Sample records for temperature coefficient material

  1. A rapid method to extract Seebeck coefficient under a large temperature difference

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Kim, Hee Seok; Ren, Zhifeng

    2017-09-01

    The Seebeck coefficient is one of the three important properties in thermoelectric materials. Since thermoelectric materials usually work under large temperature difference in real applications, we propose a quasi-steady state method to accurately measure the Seebeck coefficient under large temperature gradient. Compared to other methods, this method is not only highly accurate but also less time consuming. It can measure the Seebeck coefficient in both the temperature heating up and cooling down processes. In this work, a Zintl material (Mg3.15Nb0.05Sb1.5Bi0.49Te0.01) was tested to extract the Seebeck coefficient from room temperature to 573 K. Compared with a commercialized Seebeck coefficient measurement device (ZEM-3), there is ±5% difference between those from ZEM-3 and this method.

  2. Unipolar memristive Switching in Bulk Negative Temperature Coefficient Thermosensitive Ceramics

    PubMed Central

    Wu, Hongya; Cai, Kunpeng; Zhou, Ji; Li, Bo; Li, Longtu

    2013-01-01

    A memristive phenomenon was observed in macroscopic bulk negative temperature coefficient nickel monoxide (NiO) ceramic material. Current-voltage characteristics of memristors, pinched hysteretic loops were systematically observed in the Ag/NiO/Ag cell. A thermistor-based model for materials with negative temperature coefficient was proposed to explain the mechanism of the experimental phenomena. Most importantly, the results demonstrate the potential for a realization of memristive systems based on macroscopic bulk materials. PMID:24255717

  3. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  4. Traceable Measurements of Seebeck Coefficients of Thermoelectric Materials by Using Noble Metal Thermocouples

    NASA Astrophysics Data System (ADS)

    Haupt, Sebastian; Edler, Frank

    2018-06-01

    The characterization of thermoelectric materials as reference materials for Seebeck coefficients at the Physikalisch-Technische Bundesanstalt (PTB) is based on the usage of gold/platinum differential thermocouples. In the case of thermoelectric materials containing silicon, the gold/platinum thermocouples are insufficient due to reactions with the silicon when the samples are at higher temperatures. To overcome this limitation and to expand the temperature range for the certification process, platinum/palladium thermocouples were incorporated in the measurement setup. This paper discusses the influence of the different differential thermocouples used for the measurement of the Seebeck coefficients. Results of a comparative investigation of Seebeck coefficient measurements of a metallic and two semiconducting reference materials in the temperature range from 300 K to 870 K are presented.

  5. High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  6. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.

    PubMed

    Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E

    2012-09-01

    The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.

  7. A quantitative property-property relationship for the internal diffusion coefficients of organic compounds in solid materials.

    PubMed

    Huang, L; Fantke, P; Ernstoff, A; Jolliet, O

    2017-11-01

    Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R 2 of .93). The internal validations showed the model to be robust, stable and not a result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain (Rext2>.8), namely MW between 30 and 1178 g/mol and temperature between 4 and 180°C. By covering a much wider range of organic chemicals and materials, this QPPR facilitates high-throughput estimates of human exposures for chemicals encapsulated in solid materials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  9. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.

    PubMed

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F

    2018-02-02

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.

  10. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan

    2017-09-01

    This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.

  11. Iron Disilicide as High-Temperature Reference Material for Traceable Measurements of Seebeck Coefficient Between 300 K and 800 K

    NASA Astrophysics Data System (ADS)

    Ziolkowski, Pawel; Stiewe, Christian; de Boor, Johannes; Druschke, Ines; Zabrocki, Knud; Edler, Frank; Haupt, Sebastian; König, Jan; Mueller, Eckhard

    2017-01-01

    Thermoelectric generators (TEGs) convert heat to electrical energy by means of the Seebeck effect. The Seebeck coefficient is a central thermoelectric material property, measuring the magnitude of the thermovoltage generated in response to a temperature difference across a thermoelectric material. Precise determination of the Seebeck coefficient provides the basis for reliable performance assessment in materials development in the field of thermoelectrics. For several reasons, measurement uncertainties of up to 14% can often be observed in interlaboratory comparisons of temperature-dependent Seebeck coefficient or in error analyses on currently employed instruments. This is still too high for an industrial benchmark and insufficient for many scientific investigations and technological developments. The TESt (thermoelectric standardization) project was launched in 2011, funded by the German Federal Ministry of Education and Research (BMBF), to reduce measurement uncertainties, engineer traceable and precise thermoelectric measurement techniques for materials and TEGs, and develop reference materials (RMs) for temperature-dependent determination of the Seebeck coefficient. We report herein the successful development and qualification of cobalt-doped β-iron disilicide ( β-Fe0.95Co0.05Si2) as a RM for high-temperature thermoelectric metrology. A brief survey on technological processes for manufacturing and machining of samples is presented. Focus is placed on metrological qualification of the iron disilicide, results of an international round-robin test, and final certification as a reference material in accordance with ISO-Guide 35 and the "Guide to the expression of uncertainty in measurement" by the Physikalisch-Technische Bundesanstalt, the national metrology institute of Germany.

  12. Assessment of langatate material constants and temperature coefficients using SAW delay line measurements.

    PubMed

    Sturtevant, Blake T; Pereira da Cunha, Mauricio

    2010-03-01

    This paper reports on the assessment of langatate (LGT) acoustic material constants and temperature coefficients by surface acoustic wave (SAW) delay line measurements up to 130 degrees C. Based upon a full set of material constants recently reported by the authors, 7 orientations in the LGT plane with Euler angles (90 degrees, 23 degrees, Psi) were identified for testing. Each of the 7 selected orientations exhibited calculated coupling coefficients (K(2)) between 0.2% and 0.75% and also showed a large range of predicted temperature coefficient of delay (TCD) values around room temperature. Additionally, methods for estimating the uncertainty in predicted SAW propagation properties were developed and applied to SAW phase velocity and temperature coefficient of delay calculations. Starting from a purchased LGT boule, the SAW wafers used in this work were aligned, cut, ground, and polished at University of Maine facilities, followed by device fabrication and testing. Using repeated measurements of 2 devices on separate wafers for each of the 7 orientations, the room temperature SAW phase velocities were extracted with a precision of 0.1% and found to be in agreement with the predicted values. The normalized frequency change and the temperature coefficient of delay for all 7 orientations agreed with predictions within the uncertainty of the measurement and the predictions over the entire 120 degrees C temperature range measured. Two orientations, with Euler angles (90 degrees, 23 degrees, 123 degrees) and (90 degrees, 23 degrees, 119 degrees), were found to have high predicted coupling for LGT (K(2) > 0.5%) and were shown experimentally to exhibit temperature compensation in the vicinity of room temperature, with turnover temperatures at 50 and 60 degrees C, respectively.

  13. Passive athermalization: required accuracy of the thermo-optical coefficients

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2014-12-01

    Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.

  14. Warm Forming of Aluminum Alloys using a Coupled Thermo-Mechanical Anisotropic Material Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedrabbo, Nader; Pourboghrat, Farhang; Carsley, John E.

    Temperature-dependant anisotropic material models for two types of automotive aluminum alloys (5754-O and 5182-O) were developed and implemented in LS-Dyna as a user material subroutine (UMAT) for coupled thermo-mechanical finite element analysis (FEA) of warm forming of aluminum alloys. The anisotropy coefficients of the Barlat YLD2000 plane stress yield function for both materials were calculated for the range of temperatures 25 deg. C-260 deg. C. Curve fitting was used to calculate the anisotropy coefficients of YLD2000 and the flow stress as a function of temperature. This temperature-dependent material model was successfully applied to the coupled thermo-mechanical analysis of stretching ofmore » aluminum sheets and results were compared with experiments.« less

  15. Method and apparatus for simultaneously measuring temperature and pressure

    DOEpatents

    Hirschfeld, Tomas B.; Haugen, Gilbert R.

    1988-01-01

    Method and apparatus are provided for simultaneously measuring temperature and pressure in a class of crystalline materials having anisotropic thermal coefficients and having a coefficient of linear compression along the crystalline c-axis substantially the same as those perpendicular thereto. Temperature is determined by monitoring the fluorescence half life of a probe of such crystalline material, e.g., ruby. Pressure is determined by monitoring at least one other fluorescent property of the probe that depends on pressure and/or temperature, e.g., absolute fluorescent intensity or frequency shifts of fluorescent emission lines.

  16. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  17. Precision capacitor has improved temperature and operational stability

    NASA Technical Reports Server (NTRS)

    Brookshier, W. K.; Lewis, R. N.

    1967-01-01

    Vacuum dielectric capacitor is fabricated from materials with very low temperature coefficients of expansion. This precision capacitor in the 1000-2000 picofarad range has a near-zero temperature coefficient of capacitance, eliminates ion chamber action caused by air ionization in the dielectric, and minimizes electromagnetic field charging effects.

  18. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    NASA Astrophysics Data System (ADS)

    Kieruj, Piotr; Przestacki, Damian; Chwalczuk, Tadeusz

    2016-12-01

    This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples' temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  19. System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita

    2012-01-01

    The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.

  20. Theoretical basis for design of thermal-stress-free fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.; Mcwithey, R. R.

    1983-01-01

    A theoretical basis was developed for the design of fasteners which are free of thermal stress. A fastener can be shaped to eliminate the thermal stress which would otherwise result from differential thermal expansion between dissimilar fastener and sheet materials for many combinations of isotropic and orthotropic materials. The resulting joint remains snug, yet free of thermal stress at any temperature, if the joint is uniform in temperature, if it is frictionless, and if the coefficients of thermal expansion of the materials do not change with temperature. In general, such a fastener has curved sides; however, if both materials have isotropic coefficients of thermal expansion, a conical fastener is free of thermal stress. Equations are presented for thermal stress free shapes at both initial and final temperature, and typical fastener shapes are shown.

  1. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    PubMed

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  2. Novel Cryogenic Heaters: Sputter Deposited Cermet Materials with Low Temperature Coefficients of Resistivity

    NASA Astrophysics Data System (ADS)

    Yeager, C. J.; Courts, S. S.; Chapin, L.

    2004-06-01

    The electrical properties of a novel cryogenic heater are presented. A new ceramic-metal composition (cermet) has been developed that can be sputter deposited. This material has a very low temperature coefficient of resistivity. Resistivity measurements as a function of temperature are presented. The cermet has a constant resistance to within 0.1% between 77 K and 50 mK. At 4.2 K the d(logR)/d(logT) value is approximately -0.0005. The resistance change between room temperature and 4.2 K is 2.5%. The cermet heater will be compared to other low temperature coefficient of resistivity alloys (Evanohm, phosphor-bronze, nichrome and platinum-tungsten wire) that are used for cryogenic heaters and fixed resistors. Unlike the wire alloys, this material can be sputter deposited. This allows various die designs (meander patterns) to control the final resistance. The die can be mounted into standard commercial cryogenic sensor packages. Compared to other wire alloys, this allows for a simpler implementation for a cryogenic heater and fixed resistance standards. The material can also be deposited onto existing structures such as MEMS based heat capacity chip under development.

  3. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively.

    PubMed

    Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu

    2013-10-09

    If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells.

  4. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively

    PubMed Central

    2013-01-01

    Background If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. Results The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. Conclusions We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells. PMID:24107328

  5. Seebeck Coefficient Metrology: Do Contemporary Protocols Measure Up?

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Wong-Ng, Winnie; Green, Martin L.

    2015-06-01

    Comparative measurements of the Seebeck coefficient are challenging due to the diversity of instrumentation and measurement protocols. With the implementation of standardized measurement protocols and the use of Standard Reference Materials (SRMs®), for example, the recently certified National Institute of Standards and Technology (NIST) SRM® 3451 ``Low Temperature Seebeck Coefficient Standard (10-390 K)'', researchers can reliably analyze and compare data, both intra- and inter-laboratory, thereby accelerating the development of more efficient thermoelectric materials and devices. We present a comparative overview of commonly adopted Seebeck coefficient measurement practices. First, we examine the influence of asynchronous temporal and spatial measurement of electric potential and temperature. Temporal asynchronicity introduces error in the absolute Seebeck coefficient of the order of ≈10%, whereas spatial asynchronicity introduces error of the order of a few percent. Second, we examine the influence of poor thermal contact between the measurement probes and the sample. This is especially critical at high temperature, wherein the prevalent mode of measuring surface temperature is facilitated by pressure contact. Each topic will include the comparison of data measured using different measurement techniques and using different probe arrangements. We demonstrate that the probe arrangement is the primary limit to high accuracy, wherein the Seebeck coefficients measured by the 2-probe arrangement and those measured by the 4-probe arrangement diverge with the increase in temperature, approaching ≈14% at 900 K. Using these analyses, we provide recommended measurement protocols to guide members of the thermoelectric materials community in performing more accurate measurements and in evaluating more comprehensive uncertainty limits.

  6. Dilatometer setup for low coefficient of thermal expansion materials measurements in the 140 K-250 K temperature range.

    PubMed

    Spannagel, Ruven; Hamann, Ines; Sanjuan, Josep; Schuldt, Thilo; Gohlke, Martin; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2016-10-01

    Space applications demand light weight materials with excellent dimensional stability for telescopes, optical benches, optical resonators, etc. Glass-ceramics and composite materials can be tuned to reach very low coefficient of thermal expansion (CTE) at different temperatures. In order to determine such CTEs, very accurate setups are needed. Here we present a dilatometer that is able to measure the CTE of a large variety of materials in the temperature range of 140 K to 250 K. The dilatometer is based on a heterodyne interferometer with nanometer noise levels to measure the expansion of a sample when applying small amplitude controlled temperature signals. In this article, the CTE of a carbon fiber reinforced polymer sample has been determined with an accuracy in the 10 -8 K -1 range.

  7. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  8. Temperature and Strain Coefficient of Velocity for Langasite SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, G. M.

    2013-01-01

    Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.

  9. Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Dai, Houfu; Li, Shaobo; Chen, Genyu

    2018-01-01

    Molecular dynamics is employed to compare nanoscale traditional machining (TM) with laser-assisted machining (LAM). LAM is that the workpiece is locally heated by an intense laser beam prior to material removal. We have a comprehensive comparison between LAM and TM in terms of atomic trajectories, phase transformation, radial distribution function, chips, temperature distribution, number of atoms in different temperature, grinding temperature, grinding force, friction coefficient and atomic potential energy. It can be found that there is a decrease of atoms with five and six nearest neighbors, and LAM generates more chips than that in the TM. It indicates that LAM reduces the subsurface damage of workpiece, gets a better-qualified ground surface and improves the material removal rate. Moreover, laser energy makes the materials fully softened before being removed, the number of atoms with temperature above 500 K is increased, and the average temperature of workpiece higher and faster to reach the equilibrium in LAM. It means that LAM has an absolute advantage in machining materials and greatly reduces the material resistance. Not only the tangential force (Fx) and the normal force (Fy) but also friction coefficients become smaller as laser heating reduces the strength and hardness of the material in LAM. These results show that LAM is a promising technique since it can get a better-qualified workpiece surface with larger material removal rates, less grinding force and lower friction coefficient.

  10. Localized temperature stability of low temperature cofired ceramics

    DOEpatents

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  11. Derivation and test of elevated temperature thermal-stress-free fastener concept

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.

    1985-01-01

    Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.

  12. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    NASA Astrophysics Data System (ADS)

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.

    2017-09-01

    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.

  13. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  14. High-throughput screening for combinatorial thin-film library of thermoelectric materials.

    PubMed

    Watanabe, Masaki; Kita, Takuji; Fukumura, Tomoteru; Ohtomo, Akira; Ueno, Kazunori; Kawasaki, Masashi

    2008-01-01

    A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.

  15. A multivariable model for predicting the frictional behaviour and hydration of the human skin.

    PubMed

    Veijgen, N K; van der Heide, E; Masen, M A

    2013-08-01

    The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These two coefficients of friction show a strong correlation. Consequently the two multivariable models resemble, with the static coefficient of friction being on average 18% lower than the dynamic coefficient of friction. The multivariable models in this study can be used to describe the data set that was the basis for this study. Care should be taken when generalising these results. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  17. Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K

    NASA Astrophysics Data System (ADS)

    Kompan, T. A.; Kondratiev, S. V.; Korenev, A. S.; Puhov, N. F.; Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.

    2018-03-01

    The paper is devoted to a new high-temperature dilatometer, a part of the State Primary Standard of the thermal expansion coefficient (TEC) unit. The dilatometer is designed for investigation and certification of materials for TEC standards in the range of extremely high temperatures. The critical review of existing methods of TEC measurements is given. Also, the design, principles of operation and metrological parameters of the new device are described. The main attention is paid to the system of machine vision that allows accurate measurement of elongation at high temperatures. The results of TEC measurements for graphite GIP-4, single crystal Al2O3, and some other materials are also presented.

  18. Overview of Photonic Materials for Application in Space Environments

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Osinski, M.; Svimonishvili, Tengiz; Watson, M.; Bunton, P.; Pearson, S. D.; Bilbro, J.

    1999-01-01

    Future space systems will he based on components evolving from the development and refinement of new and existing photonic materials. Optically based sensors, inertial guidance, tracking systems, communications, diagnostics, imaging and high speed optical processing are but a few of the applications expected to widely utilize photonic materials. The response of these materials to space environment effects (SEE) such as spacecraft charging, orbital debris, atomic oxygen, ultraviolet irradiation, temperature and ionizing radiation will be paramount to ensuring successful space applications. The intent of this paper is to, address the latter two environments via a succinct comparison of the known sensitivities of selected photonic materials to the temperature and ionizing radiation conditions found in space and enhanced space environments Delineation of the known temperature and radiation induced responses in LiNbO3, AlGaN, AlGsAs,TeO2, Si:Ge, and several organic polymers are presented. Photonic materials are realizing rapid transition into applications for many proposed space components and systems including: optical interconnects, optical gyros, waveguide and spatial light modulators, light emitting diodes, lasers, optical fibers and fiber optic amplifiers. Changes to material parameters such as electrooptic coefficients, absorption coefficients, polarization, conductivity, coupling coefficients, diffraction efficiencies, and other pertinent material properties examined for thermo-optic and radiation induced effect. Conclusions and recommendations provide the reader with an understanding of the limitations or attributes of material choices for specific applications.

  19. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-12-01

    A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiNx) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiNx is precisely measured in the temperature range 24-76 °C using the SiNx rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiNx ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si3N4, while the value for the PVD-SiNx ring is slightly higher. Both SiNx rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiNx needs a high temperature annealing to reduce N-H bond absorption, it is concluded that PVD-SiNx is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a 'silicone' polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiNx rings is locked within 50 GHz at the same temperature range in the wavelength range 1460-1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al2O3, Ga2O3 Ta2O5, HfO2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will find various applications such as medical and environmental sensing and in-vehicle data-communication.

  20. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    NASA Technical Reports Server (NTRS)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  1. Mechanical properties of several neat polymer matrix materials and unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.

    1989-01-01

    The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.

  2. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  3. Friction and wear behaviour of ion beam modified ceramics

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  4. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  5. Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach.

    PubMed

    Furmanchuk, Al'ona; Saal, James E; Doak, Jeff W; Olson, Gregory B; Choudhary, Alok; Agrawal, Ankit

    2018-02-05

    The regression model-based tool is developed for predicting the Seebeck coefficient of crystalline materials in the temperature range from 300 K to 1000 K. The tool accounts for the single crystal versus polycrystalline nature of the compound, the production method, and properties of the constituent elements in the chemical formula. We introduce new descriptive features of crystalline materials relevant for the prediction the Seebeck coefficient. To address off-stoichiometry in materials, the predictive tool is trained on a mix of stoichiometric and nonstoichiometric materials. The tool is implemented into a web application (http://info.eecs.northwestern.edu/SeebeckCoefficientPredictor) to assist field scientists in the discovery of novel thermoelectric materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOEpatents

    Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  7. Characterisation of electrical resistance for CMC Materials up to 1200 °C

    NASA Astrophysics Data System (ADS)

    Stäbler, T.; Böhrk, H.; Voggenreiter, H.

