Effect of hydrogen on the strength and microstructure of selected ceramics
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.; Hull, David R.; Misra, Ajay K.
1990-01-01
Ceramics in monolithic form and as composite constituents in the form of fibers, matrices, and coatings are currently being considered for a variety of high-temperature applications in aeronautics and space. Many of these applications involve exposure to a hydrogen-containing environment. The compatibility of selected ceramics in gaseous high-temperature hydrogen is assessed. Environmental stability regimes for the long term use of ceramic materials are defined by the parameters of temperature, pressure, and moisture content. Thermodynamically predicted reactions between hydrogen and several monolithic ceramics are compared with actual performance in a controlled environment. Morphology of hydrogen attack and the corresponding strength degradation is reported for silicon carbide, silicon nitride, alumina, magnesia, and mullite.
High temperature composites. Status and future directions
NASA Technical Reports Server (NTRS)
Signorelli, R. A.
1982-01-01
A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.
Alumina-based ceramic composite
Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.
1996-01-01
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.
Alumina-based ceramic composite
Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.
1996-07-23
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.
Method of bonding metals to ceramics
Maroni, Victor A.
1992-01-01
A method of forming a composite by providing a ceramic capable of having zero electrical resistance and complete diamagnetism at superconducting temperatures, bonding a thin layer of Ag, Au or alloys thereof with the ceramic. Thereafter, there is bonded a first metal to the ceramic surface at a temperature less than about 400.degree. C., and then a second metal is bonded to the first metal at a temperature less than about 400.degree. C. to form a composite wherein the first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Ti and alloys thereof and wherein the second metal is selected from the class consisting of Al, Cu, Pb and Zn and alloys thereof.
Corrosion of Ceramic Materials
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Jacobson, Nathan S.
1999-01-01
Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.
Laser-Aided Ceramic Bracket Debonding: A Comprehensive Review
Ghazanfari, Rezvaneh; Nokhbatolfoghahaei, Hanieh; Alikhasi, Marzieh
2016-01-01
Different techniques have been introduced for the removal of ceramic brackets. Since the early 1990s, lasers have been used experimentally for debonding ceramic brackets. The goal of this study is to give a comprehensive literature review on laser-aided ceramic bracket debonding. PubMed and Google Scholar databases were used to identify dental articles with the following combination of key words: Ceramic brackets, Debonding, and Laser. Sixteen English articles from 2004 to 2015 were selected. The selected studies were categorized according to the variables investigated including the intrapulpal temperature, shear bond strength, debonding time, enamel damage and bracket failure. Most articles reported decreased shear bond strength and debonding time following laser irradiation without any critical and irritating increase in pulpal temperature. There were no reports of bracket failure or enamel damage. Laser irradiation is an efficient way to reduce shear bond strength of ceramic bracket and debonding time. This technique is a safe way for removing ceramic bracket with minimal impact on intrapulpal temperature and enamel surface and it reduces ceramic bracket failure. PMID:27330690
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
Method of producing a carbon coated ceramic membrane and associated product
Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.
1993-01-01
A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.
High Temperature Tolerant Ceramic Composites Having Porous Interphases
Kriven, Waltraud M.; Lee, Sang-Jin
2005-05-03
In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.
Method of producing a carbon coated ceramic membrane and associated product
Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.
1993-11-16
A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.
A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
2001-04-10
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Characterization of Low Firing Temperature Ceramic Glaze Using Phuket MSW and Soda Lime Cullet
NASA Astrophysics Data System (ADS)
Ketboonruang, P.; Jinawat, S.; Kashima, D. P.; Wasanapiarnpong, T.; Sujaridworakun, P.; Buggakuptav, W.; Traipol, N.; Jiemsirilers, S.
2011-10-01
The normal firing temperature of ceramic products is around 1200 °C. In order to reduce firing temperature, industrial wastes were utilized in ceramic glaze. Phuket municipal solid waste (MSW), soda lime cullet, and borax were used as raw materials for low firing temperature glazes. The glaze compositions were designed using a triaxial diagram. Stoneware ceramic body was glazed then fired at 1000 and 1150 °C for 15 minutes. Morphology and phase composition of glazes were analyzed by Scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Thermal expansion compatibility of Stoneware body and glazes were investigated using a dilatometer. Melting behaviour of selected glaze was analyzed by heating stage microscopy. Phuket MSW and Soda lime glass cullet can be used in high percentage as major raw materials for low firing temperature ceramic glaze that show good texture and vitrified at lower firing temperature without using any commercial ceramic frits. The firing temperature can be reduced up to 150 °C in this study.
Tribology of selected ceramics at temperatures to 900 C
NASA Technical Reports Server (NTRS)
Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.
1986-01-01
Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.
NASA Technical Reports Server (NTRS)
Yun, Hee-Mann (Inventor); DiCarlo, James A. (Inventor)
2014-01-01
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.
Methods for producing silicon carbide architectural preforms
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Yun, Hee (Inventor)
2010-01-01
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.
Wear of Selected Oxide Ceramics and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Sayir, A.; Farmer, S. C.
2005-01-01
The use of oxide ceramics and coatings for moving mechanical components operating in high-temperature, oxidizing environments creates a need to define the tribological performance and durability of these materials. Results of research focusing on the wear behavior and properties of Al2O3/ZrO2 (Y2O3) eutectics and coatings under dry sliding conditions are discussed. The importance of microstructure and composition on wear properties of directionally solidified oxide eutectics is illustrated. Wear data of selected oxide-, nitride-, and carbide-based ceramics and coatings are given for temperatures up to 973K in air.
Tribological Properties of Structural Ceramics
NASA Technical Reports Server (NTRS)
Buckley, Donald H.; Miyoshi, Kazuhisa
1987-01-01
Paper discusses tribological properties of structural ceramics. Function of tribological research is to bring about reduction in adhesion, friction, and wear of mechanical components; to prevent failures; and to provide long, reliable component life, through judicious selection of materials, operating parameters, and lubricants. Paper reviews adhesion, friction, wear, and lubrication of ceramics; anisotropic friction and wear behavior; and effects of surface films and interactions between ceramics and metals. Analogies with metals are made. Both oxide and nonoxide ceramics, including ceramics used as high temperature lubricants, are dicussed.
In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)
2013-01-01
A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.
Flexible Ceramic-Metal Insulation Composite and Method of Making
NASA Technical Reports Server (NTRS)
Rasky, Daniel J. (Inventor); Sawko, Paul M. (Inventor); Kilodziej, Paul (Inventor); Kourtides, Demetrius A. (Inventor)
1998-01-01
A method for joining a woven flexible ceramic fabric and a thin metal sheet creating an integral metal surfaced flexible thermal protection article, which methods compress: placing multiple dots of high temperature metallic or fabric and the thin metal sheet in a random or organized pattern, with the proviso that the brazing material covers about 10% or less of the surface of one flat side of the metal sheet; heating the flexible ceramic fabric, brazing material and thin metal sheet for a predetermined period of time to integrally connect the same; and cooling the formed flexible article to ambient temperature. Preferably the flexible ceramic is selected from fibers comprising atoms of silicon, carbon, nitrogen, boron, oxygen or combinations thereof. The flexible thermal protection article produced is also part of the present invention. The thin metal sheet is comprised of titanium, aluminum, chromium, niobium or alloys or combinations thereof. The brazing material is selected from copper/silver or copper/gold or is a ceramic brazing or adhesive material.
Thermomechanical Property Data Base Developed for Ceramic Fibers
NASA Technical Reports Server (NTRS)
1996-01-01
A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
Hunt, T.K.; Novak, R.F.
1991-05-07
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.
Hunt, Thomas K.; Novak, Robert F.
1991-01-01
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.
Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel.
Su, Lei; Wang, Hongjie; Niu, Min; Fan, Xingyu; Ma, Mingbo; Shi, Zhongqi; Guo, Sheng-Wu
2018-04-24
Ultralight ceramic aerogels with the property combination of recoverable compressibility and excellent high-temperature stability are attractive for use in harsh environments. However, conventional ceramic aerogels are usually constructed by oxide ceramic nanoparticles, and their practical applications have always been limited by the brittle nature of ceramics and volume shrinkage at high temperature. Silicon carbide (SiC) nanowire offers the integrated properties of elasticity and flexibility of one-dimensional (1D) nanomaterials and superior high-temperature thermal and chemical stability of SiC ceramics, which makes it a promising building block for compressible ceramic nanowire aerogels (NWAs). Here, we report the fabrication and properties of a highly porous three-dimensional (3D) SiC NWA assembled by a large number of interweaving 3C-SiC nanowires of 20-50 nm diameter and tens to hundreds of micrometers in length. The SiC NWA possesses ultralow density (∼5 mg cm -3 ), excellent mechanical properties of large recoverable compression strain (>70%) and fatigue resistance, refractory property, oxidation and high-temperature resistance, and thermal insulating property (0.026 W m -1 K -1 at room temperature in N 2 ). When used as absorbents, the SiC NWAs exhibit an adsorption selectivity of low-viscosity organic solvents with high absorption capacity (130-237 g g -1 ). The successful fabrication of such an attractive material may provide promising perspectives to the design and fabrication of other compressible and multifunctional ceramic NWAs.
Escorihuela, Sara; Brinkmann, Torsten
2018-01-01
Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84®, Matrimid 5218®, and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C*) for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid®, and 4.30 wt. % for P84®. A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84® ≥ Matrimid® >> 6FDA-6FpDA). The effect of the temperature on the permeance of prepared membranes was studied for H2, CH4, N2, O2, and CO2. As expected, activation energy of permeance for hydrogen was higher than for CO2, resulting in H2/CO2 selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures. PMID:29518942
Net shaped high performance oxide ceramic parts by selective laser melting
NASA Astrophysics Data System (ADS)
Yves-Christian, Hagedorn; Jan, Wilkes; Wilhelm, Meiners; Konrad, Wissenbach; Reinhart, Poprawe
An additive manufacturing technique (AM) for ceramics, based on Al2O3-ZrO2 powder by means of Selective Laser Melting (SLM) is presented. Pure ceramic powder is completely melted by a laser beam yielding net-shaped specimens of almost 100% densities without any post-processing. Possible crack formation during the build-up process due to thermal stresses is prevented by a high-temperature preheating of above 1600 ∘C. Specimens with fine-grained nano-sized microstructures and flexural strengths of above 500 MPa are produced. The new technology allows for rapid freeform manufacture of complex net-shaped ceramics, thus, exploiting the outstanding mechanical and thermal properties for high-end medical and engineering disciplines.
Refractory ceramic compositions and method for preparing same
Holcombe, Jr., Cressie E.; Morrow, Margaret K.
1976-07-13
This invention relates to ceramic compositions of tungsten and tantalum oxides including 0 to 33 1/3 mole percent of a metal oxide such as hafnia. These ceramics are characterized by melting points greater than about 1400.degree.C and selectively controlled coefficients of thermal expansion of essentially zero to a negative value in the temperature range of 20.degree. to 1000.degree.C.
A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W
2016-03-01
A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.
Ceramic membranes with enhanced thermal stability
Anderson, Marc A.; Xu, Qunyin; Bischoff, Brian L.
1993-01-01
A method of creating a ceramic membrane with enhanced thermal stability is disclosed. The method involves combining quantities of a first metal alkoxide with a second metal, the quantities selected to give a preselected metal ratio in the resultant membrane. A limited amount of water and acid is added to the combination and stirred until a colloidal suspension is formed. The colloid is dried to a gel, and the gel is fired at a temperature greater than approximately 400.degree. C. The porosity and surface area of ceramic membranes formed by this method are not adversely affected by this high temperature firing.
Design and development of a ceramic radial turbine for the AGT101
NASA Technical Reports Server (NTRS)
Finger, D. G.; Gupta, S. K.
1982-01-01
An acceptable and feasible ceramic turbine wheel design has been achieved, and the relevant temperature, stress, and success probability analyses are discussed. The design is described, the materials selection presented, and the engine cycle conditions analysis parameters shown. Measured MOR four-point strengths are indicated for room and elevated temperatures, and engine conditions are analyzed for various cycle states, materials, power states, turbine inlet temperatures, and speeds. An advanced gas turbine ceramic turbine rotor thermal and stress model is developed, and cumulative probability of survival is shown for first and third-year properties of SiC and Si3N4 rotors under different operating conditions, computed for both blade and hub regions. Temperature and stress distributions for steady-state and worst-case shutdown transients are depicted.
Ceramic components for the AGT 100 engine
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.
1983-01-01
Historically, automotive gas turbines have not been able to meet requirements of the marketplace with respect to cost, performance, and reliability. However, the development of appropriate ceramic materials has overcome problems related to a need for expensive superalloy components and to limitations regarding the operating temperature. An automotive gas turbine utilizing ceramic components has been developed by a U.S. automobile manufacturer. A 100-horsepower, two-shaft, regenerative engine geometry was selected because it is compatible with manual, automatic, and continuously variable transmissions. Attention is given to the ceramic components, the ceramic gasifier turbine rotor development, the ceramic gasifier scroll, ceramic component testing, and the use of advanced nondestructive techniques for the evaluation of the engine components.
NASA Technical Reports Server (NTRS)
Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)
1981-01-01
A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.
NASA Astrophysics Data System (ADS)
Thongrueng, Jirawat; Tsuchiya, Toshio; Masuda, Yoichiro; Fujita, Shigetaka; Nagata, Kunihiro
1999-09-01
Soft BaTiO3 ceramics having a very low coercive field of 65 V/mm were prepared by substituting 9 mol% Hf Zr for the Ti-site of BaTiO3, for applications to ferroelectric thin-film devices. Electrical properties of the soft BaTiO3 ceramics were measured and compared with those of normal BaTiO3 ceramics. By substituting Hf Zr for Ti-site, the phase transition temperatures were controlled, and we could select the preferred crystal structure from the tetragonal, orthorhombic and rhombohedral phases at room temperature. In addition, the preparation and characterization of the soft BaTiO3 thin-films using a sol-gel process were carried out.
Thermal shock resistance ceramic insulator
Morgan, Chester S.; Johnson, William R.
1980-01-01
Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.
Sensors for ceramic components in advanced propulsion systems
NASA Technical Reports Server (NTRS)
Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.
1995-01-01
This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.
Overview of NASA Studies on High-Temperature Ceramic Fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Yun, Hee Mann
2001-01-01
NASA, DOD, and DOE are currently looking to the NASA UEET Program to develop ceramic matrix composites (CMC) for hot-section components in advanced power and propulsion systems - Success will depend strongly on developing ceramic fibers with a variety of key thermostructural properties, in particular, high as-produced tensile strength and retention of a large fraction of this strength for long times under the anticipated CMC service conditions. - Current UEET approach centers on selecting the optimum fiber type from commercially available fibers since the costs for development of advanced fibers are high and the markets for high-temperature CMC have yet to be established.
Design, fabrication and spin testing of ceramic blade metal disk attachment
NASA Technical Reports Server (NTRS)
Calvert, G.
1979-01-01
A ceramic turbine blade-metal disk attachment was designed for small, non man-rated turbine engine applications. The selected design consisted of a hot pressed silicon nitride blade having a skewed dovetail attachment with a compliant interlayer between the disk and the blade. Two-dimensional and three-dimensional analyses predicted that life goals could be achieved, considering both NDE limitations and crack growth rates for the ceramic material. Twenty ceramic blades were fabricated to closely-held manufacturing tolerances. New fracture mechanics data at elevated temperature are presented.
Evaluation and ranking of candidate ceramic wafer engine seal materials
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1991-01-01
Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.
Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis
2017-07-01
Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2 bar and RB5 rejection of 68%.
Non-contact temperature Raman measurement in YSZ and alumina ceramics
NASA Astrophysics Data System (ADS)
Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.
2018-02-01
Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.
Advanced ceramic material for high temperature turbine tip seals
NASA Technical Reports Server (NTRS)
Solomon, N. G.; Vogan, J. W.
1978-01-01
Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.
Collins, John P.; Way, J. Douglas
1995-09-19
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.
Collins, J.P.; Way, J.D.
1995-09-19
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.
Collins, J.P.; Way, J.D.
1997-07-29
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.
Collins, John P.; Way, J. Douglas
1997-01-01
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.
Methods for providing ceramic matrix composite components with increased thermal capacity
NASA Technical Reports Server (NTRS)
Steibel, James Dale (Inventor); Utah, David Alan (Inventor)
2001-01-01
A method for enhancing the cooling capability of a turbine component made from a ceramic matrix composite. The method improves the thermal performance of the component by producing a surface having increased cooling capacity, thereby allowing the component to operate at a higher temperature. The method tailors the available surface area on the cooling surface of the composite component by depositing a particulate layer of coarse grained ceramic powders of preselected size onto the surface of the ceramic matrix composite component. The size of the particulate is selectively tailored to match the desired surface finish or surface roughness of the article. The article may be designed to have different surface finishes for different locations, so that the application of different sized powders can provide different cooling capabilities at different locations, if desired. The compositions of the particulates are chemically compatible with the ceramic material comprising the outer surface or portion of the ceramic matrix composite. The particulates are applied using a slurry and incorporated into the article by heating to an elevated temperature without melting the matrix, the particulates or the fiber reinforcement.
Plutonium immobilization in glass and ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knecht, D.A.; Murphy, W.M.
1996-05-01
The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposiummore » papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.« less
Development of lightweight ceramic ablators and arc-jet test results
NASA Technical Reports Server (NTRS)
Tran, Huy K.
1994-01-01
Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.
2017-01-01
Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.
NASA Technical Reports Server (NTRS)
Ho, T. L.; Peterson, M. B.
1974-01-01
The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).
High Temperature Evaluation of Tantalum Capacitors - Test 1
Cieslewski, Grzegorz
2014-09-28
Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.
Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic
NASA Astrophysics Data System (ADS)
Mohan Reddy, M.; Gorin, Alexander; Abou-El-Hossein, K. A.
2011-02-01
Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.;
2009-01-01
Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex.
A high temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.
NASA Technical Reports Server (NTRS)
Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.
1994-01-01
The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.
NASA Astrophysics Data System (ADS)
Merzlikin, V. G.; Gutierrez, M. O.; Makarov, A. R.; Bekaev, A. A.; Bystrov, A. V.; Zagumennov, F. A.
2018-02-01
Efficiency of diesel has been studied using well-known types of the ceramic heat-insulating HICs- or thermal barrier TBCs-coatings. This problem is relevant for a high-speed diesel combustion chamber in which intensive radiant component (near IR) reaches ~50% within total thermal flux. Therefore, in their papers the authors offered new concept of study these materials as semitransparent SHICs-, STBCs-coatings. On the Mie scattering theory the effect of selection of the specific structural composition and porosity of coatings on the variation of their optical parameters is considered. Conducted spectrophotometric modeling of the volume-absorbed radiant energy by the coating had determined their acceptable temperature field. For rig testings coated piston using selected SHIC (PSZ-ceramic ZrO2+8%Y2O3) with a calculated optimum temperature gradient was chosen. A single cylinder experimental tractor diesel was used. At rotation frequency n > 2800 rpm the heat losses were no more than 0.2 MW/m2. Executed testings showed ~2-3% lower specific fuel consumption in contrast the diesel with uncoated piston. Effective power and drive torque were ~2-5% greater. The authors have substantiated the growth the efficiency of this Low-Heat-Rejection (LHR) diesel due to the known effect of soot deposition gasification at high speed.Then unpolluted semitransparent ceramic thermal insulation forms the required thermoradiation fields and temperature profiles and can affect regulation of heat losses and reduction of primarily nitrogen dioxide generation.
Semitransparent ceramic heat-insulation of eco-friendly Low- Heat-Rejection diesel
NASA Astrophysics Data System (ADS)
Merzlikin, V. G.; Gutierrez, M. O.; Makarov, A. R.; Kostukov, A. V.; Dementev, A. A.; Khudyakov, S. V.; Zagumennov, F. A.
2018-03-01
Efficiency of diesel has been studied using well-known types of the ceramic heat-insulating HICs- or thermal barrier TBCs-coatings. This problem is relevant for a high-speed diesel combustion chamber in which an intensive radiant component (near IR) reaches ~50% within total thermal flux. Therefore, in their works the authors had been offering new concept of study these materials as semitransparent SHICs-, STBCs-coatings. On the Mie scattering theory, the effect of selection of the specific structural composition and porosity of coatings on the variation of their optical parameters is considered. Conducted spectrophotometric modeling of the volume-absorbed radiant energy by the coating had determined their acceptable temperature field. For rig testings, a coated piston using selected SHIC (PSZ-ceramic ZrO2+8%Y2O3) with a calculated optimum temperature gradient was chosen. A single cylinder experimental tractor diesel was used. At rotation frequency n > 2800 rpm, the heat losses were no more than 0.2 MW/m2. Executed testings showed ~2-3% lower specific fuel consumption in contrast to the diesel with an uncoated piston. Effective power and drive torque were ∼2-5% greater. The authors have substantiated the growth the efficiency of this Low-Heat-Rejection(LHR) diesel due to the known effect of soot deposition gasification at high speed. Then unpolluted semitransparent ceramic thermal insulation forms the required thermoradiation fields and temperature profiles and can affect regulation of heat losses and a reduction of primarily nitrogen dioxide generation.
Santo Zarnik, Marina; Belavic, Darko; Novak, Franc
2015-01-01
An exploratory study of the impact of housing on the characteristics of a low-temperature co-fired ceramic (LTCC) pressure sensor is presented. The ceramic sensor structure is sealed in a plastic housing. This may have non-negligible effect on the final characteristics and should be considered in the early design phase. The manufacturability issue mainly concerning the selection of available housing and the most appropriate materials was considered with respect to different requirements for low and high pressure ranges of operation. Numerical predictions showed the trends and helped reveal the critical design parameters. Proper selection of the adhesive material remains an essential issue. Curing of the epoxy adhesive may introduce non-negligible residual stresses, which considerably influence the sensor’s characteristics. PMID:26694386
Compressive Strength and Indentation Damage in Ceramic Materials.
1978-05-31
The extent of the plastically deformed region associated with indentation in silicon carbide is determined by means of selected area electron...microfracture mechanisms responsible for the temperature-sensitive compressive strength behavior of polycrystalline Al2O3 and alpha-SiC. It is determined ...that the early stages of damage can be related to the presence or absence of microplasticity , depending upon the ceramic. Further, local plastic flow in
Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste.
Ponsot, Inès M M M; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K; Detsch, Rainer; Boccaccini, Aldo R; Bernardo, Enrico
2014-07-31
Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900-1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.
Ceramic Nanocomposites from Tailor-Made Preceramic Polymers
Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel
2015-01-01
The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023
Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste
Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico
2014-01-01
Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1992-01-01
A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the design, development, analytical and experimental evaluation of a new ceramic wafer seal that shows promise of meeting these demands will be addressed. A high temperature seal test fixture was designed and fabricated to measure static seal leakage performance under engine simulated conditions. Ceramic wafer seal leakage rates are presented for engine-simulated air pressure differentials (up to 100 psi), and temperature (up to 1350 F), sealing both flat and distorted wall conditions, where distortions can be as large as 0.15 inches in only an 18 inch span. Seal leakage rates are low, meeting an industry-established tentative leakage limit for all combinations of temperature, pressure and wall conditions considered. A seal leakage model developed from externally-pressurized gas film bearing theory is also presented. Predicted leakage rates agree favorably with the measured data for nearly all conditions of temperature and pressure. Discrepancies noted at high engine pressure and temperature are attributed to thermally-induced, non-uniform changes in the size and shape of the leakage gap condition. The challenging thermal environment the seal must operate in places considerable demands on the seal concept and material selection. Of the many high temperature materials considered in the design, ceramics were the only materials that met the many challenging seal material design requirements. Of the aluminum oxide, silicon carbide, and silicon nitride ceramics considered in the material ranking scheme developed herein, the silicon nitride class of ceramics ranked the highest because of their high temperature strength; resistance to the intense heating rates; resistance to hydrogen damage; and good structural properties. Baseline seal feasibility has been established through the research conducted in this investigation. Recommendations for future work are also discussed.
Compact Ceramic Microchannel Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewinsohn, Charles
The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less
Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.
1996-01-01
This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2016-01-01
Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.
Frayssinet, P; Rouquet, N; Fages, J; Durand, M; Vidalain, P O; Bonel, G
1997-06-05
HA-ceramics used in human surgery as osteoconductive surfaces show a great variety of characteristics. Certain characteristics such as grain size, porosity, and surface area, are controlled by the sintering temperature of the slurry. We grew L-929 fibroblast cells on HA-ceramic disks that had been sintered at different temperatures ranging from 850 degrees-1350 degrees C. The cell line growth rate was lower on ceramic disks than on the culture-grade polystyrene used as a negative control. Cell growth correlated with the ceramic sintering temperature although no significant difference in the cell adhesion to the different ceramics was shown. Growth rate on ceramics sintered at low temperatures (850 degrees and 950 degrees C) was negative whereas it was positive on disks sintered at higher temperatures. When the cells were separated from the disks by a polycarbonate membrane, the growth rate was negative on those membranes in contact with low-temperature sintered disks and positive on the high-temperature sintered disks. The calcium and phosphorus concentration in the culture medium in contact with ceramics sintered below 1050 degrees C decreased during the culture period. Ceramics sintered between 1100 degrees and 1250 degrees C brought about an increase in Ca and P concentrations while ceramics sintered at higher temperatures did not induce any changes. SEM examination of the 850 degrees and 1200 degrees C sintered ceramics showed that the 850 degrees C sintered ceramics consisted of small grains with pores between them and the 1200 degrees C sintered ceramics were made of larger grains without any visible pores, thereby decreasing the surface of material in contact with the culture medium. This difference in surface area was confirmed by the fact that the amount of albumin absorbed onto the ceramic was dependent on the sintering temperature. In conclusion, the modification of the culture medium brought about by high-surfaced ceramics could influence the growth of cells with which such ceramics come in contact.
Multilayer ultra-high-temperature ceramic coatings
Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ
2012-03-20
A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
Performance of Ceramics in Severe Environments
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.
2005-01-01
Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-01-01
The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.
Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang
2016-08-01
The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.
A device for microwave sintering large ceramic articles
Kimrey, H.D. Jr.
1987-07-24
A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.
Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.
