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; García, J. A.; Plazaola, F.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2007-05-01

    We present a method, based on positron annihilation spectroscopy, to obtain information on the defect depth profile of layers grown over high-quality substrates. We have applied the method to the case of ZnO layers grown on sapphire, but the method can be very easily generalized to other heterostructures (homostructures) where the positron mean diffusion length is small enough. Applying the method to the ratio of W and S parameters obtained from Doppler broadening measurements, W/S plots, it is possible to determine the thickness of the layer and the defect profile in the layer, when mainly one defect trapping positron is contributing to positron trapping at the measurement temperature. Indeed, the quality of such characterization is very important for potential technological applications of the layer.

  13. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.

    PubMed

    Cole, Daniel J; Payne, Mike C; Csányi, Gábor; Spearing, S Mark; Colombi Ciacchi, Lucio

    2007-11-28

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  14. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evidence of Magnetic Inversion in Single Ni Nanoparticles

    DOE PAGES

    Jiang, W.; Gartland, P.; Davidović, D.

    2016-11-08

    Superparamagnetism is an unwanted property of small magnetic particles where the magnetization of the particle flips randomly in time, due to thermal noise. There has been an increased attention in the properties of superparamagnetic particles recently, because of their potential applications in high density storage and medicine. In electron transport through single nanometer scale magnetic particles, the current can also cause the magnetization to flip randomly in time, even at low temperature. Here we show experimental evidence that when the current is then reduced towards zero in the applied magnetic field, the magnetization can reliably freeze about a higher anisotropy-energymore » minimum, where it tends to be inverted with respect to the magnetic field direction. Specifically, we use spin-unpolarized tunneling spectroscopy of discrete levels in single Ni particles 2–4 nm in diameter at mK-temperature, and find that the the magnetic excitation energy at the onset of current decreases when the magnetic field increases, reaching near degeneracy at nonzero magnetic field. We discuss the potential for spintronic applications such as current induced magnetization switching without any spin-polarized leads.« less

  16. Optimization of High Solids Dilute Acid Hydrolysis of Spent Coffee Ground at Mild Temperature for Enzymatic Saccharification and Microbial Oil Fermentation.

    PubMed

    Wang, Hui-Min David; Cheng, Yu-Shen; Huang, Chi-Hao; Huang, Chia-Wei

    2016-10-01

    Soluble coffee, being one of the world's most popular consuming drinks, produces a considerable amount of spent coffee ground (SCG) along with its production. The SCG could function as a potential lignocellulosic feedstock for production of bioproducts. The objective of this study is to investigate the possible optimal condition of dilute acid hydrolysis (DAH) at high solids and mild temperature condition to release the reducing sugars from SCG. The optimal condition was found to be 5.3 % (w/w) sulfuric acid concentration and 118 min reaction time. Under the optimal condition, the mean yield of reducing sugars from enzymatic saccharification of defatted SCG acid hydrolysate was 563 mg/g. The SCG hydrolysate was then successfully applied to culture Lipomyces starkeyi for microbial oil fermentation without showing any inhibition. The results suggested that dilute acid hydrolysis followed by enzymatic saccharification has the great potential to convert SCG carbohydrates to reducing sugars. This study is useful for the further developing of biorefinery using SCG as feedstock at a large scale.

  17. Biochemical methane potential of two-phase olive mill solid waste: influence of thermal pretreatment on the process kinetics.

    PubMed

    Rincón, B; Bujalance, L; Fermoso, F G; Martín, A; Borja, R

    2013-07-01

    The effect of thermal pretreatment on two-phase olive mill solid waste was evaluated by chemical oxygen demand solubilisation and biochemical methane potential (BMP) tests. Temperatures of 100, 120, 160 and 180°C were applied during 60, 120 and 180 min for each temperature studied. The highest chemical oxygen demand solubilisation after pretreatment (42%) was found for 120 and 180°C during 180 min in both cases. These two conditions were selected for the BMP tests. BMP tests showed two different stages: a first exponential stage and a sigmoidal zone after a lag period. No influence of the pretreatment was observed on the kinetic constant of the first-stage. Clear difference was observed in the maximum methane production rate of the second stage, 76.8 mL CH4/(g VS day) was achieved after pretreatment at 180°C (180 min), value 22% and 40% higher than that obtained for the untreated and pretreated OMSW at 120°C, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Evidence of Magnetic Inversion in Single Ni Nanoparticles

    PubMed Central

    Jiang, W.; Gartland, P.; Davidović, D.

    2016-01-01

    Superparamagnetism is an unwanted property of small magnetic particles where the magnetization of the particle flips randomly in time, due to thermal noise. There has been an increased attention in the properties of superparamagnetic particles recently, because of their potential applications in high density storage and medicine. In electron transport through single nanometer scale magnetic particles, the current can also cause the magnetization to flip randomly in time, even at low temperature. Here we show experimental evidence that when the current is then reduced towards zero in the applied magnetic field, the magnetization can reliably freeze about a higher anisotropy-energy minimum, where it tends to be inverted with respect to the magnetic field direction. Specifically, we use spin-unpolarized tunneling spectroscopy of discrete levels in single Ni particles 2–4 nm in diameter at mK-temperature, and find that the the magnetic excitation energy at the onset of current decreases when the magnetic field increases, reaching near degeneracy at nonzero magnetic field. We discuss the potential for spintronic applications such as current induced magnetization switching without any spin-polarized leads. PMID:27824076

  19. [Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].

    PubMed

    Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu

    2005-11-01

    Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.

  20. Statistical analysis of infrasound signatures in airglow observations: Indications for acoustic resonance

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Schmidt, Carsten; Bittner, Michael

    2013-02-01

    The detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km) is performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) using GRIPS instrumentation (GRound-based Infrared P-branch Spectrometers). Mesopause temperature values with a temporal resolution of up to 10 s are derived from the observation of nocturnal airglow emissions and permit the identification of signals within the long-period infrasound range.Spectral intensities of wave signatures with periods between 2.5 and 10 min are estimated applying the wavelet analysis technique to one minute mean temperature values. Selected events as well as the statistical distribution of 40 months of observation are presented and discussed with respect to resonant modes of the atmosphere. The mechanism of acoustic resonance generated by strong infrasonic sources is a potential explanation of distinct features with periods between 3 and 5 min observed in the dataset.

Top