    2017-12-01

    Damage to thermal protection systems (TPS) during atmospheric re-entry is a severe safety issue, especially when considering re-usability of space transportation systems. There is a need for structural health monitoring systems and non-destructive inspection methods. However, damages are hard to detect. When ceramic matrix composites, in this case carbon fibre reinforced silicon carbide (C/C-SiC), are used as a TPS, the electrical properties of the present semiconductor material can be used for health monitoring, since the resistivity changes with damage, strain and temperature. In this work the electrical resistivity as a function of the material temperature is analysed eliminating effects of thermal electricity and the thermal coefficient of electrical resistance is determined. A sensor network is applied for locally and time resolved monitoring of the 300 mm x 120 mm x 3 mm panel shaped samples. Since the material is used for atmospheric re-entry it needs to be characterised for a wide range of temperatures, in this case as high as 1200 °C. Therefore, experiments in an inductively heated test bench were conducted. Firstly, a reference sample was used with thermocouples for characterising the temperature distribution across the sample surface. Secondly, electrical resistance under heat load was measured, time and spatially resolved. Results will be shown and discussed in terms of resistance dependence on temperature, thermal coefficient of electrical resistance, thermal electricity and electrical path orientation including an analysis on effective conducting cross section. Conversely, the thermal coefficient can also be used to determine the material temperature as a function of electrical resistance.

  8. The impact of sintering temperature on structural, morphological and thermoelectric properties of zinc titanate nanocrystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, P.; Murugu thiruvalluvan, T. M. V.; Arivanandhan, M.; Jayakumari, T.; Anandan, P.

    2017-07-01

    The effect of sintering temperature and Ti:Zn ratio of precursor solutions on the structural, morphological and thermoelectric properties of Zinc titanate (TZO) nanocrystals have been investigated. TZO nanocrystals were synthesized by changing the molar ratio of precursors of Zn and Ti sources by sol-gel method. The synthesized materials were sintered at different temperatures and the formation of multi phases of TZO were analysed by x-ray diffraction studies. The morphological properties and composition of TZO samples were studied by FESEM, TEM and XPS analysis. The thermoelectric properties of the TZO have been studied by measuring the Seebeck coefficient of the materials at various temperature. It was observed that the Seebeck coefficient of TZO sample increases with increasing Zn content in the sample especially at high temperature.

  9. Determination of the magnetoelectric coupling coefficient from temperature dependences of the dielectric permittivity for multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkowska, J. A., E-mail: joanna.bartkowska@us.edu.pl; Dercz, J.

    2013-11-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the magnetoelectric coupling coefficient from the temperature dependences of the dielectric permittivity for multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15}. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} belong to materials of the Aurivillius-type structure. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} was synthesized via sintering the Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} mixture and TiO{sub 2} oxides. The precursor material was ground in a high-energy attritorial mill for 5 hours. This material was obtained by a solid-statemore » reaction process at T = 1313 K. We investigated the temperature dependences of the dielectric permittivity for the different frequencies. From the dielectric measurements, we determined the temperature of phase transition of the ferroelectric-to-paraelectric type at about 1013 K. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.« less

  10. Investigation of Thermal Expansion of a Glass Ceramic Material with an Extra-Low Thermal Linear Expansion Coefficient

    NASA Astrophysics Data System (ADS)

    Kompan, T. A.; Korenev, A. S.; Lukin, A. Ya.

    2008-10-01

    The artificial material sitall CO-115M was developed purposely as a material with an extra-low thermal expansion. The controlled crystallization of an aluminosilicate glass melt leads to the formation of a mixture of β-spodumen, β-eucryptite, and β-silica anisotropic microcrystals in a matrix of residual glass. Due to the small size of the microcrystals, the material is homogeneous and transparent. Specific lattice anharmonism of these microcrystal materials results in close to zero average thermal linear expansion coefficient (TLEC) of the sitall material. The thermal expansion coefficient of this material was measured using an interferometric method in line with the classical approach of Fizeau. To obtain the highest accuracy, the registration of light intensity of the total interference field was used. Then, the parameters of the interference pattern were calculated. Due to the large amount of information in the interference pattern, the error of the calculated fringe position was less than the size of a pixel of the optical registration system. The thermal expansion coefficient of the sitall CO-115M and its temperature dependence were measured. The TLEC value of about 3 × 10-8 K-1 to 5 × 10-8 K-1 in the temperature interval from -20 °C to +60 °C was obtained. A special investigation was carried out to show the homogeneity of the material.

  11. Atomic oxygen recombination on the ODS PM 1000 at high temperature under air plasma

    NASA Astrophysics Data System (ADS)

    Balat-Pichelin, M.; Bêche, E.

    2010-06-01

    High temperature materials are necessary for the design of primary heat shields for future reusable space vehicles re-entering atmospheric planet at hypersonic velocity. During the re-entry phase on earth, one of the most important phenomena occurring on the heat shield is the recombination of atomic oxygen and this phenomenon is more or less catalyzed by the material of the heat shield. PM 1000 is planned to be use on the EXPERT capsule to study in real conditions its catalycity. Before the flight, it is necessary to perform measurements on ground test facility. Experimental data of the recombination coefficient of atomic oxygen under air plasma flow were obtained in the diffusion reactor MESOX on pre-oxidized PM 1000, for two total pressures 300 and 1000 Pa in the temperature range (850-1650 K) using actinometry and optical emission spectroscopy. In this investigation, the evolution of the recombination coefficient is dependent of temperature, pressure level and also of the chemical composition of the surface leading to one order of magnitude for a given temperature. The recombination coefficient is increasing with temperature and also dependent on the static pressure. The surface change due to the plasma exposure is inspected with SEM, XRD and XPS. As chromium oxide is the main part of the oxide layer formed during the oxidation in air plasma conditions, a sintered Cr 2O 3 sample was elaborated from powders to compare the data of the recombination coefficient obtained on PM 1000. Pre- and post-test analyses on the several materials were carried out using SEM, WDS, XRD and XPS.

  12. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  13. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    PubMed

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-05-01

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound.

    PubMed

    King, Randy L; Liu, Yunbo; Maruvada, Subha; Herman, Bruce A; Wear, Keith A; Harris, Gerald R

    2011-07-01

    A tissue-mimicking material (TMM) for the acoustic and thermal characterization of high-intensity focused ultrasound (HIFU) devices has been developed. The material is a high-temperature hydrogel matrix (gellan gum) combined with different sizes of aluminum oxide particles and other chemicals. The ultrasonic properties (attenuation coefficient, speed of sound, acoustical impedance, and the thermal conductivity and diffusivity) were characterized as a function of temperature from 20 to 70°C. The backscatter coefficient and nonlinearity parameter B/A were measured at room temperature. Importantly, the attenuation coefficient has essentially linear frequency dependence, as is the case for most mammalian tissues at 37°C. The mean value is 0.64f(0.95) dB·cm(-1) at 20°C, based on measurements from 2 to 8 MHz. Most of the other relevant physical parameters are also close to the reported values, although backscatter signals are low compared with typical human soft tissues. Repeatable and consistent temperature elevations of 40°C were produced under 20-s HIFU exposures in the TMM. This TMM is appropriate for developing standardized dosimetry techniques, validating numerical models, and determining the safety and efficacy of HIFU devices.

  15. The coefficient of friction, particularly of ice

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2008-07-01

    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04-0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found.

  16. Ambient temperature thermoelectric performance of thermally evaporated p-type Bi-Sb-Te thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Singh, Janpreet; Tripathi, S. K.

    2018-04-01

    Bismuth antimony telluride (BST) compounds have shown a promising performance in low to medium temperature thermoelectric (TE) conversion. One such composition, Bi1.2Sb0.8Te3, was synthesized by melting elemental entities and thin films of the as-synthesized material were deposited by thermal evaporation. X-Ray Diffraction analysis was conducted to study the crystallographic phases and other structural properties. Electrical conductivity and Seebeck coefficient measurements of as-prepared thin films were conducted in the temperature range from 303-363 K with a view to study ambient temperature application of the synthesized material for power generation in which an increasing trend was observed in the Seebeck coefficient. Electrical conductivity displayed a maximum value of 0.22 × 104 Sm-1 that was comparable to other Bi-Sb-Te compositions whereas power factor had its peak at 323 K. These trends observed in electrical properties indicate that synthesized material can be used for room temperature TE module fabrication.

  17. Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).

    PubMed

    Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P

    2009-06-01

    The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.

  18. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1988-01-01

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  19. Method of making a piezoelectric shear wave resonator

    DOEpatents

    Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.

    1987-02-03

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.

  20. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  1. Numerical analysis of phase change materials for thermal control of power battery of high power dissipations

    NASA Astrophysics Data System (ADS)

    Xia, X.; Zhang, H. Y.; Deng, Y. C.

    2016-08-01

    Solid-fluid phase change materials have been of increasing interest in various applications due to their high latent heat with minimum volume change. In this work, numerical analysis of phase change materials is carried out for the purpose of thermal control of the cylindrical power battery cells for applications in electric vehicles. Uniform heat density is applied at the battery cell, which is surrounded by phase change material (PCM) of paraffin wax type and contained in a metal housing. A two-dimensional geometry model is considered due to the model symmetry. The effects of power densities, heat transfer coefficients and onset melting temperatures are examined for the battery temperature evolution. Temperature plateaus can be observed from the present numerical analysis for the pure PCM cases, with the temperature level depending on the power densities, heat transfer coefficients, and melting temperatures. In addition, the copper foam of high thermal conductivity is inserted into the copper foam to enhance the heat transfer. In the modeling, the local thermal non-equilibrium between the metal foam and the PCM is taken into account and the temperatures for the metal foam and PCM are obtained respectively.

  2. Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application

    NASA Astrophysics Data System (ADS)

    Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.

    2018-02-01

    Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.

  3. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.

  4. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  5. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer

    PubMed Central

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-01-01

    Abstract A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiNx) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiNx is precisely measured in the temperature range 24–76 °C using the SiNx rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiNx ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si3N4, while the value for the PVD-SiNx ring is slightly higher. Both SiNx rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiNx needs a high temperature annealing to reduce N–H bond absorption, it is concluded that PVD-SiNx is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a ‘silicone’ polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiNx rings is locked within 50 GHz at the same temperature range in the wavelength range 1460–1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al2O3, Ga2O3 Ta2O5, HfO2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will find various applications such as medical and environmental sensing and in-vehicle data-communication. PMID:28567174

  6. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer.

    PubMed

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-01-01

    A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiN x ) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiN x is precisely measured in the temperature range 24-76 °C using the SiN x rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiN x ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si 3 N 4 , while the value for the PVD-SiN x ring is slightly higher. Both SiN x rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiN x needs a high temperature annealing to reduce N-H bond absorption, it is concluded that PVD-SiN x is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a 'silicone' polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiN x rings is locked within 50 GHz at the same temperature range in the wavelength range 1460-1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al 2 O 3 , Ga 2 O 3 Ta 2 O 5 , HfO 2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will find various applications such as medical and environmental sensing and in-vehicle data-communication.

  7. Experience-based learning on determining the frictional coefficients of thermoset polymers incorporated with silicon carbide whiskers and chopped carbon fibers at different temperatures

    NASA Astrophysics Data System (ADS)

    Harrison, Edward; Alamir, Mohammed; Alzahrani, Naif; Asmatulu, Ramazan

    2017-04-01

    High temperature applications of materials have been increasing for various industrial applications, such as automobile brakes, clutches and thrust pads. The big portion of these materials are made out of the polymeric materials with various reinforcements. In the present study, high temperature polymeric materials were incorporated with SiC whiskers and chopped carbon fibers at 0, 5, 10 and 20wt.% and molded into desired size and shape prior to the curing process. These inclusions were selected because of their high mechanical strengths and thermal conductivity values to easily dissipate the frictional heat energy and sustain more external loads. The method of testing involves a metal ramp with an adjustable incline to find the coefficients of static and kinetic frictions by recording time and the angle of movement at various temperatures (e.g., -10°C and 50°C). The test results indicated that increasing the inclusions made drastic improvements on the coefficients of static and kinetic frictions. The undergraduate students were involved in the project and observed all the details of the process during the laboratory studies, as well as data collection, analysis and presentation. This study will be useful for the future trainings of the undergraduate engineering students on the composite, automobile and other manufacturing industries.

  8. Temperature-Dependent Refractive Index Measurements of Caf2, Suprasil 3001, and S-FTM16 for the Euclid Near Infrared Spectrometer and Photometer

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d?), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.

  9. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1985-05-20

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  10. Piezoelectric shear wave resonator and method of making same

    DOEpatents

    Wang, J.S.; Lakin, K.M.; Landin, A.R.

    1983-10-25

    An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.

  11. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  12. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence

    PubMed Central

    Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.

    2016-01-01

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025

  13. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    NASA Astrophysics Data System (ADS)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation respectively when compared with thermocouple measurements. The second phase of this study focused on developing a wireless temperature sensor with lead zirconate titanate (PZT) as the pyroelectric material. This wireless temperature sensor consists of generating current by the PZT when exposed to a rate of temperature change with time, which was conducted to a built electromagnet to produce a magnetic field. The magnetic field was captured wirelessly with a milligaussmeter at a certain distance. Pyroelectric property of PZT (-40x10-5 C/m2 °C at 25 °C) is higher than that of the lithium niobate (-8.5x10-5 C/m2 °C at 25 °C), which was necessary to be able to generate the necessary pyroelectric current to make magnetic field detectable by the milligaussmeter. The electromagnet body was 3D printed with ABS material and surrounded with winding wire material. Before attempting a wireless temperature measurement, several attempts to measure the magnetic field at different distances away from the electromagnet were done. At the applied heating rates, the milligaussmeter was able to measure magnetic field up to 1.27 cm away from the electromagnet edge. A PZT sensor with a thickness of 0.1 cm was tested for use in the wireless temperature measurement configuration. For more accurate wireless temperature measurements, a similar pyroelectric coefficient measurement technique as used in phase one was done. The pyroelectric coefficient was found to increase from -40x10 -5 C/m2 °C to -71.84x10-5 C/m 2 °C from 25 °C to 122 °C, respectively. The PZT sensor was then tested for wireless temperature measurement at a distance of 1.27 cm at set temperatures of 100 °C, 150 °C, and 200 °C, and showed a maximum 10.47 % deviation when compared to thermocouple reading. In order to increase the distance that the wireless temperature sensor can read, a ferromagnetic material was placed inside the electromagnet. The sensor was tested for wireless temperature measurement at 1.27 cm, 2.54 cm and 3.81 cm with a maximum deviation of 13.4 %.

  14. New Oxide Ceramic Developed for Superior High-Temperature Wear Resistance

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Miyoshi, Kazuhisa; Farmer, Serene C.

    2003-01-01

    Ceramics, for the most part, do not have inherently good tribological properties. For example friction coefficients in excess of 0.7 have been reported for silicon nitride sliding on silicon nitride or on bearing steel (ref. 1). High friction is always accompanied by considerable wear. Despite their inherently poor tribological properties, the high strength and high toughness of silicon nitride (Si3N4) ceramics has led to their successful use in tribological applications (refs. 1 to 4). The upper temperature limit for the application of Si3N4 as wear-resistant material is limited by reaction with the tribological environment (ref. 3). Silicon nitride is known to produce a thin silicon dioxide film with easy shear capability that results in low friction and low wear in a moist environment (ref. 5). At elevated temperatures, the removal of the reaction product that acts as lubricant causes the friction coefficient to increase and, consequently, the wear performance to become poor. New materials are sought that will have wear resistance superior to that of Si3N4 at elevated temperatures and in harsh environments. A new class of oxide ceramic materials has been developed with potential for excellent high-temperature wear resistance. The new material consists of a multicomponent oxide with a two-phase microstructure, in which the wear resistance of the mixed oxide is significantly higher than that of the individual constituents. This is attributed to the strong constraining effects provided by the interlocking microstructures at different length scales, to the large aspect ratio of the phases, to the strong interphase bonding, and to the residual stresses. Fretting wear tests were conducted by rubbing the new ceramic material against boron carbide (B4C). The new ceramic material produced a wear track groove on B4C, suggesting significantly higher wear resistance for the oxide ceramic. The new material did not suffer from any microstructural degradation after the wear test. The wear rate of the new ceramic material at 600 C was determined to be on the order of 10-10 mm3/N-m, which is 3 to 5 orders of magnitude lower than that for the current state-of-theart wear-resistant materials (Si3N4and B4C). The friction coefficient of the new ceramic materials is on the order of 0.4, which is significantly lower than that of silicon nitride. This new class of oxide materials has shown considerable potential for applications requiring high wear resistance at high temperatures and in harsh environments. New understanding of the wear behavior of ceramic materials is emerging as a result of the surprisingly high wear resistance of two-phase oxide ceramics. There is excellent potential for further improvements in the wear resistance of oxide ceramics through optimizing the microstructure and altering the crystallographic properties of specific oxide materials as a second phase to reduce the coefficient of friction at elevated temperatures.

  15. Orbital transfer rocket engine technology program: Soft wear ring seal technology

    NASA Technical Reports Server (NTRS)

    Lariviere, Brian W.

    1992-01-01

    Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.

  16. Effects of Stress on the Electrical Resistance of Ytterbium and Calibration of Ytterbium Stress Transducers

    DTIC Science & Technology

    1973-08-01

    temperature coefficient of approximately 1.35 x 10~3 .Vac, between 30 and 100OC, and the AREF material had a lower coefficient approximately 0.51 x lo " Q/cfc...The annealed material, also AREF, had a higher coefficient than either of the other two as-rolled foil samples, this being 2.65 x lo " Q/QV...the foil used as gage stock, which is believed Lo be representative of our field gage stock, was 0.50 ± 0.06 kbar. The corresponding yield strain

  17. Temperature Coefficient of Resistance.

    ERIC Educational Resources Information Center

    Fox, John N.

    1990-01-01

    Described are the apparatus and procedures needed for a demonstration of the measurement of the electrical resistance of metals as a function of temperature using a microcomputer interface. Discussed are materials, apparatus construction, and experimental results. (CW)

  18. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  19. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    NASA Astrophysics Data System (ADS)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  20. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  1. Intermediate Valence Tuning and Seebeck Coefficient Optimization in Yb-based Low-Temperature Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Lehr, Gloria; Morelli, Donald; Jin, Hyungyu; Heremans, Joseph

    2014-03-01

    Several Yb-based intermediate valence compounds have unique thermoelectric properties at low temperatures. These materials are interesting to study for niche applications such as cryogenic Peltier cooling of infrared sensors on satellites. Elements of different sizes, which form isostructural compounds, are used to form solid solutions creating a chemical pressure (smaller atoms - Sc) or relaxation (larger atoms - La) to alter the volume of the unit cell and thereby manipulate the average Yb valence. Magnetic susceptibility measurements show a strong correlation between the Seebeck coefficient and the ratio of trivalent to divalent Yb in these compounds. Two different Yb-based solid solution systems, Yb1-xScxAl2 and Yb1-xLaxCu2Si2, demonstrate that the concentration of Yb can be used to tune both the magnitude of the Seebeck coefficient as well as the temperature at which its absolute maximum occurs. This work is supported by Michigan State University and AFOSR-MURI ``Cryogenic Peltier Cooling'' Contract #FA9550-10-1-0533.

  2. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice ofmore » dimensionality in the model.« less

  3. Piezoresistive silicon pressure sensors in cryogenic environment

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Chapman, John J.

    1989-01-01

    This paper presents data on low-temperature measurements of silicon pressure sensors. It was found that both the piezoresistance coefficients and the charge-carrier mobility increase with decreasing temperature. For lightly doped semiconductor materials, the density of free charge carriers decreases with temperature and can freeze out eventually. However, the effect of carrier freeze-out can be minimized by increasing the impurity content to higher levels, at which the temperature dependency of piezoresistance coefficients is reduced. An impurity density of 1 x 10 to the 19th/cu cm was found to be optimal for cryogenic applications of pressure sensor dies.

  4. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    NASA Astrophysics Data System (ADS)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  5. ZERODUR TAILORED for cryogenic application

    NASA Astrophysics Data System (ADS)

    Jedamzik, R.; Westerhoff, T.