Gao, Chengde; Feng, Pei; Peng, Shuping; Shuai, Cijun
2017-10-01
The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogle, Brandon; Kelly, James; Haslam, Jeffrey
The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finitemore » Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.« less
Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun
2015-01-01
The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999
Corrosion Issues for Ceramics in Gas Turbines
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao
2000-01-01
The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering, sinter-HIPing, and Encapsulation-HIPing. It is important to note that each process involves the addition of secondary elements, which later were shown to dramatically influence oxidation and corrosion behavior. As dense bodies of silicon-based ceramics became more readily available, their desirable high temperature properties were confirmed. These materials retained strength to very high temperatures (i.e. 1300-1400 C). Further, they were lightweight and made from abundant materials. SiC and Si3N4 therefore emerged as leading ceramic candidates for components in heat engines, designed to operate at higher temperatures for better performance and fuel efficiency. The first US programs for ceramics in heat engines have been reviewed [6]. Selected programs on ceramic engine parts are summarized here in regard to their contributions to understanding the corrosion behavior of a heat engine environment.
Composite of ceramic-coated magnetic alloy particles
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.
Performance and Selectivity of Ceramic Membranes in the Ultrafiltration of Model Emulsion in Saline
NASA Astrophysics Data System (ADS)
Ćwirko, Konrad; Kalbarczyk-Jedynak, Agnieszka
2017-06-01
Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application - significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.
Generation of functional structures by laser pyrolysis of polysilazane
NASA Astrophysics Data System (ADS)
Krauss, Hans-Joachim; Otto, Andreas
2002-06-01
The pyrolysis of polysilazanes by laser power represents an innovative technique for the generation of ceramic-like coatings and structures. The dissolved polysilazanes can be easily applied by painting techniques such as dipping or spraying. In the following pyrolysis the polysilazane layer transforms into an amorphous ceramic-like coating. The laser power is absorbed in the precursor layer, which leads to the latter's ceramization without damaging the substrate by thermal load. While plane laser pyrolysis creates a protective coating, selective pyrolysis creates a raised and adherent ceramic-like structure that remains after the unexposed polymer layer has been removed. The flexibility of a writing laser system in conjunction with a suitable handling system makes it possible to inscribe any kind of 2D structure on nearly any complexly shaped part. Some of the chemical, magnetic, and electrical structure properties can be adjusted by the pyrolysis parameters and special types of filler particles. Especially the possibility to control electric conductivity should make it possible to create structure dielectric films or planar resistors, inductors or capacitors, which are basically written on the surface of the part. Because of their ceramic nature of the structures are resistant against high temperatures and corrosive media. Thus, this new additive structuring technique could finally strike a new path in creating corrosion resistant high- temperature sensors and control systems.
NASA Astrophysics Data System (ADS)
Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin
2015-12-01
The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.
High Temperature Ultrasonic Transducer for Real-time Inspection
NASA Astrophysics Data System (ADS)
Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.
A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulman, Holly; Ross, Nicole
2015-10-30
An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, greenmore » handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.« less
Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.
1996-01-01
Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.
The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact
NASA Technical Reports Server (NTRS)
Sliney, Harold E.; Dellacorte, Christopher
1993-01-01
The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.
High-temperature testing of glass/ceramic matrix composites
NASA Technical Reports Server (NTRS)
Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.
1989-01-01
Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R. (Technical Monitor)
2001-01-01
Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
High temperature ceramic/metal joint structure
Boyd, Gary L.
1991-01-01
A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1999-01-01
Ceramics are protected from high temperature degradation, including high temperature, oxidative, aeroconvective degradation by a high temperature and oxidation resistant coating of a room temperature curing, hydrolyzed and partially condensed liquid polyorganosiloxane to the surface of the ceramic. The liquid polyorganosiloxane is formed by the hydrolysis and partial condensation of an alkyltrialkoxysilane with water or a mixture of an alkyltrialkoxysilane and a dialkyldialkoxysilane with water. The liquid polyorganosiloxane cures at room temperature on the surface of the ceramic to form a hard, protective, solid coating which forms a high temperature environment, and is also used as an adhesive for adhering a repair plug in major damage to the ceramic. This has been found useful for protecting and repairing porous, rigid ceramics of a type used on reentry space vehicles.
Process for making silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
1998-01-01
A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
Silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
2001-01-01
This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
NASA Astrophysics Data System (ADS)
Wiendartun, Risdiana, Fitrilawati, Siregar, R. E.
2016-02-01
A study on the fabrication of Iron Titanium Oxide (Fe2TiO5) ceramics for negative temperature coefficient (NTC) thermistors has been carried out, in order to know the effect of sintering temperature on the electrical characteristic of 1.0 % mole Nb2O5 doped Fe2TiO5 ceramics.These ceramics were made by mixing commercial powders of Fe2O3, TiO2 and Nb2O5 with proportional composition to produce Fe2TiO5 based ceramic. The raw pellet was sintered at 1000 °C, 1100 °C and 1200 °C temperature for 2 hours in air. Analysis of the microstructure and crystal structure were performed by using a scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. XRD spectra showed that the crystal structure of all ceramics of Fe2TiO5 made at various sintering temperatures are orthorhombic. The SEM images showed that the grain size of pellet ceramics increase with increasing sintering temperatures. From electrical resistances data that was measured at temperature 30-300 °C, it is found that the value of thermistor constant (B), activation energy (Ea), thermistor sensitivity (α) and room temperature resistance (RRT) decreases with respect to the increasing of sintering temperature. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 6394-6959 K). This can be applied as temperature sensor, and will fulfill the market requirement.
Method and device for microwave sintering large ceramic articles
Kimrey, Jr., Harold D.
1990-01-01
A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.
Ahmad, A L; Mustafa, N N N
2006-09-15
The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.
Plugging micro-leaks in multi-component, ceramic tubesheets with material leached therefrom
Bieler, B.H.; Tsang, F.Y.
1985-03-19
Cracks, in ceramic wall members, on the order of 1 micron or less in width are plugged helium-tight by selectively leaching a component of the wall member with a solvent, letting the resultant leach form a liquid bridge within the crack, removing the solvent and sintering the resultant residue. This method is of particular value for remedying microcracks or channels in a cell member constituting a tubesheet in a hollow fiber type, high temperature battery cell, such as a sodium/sulfur cell, for example. 1 fig.
Plugging micro-leaks in multi-component, ceramic tubesheets with material leached therefrom
Bieler, Barrie H.; Tsang, Floris Y.
1985-03-19
Cracks, in ceramic wall members, on the order of 1 micron or less in width are plugged helium-tight by selectively leaching a component of the wall member with a solvent, letting the resultant leach form a liquid bridge within the crack, removing the solvent and sintering the resultant residue. This method is of particular value for remedying microcracks or channels in a cell member constituting a tubesheet in a hollow fiber type, high temperature battery cell, such as a sodium/sulfur cell, for example.
MHD oxidant intermediate temperature ceramic heater study
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.
1981-01-01
The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.
Ceramic component reliability with the restructured NASA/CARES computer program
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.
1992-01-01
The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).
Current status of ceramic-based membranes for oxygen separation from air.
Hashim, Salwa Meredith; Mohamed, Abdul Rahman; Bhatia, Subhash
2010-10-15
There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.
Superconductive radiofrequency window assembly
Phillips, Harry Lawrence; Elliott, Thomas S.
1998-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconductive radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1998-05-19
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
Superconducting radiofrequency window assembly
Phillips, Harry L.; Elliott, Thomas S.
1997-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconducting radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1997-03-11
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
NASA Astrophysics Data System (ADS)
Lulewicz, J. D.; Roux, N.; Piazza, G.; Reimann, J.; van der Laan, J.
2000-12-01
Li 2ZrO 3 and Li 2TiO 3 pebbles are being investigated at Commissariat à l'Energie Atomique as candidate alternative ceramics for the European helium-cooled pebble bed (HCPB) blanket. The pebbles are fabricated using the extrusion-spheronization-sintering process and are optimized regarding composition, geometrical characteristics, microstructural characteristics, and material purity. Tests were designed and are being performed with other organizations so as to check the functional performance of the pebbles and pebble beds with respect to the HCPB blanket requirements, and, finally, to make the selection of the most appropriate ceramic for the HCPB blanket. Tests include high temperature long-term annealing, thermal shock, thermal cycling, thermal mechanical behaviour of pebble beds, thermal conductivity of pebble beds, and tritium extraction. Current results indicate the attractiveness of these ceramics pebbles for the HCPB blanket.
Reliability and life prediction of ceramic composite structures at elevated temperatures
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1994-01-01
Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.
NASA Technical Reports Server (NTRS)
Robbins, M. D.; Kelley, J. A.; Elliott, L.
1972-01-01
NASA contributions to the advancement of major developments in twelve selected fields of technology are presented. The twelve fields of technology discussed are: (1) cryogenics, (2) electrochemical energy conversion and storage, (3) high-temperature ceramics, (4) high-temperature metals (5) integrated circuits, (6) internal gas dynamics (7) materials machining and forming, (8) materials joining, (9) microwave systems, (10) nondestructive testing, (11) simulation, and (12) telemetry. These field were selected on the basis of both NASA and nonaerospace interest and activity.
NASA Astrophysics Data System (ADS)
Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.
2010-12-01
Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).
Dynamic, High-Temperature, Flexible Seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Sirocky, Paul J.
1989-01-01
New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.
NASA Astrophysics Data System (ADS)
Todor, Raluca; Negrutiu, Meda-Lavinia; Sinescu, Cosmin; Topala, Florin Ionel; Bradu, Adrian; Duma, Virgil-Florin; Romînu, Mihai; Podoleanu, Adrian G.
2018-03-01
One of the most common fabrication techniques for dental ceramics is sintering, a process of heating of the ceramic to ensure densification. This occurs by viscous flow when the firing temperature is reached. Acceptable restorations require the alloy and ceramic to be chemically, thermally, mechanically, and aesthetically compatible. Thermal and mechanical compatibility include a fusing temperature of ceramic that does not cause distortion of the metal substructure. Decalibration of ovens used for firing of the ceramic layers for metal ceramic dental prostheses leads to stress and cracks in the veneering material, and ultimately to the failure of the restoration. 25 metal ceramic prostheses were made for this study. They were divided in five groups, each sintered at a different temperature: a group at the temperature prescribed by the producer, two groups at lower and two groups at higher temperatures set in the ceramic oven. An established noninvasive biomedical imaging method, swept source (SS) optical coherence tomography (OCT) was employed, in order to evaluate the modifications induced when using temperatures different from those prescribed for firing the samples. A quantitative assessment of the probes is performed by en-face OCT images, taken at constant depths inside the samples. The differences in granulation, thus in reflectivity allow for extracting rules-of-thumb to evaluate fast, by using only the prostheses currently produced the current calibration of the ceramic oven. OCT imaging can allow quick identification of the oven decalibration, to avoid producing dental prostheses with defects.
Robust Hydrophobic Surfaces from Suspension HVOF Thermal Sprayed Rare-Earth Oxide Ceramics Coatings.
Bai, M; Kazi, H; Zhang, X; Liu, J; Hussain, T
2018-05-03
This study has presented an efficient coating method, namely suspension high velocity oxy-fuel (SHVOF) thermal spraying, to produce large super-hydrophobic ceramic surfaces with a unique micro- and nano-scale hierarchical structures to mimic natural super-hydrophobic surfaces. CeO 2 was selected as coatings material, one of a group of rare-earth oxide (REO) ceramics that have recently been found to exhibit intrinsic hydrophobicity, even after exposure to high temperatures and abrasive wear. Robust hydrophobic REO ceramic surfaces were obtained from the deposition of thin CeO 2 coatings (3-5 μm) using an aqueous suspension with a solid concentration of 30 wt.% sub-micron CeO 2 particles (50-200 nm) on a selection of metallic substrates. It was found that the coatings' hydrophobicity, microstructure, surface morphology, and deposition efficiency were all determined by the metallic substrates underneath. More importantly, it was demonstrated that the near super-hydrophobicity of SHVOF sprayed CeO 2 coatings was achieved not only by the intrinsic hydrophobicity of REO but also their unique hierarchically structure. In addition, the coatings' surface hydrophobicity was sensitive to the O/Ce ratio, which could explain the 'delayed' hydrophobicity of REO coatings.
Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs)
2006-08-01
preceramic polymers that convert by pyrolysis to SiC , SiOC or C. Potential polymeric precursors to ZrB2 and ZrC were not selected, because they were not...limited extent, C/ SiC composite substrates using preceramic and precarbon polymers combined with inert fillers and/or reactive metals. The evolved... SiC is an obvious example for powder mixed with a preceramic polymer binder to achieve the desired low-temperature processing. The polymeric
Temperature dependence of piezoelectric properties for textured SBN ceramics.
Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio
2007-12-01
Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2018-01-01
Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.
Insulated laser tube structure and method of making same
Dittbenner, Gerald R.
1999-01-01
An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.
Light-weight black ceramic insulation
NASA Technical Reports Server (NTRS)
Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2003-01-01
Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.
High Temperature Oxidation-Resistant Thruster Research
1990-02-01
substrates: Refractory metals, ! Ceramics, Composites and I Carbon - carbon . Rhenium and hafnium carbide were selected based on their properties I and... carbon . Rhenium was selected as the primary refractory metal candidate because of its high melting point, no ductile-to- brittle transition in the...of rhenium (Re) with those of other refractory metals. Rhenium has the second highest melting point of the elements, 3013 C, second only to tungsten
NASA Technical Reports Server (NTRS)
Perkins, K. L.; Licari, J. J.
1978-01-01
The susceptibility of adhesive-sealed ceramic packages to moisture permeation was investigated. The two adhesives, Ablebond 789-1 and Epo-Tek H77, were evaluated as package sealants. These adhesives were previously selected as the most promising candidates for this application from a group of ten adhesives. Ceramic packages sealed with these adhesives were exposed to temperature-humidity conditions of 25 C/98 percent RH, 50 C/60 percent RH, 50 C/98 percent RH, and 85 C/85 percent RH and their moisture contents using were monitored solid state moisture sensors sealed inside them. Five packages were tested at each of these exposures - two ceramic packages sealed with each of the two adhesives and one seam-sealed gold-plated Kovar package. This latter package was included to serve as a control. The results showed that the adhesive-sealed packages were not hermetic to moisture. The rates at which moisture entered the packages increased with the severity of the exposure environments (i.e., higher temperatures and higher moisture vapor pressures) with greater dependence on temperature than on moisture vapor pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Tadashi; Lin, Hua-Tay; Singh, Mrityunjay
2011-01-01
The stress-temperature-lifetime response of Si-Ti-C-O fiber-bonded ceramic (Tyrannohex ) and sintered SiC fiber-bonded ceramic (SA-Tyrannohex ) materials were investigated in air from 500 to 1150 C and 500 to 1400 C, respectively. The apparent threshold stress of Si-Ti-C-O fiber-bonded ceramic was about 175 MPa in the 500-1150 C temperature range. When the applied stress of the sintered SiC fiber-bonded ceramic was below an apparent threshold stress (e.g., ~225MPa) for tests conducted 1150 C, no failures were observed for lifetimes up to 1000h. In the case of sintered SiC fiber-bonded ceramic, at the temperature of 1300 C, the apparent threshold stressmore » decreased to 175 MPa. The decrease in strength seemed to be caused by grain growth which was confirmed from the SEM fractography. Both fiber-bonded ceramics exhibited much higher durability than a commercial SiC/SiC composite at temperatures above 500 C. In addition, results suggested that the sintered SiC fiber-bonded ceramic (SA-Tyrannohex) is more stable than a Hi-Nicalon/MI SiC composite with BN/SiC fiber coating at temperatures above 1300 C.« less
NASA Technical Reports Server (NTRS)
Hooker, Matthew W. (Inventor); Taylor, Theodore D. (Inventor); Wise, Stephanie A. (Inventor); Buckley, John D. (Inventor); Vasquez, Peter (Inventor); Buck, Gregory M. (Inventor); Hicks, Lana P. (Inventor)
1993-01-01
A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip, created by dispersing a ceramic powder in an organic liquid, is poured therein. After a ceramic shell of desired thickness or a solid article has set up in the shell mold, excess ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1988-01-01
The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.
Archaeological Investigations in the Upper Tombigbee Valley, Mississippi: Phase I. Volume 1.
1983-01-01
6.10 Site 221T563: Selected c,ramics; Alexander Incised .............................. 6.90 6.91 6.11 Site 221T563: Selected ceramics: Alexander... Incised .............................. 6.92 6.93 6.12 Site 221T563: Selected ceramics: Alexander Incised .............................. 6.94 6.95 6.13 Site...221T563: Selected ceramics: Alexander Incised .............................. 6.96 6.9i 6.14 Site 221T563: Selected ceramics: Alexander Incised
Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.
2002-01-01
The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
Improved Properties of Pb Based BLZT Ferroelectric Ceramics
NASA Astrophysics Data System (ADS)
Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra
2011-11-01
Present report is concerning with investigation of effect of different sintering profiles on Pb based BLZT ceramics. The material powder of selected composition (Ba0.795La0.005Pb0.20Ti0.90Zr0.10O3) was prepared by solid state reaction route and then powder was compacted in the form of circular discs. The discs were then sintered at different temperatures (1325 °C for 4h, 1325 °C for 15min+1200 °C for 4h). Improved dielectric and ferroelectric properties were observed for samples sintered at 1200 °C. Shifting in Tc to higher temperature could be related to enhanced tetragonality, which was further confirmed by X-ray diffraction analysis. All these improvements evidences that there is less Pb loss in case of modified sintering profile.
The review of various synthesis methods of barium titanate with the enhanced dielectric properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, S. P., E-mail: smitalomte@gmail.com; Topare, R. J., E-mail: r-topare@yahoo.com
2016-05-06
The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with themore » effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.« less
Segmented lasing tube for high temperature laser assembly
Sawicki, Richard H.; Alger, Terry W.; Finucane, Raymond G.; Hall, Jerome P.
1996-01-01
A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.
Light-weight ceramic insulation
NASA Technical Reports Server (NTRS)
Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2002-01-01
Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.
Emittance and absorptance of NASA ceramic thermal barrier coating system. [for turbine cooling
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1978-01-01
Spectral emittance measurements were made on a two-layer ceramic thermal barrier coating system consisting of a metal substrate, a NiCrAly bond coating and a yttria-stabilized zirconia ceramic coating. Spectral emittance data were obtained for the coating system at temperatures of 300 to 1590 K, ceramic thickness of zero to 0.076 centimeter, and wavelengths of 0.4 to 14.6 micrometers. The data were transformed into total hemispherical emittance values and correlated with respect to ceramic coating thickness and temperature using multiple regression curve fitting techniques. The results show that the ceramic thermal barrier coating system is highly reflective and significantly reduces radiation heat loads on cooled gas turbine engine components. Calculation of the radiant heat transfer within the nonisothermal, translucent ceramic coating material shows that the gas-side ceramic coating surface temperature can be used in heat transfer analysis of radiation heat loads on the coating system.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2017-11-01
Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ceramic coating effect on liner metal temperatures of film-cooled annular combustor
NASA Technical Reports Server (NTRS)
Claus, R. W.; Wear, J. D.; Liebert, C. H.
1979-01-01
An experimental and analytical investigation was conducted to determine the effect of a ceramic coating on the average metal temperatures of full annular, film cooled combustion chamber liner. The investigation was conducted at pressures from 0.50 to 0.062. At all test conditions, experimental results indicate that application of a ceramic coating will result in significantly lower wall temperatures. In a simplified heat transfer analysis, agreement between experimental and calculated liner temperatures was achieved. Simulated spalling of a small portion of the ceramic coating resulted in only small increases in liner temperature because of the thermal conduction of heat from the hotter, uncoated liner metal.
Characteristics of Ceramic Fiber Modified Asphalt Mortar
Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik
2016-01-01
Ceramic fiber, with a major composition of Al2O3 and SiO2, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder. PMID:28773908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-02-01
The overall objective of this program is to assess and develop nondestructive evaluation procedures for high-temperature ceramics. The program is currently evaluating ceramic heat-exchanger tubing. Ceramic heat exchangers would be useful, for example, in coal-fired Brayton conversion or waste heat-recovery systems. The use of ceramic heat exchangers will allow working fluids to reach temperatures up to 1230/sup 0/C, and, with further materials development, possibly 1650/sup 0/C. If superalloys were employed, working fluids would be limited to approximately 800/sup 0/C. The use of working fluids at higher temperatures would result in more efficient systems. Furthermore, ceramic components are lighter than metallicmore » ones and are made from less costly and more abundant elements. In addition, ceramic heat exchangers would be more resistant to corrosion. In the current NDE effort, several acoustic, optical, and radiographic techniques are being examined for their effectiveness in testing silicon carbide tubing. Some results employing dye-enhanced radiography are discussed.« less
Characteristics of Ceramic Fiber Modified Asphalt Mortar.
Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik
2016-09-21
Ceramic fiber, with a major composition of Al₂O₃ and SiO₂, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder.
Ceramic-ceramic shell tile thermal protection system and method thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)
1986-01-01
A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.
NASA Astrophysics Data System (ADS)
Zhou, Yu; Duan1, Xiaoming; Jia, Dechang; Yang, Zhihua; Meng, Qingchang; Yu, Yang; Yu, Daren; Ding, Yongjie
2011-10-01
ZrO2p(3Y)/BN-SiO2 ceramic composites were hot pressed under different sintering temperature. The ceramic composites were composed by BN, m-ZrO2, t-ZrO2 and SiO2. The relative density, bending strength, elastic modulus and fracture toughness increase with the sintering temperature increasing, the maximum value of which at the sintering temperature of 1800°C are 97.5%, 229.9MPa, 60.8GPa and 3.55MPam1/2, respectively. The erosion resistance ability of ZrO2p(3Y)/BN-SiO2 ceramic composites rise gradually with the sintering temperature increasing, and the erosion rate of the ceramic composite sintered at 1800°C is 8.03×10-3mm/h.
Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
NASA Astrophysics Data System (ADS)
Wang, Chun-Ming; Wang, Jin-Feng; Zhang, Shujun; Shrout, Thomas R.
2009-05-01
The Aurivillius-type bismuth layer-structured (NaBi)0.46(LiCe)0.04Bi4Ti4O15 (NBT-LiCe) piezoelectric ceramics were synthesized using conventional solid-state processing. Phase analysis was performed by x-ray diffraction and microstructural morphology was assessed by scanning electron microscopy. The dielectric, piezoelectric, ferroelectric, and electromechanical properties of NBT-LiCe ceramics were investigated. The piezoelectric activities were found to be significantly enhanced compared to NBT ceramics, which can be attributed to the lattice distortion and the presence of bismuth vacancies. The dielectric and electromechanical properties of NBT-LiCe ceramics at elevated temperature were investigated in detail. The excellent piezoelectric, dielectric, and electromechanical properties, coupled with high Curie temperature (Tc=660 °C), demonstrated that the NBT-LiCe ceramics are the promising candidates for high temperature applications.
NASA Astrophysics Data System (ADS)
Maiwa, Hiroshi
2017-10-01
The electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics (BZT and BST, respectively) were investigated by the indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops had shapes similar to those of the strain-electric field (s-E) loops. The measured temperature changes (ΔTs) at around 30 °C of the BZT ceramics sintered at 1450 °C and BST ceramics sintered at 1600 °C upon the release of the electric field from 30 kV/cm to 0 were 0.34 and 0.57 K, respectively. The temperature dependences of the electromechanical and electrocaloric properties were investigated. The BZT ceramics sintered at 1450 °C exhibited the largest electromechanical and electrocaloric properties at around 30 °C, which corresponds to the phase transition temperature. BST is more temperature dependent than BZT. BST ceramics sintered at 1600 °C exhibited the largest electromechanical and electrocaloric properties at around 29 °C, which is about 10 °C higher than the phase transition temperature.
Sliding durability of candidate seal fiber materials in hydrogen from 25 to 900 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1992-01-01
Sliding durability studies of candidate ceramic fibers were conducted in hydrogen to support the high temperature seal development program at NASA LeRC. Pin-on-disk tests were used to measure the friction and durability of a tow or bundle of ceramic fibers in sliding against a superalloy disk. This procedure was used previously to test candidate fibers in an air environment. The fibers based upon mullite (Al2O3-SiO2) chemistry (Nextel 550, 440, and 312) exhibited better durability in hydrogen than in air. HPZ, a complex silicon carboxynitride fiber which showed good durabilty in air, however, showed a significant loss of durability in hot hydrogen. These results are consistent with recent thermodynamic and experimental studies of ceramic compatibility with hydrogen at elevated temperatures. These research results indicate that only oxide fibers display good durability in both air and hydrogen environments. Also, simple, low cost testing in air can provide an adequate data base for initial seal material screening and selection, especially for oxide fiber candidates. The findings of this research provide critical input to the seal design team.
High temperature conductivity of potassium-beta(double prime)-alumina
NASA Technical Reports Server (NTRS)
Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; Ryan, M. A.; O'Connor, D.; Kikkert, S.
1992-01-01
Potassium beta(double prime)-alumina (BDPA) single crystals have been reported by several groups to leave higher ionic conductivity than sodium BDPA crystals at room temperature, and similar conductivities are obtained at temperatures up to 600-700 K. Potassium BDPA ceramics have been reported to have significantly poorer conductivities than those of sodium BDPA ceramics, but conductivity measurements at temperatures above 625 K have not been reported. In this study, K(+)-BDPA ceramics were prepared from Na(+)-BDPA ceramic using a modified version of the exchange reaction with KCl vapor reported by Crosbie and Tennenhouse (1982), and the conductivity has been measured in K vapor at temperatures up to 1223 K, using the method of Cole et al. (1979). The results indicate reasonable agreement with earlier data on K(+)-BDPA ceramic measured in a liquid K cell, but show that the K(+)-BDPA ceramic's conductivity approaches that of Na(+)-BDPA ceramic at higher temperatures, being within a factor of four at 700 K and 60 percent of the conductivity of Na(+)-BDPA at T over 1000 K. Both four-probe dc conductivity and four probe ac impedance measurements were used to characterize the conductivity. A rather abrupt change in the grain boundary resistance suggesting a possible phase change in the intergranular material, potassium aluminate, is seen in the ac impedance behavior.
NASA Astrophysics Data System (ADS)
Ren, Shaokai; Chen, Zhi; Yan, Tianxiang; Han, Feifei; Kuang, Xiaojun; Fang, Liang; Liu, Laijun
2018-07-01
Transition elements Nb, Mn and Zr were selected to substitute Ti of 0.4(Ba0.8Ca0.2)TiO3 -0.6Bi(Mg0.5Ti0.5)O3 (BCT-BMT) ceramic in order to extend its operation temperature and decrease its dielectric loss for the application of high-temperature capacitors. Nb and Mn play an opposite role on the defect compensation, decreasing and increasing the concentration of oxygen vacancies, respectively. The temperature of the maximum relative permittivity, Tm, decreases from 140 °C to 90 °C for the Nb and Zr modified BCT-BMT ceramics. The permittivity (εr) peak of the former exhibits a broad and stable relative permittivity ∼600 (±5% variation) from 50 °C to 520 °C with the dielectric loss ≤0.02 from 60 °C to 440 °C (1 kHz). The modified Curie-Weiss law indicates that the doping elements result in an enhancement of diffuse phase transition. Activation energies of relaxation frequency and conduction of the samples were characterized by the impedance spectroscopy. A clear relationship between the magnitude of activation energy and the concentration of oxygen vacancies was revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2006-01-01
Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.
Development of strain tolerant thermal barrier coating systems, tasks 1 - 3
NASA Technical Reports Server (NTRS)
Anderson, N. P.; Sheffler, K. D.
1983-01-01
Insulating ceramic thermal barrier coatings can reduce gas turbine airfoil metal temperatures as much as 170 C (about 300 F), providing fuel efficiency improvements greater than one percent and durability improvements of 2 to 3X. The objective was to increase the spalling resistance of zirconia based ceramic turbine coatings. To accomplish this, two baseline and 30 candidate duplex (layered MCrAlY/zirconia based ceramic) coatings were iteratively evaluated microstructurally and in four series of laboratory burner rig tests. This led to the selection of two candidate optimized 0.25 mm (0.010 inch) thick plasma sprayed partially stabilized zirconia ceramics containing six weight percent yttria and applied with two different sets of process parameters over a 0.13 mm (0.005 inch) thick low pressure chamber sprayed MCrAlY bond coat. Both of these coatings demonstrated at least 3X laboratory cyclic spalling life improvement over the baseline systems, as well as cyclic oxidation life equivalent to 15,000 commercial engine flight hours.
Could digital imaging be an alternative for digital colorimeters?
Caglar, Alper; Yamanel, Kivanc; Gulsahi, Kamran; Bagis, Bora; Ozcan, Mutlu
2010-12-01
This study evaluated the colour parameters of composite and ceramic shade guides determined using a colorimeter and digital imaging method with illuminants at different colour temperatures. Two different resin composite shade guides, namely Charisma (Heraeus Kulzer) and Premise (Kerr Corporation), and two different ceramic shade guides, Vita Lumin Vacuum (VITA Zahnfabrik) and Noritake (Noritake Co.), were evaluated at three different colour temperatures (2,700 K, 2,700-6,500 K, and 6500 K) of illuminants. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2 and C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc.). The data were analysed using two-way ANOVA, and Pearson's correlation. While mean L* values of both composite and ceramic shade guides were not affected from the colour temperature, L* values obtained with the colorimeter showed significantly lower values than those of the digital imaging (p < 0.01). At combined 2,700-6500 K colour temperature, the means of a* values obtained from colorimeter and digital imaging did not show significant differences (p > 0.05). For both composite and ceramic shade guides, L* and b* values obtained from colorimeter and digital imaging method presented a high level of correlation. High-level correlations were also acquired for a* values in all shade guides except for the Charisma composite shade guide. Digital imaging method could be an alternative for the colorimeters unless the proper object-camera distance, digital camera settings and suitable illumination conditions could be supplied. However, variations in shade guides, especially for composites, may affect the correlation.
NASA Technical Reports Server (NTRS)
Dutta, Sunil
1999-01-01
The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.
NASA Technical Reports Server (NTRS)
Singh, M.
2004-01-01
Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.
Ultrasonic Al₂O₃ Ceramic Thermometry in High-Temperature Oxidation Environment.
Wei, Yanlong; Gao, Yubin; Xiao, Zhaoqian; Wang, Gao; Tian, Miao; Liang, Haijian
2016-11-11
In this study, an ultrasonic temperature measurement system was designed with Al₂O₃ high-temperature ceramic as an acoustic waveguide sensor and preliminarily tested in a high-temperature oxidation environment. The test results indicated that the system can indeed work stably in high-temperature environments. The relationship between the temperature and delay time of 26 °C-1600 °C ceramic materials was also determined in order to fully elucidate the high-temperature oxidation of the proposed waveguide sensor and to lay a foundation for the further application of this system in temperatures as high as 2000 °C.
NASA Astrophysics Data System (ADS)
Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu
2018-01-01
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
Tribological synthesis method for producing low-friction surface film coating
Ajayi, Oyelayo O.; Lorenzo-Martin, Maria De La; Fenske, George R.
2016-10-25
An article of method of manufacture of a low friction tribological film on a substrate. The article includes a substrate of a steel or ceramic which has been tribologically processed with a lubricant containing selected additives and the additives, temperature, load and time of processing can be selectively controlled to bias formation of a film on the substrate where the film is an amorphous structure exhibiting highly advantageous low friction properties.
High temperature turbine engine structure
Boyd, Gary L.
1991-01-01
A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.
Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Sharma, Sunita; Yadav, Shiv Sundar; Singh, M. M.; Mandal, K. D.
2014-11-01
Yttrium Copper Titanate (Y2/3Cu3Ti4O12) nanoceramic is structurally analogous to CaCu3Ti4O12 (CCTO). X-ray diffraction (XRD) of Y2/3Cu3Ti4O12 (YCTO) shows the presence of all normal peaks of CCTO. SEM micrograph exhibits the presence of bimodal grains of size ranging from 1-2 μm. Bright field TEM image clearly displays nanocrystalline particle which is supported by presence of a few clear rings in the corresponding selected area electron diffraction (SAED) pattern. It exhibits a high value of dielectric constant (ɛ‧ = 8434) at room temperature and 100 Hz frequency with characteristic relaxation peaks. Impedance and modulus studies revealed the presence of temperature-dependent Maxwell-Wagner type of relaxation in the ceramic.
Abrasive wear of ceramic wear protection at ambient and high temperatures
NASA Astrophysics Data System (ADS)
Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.
2017-05-01
Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2017-06-14
The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2007-01-01
Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.
Correlation of compressive stress with spalling of plasma sprayed ceramic materials
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.
1983-01-01
Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic.
NASA Astrophysics Data System (ADS)
Moure, A.; Pardo, L.
2005-04-01
Ceramics of composition Bi3TiNbO9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900°C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100KHz, and 1MHZ and in the temperature range from 200°C up to the ferroparaelectric transition temperature. Values of ɛ'˜250 at 200°C are achieved in ceramics hot pressed at temperatures as low as 700°C for 1h.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA Glenn to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications can be on aircraft hot section structures and on thermal protection systems. The near-term interim goal of the research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical and physical compatibility with our microfabrication procedures and substrates.
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.
2006-01-01
The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in propulsion system applications. In order to have a more passive method of negating changes of resistance due to temperature, an effort is underway at NASA GRC to develop high temperature thin film ceramic static strain gauges for application in turbine engines, specifically in the fan and compressor modules on blades. Other applications include on aircraft hot section structures and on thermal protection systems. The near-term interim goal of this research effort was to identify candidate thin film ceramic sensor materials to test for viability and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. This goal was achieved by a thorough literature search for ceramics that have the potential for application as high temperature thin film strain gauges, reviewing potential candidate materials for chemical & physical compatibility with NASA GRC's microfabrication procedures and substrates.
High-temperature durability considerations for HSCT combustor
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.
1992-01-01
The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics.
Affordable, Robust Ceramic Joining Technology (ARCJoinT) for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, M.
1998-01-01
Ceramic joining is recognized as one of the enabling technologies for the successful utilization of silicon carbide-based monolithic ceramic and fiber reinforced composite components in a number of demanding and high temperature applications in aerospace and ground-based systems. An affordable, robust ceramic joining technology (ARCJoinT) for joining of silicon carbide-based ceramics and fiber reinforced composites has been developed. This technique is capable of producing joints with tailorable thickness and composition. A wide variety of silicon carbide-based ceramics and composites, in different shapes and sizes, have been joined using this technique. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. In monolithic silicon carbide ceramics, these joints maintain their mechanical strength up to 1350 C in air. There is no change in the mechanical strength of joints in silicon carbide matrix composites up to 1200 C in air. In composites, simple butt joints yield only about 20% of the ultimate strength of the parent materials. This technology is suitable for the joining of large and complex shaped ceramic and composite components, and with certain modifications, can be applied to repair of ceramic components damaged in service.
[Raman studies of nanocrystalline BaTiO3 ceramics].
Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui
2008-12-01
High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.
NASA Astrophysics Data System (ADS)
Manna, M. F.; Grandstaff, D. E.; Ulmer, G. C.
2002-05-01
Zirconium-Oxide ceramics stabilized with ~8-wt% Yttrium-Oxide can be employed to sense pH in high temperature (>90oC) aqueous environments with an accuracy of 0.05 pH log units (Lvov et al., in press), and to sense the fugacity of oxygen (fO2) in low temperature (>230oC) gaseous environments with an accuracy of 0.2 (fO2) log units. The major components, in two commercially available yttria-stabilized ceramics are yttria ( ~8-wt%) and zirconia ( ~91-wt%) with minor amounts of Ti, Fe and U. The textural differences in the two ceramics produces significantly different emf vs. 10,000/T responses. Response error can be introduced by: the ionic contribution of the softening glass, the catalytic action of the Pt sensor components, and the presence of Ti and Fe in the ceramic, which has been shown to alter the oxygen diffusivity of the ceramic. (Merino et al., 1996) The first type of ceramic contains a 3-dimensionally-continuous Ca-Al-Si feldspathic glass that acts as a sintering aid during manufacturing. The glass, which has a higher ionic conductivity than the zirconia ceramic, reduces the bulk resistivity and induces an error over the temperature ranges representing the softening point of the glass. The glass also reduces durability of the ceramic. When the glass hydrates it produces zeolites, which grow primarily in the triple-grain-junctions of the ceramic. Thus mechanically weakening the ceramic generating electronic, ionic and mechanical stability problems. The second type of ceramic contains no grain boundary glass, but does contain discrete silicate phases (such as diopside, wollastonite, periclase, silica, etc.) in the triple-grain-junctions. Because there is no inter-granular glass, the type two ceramic does have a greater bulk resistivity compared with the type one ceramic. In a gas-sensing configuration, resistivity has been shown to affect the minimum temperature of sensor operation. A sensor with a higher bulk resistivity must reach a higher minimum temperature before the sensor will sense oxygen. Literature suggests that the same is true for the sensor in its aqueous pH configuration. In addition to the mechanical degradation, there are also chemical leaching issues with both ceramics. While zirconium is relatively unleachable in its pure form, the addition of yttria, while creating the necessary lattice defects, increases the vulnerability of the solid solution grains to acidic solutions. This, creates ceramic durability problems during long-term down-hole operation. The ceramics do function well as a sensor and can produce highly accurate results (with calibration) and if the durability issues are taken into account, the ceramic sensor could be a highly desirable for many high temperature geologic and industrial applications.
Lankford, Jr., James
1988-01-01
A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Transparent athermal glass-ceramics in Li2O-Al2O3-SiO2 system
NASA Astrophysics Data System (ADS)
Himei, Yusuke; Nagakane, Tomohiro; Sakamoto, Akihiko; Kitamura, Naoyuki; Fukumi, Kohei; Nishii, Junji; Hirao, Kazuyuki
2005-04-01
An attempt has been conducted to develop multicomponent transparent glass-ceramics which have athermal property better than silica glass. Transparent Li2O-Al2O3-SiO2 (LAS) glass-ceramics with small thermal expansion coefficient was chosen as a candidate. Athermal property of the glass-ceramics was improved by the independent control of temperature coefficients of electronic polarizability and thermal expansion coefficient, both of which govern the temperature coefficient of optical path length. It was found that temperature coefficient of electronic polarizability and thermal expansion coefficient of the LAS glass-ceramics were controllable by the additives and crystallization conditions. The doping of B2O3 and the crystallization under a hydrostatic pressure of 196 MPa were very effective to reduce temperature coefficient of electronic polarizability without a remarkable increase in thermal expansion coefficient. It was deduced that the reduction in temperature coefficient of electronic polarizability by the crystallization under 196 MPa resulted from the inhibition of the precipitation of beta-spodumene solid solution. The relative temperature coefficients of optical path length of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 x 10-6/°C, which was slightly larger than that of silica glass. Nevertheless, the thermal expansion coefficient of this glass-ceramic was smaller than that of silica glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Chunming; Wang Jinfeng; Zhang Shujun
2009-05-01
The Aurivillius-type bismuth layer-structured (NaBi){sub 0.46}(LiCe){sub 0.04}Bi{sub 4}Ti{sub 4}O{sub 15} (NBT-LiCe) piezoelectric ceramics were synthesized using conventional solid-state processing. Phase analysis was performed by x-ray diffraction and microstructural morphology was assessed by scanning electron microscopy. The dielectric, piezoelectric, ferroelectric, and electromechanical properties of NBT-LiCe ceramics were investigated. The piezoelectric activities were found to be significantly enhanced compared to NBT ceramics, which can be attributed to the lattice distortion and the presence of bismuth vacancies. The dielectric and electromechanical properties of NBT-LiCe ceramics at elevated temperature were investigated in detail. The excellent piezoelectric, dielectric, and electromechanical properties, coupled with high Curiemore » temperature (T{sub c}=660 deg. C), demonstrated that the NBT-LiCe ceramics are the promising candidates for high temperature applications.« less
Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins.
Song, Fan; Meng, Songhe; Xu, Xianghong; Shao, Yingfeng
2010-03-26
We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10,000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.
Analytical design of an advanced radial turbine. [automobile engines
NASA Technical Reports Server (NTRS)
Large, G. D.; Finger, D. G.; Linder, C. G.
1981-01-01
The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.
Xu, Jiageng; Chen, Yu; Tan, Zhi; Nie, Rui; Wang, Qingyuan; Zhu, Jianguo
2018-01-01
A sort of tungsten/chromium(W/Cr) co-doped bismuth titanate (BIT) ceramics (Bi4Ti2.95W0.05O12.05 + 0.2 wt % Cr2O3, abbreviate to BTWC) are ordinarily sintered between 1050 and 1150 °C, and the indentation behavior and mechanical properties of ceramics sintered at different temperatures have been investigated by both nanoindentation and microindentation technology. Firstly, more or less Bi2Ti2O7 grains as the second phase were found in BTWC ceramics, and the grain size of ceramics increased with increase of sintering temperatures. A nanoindentation test for BTWC ceramics reveals that the testing hardness of ceramics decreased with increase of sintering temperatures, which could be explained by the Hall–Petch equation, and the true hardness could be calculated according to the pressure-state-response (PSR) model considering the indentation size effect, where the value of hardness depends on the magnitude of load. While, under the application of microsized Vickers, the sample sintered at a lower temperature (1050 °C) gained four linearly propagating cracks, however, they were observed to shorten in the sample sintered at a higher temperature (1125 °C). Moreover, both the crack deflection and the crack branching existed in the latter. The hardness and the fracture toughness of BTWC ceramics presented a contrary variational tendency with increase of sintering temperatures. A high sintering tends to get a lower hardness and a higher fracture toughness, which could be attributed to the easier plastic deformation and the stronger crack inhibition of coarse grains, respectively, as well as the toughening effect coming from the second phase. PMID:29584677
Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran
2015-06-01
Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.
Mullite fiber reinforced reaction bonded Si3N4 composites
NASA Technical Reports Server (NTRS)
Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.
1996-01-01
Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.
Literature search for ceramic vacuum tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, W.
1977-01-12
The NTIS and Engineering Index files were searched for citations relating to Ceramic and/or Metal Electron Tubes and High Temperature Electronics. A total of 24 citations were found relating directly to ceramic tubes and 24 to high temperature electronics. A search for electron tubes in general was examined for high temperature applications and 39 were obtained. Computer printouts of the abstracts are included in appendices. (MHR)
Correlation of compressive and shear stress with spalling of plasma-sprayed ceramic materials
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.
1983-01-01
Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic. Previously announced in STAR as N83-27016
Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu
2017-04-17
LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.
Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer
NASA Technical Reports Server (NTRS)
Ng, Daniel; Fralick, Gustave
1999-01-01
The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.
Development of Thin Film Ceramic Thermocouples for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.
2004-01-01
The maximum use temperature of noble metal thin film thermocouples of 1100 C (2000 F) may not be adequate for use on components in the increasingly harsh conditions of advanced aircraft and next generation launch technology. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically found in the form of rods or probes. NASA Glenn Research Center is investigating the feasibility of ceramics as thin film thermocouples for extremely high temperature applications to take advantage of the stability and robustness of ceramics and the non-intrusiveness of thin films. This paper will discuss the current state of development in this effort.
Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering
NASA Technical Reports Server (NTRS)
Takatori, K.; Shimade, M.; Koizumi, M.
1984-01-01
Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.
Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst
NASA Astrophysics Data System (ADS)
Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.
2017-02-01
This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.
Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy
Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.
1995-01-01
A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2015-03-10
The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.
Method of making contamination-free ceramic bodies
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor)
1991-01-01
Ceramic structures having high strength at temperatures above 1000 C after sintering are made by mixing ceramic powders with binder deflocculants such as guanidine salts of polymeric acids, guanidine salts of aliphatic organic carboxylic acids or guanidine alkylsulfates with the foregoing guanidine salts. The novelty of the invention appears to lie in the substitution of guanidine salts for the alkalai metal salt components or organic fatty acids of the prior art binder-deflocculant, ceramic processing aids whereby no undesirable metal contaminants are present in the final ceramic structure. Guanidine alkylsulfates also replace the Na or K alkylsulfates commonly used with binder-deflocculants in making high temperature ceramic structures.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
High-Temperature, Thin-Film Ceramic Thermocouples Developed
NASA Technical Reports Server (NTRS)
Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.
2005-01-01
To enable long-duration, more distant human and robotic missions for the Vision for Space Exploration, as well as safer, lighter, quieter, and more fuel efficient vehicles for aeronautics and space transportation, NASA is developing instrumentation and material technologies. The high-temperature capabilities of thin-film ceramic thermocouples are being explored at the NASA Glenn Research Center by the Sensors and Electronics Branch and the Ceramics Branch in partnership with Case Western Reserve University (CWRU). Glenn s Sensors and Electronics Branch is developing thin-film sensors for surface measurement of strain, temperature, heat flux, and surface flow in propulsion system research. Glenn s Ceramics Branch, in conjunction with CWRU, is developing structural and functional ceramic technology for aeropropulsion and space propulsion.
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Kothakonda, Manish; Elupula, Ravinder; Chrisey, Douglas B.
This paper reports on synthesis of polycrystalline complex perovskite CaCu3Ti4O12 (as CCTO) ceramic powders prepared by a sol-gel auto combustion method at different sintering temperatures and sintering times, respectively. The effect of sintering time on the structure, morphology, dielectric and electrical properties of CCTO ceramics is investigated. Tuning the electrical properties via different sintering times is demonstrated for ceramic samples. X-ray diffraction (XRD) studies confirm perovskite-like structure at room temperature. Abnormal grain growth is observed for ceramic samples. Giant dielectric permittivity was realized for CCTO ceramics. High dielectric permittivity was attributed to the internal barrier layer capacitance (IBLC) model associated with the Maxwell-Wagner (MW) polarization mechanism.
Method of preparing porous, rigid ceramic separators for an electrochemical cell
Bandyopadhyay, Gautam; Dusek, Joseph T.
1981-01-01
Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.
Ceramic fibers for matrix composites in high-temperature engine applications
Baldus; Jansen; Sporn
1999-07-30
High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.
NASA Astrophysics Data System (ADS)
Morozov, M. I.; Kungl, H.; Hoffmann, M. J.
2011-03-01
Li-, Ta-, and Mn-modified (K,Na)NbO3 ceramics with various compositional homogeneity have been prepared by conventional and precursor methods. The homogeneous ceramic has demonstrated a sharper peak in temperature dependent piezoelectric response. The dielectric and piezoelectric properties of the homogeneous ceramics have been characterized at the experimental subcoercive electric fields near the temperature of the orthorhombic-tetragonal phase transition with respect to poling in both phases. Poling in the tetragonal phase is shown to enhance the low-signal dielectric and piezoelectric properties in the orthorhombic phase.
Extension of similarity test procedures to cooled engine components with insulating ceramic coatings
NASA Technical Reports Server (NTRS)
Gladden, H. J.
1980-01-01
Material thermal conductivity was analyzed for its effect on the thermal performance of air cooled gas turbine components, both with and without a ceramic thermal-barrier material, tested at reduced temperatures and pressures. The analysis shows that neglecting the material thermal conductivity can contribute significant errors when metal-wall-temperature test data taken on a turbine vane are extrapolated to engine conditions. This error in metal temperature for an uncoated vane is of opposite sign from that for a ceramic-coated vane. A correction technique is developed for both ceramic-coated and uncoated components.
Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.
2004-01-01
The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.
Method of processing "BPS" glass ceramic and seals made therewith
Reed, Scott T.; Stone, Ronald G.; McCollister, Howard L.; Wengert, deceased, Paul R.
1998-01-01
A glass ceramic composition, a glass ceramic-to-metal seal, and more specifically a hermetic glass ceramic-to-metal seal prepared by subjecting a glass composition comprising, by weight percent, SiO.sub.2 (65-80%), LiO.sub.2 (8-16%), Al.sub.2 O.sub.3 (2-8%), K.sub.2 O (1-8%), P.sub.2 O.sub.5 (1-5%), B.sub.2 O.sub.3 (0.5-7%), and ZnO (0-5%) to the following processing steps: 1) heating the glass composition in a belt furnace to a temperature sufficient to melt the glass and crystallize lithium phosphate, 2) holding at a temperature and for a time sufficient to create cristobalite nuclei, 3) cooling at a controlled rate and to a temperature to cause crystallization of lithium silicates and growth of cristobalite, and 4) still further cooling in stages to ambient temperature. This process produces a glass ceramic whose high coefficient of thermal expansion (up to 200.times.10.sup.-7 in/in/.degree.C.) permits the fabrication of glass ceramic-to-metal seals, and particularly hermetic glass ceramic seals to nickel-based and stainless steel alloys and copper.
Method of processing ``BPS`` glass ceramic and seals made therewith
Reed, S.T.; Stone, R.G.; McCollister, H.L.; Wengert, P.R.
1998-10-13
A glass ceramic composition, a glass ceramic-to-metal seal, and more specifically a hermetic glass ceramic-to-metal seal prepared by subjecting a glass composition comprising, by weight percent, SiO{sub 2} (65--80%), LiO{sub 2} (8--16%), Al{sub 2}O{sub 3} (2--8%), K{sub 2}O (1--8%), P{sub 2}O{sub 5} (1--5%), B{sub 2}O{sub 3} (0.5--7%), and ZnO (0--5%) to the following processing steps: (1) heating the glass composition in a belt furnace to a temperature sufficient to melt the glass and crystallize lithium phosphate, (2) holding at a temperature and for a time sufficient to create cristobalite nuclei, (3) cooling at a controlled rate and to a temperature to cause crystallization of lithium silicates and growth of cristobalite, and (4) still further cooling in stages to ambient temperature. This process produces a glass ceramic whose high coefficient of thermal expansion (up to 200{times}10{sup {minus}7} in/in/C) permits the fabrication of glass ceramic-to-metal seals, and particularly hermetic glass ceramic seals to nickel-based and stainless steel alloys and copper. 5 figs.
Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*
Guo, Xing-zhong; Yang, Hui
2005-01-01
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507
Rodriguez, Mark A.; Griego, James J. M.; Dai, Steve
2016-08-22
The sequence of crystallization in a recrystallizable lithium silicate sealing glass-ceramic Li 2O–SiO 2–Al 2O 3–K 2O–B 2O 3–P 2O 5–ZnO was analyzed by in situ high-temperature X-ray diffraction (HTXRD). Glass-ceramic specimens have been subjected to a two-stage heat-treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalitemore » resulted in a glass-ceramic having a near-linear thermal strain, as opposed to the highly nonlinear glass-ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass-ceramics. While the inversion in cristobalite resembles the character of a first-order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Furthermore, localized tensile stresses on quartz and possible solid-solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass-ceramics.« less
Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic.
Qin, Feng; Zheng, Shucan; Luo, Zufeng; Li, Yong; Guo, Ling; Zhao, Yunfeng; Fu, Qiang
2009-10-01
To evaluate the machinability and flexural strength of a novel dental machinable glass-ceramic (named PMC), and to compare the machinability property with that of Vita Mark II and human enamel. The raw batch materials were selected and mixed. Four groups of novel glass-ceramics were formed at different nucleation temperatures, and were assigned to Group 1, Group 2, Group 3 and Group 4. The machinability of the four groups of novel glass-ceramics, Vita Mark II ceramic and freshly extracted human premolars were compared by means of drilling depth measurement. A three-point bending test was used to measure the flexural strength of the novel glass-ceramics. The crystalline phases of the group with the best machinability were identified by X-ray diffraction. In terms of the drilling depth, Group 2 of the novel glass-ceramics proves to have the largest drilling depth. There was no statistical difference among Group 1, Group 4 and the natural teeth. The drilling depth of Vita MK II was statistically less than that of Group 1, Group 4 and the natural teeth. Group 3 had the least drilling depth. In respect of the flexural strength, Group 2 exhibited the maximum flexural strength; Group 1 was statistically weaker than Group 2; there was no statistical difference between Group 3 and Group 4, and they were the weakest materials. XRD of Group 2 ceramic showed that a new type of dental machinable glass-ceramic containing calcium-mica had been developed by the present study and was named PMC. PMC is promising for application as a dental machinable ceramic due to its good machinability and relatively high strength.
Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows
NASA Technical Reports Server (NTRS)
Wernet, Judith H.; Wernet, Mark P.
1994-01-01
Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.
Protonic Conduction of BaCe0.85YO. 1503 Doped with SrTiO3
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2005-01-01
Reformers based on ceramic membrane technology potentially offer hydrogen production that is comparable to the cost of fossil fuels. Protonic conducting ceramic with the chemical formula AB03 offers the promise of highly selective hydrogen separation at intermediate temperature (400-800 C). Among different perovskite-type oxides, BaCe03 and SrCe03 based compositions show high protonic conductivities but strong resistance to densification. X-ray diffraction studies on sintered specimens of BaCe0.85Y0.1503-6 show multi-phase formation which was found to show dependence upon powder synthesis method. Doping with SrTiO3 suppresses multi-phase formation and enhances grain growth. Conductivity measurements in temperature range of 200 to 1000 C were performed by ac impedance spectroscopy under dry and wet conditions. Sintering behavior, phase formation and conductivity results will be reported.