    2014-07-01

    ZERODUR® glass ceramic from SCHOTT is known for its very low thermal expansion coefficient (CTE) at room temperature and its excellent CTE homogeneity. It is widely used for ground-based astronomical mirrors but also for satellite applications. Many reference application demonstrate the excellent and long lasting performance of ZERODUR® components in orbit. For space application a low CTE of the mirror material is required at cryogenic temperatures together with a good match of the thermal expansion to the supporting structure material. It is possible to optimize the coefficient of thermal expansion of ZERODUR® for cryogenic applications. This paper reports on measurements of thermal expansion of ZERODUR® down to cryogenic temperatures of 10 K performed by the PTB (Physikalisch Technische Bundesanstallt, Braunschweig, Germany, the national metrology laboratory). The ZERODUR® TAILORED CRYO presented in this paper has a very low coefficient of thermal expansion down to 70 K. The maximum absolute integrated thermal expansion down to 10 K is only about 20 ppm. Mirror blanks made from ZERODUR® TAILORED CRYO can be light weighted to almost 90% with our modern processing technologies. With ZERODUR® TAILORED CRYO, SCHOTT offers the mirror blank material for the next generation of space telescope applications.

  6. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer of PA6 leads to weak absorption radiation losses, although mainly in the UV range.

  7. Role of chemically and thermally induced crystal lattice distortion in enhancing the Seebeck coefficient in complex tellurides

    DOE PAGES

    Levin, E. M.; Iowa State Univ., Ames, IA; Kramer, M. J.; ...

    2016-07-14

    Composition and crystal structure of complex materials can significantly change the Seebeck effect, i.e., heat to electrical energy conversion, which is utilized in thermoelectric materials. Despite decades of studies of various thermoelectric materials and their application, the fundamental understanding of this effect still is limited. One of the most efficient groups of thermoelectric materials is based on GeTe, where Ge is replaced by [Ag + Sb], i.e., Ag xSb xGe 50-2xTe 50 alloys, traditionally shown as (GeTe) m(AgSbTe 2) 100-m (TAGS-m series). Here, in this article, we report on the discovery of two unique phenomena in TAGS materials attributed tomore » the effects from [Ag + Sb] atoms: (i) a linear relation between the Seebeck coefficient and rhombohedral lattice distortion, and (ii) resonance-like temperature-induced behavior of the contribution to the Seebeck coefficient produced by [Ag + Sb] atoms. Finally, our findings show that heat to electrical energy conversion strongly depends on the temperature- and compositionally-induced rhombohedral to cubic transformation where [Ag + Sb] atoms play a crucial mediating role.« less

  8. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  9. Final Shape of Precision Molded Optics: Part 1 - Computational Approach, Material Definitions and the Effect of Lens Shape

    DTIC Science & Technology

    2012-05-15

    subroutine by adding time-dependence to the thermal expansion coefficient. The user subroutine was written in Intel Visual Fortran that is compatible...temperature history dependent expansion and contraction, and the molds were modeled as elastic taking into account both mechanical and thermal strain. In...behavior was approximated by assuming the thermal coefficient of expansion to be a fourth order polynomial function of temperature. The authors

  10. Preparation of Oxidation-Resistant Ultra High Melting Temperature Materials and Structures Using Laser Method

    DTIC Science & Technology

    2009-06-06

    sample within a small ceramic muffle. The microwave absorption coefficient of most ceramics is low, but increases with temperature. Thus, as the...increased using additives with higher absorption 7 coefficients . Silicon carbide has a higher loss tangent at 2.4 GHz than most ceramics, and thus...electron beam sintering. Microwave heating works well for large volumes, but ceramics normally have a low dielectric absorption constant at room

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaucage, Timothy R; Beenfeldt, Eric P; Speakman, Scott A

    Among the langasite family of crystals (LGX), the three most popular materials are langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (LGN, La3Ga5.5Nb0.5O14). The LGX crystals have received significant attention for acoustic wave (AW) device applications due to several properties, which include: (1) piezoelectric constants about two and a half times those of quartz, thus allowing the design of larger bandwidth filters; (2) existence of temperature compensated orientations; (3) high density, with potential for reduced vibration and acceleration sensitivity; and (4) possibility of operation at high temperatures, since the LGX crystals do not present phase changes up to their meltingmore » point above 1400degC. The LGX crystals' capability to operate at elevated temperatures calls for an investigation on the growth quality and the consistency of these materials' properties at high temperature. One of the fundamental crystal properties is the thermal expansion coefficients in the entire temperature range where the material is operational. This work focuses on the measurement of the LGT thermal expansion coefficients from room temperature (25degC) to 1200degC. Two methods of extracting the thermal expansion coefficients have been used and compared: (a) dual push-rod dilatometry, which provides the bulk expansion; and (b) x-ray powder diffraction, which provides the lattice expansion. Both methods were performed over the entire temperature range and considered multiple samples taken from <001> Czochralski grown LGT material. The thermal coefficients of expansion were extracted by approximating each expansion data set to a third order polynomial fit over three temperature ranges reported in this work: 25degC to 400degC, 400degC to 900degC, 900degC to 1200degC. An accuracy of fit better than 35ppm for the bulk expansion and better than 10ppm for the lattice expansion have been obtained with the aforementioned polynomial fitting. The percentage difference between the bulk and the lattice fitted expansion responses over the entire temperature range of 25degC to 1200degC is less than 2% for the three crystalline axes, which indicates the high quality and growth consistency of the LGT crystal measured« less

  12. ESD Protective Material and Equipment: A Critical Review

    DTIC Science & Technology

    1982-04-01

    having touched it. It is also of utmost importance that the resistivity of the work surface not change appreciably with changes in temperature , humidity...settings, e.g., temperature . No attempt was made to estimate the relative ease of heat-sealability of the bag materials, all of which use polyethylene...weapon in the battle against ESD. They function in two different ways. First, they reduce the materials’ coefficient of friction by increasing surface

  13. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    DTIC Science & Technology

    2013-10-01

    coated microwire to change the temperature of an FBG. We show below that the proposed sensor probe, with a relatively poor thermal coupling with FBG...Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales, including enhanced...nanocomposites as compared to bulk polycrystalline materials, in addition to similar thermal conductivities , results in enhanced room temperature ZT as

  14. Acoustic identification of the elastic properties of porous and nonporous superconducting materials DyBa2-XSrXCu3O7-δ

    NASA Astrophysics Data System (ADS)

    Sayoud, N.; Lazri, H.; Ogam, E.; Boumaiza, Y.; Boudour, A.

    2018-05-01

    This work involves the development of a method using the principle of acoustic microscopy to determine the elastic properties of high-temperature superconducting materials, the method is applied to analyse the variation of the elastic properties of the superconducting alloy DyBa 2-x Sr x Cu 3 O 7‑δ for different variations of the concentration parameters (x = 0, x = 0.3 and x = 0.6), porosity and temperature. The method is based on the reconstruction of the reflection coefficient calculated from the acoustic signature of the signal received by the microscope during the exploration of the superconducting material for different concentrations. This permitted the determination of the velocities of the surface and volume waves from the modelled reflection coefficient. On the other hand, the elastic parameters of the material such as Young’s, shear and bulk moduli were also deduced.

  15. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  16. Near zero coefficient of thermal expansion of beta-eucryptite without microcracking

    DOEpatents

    Reimanis, Ivar; Ramalingam, Subramanian

    2015-06-16

    The present invention is drawn to a lithia alumina silica material that exhibits a low CTE over a broad temperature range and a method of making the same. The low CTE of the material allows for a decrease in microcracking within the material.

  17. A fiber optic temperature sensor based on the combination of epoxy and glass particles with different thermo-optic coefficients

    NASA Astrophysics Data System (ADS)

    Wildner, Wolfgang; Drummer, Dietmar

    2016-12-01

    This paper describes the development and function of an optical fiber temperature sensor made out of a compound of epoxy and optical glass particles. Because of the different thermo-optic coefficients of these materials, this compound exhibits a strong wavelength and temperature dependent optical transmission, and it therefore can be employed for fiber optic temperature measurements. The temperature at the sensor, which is integrated into a polymer optical fiber (POF), is evaluated by the ratio of the transmitted intensity of two different light-emitting diodes (LED) with a wavelength of 460 nm and 650 nm. The material characterization and influences of different sensor lengths and two particle sizes on the measurement result are discussed. The temperature dependency of the transmission increases with smaller particles and with increasing sensor length. With glass particles with a diameter of 43 μm and a sensor length of 9.8 mm, the intensity ratio of the two LEDs decreases by 60% within a temperature change from 10°C to 40°C.

  18. Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho

    2018-04-01

    This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).

  19. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  20. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    NASA Astrophysics Data System (ADS)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  1. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGES

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO 2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO 2-induced drifts in thermocouple readings.more » Oxygen equilibrium is monitored using both an O 2 sensor and the transient behavior of the resistance as a proxy. A pO 2 range of 10 -25–10 0 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi 2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO 2 on a 1 % Nb-doped SrTiO 3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO 2 range of 10 -19–10 -8 atm at 973 K for the donor-doped single crystals is observed.« less

  2. Temperature Coefficient of the Modulus of Rigidity of Aircraft Instrument Diaphragm and Spring Materials

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Melton, E R

    1931-01-01

    Experimental data are presented on the variation of the modulus of rigidity in the temperature range -20 to +50 degrees C. of a number of metals which are of possible use for elastic elements for aircraft and other instruments. The methods of the torsional pendulum was used to determine the modulus of rigidity and its temperature coefficient for aluminum, duralumin, monel metal, brass, phosphor bronze, coin silver, nickel silver, three high carbon steels, and three alloy steels. It was observed that tensile stress affected the values of the modulus by amounts of 1 per cent or less.

  3. Emission coefficients of low temperature thermal iron plasma

    NASA Astrophysics Data System (ADS)

    Mościcki, T.; Hoffman, J.; Szymański, Z.

    2004-03-01

    Iron plasma appears during material processing with laser, electric are etc., and has considerable influence on the processing conditions. In this paper emission coefficients of low temperature thermal iron plasma at atmospheric pressure are presented. Net emission coefficients ɛ N have been calculated for pure iron plasma as well as for Fe-Ar and Fe-He plasma mixtures. To calculate the recombination radiation the knowledge of the Biberman factors ξ {fb/z}( T e, λ) is necessary and they have been calculated from the iron photo-ionization cross sections. The calculations allow estimation of energy losses, energy radiated by plasma plume and its comparison with the energy absorbed from laser beam.

  4. An Investigation of the Coefficient of Discharge of Liquids Through Small Round Orifices

    NASA Technical Reports Server (NTRS)

    Joachim, W F

    1926-01-01

    The work covered by this report was undertaken in connection with a general investigation of fuel injection engine principles as applied to engines for aircraft propulsion, the specific purpose being to obtain information on the coefficient of discharge of small round orifices suitable for use as fuel injection nozzles. Values for the coefficient were determined for the more important conditions of engine service such as discharge under pressures up to 8,000 pounds per square inch, at temperatures between 80 degrees and 180 degrees F. And into air compressed to pressures up to 1,000 pounds per square inch. The results show that the coefficient ranges between 0.62 and 0.88 for the different test conditions between 1,000 and 8,000 pounds per square inch hydraulic pressure. At lower pressures the coefficient increases materially. It is concluded that within the range of these tests and for hydraulic pressures above 1,000 pound per square inch the coefficient does not change materially with pressure or temperature; that it depends considerably upon the liquid, decreases with increase in orifice size, and increases in the case of discharge into compressed air until the compressed-air pressure equals approximately three-tenths of the hydraulic pressure, beyond which pressure ratio it remains practically constant.

  5. Discrete component bonding and thick film materials study

    NASA Technical Reports Server (NTRS)

    Kinser, D. L.

    1975-01-01

    The results are summarized of an investigation of discrete component bonding reliability and a fundamental study of new thick film resistor materials. The component bonding study examined several types of solder bonded components with some processing variable studies to determine their influence upon bonding reliability. The bonding reliability was assessed using the thermal cycle: 15 minutes at room temperature, 15 minutes at +125 C 15 minutes at room temperature, and 15 minutes at -55 C. The thick film resistor materials examined were of the transition metal oxide-phosphate glass family with several elemental metal additions of the same transition metal. These studies were conducted by preparing a paste of the subject composition, printing, drying, and firing using both air and reducing atmospheres. The resulting resistors were examined for adherence, resistance, thermal coefficient of resistance, and voltage coefficient of resistance.

  6. High temperature experimental characterization of microscale thermoelectric effects

    NASA Astrophysics Data System (ADS)

    Favaloro, Tela

    Thermoelectric devices have been employed for many years as a reliable energy conversion technology for applications ranging from the cooling of sensors or charge coupled devices to the direct conversion of heat into electricity for remote power generation. However, its relatively low conversion efficiency has limited the implementation of thermoelectric materials for large scale cooling and waste heat recovery applications. Recent advances in semiconductor growth technology have enabled the precise and selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of thermoelectric devices. Accurate characterization at the intended operational temperature of novel thermoelectric materials is a crucial component of the optimization process in order to fundamentally understand material behavior and evaluate performance. The objective of this work is to provide the tools necessary to characterize high efficiency bulk and thin-film materials for thermoelectric energy conversion. The techniques developed here are not bound to specific material or devices, but can be generalized to any material system. Thermoreflectance imaging microscopy has proven to be invaluable for device thermometry owing to its high spatial and temporal resolutions. It has been utilized in this work to create two-dimensional temperature profiles of thermoelectric devices during operation used for performance analysis of novel materials, identification of defects, and visualization of high speed transients in a high-temperature imaging thermostat. We report the development of a high temperature imaging thermostat capable of high speed transient thermoelectric characterization. In addition, we present a noninvasive method for thermoreflectance coefficient calibration ideally suited for vacuum and thus high temperature employment. This is the first analysis of the thermoreflectance coefficient of commonly used metals at high-temperatures. High temperature vacuum thermostats are designed and fabricated with optical imaging capability and interchangeable measurement stages for various electrical and thermoelectric characterizations. We demonstrate the simultaneous measurement of in-plane electrical conductivity and Seebeck coefficient of thin-film or bulk thermoelectric materials. Furthermore, we utilize high-speed circuitry to implement the transient Harman technique and directly determine the cross-plane figure of merit of thin film thermoelectric materials at high temperatures. Transient measurements on thin film devices are subject to complications from the growth substrate, non-ideal contacts and other detrimental thermal and electrical effects. A strategy is presented for optimizing device geometry to mitigate the impact of these parasitics. This design enabled us to determine the cross-plane thermoelectric material properties in a single high temperature measurement of a 25mum InGaAs thin film with embedded ErAs (0.2%) nanoparticles using the bipolar transient Harman technique in conjunction with thermoreflectance thermal imaging. This approach eliminates discrepancies and potential device degradation from the multiple measurements necessary to obtain individual material parameters. Finite element method simulations are used to analyze non-uniform current and temperature distributions over the device area and determine the three dimensional current path for accurate extraction of material properties from the thermal images. Results match with independent measurements of thermoelectric material properties for the same material composition, validating this approach. We apply high magnification thermoreflectance imaging to create temperature maps of vanadium dioxide nanobeams and examine electro-thermal energy conversion along the nanobeam length. The metal to insulator transition of strongly correlated materials is subject to strong lattice coupling which brings about the unique one-dimensional alignment of metal-insulator domains along nanobeams. Many studies have investigated the effects of stress on the metal to insulator transition and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, thermoreflectance microscopy reveals the underlying behavior of single-crystalline VO2 nanobeams in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the domain interfaces, indicating the significance of the domain walls and band offsets. Moreover, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO 2 through detection of the opposite polarity of their respective thermoreflectance coefficients.

  7. The Synthesis and Thermoelectric Properties of p-Type Li1- x NbO2-Based Compounds

    NASA Astrophysics Data System (ADS)

    Rahman, Jamil Ur; Meang, Eun-Ji; Van Nguyen, Du; Seo, Won-Seon; Hussain, Ali; Kim, Myong Ho; Lee, Soonil

    2017-03-01

    We investigated the thermoelectric (TE) properties of a p-type oxide material (Li1- x NbO2, with x = 0-0.6). The composition was synthesized via a solid-state reaction method under a reducing atmosphere. The charge transport properties were determined through the electrical conductivity and Seebeck coefficient measurements. The electrical conductivity was non-monotonically varied with x value and showed metallic behavior with increased temperature and above 650 K temperature independent behavior dominated by extrinsic conduction. On the other hand, the Seebeck coefficient was increased with an increase in the temperature, and decreased gradually with an increase in the Li vacancy concentration by both synthesis and gradual phase transition to a Li-rich Li3NbO4 phase with temperature and appeared as an n-type TE at x = 0.6 under high temperatures, which was attributed to an Nb substitution into the Li site. The thermal conductivity was monotonically reduced with the increase in temperature due to the cation disorder defects and second phases. The Li vacancy induced Li1- x NbO2-based compounds under low oxygen partial pressure show promise as a candidate p-type material for thermoelectric applications, particularly for co-processing with n-type oxide thermoelectric materials fabricated under conditions of low oxygen partial pressure.

  8. Electrochemical systems configured to harvest heat energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seok Woo; Yang, Yuan; Ghasemi, Hadi

    Electrochemical systems for harvesting heat energy, and associated electrochemical cells and methods, are generally described. The electrochemical cells can be configured, in certain cases, such that at least a portion of the regeneration of the first electrochemically active material is driven by a change in temperature of the electrochemical cell. The electrochemical cells can be configured to include a first electrochemically active material and a second electrochemically active material, and, in some cases, the absolute value of the difference between the first thermogalvanic coefficient of the first electrochemically active material and the second thermogalvanic coefficient of the second electrochemically activemore » material is at least about 0.5 millivolts/Kelvin.« less

  9. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  10. Thermal Expansion Coefficient of Cold-Pressed Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Olivieri, E.; Pasca, E.; Ventura, G.; Barucci, M.; Risegari, L.

    2004-07-01

    The measurement of the thermal linear expansion coefficient of a cold sintered SiC has been carried out in the 4.2 - 293 K temperature range. The properties of silicon carbide are specially suitable to realise high quality mirrors and complete optomechanical structures for space astronomy. The thermal contraction of the material used for the realization of the mirror is, of course, of primary interest. We present here both a plot and smoothed data of SiC thermal contraction coefficient. Details of the dilatometric interferometer used to carry out the measurements are also reported together with a control test of the measuring bench on a material (brass) of known thermal contraction.

  11. High temperature static strain measurement with an electrical resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.

  12. Perioperative thermal insulation.

    PubMed

    Bräuer, Anselm; Perl, Thorsten; English, Michael J M; Quintel, Michael

    2007-01-01

    Perioperative hypothermia remains a common problem during anesthesia and surgery. Unfortunately, the implementation of new minimally invasive surgical procedures has not lead to a reduction of this problem. Heat losses from the skin can be reduced by thermal insulation to avoid perioperative hypothermia. However, only a small amount of information is available regarding the physical properties of insulating materials used in the Operating Room (OR). Therefore, several materials using validated manikins were tested. Heat loss from the surface of the manikin can be described as:"Q = h . DeltaT . A" where Q = heat flux, h = heat exchange coefficient, DeltaT = temperature gradient between the environment and surface, and A = covered area. Heat flux per unit area and surface temperature were measured with calibrated heat flux transducers. Environmental temperature was measured using a thermoanemometer. The temperature gradient between the surface and environment (DeltaT) was varied and "h" was determined by linear regression analysis as the slope of "DeltaT" versus heat flux per unit area. The reciprocal of the heat exchange coefficient defines the insulation. The insulation values of the materials varied between 0.01 Clo (plastic bag) to 2.79 Clo (2 layers of a hospital duvet). Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the OR is both possible and desirable.

  13. Fins effectiveness and efficiency with position function of rhombus sectional area in unsteady condition

    NASA Astrophysics Data System (ADS)

    Nugroho, Tito Dwi; Purwadi, P. K.