3D microenvironment as essential element for osteoinduction by biomaterials.
Habibovic, Pamela; Yuan, Huipin; van der Valk, Chantal M; Meijer, Gert; van Blitterswijk, Clemens A; de Groot, Klaas
2005-06-01
In order to unravel the mechanism of osteoinduction by biomaterials, in this study we investigated the influence of the specific surface area on osteoinductive properties of two types of calcium phosphate ceramics. Different surface areas of the ceramics were obtained by varying their sintering temperatures. Hydroxyapatite (HA) ceramic was sintered at 1150 and 1250 degrees C. Biphasic calcium phosphate (BCP) ceramic, consisting of HA and beta-tricalcium phosphate (beta-TCP), was sintered at 1100, 1150 and 1200 degrees C. Changes in sintering temperature did not influence the chemistry of the ceramics; HA remained pure after sintering at different temperatures and the weight ratio of HA and beta-TCP in the BCP was independent of the temperature as well. Similarly, macroporosity of the ceramics was unaffected by the changes of the sintering temperature. However, microporosity (pore diameter <10 microm) significantly decreased with increasing sintering temperature. In addition to the decrease of the microporosity, the crystal size increased with increasing sintering temperature. These two effects resulted in a significant decrease of the specific surface area of the ceramics with increasing sintering temperatures. Samples of HA1150, HA1250, BCP1100, BCP1150 and BCP1200 were implanted in the back muscles of Dutch milk goats and harvested at 6 and 12 weeks post implantation. After explantation, histomorphometrical analysis was performed on all implants. All implanted materials except HA1250 induced bone. However, large variations in the amounts of induced bone were observed between different materials and between individual animals. Histomorphometrical results showed that the presence of micropores within macropore walls is necessary to make a material osteoinductive. We postulate that introduction of microporosity within macropores, and consequent increase of the specific surface area, affects the interface dynamics of the ceramic in such a way that relevant cells are triggered to differentiate into the osteogenic lineage.
2009-06-06
sample within a small ceramic muffle. The microwave absorption coefficient of most ceramics is low, but increases with temperature. Thus, as the...increased using additives with higher absorption 7 coefficients . Silicon carbide has a higher loss tangent at 2.4 GHz than most ceramics, and thus...electron beam sintering. Microwave heating works well for large volumes, but ceramics normally have a low dielectric absorption constant at room
NASA Astrophysics Data System (ADS)
Jamaludin, L.; Abdullah, M. M. A. B.; Hussin, K.; Kadir, A. Abdul
2018-06-01
The study focus on effect of pre-heated ceramic surface on the adhesion bond strength between geopolymer coating coating and ceramic substrates. Ceramic substrates was pre-heated at different temperature (400 °C, 600 °C, 800 °C and 1000 °C). Fly ash geopolymer coating material potential used to protect surface used in exposure conditions after sintering at high temperature. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with 2.0 solids-to-liquid ratios to prepare geopolymer coating material at constant NaOH concentration of 12M. Adhesion test was conducted to determine the adhesion bond between ceramic substrates and fly ash coating material. The results showed the pre-heated ceramic substrates effect the adhesion bond of coating compared with untreated substrates with increasing of strength up to 20 % for temperature 600 °C.
Research on self-propagating high temperature synthesis prepared ZrC-ZrB2 composite ceramic
NASA Astrophysics Data System (ADS)
Yong, Cheng; Xunjia, Su; Genliang, Hou; YaKun, Xing
2013-03-01
ZrC-ZrB2 composite ceramic material is prepared by self-propagating high temperature synthesis, using Zr powders, CrO2 powders and Al powders as raw materials. Samples are studied by XRD and SEM, the results show that: ZrC-ZrB2 composite ceramic is attained after self-propagating high-temperature reaction, with Zr+ B4C as the main reactive system, and which is added respectively different content (CrO3 + Al) system. The study finds that the ceramic composite products are mainly composed of ZrC and ZrB2 phase, and other subphase. Compared to the main reactive system composite ceramic, composite ceramic grains grow up obviously, after introduction of the highly exothermic system (CrO3 + Al) in the main reactive system, and with the gradual increase of the content (CrO3 + Al).
Decapsulation Method for Flip Chips with Ceramics in Microelectronic Packaging
NASA Astrophysics Data System (ADS)
Shih, T. I.; Duh, J. G.
2008-06-01
The decapsulation of flip chips bonded to ceramic substrates is a challenging task in the packaging industry owing to the vulnerability of the chip surface during the process. In conventional methods, such as manual grinding and polishing, the solder bumps are easily damaged during the removal of underfill, and the thin chip may even be crushed due to mechanical stress. An efficient and reliable decapsulation method consisting of thermal and chemical processes was developed in this study. The surface quality of chips after solder removal is satisfactory for the existing solder rework procedure as well as for die-level failure analysis. The innovative processes included heat-sink and ceramic substrate removal, solder bump separation, and solder residue cleaning from the chip surface. In the last stage, particular temperatures were selected for the removal of eutectic Pb-Sn, high-lead, and lead-free solders considering their respective melting points.
Study of Laser Drilled Hole Quality of Yttria Stabilized Zirconia
NASA Astrophysics Data System (ADS)
Saini, Surendra K.; Dubey, Avanish K.; Pant, Piyush; Upadhyay, B. N.; Choubey, A.
2017-09-01
The Yttria Stabilized Zirconia ceramic is extensively used in aerospace, automotives, medical and microelectronics industries. These applications demand manufacturing of different macro and micro features with close tolerances in this material. To make miniature holes with accurate dimensions in advanced ceramics such as Yttria Stabilized Zirconia is very difficult due to its tailored attributes such as high toughness, hardness, strength, resistance to wear, corrosion and temperature. Due to inherent characteristics of laser drilling, researchers are working to fulfill the requirement of creation of micro holes in advanced ceramics. The present research investigates the laser drilling of 2 mm thick Yttria Stabilized Zirconia with the aim to achieve good micro holes with reduced geometrical inaccuracies and improved hole quality. The results show that multiple quality response comprising hole circularity, hole taper and recast layer thickness has been improved at optimally selected process parameters.
Molla, Atiar Rahaman; Basu, Bikramjit
2009-04-01
The design and development of glass ceramic materials provide us the unique opportunity to study the microstructure development with changes in either base glass composition or heat treatment conditions as well as to understand processing-microstructure-property (mechanical/biological) relationship. In the present work, it is demonstrated how various crystal morphology can develop when F(-) content in base glass (K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F) is varied in the range of 1.08-3.85% and when all are heat treated at varying temperatures of 1000-1120 degrees C. For some selected heat treatment temperature, the heat treatment time is also varied over 4-24 h. It was established that with increase in fluoride content in the glass composition, the crystal volume fraction of the glass-ceramic decreases. Using 1.08% fluoride, more than 80% crystal volume fraction could be achieved in the K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F system. It was observed that with lower fluoride content glass-ceramic, if heated at 1040 degrees C for 12 h, an oriented microstructure with 'envelop like' crystals can develop. For glass ceramics with higher fluorine content (2.83% or 3.85%), hexagonal-shaped crystals are formed. Importantly, high hardness of around 8 GPa has been measured in glass ceramics with maximum amount of crystals. The three-point flexural strength and elastic modulus of the glass-ceramic (heat treated at 1040 degrees C for 24 h) was 80 MPa and 69 GPa of the sample containing 3.85% fluorine, whereas, similar properties obtained for the sample containing 1.08% F(-) was 94 MPa and 57 GPa, respectively. Further, in vitro dissolution study of the all three glass-ceramic composition in artificial saliva (AS) revealed that leached fluoride ion concentration was 0.44 ppm, when the samples were immersed in AS for 8 weeks. This was much lower than the WHO recommended safety limits of 1.5 ppm. Among all the investigated glass-ceramic samples, the glass ceramic with 3.85% F(-) content in base glass (heat treated at 1040 degrees C for 12 h), exhibits the adherence of Ca-P layer, which consists of spherical particles of 2-3 mum. Other ions, such as Mg(+2) and K(+1) ion concentrations in the solution were found to be 8 and 315 ppm after 8 weeks of leaching, respectively. The leaching of all metal ions is recorded to decrease with time, probably due to time-dependent kinetic modification of sample surface. Summarizing, the present study illustrates that it is possible to obtain a good combination of crystallization, mechanical and in vitro dissolution properties with the careful selection of base glass composition and heat treatment conditions.
Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.
2000-01-01
Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.
Tribology of ceramics: Report of the Committee on Tribology of Ceramics
NASA Technical Reports Server (NTRS)
1988-01-01
The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.
High temperature turbine engine structure
Boyd, Gary L.
1990-01-01
A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.
Musa, Clara; Licheri, Roberta; Orrù, Roberto; Cao, Giacomo; Sciti, Diletta; Silvestroni, Laura; Zoli, Luca; Balbo, Andrea; Mercatelli, Luca; Meucci, Marco; Sani, Elisa
2016-06-18
In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1-2.4) in the 1000-1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.
Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges.
Wang, Haolun; Zhang, Xuan; Wang, Ning; Li, Yan; Feng, Xue; Huang, Ya; Zhao, Chunsong; Liu, Zhenglian; Fang, Minghao; Ou, Gang; Gao, Huajian; Li, Xiaoyan; Wu, Hui
2017-06-01
Ultralight and resilient porous nanostructures have been fabricated in various material forms, including carbon, polymers, and metals. However, the development of ultralight and high-temperature resilient structures still remains extremely challenging. Ceramics exhibit good mechanical and chemical stability at high temperatures, but their brittleness and sensitivity to flaws significantly complicate the fabrication of resilient porous ceramic nanostructures. We report the manufacturing of large-scale, lightweight, high-temperature resilient, three-dimensional sponges based on a variety of oxide ceramic (for example, TiO 2 , ZrO 2 , yttria-stabilized ZrO 2 , and BaTiO 3 ) nanofibers through an efficient solution blow-spinning process. The ceramic sponges consist of numerous tangled ceramic nanofibers, with densities varying from 8 to 40 mg/cm 3 . In situ uniaxial compression in a scanning electron microscope showed that the TiO 2 nanofiber sponge exhibits high energy absorption (for example, dissipation of up to 29.6 mJ/cm 3 in energy density at 50% strain) and recovers rapidly after compression in excess of 20% strain at both room temperature and 400°C. The sponge exhibits excellent resilience with residual strains of only ~1% at 800°C after 10 cycles of 10% compression strain and maintains good recoverability after compression at ~1300°C. We show that ceramic nanofiber sponges can serve multiple functions, such as elasticity-dependent electrical resistance, photocatalytic activity, and thermal insulation.
Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
2001-01-01
Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.
NASA Astrophysics Data System (ADS)
Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.
2018-05-01
Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.
Thin Film Ceramic Strain Sensor Development for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.
2008-01-01
The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.
High Temperature Mechanical Behavior of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Hemann, John
1996-01-01
The research accomplishments under this grant were very extensive in the areas of the high temperature behavior of ceramics, ceramic composites and testing standards for these materials. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the funding provided by the grant.
Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.
2015-06-01
Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).
Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature
NASA Technical Reports Server (NTRS)
Bird, Richard K.; Lapointe, Thomas S.
2013-01-01
Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.
Magnetic and dielectric studies on half-doped orthochromite R(Fe0.5Cr0.5)O3 (R=Gd, Sm) ceramics
NASA Astrophysics Data System (ADS)
Tirupathi, Patri; Reddy, H. Satish Kumar
2018-05-01
In the present paper, we report a details on magnetic and dielectric studies on ball milled single phase Gd(Fe0.5Cr0.5)O3 (GFC) and Sm(Fe0.5Cr0.5)O3 (SmFC) ceramics. The room temperature X-ray diffraction suggest that GFC and SmFC are exhibit orthorhombic crystal system with Pnma space group. Temperature dependent dc-magnetic studies exhibit a complex sequence of magnetic transitions (TN = 281 K) for GFC (TN = 249 K for SmFC ceramics respectively. A weak ferromagnetic character at low temperature were observed for both compounds. In addition, high temperature dielectric studies were also reported for SmFC ceramics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichevoi, V.G.; Kosolapova, M.M.; Kuchma, A.Ya.
The authors investigate the influence of thermal annealing in a constant electric field and also of the addition of TiO/sub 2/ to the initial material on the electrophysical properties (volt-Ampere characteristics and temperature dependence of resistance) of VK 94-1 ceramic. The kinetic characteristics of ceramic VK 94-1 are shown, as are the volt-ampere characteristics of unannealed ceramic VK 94-1. The temperature dependences of volumetric specific resistance of ceramic 94-1 both with and without TiO/sub 2/ are given.
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Singh, Mrityunjay; Lei, Jin-Fen; Martin, Lisa C.
1999-01-01
A novel attachment approach for positioning sensor lead wires on silicon carbide-based monolithic ceramic and fiber reinforced ceramic matrix composite (FRCMC) components has been developed. This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed for the joining of silicon carbide-based ceramic and fiber reinforced composites. The ARCJoinT technique has previously been shown to produce joints with tailorable thickness and good high temperature strength. In this study, silicon carbide-based ceramic and FRCMC attachments of different shapes and sizes were joined onto silicon carbide fiber reinforced silicon carbide matrix (SiC/ SiC) composites having flat and curved surfaces. Based on results obtained in previous joining studies. the joined attachments should maintain their mechanical strength and integrity at temperatures up to 1350 C in air. Therefore they can be used to position and secure sensor lead wires on SiC/SiC components that are being tested in programs that are focused on developing FRCMCs for a number of demanding high temperature applications in aerospace and ground-based systems. This approach, which is suitable for installing attachments on large and complex shaped monolithic ceramic and composite components, should enhance the durability of minimally intrusive high temperature sensor systems. The technology could also be used to reinstall attachments on ceramic components that were damaged in service.
Bandyopadhyay, G.; Dusek, J.T.
Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.
Emerging Ceramic-based Materials for Dentistry
Denry, I.; Kelly, J.R.
2014-01-01
Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751
Improved Slip Casting Of Ceramic Models
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Vasquez, Peter; Hicks, Lana P.
1994-01-01
Improved technique of investment slip casting developed for making precise ceramic wind-tunnel models. Needed in wind-tunnel experiments to verify predictions of aerothermodynamical computer codes. Ceramic materials used because of their low heat conductivities and ability to survive high temperatures. Present improved slip-casting technique enables casting of highly detailed models from aqueous or nonaqueous solutions. Wet shell molds peeled off models to ensure precise and undamaged details. Used at NASA Langley Research Center to form superconducting ceramic components from nonaqueous slip solutions. Technique has many more applications when ceramic materials developed further for such high-strength/ temperature components as engine parts.
Superconductivity in BiPbCaSrCuO thin films
NASA Astrophysics Data System (ADS)
Fu, S. M.; Yang, H. C.; Chen, F. C.; Horng, H. E.; Jao, J. C.
1989-12-01
Thin films of BiPbCaSrCuO sample were prepared by RF sputtering from sintered ceramic targets. Single crystal of MgO(100) was selected as substrate. The sputtering was held at room temperature. Different annealing conditions were carried out to obtain optimum conditions. High temperature resistivity was measured in air to study the thermodynamic reaction of the sintered films. An resistivity anomaly was found in the first heating cycle which suggests a thermodynamic reaction. A temperature dependence of I c was measured to study the coupling of grains in the granular films in different temperature ranges and the results will be discussed.
Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading
NASA Astrophysics Data System (ADS)
Settgast, C.; Abendroth, M.; Kuna, M.
2016-11-01
Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.
NASA Astrophysics Data System (ADS)
Semenyuk, V.
2014-06-01
The influence of the thermal properties of the substrate on the performance of cascade thermoelectric coolers (TECs) is studied with an emphasis on a justified choice of substrate material. An analytical model is developed for predicting the thermal resistance of the substrate associated with three-dimensional heat transfer from a smaller cascade area into a larger cooling cascade. The model is used to define the maximum temperature difference for a line of standard multistage TECs based on various substrate materials with different thermal conductivities, including white 96% Al2O3 "Rubalit" ceramic, grey 99.8% Al2O3 "Policor" ceramic, and AlN and BeO ceramics. Two types of multistage TECs are considered, namely with series and series-parallel connection of TE pellets, having from two to five cascades with TE pellet length in the range from 0.3 mm to 2 mm. A comparative analysis of the obtained results is made, and recommendations are formulated concerning the selection of an appropriate substrate material providing the highest performance-to-cost ratio.
Ceramic matrix composite behavior -- Computational simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamis, C.C.; Murthy, P.L.N.; Mital, S.K.
Development of analytical modeling and computational capabilities for the prediction of high temperature ceramic matrix composite behavior has been an ongoing research activity at NASA-Lewis Research Center. These research activities have resulted in the development of micromechanics based methodologies to evaluate different aspects of ceramic matrix composite behavior. The basis of the approach is micromechanics together with a unique fiber substructuring concept. In this new concept the conventional unit cell (the smallest representative volume element of the composite) of micromechanics approach has been modified by substructuring the unit cell into several slices and developing the micromechanics based equations at themore » slice level. Main advantage of this technique is that it can provide a much greater detail in the response of composite behavior as compared to a conventional micromechanics based analysis and still maintains a very high computational efficiency. This methodology has recently been extended to model plain weave ceramic composites. The objective of the present paper is to describe the important features of the modeling and simulation and illustrate with select examples of laminated as well as woven composites.« less
NASA Technical Reports Server (NTRS)
Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.
2005-01-01
In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.
A high temperature testing system for ceramic composites
NASA Technical Reports Server (NTRS)
Hemann, John
1994-01-01
Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.
Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang
2014-07-01
In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.
Composite of coated magnetic alloy particle
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.
Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray
Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad
2016-01-01
This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces. PMID:27091306
1993-02-01
sintered in hydrogen furnace at very high temperatures . Multiple furnace firing occurs until the binders are removed and part density is achieved "* Process...and base Low temperature co-fired ceramic - Metallized for shielding and grounding - Low resistance thick-film metallization - High thermal resistance...ESPECIALLY LOW TEMPERATURE COFIRED CERAMIC CERAMICS HIGH THERMAL CONDUCTIVITY,MATCHED GaAS AND SILICON SUBSTRATE MATERIALS I I,1Z#A,17Mr1 J, TI
1988-09-30
resistivity and thermoelectric -power measurements. Both of the high temperature superconducting phases reported in the literature, with transition...temperatures near 80K and 110K, have been observed. Evidence from thermoelectric power measurements is presented which shows that this family of ceramic...observed. Evidence from thermoelectric power measurements is presented which shows that this family of ceramic superconductors has contributions to the
Localized temperature stability of low temperature cofired ceramics
Dai, Steven Xunhu
2013-11-26
The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.
High temperature structural insulating material
Chen, Wayne Y.
1987-01-06
A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.
High temperature structural insulating material
Chen, Wayne Y.
1987-01-01
A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.
NASA Astrophysics Data System (ADS)
Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling
2017-08-01
Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.
High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Bhatt, Ramkrishna
2013-01-01
The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.
1989-09-01
and development in Japan onnetallic alloys, ceramics, and composites for use at high temperaturs are described by consid- ering the government programs ...temperatures above about 1,100 0C. carbW PROGRAMS TO DEVELOP IR 3 IMPROVED iIUGH TEUMEAT- 2 ic(C D)BA e fr e d cu sing specific research iiprograms...Performance * Research into conceptual design of Ceramics program is to develop new ceram- ceramics ics with high reliability and toughness when 0
A-Site (MCe) Substitution Effects on the Structures and Properties of CaBi4Ti4O15 Ceramics
NASA Astrophysics Data System (ADS)
Yan, Haixue; Li, Chengen; Zhou, Jiaguang; Zhu, Weimin; He, Lianxin; Song, Yuxin
2000-11-01
We investigated the effect of A-site compound substitution on the structures and properties of Ca0.8(MCe)0.1Bi4Ti4O15 (M denotes Li, Na and K) ceramics. The samples were prepared by the conventional ceramic technique. Sintering characteristics of Ca0.8(MCe)0.1Bi4Ti4O15 and CaBi4Ti4O15 ceramics were discussed. X-ray powder diffraction patterns of the three modified CBT-based compounds show a single phase of bismuth oxide layer type structure with m=4. The hysteresis loops of polarization versus electric field of the four compounds were also measured. A-site compound substitution improves the piezoelectric properties and the high-temperature resistivity of these materials. A-site (LiCe) and (KCe) substitution not only improves the Curie temperature but also decreases the temperature coefficient of dielectric constant (TK\\varepsilon). Among the three modified ceramics, only the Curie temperature of Ca0.8(NaCe)0.1Bi4Ti4O15 is lower than that of CaBi4Ti4O15; however, its TK\\varepsilon is the lowest. As a result, all the three modified CBT-based ceramics were found to be excellent high-temperature piezoelectric materials.
Wang, Xia; Zhang, Luyan; Chen, Gang
2011-11-01
As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.
Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael Charles; Singh, Mrityunjay
2015-01-01
Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.
Kumar, Ravi; Kalmodia, Sushma; Nath, Shekhar; Singh, Dileep; Basu, Bikramjit
2009-08-01
This article reports the study on a new generation bioactive ceramic, based on MgKPO(4) (Magnesium Potassium Phosphate, abbreviated as MKP) for biomedical applications. A series of heat treatment experiments on the slip cast silica (SiO(2)) containing MKP ceramics were carried out at 900, 1,000 and 1,100 degrees C for 4 h in air. The density of the slip cast ceramic increases to 2.5 gm/cm(3) upon heat treatment at 900 degrees C. However, no significant change in density is measured upon heat treatment to higher temperature of 1,000 and 1,100 degrees C. On the basis of XRD results, the presence of K(2)MgSi(5)O(12) and dehydrated MgKPO(4) were confirmed and complementary information has also been obtained using FT-IR and Raman spectroscopy. In order to confirm the in vitro cytocompatibility property, the cell culture tests were carried out on selected samples and the results reveal good cell adhesion and spreading of L929 mouse fibroblast cells. MTT assay analysis with L929 cells confirmed non-cytotoxic behavior of MKP containing ceramics and the results are comparable with sintered HAp ceramics. It is expected that the newly developed MKP based materials could be a good substitute for hydroxyapatite (HAp or HA) based bioceramics.
Development of high strength, high temperature ceramics
NASA Technical Reports Server (NTRS)
Hall, W. B.
1982-01-01
Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.
Electrothermal debonding of ceramic brackets. An in vitro study.
Brouns, E M; Schopf, P M; Kocjancic, B
1993-04-01
Two different kinds of devices for electrothermal debonding of ceramic brackets are evaluated. Thirty human premolars were bonded with two types of ceramic brackets. Both devices were tested for electrothermal removal of the two bracket types. The pulpal wall temperature increase during electrothermal debonding was recorded in vitro under various circumstances. After debonding, the fracture site was located. The data were compared to the temperature rise after simulated exposure of the teeth to warm beverages. Irreversible pulp damage due to electrothermal debonding of ceramic brackets with both instruments is not to be expected because the obtained results stayed below established primate threshold temperatures and significantly below that of the stimulated control groups. A significant difference was noted when air cooling was initiated during electrothermal debonding. Fracture site location was significantly different in the two ceramic bracket types after electrothermal debonding.
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi2Nb2O9 ceramics
NASA Astrophysics Data System (ADS)
Tian, Xiao-Xia; Qu, Shao-Bo; Du, Hong-Liang; Li, Ye; Xu, Zhuo
2012-03-01
The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb2O9, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan δ decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where □ represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Ca0.88(LiCe)0.04□0.04Bi2Nb2O9 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (TC) found to be 13.3 pC/N and 960 °C, respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.
Directly susceptible, noncarbon metal ceramic composite crucible
Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald
1999-01-01
A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.
NASA Technical Reports Server (NTRS)
Butze, H. F.; Liebert, C. H.
1976-01-01
The effect of ceramic coating of a JT8D combustor liner was investigated at simulated cruise and takeoff conditions with two fuels of widely different aromatic contents. Substantial decreases in maximum liner temperatures and flame radiation values were obtained with the ceramic-coated liner. Small reductions in exhaust gas smoke concentrations were observed with the ceramic-coated liner. Other performance parameters such as combustion efficiency and emissions of unburned hydrocarbons, CO, and NOx were not affected significantly. No deterioration of the ceramic coating was observed after about 6 hours of cyclic operation including several startups and shutdowns.
NASA Technical Reports Server (NTRS)
Probst, H. B.
1978-01-01
The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1988-01-01
The present invention relates to organic silicon-boron polymers which upon pyrolysis produce high-temperature ceramic materials. More particularly, it relates to the polyorganoborosilanes containing -Si-B- bonds which generate high-temperature ceramic materials (e.g., SiC, SiB4, B4C) upon thermal degradation. The process for preparing these organic silicon-boron polymer precursors are also part of the invention.
Property Screening and Evaluation of Ceramic Turbine Materials
1984-04-01
Unless otherwise indicated, the upper and lower spans were 0.875 and 1.750 in., respectively. For room-temperature tests, a stainless steel fixture...Silicon Nitride High Temperature Properties Silicon Carbide Silicon Ceramics Transformation-Toughened Zirconia Structural Ceramics Mechanical Properties...3ilicon carbide and silicon nitride, that have potential as structural components in"advanced gas turbine engines, were evaluated. Thermal and
NASA Technical Reports Server (NTRS)
Barranger, John P.
1993-01-01
Higher operating temperatures required for increased engine efficiency can be achieved by using ceramic materials for engine components. Ceramic turbine rotors are subject to the same limitations with regard to gas path efficiency as their superalloy predecessors. In this study, a modified frequency-modulation system is proposed for the measurement of blade tip clearance on ceramic rotors. It is expected to operate up to 1370 C (2500 F), the working temperature of present engines with ceramic turbine rotors. The design of the system addresses two special problems associated with nonmetallic blades: the capacitance is less than that of a metal blade and the effects of temperature may introduce uncertainty with regard to the blade tip material composition. To increase capacitance and stabilize the measurement, a small portion of the rotor is modified by the application of 5-micron-thick platinum films. The platinum surfaces on the probe electrodes and rotor that are exposed to the high-velocity gas stream are coated with an additional 10-micron-thick protective ceramic topcoat. A finite-element method is applied to calculate the capacitance as a function of clearance.