    2017-01-01

    The function of the fin is to extend surfaces so that objects fitted with fin can remove the heat to the surrounding environment so that the cooling process can take place more quickly. The purpose of this study is to calculate and determine the effect of (a) the convective heat transfer coefficient of fluid on the value of the fin on the efficiency and effectiveness of non-steady state, and (b) the fin material to the value of the fins on the efficiency and effectiveness of non-steady state. The studied fins are in the form of straight fins with rhombus sectional area which is a function of position x with the short diagonal length of D1 and D2 as long diagonal length, L as fin's length and α as fin's tilt angle. Research solved numerical computation, using a finite difference method on the explicit way. At first, the fin has the same initial temperature with essentially temperature Ti = Tb, then abruptly fin conditioned on fluid temperature environment T∞. Fin's material is assumed with uniform properties, does not change with changes in temperature, and fin does not change the shape and volume during the process. The temperature of the fluid around the fins and the value of the convective heat transfer coefficient are permanently constant, and there is no energy generation in the fin. Fin's heat transfer conduction only take place in one direction, namely in the direction perpendicular to the fin base (or x-direction). The entire surface of the fin makes the process of heat transfer to a fluid environment around the fins. The results show that (a) the greater the value of heat transfer coefficient of convection h, the smaller the efficiency fin and effectiveness fins (b) In circumstances of unsteady state, the efficiency and effectivity influenced by the value of density, specific heat, heat transfer coefficient of conduction and thermal diffusivity fin material.

  14. Degassing procedure for ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Moore, B. C.

    1979-01-01

    Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.

  15. Ferroic Shape Memory Materials & Piezo:Pyro-Electric Oriented Recrystallized Glasses.

    DTIC Science & Technology

    1986-07-01

    microcope hot stage. The direction of crystallization was parallel to the direction of temperature gradient. The crystalline phases in the glass...may increase or decrease with temperature. Several compounds show a sign reversal in the pyroelectric coefficients, going from positive to negative

  16. Attenuation characteristics of the leaky \\text{T}(0,1) mode guided wave propagating in piping coated with anticorrosion grease

    NASA Astrophysics Data System (ADS)

    Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki

    2018-07-01

    Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.

  17. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  18. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  19. Characterization of Liquid Lithium Wetting and Thermoelectric Properties for Nuclear Fusion Applications

    NASA Astrophysics Data System (ADS)

    Fiflis, Peter; Xu, Wenyu; Christenson, Michael; Andruczyk, Daniel; Curreli, Davide; Ruzic, David

    2013-10-01

    Critical to the implementation of flowing liquid lithium plasma facing components is understanding the interactions of liquid lithium with various surfaces. Presented here are experiments investigating the material compatibility, wetting characteristics, and relative thermopower of liquid lithium with a variety of potential substrate candidates for the LiMIT concept. Wetting experiments with lithium used the contact angle as a metric. Among those materials investigated are 316 SS, Mo, Ta, and W. The contact angle, as well as its dependence on temperature was measured. For example, at 200 C, tungsten registers a contact angle of 130°, whereas above its wetting temperature of 350 C, the contact angle is less than 80°. Several methods were found to decrease the critical wetting temperature of various materials and are presented here. The thermopower of W, Mo, Ta, Li, Ga, Wood's metal and Sn has been measured relative to stainless steel, and the Seebeck coefficient of has then been calculated. For molybdenum the Seebeck coefficient has a linear rise with temperature from SMo = 3.9 μVK-1 at 30 °C to 7.5 μVK-1 at 275 °C. On Assignment at PPPL

  20. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  1. Temperature-dependent refractive index measurements of L-BBH2 glass for the Subaru CHARIS integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-09-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 μm. We report absolute refractive index (n), dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  2. Temperature-Dependent Refractive Index Measurements of L-BBH2 Glass for the Subaru CHARIS Integral Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 micron. We report absolute refractive index (n), dispersion (dn/d(lambda), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  3. Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate

    NASA Astrophysics Data System (ADS)

    Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.

    2018-04-01

    In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.

  4. Nanocomposite Interphases for Improved Transparent Polymer Composite Materials

    DTIC Science & Technology

    2008-08-01

    intensity of the incident light, A is the attenuation coefficient , and t is the part thickness. The intensity attenuation coefficient is a function of...index that is fairly close to that of fused silica. Most importantly, it has a high thermo- optic coefficient , dn/dt, which results in a large change in...35765K164, McMaster -Carr, Robbinsville, NJ) were attached on the outer side of both aluminum plates as shown, and the temperature was controlled

  5. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. Itmore » has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.« less

  6. Unusual Thermoelectric Behavior Indicating a Hopping to Bandlike Transport Transition in Pentacene

    NASA Astrophysics Data System (ADS)

    Germs, W. Chr.; Guo, K.; Janssen, R. A. J.; Kemerink, M.

    2012-07-01

    An unusual increase in the Seebeck coefficient with increasing charge carrier density is observed in pentacene thin film transistors. This behavior is interpreted as being due to a transition from hopping transport in static localized states to bandlike transport, occurring at temperatures below ˜250K. Such a transition can be expected for organic materials in which both static energetic disorder and dynamic positional disorder are important. While clearly visible in the temperature and density dependent Seebeck coefficient, the transition hardly shows up in the charge carrier mobility.

  7. Thermoelectric properties of (DyNiSn)1-x(DyNiSb)x composite

    NASA Astrophysics Data System (ADS)

    Synoradzki, Karol; Ciesielski, Kamil; Kępiński, Leszek; Kaczorowski, Dariusz

    2018-05-01

    High temperature thermoelectric properties of bulk and ball-milled cold-pressed (DyNiSn)1-x(DyNiSb)x composite materials have been studied. For bulk pure DyNiSn and DyNiSb samples the Seebeck coefficient reaches - 5.5 μV/K at 480 K and 120 μV/K at 540 K, respectively. Composite materials show metallic-like electrical resistivity and positive sign of Seebeck coefficient with values up to 50 times higher than in pure DyNiSn compound at 1000 K. Only for the sample with x = 0.47, the ball-milling drives to increase of Seebeck coefficient of about 37% at 650 K.

  8. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO 3 material

    DOE PAGES

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; ...

    2016-10-11

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (T c) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO 3 ceramic that has a high T c (364°C) and an extremely large g 33 (115 × 10 -3 Vm N -1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization duemore » to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. Finally, the phase field simulations confirm that the large piezoelectric voltage coefficient g 33 originates from maximized piezoelectric strain coefficient d 33 and minimized dielectric permittivity ε 33 in [001]-textured PbTiO 3 ceramics where domain wall motions are absent.« less

  9. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material

    PubMed Central

    Yan, Yongke; Zhou, Jie E.; Maurya, Deepam; Wang, Yu U.; Priya, Shashank

    2016-01-01

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10−3 Vm N−1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ɛ33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent. PMID:27725634

  10. Wittichenite Cu3BiS3: Synthesis and Physical Properties

    NASA Astrophysics Data System (ADS)

    Wei, Kaya; Hobbis, Dean; Wang, Hsin; Nolas, George S.

    2018-04-01

    Polycrystalline Cu3BiS3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu3BiS3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu3BiS3 may show promise for thermoelectric applications.

  11. Wittichenite Cu3BiS3: Synthesis and Physical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Kaya; Hobbis, Dean; Wang, Hsin

    Polycrystalline Cu 3BiS 3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu 3BiS 3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu 3BiS 3 may show promise for thermoelectric applications.

  12. Wittichenite Cu3BiS3: Synthesis and Physical Properties

    DOE PAGES

    Wei, Kaya; Hobbis, Dean; Wang, Hsin; ...

    2018-01-18

    Polycrystalline Cu 3BiS 3 was synthesized and densified using hot pressing in order to investigate the physical properties of this material. Both the thermal conductivity and the Seebeck coefficient of Cu 3BiS 3 are reported for the first time in order to investigate the thermoelectric properties of this material. The ultralow thermal conductivity coupled with the relatively high Seebeck coefficient, 0.17 W/m-K and 540 μV/K at room temperature, respectively, suggest Cu 3BiS 3 may show promise for thermoelectric applications.

  13. Reliable measurement of the Seebeck coefficient of organic and inorganic materials between 260 K and 460 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beretta, D.; Lanzani, G.; Dipartimento di Fisica, P.zza Leonardo da Vinci 32, Politecnico di Milano, 20133 Milano

    2015-07-15

    A new experimental setup for reliable measurement of the in-plane Seebeck coefficient of organic and inorganic thin films and bulk materials is reported. The system is based on the “Quasi-Static” approach and can measure the thermopower in the range of temperature between 260 K and 460 K. The system has been tested on a pure nickel bulk sample and on a thin film of commercially available PEDOT:PSS deposited by spin coating on glass. Repeatability within 1.5% for the nickel sample is demonstrated, while accuracy in the measurement of both organic and inorganic samples is guaranteed by time interpolation of datamore » and by operating with a temperature difference over the sample of less than 1 K.« less

  14. Cryo-Infrared Optical Characterization at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  15. Theoretical analysis and coating thickness determination of a dual layer metal coated FBG sensor for sensitivity enhancement at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ramalingam, Rajinikumar; Atrey, M. D.

    2017-12-01

    Use of Fiber Bragg Grating (FBG) sensor is very appealing for sensing low temperature and strain in superconducting magnets because of their miniature size and the possibility of accommodating many sensors in a single fiber. The main drawback is their low intrinsic thermal sensitivity at low temperatures below 120 K. Approaching cryogenic temperatures, temperature changes lower than a few degrees Kelvin cannot be resolved, since they do not cause an appreciable shift of the wavelength diffracted by a bare FBG sensor. To improve the thermal sensitivity and thermal inertia below 77 K, the Bare FBG (BFBG) sensor can be coated with high thermal expansion coefficient materials. In this work, different metal were considered for coating the FBG sensor. For theoretical investigation, a double layered circular thick wall tube model has been considered to study the effect on sensitivity due to the mechanical properties like Young’s modulus, Thermal expansion coefficient, Poisson’s ratio of selected materials at a various cryogenic temperatures. The primary and the secondary coating thickness for a dual layer metal coated FBG sensor have been determined from the above study. The sensor was then fabricated and tested at cryogenic temperature range from 4-300 K. The cryogenic temperature characteristics of the tested sensors are reported.

  16. Fabrication of Bi–Sb–Te Thermoelectric by Cold-Pressed Sintering for Motorcycle Exhaust.

    PubMed

    Kao, Mu-Jung; Chen, Ming-Jing

    2017-04-01

    This study was conducted on the Bi–Sb–Te thermoelectric material which is cold-pressed Sintering under 750 Mpa to make square thermoelectric pairs with size 8.2 mm × 8.2 mm and thicknesses 0.8 mm and 1.5 mm. The zone melting method was used to acquire P-type thermoelectric material Bi0.4Sb1.6Te3 and N-type thermoelectric material Bi2Te2.5Se0.5. At temperature 383 K, the measured Seebeck coefficient of Bi0.4Sb1.6Te3 is 222 μV/K, and its thermoelectric figure of merit ZT is 1.35. At temperature 400 K, the measured Seebeck coefficient of Bi2Te2.5Se0.5 is 210 μV/K, and its thermoelectric figure of merit ZT is 1.13. Using Solder paste Sn42Bi58 and copper electrode plate are in series connection with 16 pieces of P/N thermoelectric material to form thermoelectric modules. The thermoelectric module is actually pasted on the motorcycle waste heat source to be evaluated the performance, making the cold-end temperature dissipation heat can enhance the temperature difference between it so as to increase the output power. Increasing the leg thickness of thermoelectric module and making the about 35 °C temperature-difference of those can obviously enhance the performance of in terms of its voltage, its thermoelectric figure of merit ZT and output power of the thermoelectric modules.

  17. A parametric heat transfer study for cryogenic ball bearings in SSME HPOTP

    NASA Technical Reports Server (NTRS)

    Chyu, Mingking K.

    1989-01-01

    A numerical modeling is to examine the effects of coolant convective heat transfer coefficient and frictional heating on the local temperature characteristics of a ball element in Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) bearing. The present modeling uses a control-volume based, finite-difference method to solve the non-dimensionalized heat conduction equation in spherical coordinate system. The dimensionless temperature is found as a function of Biot number, heat flux ratio between the two race contacts, and location in the ball. The current results show that, for a given cooling capability, the ball temperature generally increases almost linearly with the heat input from the race-contacts. This increase is always very high at one of the two contacts. An increase in heat transfer coefficient generally reduces the ball temperature and alleviates the temperature gradient, except for the regions very close to the race contacts. For a 10-fold increase of heat transfer coefficient, temperature decrease is 35 percent for the average over entire ball, and 10 percent at the inner-race contact. The corresponding change of temperature gradient displays opposing trends between the regions immediately adjacent to the contacts and the remaining portion of the ball. The average temperature gradient in the vicinity of both contacts increases approximately 70 to 100 percent. A higher temperature gradient produces excessive thermal stress locally which may be detrimental to the material integrity. This, however, is the only unfavorable issue for an increase of heat transfer coefficient.

  18. Piezoelectric films for acoustoelectronic devices - Production, properties, and applications

    NASA Astrophysics Data System (ADS)

    Anisimkin, V. I.; Kotelianskii, I. M.

    1990-06-01

    Various aspects of the production of ZnO, AlN, and Ta2O5 piezoelectric films are briefly reviewed. The mininum possible absorption coefficient of surface acoustic waves in textured films is estimated theoretically with allowance for different absorption mechanisms. The results obtained are compared with those for single crystals of the same materials. Methods for calculating the absorption coefficient and temperature delay coefficient for Rayleigh and Sezawa surface acoustic waves in layered structures are proposed and verified experimentally.

  19. MoSi2-Base Composite for Engine Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Nathal, Michael V.

    1997-01-01

    The intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cm versus 8 g/cm for current engine materials), and ease of machining make it an attractive structural material. However, the use of MoSi2 has been hindered because of the brittle nature of the material at low temperatures, inadequate creep resistance at high temperatures, accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 400 and 500 C, and a coefficient of thermal expansion (CTE) that is relatively high in comparison to potential reinforcing fibers such as SiC. This CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling.

  20. Cryogenic Temperature-dependent Refractive Index Measurements of N-BK7, BaLKN3, and SF15 for NOTES PDI

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas F.; Madison, Timothy J.

    2007-01-01

    In order to enable high quality lens designs using N-BK7, BaLKN3, and SF15 at cryogenic temperatures, we have measured the absolute refractive index of prisms of these three materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For N-BK7, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 50 to 300 K at wavelengths from 0.45 to 2.7 micrometers; for BaLKN3 we cover temperatures ranging from 40 to 300 K and wavelengths from 0.4 to 2.6 micrometers; for SF15 we cover temperatures ranging from 50 to 300 K and wavelengths from 0.45 to 2.6 micrometers. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. While we generally find good agreement (plus or minus 2 x 10(exp -4) for N-BK7, less than 1 x 10(exp -4) for the other materials) at room temperature between our measured values and those provided by the vendor, there is some variation between the datasheets provided with the prisms we measured and the catalog values published by the vendor. This underlines the importance of measuring the absolute refractive index of the material when precise knowledge of the refractive index is required.

  1. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  2. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  3. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.

    1992-04-07

    Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.

  4. CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk

    The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less

  5. Unravelling the magnetism, high spin polarization and thermoelectric efficiency of ZrFeSi half-Heusler

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, D. C.

    2018-04-01

    We report the systematic investigation of structural properties, occupancy of density of states, nature of bonding and thermoelectric efficiency of half-Heusler ZrFeSi. The band structure analysis predicts the hybridization of Zr-d and Fe-d metal atoms resulting in occupation of density of states above the Fermi level (EF) while Fe-p and Si-p occupy the lower energy states below the EF. Thermoelectric transport coefficients are predicted using the Boltzmann transport theory under constant relaxation approximation, where Seebeck coefficient (S), total thermal conductivity and figure of merit are calculated. The negative value of total S as -14.02 μV/K predicts the material as n-type with thermoelectric figure of merit (zT) of 0.5 at 800 K. The lattice thermal conductivity decreases with increasing temperature with room temperature value of 4.18 W/mK and shows a significant reduction towards higher temperatures. In view of above elements, structural stability, high zT, ZrFeSi alloy have the capabilities to stimulate experimental verification as a promising materials for high temperature power generation and spintronic device fabrications.

  6. Annual Fuze Conference and Munitions Technology Symposium VI (43rd)

    DTIC Science & Technology

    1999-04-07

    part manufacture and assembly and identify the parameters that we must control through production. Analyzing the coefficients of variation and the...processing energetic materials. The extruder is equipped with four independent temperature control zones, segmented screws, a jacketed die block capable of...and has vacuum capability. Data monitoring capabilities include melt temperature and pressure, torque, screw speed, and temperatures in all of the

  7. Temperature characteristics for PTC material heating diesel fuel

    NASA Astrophysics Data System (ADS)

    Gu, Lefeng; Li, Xiaolu; Wang, Jun; Li, Ying; Li, Ming

    2010-08-01

    This paper gives a way which utilizes the PTC (Positive Temperature Coefficient) material to preheat diesel fuel in the injector in order to improve the cold starting and emissions of engine. A new injector is also designed. In order to understand the preheating process in this new injector, a dynamic temperature testing system combined with the MSP430F149 data acquisition system is developed for PTC material heating diesel fuel. Especially, the corresponding software and hardware circuits are explained. The temperature of diesel fuel preheating by PTC ceramics is measured under different voltages and distances, which Curie point is 75 °C. Diesel fuel is heated by self-defined temperature around the Curie point of PTC ceramics. The diesel fuel temperature rises rapidly in 2 minutes of the beginning, then can reach 60 °C within 5 minutes as its distance is 5mm away from the surface of PTC ceramics. However, there are a lot of fundamental studies and technology to be resolved in order to apply PTC material in the injector successfully.

  8. Development of High Temperature Type Vacuum Insulation Panel using Soluble Polyimide and Characteristic Evaluation

    NASA Astrophysics Data System (ADS)

    Araki, Kuninari; Kamoto, Daigorou; Matsuoka, Shin-Ichi

    The utilization is expected from the high-insulated characteristic as a tool for energy saving also in the high temperature insulation fields as in vacuum insulation panels (VIP) in the future. For high temperature, the material composition and process of VIP were reviewed, the SUS foil was adopted as packaging material, and soluble polyimide was developed as the thermo compression bonding material for high temperature VIP at 150°C. To lower the glass-transition temperature (Tg) under 200°C, we elaborated the new soluble polyimide using aliphatic diamine copolymer, and controlled Tg to about 176°C. By making from trial VIP and evaluations, it was possible to be maintain high performance concerning the coefficient of thermal conductivity [λ<0.008 W/(m·K) at 150°C].

  9. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris-Edinburgh cell.

    PubMed

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad

    2016-11-01

    A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid-solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric material PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. This new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.

  10. Pulse echo and combined resonance techniques: a full set of LGT acoustic wave constants and temperature coefficients.

    PubMed

    Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira

    2009-04-01

    This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.

  11. Radio-physical properties of radiotransparent thermal protection materials in ablation mode

    NASA Astrophysics Data System (ADS)

    Petrovskiy, V. P.; Pakhomov, E. P.; Politiko, A. A.; Semenenko, V. N.; Chistyaev, V. A.; Balakirev, B. A.; Pervov, A. Yu; Kamalov, A. D.; Sotskova, L. P.

    2018-01-01

    Experimental method for assessing the impact of the effects of high-temperature ablation processes on the radio physical characteristics of radiotransparent thermal protection materials (RTPM) is developed. Researches for the following RTPM with various structures of glass fillers are completed: press material (radiotransparent thermal protection press material or RTP-200); glass-fiber laminate (glass-fiber radiotransparent organic ceramic matrix or GFR-CM); reinforced composite material of class SiO2-SiO2 (high-temperature radiotransparent ceramic organic matrix or HTRC-OM). The influence of physicochemical transformations in the surface layer of RTPM on transmission and reflection coefficients of electromagnetic waves of RTPM samples and on the value of their complex permittivity is determined.

  12. Surface Catalytic Efficiency of Advanced Carbon Carbon Candidate Thermal Protection Materials for SSTO Vehicles

    NASA Technical Reports Server (NTRS)

    Stewart, David A.

    1996-01-01

    The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.

  13. Thermal/structural analyses of several hydrogen-cooled leading-edge concepts for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.; Mockler, Theodore T.; Tong, Mike

    1990-01-01

    The aerodynamic heating at high flight Mach numbers, when shock interference heating is included, can be extremely high and can exceed the capability of most conventional metallic and potential ceramic materials available. Numerical analyses of the heat transfer and thermal stresses are performed on three actively cooled leading-edge geometries (models) made of three different materials to address the issue of survivability in a hostile environment. These analyses show a mixture of results from one configuration to the next. Results for each configuration are presented and discussed. Combinations of enhanced internal film coefficients and high material thermal conductivity of copper and tungsten are predicted to maintain the maximum wall temperature for each concept within acceptable operating limits. The exception is the TD nickel material which is predicted to melt for most cases. The wide range of internal impingement film coefficients (based on correlations) for these conditions can lead to a significant uncertainty in expected leading-edge wall temperatures. The equivalent plastic strain, inherent in each configuration which results from the high thermal gradients, indicates a need for further cyclic analysis to determine component life.

  14. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    NASA Astrophysics Data System (ADS)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  15. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  16. First-principles study of high spin-polarization and thermoelectric efficiency of ferromagnetic CoFeCrAs quaternary Heusler alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    The ground state properties along with thermodynamic and thermoelectric properties of quaternary CoFeCrAs alloy within the ordered LiMgPdSn-type structure have been investigated by employing first-principles calculations. The alloy offers half-metallic ferromagnet character with an indirect band gap of 1.12 eV in the minority spin state with total spin magnetic moment of 4μB and follows Slater-Pauling relation. Effects on various properties of the material has been studied by the variation of the pressure and temperature. CoFeCrAs tenders large value of the Grüneisen parameter and small value for the thermal expansion coefficient. The materials present high Seebeck coefficient and huge power factor with the room temperature value of ∼-40 μV/K and 18 (1014 μWcm-1 K-2 s-1) respectively, which make CoFeCrAs promising candidate for efficient thermoelectric material.

  17. Study of heat generation and cutting force according to minimization of grain size (500 nm to 180 nm) of WC ball endmill using FEM

    NASA Astrophysics Data System (ADS)

    Byeon, J. H.; Ahmed, F.; Ko, T. J.; lee, D. K.; Kim, J. S.

    2018-03-01

    As the industry develops, miniaturization and refinement of products are important issues. Precise machining is required for cutting, which is a typical method of machining a product. The factor determining the workability of the cutting process is the material of the tool. Tool materials include carbon tool steel, alloy tool steel, high-speed steel, cemented carbide, and ceramics. In the case of a carbide material, the smaller the particle size, the better the mechanical properties with higher hardness, strength and toughness. The specific heat, density, and thermal diffusivity are also changed through finer particle size of the material. In this study, finite element analysis was performed to investigate the change of heat generation and cutting power depending on the physical properties (specific heat, density, thermal diffusivity) of tool material. The thermal conductivity coefficient was obtained by measuring the thermal diffusivity, specific heat, and density of the material (180 nm) in which the particle size was finer and the particle material (0.05 μm) in the conventional size. The coefficient of thermal conductivity was calculated as 61.33 for 180nm class material and 46.13 for 0.05μm class material. As a result of finite element analysis using this value, the average temperature of exothermic heat of micronized particle material (180nm) was 532.75 °C and the temperature of existing material (0.05μm) was 572.75 °C. Cutting power was also compared but not significant. Therefore, if the thermal conductivity is increased through particle refinement, the surface power can be improved and the tool life can be prolonged by lowering the temperature generated in the tool during machining without giving a great influence to the cutting power.

  18. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    PubMed

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  19. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach.

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.

  20. The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.

  1. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  2. Ultraprecise thermal expansion measurements of seven low expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  3. Carbon-doped single-crystalline SiGe/Si thermistor with high temperature coefficient of resistance and low noise level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radamson, H. H.; Kolahdouz, M.; Shayestehaminzadeh, S.

    2010-11-29

    SiGe (C)/Si(C) multiquantum wells have been studied as a thermistor material for future bolometers. A thermistor material for uncooled Si-based thermal detectors with thermal coefficient of resistance of 4.5%/K for 100x100 {mu}m{sup 2} pixel sizes and low noise constant (K{sub 1/f}) value of 4.4x10{sup -15} is presented. The outstanding performance of the devices is due to Ni-silicide contacts, smooth interfaces, and high quality multiquantum wells containing high Ge content.

  4. Study of the effect of tribo-materials and surface finish on the lubricant performance of new halogen-free room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Saurín, N.; Minami, I.; Sanes, J.; Bermúdez, M. D.

    2016-03-01

    The present work evaluates different materials and surface finish in the presence of newly designed, hydrophobic halogen-free room temperature ionic liquids (RTILs) as lubricants. A reciprocating tribo-tester was employed with steel-ceramic and steel-thermosetting epoxy resin contacts under boundary lubrication conditions. Four different tetraalkylphosphonium organosilanesulfonate RTILs provided excellent lubricating performance, with friction coefficients as low as 0.057, and non-measurable wear for the higher roughness machine-finish stainless steel flat against sapphire balls, in the case of the lubricants containing the 2-trimethylsilylethanesulfonate anion. Higher friction coefficients of the order of 0.1 and wear volumes of the order of 10-4 mm3 were observed for the lower roughness fine-finished flat stainless steel surface. All RTILs prevent wear of epoxy resin against stainless steel balls, with friction coefficients in the range of 0.03-0.06. EDX analysis shows the presence of RTILs on the stainless steel surfaces after the tribological tests. Under the experimental conditions, no corrosive processes were observed.

  5. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine

    1997-01-01

    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  6. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures.

    PubMed

    Burdin, Dmitrii A; Ekonomov, Nikolai A; Chashin, Dmitrii V; Fetisov, Leonid Y; Fetisov, Yuri K; Shamonin, Mikhail

    2017-10-16

    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20-200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect-such as the mechanical resonance frequency f r , the quality factor Q and the magnitude of the magnetoelectric coefficient α E at the resonance frequency-are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters-Young's modulus Y , the acoustic quality factor of individual layers, the dielectric constant ε , the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ (n) of the ferromagnetic layer-are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  7. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    PubMed Central

    Burdin, Dmitrii A.; Ekonomov, Nikolai A.; Chashin, Dmitrii V.; Fetisov, Leonid Y.; Fetisov, Yuri K.

    2017-01-01

    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n) of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices. PMID:29035312

  8. Investigation of nitrate salts for solar latent heat storage

    NASA Astrophysics Data System (ADS)

    Kamimoto, M.; Tanaka, T.; Tani, T.; Horigome, T.

    1980-01-01

    The properties of heat transfer in the discharging of a model solar latent heat storage unit based on various nitrate salts and salt mixtures are investigated. A shell-and-tube-type passive heat exchanger containing NaNO3 or eutectic or off-eutectic mixtures of NaNO3 with KNO3 and Ca(NO3)2 was heated to 40 K above the melting temperature of the salt, when air was made to flow through a heat transfer tube at a constant flow rate, and heat transfer material and air temperatures were monitored. Thermal conductivity and the apparent heat transfer coefficient are estimated from the heat extraction rate and temperature profiles, and it is found that although the thermal conductivities of the materials are similar, the off-eutectic salts exhibit higher heat transfer coefficients. Temperature distributions in the NaNO3-KNO3 mixtures are found to be in fairly good agreement with those predicted by numerical solutions of a one-dimensional finite difference equation, and with approximate analytical solutions. It is observed that the temperature of the heat transfer surface drops rapidly after the appearance of a solid phase, due to the low thermal conductivity of the salts, and means of avoiding this temperature drop are considered.

  9. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  10. Thermodynamic properties of OsB under high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang

    2011-09-01

    The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.

  11. Small temperature coefficient of resistivity of graphene/graphene oxide hybrid membranes.

    PubMed

    Sun, Pengzhan; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2013-10-09

    Materials with low temperature coefficient of resistivity (TCR) are of great importance in some areas, for example, highly accurate electronic measurement instruments and microelectronic integrated circuits. In this work, we demonstrated the ultrathin graphene-graphene oxide (GO) hybrid films prepared by layer-by-layer assembly with very small TCR (30-100 °C) in the air. Electrical response of the hybrid films to temperature variation was investigated along with the progressive reduction of GO sheets. The mechanism of electrical response to temperature variation of the hybrid film was discussed, which revealed that the interaction between graphene and GO and the chemical doping effect were responsible for the tunable control of its electrical response to temperature variation. The unique properties of graphene-GO hybrid film made it a promising candidate in many areas, such as high-end film electronic device and sensor applications.

  12. Effects of temperature distribution and elastic properties of materials on gas-turbine-disk stresses

    NASA Technical Reports Server (NTRS)

    Holms, Arthur G; Faldetta, Richard D

    1947-01-01

    Calculations were made to determine the influence of changes in temperature distribution and in elastic material properties on calculated elastic stresses for a typical gas-turbine disk. Severe temperature gradients caused thermal stresses of sufficient magnitude to reduce the operating safety of the disk. Small temperature gradients were found to be desirable because they produced thermal stresses that subtracted from the centrifugal stresses in the region of the rim. The thermal gradients produced a tendency for a severe stress condition to exist near the rim but this stress condition could be shifted away from the region of blade attachment by altering the temperature distribution. The investigation of elastic material properties showed that centrifugal stresses are slightly affected by changes in modulus of elasticity, but that thermal stresses are approximately proportional to modulus of elasticity and to coefficient of thermal expansion.

  13. Estimating Seebeck Coefficient of a p-Type High Temperature Thermoelectric Material Using Bee Algorithm Multi-layer Perception

    NASA Astrophysics Data System (ADS)

    Uysal, Fatih; Kilinc, Enes; Kurt, Huseyin; Celik, Erdal; Dugenci, Muharrem; Sagiroglu, Selami

    2017-08-01

    Thermoelectric generators (TEGs) convert heat into electrical energy. These energy-conversion systems do not involve any moving parts and are made of thermoelectric (TE) elements connected electrically in a series and thermally in parallel; however, they are currently not suitable for use in regular operations due to their low efficiency levels. In order to produce high-efficiency TEGs, there is a need for highly heat-resistant thermoelectric materials (TEMs) with an improved figure of merit ( ZT). Production and test methods used for TEMs today are highly expensive. This study attempts to estimate the Seebeck coefficient of TEMs by using the values of existing materials in the literature. The estimation is made within an artificial neural network (ANN) based on the amount of doping and production methods. Results of the estimations show that the Seebeck coefficient can approximate the real values with an average accuracy of 94.4%. In addition, ANN has detected that any change in production methods is followed by a change in the Seebeck coefficient.

  14. Temperature dependent absorption measurement of various transition metal doped laser materials

    NASA Astrophysics Data System (ADS)

    Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.

    2015-05-01

    In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.

  15. Thermoelectric transport properties of high mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states within these materials. 2, 3

  16. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  17. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  18. Co and Fe doping effect on negative temperature coefficient characteristics of nano-grained NiMn2O4 thick films fabricated by aerosol-deposition.

    PubMed

    Ryu, Jungho; Han, Guifang; Lee, Jong-Pil; Lim, Dong-Soo; Park, Yun-Soo; Jeong, Dae-Yong

    2013-05-01

    Spinel structured highly dense NiMn2O4-based (NMO) negative temperature coefficient (NTC) thermistor thick films were fabricated by aerosol-deposition at room temperature. To enhance the thermistor B constant, which represents the temperature sensitivity of the NMO thermistor material, Co and Co-Fe doping was applied. In the case of single element doping of Co, 5 mol% doped NMO showed a high B constant of over 5000 K, while undoped NMO showed -4000 K. By doping Fe to the 5 mol% Co doped NMO, the B constant was more enhanced at over 5600 K. The aging effect on the NTC characteristics of Co doped and Fe-Co co-doped NMO thick film showed very stable resistivity-time characteristics because of the highly dense microstructure.

  19. Ultraprecise thermal expansion measurements of seven low expansion materials.

    PubMed

    Berthold Iii, J W; Jacobs, S F

    1976-10-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 degrees C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  20. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  1. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires.

    PubMed

    Noori, Mohammed; Sadeghi, Hatef; Lambert, Colin J

    2017-04-20

    If high efficiency organic thermoelectric materials could be identified, then these would open the way to a range of energy harvesting technologies and Peltier coolers using flexible and transparent thin-film materials. We have compared the thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and found that the "edge-over-edge" dimer formed from stacked ZnP rings possesses a high electrical conductance, negligible phonon thermal conductance and a high Seebeck coefficient of the order of 300 μV K -1 . These combine to yield a predicted room-temperature figure of merit of ZT ≈ 4, which is the highest room-temperature ZT ever reported for a single organic molecule. This high value of ZT is a consequence of the low phonon thermal conductance arising from the stacked nature of the porphyrin rings, which hinders phonon transport through the edge-over-edge molecule and enhances the Seebeck coefficient.

  2. FEM study of recrystallized tungsten under ELM-like heat loads

    NASA Astrophysics Data System (ADS)

    Du, J.; Yuan, Y.; Wirtz, M.; Linke, J.; Liu, W.; Greuner, H.

    2015-08-01

    FEM thermal analysis has been performed on rolled tungsten plate loaded with heat load of 23 MW/m2 for 1.5 s. Gradient temperature field is generated due to the Gaussian shape beam profile. Recrystallization and grain growth of various scales were found at different areas of the sample depending on the localized thermal field. FEM thermal-mechanical analyses have been performed on the recrystallized tungsten exposed to ELMs-like heat loads. The analyzed load conditions were 0.38 and 1.14 GW/m2 with different base temperatures. Material deterioration due to recrystallization was implemented by adopting decreased yield stress, tangent modulus, strength coefficient and ductility coefficients. Life time predicted by adopting strain life criterion indicates grain growth from 5 μm to 100 μm causes the life decrease of 80%. This result is gained by pure mathematical calculation based on the empiric assumptions of material properties.

  3. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2017-08-01

    The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y1 type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK-1 at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  4. A temperature compensation methodology for piezoelectric based sensor devices

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Lou, Xueqiao; Bao, Aijian; Yang, Xu; Zhao, Ji

    2017-08-01

    A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R0), and the paralleled resistance (Rx). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.

  5. Determination of key diffusion and partition parameters and their use in migration modelling of benzophenone from low-density polyethylene (LDPE) into different foodstuffs.

    PubMed

    Maia, Joaquim; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Cruz, José Manuel; Seiler, Annika; Franz, Roland; Simoneau, Catherine; Castle, Laurence; Driffield, Malcolm; Mercea, Peter; Oldring, Peter; Tosa, Valer; Paseiro, Perfecto

    2016-01-01

    The mass transport process (migration) of a model substance, benzophenone (BZP), from LDPE into selected foodstuffs at three temperatures was studied. A mathematical model based on Fick's Second Law of Diffusion was used to simulate the migration process and a good correlation between experimental and predicted values was found. The acquired results contribute to a better understanding of this phenomenon and the parameters so-derived were incorporated into the migration module of the recently launched FACET tool (Flavourings, Additives and Food Contact Materials Exposure Tool). The migration tests were carried out at different time-temperature conditions, and BZP was extracted from LDPE and analysed by HPLC-DAD. With all data, the parameters for migration modelling (diffusion and partition coefficients) were calculated. Results showed that the diffusion coefficients (within both the polymer and the foodstuff) are greatly affected by the temperature and food's physical state, whereas the partition coefficient was affected significantly only by food characteristics, particularly fat content.

  6. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material.

    PubMed

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-05-18

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance.

  7. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material

    PubMed Central

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-01-01

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance. PMID:28524110

  8. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  9. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    DTIC Science & Technology

    2014-04-11

    Fig. 9(a) and (b). In addition, the temperature dependencies of the true and room-temperature-based mean values of the linear thermal expansion ...Variation of (a) thermal conductivity, (b) specific heat, (c) true linear thermal expansion coefficient, and (d) room-temperature-based mean thermal ...defined as follows: (a) alloy-grade and thermal -mechanical treatment of the workpiece materials to be joined, (b) frequency of reciprocating motion

  10. Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material.

    PubMed

    Namnabat, Soha; Kim, Kyung-Jo; Jones, Adam; Himmelhuber, Roland; DeRose, Christopher T; Trotter, Douglas C; Starbuck, Andrew L; Pomerene, Andrew; Lentine, Anthony L; Norwood, Robert A

    2017-09-04

    Silicon photonics has gained interest for its potential to provide higher efficiency, bandwidth and reduced power consumption compared to electrical interconnects in datacenters and high performance computing environments. However, it is well known that silicon photonic devices suffer from temperature fluctuations due to silicon's high thermo-optic coefficient and therefore, temperature control in many applications is required. Here we present an athermal optical add-drop multiplexer fabricated from ring resonators. We used a sol-gel inorganic-organic hybrid material as an alternative to previously used materials such as polymers and titanium dioxide. In this work we studied the thermal curing parameters of the sol-gel and their effect on thermal wavelength shift of the rings. With this method, we were able to demonstrate a thermal shift down to -6.8 pm/°C for transverse electric (TE) polarization in ring resonators with waveguide widths of 325 nm when the sol-gel was cured at 130°C for 10.5 hours. We also achieved thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions. Curing time compared to curing temperature shows to be the most important factor to control sol-gel's thermo-optic value in order to obtain an athermal device in a wide temperature range.

  11. Experimental study of thermal conductivity of pyrolysised materials by means of a flat layer

    NASA Astrophysics Data System (ADS)

    Vaniushkin, V. D.; Popov, S. K.; Sidenkov, D. V.

    2017-11-01

    Recycling of tires is currently a very important task. One of the areas of recycling tires is their low-temperature pyrolysis to produce marketable products - liquid fraction and a solid coke residue. For the development of the pyrolysis installation it is important to know the thermal conductivity of the coke residue at different temperatures of pyrolysis of initial material. As a property of matter, thermal conductivity depends in general on temperature and pressure. For materials with some structure, such as porous materials, the thermal conductivity depends on the characteristics of the structure. The thermal conductivity of the porous coke residue at pyrolysis temperatures of 300 0C, 400 0C, 500 0C and atmospheric pressure was studied experimentally at the laboratory unit of the department of “Theoretical basis of heat engineering” using the method of the flat layer in the temperature range 5…100 0C. Experimentally proved temperature dependencies of the coefficient of thermal conductivity of the coke residue are built to improve the accuracy of calculations of constructive and regime parameters of the pyrolysis installation.

  12. Ultrasonic transducer for extreme temperature environments

    DOEpatents

    Light, Glenn M.; Cervantes, Richard A.; Alcazar, David G.

    1993-03-23

    An ultrasonic piezoelectric transducer that is operable in very high and very low temperatures. The transducer has a dual housing structure that isolates the expansion and contraction of the piezoelectric element from the expansion and contraction of the housing. Also, the internal components are made from materials having similar coefficients of expansion so that they do not interfere with the motion of the piezoelectric element.

  13. Laboratory Measurements of Celestial Solids

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.; Beckwith, S. V. W.

    1997-01-01

    Our experimental study has focused on laboratory measurements of the low temperature optical properties of a variety of astronomically significant materials in the infrared and mm-wave region of the spectrum. Our far infrared measurements of silicate grains with an open structure have produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small amorphous 2MgO(central dot)SiO2 and MgO(central dot)2SiO2 grains are many times larger than the values previously used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the characteristic temperature dependent signature associated with two level systems in bulk glass; and (3) a smaller but nonzero two level temperature dependence signature is also observed for crystalline particles, its physical origin is unclear. These laboratory measurements yield surprisingly large and variable values for the mm-wave absorption coefficients of small silicate particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at these long wavelengths will not be well known without such studies. Furthermore, our studies have been useful to better understand the physics of the two level absorption process in amorphous and crystalline grains to gain confidence in the wide applicability of these results.

  14. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2

    PubMed Central

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-01-01

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO2 powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO2 films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO2 up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO2. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model. PMID:28773351

  15. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating.

    PubMed

    Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia

    2012-05-21

    Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

  16. Electronic and Transport Properties of LaNi4Sb12 Skutterudite: Modified Becke-Johnson Approach

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Singh, Srishti; Gupta, Dinesh C.

    2018-05-01

    We carried out an ab initio study of structural, electronic, thermodynamic, and thermoelectric properties of the lanthanum-filled skutterudite, LaNi4Sb12. Generalized gradient approximation and modified Becke-Johnson potentials were employed for the exchange-correlation potential. The electronic structure calculations display the metallic behavior of the compound. The alloy offers low lattice thermal conductivity along with a high Seebeck coefficient with a value of - 158 (μVK-1) at room temperature. The effect of high pressure and temperature on thermal properties like thermal expansion coefficient, heat capacity, and Grüneisen parameter are also investigated by means of a quasi-harmonic Debye model. The large Seebeck coefficient and high power factor exhibited by LaNi4Sb12 make it an attractive candidate for thermoelectric materials.