Experimental Investigations And Numerical Modelling of 210CR12 Steel in Semi-Solid State
NASA Astrophysics Data System (ADS)
Macioł, Piotr; Zalecki, Władysław; Kuziak, Roman; Jakubowicz, Aleksandra; Weglarczyk, Stanisław
2011-05-01
Experimental investigation, including hot compression and simple closed die filling was performed. Temperature range of tests was between 1225 °C and 1320 °C. Temperature selection was adequate with liquid fraction between 20 and 60%, which is typical for thixoforming processes. In the die filling test, steel dies with ceramic layer was used (highly refractory air-setting mortar JM 3300 manufactured by Thermal Ceramics). Experiments were carried out on the Gleeble 3800 physical simulator with MCU unit. In the paper, methodology of experimental investigation is described. Dependency of forming forces on temperature and forming velocities is analysed. Obtained results are discussed. The second part of the paper concerns numerical modelling of semi-solid forming. Numerical models for both sets of test were developed. Structural and Computational Fluid Dynamics models are compared. Initial works in microstructural modelling of 210CR12 steel behaviour are described. Lattice Boltzman Method model for thixotropic flows is introduced. Microscale and macroscale models were integrated into multiscale simulation of semi-solid forming. Some fundamental issues related to multiscale modelling of thixoforming are discussed.
Advances in Ultra High Temperature Ceramics for Hot Structures
NASA Astrophysics Data System (ADS)
Scatteia, Luigi; Monteverde, Federico; Alfano, Davide; Cantoni, Stefania
The objective of this paper is to describe the current state of the art of the research on Ultra High Temperature Ceramic materials with particular reference to their space applications, and also to report on the activities performed on UHTC in the past decade by the Italian Aerospace Research Centre in the specific technological field of structural thermal protection systems. Within several internal research project, various UHTC composition, mainly based upon Zirconium Diboride and Hafnium Diboride with added secondary phases and sintering aid were examined characterized in their mechanical properties and oxidation resistance. Two main composition were selected as the most promising for hot structure manufacturing: these materials were extensively characterized in order to obtain a comprehensive database of properties to feed the thermomechanical design of prototype hot structures. Technological demonstrators were manufactured by hot pressing followed by further fine machining with Electrical Discharge methods, and then tested at high temperature for long times in a plasma torch facility. The main outstanding results obtained are discussed in this paper. Future outlooks related to the UHTC technology and its further development are also provided.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.
Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendra Bordia
The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-firedmore » environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.« less
Li, H C; Wang, D G; Meng, X G; Chen, C Z
2014-06-01
A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. Copyright © 2014 Elsevier B.V. All rights reserved.
Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan
2015-02-01
In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810- nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40% of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface.
Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weil, K.S.; Hardy, J.S.; Kim, J.Y.
2003-04-23
The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not onlymore » must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic-to-metal braze and consequently lead to the development of the novel reactive air brazing (RAB) concept. The goal in RAB is to reactively modify one or both oxide faying surfaces with an oxide compound dissolved in a molten noble metal alloy such that the newly formed surface is readily wetted by the remaining liquid filler material. In many respects, this concept is similar to active metal brazing, except that joining can be conducted in air and the final joint will be resistant to oxidation at high temperature. Potentially, there are a number of metal oxide-noble metal systems that can be considered for RAB, including Ag-CuO, Ag-V2O5, and Pt-Nb2O5. Our current interest is in determining whether the Ag-CuO system is suitable for air brazing functional ceramic-to-metal joints such as those needed in practical electrochemical devices. In a series of studies, the wetting behavior of the Ag-CuO braze was investigated with respect to a number of potential hydrogen separation, oxygen separation, and fuel cell electrolyte membrane materials and heat resistant metal systems, including: alumina, (La0.6Sr0.4)(Co0.2Fe0.8)O3, (La0.8Sr0.2)FeO3, YSZ, fecralloy, and Crofer-22APU. Selected findings from these studies as well as from our work on joint strength and durability during high-temperature exposure testing will be discussed.« less
NASA Technical Reports Server (NTRS)
Kudirka, A. A.
1984-01-01
Materials for high-temperature use reviewed. Report discusses characteristics of ceramics and assesses potential of candidate materials in solar receivers. Design requirements presented, including those for receiver with fluid exit temperatures up to 1,425 degrees C.
Advanced Ceramic Technology for Space Applications at NASA MSFC
NASA Technical Reports Server (NTRS)
Alim, Mohammad A.
2003-01-01
The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.
Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges
Wang, Haolun; Zhang, Xuan; Wang, Ning; Li, Yan; Feng, Xue; Huang, Ya; Zhao, Chunsong; Liu, Zhenglian; Fang, Minghao; Ou, Gang; Gao, Huajian; Li, Xiaoyan; Wu, Hui
2017-01-01
Ultralight and resilient porous nanostructures have been fabricated in various material forms, including carbon, polymers, and metals. However, the development of ultralight and high-temperature resilient structures still remains extremely challenging. Ceramics exhibit good mechanical and chemical stability at high temperatures, but their brittleness and sensitivity to flaws significantly complicate the fabrication of resilient porous ceramic nanostructures. We report the manufacturing of large-scale, lightweight, high-temperature resilient, three-dimensional sponges based on a variety of oxide ceramic (for example, TiO2, ZrO2, yttria-stabilized ZrO2, and BaTiO3) nanofibers through an efficient solution blow-spinning process. The ceramic sponges consist of numerous tangled ceramic nanofibers, with densities varying from 8 to 40 mg/cm3. In situ uniaxial compression in a scanning electron microscope showed that the TiO2 nanofiber sponge exhibits high energy absorption (for example, dissipation of up to 29.6 mJ/cm3 in energy density at 50% strain) and recovers rapidly after compression in excess of 20% strain at both room temperature and 400°C. The sponge exhibits excellent resilience with residual strains of only ~1% at 800°C after 10 cycles of 10% compression strain and maintains good recoverability after compression at ~1300°C. We show that ceramic nanofiber sponges can serve multiple functions, such as elasticity-dependent electrical resistance, photocatalytic activity, and thermal insulation. PMID:28630915
Yoshida, Hidetsugu; Tsubakimoto, Koji; Fujimoto, Yasushi; Mikami, Katsuhiro; Fujita, Hisanori; Miyanaga, Noriaki; Nozawa, Hoshiteru; Yagi, Hideki; Yanagitani, Takagimi; Nagata, Yutaka; Kinoshita, Hiroo
2011-08-01
The optical properties, Faraday effect and Verdet constant of ceramic terbium gallium garnet (TGG) have been measured at 1064 nm, and were found to be similar to those of single crystal TGG at room temperature. Observed optical characteristics, laser induced bulk-damage threshold and optical scattering properties of ceramic TGG were compared with those of single crystal TGG. Ceramic TGG is a promising Faraday material for high-average-power YAG lasers, Yb fiber lasers and high-peak power glass lasers for inertial fusion energy drivers.
Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control
NASA Astrophysics Data System (ADS)
Chen, Huanbei; Zhai, Jiwei
2012-08-01
Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
Preparation and characterization of a novel willemite bioceramic.
Zhang, Meili; Zhai, Wanyin; Chang, Jiang
2010-04-01
Willemite (Zn(2)SiO(4)) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300 degrees C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 +/- 4.2 MPa) and Young's modulus (37.5 +/- 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.
NASA Astrophysics Data System (ADS)
Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.
2017-12-01
The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.
Method of sintering ceramic materials
Holcombe, Cressie E.; Dykes, Norman L.
1992-01-01
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.
Preparation of a dense, polycrystalline ceramic structure
Cooley, Jason; Chen, Ching-Fong; Alexander, David
2010-12-07
Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.
Ga2O3 doping and vacancy effect in KNN—LT lead-free piezoceramics
NASA Astrophysics Data System (ADS)
Tan, Zhi; Xing, Jie; Jiang, Laiming; Zhu, Jianguo; Wu, Bo
2017-12-01
Ga2O3 was doped into 0.95(K0.48Na0.52)NbO3—0.05LiTaO3 (KNN—LT) ceramics and its influences on the sintering behavior, phase structure and electrical properties of ceramics were studied. Firstly, SEM observation exhibits that more and more glass phase appears in ceramics with the gradual addition of Ga2O3, which determines the continuous decrease in sintering temperatures. And the addition of Ga2O3 is also found to increase the orthorhombic—tetragonal transition temperature ( T O—T) of system to a higher level. Secondly, both the density and the coercive field ( E C) of ceramics increase firstly and then decrease with increasing the Ga2O3 content, and the KNN—LT— xGa sample at x = 0.004 shows a pinched P— E hysteresis loop. Finally, the impedance characteristics of KNN—LT— xGa ceramics were investigated at different temperatures, revealing a typical vacancy related conduction mechanism. This work demonstrates that Ga2O3 is a good sintering aid for KNN-based ceramics, and the vacancy plays an important role in the sintering and electrical behaviors of ceramics.
Laboratory evaluations on thermal debonding of ceramic brackets.
Sernetz, F; Kraut, J
1991-01-01
The purpose of this laboratory study was to define the working parameters and physiological safety and efficacy of the Dentaurum Ceramic Debonding Unit. Extracted mandibular incisors were utilized because of their low thermal mass and low heat sensitivity. The teeth were embedded in plastic and placed on a turning force measuring apparatus. An electrothermal element was placed in the pulp chamber (filled with a conducting paste). The thermoelement temperature was registered on y-t recorder as was the turning momentum required to remove the ceramic brackets with the Dentaurum Ceramic Debonding Unit. Ceramic brackets from GAC (Allure III), Unitek (Transcend) and Dentaurum (Fascination) using one and two component adhesives (Monolok, Concise), were tested. Scanning electron microscopic views taken after debonding showed predictable (and favorable) adhesive failure at the bracket base/resin interface. No enamel damage was demonstrated. All brackets were removable under three seconds with a clinically reproducible turning force of 85-100 Nmm allowing for intrapulpal temperature increases under the 5 degrees C biocompatible threshold. The Dentaurum Ceramic Debonding Unit provided a safe, reliable, efficient modality of removing ceramic brackets while maintaining a physiologically acceptable rise in pulpal temperature without damage to tooth enamel or pulpal tissue.
Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass
NASA Astrophysics Data System (ADS)
Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen
2018-05-01
Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.
2004-01-01
Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.
NASA Technical Reports Server (NTRS)
Brown, W Byron; Livingood, John N B
1948-01-01
The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.
High-Temperature, Bellows Hybrid Seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)
1994-01-01
A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.
[Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].
Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li
2013-07-01
The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).
Corrosion resistant ceramic materials
Kaun, Thomas D.
1995-01-01
Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
Corrosion resistant ceramic materials
Kaun, Thomas D.
1996-01-01
Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
NASA Technical Reports Server (NTRS)
Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.
1993-01-01
An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.
Corrosion resistant ceramic materials
Kaun, T.D.
1996-07-23
Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.
Ceramic technology for solar thermal receivers
NASA Technical Reports Server (NTRS)
Kudirka, A. A.; Smoak, R. H.
1981-01-01
The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.
NASA Technical Reports Server (NTRS)
Chen, Liangyu
2014-01-01
A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.
Role of laser beam radiance in different ceramic processing: A two wavelengths comparison
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Lawrence, Jonathan
2013-12-01
Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.
Method of forming a ceramic to ceramic joint
Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis
2010-04-13
A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.
Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, H. M.
1999-01-01
The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.
Osada, Toshio; Kamoda, Kiichi; Mitome, Masanori; Hara, Toru; Abe, Taichi; Tamagawa, Yuki; Nakao, Wataru; Ohmura, Takahito
2017-12-19
Self-crack-healing by oxidation of a pre-incorporated healing agent is an essential property of high-temperature structural ceramics for components with stringent safety requirements, such as turbine blades in aircraft engines. Here, we report a new approach for a self-healing design containing a 3D network of a healing activator, based on insight gained by clarifying the healing mechanism. We demonstrate that addition of a small amount of an activator, typically doped MnO localised on the fracture path, selected by appropriate thermodynamic calculation significantly accelerates healing by >6,000 times and significantly lowers the required reaction temperature. The activator on the fracture path exhibits rapid fracture-gap filling by generation of mobile supercooled melts, thus enabling efficient oxygen delivery to the healing agent. Furthermore, the activator promotes crystallisation of the melts and forms a mechanically strong healing oxide. We also clarified that the healing mechanism could be divided to the initial oxidation and additional two stages. Based on bone healing, we here named these stages as inflammation, repair, and remodelling stages, respectively. Our design strategy can be applied to develop new lightweight, self-healing ceramics suitable for use in high- or low-pressure turbine blades in aircraft engines.
Musa, Clara; Licheri, Roberta; Orrù, Roberto; Cao, Giacomo; Sciti, Diletta; Silvestroni, Laura; Zoli, Luca; Balbo, Andrea; Mercatelli, Luca; Meucci, Marco; Sani, Elisa
2016-01-01
In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS) after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS) followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa) is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C) could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1–2.4) in the 1000–1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers. PMID:28773611
Li, Weiyan; Sun, Jian
2018-05-10
BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.
Li, Weiyan
2018-01-01
Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449
NASA Astrophysics Data System (ADS)
Byun, Jaeduk; Hyun, June Won; Kim, Yeon Jung; Bobor, Kristóf
2018-03-01
In this study, lead-free (K0.5Na0.5)1- x Ag x NbO3 ( x = 0.00, 0.10, 0.15, 0.20, 0.25, and 0.30) ferroelectric ceramics were fabricated using solid-state synthesis without A-site and B-site manufacturing step. The (K0.5Na0.5)1- x Ag x NbO3 ceramics were sintered at 1110 °C for 4 h after calcination at 800 °C for 3 h. The sintered sample was dense, and the grain size was 1.02 7.8 μm. For x ≤ 0.2, the sintered ceramic samples had a single perovskite structure. The temperature dependence of the dielectric constant in the (K0.5Na0.5)1- x Ag x NbO3 was measured at 1 kHz using an LCR meter. The high dielectric constant properties could be obtained in (K0.5Na0.5)1- x Ag x NbO3 ceramics. The orthorhombic-to-tetragonal phase transition temperature and ferroelectric Curie temperature decreased linearly with increasing mole fraction of the Ag content. The Curie temperature shifted from 393 °C for (K0.5Na0.5)NbO3 ceramics to 317 °C for (K0.5Na0.5)0.7Ag0.3NbO3 ceramics. The maximum dielectric constant was 8930 at 330 °C in the (K0.5Na0.5)0.8Ag0.2NbO3 ceramics.
Dense high temperature ceramic oxide superconductors
Landingham, Richard L.
1993-01-01
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
Dense high temperature ceramic oxide superconductors
Landingham, R.L.
1993-10-12
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
Ablation Resistant Zirconium and Hafnium Ceramics
NASA Technical Reports Server (NTRS)
Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)
1998-01-01
High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.
Diffusion barriers in modified air brazes
Weil, Kenneth Scott; Hardy, John S; Kim, Jin Yong; Choi, Jung-Pyung
2013-04-23
A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.
Diffusion barriers in modified air brazes
Weil, Kenneth Scott [Richland, WA; Hardy, John S [Richland, WA; Kim, Jin Yong [Richland, WA; Choi, Jung-Pyung [Richland, WA
2010-04-06
A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.
Latent fingermark visualisation using reduced-pressure sublimation of copper phthalocyanine.
Williams, Geraint; ap Llwyd Dafydd, Hefin; Watts, Alun; McMurray, Neil
2011-01-30
The sublimation of copper phthalocyanine (CuPc) at a temperature of 400°C under conditions of reduced pressure is shown to be an effective method of developing latent fingermarks on certain types of surface. Preliminary experiments on a limited selection of surfaces including paper, plastic and ceramic tiles were carried out using a simple apparatus consisting of a vacuum desiccator and a resistive heater. CuPc from the gas phase condenses preferentially on fingermark deposits, revealing deep blue patterns with excellent ridge detail clarity on light coloured surfaces. The technique is shown to be most effective on porous surfaces such as paper, but relatively ineffective on non-porous ceramic and plastic surfaces. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R
2009-02-15
Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.
Rare Earth Doped High Temperature Ceramic Selective Emitters
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.
1999-01-01
As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.
High temperature structural insulating material
Chen, W.Y.
1984-07-27
A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C
NASA Astrophysics Data System (ADS)
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-06-01
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.
Induced emission cross section of a possible laser line in Nd:Y2O3 ceramics at 1.095 μm
NASA Astrophysics Data System (ADS)
Fukabori, Akihiro; Sekita, Masami; Ikegami, Takayasu; Iyi, Nobuo; Komatsu, Toshiki; Kawamura, Masayuki; Suzuki, Makoto
2007-02-01
In this study, we measured the change of the optical transmittance for calcination temperatures, in steps of 10°, at two different sintering temperatures. It was found that the optical transmittance is highly dependent on the calcination temperature. The highest optical transmittance obtained was 70% for the transparent Y2O3 (yttria) ceramics produced without the use of additives and high injection presure in this study, higher than the highest reported value of 65%. Optical absorption and emission spectra of Nd :Y2O3 obtained from a low temperature synthesis process were measured. The energy level structure of Nd3+ in the Y2O3 ceramics was determined for a 1mol% Nd concentration. The induced emission cross section was calculated to be in the range of 3.2×10-19-1.1×10-17cm2 for the 1mol% Nd-doped Y2O3 ceramics. Furthermore, a laser line possibly has been identified in this study, in the Nd :Y2O3 ceramic at 1.095μm.
Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)
2002-01-01
For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C.
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-06-14
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr 0.8 Ti 0.2 C 0.74 B 0.26 ) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.
Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics
NASA Astrophysics Data System (ADS)
Tanwar, Amit; Sreenivas, K.; Gupta, Vinay
2009-04-01
High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.
Rare-Earth Oxide (Yb2O3) Selective Emitter Fabrication and Evaluation
NASA Technical Reports Server (NTRS)
Jennette, Bryan; Gregory, Don A.; Herren, Kenneth; Tucker, Dennis; Smith, W. Scott (Technical Monitor)
2001-01-01
This investigation involved the fabrication and evaluation of rare-earth oxide selective emitters. The first goal of this study was to successfully fabricate the selective emitter samples using paper and ceramic materials processing techniques. The resulting microstructure was also analyzed using a Scanning Electron Microscope. All selective emitter samples fabricated for this study were made with ytterbium oxide (Yb2O3). The second goal of this study involved the measurement of the spectral emission and the radiated power of all the selective emitter samples. The final goal of this study involved the direct comparison of the radiated power emitted by the selective emitter samples to that of a standard blackbody at the same temperature and within the same wavelength range.
Method of sintering ceramic materials
Holcombe, C.E.; Dykes, N.L.
1992-11-17
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.
Aluminum alloy/alumina-based ceramic interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebeau, T.; Strom-Olsen, J.O.; Gruzleski, J.E.
1995-07-01
Wetting experiments were performed on eutectic ZrO{sub 2}/Al{sub 2}O{sub 3} (ZA), ZrO{sub 2}/Al{sub 2}O{sub 3}/TiO{sub 2} (ZAT), and ZrO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} (ZAS) ceramic substrates with different Al alloys. Four major variables were tested to study the wetting behavior of the different ceramic-metal systems. Variable include holding time, melt temperature, ally, and ceramic compositions. An experimental setup was designed to measure in situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950 C was necessary to observe an equilibrium wetting angle of less than 90{degree} with pure Al; by alloying the aluminum, wettingmore » could be observed at lower temperatures ({theta} = 76--86{degree} at 900 C for Al-10 wt. % Si, {theta} {approximately}72{degree} at 850 C for Al-2.4 wt. % Mg) forming clean interfaces. Finally, ZAS specimens reacted with molten Al alloys over 900 C to produce Zr-Al based intermetallics at the metal-ceramic interface.« less
40 CFR 63.11440 - What are the monitoring requirements for new and existing sources?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Clay Ceramics Manufacturing Area Sources Standards, Compliance, and Monitoring Requirements § 63.11440... ceramic ware, you must conduct a daily check of the peak firing temperature. If the peak temperature...
Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen
2017-03-07
Based on precursor powders with a size of 200-300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO₃ ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO₃ ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe 3+ to Fe 2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO₃ ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage.
Design Concepts for Cooled Ceramic Composite Turbine Vane
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.
2015-01-01
The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.
Glass ceramic toughened with tetragonal zirconia
Keefer, K.D.
1984-02-10
A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.
Glass ceramic toughened with tetragonal zirconia
Keefer, Keith D.; Michalske, Terry A.
1986-01-01
A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.
Nb-doped SrTiO3 glass-ceramics as high temperature stable n-type oxide thermoelectrics
NASA Astrophysics Data System (ADS)
Lingner, Julian; Jakob, Gerhard; Letz, Martin
2012-06-01
Niobium doped SrTiO3 is known for its high potential as an oxide thermoelectric material and is one of the possible candidates for the n-type site in an oxidic thermoelectric module. The high thermal conductivity [1] and the lack of high-temperature stability of the oxygen vacancies [2] limit its properties in the ceramic systems. Glass-ceramics are intrinsic nano-structured systems and provide crystal phases densely embedded in a glass matrix which prevents the material from detoriation at high temperatures. In particular, the glass-matrix prevents an uncontrolled reoxidization as well as an uncontrolled grain growth therefore retaining the nano-structure even at high temperatures. Here, measurements and results of first glass-ceramic systems are presented, which show a low thermal conductivity due to the residue glass phase. Furthermore a stable thermal cycling up to 650 °C is demonstrated.
Composite Ceramic Superconducting Wires for Electric Motor Applications
1989-07-07
generators that have been built using NbTi superconducting wire at liquid 3 helium temperature (4.2*K). Most of these magnets , motors, and generators have...temperature superconductors. A magnetic diffusivity value cannot be rigorously determined for the superconductor in the superconducting state when flux jump...cv, FIRST ANNUAL REPORT FOR THE PROJECT "COMPOSITE CERAMIC SUPERCONDUCTING WIRES FOR ELECTRIC MOTOR APPLICATIONS" 2 PRIME CONTRACTOR CERAMICS PROCESS
High temperature turbine engine structure
Carruthers, William D.; Boyd, Gary L.
1994-01-01
A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.
High temperature turbine engine structure
Carruthers, William D.; Boyd, Gary L.
1992-01-01
A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.
High temperature turbine engine structure
Carruthers, William D.; Boyd, Gary L.
1993-01-01
A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.
Induction furnace testing of the durability of prototype crucibles in a molten metal environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonski, Paul D.
2005-09-01
Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off themore » heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-09
This report summarizes the task conducted to examine various activities on interface development for ceramic-matrix composites (CMCs) intended for high-temperature applications. While several articles have been published on the subject of CMC interfaces, the purpose of this report is to describe the various ongoing efforts on interface concepts, material selection, and issues related to processing methods employed for developing interface coatings. The most exciting and new development in the field is the discovery of monazite as a potential interface material for mullite- and alumina-based composites. Monazite offers two critical properties to the CMC system; a weakly bonded layer due tomore » its non-wetting behavior and chemical compatibility with both alumina and mullite up to very high temperatures (> 1,600 C). A description of the Department of Energy-related activities and some thoughts on processing issues, interface testing, and effects of processing on fiber strength are given.« less
NASA Astrophysics Data System (ADS)
Li, Pengyang; Wang, Shubin; Liu, Jianggao; Feng, Mengjie; Yang, Xinwang
2015-11-01
Borosilicate glass-ceramics precursors with varying compositional ratios in the CaO-SiO2-B2O3 (CBS) system were synthesized by sol-gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass-ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass-ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (Ec) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass-ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The Ec values of CBS glasses and glass-ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B2O3 content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.
Thin film thermocouples for high temperature measurement on ceramic materials
NASA Technical Reports Server (NTRS)
Holanda, Raymond
1992-01-01
Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.
Giant permittivity and good thermal stability of LiCuNb3O9-Bi(Mg0.5Zr0.5)O3 solid solutions
NASA Astrophysics Data System (ADS)
Chen, Xiuli; Li, Xiaoxia; Huang, Guisheng; Liu, Gaofeng; Yan, Xiao; Zhou, Huanfu
(1‑x)LiCuNb3O9-xBi(Mg0.5Zr0.5)O3 ceramics ((1‑x)LCN-xBMZ) with 0≤x≤0.08 were synthesized by a solid-state reaction method. The phase structure of (1‑x)LCN-xBMZ ceramics was characterized by X-ray diffraction (XRD), which revealed that the ceramics were distorted cubic perovskite structures. Apparent giant permittivity of 1.98×104-1.05×105 at 100kHz over the measured temperature range (25∘C-250∘C) was observed in the sintered (1‑x)LCN-xBMZ (0≤x≤0.08) ceramics. Especially for the sample of x=0.04, the temperature stability of permittivity was markedly increased (Δɛ/ɛ100∘C≤±15%), and high relative permittivity (>8.3×104) were obtained over a wide temperature range from 100∘C to 250∘C at 100kHz, which indicates that this ceramic is a promising dielectric material for elevated temperature dielectrics. The giant dielectric property of (1‑x)LCN-xBMZ ceramics are profoundly concerned with the Maxwell-Wagner effect.
NASA Astrophysics Data System (ADS)
Liu, Xing; Zhai, Jiwei; Shen, Bo; Li, Feng; Li, Peng
2017-10-01
(1 - x)(Na0.4K0.1Bi0.5)TiO3- xSrTiO3 (NKBT- xST) ceramics with x = 0 mol.%, 3 mol.%, and 5 mol.% (0ST, 3ST, and 5ST) have been prepared by a conventional solid-state reaction method and their ferroelectric, electrostrictive, and pyroelectric properties investigated. Addition of ST considerably disrupted the long-range ferroelectric order of NKBT- xST ceramics, and the 5ST ceramic exhibited ergodic relaxor phase structure. T FR shifted to near or below room temperature for 5ST ceramic, accompanied by a significant decline of ferroelectricity and enhanced strain. As the temperature approached T FR, the NKBT- xST ceramics exhibited predominantly electrostrictive effect, and the 5ST ceramic presented relatively high electrostrictive coefficient Q 33 of 0.0193 m4/C2. High pyroelectric response was observed for 0ST, 3ST, and 5ST ceramics in the vicinity of T FR due to the large polarization release during the ferroelectric-relaxor structural transition. The 5ST ceramic exhibited high and frequency-insensitive (100 Hz to 10 kHz) room-temperature pyroelectric properties with pyroelectric coefficient p of 656 μC m-2 K-1 and figures of merit F i, F v, and F d reaching 233 pm/V, 0.013 m2/C, and 7.61 μPa-1/2, respectively, indicating that 5ST ceramic is a promising candidate to replace PZT-based ceramics.
Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan
2017-07-05
A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO 2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO 2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen
2017-08-18
A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150 °C ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.
New Oxide Ceramic Developed for Superior High-Temperature Wear Resistance
NASA Technical Reports Server (NTRS)
Sayir, Ali; Miyoshi, Kazuhisa; Farmer, Serene C.
2003-01-01
Ceramics, for the most part, do not have inherently good tribological properties. For example friction coefficients in excess of 0.7 have been reported for silicon nitride sliding on silicon nitride or on bearing steel (ref. 1). High friction is always accompanied by considerable wear. Despite their inherently poor tribological properties, the high strength and high toughness of silicon nitride (Si3N4) ceramics has led to their successful use in tribological applications (refs. 1 to 4). The upper temperature limit for the application of Si3N4 as wear-resistant material is limited by reaction with the tribological environment (ref. 3). Silicon nitride is known to produce a thin silicon dioxide film with easy shear capability that results in low friction and low wear in a moist environment (ref. 5). At elevated temperatures, the removal of the reaction product that acts as lubricant causes the friction coefficient to increase and, consequently, the wear performance to become poor. New materials are sought that will have wear resistance superior to that of Si3N4 at elevated temperatures and in harsh environments. A new class of oxide ceramic materials has been developed with potential for excellent high-temperature wear resistance. The new material consists of a multicomponent oxide with a two-phase microstructure, in which the wear resistance of the mixed oxide is significantly higher than that of the individual constituents. This is attributed to the strong constraining effects provided by the interlocking microstructures at different length scales, to the large aspect ratio of the phases, to the strong interphase bonding, and to the residual stresses. Fretting wear tests were conducted by rubbing the new ceramic material against boron carbide (B4C). The new ceramic material produced a wear track groove on B4C, suggesting significantly higher wear resistance for the oxide ceramic. The new material did not suffer from any microstructural degradation after the wear test. The wear rate of the new ceramic material at 600 C was determined to be on the order of 10-10 mm3/N-m, which is 3 to 5 orders of magnitude lower than that for the current state-of-theart wear-resistant materials (Si3N4and B4C). The friction coefficient of the new ceramic materials is on the order of 0.4, which is significantly lower than that of silicon nitride. This new class of oxide materials has shown considerable potential for applications requiring high wear resistance at high temperatures and in harsh environments. New understanding of the wear behavior of ceramic materials is emerging as a result of the surprisingly high wear resistance of two-phase oxide ceramics. There is excellent potential for further improvements in the wear resistance of oxide ceramics through optimizing the microstructure and altering the crystallographic properties of specific oxide materials as a second phase to reduce the coefficient of friction at elevated temperatures.
Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan
2017-01-01
Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832
High temperature ceramics for automobile gas turbines. Part 2: Development of ceramic components
NASA Technical Reports Server (NTRS)
Walzer, P.; Koehler, M.; Rottenkolber, P.
1978-01-01
The development of ceramic components for automobile gas turbine engines is described with attention given to the steady and unsteady thermal conditions the ceramics will experience, and their anti-corrosion and strain-resistant properties. The ceramics considered for use in the automobile turbines include hot-pressed Si3N4, reaction-sintered, isostatically pressed Si3N4, hot-pressed SiC, reaction-bonded SiC, and glass ceramics. Attention is given to the stress analysis of ceramic structures and the state of the art of ceramic structural technology is reviewed, emphasizing the use of ceramics for combustion chambers and ceramic shrouded turbomachinery (a fully ceramic impeller).
Li, Jinpeng; Zhang, Huarui; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu
2018-05-07
To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y₂O₃, Al₂O₃, and ZrO₂, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y₂O₃), 154° (Al₂O₃), and 157° (ZrO₂), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y₂O₃ reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al₂O₃, and ZrO₂ systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al₂O₃), 0.09% (ZrO₂), and 0.02% (Y₂O₃), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y₂O₃ system. Y₂O₃ ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys.
NASA Astrophysics Data System (ADS)
Wu, Jiagang; Xiao, Dingquan; Wang, Yuanyu; Zhu, Jianguo; Yu, Ping; Jiang, Yihang
2007-12-01
(1-x)(K0.42Na0.58)NbO3-xLiSbO3 [(1-x)KNN-xLS] lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was identified in the composition range of 0.04
NASA Astrophysics Data System (ADS)
Hameury, J.; Koenen, A.; Hay, B.; Wu, J.; Hammerschmidt, U.; Rafeld, E. K.; Pennewitz, E.; Turzó-András, E.; Strnad, R.; Blahut, A.
2018-01-01
The selection of a material for making the hot and cold plates of high-temperature guarded hot plates (HTGHPs) working up to 800°C is still an issue. The material must be machinable, have a high mechanical stability to keep the high level of flatness of the plates and have a high thermal conductivity and a high resistance to oxidation when used in air. Nickel 201 alloy has been used in several instruments, but has shown, sometimes, problems of mechanical stability. The total hemispherical emissivity of the plates must be higher than 0.8 as recommended by the standards. Three ceramic materials, a silicon infiltrated silicon carbide (SiSiC), a machinable aluminum nitride and a sintered aluminum nitride (AlN) with high thermal conductivity claimed at ambient temperature, were selected for tests in thermal conductivity and opacity to thermal radiation. Three paints withstanding high temperatures were tested in total hemispherical emissivity and durability at high temperature. Above 600°C, Nickel 201 alloy has a higher thermal conductivity than the three ceramics. Below 600°C, the SiSiC and the sintered AlN have a thermal conductivity significantly higher than Nickel 201, but the sintered AlN shows a wide transparency spectral band at short wavelengths (below 6.5 μ m). Above 300°C, the three paints have a total hemispherical emissivity above 0.8. One of the paints has polluted the specimens of an insulation material tested in thermal conductivity up to 650°C. The other two can be recommended to coat the hot and cold plates of HTGHPs used up to 800°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve; Elisberg, Brenton; Calderone, James
Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less
Dai, Steve; Elisberg, Brenton; Calderone, James; ...
2017-04-21
Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less
Alumina ceramic based high-temperature performance of wireless passive pressure sensor
NASA Astrophysics Data System (ADS)
Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin
2016-12-01
A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.
NASA Astrophysics Data System (ADS)
Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin
2016-05-01
The dielectric and energy-storage properties of Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]0.98O3 (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T0, TC, T2 are obtained from the dielectric temperature spectrum. At different temperature regions (below T0, between T0 and TC, and above TC), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ˜T0. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.
Colossal dielectric constant in PrFeO 3 semiconductor ceramics
NASA Astrophysics Data System (ADS)
Prasad, Bandi Vittal; Rao, G. Narsinga; Chen, J. W.; Babu, D. Suresh
2012-02-01
The perovskite PrFeO 3 ceramics were synthesized via sol-gel method. The dielectric properties and impedance spectroscopy (IS) of these ceramics were studied in the frequency range from 100 Hz to 1000 kHz in the temperature range from 80 K to 300 K. These materials exhibited colossal dielectric constant value of ˜10 4 at room temperature. The response is similar to that observed for relaxorferroelectrics. IS data analysis indicates the ceramics to be electrically heterogeneous semiconductor consisting of semiconducting grains with dielectric constant 30 and more resistive grain boundaries with effective dielectric constant ˜10 4. We conclude, therefore that grain boundary effect is the primary source for the high effective permittivity in PrFeO 3 ceramics.
Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics.
Mánuel, J M; Jiménez, J J; Morales, F M; Lacroix, B; Santos, A J; García, R; Blanco, E; Domínguez, M; Ramírez, M; Beltrán, A M; Alexandrov, D; Tot, J; Dubreuil, R; Videkov, V; Andreev, S; Tzaneva, B; Bartsch, H; Breiling, J; Pezoldt, J; Fischer, M; Müller, J
2018-05-02
This work presents results in the field of advanced substrate solutions in order to achieve high crystalline quality group-III nitrides based heterostructures for high frequency and power devices or for sensor applications. With that objective, Low Temperature Co-fired Ceramics has been used, as a non-crystalline substrate. Structures like these have never been developed before, and for economic reasons will represent a groundbreaking material in these fields of Electronic. In this sense, the report presents the characterization through various techniques of three series of specimens where GaN was deposited on this ceramic composite, using different buffer layers, and a singular metal-organic chemical vapor deposition related technique for low temperature deposition. Other single crystalline ceramic-based templates were also utilized as substrate materials, for comparison purposes.
Advanced ceramic matrix composites for TPS
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
1992-01-01
Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.
NASA Astrophysics Data System (ADS)
Wang, Chun-Ming; Wang, Jin-Feng
2006-11-01
The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.
Ceramic automotive Stirling engine program
NASA Technical Reports Server (NTRS)
1986-01-01
The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.
Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs
2004-10-15
Glasses , and Composites VII Ceramic Transactions, 154,131-140, (2003). 9. R. Oh, K. M. Hurysz, and J. K. Cochran, “Effects of Die Geometry and...Paste Rheology on Extrusion Pressure”, Innovative Processes/Synthesis: Ceramics, Glasses , and Composites VII, Ceramic Transactions, 154,153-163, (2003...Processes/Synthesis: Ceramics, Glasses , and Composites VII, Ceramic Transactions, 154, pp.165-175, (2003). 11. Jason H. Nadler, Thomas H. Sanders, Jr
Method for fabricating high aspect ratio structures in perovskite material
Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria
2003-10-28
A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.
NASA Astrophysics Data System (ADS)
Chootin, Suphornphun; Bongkarn, Theerachai
2017-08-01
The effects of calcination conditions (950°C to 1200°C for 2 h to 6 h) and sintering temperature (1300°C to 1500°C for 2 h) on phase formation, microstructure, and electrical behavior of lead-free piezoelectric (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 (BCTS) ceramics produced by solid-state combustion using glycine as fuel have been investigated. BCTS powder with pure perovskite structure was obtained by calcination at 1100°C for 4 h. The microstructure of the BCTS powders showed almost spherical shape with average particle size increasing from 184 nm to 320 nm as the calcination temperature and soaking time were increased. The XRD patterns of all ceramics exhibited single perovskite structure. Rietveld refinement analysis indicated that the BCTS ceramics exhibited coexistence of orthorhombic and tetragonal phase in all samples with increased tetragonal phase content with increasing sintering temperature. The average grain size, density, dielectric constants at room ( ɛ r) and Curie temperature ( ɛ C), remanent polarization ( P r), and piezoelectric constant ( d 33) increased as the sintering temperature was increased up to 1400°C, then decreased. BCTS ceramic sintered at 1400°C exhibited the highest relative density (98%), highest dielectric response ( ɛ r = 4951, ɛ C = 19,185), good ferroelectric behavior ( P r = 12.74 μC/cm2 and coercive field E c = 1.60 kV/cm), and highest d 33 value (528 pC/N). The large piezoelectricity of BCTS ceramics makes them good candidates for use in lead-free applications to replace Pb-based ceramics.
NASA Technical Reports Server (NTRS)
Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry
1987-01-01
Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.
Thermal analysis on Al7075/Al2O3 metal matrix composites fabricated by stir casting process
NASA Astrophysics Data System (ADS)
Jacob, S.; Shajin, S.; Gnanavel, C.
2017-03-01
Metal matrix Composites (MMC’s) have evoked a keen interest in recent times for various applications in aerospace, renewable energy and automotive industries due to their superior strength, low cost, easy availability and high temperature resistance [1]. The crack and propagation occurs in conventional materials without any appreciable indication in a short span. Hence composite materials are preferred nowadays to overcome this problem [2]. The process of metal matrix composites (MMC’s) is to unite the enviable attributes of metals and ceramics. The Stir casting method is used for producing aluminium metal matrix composites (AMC’s). A key challenge of the process is to spread the ceramic particles to achieve a defect free microstructure [2]. By carefully selecting stir casting processing specification, such as stirring time, temperature of the melt and blade angle, the desired microstructure can be obtained. The focus of this work is to develop a high strength particulate strengthen aluminium metal matrix composites, and Al7075 was selected which can offer high strength without much disturbing ductility of metal matrix [4]. The composites will be examined using standard metallurgical and mechanical tests. The cast composites are analysed to Laser flash analysis (LFA) to determine Thermal conductivity [5]. Also changes in microstructure are determined by using SEM analysis.
Thin-Film Ceramic Thermocouples Fabricated and Tested
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Gregory, Otto J.; Blaha, Charles A.
2004-01-01
The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200 C temperature gradient. The photograph on the left shows the CrSi-TaC thermocouple in a test fixture at Glenn, and the resulting output signal is shown on the right. The temperature differential across the sample, from the center of the sample inside the oven to the sample mount outside the oven, is measured using a type R thermocouple on the sample.
Joining of Silicon Carbide-Based Ceramics by Reaction Forming Method
NASA Technical Reports Server (NTRS)
Singh, M.; Kiser, J. D.
1997-01-01
Recently, there has been a surge of interest in the development and testing of silicon-based ceramics and composite components for a number of aerospace and ground based systems. The designs often require fabrication of complex shaped parts which can be quite expensive. One attractive way of achieving this goal is to build up complex shapes by joining together geometrically simple shapes. However, the joints should have good mechanical strength and environmental stability comparable to the bulk materials. These joints should also be able to maintain their structural integrity at high temperatures. In addition, the joining technique should be practical, reliable, and affordable. Thus, joining has been recognized as one of the enabling technologies for the successful utilization of silicon carbide based ceramic components in high temperature applications. Overviews of various joining techniques, i.e., mechanical fastening, adhesive bonding, welding, brazing, and soldering have been provided in recent publications. The majority of the techniques used today are based on the joining of monolithic ceramics with metals either by diffusion bonding, metal brazing, brazing with oxides and oxynitrides, or diffusion welding. These techniques need either very high temperatures for processing or hot pressing (high pressures). The joints produced by these techniques have different thermal expansion coefficients than the ceramic materials, which creates a stress concentration in the joint area. The use temperatures for these joints are around 700 C. Ceramic joint interlayers have been developed as a means of obtaining high temperature joints. These joint interlayers have been produced via pre-ceramic polymers, in-situ displacement reactions, and reaction bonding techniques. Joints produced by the pre-ceramic polymer approach exhibit a large amounts of porosity and poor mechanical properties. On the other hand, hot pressing or high pressures are needed for in-situ displacement reactions and reaction bonding techniques. Due to the equipment required, these techniques are impractical for joining large or complex shaped components.
Dai, Steve Xunhu; Rodriguez, Mark A.; Griego, James M.
2016-06-01
Here, the sequence of crystallization in a re-crystallizable lithium silicate sealing glass-ceramic Li 2O-SiO 2-Al 2O 3-K 2O-B 2O 3-P 2O 5-ZnO was analyzed by in situ high temperature X-ray diffraction (HTXRD). Glass-ceramic specimens have been subjected to a 2-stage heat treatment schedule, including rapid cooling from sealing temperature to a 1st hold temperature 650 °C, following by heating to a 2nd hold temperature of 810 °C. Notable growth and saturation of Quartz was observed at 650 °C (1st hold).
NASA Technical Reports Server (NTRS)
Mrityunjay, Singh; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.
A view of microstructure with technological behavior of waste incorporated ceramic bricks.
Nirmala, G; Viruthagiri, G
2015-01-25
Production of ceramic bricks from mixtures of ceramic industry wastes (up to 50 wt%) from the area of Vriddhachalam, Cuddalore district, Tamilnadu, India and kaolinitic clay from Thiruvananthapuram district, Kerala were investigated. The firing behavior of the ceramic mixtures was studied by determining their changes in mineralogy and basic ceramic properties such as water absorption, porosity, compressive strength and firing shrinkage at temperatures ranging from 900 to 1200 °C in short firing cycles. The effect of the rejects addition gradually up to 50 wt% was analyzed with the variation of temperature on the mechanical properties and microstructure of the bricks. The highest compressive strength and lowest water absorption is observed for the sample with 40% rejects at 1100 °C which is supported by the results of SEM analysis. The resulting ceramic bricks exhibit features that suggest possibilities of using the ceramic rejects in the conventional brick making methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Advanced materials and design for low temperature SOFCs
Wachsman, Eric D.; Yoon, Heesung; Lee, Kang Taek; Camaratta, Matthew; Ahn, Jin Soo
2016-05-17
Embodiments of the invention are directed to SOFC with a multilayer structure comprising a porous ceramic cathode, optionally a cathodic triple phase boundary layer, a bilayer electrolyte comprising a cerium oxide comprising layer and a bismuth oxide comprising layer, an anion functional layer, and a porous ceramic anode with electrical interconnects, wherein the SOFC displays a very high power density at temperatures below 700.degree. C. with hydrogen or hydrocarbon fuels. The low temperature conversion of chemical energy to electrical energy allows the fabrication of the fuel cells using stainless steel or other metal alloys rather than ceramic conductive oxides as the interconnects.
Di, Zhou; Li-Xia, Pang; Ze-Ming, Qi; Biao-Bing, Jin; Xi, Yao
2014-01-01
A novel NaAgMoO4 material with spinel-like structure was synthesized by using the solid state reaction method and the ceramic sample was well densified at an extreme low sintering temperature about 400°C. Rietveld refinement of the crystal structure was performed using FULLPROF program and the cell parameters are a = b = c = 9.22039 Å with a space group F D −3 M (227). High performance microwave dielectric properties, with a permittivity ~7.9, a Qf value ~33,000 GHz and a temperature coefficient of resonant frequency ~−120 ppm/°C, were obtained. From X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS) analysis of the co-fired sample, it was found that the NaAgMoO4 ceramic is chemically compatible with both silver and aluminum at the sintering temperature and this makes it a promising candidate for the ultra-low temperature co-fired ceramics technology. Analysis of infrared and THz spectra indicated that dielectric polarizability at microwave region of the NaAgMoO4 ceramic was equally contributed by ionic displasive and electronic polarizations. Its small microwave dielectric permittivity can also be explained well by the Shannon's additive rule. PMID:25099530
Next Generation Ceramic Substrate Fabricated at Room Temperature.
Kim, Yuna; Ahn, Cheol-Woo; Choi, Jong-Jin; Ryu, Jungho; Kim, Jong-Woo; Yoon, Woon-Ha; Park, Dong-Soo; Yoon, Seog-Young; Ma, Byungjin; Hahn, Byung-Dong
2017-07-26
A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process. For the thin ceramic substrates, AlN GSV films are deposited on Al substrates and their electric/thermal properties are compared to those of the commercial ceramic substrates. The thermal resistance is significantly reduced by using AlN GSV films instead of AlN bulk-ceramics in thermal management systems. It is due to the removal of a thermal interface material which has low thermal conductivity. In particular, the dielectric strengths of AlN GSV films are much higher than those of AlN bulk-ceramics which are commercialized, approximately 5 times. Therefore, it can be expected that this GSV film is a next generation substrate in thermal management systems for the high power application.
Dispersed metal-toughened ceramics and ceramic brazing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.
1983-01-01
An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurementmore » of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.« less
Modified PZT ceramics as a material that can be used in micromechatronics
NASA Astrophysics Data System (ADS)
Zachariasz, Radosław; Bochenek, Dariusz
2015-11-01
Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.
NASA Astrophysics Data System (ADS)
Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu
2018-03-01
Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.
Lightweight Ceramics for Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Kwan, H. W.; Spamer, G. T.; Yu, J.; Yasukawa, B.
1997-01-01
The use of a HTP (High Temperature Performance) ceramic foam for aeroacoustic applications is investigated. HTP ceramic foam is a composition of silica and alumina fibers developed by LMMS. This foam is a lightweight high-temperature fibrous bulk material with small pore size, ultra high porosity, and good strength. It can be used as a broadband noise absorber at both room and high temperature (up to 1800 F). The investigation included an acoustic assessment as well as material development, and environmental and structural evaluations. The results show that the HTP ceramic foam provides good broadband noise absorbing capability and adequate strength when incorporating the HTP ceramic foam system into a honeycomb sandwich structure. On the other hand, the material is sensitive to Skydrol and requires further improvements. Good progress has been made in the impedance model development. A relationship between HTP foam density, flow resistance, and tortuosity will be established in the near future. Additional effort is needed to investigate the coupling effects between face sheet and HTP foam material.
NASA Astrophysics Data System (ADS)
Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.
2016-05-01
Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.
NASA Astrophysics Data System (ADS)
Wen, Wangxi; Li, Chunchun; Sun, Yihua; Tang, Ying; Fang, Liang
2018-02-01
An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (˜ 97.2%) and best microwave dielectric properties with ɛ r = 7.2, Q × f = 19,300 GHz, and τ f = - 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.
Counterflow diffusion flame synthesis of ceramic oxide powders
Katz, J.L.; Miquel, P.F.
1997-07-22
Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.
Counterflow diffusion flame synthesis of ceramic oxide powders
Katz, Joseph L.; Miquel, Philippe F.
1997-01-01
Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.
Li, Jianping; Zhao, Mingxi; Liu, Yongsheng; Chai, Nan; Ye, Fang; Qin, Hailong; Cheng, Laifei; Zhang, Litong
2017-01-01
SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI) technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries. PMID:28773015
[In-vitro research on the thermal debonding of ceramic brackets].
Bäzner, B; Ettwein, K H; Röhlcke, F; Sernetz, F
1991-12-01
The mechanical debonding of ceramic brackets using special instruments involves the use of a degree of force that is damaging to the enamel. For this reason, the authors have developed the Ceramic Debonding Unit for the thermal debonding of ceramic brackets. The unit reduces the force necessary for debonding, without overheating the tooth. The present article explains the principle of the unit. The influence on the temperature increase in the pulpa of the mechanical torque applied during debonding, and the time taken for debonding was investigated in extracted teeth (lower central incisors). Tests on ceramic brackets made by various manufacturers showed that safe debonding is possible if the debonding time does not exceed 3 seconds at a torque of 100 Nnm. The temperature increase in the pulpa will not exceed 5 degrees C when the Ceramic Debonding Unit is used under these conditions, so that harmful overheating of healthy teeth does not occur.
Development of BEM for ceramic composites
NASA Technical Reports Server (NTRS)
Henry, D. P.; Banerjee, P. K.; Dargush, G. F.
1991-01-01
It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.
Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties
NASA Astrophysics Data System (ADS)
Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.
2018-06-01
A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.
Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)
2013-05-01
combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh
Structural characterization of high temperature composites
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.
1991-01-01
Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.
Continuous method of producing silicon carbide fibers
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Nguyen, Kimmai Thi (Inventor); Rabe, James Alan (Inventor)
1999-01-01
This invention pertains to a method for production of polycrystalline ceramic fibers from silicon oxycarbide (SiCO) ceramic fibers wherein the method comprises heating an amorphous ceramic fiber containing silicon and carbon in an inert environment comprising a boron oxide and carbon monoxide at a temperature sufficient to convert the amorphous ceramic fiber to a polycrystalline ceramic fiber. By having carbon monoxide present during the heating of the ceramic fiber, it is possible to achieve higher production rates on a continuous process.
Ceramic nanostructures and methods of fabrication
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN
2009-11-24
Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steven Xunhu; Hsieh, Lung-Hwa.
2012-04-01
The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels withmore » multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.« less
NASA Astrophysics Data System (ADS)
Varaksa, Yu. A.; Sinitsyn, G. V.; Khodasevich, M. A.; Aseev, V. A.; Kolobkova, E. V.; Yasyukevich, A. S.
2015-01-01
Up-conversion fluorescence spectra of YVO4 and YGdVO4 crystals and lead fluoride nano glass ceramics coactivated with erbium and ytterbium ions have been studied in the wavelength range of 520-560 nm under 967-nm pumping. The ratio of intensities of fluorescence bands in the ranges of 520-530 and 540-550 nm has been measured in the temperature range of from room temperature to 150°C. It is shown that the considered materials can be used for preparing a sensing element of optical fluorescent temperature sensors; the sensitivity of measuring the temperature of nano glass-ceramics can be close to that of crystal samples.
Contact method to allow benign failure in ceramic capacitor having self-clearing feature
Myers, John D; Taylor, Ralph S
2012-06-26
A capacitor exhibiting a benign failure mode has a first electrode layer, a first ceramic dielectric layer deposited on a surface of the first electrode, and a second electrode layer disposed on the ceramic dielectric layer, wherein selected areas of the ceramic dielectric layer have additional dielectric material of sufficient thickness to exhibit a higher dielectric breakdown voltage than the remaining majority of the dielectric layer. The added thickness of the dielectric layer in selected areas allows lead connections to be made at the selected areas of greater dielectric thickness while substantially eliminating a risk of dielectric breakdown and failure at the lead connections, whereby the benign failure mode is preserved.
NASA Astrophysics Data System (ADS)
Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim
2018-04-01
(1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1992-01-01
A test program to determine the friction and wear properties of two complex carbide oxide ceramic fibers for high temperature sliding seal applications is described. The fibers are based on Si, C, O, and Ti or Si, C, N, and O ceramic systems. Pin on disk tests using ceramic fiber covered pins and Inconel 718 disks, were conducted in air from 25 to 900 C to evaluate potential seal materials. This testing procedure was used in a previous study of oxide ceramic fibers which were found to exhibit wear behavior based predominantly on their mechanical properties. Like the oxide fibers tested previously, these carbide oxide ceramic fibers, show an increase in friction and wear with increased test temperature. At room temperature, the wear behavior seems to be based upon mechanical properties, namely tensile strength. At 500 and especially 900 C, the fibers wear by both mechanical fracture and by oxidative type wear. Based upon post test microscopic and x ray analyses, interaction between the fiber constituents and elements transferred from the counterface, namely Ni and Cr, may have occurred enhancing the tribochemical wear process. These results are interpreted.
Integrated thick-film nanostructures based on spinel ceramics
2014-01-01
Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141
The temperature dependences of electromechanical properties of PLZT ceramics
NASA Astrophysics Data System (ADS)
Czerwiec, M.; Zachariasz, R.; Ilczuk, J.
2008-02-01
The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.
Assessing the Validity of the Simplified Potential Energy Clock Model for Modeling Glass-Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, Ryan Dale; Grillet, Anne M.; Stavig, Mark E.
Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energymore » Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.« less
NASA Astrophysics Data System (ADS)
Wiendartun; Gustaman Syarif, Dani
2017-02-01
The effect of MnO2 content and sintering atmosphere on the characteristics of Fe2TiO5 ceramics for Negative Thermal Coefficient (NTC) thermistors by using Fe2O3 derived from yarosite has been studied. The ceramics were produced by pressing a homogeneous mixture of Fe2O3, TiO2 and MnO2 (0-2.0 w/o) powders in appropriate proportions to produce Fe2TiO5 based ceramics and sintering the pressed powder at 1100-1200°C for 3 hours in air, O2 and N2 gas. Electrical characterization was done by measuring electrical resistivity of the sintered ceramics at various temperatures from 30°C to 200°C. Microstructure and structural analyses were also carried out by using an scanning electron microscope (SEM) and x-ray diffraction (XRD). The XRD data showed that the pellets crystallize in orthorhombic. The presence of second phase could not be identified from the XRD analyses. The SEM images showed that the grain size of pellet ceramics increase with increasing of MnO2 addition, and the grains size of the ceramic sintered in oxygen gas is smaller than sintered in nitrogen gas. Electrical data showed that the value of room temperature resistance (RRT) tend to decrease with respect to the increasing of MnO2 addition and the pellet ceramics sintered in oxygen gas had the largest thermistor constant (B), activation energy (Ea), sensitivity (α) and room temperature resistance (RRT), compared to the sintered in nitrogen gas. From the electrical characteristics data, it was known that the electrical characteristics of the Fe2TiO5 pellet ceramics followed the NTC characteristic. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 2207-7145K). This can be applied as temperature sensor, and will fulfill the market requirement.
Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties
Tonoyan, Anahit; Schiсk, Christoph; Davtyan, Sevan
2009-01-01
High temperature superconducting (SC) nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.
Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k
NASA Astrophysics Data System (ADS)
Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly
2011-10-01
The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.
Lithium/water battery with lithium ion conducting glass-ceramics electrolyte
NASA Astrophysics Data System (ADS)
Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru
Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2000-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.
Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen
2017-01-01
Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO3 ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO3 ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe3+ to Fe2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO3 ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage. PMID:28772626
Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets.
Jost-Brinkmann, P G; Radlanski, R J; Artun, J; Loidl, H
1997-12-01
The purpose of this study was to perform in vitro measurements of the temperature increase at the enamel-dentine interface during electrothermal removal of ceramic brackets, and to analyse, in vivo, whether signs of pulp damage can be observed 4 weeks after the procedure. In vitro study: a total of 29 caries-free human teeth were cut into buccal and lingual halves. The buccal halves were bonded with ceramic brackets, and miniature thermocouples were placed from the pulpal side into holes drilled to the enamel-dentine interface under the centre of the bracket slot. From the onset of thermodebonding, the temperature increase relative to room temperature was recorded for a period of 43 seconds. The maximum temperature increase at the enamel-dentine interface was 6.9 degrees C. In vivo study: a total of 12 human premolars scheduled for extraction for orthodontic reasons were bonded with ceramic brackets. Electrothermal debonding was performed the following day. After 4 weeks, the teeth were extracted and prepared for histological examination. Following demineralization, sections were prepared for light microscopic examination. No signs of pulpal inflammation were observed.
The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.
Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G
1998-11-01
To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.
Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques
NASA Technical Reports Server (NTRS)
Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.
1993-01-01
This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.
Ceramic technology for automotive turbines
NASA Technical Reports Server (NTRS)
Mclean, A. F.
1982-01-01
The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.
A Ceramic Heat Exchanger for Solar Receivers
NASA Technical Reports Server (NTRS)
Robertson Jr., C.; Stacy, L.
1985-01-01
Design intended for high-temperature service. Proposed ceramic-tube and header heat exchangers used for solar-concentrating collector operating in 25- to 150-KW power range at temperatures between 2,000 degrees and 3,000 degrees F (1,095 degrees and 1,650 degrees C).
High temperature ceramic composition for hydrogen retention
Webb, R.W.
1974-01-01
A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)
NASA Astrophysics Data System (ADS)
Číp, Ondřej; Šmíd, Radek; Čížek, Martin; Buchta, Zdeněk; Lazar, Josef
2012-04-01
The work presents measurements of the length stability of Zerodur glass ceramic with temperature change. Measurement of this thermal characteristic is necessary for determination of the optimal temperature at which the Zerodur glass ceramic has a coefficient of thermal expansion close to zero. The principle of the measurement is to monitor the length changes using an optical resonator with a cavity mirror spacer made from the Zerodur material to be studied. The resonator is placed inside a vacuum chamber with a temperature control. A tunable laser diode is locked to a certain optical mode of the resonator to monitor the optical frequency of this mode. A beat-note signal from optical mixing between the laser and a stabilized femtosecond frequency comb is detected and processed. The temperature dependence of the glass ceramics was determined and analyzed. The resolution of the length measurement of the experimental set-up is on the order of 0.1 nm.
NASA Astrophysics Data System (ADS)
Song, Yongli; Wang, Xianjie; Zhang, Xingquan; Qi, Xudong; Liu, Zhiguo; Zhang, Lingli; Zhang, Yu; Wang, Yang; Sui, Yu; Song, Bo
2016-10-01
The exploration of colossal dielectric permittivity (CP) materials with low dielectric loss in a wide range of frequencies/temperatures continues to attract considerable interest. In this paper, we report CP in (Al + Nb) co-doped rutile SnO2 ceramics with a low dielectric loss at room temperature. Al0.02Nb0.05Sn0.93O2 and Al0.03Nb0.05Sn0.92O2 ceramics exhibit high relative dielectric permittivities (above 103) and low dielectric losses (0.015 < tan δ < 0.1) in a wide range of frequencies and at temperatures from 140 to 400 K. Al doping can effectively modulate the dielectric behavior by increasing the grain and grain boundary resistances. The large differences in the resistance and conductive activation energy of the grains and grain boundaries suggest that the CP in co-doped SnO2 ceramics can be attributed to the internal barrier layer capacitor effect.
Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2005-01-01
Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.
Environmental durability of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Fox, Dennis S.
1992-01-01
An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.
A new test machine for measuring friction and wear in controlled atmospheres to 1200 C
NASA Technical Reports Server (NTRS)
Sliney, Harold E.; Dellacorte, Christopher
1991-01-01
This paper describes a new high-temperature friction and wear test apparatus (tribometer). The tribometer can be used as a pin-on-disk or pin-on-ring configuration and is specially designed to measure the tribological properties of ceramics and high temperature metallic alloys from room temperature to 1200 C. Sliding mode can be selected to be either unidirectional at velocities up to 22 m/sec or oscillating at frequencies up to 4.6 Hz and amplitudes up to + or - 60 deg. The test atmosphere is established by a controlled flow rate of a purge gas. All components within the test chamber are compatible with oxidizing, inert or reducing gases.
Investigation of Materials Processing Technology
1993-07-01
Figure 6: Time-temperature curves of A357 casting in Cu mold ................. 12 Figure 7: Time-temperature curves of 17 -4 casting in ceramic mold...simulation of 17 -4 ................ 17 Figure 12: IHTC from IHEAT simulation of 17 -4 casting ..................... 18 Figure 13: Temperature profiles...mold used for Ti castings .......................... 23 Figure 16: Cooling curves for a Ti casting in ceramic mold .................. 24 Figure 17
Effectiveness of Cool Roof Coatings with Ceramic Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen
2011-01-01
Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less
Zhou, B; E, C Q; Bu, Y Y; Meng, L; Yan, X H; Wang, X F
2017-03-01
Eu 3 + -doped transparent glass ceramics containing MF 2 (M = Ba, Ca, Sr) nanocrystals were fabricated using a melt-quenching method, and the resulting structures were studied using X-ray diffraction. Levels 5 D 1 and 5 D 0 of Eu 3 + ions were verified as thermally coupled levels using the fluorescence intensity ratio method. The fluorescence intensity ratios, optical temperature sensitivity and thermal quenching ratios of the transparent glass ceramics were studied as a function of temperature. With an increase in temperature, the relative sensitivity (S R ) decreased sharply at first, then slowly increased, before finally decreasing. The minimum S R values of GCBaF 2 (GCB), GCCaF 2 (GCC) and GCSrF 2 (GCS) were 2.8 × 10 -4 , 0.8 × 10 -4 and 1.9 × 10 - 4 K -1 at 360, 269 and 319 K, respectively. Glass ceramics with an intense emission intensity can be used to convert the measured spectrum into temperature and may have an important role in temperature detectors. Copyright © 2016 John Wiley & Sons, Ltd.
Ceramic matrix and resin matrix composites: A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Ceramic matrix and resin matrix composites - A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Method of making a continuous ceramic fiber composite hot gas filter
Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.
1999-01-01
A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1990-01-01
The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.
Aging of ceramic carbonized hydroxyapatite at room temperature
NASA Astrophysics Data System (ADS)
Tkachenko, M. V.; Kamzin, A. S.
2016-08-01
The process of aging of ceramic carbonized hydroxyapatite (CHA) produced in a dry carbon dioxide atmosphere at temperatures of 800-1200°C has been studied by chemical and X-ray structural analysis, infrared spectroscopy, and scanning electron microscopy methods. The phase composition and structure of initial prepared ceramics samples and those aged for a year have been compared. It has been shown that relaxation of internal stresses occurring during pressed sample sintering causes plastic deformation of crystallites at room temperature, accompanied by redistribution of carbonate ions between A1, A2, B1, and B2 sites and CHA decomposition with the formation of CaO separations.
Heat exchanger with ceramic elements
Corey, John A.
1986-01-01
An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.
Infusible silazane polymer and process for producing same. [protective coatings
NASA Technical Reports Server (NTRS)
Burks, R. E., Jr.; Lacey, R. E.; Christy, C. L., Jr. (Inventor)
1967-01-01
Coatings of high thermal and chemical stability for application to metal, glass, ceramics, and other surfaces are formed by reacting diphenyldichlorosilane in the presence of triethylamine with a nitrogen base selected from the group consisting of ammonia and methylamine. The pl polymeric, noncrystalline reaction product is heated in a reaction zone open to the atmosphere at a temperature ranging from approximately 250 C to 450 C until the infusible polymer is formed.
Material Problems in Using High-Temperature Thermocouples
NASA Astrophysics Data System (ADS)
Edler, F.
2011-08-01
The material compatibility and thermal stability of ceramic-composite coatings of different oxide ceramics deposited on alumina tubes to prevent the reduction of the alumina were investigated in the high-temperature range between 1750 °C and 1850 °C. It turned out that the coatings were thermally unstable and did not provide adequate protection against the reduction of the alumina tubes. The oxide ceramics formed eutectic compositions with low melting temperatures and were also prone to reduction to elementary metals by carbon. A new type of high-temperature thermocouple on the basis of refractory and noble metals was tested in the temperature range between 1325 °C and 1800 °C. Two metal-sheathed prototypes were constructed. The thermoelectric behavior of the tungsten5%rhenium/iridium thermocouples (W5%Re/Ir) was investigated by different high-temperature exposures, and the thermoelectric stability was checked by repeated measurements at the ice point.
NASA Astrophysics Data System (ADS)
Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank
2012-03-01
In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.
NASA Technical Reports Server (NTRS)
Cox, Sarah B.
2014-01-01
The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.
NASA Astrophysics Data System (ADS)
Zhan, Jun; Cao, Ye; Zhang, Hao; Guo, Jun; Zhang, Jianhua; Geng, Chunlei; Shi, Changdong; Cui, Song; Tang, Wenming
2017-01-01
The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.
Boron-containing organosilane polymers and ceramic materials thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1989-01-01
The present invention relates to a polyorgano borosilane ceramic precursor polymer comprising a plurality of repeating units of the formula: (R(sup 1) single bond B)(sub p) being linked together at B by second units of the formula: single bond (R sup 2) single bond (Si single bond R sup 3) single bond (sub q), where R(sup 1) is a lower alkyl, cycloalkyl, phenyl, or (R(sup 2)R(sup 3) single bond Si single bond B single bond)(sub n) and R(sup 2) and R(sup 3) are each independently selected from hydrogen, lower alkyl, vinyl, cycloalkyl, or aryl, n is an integer between 1 and 100; p is an integer between 1 and 100; and q is an integer between 1 and 100. These materials are prepared by combining an organo borohalide of the formula R(sup 4) single bond B single bond (X sup 1) (sub 2) where R(sup 4) is selected from halogen, lower alkyl, cycloalkyl, or aryl, and an organo halosilane of the formula: R(sup 2)(R sup 3)Si(X sup 2)(sub 2) where R(sup 2) and R (sup 3) are each independently selected from lower alkyl, cycloalkyl, or aryl, and X(sup 1) and X(sup 2) are each independently selected from halogen, in an anhydrous aprotic solvent having a boiling point at ambient pressure of not greater than 160 C with in excess of four equivalents of an alkali metal, heating the reaction mixture and recovering the polyorgano borosilane. These silicon boron polymers are useful to generate high-temperature ceramic materials, such as SiC, SiB4, and B4C, upon thermal degradation above 600 C.
Investigations of Li-containing SiCN(O) ceramics via 7Li MAS NMR.
Gumann, Sina; Nestle, Nikolaus; Liebau-Kunzmann, Verena; Riedel, Ralf
2007-04-01
Lithium-containing silicon (oxy)carbonitride ceramics (SiCN(O):Li) were synthesized via precursor-to-ceramic-transformation of Li-containing (poly)silazanes. The precursors were obtained by lithiation of 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane with n-butyllithium and by reaction of a commercial poly(organosilazane) VL20 with metallic lithium. The annealing treatment was carried out at temperatures between 200 and 1400 degrees C in argon (DeltaT=200 degrees C) and yielded Li-containing silicon (oxy)carbonitride. X-ray powder diffraction revealed that the resulting SiCN(O):Li ceramics were basically amorphous up to temperatures of 1000 degrees C and formed LiSi(2)N(3), graphite and silicon carbide as crystalline phases at higher temperatures. (7)Li MAS NMR spectroscopy was carried out to investigate the structure of the Li-containing phases and to study the reaction path of metallic Li with polysilazane. Based on the NMR spectra, there is almost no difference found in the chemical shift of the SiCN(O):Li ceramics obtained at different temperatures. Accordingly, Li is assigned to be mainly coordinated to N and O present as contaminant element. Relaxation time measurements showed that the most mobile Li(+) species seems to be present in the product obtained in the pyrolysis temperature range between 600 and 1000 degrees C.
Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic
NASA Astrophysics Data System (ADS)
Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi
2012-12-01
By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.
Secondary polymer layered impregnated tile
NASA Technical Reports Server (NTRS)
Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)
2005-01-01
A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.
Thermal debonding of ceramic brackets: an in vitro study.
Crooks, M; Hood, J; Harkness, M
1997-02-01
Thermal debonding has been developed to overcome the problems of enamel damage and high forces when debonding ceramic orthodontic brackets. However, the temperature changes with thermal debonding have the potential to damage the tooth tissues. The principal aims of this study are, first, to investigate the effects of resin type, resin thickness, and debonding force on the temperature changes in human premolars during thermal debonding of ceramic brackets and, second, to record the sites of bond failure and damage to the tooth surface. Ceramic brackets were attached to each specimen by using one of four types of bonding resin in a controlled thick or thin resin layer. The ceramic debonding unit (Dentaurum, Pforzheim, Germany) was used to thermally debond the brackets with either a 40 or 80 Nmm torsional force. Higher temperature changes at the pulpal wall (> 10 degrees C in some 40 Nmm torsional force specimens) always occurred with Concise (3M Dental Products, St. Paul, Minn.) and Transbond (Unitek/3M Dental Products, Monrovia, Calif.) resins, and lower temperature changes (< 5 degrees C) with Quasar (Rocky Mountain Orthodontics, Denver, Colo.) and Ortho. B.S. (Dentaurum, Pforzheim, Germany) resins. In general, resin thickness was not significantly associated with buccal surface or pulpal wall temperature changes. However, temperature changes at the pulpal wall were significantly associated with the temperature changes at the buccal surface (r = 0.76), with the temperature of the thermal debonder blade for thin resin layer specimens (r = 0.50), and the time required to debond the bracket for both thick (r = 0.74) and thin (r = 0.63) resin layer specimens. In most specimens, the site of bond failure occurred at the bracket-resin interface. There was no evidence of enamel damage after bracket removal.
NASA Astrophysics Data System (ADS)
Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.
2018-02-01
A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.
Holcomb, Matthew J.
1999-01-01
A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.
Use of ceramics in point-focus solar receivers
NASA Technical Reports Server (NTRS)
Smoak, R. H.; Kudirka, A. A.
1981-01-01
One of the research and development efforts in the Solar Thermal Energy Systems Project at the Jet Propulsion Laboratory has been focused on application of ceramic components for advanced point-focus solar receivers. The impetus for this effort is a need for high efficiency, low cost solar receivers which operate in a temperature regime where use of metal components is impractical. The current status of the work on evaluation of ceramic components at JPL and elsewhere is outlined and areas where lack of knowledge is currently slowing application of ceramics are discussed. Future developments of ceramic processing technology and reliability assurance methodology should open up applications for the point-focus solar concentrator system in fuels and chemicals production, in thermochemical energy transport and storage, in detoxification of hazardous materials and in high temperature process heat as well as for electric power generation.
Filter unit for use at high temperatures
Ciliberti, David F.; Lippert, Thomas E.
1988-01-01
A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.
Apparatus for producing nanoscale ceramic powders
Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.
1997-02-04
An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
Apparatus for producing nanoscale ceramic powders
Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.
1995-09-05
An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
Harkness, S.D.
A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.
Harkness, Samuel D.
1982-01-01
A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.
Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics
NASA Astrophysics Data System (ADS)
Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki
2018-04-01
13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.
Simultaneous Luminescence Pressure and Temperature Measurement System for Hypersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1995-01-01
Surface pressures and temperatures are determined from visible emission brightness and green-to-red color ratioing of induced luminescence from a ceramic surface with an organic dye coating. A ceramic-dye matrix of porous silica ceramic with an adsorbed dye is developed for high-temperature pressure sensitivity and stability (up to 150 C). Induced luminescence may be excited using a broad range of incident radiation from visible blue light (488-nm wavelength) to the near ultraviolet (365 nm). Ceramic research models and test samples are fabricated using net-form slip-casting and sintering techniques. Methods of preparation and effects of adsorption film thickness on measurement sensitivity are discussed. With the present 8-bit imaging system a 10% pressure measurement uncertainty from 50 to 760 torr is estimated, with an improvement to 5% from 3 to 1500 torr with a 12-bit imaging system.
Polymer, metal and ceramic matrix composites for advanced aircraft engine applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.
1985-01-01
Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
Ferroelectriclike and pyroelectric behavior of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shri Prakash, B.; Varma, K. B. R.
2007-02-19
A ferroelectriclike hysteresis loop was obtained at room temperature for CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramic. The remnant polarization and coercive field for 1100 deg. C/5 h sintered CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics were 0.063 {mu}C/cm{sup 2} and 195 V/cm, respectively. Remnant polarization increased while the coercive field decreased with increase in sintering temperature/duration, implying that these were microstructural dependent. The observation of the hysteresis loop for CCTO ceramic was corroborated by its pyroelectric behavior, and the pyroelectric current at room temperature was -0.0028 nA. These findings were attributed to the presence of mixed-valent Ti ions, apart from off centermore » displacement of Ti ions in TiO{sub 6} octahedra.« less
Synthesis of nanostructured iron oxides and new magnetic ceramics using sol-gel and SPS techniques
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Shichalin, O. O.; Belov, A. A.; Portnyagin, A. S.; Mayorov, V. Yu.; Gridasova, E. A.; Golub, A. V.; Nepomnyashii, A. S.; Tananaev, I. G.; Avramenko, V. A.
2017-02-01
The original way of synthesis of nanostructured iron oxides and based on them magnetic ceramics via sequential combination of sol-gel and SPS technologies has been suggested. High quality of nanostructured iron oxides is defined by porous structure (Sspec up to 47,3 n2/g) and by phase composition of mixed and individual crystal phases (γ-Fe2O3/Fe3O4 i α-Fe2O3), depending on synthesis conditions. High-temperature SPS consolidation of nanostructured hematite powder, resulting in magnetic ceramics of high mechanical strength (fracture strength 249 MPa) has been investigated. Peculiarities of change of phase composition and composite's microstructure in the range of SPS temperatures from 700 to 900 °C have been revealed. Magnetic properties have been studied and regularities of change of magnetization (Ms) and coercive force (Hc) values of the ceramics with respect to SPS sintering temperature have been described.
High temperature (NaBi)0.48□0.04Bi2Nb2O9-based piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Gai, Zhi-Gang; Wang, Jin-Feng; Zhao, Ming-Lei; Wang, Chun-Ming; Zang, Guo-Zhong; Ming, Bao-Quan; Qi, Peng; Zhang, Shujun; Shrout, Thomas R.
2006-07-01
The effect of (LiCe) substitution for A site on the properties of (NaBi)0.48◻0.04Bi2Nb2O9 (NB◻N)-based ceramics was investigated. The coercive fields (EC) of NB◻N)-based ceramics were significantly decreased from 61.0to32.5kV/cm and the Curie temperature (TC) gradually decreases from 820to803°C with increasing the (LiCe) modification. The piezoelectric coefficient d33, planar coupling factor kp, and mechanical quality factor Q of (NaBi)0.38(LiCe)0.05◻0.14Bi2Nb2O9 ceramic were found to be 27pC/N, 11.2%, and 2600, respectively, together with the high TC (˜809°C) and stable piezoelectric properties, demonstrating that the (LiCe) modified NB◻N-based material a promising candidate for high temperature applications.
Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics
NASA Astrophysics Data System (ADS)
Mendez-González, Y.; Peláiz-Barranco, A.; Yang, Tongqing; Guerra, J. D. S.
2018-03-01
The electrocaloric effect (ECE) has been investigated in (Pb0.98La0.02)(Zr0.95Ti0.05)0.995O3 antiferroelectric ceramics obtained via the solid-state reaction method. The results from indirect measurements across the temperature range considered reveal a large electrocaloric temperature change (ΔT) of approximately 5 K at 373 K. The enhanced ECE, which is significantly higher than those reported for some lead-free and lead-based electro-ceramics, was obtained by applying an electric field of 60 kV/cm lower than what has been reported for commonly studied ceramic systems. This result suggests that this system is a potential candidate for practical electrocaloric device applications.
Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance
NASA Astrophysics Data System (ADS)
Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki
2018-05-01
Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K.; Bokolia, Renuka
2016-05-23
Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{submore » 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaswan, Kavita, E-mail: kaswan.kavita@gmail.com; Agarwal, Ashish; Sanghi, Sujata
2015-06-24
(1-x)(Na{sub 0.5}Bi{sub 0.5}TiO{sub 3})-x(Bi{sub 0.8}Ba{sub 0.2}FeO{sub 3}) lead free ceramics (NBT, NBT-BBFO; x = 0.0, 0.1 respectively) have been synthesized by conventional solid state reaction method. Crystalline phase of sintered ceramics was investigated at room temperature using X-ray diffraction. Rietveld refinement of XRD data performed by FullProf revealed that both the samples exhibited rhombohedral structure with R3c space group. Dielectric properties of these ceramics were studied at different temperatures in a wide frequency range using impedance analyzer. Dielectric constant and dielectric loss were found to be increase with increase of BBFO content. The prepared ceramics exhibit a broad maximum inmore » dielectric permittivity at 593K and dispersive permittivity at high temperatures. The NBT-BBFO sample shows a relaxor ferroelectric behavior at different frequencies.« less
NASA Technical Reports Server (NTRS)
Ward, Stanley W.
1988-01-01
Thread-mounted thermocouple developed to accurately measure temperature of surrounding material. Comprised of threaded rod or bolt drilled along length, dual-hole ceramic insulator rod, thermocouple wire, optional ceramic filler, and epoxy resin. In contact with and takes average temperature of, surrounding material. Fabricated easily in size and metal to suit particular application. Because of simplicity and ability to measure average temperature, widespread use of design foreseen in varity of applications.
Large Area Active Brazing of Multi-tile Ceramic-Metal Structures
2012-05-01
metallurgical bonds. The major disadvantage of using active brazing for metals and ceramics is the high processing temperature required that results in...steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent...metals such as titanium alloys and stainless steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large
Effect of sintering methods and temperatures on porosity of the ceramics from aluminum oxinitride
NASA Astrophysics Data System (ADS)
Prosvirnin, D. V.; Kolmakov, A. G.; Larionov, M. D.; Prutskov, M. E.; Alikhanyan, A. S.; Samokhin, A. V.; Lysenkov, A. S.; Titov, D. D.
2018-04-01
The paper presents the results of studies of the effect of temperature regimes and time on porosity in ceramic samples made of aluminum oxynitride. Getting rid of the porous structure allows reducing the scattering of rays and, as a result, achieving the required optical characteristics.
Raman, SEM-EDS and XRPD investigations on pre-Columbian Central America "estucado" pottery
NASA Astrophysics Data System (ADS)
Casanova Municchia, Annalaura; Micheli, Mario; Ricci, Maria Antonietta; Toledo, Michelle; Bellatreccia, Fabio; Lo Mastro, Sergio; Sodo, Armida
2016-03-01
Seventeen different colored fragments from six selected pre-Columbian estucado ceramics from El Salvador have been investigated by Raman spectroscopy, scanning electron microscope coupled to an energy dispersive spectrometer (SEM/EDS) and X-ray powder diffraction (XRPD). The peculiarity of this kind of ceramics consist of the unusual presence of a white engobe, traditionally termed stucco, between the ceramic body and the decoration elements, hence the name estucado ceramics. The aim of this work was to study the unusual manufacturing technique and to identify the chemical composition of the engobe and of the pigment palette. The results showed that the stucco layer is made of clay (kaolinite) with traces of titanium oxide (anatase). Remarkably, this is the same composition of the white pigments used for the decoration layer, thus excluding an early use of natural titanium oxide as a white pigment in the estucado productions as suggested in previous investigations. Moreover, the presence of kaolinite and anatase both in the stucco and in the decoration layer suggests a cold-working or low temperature technique. The red, yellow and green decorations were realized by the use of natural ochre, while in all the blue and gray decorations Maya blue pigment was identified. Finally, an amorphous carbon pigment of vegetal origin and manganese oxide were used to obtain black pigments.
Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry Y. S.
2015-01-31
This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less
Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin
2018-04-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.