  17. Hydrogels for engineering: normalization of swelling due to arbitrary stimulus

    NASA Astrophysics Data System (ADS)

    Ehrenhofer, Adrian; Wallmersperger, Thomas

    2017-04-01

    In engineering, materials are chosen from databases: Engineers orient on specific parameters such as Young's modulus, yield stress or thermal expansion coefficients for a desired application. For hydrogels, the choice of materials is rather tedious since no generalized material parameters are currently available to quantify the swelling behavior. The normalization of swelling, which we present in the current work, allows an easy comparison of different hydrogel materials. Thus, for a specific application like a sensor or an actuator, an adequate material can be chosen. In the current work, we present the process of normalization and provide a course of action for the data analysis. Special challenges for hydrogels like hysteresis, conditional multi-sensitivity and anisotropic swelling are addressed. Then, the Temperature Expansion Model is shortly described and applied. Using the derived normalized swelling curves, a nonlinear expansion coefficient ß(F) is derived. The derived material behavior is used in an analytical model to predict the bending behavior of a beam made of thermo-responsive hydrogel material under an anisotropic temperature load. A bending behavior of the beam can be observed and the impact of other geometry and material parameters can be investigated. To overcome the limitations of the one-dimensional beam theory, the material behavior and geometry can be implemented in Finite Element analysis tools. Thus, novel applications for hydrogels in various fields can be envisioned, designed and tested. This can lead to a wider use of smart materials in sensor or actuator devices even by engineers without chemical background.

  18. Monitoring on internal temperature of composite insulator with embedding fiber Bragg grating for early diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Tang, Ming

    2017-04-01

    The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.

  19. Thermophysical Properties and Temperature of the Start of Titanium Recrystallization in Different Structural States

    NASA Astrophysics Data System (ADS)

    Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.

    2017-05-01

    The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.

  20. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  1. Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry.

    PubMed

    Dong, Chengzhi; Li, Kai; Jiang, Yuxi; Arola, Dwayne; Zhang, Dongsheng

    2018-01-08

    An optical system for measuring the coefficient of thermal expansion (CTE) of materials has been developed based on electronic speckle interferometry. In this system, the temperature can be varied from -60°C to 180°C with a Peltier device. A specific specimen geometry and an optical arrangement based on the Michelson interferometer are proposed to measure the deformation along two orthogonal axes due to temperature changes. The advantages of the system include its high sensitivity and stability over the whole range of measurement. The experimental setup and approach for estimating the CTE was validated using an Aluminum alloy. Following this validation, the system was applied for characterizing the CTE of carbon fiber reinforced composite (CFRP) laminates. For the unidirectional fiber reinforced composites, the CTE varied with fiber orientation and exhibits anisotropic behavior. By stacking the plies with specific angles and order, the CTE of a specific CFRP was constrained to a low level with minimum variation temperature. The optical system developed in this study can be applied to CTE measurement for engineering and natural materials with high accuracy.

  2. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2001-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  3. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4 whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2002-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  4. Optical properties of spin-on deposited low temperature titanium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rantala, J. T.; Kärkkäinen, A. H. O.

    2003-06-01

    This letter presents a method to fabricate high quality, high refractive index titanium oxide thin films by applying liquid phase spin-on deposition combined with low temperature annealing. The synthesis of the liquid form titanium oxide material is carried out using a sol-gel synthesis technique. The material can be annealed at low temperature (150 C°) to achieve relatively high refractive index of 1.94 at 632.8 nm wavelength, whereas annealing at 350 C° results in index of 2.03 at 632.8 nm. Film depositions are demonstrated on silicon substrates with 0.5% uniformity in thickness. Refractive indices and extinction coefficients are characterized over a broad wavelength range to demonstrate the optical performance of this novel aqueous phase spin-on deposited hybrid titanium oxide material.

  5. Thrust chamber life prediction. Volume 1: Mechanical and physical properties of high performance rocket nozzle materials

    NASA Technical Reports Server (NTRS)

    Esposito, J. J.; Zabora, R. F.

    1975-01-01

    Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).

  6. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Material Properties of Three Candidate Elastomers for Space Seals Applications

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  8. The effect on the radon diffusion coefficient of long-term exposure of waterproof membranes to various degradation agents.

    PubMed

    Navrátilová Rovenská, Katerina

    2014-07-01

    Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-11-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  10. High Temperature Degradation Mechanisms in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.

    1996-01-01

    Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects in the neat resin, and anisotropic diffusion effects in the composites, are identified through the use of specimens with different aspect ratios. The data is used with the model to determine reaction coefficients and effective diffusion coefficients. The empirical and analytical correlations confirm the preliminary model results which suggest that mass loss at lower temperatures is dominated by oxidative reactions and that these reaction are limited by diffusion of oxygen from the surface. The mechanism-based model is able to successfully capture the basic physics of the degradation phenomena under a wide range of test conditions. The analysis-based test design is successful in separating out oxidative, thermal, and diffusion effects to allow the determination of material coefficients. This success confirms the basic picture of the process; however, a more complete understanding of some aspects of the physics are required before truly predictive capability can be achieved.

  11. New piezoelectric materials for SAW filters

    NASA Astrophysics Data System (ADS)

    Anghelescu, Adrian; Nedelcu, Monica

    2010-11-01

    Scientific research of surface acoustic wave (SAW) devices had an early start by the end of 1960s and led to the development of high frequency and small size piezo devices. A sustained effort was dedicated for these components to be transformed into many more interesting applications for telecom market. Recently the employment of new piezo materials and crystallographic orientations open new opportunities for SAW filters. New piezoelectric crystals of gallium orthophosphate (GaPO4) provide higher electromechanical coupling than quartz, while maintaining temperature compensated characteristics similar to quartz. Based on this material phase transition of 970°C, development of new piezo devices to operate at higher temperatures up to 800°C can be done. SAW velocities about 30% lower than ST-X quartz, favors smaller and more compact devices. Other advantages of GaPO4 are: stability with high resistance to stress induced twinning, 3~4 times higher electromechanical coupling than quartz and existence of SAW temperature compensated orientations. Another family of new materials of the trigonal 32 class has received much attention recently because of their temperature behavior similar to quartz and the promise of higher electromechanical coupling coefficients. It is the family of langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (La3Ga5.5Nb0.5O14). Langasite crystals, easier to obtain and with the value of electromechanical coupling coefficient intermediate between quartz and lithium tantalate (k2=0.32% for 0°, 140°, 22.5° orientation and k2=0.38% for 0°, 140°, 25° orientation), enable us to design SAW filters with a relative pass band of 0.3% to 0.85%. Other piezoelectric materials are reviewed for comparison.

  12. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  13. Multiferroic properties of Indian natural ilmenite

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2017-03-01

    In this communication, the main results and analysis of extensive studies of electric and magnetic characteristics (relative dielectric constant, tangent loss, electric polarization, electric transport, impedance, magnetic polarization and magneto-electric coupling coefficient) of Indian natural ilmenite (NI) have been presented. Preliminary structural analysis was studied by Rietveld refinement of room temperature XRD data, which suggests the rhombohedral crystal system of NI. Maxwell-Wagner mechanism was used to explain the nature of the frequency dependence of the relative dielectric constant. The impedance analysis reveals that below 270 °C, only the bulk contributes, whereas at higher temperature, both grain boundary and the bulk contribute to the resistive characteristics of the material. The magnitude of the depression angles of the semicircles in the Nyquist plot has been estimated. The correlated barrier hopping model has been used to explain the frequency dependence of ac conductivity of the material. The activation energy of the compound has been estimated using the temperature dependence of dc conductivity plot. The obtained polarization hysteresis loops manifest improper ferroelectric behavior of NI. The existence M-H hysteresis loop supports anti-ferromagnetism in the studied material. The magneto-electric voltage coupling coefficient is found to be 0.7 mV/cm Oe. Hence, other than dielectric constant, electric polarization, magnetization and magneto-electric studies support the existence of multiferroic properties in NI.

  14. Cross Linked Metal Particles for Low Noise Bolometer Materials

    DTIC Science & Technology

    2016-12-12

    Our results indicate that the CLMPs can simultaneously have a high temperature coefficient of resistivity and a low noise, and therefore have a...indicate that the CLMPs can simultaneously have a high temperature co- efficient of resistivity and a low noise, and therefore have a great potential...current as a function of the inverse of applied bias for CLMP films at different temperatures. It is seen that the I-V curves are highly nonlinear as 7 0

  15. Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.

    PubMed

    Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim

    2018-06-13

    A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.

  16. Semiconductor bridge (SCB) igniter

    DOEpatents

    Bickes, Jr., Robert W.; Schwarz, Alfred C.

    1987-01-01

    In an explosive device comprising an explosive material which can be made to explode upon activation by activation means in contact therewith; electrical activation means adaptable for activating said explosive material such that it explodes; and electrical circuitry in operation association with said activation means; there is an improvement wherein said activation means is an electrical material which, at an elevated temperature, has a negative temperature coefficient of electrical resistivity and which has a shape and size and an area of contact with said explosive material sufficient that it has an electrical resistance which will match the resistance requirements of said associated electrical circuitry when said electrical material is operationally associated with said circuitry, and wherein said electrical material is polycrystalline; or said electrical material is crystalline and (a) is mounted on a lattice matched substrate or (b) is partially covered with an intimately contacting metallization area which defines its area of contact with said explosive material.

  17. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  18. Comparison Actin- and Glass-Supported Phospholipid Bilayer Diffusion Coefficients

    PubMed Central

    Sterling, Sarah M.; Dawes, Ryan; Allgeyer, Edward S.; Ashworth, Sharon L.; Neivandt, David J.

    2015-01-01

    The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20–44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434

  19. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a coefficient of fiction. The coefficient of fiction was analyzed in terms of material properties that is, hardness, Young's modulus and elasticity/plasticity of the material.

  20. Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling

    NASA Astrophysics Data System (ADS)

    Tušek, Jaka; Engelbrecht, Kurt; Mañosa, Lluis; Vives, Eduard; Pryds, Nini

    2016-12-01

    This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress-strain-temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius-Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy-temperature diagrams (all as a function of temperature and applied stress/strain) of two groups of materials (Ni-Ti and Cu-Zn-Al alloys) obtained using indirect methods through phenomenological modelling and Maxwell relation. In the last part of the paper, the basic definition of the efficiency of the elastocaloric thermodynamic cycle (coefficient of performance) is defined and discussed.

  1. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali

    2008-01-01

    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  2. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  3. Energy harvesting using a thermoelectric material

    DOEpatents

    Nersessian, Nersesse [Van Nuys, CA; Carman, Gregory P [Los Angeles, CA; Radousky, Harry B [San Leandro, CA

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  4. The influence of multiple firing on thermal contraction of ceramic materials used for the fabrication of layered all-ceramic dental restorations.

    PubMed

    Isgrò, Giuseppe; Kleverlaan, Cornelis J; Wang, Hang; Feilzer, Albert J

    2005-06-01

    During the production of layered all-ceramic restorations transient and/or residual thermal stresses may be formed which may affect a restoration's longevity. The aim of this study was to evaluate the influence of multiple firings on the thermal behavior of veneering porcelains and a ceramic core. The materials tested were: Empress 2 Core, Empress 2 Veneer and Eris glass-ceramics, Carrara Vincent and an experimental leucite-based veneering porcelain, Vitadur-Alpha aluminous porcelain, and two porcelains designed for titanium (i.e. Duceratin Dentine and Enamel). The thermal contraction coefficient of the materials was measured by means of dilatometery. The thermal contraction coefficient was measured during cooling and calculated over the temperature range of 450-20 degrees C by linear regression. One and two-way analysis of variance together with Tukey post-hoc tests were used as statistical analysis. Repeated firing affects the thermal contraction coefficients of Empress 2 Veneer, Carrara Vincent porcelain and the experimental porcelain. The thermal contraction coefficients of Empress 2 Core were significantly different from Vitadur-Alpha, Carrara Vincent, experimental porcelain, and Duceratin porcelains. The contraction coefficients of Empress 2 Veneer and Eris were closest to that of Empress 2 Core. The Empress 2 Core and Eris glass-ceramics, the aluminous porcelain and Duceratin porcelains showed better thermal stability after repeated firing than leucite porcelains. It can be concluded that due to the thermal stability of glass-ceramic materials, layered all-ceramic restorations of these materials may perform better.

  5. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  6. Review of literature surface tension data for molten silicon

    NASA Technical Reports Server (NTRS)

    Hardy, S.

    1981-01-01

    Measurements of the surface tension of molten silicon are reported. For marangoni flow, the important parameter is the variation of surface tension with temperature, not the absolute value of the surface tension. It is not possible to calculate temperature coefficients using surface tension measurements from different experiments because the systematic errors are usually larger than the changes in surface tension because of temperature variations. The lack of good surface tension data for liquid silicon is probably due to its extreme chemical reactivity. A material which resists attack by molten silicon is not found. It is suggested that all of the sessile drip surface tension measurements are probably for silicon which is contaminated by the substrate materials.

  7. Material For Self-Q-Switching Mirrors For Solid State Laser (MSMSSL)

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Walocha, J.; Drobnik, A.

    1983-09-01

    Vanadium dioxide (V02) film exhibits semiconductor-to-metal transition at temperature, Tt near 340 K. The transition is accompanied by changes in optical transmission and relection. In this paper the reflected light spectra were experimentally determined at the two temperatures below and above Tt (300 and 360 K) using film thickness as the parameter. Then we calculated the ratio, Kλ , of reflection coefficient, Rm, in metallic phase to reflection coefficient, Rsc, in semiconductor phase. The film for which the maximum Kλ was observed at λ =1.06μm applied as a mirror in Nd:glass laser. The laser generated giant pulse with duration time at about 50 ns.

  8. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-09-07

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  9. Thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity

    NASA Technical Reports Server (NTRS)

    Lan, C. W.; Kou, Sindo

    1990-01-01

    Computer simulation of steady-state axisymmetrical heat transfer and fluid flow was conducted to study thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity. The effects of key variables on the extent of thermocapillary flow in the melt zone, the shapes of melt/solid interfaces and the length of the melt zone were discussed. These variables are: (1) the temperature coefficient of surface tension (or the Marangoni number), (2) the pulling speed (or the Peclet number), (3) the feed rod radius, (4) the ambient temperature distribution, (5) the heat transfer coefficient (or the Biot number), and (6) the thermal diffusivity of the material (or the Prandtl number).

  10. Air/molten salt direct-contact heat-transfer experiment and economic analysis

    NASA Astrophysics Data System (ADS)

    Bohn, M. S.

    1983-11-01

    Direct-contact heat-transfer coefficients have been measured in a pilot-scale packed column heat exchanger for molten salt/air duty. Two types of commercial tower packings were tested: metal Raschig rings and initial Pall rings. Volumetric heat-transfer coefficients were measured and appeared to depend upon air flow but not on salt flow rate. An economic analysis was used to compare the cost-effectiveness of direct-contact heat exchange with finned-tube heat exchanger in this application. Incorporating the measured volumetric heat-transfer coefficients, a direct-contact system appeared to be from two to five times as cost-effective as a finned-tube heat exchanger, depending upon operating temperature. The large cost advantage occurs for higher operating temperatures (2700(0)C), where high rates of heat transfer and flexibility in materials choice give the cost advantage to the direct-contact heat exchanger.

  11. Material variability as measured by low temperature electrical resistivity.

    NASA Technical Reports Server (NTRS)

    Clark, A. F.; Tryon, P. V.

    1972-01-01

    Low temperature electrical resistivity was used to determine the material variability (1) between different manufacturers, (2) between different heats from the same manufacturer, and (3) within a given heat for Al 2024, Al-5% Mg alloys, Inconel 718, A286 stainless, and AISI 316. Generally, the coefficient of variation for solution annealed alloys ranged from 1.2 to 14% between manufacturers, 0.8 to 5.1% between heats, and 0.1 to 1.6% within a heat with stainless steels at the low ends and Al 2024 at the high ends. The variability is increased if the material is in a precipitation-hardened condition. A statistical analysis suggests that the variability within a heat is non-normal.

  12. Atomic layer deposition synthesized TiO{sub x} thin films and their application as microbolometer active materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanrikulu, Mahmud Yusuf, E-mail: mytanrikulu@adanabtu.edu.tr; Rasouli, Hamid Reza; Ghaffari, Mohammad

    2016-05-15

    This paper demonstrates the possible usage of TiO{sub x} thin films synthesized by atomic layer deposition as a microbolometer active material. Thin film electrical resistance is investigated as a function of thermal annealing. It is found that the temperature coefficient of resistance values can be controlled by coating/annealing processes, and the value as high as −9%/K near room temperature is obtained. The noise properties of TiO{sub x} films are characterized. It is shown that TiO{sub x} films grown by atomic layer deposition technique could have a significant potential to be used as a new active material for microbolometer-based applications.

  13. Temperature-dependent tensile and shear response of graphite/aluminum

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Pindera, M. J.; Herakovich, C. T.

    1987-01-01

    The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.

  14. Cryogenic Temperature-Dependent Refractive Index Measurements of CaF2 and Infrasil 301

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, TImothy J.

    2007-01-01

    In order to enable high quality lens design using calcium fluoride (CaF2) and Heraeus Infrasil 30 (Infrasil) at cryogenic temperatures, we have measured the absolute refractive index of prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For CaF2, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 25 to 300 K at wavelengths from 0.4 to 5.6 micrometers; for Infrasil we cover temperatures ranging from 35 to 300K and wavelengths from 0.4 to 3.6 micrometers. We investigate the interspecimen variability between measurements of two unrelated samples of CaF2, and we also compare our results for Infrasil to previous measurements fo Corning 7980 fused silica. Finally, we provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures and compare those results to other data found in the literature.

  15. Water permeation through organic materials

    NASA Astrophysics Data System (ADS)

    Doughty, D. H.; West, I. A.

    1981-09-01

    Atmospheric moisture is routinely excluded from weapon systems by the use of elastomer seals at assembly joints and electrical feedthroughs while internal moisture is minimized by relying on desiccants and on pre-dried components assembled in special low humidity assembly rooms. Published values of the water permeation coefficient for ethylene-propylene rubber and other o-ring materials are subject to some variability and the effects of aging on water permability are unknown. We have thus devised a new and extremely sensitive method for measuring moisture permeation coefficients in organic materials. This method uses dilute tritiated water as a tracer and it is approximately two orders of magnitude more sensitive than other methods. We are therefore able to make measurements on materials under STS temperature and humidity conditions. Rate data showing the approach to equilibrium and water permeability values for a variety of elastomers are presented. The test apparatus is also described.

  16. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment

    PubMed Central

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively. PMID:26222762

  17. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment.

    PubMed

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively.

  18. The thermal expansion of hard magnetic materials of the Nd-Fe-B system

    NASA Astrophysics Data System (ADS)

    Savchenko, Igor; Kozlovskii, Yurii; Samoshkin, Dmitriy; Yatsuk, Oleg

    2017-10-01

    The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.

  19. The effective magnetoelectric coefficients of polycrystalline Cr2O3 annealed in perpendicular electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Xie, S. H.; Jin, G.; Li, J. Y.

    2009-04-01

    Magnetoelectric annealing is necessary to remove antiferromagnetic domains and induce macroscopic magnetoelectric effect in polycrystalline magnetoelectric materials, and in this paper, we study the effective magnetoelectric properties of perpendicularly annealed polycrystalline Cr2O3 using effective medium approximation. The effect of temperatures, grain aspect ratios, and two different types of orientation distribution function have been analyzed, and unusual material symmetry is observed when the orientation distribution function only depends on Euler angle ψ. Optimal grain aspect ratio and texture coefficient are also identified. The approach can be applied to analyze the microstructural field distribution and macroscopic properties of a wide range of magnetoelectric polycrystals.

  20. Study of thermal stability of Cu{sub 2}Se thermoelectric material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohra, Anil, E-mail: anilbohra786@gmail.com; Bhatt, Ranu; Bhattacharya, Shovit

    2016-05-23

    Sustainability of thermoelectric parameter in operating temperature range is a key consideration factor for fabricating thermoelectric generator or cooler. In present work, we have studied the stability of thermoelectric parameter of Cu{sub 2}Se within the temperature range of 50-800°C. Temperature dependent Seebeck coefficients and electrical resistivity measurement are performed under three continuous thermal cycles. X-ray diffraction pattern shows the presence of mixed cubic-monoclinic Cu{sub 2}Se phase in bare pellet which transforms to pure α-Cu{sub 2}Se phase with repeating thermal cycle. Significant enhancement in Seebeck coefficient and electrical resistivity is observed which may be attributed to (i) Se loss observed inmore » EDS and (ii) the phase transformation from mixed cubic-monoclinic structure to pure monoclinic α-Cu{sub 2}Se phase.« less

  1. Ionic thermoelectric gating organic transistors

    PubMed Central

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  2. A new experimental procedure of outgassing rate measurement to obtain more precise deposition properties of materials

    NASA Astrophysics Data System (ADS)

    Miyazaki, Eiji; Shimazaki, Kazunori; Numata, Osamu; Waki, Miyuki; Yamanaka, Riyo; Kimoto, Yugo

    2016-09-01

    Outgassing rate measurement, or dynamic outgassing test, is used to obtain outgassing properties of materials, i.e., Total Mass Loss, "TML," and Collected Volatile Condensed Mass, "CVCM." The properties are used as input parameters for executing contamination analysis, e.g., calculating a prediction of deposition mass on a surface in a spacecraft caused by outgassed substances from contaminant sources onboard. It is likely that results obtained by such calculations are affected by the input parameters. Thus, it is important to get a sufficient experimental data set of outgassing rate measurements for extract good outgassing parameters of materials for calculation. As specified in the standard, ASTM E 1559, TML is measured by a QCM sensor kept at cryogenic temperature; CVCMs are measured at certain temperatures. In the present work, the authors propose a new experimental procedure to obtain more precise VCMs from one run of the current test time with the present equipment. That is, two of four CQCMs in the equipment control the temperature to cool step-by-step during the test run. It is expected that the deposition rate, that is sticking coefficient, with respect to temperature could be discovered. As a result, the sticking coefficient can be obtained directly between -50 and 50 degrees C with 5 degrees C step. It looks like the method could be used as an improved procedure for outgassing rate measurement. The present experiment also specified some issues of the new procedure. It will be considered in future work.

  3. An integrated experimental and computational approach to material selection for sound proof thermally insulted enclosure of a power generation system

    NASA Astrophysics Data System (ADS)

    Waheed, R.; Tarar, W.; Saeed, H. A.

    2016-08-01

    Sound proof canopies for diesel power generators are fabricated with a layer of sound absorbing material applied to all the inner walls. The physical properties of the majority of commercially available sound proofing materials reveal that a material with high sound absorption coefficient has very low thermal conductivity. Consequently a good sound absorbing material is also a good heat insulator. In this research it has been found through various experiments that ordinary sound proofing materials tend to rise the inside temperature of sound proof enclosure in certain turbo engines by capturing the heat produced by engine and not allowing it to be transferred to atmosphere. The same phenomenon is studied by creating a finite element model of the sound proof enclosure and performing a steady state and transient thermal analysis. The prospects of using aluminium foam as sound proofing material has been studied and it is found that inside temperature of sound proof enclosure can be cut down to safe working temperature of power generator engine without compromise on sound proofing.

  4. The effect of shallow vs. deep level doping on the performance of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Song, Qichen; Zhou, Jiawei; Meroueh, Laureen; Broido, David; Ren, Zhifeng; Chen, Gang

    2016-12-01

    It is well known that the efficiency of a good thermoelectric material should be optimized with respect to doping concentration. However, much less attention has been paid to the optimization of the dopant's energy level. Thermoelectric materials doped with shallow levels may experience a dramatic reduction in their figures of merit at high temperatures due to the excitation of minority carriers that reduces the Seebeck coefficient and increases bipolar heat conduction. Doping with deep level impurities can delay the excitation of minority carriers as it requires a higher temperature to ionize all dopants. We find through modeling that, depending on the material type and temperature range of operation, different impurity levels (shallow or deep) will be desired to optimize the efficiency of a thermoelectric material. For different materials, we further clarify where the most preferable position of the impurity level within the bandgap falls. Our research provides insight on why different dopants often affect thermoelectric transport properties differently and directions in searching for the most appropriate dopants for a thermoelectric material in order to maximize the device efficiency.

  5. Temperature effect of friction and wear characteristics for solid lubricating graphite

    NASA Astrophysics Data System (ADS)

    Kim, Yeonwook; Kim, Jaehoon

    2015-03-01

    Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.

  6. Monte Carlo method for photon heating using temperature-dependent optical properties.

    PubMed

    Slade, Adam Broadbent; Aguilar, Guillermo

    2015-02-01

    The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of optical absorption in polycrystalline CVD diamond plates by the phase photothermal method at a wavelength of 10.6 μm

    NASA Astrophysics Data System (ADS)

    Luk'yanov, A. Yu; Ral'chenko, Viktor G.; Khomich, A. V.; Serdtsev, E. V.; Volkov, P. V.; Savel'ev, A. V.; Konov, Vitalii I.

    2008-12-01

    A highly-efficient phase photothermal method is developed for quantitative measurements of the small optical absorption coefficient in thin plates made of highly transparent materials in which bulk losses significantly exceed surface losses. The bulk absorption coefficient at 10.6 μm is estimated in polycrystalline diamond plates grown from the vapour phase (a CVD diamond). The results are compared with those for natural and synthetic diamond single crystals and with the concentrations of nitrogen and hydrogen impurities. The absorption coefficient of the best samples of the CVD diamond did not exceed 0.06 cm-1, which, taking into account the high thermal conductivity of the CVD diamond (1800-2200 W mK-1 at room temperature), makes this material attractive for fabricating output windows of high-power CO2 lasers, especially for manufacturing large-size optics.

  8. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  9. Solid-state-laser-rod holder

    DOEpatents

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  10. Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: predictable boundary layer concentrations and emission rates.

    PubMed

    Schripp, Tobias; Salthammer, Tunga; Fauck, Christian; Bekö, Gabriel; Weschler, Charles J

    2014-10-01

    The description of emission processes of volatile and semi-volatile organic compounds (VOCs and SVOCs) from building products requires a detailed understanding of the material and the air flow conditions at the surface boundary. The mass flux between the surface of the material and air depends on the mass transfer coefficient (hm) through the boundary layer, the gas phase concentration of the target compound immediately adjacent to the material (y0), and the gas-phase concentration in bulk air (y(t)). In the present study emission experiments were performed in two chambers of quite different sizes (0.25 m(3) and 55 m(3)), and, in the larger chamber, at two different temperatures (23°C and 30°C). The emitting material was latex wall paint that had been doped with two plasticizers, diethylphthalate (DEP) and di-n-butylphthalate (DnBP). The phthalate content in the paint was varied in the small chamber experiment to evaluate the impact of the initial concentration in the bulk material (C0) on the emission rate. Boundary layer theory was applied to calculate hm for the specific phthalates from the Sherwood number (Sh) and the diffusion coefficient (Dair). Then y0 was determined based on the bulk gas-phase concentration at steady state (y¯). For both, DEP and DnBP, the y0 obtained was lower than the respective saturation vapor pressure (Ps). Furthermore, for both phthalates in latex paint, the material/air partition coefficient (C0/y0) was close in value to the octanol/air partition coefficient (KOA). This study provides a basis for designing phthalate emitting reference materials that mimic the emission behavior of common building materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  12. Parametric Methods for Determining the Characteristics of Long-Term Metal Strength

    NASA Astrophysics Data System (ADS)

    Nikitin, V. I.; Rybnikov, A. I.

    2018-06-01

    A large number of parametric methods were proposed to calculate the characteristics of the long-term strength of metals. All of them are based on the fact that temperature and time are mutually compensating factors in the processes of metal degradation at high temperature under the action of a constant stress. The analysis of the well-known Larson-Miller, Dorn-Shcherby, Menson-Haferd, Graham-Wallace, and Trunin parametric equations is performed. The widely used Larson-Miller parameter was subjected to a detailed analysis. The application of this parameter to the calculation of ultimate long-term strength for steels and alloys is substantiated provided that the laws of exponential dependence on temperature and power dependence on strength for the heat resistance are observed. It is established that the coefficient C in the Larson- Miller equation is a characteristic of the heat resistance and is different for each material. Therefore, the use of a universal constant C = 20 in parametric calculations, as well as an a priori presetting of numerical C values for each individual group of materials, is unacceptable. It is shown in what manner it is possible to determine an exact value of coefficient C for any material of interest as well as to obtain coefficient C depending on stress in case such a dependence is manifested. At present, the calculation of long-term strength characteristics can be performed to a sufficient accuracy using Larson-Miller's parameter and its refinements described therein as well as on the condition that a linear law in logσ- P dependence is observed and calculations in the interpolation range is performed. The use of the presented recommendations makes it possible to obtain a linear parametric logσ- P dependence, which makes it possible to determine to a sufficient accuracy the values of ultimate long-term strength for different materials.

  13. Cryogenic coefficient of thermal expansion measurements of type 440 and 630 stainless steel

    NASA Astrophysics Data System (ADS)

    Cease, H.; Alvarez, M.; Flaugher, B.; Montes, J.

    2014-01-01

    The Dark Energy Camera is now installed on the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is cooled to 170K using a closed loop two-phase liquid nitrogen system. A submerged centrifugal pump is used to circulate the liquid from the base of the telescope to the camera in the prime focus cage. As part of the pump maintenance schedule, the rotor shaft bearings are periodically replaced. Common bearing and shaft materials are type 440 and 630 (17-4 PH) stainless steel. The coefficient of thermal expansion of the materials used is needed to predict the shaft and bearing housing dimensional changes at the 77K pump operating temperature. The thermal expansion from room temperature to 77K of type 440 and 630 stainless steel is presented . Measurements are performed using the ASTM E228 standard with a quartz push-rod dilatometer test stand. Aluminum 6061-T6 is used to calibrate the test stand.

  14. Investigation on Rubber-Modified Polybenzoxazine Composites for Lubricating Material Applications

    NASA Astrophysics Data System (ADS)

    Jubsilp, Chanchira; Taewattana, Rapiphan; Takeichi, Tsutomu; Rimdusit, Sarawut

    2015-10-01

    Effects of liquid amine-terminated butadiene-acrylonitrile (ATBN) on the properties of bisphenol-A/aniline-based polybenzoxazine (PBA-a) composites were investigated. Liquid ATBN decreased gel time and lowered curing temperature of the benzoxazine resin (BA-a). The PBA-a/ATBN-based self-lubricating composites resulted in substantial enhancement regarding their tribological, mechanical, and thermal properties. The inclusion of the ATBN at 5% by weight was found decreasing the friction coefficient and improved wear resistance of the PBA-a/ATBN composites. Flexural modulus and glass transition temperature of the PBA-a composite samples added the ATBN was constant within the range of 1-5% by weight. A plausible wear mechanism of the composites is proposed based on their worn surface morphologies. Based on the findings in this work, it seems that the obtained PBA-a/ATBN self-lubricating composites would have high potential to be used for bearing materials where low friction coefficient, high wear resistance, and modulus with good thermal property are required.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieroda, Pawel; Zybala, Rafal; Wojciechowski, Krzysztof T.

    The aim of the study was to develop a fast and simple method for preparation of polycrystalline Mg{sub 2}Si. For this purpose a Spark Plasma Sintering (SPS) method was used and synthesis conditions were adjusted in such a manner that no excess Mg was required. Materials were synthesized by the direct reaction of Mg and Si raw powders. To determine the phase and chemical composition, the fabricated samples were studied by X-ray diffraction and SEM microscopy coupled with EDX chemical analysis. Thermoelectric properties of samples (thermal conductivity, electrical conductivity and Seebeck coefficient) were measured all over temperature range of 300-650more » K. The analysis by the scanning thermoelectric microprobe (STM) shows that samples have uniform distribution of Seebeck coefficient with mean value of about -405 {mu}VK{sup -1} and standard deviation of 94 {mu}VK{sup -1}. Prepared materials have intrinsic band gap of 0.45 eV and thermal conductivity {lambda}= 7.5 Wm{sup -1}K{sup -1} at room temperature.« less

  16. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases with increasing applied load and relative speed, but in the same conditions, the frictional coefficients slowly decrease.

  17. Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Shchukin, V. A.; Ledentsov, N. N.; Slight, T.; Meredith, W.; Gordeev, N. Y.; Nadtochy, A. M.; Payusov, A. S.; Maximov, M. V.; Blokhin, S. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Maleev, N. A.; Ustinov, V. M.; Choquette, K. D.

    2016-03-01

    A concept of passive cavity surface-emitting laser is proposed aimed to control the temperature shift of the lasing wavelength. The device contains an all-semiconductor bottom distributed Bragg reflector (DBR), in which the active medium is placed, a dielectric resonant cavity and a dielectric top DBR, wherein at least one of the dielectric materials has a negative temperature coefficient of the refractive index, dn/dT < 0. This is shown to be the case for commonly used dielectric systems SiO2/TiO2 and SiO2/Ta2O5. Two SiO2/TiO2 resonant structures having a cavity either of SiO2 or TiO2 were deposited on a substrate, their optical power reflectance spectra were measured at various temperatures, and refractive index temperature coefficients were extracted, dn/dT = 0.0021 K-1 for SiO2 and dn/dT = -0.0092 K-1 for TiO2. Using such dielectric materials allows designing passive cavity surface-emitting lasers having on purpose either positive, or zero, or negative temperature shift of the lasing wavelength dλ/dT. A design for temperature-insensitive lasing wavelength (dλ/dT = 0) is proposed. Employing devices with temperature-insensitive lasing wavelength in wavelength division multiplexing systems may allow significant reducing of the spectral separation between transmission channels and an increase in number of channels for a defined spectral interval enabling low cost energy efficient uncooled devices.

  18. Preparation of Microcellular Epoxy Foams through a Limited-Foaming Process: A Contradiction with the Time-Temperature-Transformation Cure Diagram.

    PubMed

    Wang, Lijun; Zhang, Chun; Gong, Wei; Ji, Yubi; Qin, Shuhao; He, Li

    2018-01-01

    3D cross-linking networks are generated through chemical reactions between thermosetting epoxy resin and hardener during curing. The curing degree of epoxy material can be increased by increasing curing temperature and/or time. The epoxy material must then be fully cured through a postcuring process to optimize its material characteristics. Here, a limited-foaming method is introduced for the preparation of microcellular epoxy foams (Lim-foams) with improved cell morphology, high thermal expansion coefficient, and good compressive properties. Lim-foams exhibit a lower glass transition temperature (T g ) and curing degree than epoxy foams fabricated through free-foaming process (Fre-foams). Surprisingly, however, the T g of Lim-foams is unaffected by postcuring temperature and time. This phenomenon, which is related to high gas pressure in the bubbles, contradicts that indicated by the time-temperature-transformation cure diagram. High bubble pressure promotes the movement of molecular chains under heating at low temperature and simultaneously suppresses the etherification cross-linking reaction during post-curing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Surface and pseudo surface acoustic waves in langatate: predictions and measurements.

    PubMed

    Pereira da Cunha, Maurício; Malocha, Donald C; Adler, Eric L; Casey, Kevin J

    2002-09-01

    Langatate (LGT, La3Ga(5.5)Ta(0.5)O14) is a recent addition to materials of the trigonal crystal class 32, which is the same crystal class as quartz, langasite, langanite, and gallium phosphate. Langatate has several attractive acoustical properties, in particular: a measured bulk acoustic wave (BAW) resonator quality factor frequency product (Qf) of 16 million, comparable to that of AT cut quartz; high-piezoelectric coupling orientations, up to 0.5% for surface acoustic waves (SAWs), about five times larger than that of ST-X quartz; low power flow angle orientations in the vicinity of high coupling orientations; phase velocities about 20% smaller than those of ST-X quartz, facilitating the production of smaller, lower frequency devices; the existence of pseudo SAW modes for higher frequency applications. In this paper SAW contour plots of the phase velocity (vp), the electromechanical coupling coefficient (K2), the temperature coefficient of delay (TCD), and the power flow angle (PFA), are given showing the orientations in space in which high coupling is obtained, with the corresponding TCD, PFA, and vp characteristics for these orientations. This work reports experimental results on the SAW temperature fractional frequency variation (delta f/fo) and the TCD for several LGT orientations on the plane with Euler angles: (0 degrees, 132 degrees, psi). The temperature behavior has been measured directly on SAW wafers from 10 to 200 degrees C, and the results are compared with numerical predictions using our recently measured temperature coefficients for LGT material constants. This research also has uncovered temperature compensated orientations, which we have experimentally verified with parabolic behavior, turnover temperatures in the 130 to 160 degrees C range, and delta f/fo within 1000 ppm variation from 10 to 260 degrees C, appropriate for higher temperature device applications. Regarding the pseudo surface acoustic waves (PSAWs), results of calculations are presented for both the PSAW and the high velocity PSAW (HVPSAW) for some selected, rotated cuts. This study shows that propagation losses for the PSAWs of about 0.01 dB/wavelength, and phase velocities approximately 20% higher than that of the SAW, exist along specific orientations for the PSAW, thus showing the potential for somewhat higher frequency SAW device applications on this material, if required.

  20. Thermomechanical properties of polymeric materials and related stresses

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1990-01-01

    The thermomechanical properties of a number of widely used polymeric materials were determined by thermomechanical analysis and dynamic mechanical analysis. A combined profile of the coefficient of thermal expansion and the modulus change over a wide temperature range obtained by the analyses shows clearly the drastic effect of the glass transition on both the CTE and the modulus of a polymer, and the damaging potential due to such effect.

  1. Sensitive photo-thermal response of graphene oxide for mid-infrared detection

    NASA Astrophysics Data System (ADS)

    Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu

    2015-09-01

    This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04039f

  2. X-ray sensing materials stability: influence of ambient storage temperature on essential thermal properties of undoped vitreous selenium

    NASA Astrophysics Data System (ADS)

    Tonchev, D.; Mani, H.; Belev, G.; Kostova, I.; Kasap, S.

    2014-12-01

    Amorphous selenium (a-Se) is currently used in x-ray image detectors as an x-ray photoconductor. Normally a-Se films used in device applications are fabricated by the evaporation of vitreous bulk material loaded into boats in a typical vacuum deposition system. The resistance against crystallization is an important factor in both film and bulk forms of a-Se. Previous work has indicted that the resistance to crystallization is surprisingly more pronounced around 35 °C [1]. In this work we have therefore examined the essential thermal properties of vitreous selenium (99.999%) samples that have been stored at different temperatures. The thermal characterization experiments involved a series of DSC (Differential Scanning Calorimetry) measurements in which have monitored the glass transition and melting endotherms, and the crystallization exotherm in heating-cooling-heating scans. In DSC experiments, a sample would be heated to a temperature above the melting temperature, equilibrated, then cooled at a fixed rate down to 20 °C, then equilibrated and finally scanned again under a heating schedule. The samples were isothermally stored at temperatures corresponding to 18, 35 and 55 °C. The thermal analysis results show that there are distinct differences in the thermal properties. We have examined the stability in terms of the difference in the crystallization onset temperature (Tc) and the onset of glass transition temperature (Tg). We also examined the Hruby coefficient (Kgl) of these samples, that is Kgl = (Tc - Tg)/(Tm - Tc) where Tc is the crystallization onset temperature and Tm is the melting onset temperature. We have found Kgl to depend on the storage temperature. Surprisingly, we observed that the Hruby coefficient is actually larger at 35 °C compared to the values at 18 and 55 °C.

  3. Magnetothermoelectric effects in graphene and their dependence on scatterer concentration, magnetic field, and band gap

    NASA Astrophysics Data System (ADS)

    Kundu, Arpan; Alrefae, Majed A.; Fisher, Timothy S.