Wang, Xueqin; Dou, Lvye; Yu, Jianyong
2018-01-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm−3, rapid recovery from 80% strain, zero Poisson’s ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form. PMID:29719867
Ceramics with Different Additives
NASA Astrophysics Data System (ADS)
Wang, Juanjuan; Feng, Lajun; Lei, Ali; Zhao, Kang; Yan, Aijun
2014-09-01
Li2CO3, MgCO3, BaCO3, and Bi2O3 dopants were introduced into CaCu3Ti4O12 (CCTO) ceramics in order to improve the dielectric properties. The CCTO ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure, and dielectric behavior were carefully investigated. The pure structure without any impurity phases can be confirmed by the x-ray diffraction patterns. Scanning Electron Microscopy (SEM) analysis illuminated that the grains of Ca0.90Li0.20Cu3Ti4O12 ceramics were greater than that of pure CCTO. It was important for the properties of the CCTO ceramics to study the additives in complex impedance spectroscopy. It was found that the Ca0.90Li0.20Cu3Ti4O12 ceramics had the higher permittivity (>45000), the lower dielectric loss (<0.025) than those of CCTO at 1 kHz at room temperature and good temperature stability from -30 to 75 °C.
Ripley, Edward B [Knoxville, TN
2009-11-24
A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.
NASA Astrophysics Data System (ADS)
Kornphom, Chittakorn; Laowanidwatana, Artid; Bongkarn, Theerachai
2017-03-01
In this work, a new binary 94 wt%[Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 + 0.10 wt% of La2O3]-6 wt% [(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3] [BNKLLT-6 wt% BCTZ] ceramic was fabricated by the solid-state combustion technique and glycine was used as the fuel. The effect of sintering temperature in the range of 1075-1175 °C for 2 h on phase evolution, microstructure and electrical properties was investigated. The phase formation exhibited a coexistence structure between rhombohedral and tetragonal at low sintering temperature. As the sintering temperature increased, the phase formation changed to pseudo-cubic phase. The average grain size of the ceramics was increased with the increasing sintering temperature. Density, ɛr, ɛSA and TFA of BNKLLT-6 wt% BCTZ ceramics increased while the TSA decreased when the sintering temperature increased up to 1125 °C, while after this temperature the opposite trends occurred. At a sintering temperature of 1125 °C, the BNKLLT-6 wt% BCTZ sample showed the highest theoretical density (95.8%), maximum dielectric constant ɛSA (5278), highest d33 (227 pC/N) and fair ferroelectric properties (Pr = 24.5 µC/cm2 and Ec = 15.45 kV/cm).
Li, Jinpeng; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu
2018-01-01
To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y2O3, Al2O3, and ZrO2, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y2O3), 154° (Al2O3), and 157° (ZrO2), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y2O3 reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al2O3, and ZrO2 systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al2O3), 0.09% (ZrO2), and 0.02% (Y2O3), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y2O3 system. Y2O3 ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys. PMID:29735958
Survey of coatings for solar collectors. [ceramic enamels and chromium
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.
1974-01-01
Ceramic enamel is found to be more solar selective, (i.e., has high solar absorptance in combination with low infrared emittance) than organic enamel, but neither is as solar selective as black chrome, black copper, black zinc, or black nickel. Ceramic enamel is matched only by black chrome in durability and wide availability. Ceramic enamel and organic enamel have approximately the same cost, and both are currently slightly lower in cost than black chrome, black copper, or black zinc. Black nickel is relatively unavailable and, because of that, realistic cost comparisons are not possible.
Environmental Barrier Coatings for Ceramics and Ceramic Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Fox, Dennis; Eldridge, Jeffrey; Robinson, R. Craig; Bansal, Narottam
2004-01-01
One key factor that limits the performance of current gas turbine engines is the temperature capability of hot section structural components. Silicon-based ceramics, such as SiC/SiC composites and monolithic Si3N4, are leading candidates to replace superalloy hot section components in the next generation gas turbine engines due to their excellent high temperature properties. A major stumbling block to realizing Si-based ceramic hot section components is the recession of Si-based ceramics in combustion environments due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is the most promising approach to preventing the recession. Current EBCs are based on silicon, mullite (3A12O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit the durability and temperature capability of current EBCs. Research is underway to develop EBCs with longer life and enhanced temperature capability. Understanding key issues affecting the performance of current EBCs is necessary for successful development of advanced EBCs. These issues include stress, chemical compatibility, adherence, and water vapor stability. Factors that affect stress are thermal expansion mismatch, phase stability, chemical stability, elastic modulus, etc. The current understanding on these issues will be discussed.
New R-SiC extends service life in kiln furniture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonntag, A.
1997-11-01
Silicon carbide kiln furniture systems are an essential part of modern high-temperature technology. SiC ceramics have exceptional high-temperature stability and thermal shock resistance., They show no plastic deformation (creep) under mechanical load and maintain their geometry after each high-temperature cycle. Therefore, various new kiln systems with light and open setting patterns can be realized where more fired goods can be produced with less kiln furniture ballast and within shorter firing cycles. The fast-firing technology of porcelain is an opportunity for new SiC kiln furniture ceramics. The new SiC ceramic systems available include: (1) recrystallized SiC (R-SiC); (2) silicon-infiltrated reaction-bonded SiCmore » (SiSiC); and (3) nitride-bonded SiC (NSiC). The new SiC ceramics have an important production criterion in common. They show practically no shrinkage during production. This is important for the manufacture of large shapes, such as beams, rollers and setter plates, as well as tailored geometries that allow light and open kiln furniture construction. Because of the extraordinarily high thermal shock resistance, high strength and high-temperature creep stability of these SiC ceramics, delicate and precise kiln furniture configurations have been introduced. One application is the fast firing of tableware with automatic setting robots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Wei
Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully densemore » ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding of flash sintering, which is a rapid sintering process initiated by a large electrical loading.« less
Monolithic ceramic analysis using the SCARE program
NASA Technical Reports Server (NTRS)
Manderscheid, Jane M.
1988-01-01
The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.
Shih, Kaimin; White, Tim; Leckie, James O
2006-08-15
The feasibility of stabilizing nickel-laden sludge from commonly available Al-rich ceramic precursors was investigated and accomplished with high nickel incorporation efficiency. To simulate the process, nickel oxide was mixed alternatively with gamma-alumina, corundum, kaolinite, and mullite and was sintered from 800 to 1480 degrees C. The nickel aluminate spinel (NiAl2O4) was confirmed as the stabilization phase for nickel and crystallized with efficiencies greater than 90% for all precursors above 1250 degrees C and 3-h sintering. The nickel-incorporation reaction pathways with these precursors were identified, and the microstructure and spinel yield were investigated as a function of sintering temperature with fixed sintering time. This study has demonstrated a promising process for forming nickel spinel to stabilize nickel-laden sludge from a wide range of inexpensive ceramic precursors, which may provide an avenue for economically blending waste metal sludges via the building industry processes to reduce the environmental hazards of toxic metals. The correlation of product textures and nickel incorporation efficiencies through selection of different precursors also provides the option of tailoring property-specific products.
Ceramic fiber reinforced filter
Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.
1991-01-01
A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.
NASA Technical Reports Server (NTRS)
Holanda, R.
1992-01-01
Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 c. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperature of 1500 C depending on the stability of the particular ceramic substrate.
High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics.
Li, Bi; Liu, Qiuxiang; Tang, Xingui; Zhang, Tianfu; Jiang, Yanping; Li, Wenhua; Luo, Jie
2017-02-08
(Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT2/95/5) ceramics were successfully prepared via a solid-state reaction route. The dielectric properties were investigated in the temperature region of 26-650 °C. The dielectric diffuse anomaly in the dielectric relaxation was found in the high temperature region of 600-650 °C with increasing the measuring frequency, which was related to the dynamic thermal process of ionized oxygen vacancies generated in the high temperature. Two phase transition points were detected during heating, which were found to coexist from 150 to 200 °C. Electric field induced ferroelectric to antiferroelectric phase transition behavior of the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics was investigated in this work with an emphasis on energy storage properties. A recoverable energy-storage density of 0.83 J/cm³ and efficiency of 70% was obtained in (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics at 55 kV/cm. Based on these results, (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics with a large recoverable energy-storage density could be a potential candidate for the applications in high energy-storage density ceramic capacitors.
NASA Technical Reports Server (NTRS)
Holanda, Raymond
1993-01-01
Thin film thermocouples were developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hr or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.
NASA Astrophysics Data System (ADS)
Chen, Yawei; Zhang, Shuren; Li, Enzhu; Niu, Na; Yang, Hongcheng
2018-02-01
The La2O3-B2O3-ZnO (LBZ) glass was proved to be an effective sintering aid of the 0.45Ca0.6Nd0.26TiO3-0.55Li0.5Nd0.5TiO3 (CNT-LNT) ceramics. The influence of LBZ glass on the phase composition, low temperature sintering process, microstructure, activation energy, and dielectric properties of CNT-LNT ceramics was investigated in detail. The LBZ glass induced an obvious decrease of the CNT-LNT ceramics sintering temperature from 1350 to 1000 °C due to the liquid phase formation, which reduced the activation energy ( E a) of the CNT-LNT ceramics. In addition, the near zero temperature coefficient of resonant frequency (τƒ) value was obtained by adding moderate quantity of LBZ glass. CNT-LNT + 5 wt% LBZ (CNT-LNT + 5L) ceramics sintered at 1000°C/4 h displayed good microwave dielectric properties of: ɛ r = 101.7, Q × f = 1560 GHz ( f = 3.25 GHz) and τ ƒ = 2.3 ppm °C-1.
Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics
NASA Astrophysics Data System (ADS)
Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.
2013-08-01
This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.
Structural application of high strength, high temperature ceramics
NASA Technical Reports Server (NTRS)
Hall, W. B.
1982-01-01
The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.
Ceramic vacuum tubes for geothermal well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, R.D.
1977-01-01
Useful design data acquired in the evaluation of ceramic vacuum tubes for the development of a 500/sup 0/C instrumentation amplifier are presented. The general requirements for ceramic vacuum tubes are discussed for application to the development of high temperature well logs. Commercially available tubes are described and future contract activities that specifically relate to ceramic vacuum tubes are detailed. Supplemental data are presented in the appendix.
High Temperature Deformation Behavior of YBa2Cu3O6+x Superconducting Ceramic Materials
1993-05-15
Mocellin , High Tech. Ceramics, ed P. Vinvinzini, Pub. Elsevier Science Publisher (1986). 15. F. Wakai, S. Sakaguchi and M. Matsuno, Adv. Ceram. Mater...Soc., 68r101, 552 (1985). 18. C. Carry and A. Mocellin , J. Amer. Ceram. Soc., 69f91, C215 (1986). 19. P. C. Panda, E. R. Seydal and R. Raj, US Patent
Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.
Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan
2018-05-01
Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.
NDE for Material Characterization in Aeronautic and Space Applications
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.
2000-01-01
This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.
Process for strengthening aluminum based ceramics and material
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.
Synthesis, processing and properties of TaC-TaB2-C Ceramics
2010-01-01
powder used. • A very important conclusion from the present study is that the grain size of nominally pure TaC ceramics is a strong function of carbon...ceramics at temperatures as low as 1500 ◦C. The grain size of nominally pure TaC ceramics was a strong function of carbon stoichiometry. Enhanced grain...evaluate the properties of ceramics in the TaC–TaB2–C system. Published by Elsevier Ltd. Keywords: A . Sintering; B. Microstructure; D. Carbides; D. Carbon
NASA Astrophysics Data System (ADS)
Slodczyk, Aneta; Colomban, Philippe; Upasen, Settakorn; Grasset, Frédéric; André, Gilles
2015-08-01
Long-term chemical and structural stability of an ion conducting ceramic is one of the main criteria for its selection as an electrolytic membrane in energy plant devices. Consequently, medium density SrZr0.9Er0.1O3-δ (SZE) anhydrous proton conducting ceramic - a potential electrolyte of SOFC/PCFC, was analysed by neutron diffraction between room temperature and 900 °C. After the first heating/cooling cycle, the ceramic pieces were exposed to water vapour pressure in an autoclave (500 °C, 40 bar, 7 days) in order to incorporate protonic species; the protonated compound was then again analysed by neutron diffraction. This procedure was repeated two times. At each step, the sample was also controlled by TGA and Raman spectroscopy. These studies allow the first comprehensive comparison of structural and chemical stability during the protonation/deprotonation cycling. The results reveal good structural stability, although an irreversible small contraction of the unit-cell volume and local structure modifications near Zr/ErO5[] octahedra are detected after the first protonation. After the second protonation easy ceramic crumbling under a stress is observed because of the presence of secondary phases (SrCO3, Sr(OH)2) well detected by Raman scattering and TGA. The role of crystallographic purity, substituting element and residual porosity in the proton conducting perovskite electrolyte stability is discussed.
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1989-01-01
Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.
Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C
NASA Technical Reports Server (NTRS)
Hooker, Matthew W.
1998-01-01
The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.
Effect of texture on dielectric properties and thermal depoling of Bi4Ti3O12 ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Yan, Haixue; Reece, Michael J.; Liu, Jing; Shen, Zhijian; Kan, Yanmei; Wang, Peiling
2006-10-01
Ordinary fired Bi4Ti3O12 ceramics show a gradual reduction in their room temperature d33 after annealing at temperatures from room temperature to 450°C. Textured ceramics show a greater resistance to thermal depoling. At about 450°C there is a rapid drop of d33 for the textured materials, which may be a consequence of a phase transition. Between 500 and 650°C the d33 is stable. The depolarization is assisted by internal mechanical stresses. These stresses are smaller in textured materials, which explains the increasing resistance to thermal depoling with increasing texture.
Assessment of the State of the Art of Ultra High Temperature Ceramics
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead
2009-01-01
Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.
Predicting the Reliability of Ceramics Under Transient Loads and Temperatures With CARES/Life
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.
2003-01-01
A methodology is shown for predicting the time-dependent reliability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The methodology takes into account the changes in material response that can occur with temperature or time (i.e., changing fatigue and Weibull parameters with temperature or time). This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. The code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.
Laser all-ceramic crown removal and pulpal temperature--a laboratory proof-of-principle study.
Rechmann, P; Buu, N C H; Rechmann, B M T; Finzen, F C
2015-11-01
The objective of this proof-of-principle laboratory pilot study was to evaluate the temperature increase in the pulp chamber in a worst case scenario during Er:YAG laser debonding of all-ceramic crowns. Twenty extracted molars were prepared to receive all-ceramic IPS E.max CAD full contour crowns. The crowns were bonded to the teeth with Ivoclar Multilink Automix. Times for laser debonding and temperature rise in the pulp chamber using micro-thermocouples were measured. The Er:YAG was used with 560 mJ/pulse. The irradiation was applied at a distance of 5 mm from the crown surface. Additional air-water spray for cooling was utilized. Each all-ceramic crown was successfully laser debonded with an average debonding time of 135 ± 35 s. No crown fractured, and no damage to the underlying dentin was detected. The bonding cement deteriorated, but no carbonization at the dentin/cement interface occurred. The temperature rise in the pulp chamber averaged 5.4° ± 2.2 °C. During 8 out of the 20 crown removals, the temperature rise exceeded 5.5 °C, lasting 5 to 43 s (average 18.8 ± 11.6 s). A temperature rise of 11.5 °C occurred only once, while seven times the temperature rise was limited to 6.8 ± 0.5 °C. Temperature rises above 5.5 °C occurred only when the laser was applied from one side and additional cooling from the side opposite the irradiation. Er:YAG laser energy can successfully be used to efficiently debond all-ceramic crowns from natural teeth. Temperature rises exceeding 5.5 °C only occur when an additional air/water cooling from a dental syringe is inaccurately directed. To avoid possible thermal damage and to allow further heat diffusion, clinically temperature-reduced water might be applied.
NASA Technical Reports Server (NTRS)
Cox, Sarah; Lui, Donovan; Gou, Jihua
2014-01-01
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.
Field induced metastable ferroelectric phase in Pb 0.97La 0.03(Zr 0.90Ti 0.10) 0.9925O 3 ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuchi, I. V.; Chung, C. C.; Fancher, C. M.
2017-11-06
Pb 0.97La 0.03(Zr 0.9T i0.1)0.9925O3 (PLZT 3/90/10) ceramics prepared by solid-state reaction with the compositions near the antiferroelectric/ferroelectric (FE/AFE) phase boundary were studied. From the polarization–electric field P(E) dependence and ex situ X-ray study, an irreversible electric field induced AFE-to-FE phase transition is verified at room temperature. Dielectric and in situ temperature dependent X-ray analysis evidence that the phase transition sequence in PLZT 3/90/10-based ceramics can be readily altered by poling. A first order antiferroelectric-paraelectric (AFE-to-PE) transition occurred at ~190 °C in virgin sample and at ~180 °C in poled sample. In addition, a FE-to-AFE transition occurs in the poledmore » ceramic at much lower temperatures (~120 °C) with respect to the Curie range (~190 °C). The temperature-induced FE-to-AFE transition is diffuse and takes place in a broad temperature range of 72–135 °C. Lastly, the recovery of AFE is accompanied by an enhancement in the piezoelectric properties.« less
Update on High-Temperature Coils for Electromagnets
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Montague, Gerald T.; Palazzolo, Alan; Preuss, Jason; Carter, Bart; Tucker, Randall; Hunt, Andrew
2005-01-01
A report revisits the subject matter of "High-Temperature Coils for Electromagnets" (LEW-17164), NASA Tech Briefs, Vol. 26, No. 8, (August 2002) page 38. To recapitulate: Wires have been developed for use in electromagnets that operate at high temperatures. The starting material for a wire of this type can be either a nickel-clad, ceramic-insulated copper wire or a bare silver wire. The wire is covered by electrical-insulation material that is intended to withstand operating temperatures in the range from 800 to 1,300 F (.430 to .700 C): The starting wire is either primarily wrapped with S-glass as an insulating material or else covered with another insulating material wrapped in S-glass prior to the winding process. A ceramic binding agent is applied as a slurry during the winding process to provide further insulating capability. The turns are pre-bent during winding to prevent damage to the insulation. The coil is then heated to convert the binder into ceramic. The instant report mostly reiterates the prior information and presents some additional information on the application of the ceramic binding agent and the incorporation of high-temperature wire into the windings.
Thermoelectric properties and figure of merit of perovskite-type Ba1-xLaxSnO3 with x=0.002-0.008
NASA Astrophysics Data System (ADS)
Yasukawa, Masahiro; Kono, Toshio; Ueda, Kazushige; Yanagi, Hiroshi; Wng Kim, Sung; Hosono, Hideo
2013-10-01
Thermoelectric properties and figure of merit were evaluated from the Seebeck coefficient S, electrical conductivity σ, and thermal conductivity κ measured at high temperatures for perovskite-type ceramics of Ba1-xLaxSnO3 with x=0.002, 0.005, and 0.008, which were prepared by a polymerized complex method and a subsequent spark plasma sintering technique. All the polycrystalline dense ceramics showed n-type degenerate semiconducting behavior in the temperature range of 373-1073 K. The La content dependence of the S values revealed successful increase in the electron carriers with the La doping in this x range. The κ values remained almost unchanged with x showing ~9.6 Wm-1 K-1 at room temperature and decreased with increasing temperature. The electronic thermal conductivities calculated by the Wiedemann-Franz law as well as the T-1 dependence of the κ values indicate that the phonon thermal conductivity was dominant. The dimensionless figure of merit ZT increased with increasing temperature for all the ceramics and showed ~0.1 at 1073 K for the ceramics with x=0.002 and 0.005.
Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang
2017-07-06
Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.
NASA Astrophysics Data System (ADS)
Wang, Feng
2000-10-01
The transformation of Blackglas(TM) polymer to ceramic is characterized by TGA-RGA/MS, Si29 and C13 NMR. Si29 NMR reveals a dependence between the postcure temperature and the microstructure of the resin. The postcure temperature that appears to give optimal mechanical and oxidative properties of Blackglas(TM) ceramic is around 150°C. The pyrolysis processing models, which are the Lumped Parameters Model (LPM), the Mechanistic Kinetic Model (MKM) and the Redistribution Reaction Model (RRM), are developed to provide an effective window of processing parameters rather than a costly, time-consuming trial and error approach. The Lumped Parameters Model (LPM) is developed to study the effects of various parameters such as temperature, curing conditions and heating rates on mass loss during the pyrolysis of resin and green composites. It can be used for the model-predictive control of the pyrolysis process; The Mechanistic Kinetic Model (MKM) is developed on the basis of known chemistry and architecture of the polysiloxane for the transformation of Blackglas(TM) polymer to ceramic and the evolution of gases. The effects of various heating protocols on the outgassing kinetics have been studied to develop an optimum protocol for a rapid pyrolysis process which gives a composite with desirable mechanical properties; The Redistribution Reaction Model (RRM) is proposed to describe how the microcompositions of silicon oxycarbide change with respect to temperature, and to the ratio O/Si in the polymer precursor. A Thermodynamic Additivity Model (TAM) is developed to estimate the heat capacity, standard heat of formation and entropy of Blackglas(TM) ceramic by means of the Neumann Kopp rule and the available thermodynamic data of the Si-C and Si-O systems. Thermal stability of this ceramic is investigated by constructing predominance diagrams, and it is shown that the internal degradation reactions, which account for a significant loss of strength, will proceed further in the Blackglas(TM) matrix than in the Nicalon fibers. This probably will induce failure in the matrix at lower temperatures than in the fibers. The predominance diagrams also explain the high temperature oxidation, reduction and volatilization experiments on silicon and silicon carbide in high vacuum.
Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.
Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2016-01-01
Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.
Ceramic Matrix Composites: High Temperature Effects. (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning the development and testing of ceramic matrix composites for high temperature use. Tests examining effects of the high temperatures on bond strength, thermal degradation, oxidation, thermal stress, thermal fatigue, and thermal expansion properties are referenced. Applications of the composites include space structures, gas turbine and engine components, control surfaces for spacecraft and transatmospheric vehicles, heat shields, and heat exchangers.
NDE standards for high temperature materials
NASA Technical Reports Server (NTRS)
Vary, Alex
1991-01-01
High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.
Diode-pumped high power 2.7 μm Er:Y2O3 ceramic laser at room temperature
NASA Astrophysics Data System (ADS)
Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan
2017-09-01
Investigation of room temperature laser performance of the polycrystalline Er:Y2O3 ceramic at 2.7 μm with respect to dopant concentrations was conducted. With 7 at.% Er3+ concentration Er:Y2O3 ceramic as laser gain medium, over 2.05 W of CW output power at 2.7 μm was generated with a slope efficiency of 11.1% with respect to the absorbed LD pump power. The prospects for improvement in lasing efficiency and output power are considered.
Synthesis and Characterization of BiCaSrCuO and BiSnCaSrCuO superconducting Ceramics
1988-09-20
0-1-2-2 2 2-1-1-2-2 3 1-0-1-1-2 4 2-0-1-2-2 SUPERCONDUCTING CERAMICS Magnetic Measurements Quantitative magnetic measurements were made using a...Transition TemPerature and Superconducting Volume Fractions The magnetic data for the four samples studied show J. H. MILLER, JR., ET. AL. relatively broad... SUPERCONDUCTING CERAMICS TABLE II Transition temperatures and percent bulk diamagnetism Sample Tc(ZFC) Tc (FC) T,(onset) T.(zero) %(ZFC) %(f C) 1 77.6
2013-08-09
of Hf,Zr oxychloride hydrates, triethyl borate , and phenolic resin to form precipitate free sols that turn into stable gels with no catalyst addition...minutes, shows the glass -ceramic coating (that formed a shell upon cooling) was generated from within the UHTC filled C-C composite. Notice, in Figure...generation of the coating during high temperature exposure to oxygen. The formation of a ZrO2-SiO2 glass -ceramic coating on the C-C composite is believed to
NASA Astrophysics Data System (ADS)
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-04-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55-4.60 GHz and 4.54-4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications.
Li, Liyang; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhang, Jieqiu; Qu, Shaobo; Xu, Zhuo
2016-01-01
Based on effective medium theory and dielectric resonator theory, we propose the design of reconfigurable all-dielectric metamaterial frequency selective surfaces (FSSs) using high-permittivity ceramics. The FSS is composed of ceramic resonators with different band stop responses under front and side incidences. By mechanically tuning the orientation of the ceramic resonators, reconfigurable electromagnetic (EM) responses between two adjacent stopbands can be achieved. The two broad stopbands originate from the first two resonant modes of the ceramic resonators. As an example, a reconfigurable FSS composed of cross-shaped ceramic resonators is demonstrated. Both numerical and experimental results show that the FSS can switch between two consecutive stopbands in 3.55–4.60 GHz and 4.54–4.94 GHz. The design method can be readily extended to the design of FSSs in other frequencies for high-power applications. PMID:27052098
Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost
NASA Astrophysics Data System (ADS)
Olagunju, O. A.; Musonge, P.
2017-07-01
This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.
Ceramic components manufacturing by selective laser sintering
NASA Astrophysics Data System (ADS)
Bertrand, Ph.; Bayle, F.; Combe, C.; Goeuriot, P.; Smurov, I.
2007-12-01
In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure). The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V ( V = 1250-2000 mm/s), defocalisation (-6 to 12 mm), distance between two neighbour melted lines (so-called "vectors") (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density. Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm 3 volume cube.
Microstructure and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, S. F.; Zhang, J. L.; Zheng, P.
2006-04-15
CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics are prepared by the conventional solid-state reaction method under various sintering temperatures from 1000 to 1120 deg. C at an interval of 10 deg. C. Microstructures and crystalline structures are examined by scanning electronic microscopy and x-ray diffraction, respectively. Dielectric properties and complex impedances are investigated within the frequency range of 40 Hz-110 MHz over the temperature region from room temperature to 350 deg. C. It has been disclosed that the microstructures can be categorized into three different types: type A (with the small but uniform grain sizes), type B (with the bimodal distributionmore » of grain sizes) and type C (with the large and uniform grain sizes), respectively. The largeness of low-frequency dielectric permittivity at room temperature is closely related to the microstructure. Ceramics with different types of microstructures show the diverse temperature-dependent behaviors of electrical properties. However, the existence of some common characteristics is also found among them. For all of the ceramics, a Debye-type relaxation emerges in the frequency range of 100 Hz-100 kHz at high measuring temperatures, which has the larger dielectric dispersion strength than the one known in the frequency range above 100 kHz. Thus, the high-temperature dielectric dispersion exhibits a large low-frequency response and two Debye-type relaxations. Furthermore, all of the ceramics show three semicircles in the complex impedance plane. These semicircles are considered to represent individually different electrical mechanisms, among which the one in the low-frequency range arises most probably from the contribution of the domain boundaries, and the other two are ascribed to the contributions of the domains and the grain boundaries, respectively.« less