    2017-03-01

    Using a semiclassical Boltzmann transport equation approach, we derive analytical expressions for electric and thermoelectric transport coefficients of graphene in the presence and absence of a magnetic field. Scattering due to acoustic phonons, charged impurities, and vacancies is considered in the model. Seebeck (Sxx) and Nernst (N) coefficients are evaluated as functions of carrier density, temperature, scatterer concentration, magnetic field, and induced band gap, and the results are compared to experimental data. Sxx is an odd function of Fermi energy, while N is an even function, as observed in experiments. The peak values of both coefficients are found to increase with the decreasing scatterer concentration and increasing temperature. Furthermore, opening a band gap decreases N but increases Sxx. Applying a magnetic field introduces an asymmetry in the variation of Sxx with Fermi energy across the Dirac point. The formalism is more accurate and computationally efficient than the conventional Green's function approach used to model transport coefficients and can be used to explore transport properties of other materials with Dirac cones such as Weyl semimetals.

  4. Low resistivity W{sub x}V{sub 1−x}O{sub 2}-based multilayer structure with high temperature coefficient of resistance for microbolometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Émond, Nicolas; Hendaoui, Ali; Chaker, Mohamed, E-mail: chaker@emt.inrs.ca

    2015-10-05

    Materials that exhibit semiconductor-to-metal phase transition (SMT) are commonly used as sensing layers for the fabrication of uncooled microbolometers. The development of highly responsive microbolometers would benefit from using a sensing material that possesses a large thermal coefficient of resistance (TCR) close to room temperature and a resistivity low enough to compromise between noise reduction and high TCR, while it should also satisfies the requirements of current CMOS technology. Moreover, a TCR that remains constant when the IR camera surrounding temperature varies would contribute to achieve reliable temperature measurements without additional corrections steps for TCR temperature dependence. In this paper,more » the characteristics of the SMT occurring in undoped and tungsten-doped vanadium dioxide thin films deposited on LaAlO{sub 3} (100) substrates are investigated. They are further exploited to fabricate a W{sub x}V{sub 1−x}O{sub 2} (0 ≤ x ≤ 2.5) multilayer structure exhibiting a bottom-up gradient of tungsten content. This MLS displays a combination of properties that is promising for application to uncooled microbolometer, such as a large TCR of −10.4%/ °C and low resistivity values ranging from 0.012 to 0.10 Ω-cm over the temperature range 22 °C–42 °C.« less

  5. Thermoelectric Power Generation from Lanthanum Strontium Titanium Oxide at Room Temperature through the Addition of Graphene.

    PubMed

    Lin, Yue; Norman, Colin; Srivastava, Deepanshu; Azough, Feridoon; Wang, Li; Robbins, Mark; Simpson, Kevin; Freer, Robert; Kinloch, Ian A

    2015-07-29

    The applications of strontium titanium oxide based thermoelectric materials are currently limited by their high operating temperatures of >700 °C. Herein, we show that the thermal operating window of lanthanum strontium titanium oxide (LSTO) can be reduced to room temperature by the addition of a small amount of graphene. This increase in operating performance will enable future applications such as generators in vehicles and other sectors. The LSTO composites incorporated one percent or less of graphene and were sintered under an argon/hydrogen atmosphere. The resultant materials were reduced and possessed a multiphase structure with nanosized grains. The thermal conductivity of the nanocomposites decreased upon the addition of graphene, whereas the electrical conductivity and power factor both increased significantly. These factors, together with a moderate Seebeck coefficient, meant that a high power factor of ∼2500 μWm(-1)K(-2) was reached at room temperature at a loading of 0.6 wt % graphene. The highest thermoelectric figure of merit (ZT) was achieved when 0.6 wt % graphene was added (ZT = 0.42 at room temperature and 0.36 at 750 °C), with >280% enhancement compared to that of pure LSTO. A preliminary 7-couple device was produced using bismuth strontium cobalt oxide/graphene-LSTO pucks. This device had a Seebeck coefficient of ∼1500 μV/K and an open voltage of 600 mV at a mean temperature of 219 °C.

  6. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing.

    PubMed

    Zhang, Yifan; Dai, Yifan; Tie, Guipeng; Hu, Hao

    2016-10-10

    As a kind of important nonlinear optical element, KDP crystal has great demand in the inertial confinement fusion system. Based on the dissolution mechanism of solid materials, the factors that affect the material removal rate of KDP crystal in magnetorheological (MR) water-dissolution polishing are investigated to improve the machining efficiency. It is found that the material removal rate is proportional to the product of the saturation concentration and diffusion coefficient, and the relationship between the removal efficiency and the temperature meets the unilateral Gaussian function. Polishing experiments are carried out on a magnetorheological finishing (MRF) machine with self-designed MRF fluid heating devices. The experimental results show that practical efficiency-temperature curve is consistent with the theoretical curve, and the maximum machining efficiency increases by about 50% with the rise of temperature from 294 to 302 K. Meanwhile, when the MR fluid temperature is lower than 308 K, the crystal surface quality and surface roughness in different processing temperatures have no remarkable difference with constant crystal temperature (294 K). This research indicates that it is feasible to drastically improve KDP crystal MRF efficiency by controlling the processing temperature.

  7. Buckling and postbuckling of composite panels with cutouts subjected to combined edge shear and temperature change

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    The results of a detailed study of the buckling and postbuckling responses of composite panels with central circular cutouts are presented. The panels are subjected to combined edge shear and temperature change. The panels are discretized by using a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the panel. The fundamental unknowns consist of the average mechanical strains through the thickness and the displacement components. The effects of geometric nonlinearities and laminated anisotropic material behavior are included. The stability boundary, postbuckling response and the hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the buckling and postbuckling responses to variations in the panel stiffnesses, and the material properties of both the individual layers and the constituents (fibers and matrix). Numerical results are presented for composite panels with central circular cutouts subjected to combined edge shear and temperature change, showing the effects of variations in the hole diameter, laminate stacking sequence and fiber orientation, on the stability boundary and postbuckling response and their sensitivity to changes in the various panel parameters.

  8. Thermoelectric Properties of n-type SnSe Single Crystal

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong; Duong, Anh Tuan; Rhim, S. H.; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Cho, Sunglae; Kwon, Suyong; Song, Jae Yong; Park, Hyun Min

    Although thermoelectric materials are well known for their reliability and have been used for many years, even in the field of space engineering, their performance is quite small due to low energy conversion efficiency. Dimensionless figure of merit, ZT = S2. σ.T.κ-1 (where S, σ, T, κ are Seebeck coefficient, electrical conductivity, absolute temperature and thermal conductivity, respectively) is conveniently used to evaluate the conversion efficiency of a thermoelectric materials. Recently, the highest value of ZT to date has been reported for single crystal SnSe, ZT = 2.6 along the b axis of unit cell at 923 K. This temperature is rather high and the range of temperature for high reported ZT is quite narrow. Here we report an attempt to modify the thermoelectric properties of SnSe by using group V and VII as n-type dopant. A negative value of Seebeck coefficient was observed and the power factor reached a peak of 10 μW.K-2.cm-1 at around 600 K. The maximum n-type ZT was 0.57 at 650 K. We will discuss on dopant dependent thermoelectric properties of n-type SnSe single crystals.

  9. Plasma power recycling at the divertor surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xian -Zhu; Guo, Zehua

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less

  10. Plasma power recycling at the divertor surface

    DOE PAGES

    Tang, Xian -Zhu; Guo, Zehua

    2016-12-03

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less

  11. Using Ge Secondary Phases to Enhance the Power Factor and Figure of Merit of Ge17Sb2Te20

    NASA Astrophysics Data System (ADS)

    Williams, Jared B.; Morelli, Donald T.

    2017-05-01

    Thermoelectric materials are the leading candidate today for applications in solid-state waste-heat recovery/cooling applications. Research and engineering has pushed the ZT, and overall conversion efficiency, of these materials to values which can be deemed practical for commercialization. However, many of the state-of-the-art thermoelectric materials of today utilize elements which are toxic, such as Ag, Pb, Tl, and Cd. Alloys of GeTe and Sb2Te3 were first explored for their applications in phase-change memory, because of their ability to rapidly alternate between crystalline and amorphous phases. Recently, these materials have been identified as materials with ZT ( S 2 T/ ρκ, where S is the Seebeck coefficient, ρ is the electrical resistivity, T is the operating temperature, and κ is the thermal conductivity) much greater than unity. In this work, the influence of elemental Ge as a secondary phase on transport in Ge17Sb2Te20 was explored. It was found that Ge introduces an additional scattering mechanism, which leads to increased electrical resistivity, Seebeck coefficient, and power factor values as high as 36 μW cm-1 K-2. The thermal conductivity was slightly reduced and the ZT was enhanced across the entire temperature range of measurement, with peak values greater than 2.

  12. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE PAGES

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-24

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  13. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations.

    PubMed

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J

    2018-04-28

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  14. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  15. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  16. Theoretical investigation of thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd)

    NASA Astrophysics Data System (ADS)

    Iqbal, R.; Bilal, M.; Jalali-Asadabadi, S.; Rahnamaye Aliabad, H. A.; Ahmad, Iftikhar

    2018-01-01

    In this paper, we explore the structural, electronic, thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd) using density functional theory. The produced results show high values of Seebeck coefficients and electrical conductivity for these materials. High power factor for these materials at room-temperature shows that these materials may be beneficial for low-temperature thermoelectric devices and alternative energy sources. Furthermore, elastic properties of these compounds are also calculated, which are used to evaluate their mechanical properties. The Cauchy’s pressure and B/G ratio figure out that these compounds are ductile in nature. The calculated results also predict that these compounds are stable against deforming force.

  17. Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires

    NASA Astrophysics Data System (ADS)

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H+ irradiation with fluences ranging from 1 × 1011 to 5 × 1013 p cm‑2. It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  18. Comparison of [corrected] actin- and glass-supported phospholipid bilayer diffusion coefficients.

    PubMed

    Sterling, Sarah M; Dawes, Ryan; Allgeyer, Edward S; Ashworth, Sharon L; Neivandt, David J

    2015-04-21

    The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20-44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.

    PubMed

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H + irradiation with fluences ranging from 1 × 10 11 to 5 × 10 13 p cm -2 . It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  20. Thermal Effects Modeling Developed for Smart Structures

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1998-01-01

    Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.

  1. Elastic, thermodynamic and optical behavior of V2AC (A = Al, Ga) MAX phases

    NASA Astrophysics Data System (ADS)

    Khatun, M. R.; Ali, M. A.; Parvin, F.; Islam, A. K. M. A.

    This article reports the first-principles calculations of yet unexplored Mulliken bond population, Vickers hardness, thermodynamic and optical properties of MAX phases V2AC (A = Al, Ga). We have also revisited the structural and elastic properties of these phases in order to assess the reliability of our calculations. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient have been successfully estimated through the quasi-harmonic Debye model in the temperature range from 0 to 1000 K and the pressure range from 0 to 50 GPa. The optical properties such as the dielectric function, refractive index, photoconductivity, absorption coefficients, reflectivity and loss function are also evaluated for the first time. The reflectivity is found to be high which indicates that V2AC (A = Al, Ga) having the same characteristics could be good candidate materials to reduce solar heating up to ∼15 eV.

  2. Method and Characterization of Pyroelectric Coefficients for Determining Material Figures of Merit for Infrared (IR) Detectors

    DTIC Science & Technology

    2013-12-01

    and the signal is read as a photocurrent or at a photovoltaic p-n junction. These detectors can provide high-sensitivity and fast refresh rates and...Alternative methods can be used to modulate the sample temperature directly; for example, by using modern Peltier devices and thermoelectric ...commercially-available hardware. The setup consist of three main components: (1) A temperature regulated thermoelectric stage; (2) A high-sensitivity

  3. HPHT synthesis, structure and electrical properties of type-I clathrates Ba{sub 8}Al{sub x}Si{sub 46−x}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Binwu; Jia, Xiaopeng; Sun, Hairui

    2016-01-15

    Clathrate compounds Ba{sub 8}Al{sub x}Si{sub 46−x} were successfully synthesized using the method of high-pressure and high-temperature (HPHT). In this process, we used BaSi{sub 2} as one of the starting materials in place of Ba metals, which reduces the complexity of the program caused by the extremely high chemical reactivity. By using this method, the processing time was reduced from few days to an hour. X-ray diffraction and structural refinement indicated this composition crystallized in type-I clathrate phase. Bond length analysis showed the Ba atoms in small dodecahedron had spherical thermal ellipsoids while those in large tetrakaidecahedron displayed anisotropic thermal ellipsoids.more » The negative Seebeck coefficient indicated transport processes were dominated by electrons as carriers, and increased with the increasing temperature. The electrical properties, including Seebeck coefficient and Power factor, were greatly enhanced by Al substitution. - Graphical abstract: Left: The cavity structure diagram of a China-type large volume cubic high-pressure apparatus, and the Type-I clathrate structure of sample synthesized using HPHT. Middle: X-ray Rietveld refinement profile for Ba{sub 8}Si{sub 46} and element mapping for Ba{sub 8}Al{sub 16}Si{sub 30}. Right: Temperature dependence of Seebeck coefficient for Ba{sub 8}Al{sub x}Si{sub 46−x} prepared by HPHT. - Highlights: • HPHT is a simple and rapid synthetic approach. • We use BaSi{sub 2} as one of the starting materials replacing Ba metals. • The processing time reduces from few days to an hour. • Structure determination is refined by Rietveld analysis of XRD data. • Variable temperature electrical properties are characterized.« less

  4. The effects of shock wave compaction on the transition temperatures of A15 structure superconductors

    NASA Technical Reports Server (NTRS)

    Otto, G. H.

    1974-01-01

    Several superconductors with the A15 structure exhibit a positive pressure coefficient, indicating that their transition temperatures increase with applied pressure. Powders of the composition Nb3Al, Nb3Ge, Nb3(Al0.75Ge0.25), and V3Si were compacted by explosive shock waves. The superconducting properties of these materials were measured before and after compaction and it was found that regardless of the sign of the pressure coefficient, the transition temperature is always lowered. The decrease in transition temperature is associated with a decrease in the particle diameter. The shock wave passage through a 3Nb:1Ge powder mixture leads to the formation of at least one compound (probably Nb5Ge3). However, the formation of the A15 compound Nb3Ge is not observed. Elemental niobium powder can be compacted by converging shock waves close to the expected value of the bulk density. Under special circumstances a partial remelting in the center of the sample is observed.

  5. Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, S.; Gupta, D. C.

    2018-02-01

    Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk's modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K-2 m-1 s-1 at an optimal concentration of 1018 cm-3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.

  6. Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, S.; Gupta, D. C.

    2018-07-01

    Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk's modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K-2 m-1 s-1 at an optimal concentration of 1018 cm-3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.

  7. Design of HTS filter for GSM-R communication system

    NASA Astrophysics Data System (ADS)

    Cui, Hongyu; Ji, Laiyun

    2018-04-01

    High-temperature superconducting materials with its excellent performance have increasingly been valued by industries, especially in the field of electronic information. The superconducting material has almost zero surface resistance, and the filter made of it has the characteristics of low insertion loss, high edge steepness and good out-of-band rejection. It has higher selectivity for the desired signal and thus less interference from adjacent channels Signal interference, and noise reduction coefficient can improve the ability to detect weak signals. This design is suitable for high temperature superconducting filter of GSM-R communication system, which can overcome many shortcomings of the traditional GSM-R. The filter is made of DyBCO, a high temperature superconducting thin film material based on magnesium oxide (MgO) substrate with the dielectric constant of 9.7, the center frequency at 887.5MHz, bandwidth of 5MHz.

  8. Development of a composite geodetic structure for space construction, phase 1A

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of a geodetic beam and beam builder for on orbit construction of large truss type space structures is discussed. The geodetic beam is a lightweight, open lattice structure composed of an equilateral gridwork of crisscrossing rods. The beam provides a high degree of stiffness and minimizes structural distortion, due to temperature gradients, through the incorporation of a new graphite and glass reinforced thermoplastic composite material with a low coefficient of thermal expansion. A low power consuming, high production rate, beam builder automatically fabricates the geodetic beams in space using rods preprocessed on Earth. Three areas of the development are focused upon; (1) geodetic beam designs for local attachment of equipment or beam to beam joining in a parallel or crossing configurations, (2) evaluation of long life pultruded rods capable of service temperatures higher than possible with the HMS/P1700 rod material, and (3) evalaution of high temperature joint encapsulant materials.

  9. Annealing effects on room temperature thermoelectric performance of p-type thermally evaporated Bi-Sb-Te thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Singh, Janpreet; Tripathi, S. K.

    2018-05-01

    Bismuth antimony telluride (Bi-Sb-Te) compounds have been investigated for the past many decades for thermoelectric (TE) power generation and cooling purpose. We synthesized this compound with a stoichiometry Bi1.2Sb0.8Te3 through melt cool technique and thin films of as synthesized material were deposited by thermal evaporation. The prime focus of the present work is to study the influence of annealing temperature on the room temperature (RT) power factor of thin films. Electrical conductivity and Seebeck coefficient were studied and power factors were calculated which showed a peak value at 323 K. The compounds performance is comparable to some very efficient Bi-Sb-Te reported stoichiometries at RT scale. The values observed show that material has an enormous potential for energy production at ambient temperature scales.

  10. Interpenetrating polymer networks from acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  11. Origami structures for tunable thermal expansion

    NASA Astrophysics Data System (ADS)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  12. Prediction of threshold pain skin temperature from thermal properties of materials in contact.

    PubMed

    Stoll, A M; Chianta, M A; Piergallini, J R

    1982-12-01

    Aerospace design engineers have long sought concrete data with respect to the thermal safety of materials in contact with human skin. A series of studies on this subject has been completed and some of the results have been reported earlier. In these studies over 2,000 observations were made of pain threshold during contact with materials at elevated temperatures. Six materials were used representing the full range of thermal properties from good conductors to good insulators. Previous reports gave methods for determining the maximum permissible temperatures for any material in safe contact with bare skin for 1-5 s solely from a knowledge of its thermal properties. This report presents the comparison of the theoretical and experimental contact temperatures at pain threshold and provides a method for deriving the skin temperature productive of threshold pain from the thermal properties of any material within the range of those studies. Ratios reflecting the heat transfer coefficient associated with the materials in contact are related to their thermal properties so that the skin temperature at pain threshold may be determined from that calculated from heat transfer theory. Tabular and graphical representation of these data permits interpolation within the range of properties so that any material of known thermal conductivity, density and specific heat may be assessed with respect to its effect on the skin temperature during contact to the end point of pain. These data, in conjunction with those already reported, constitute a system for the complete assessment of the thermal aspects of practically any material suitable for construction and manufacturing applications with respect to safe contact with human skin.

  13. Influence of hydride orientation on fracture toughness of CWSR Zr-2.5%Nb pressure tube material between RT and 300 °C

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi K.; Sunil, Saurav; Kumawat, B. K.; Singh, R. N.; Tewari, Asim; Kashyap, B. P.

    2017-05-01

    An experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool. The design of setup was based on ensuring a hoop stress in the spool greater than threshold stress for reorientation of hydrides in this alloy, which was achieved by manipulating the thermal expansion coefficient of the plunger and pressure tube material and diametral interference between them. The experimental setup was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment. The metallographic examination of the hydrogen charged spools subjected to stress re-orientation treatment using this set up revealed formation of predominantly radial hydrides. The variation of fracture toughness of material containing radial hydride with test temperature showed typical 'S' curve behavior with transition temperatures more than that of the material containing circumferential hydride.

  14. Radiant Heat Transfer in Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.

    1973-01-01

    During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.

  15. Diffusion of cesium and iodine in compressed IG-110 graphite compacts

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2016-08-01

    Nuclear graphite grade IG-110 is currently used in the High Temperature Engineering Test Reactor (HTTR) in Japan for certain permanent and replaceable core components, and is a material of interest in general. Therefore, transport parameters for fission products in this material are needed. Measurement of diffusion through pressed compacts of IG-110 graphite is experimentally attractive because they are easy to prepare with homogeneous distributions of fission product surrogates. In this work, we measured diffusion coefficients for Cs and I in pressed compacts made from IG-110 powder in the 1079-1290 K temperature range, and compared them to those obtained in as-received IG-110.

  16. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  17. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    NASA Astrophysics Data System (ADS)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  18. A range-free method to determine antoine vapor-pressure heat transfer-related equation coefficients using the Boubaker polynomial expansion scheme

    NASA Astrophysics Data System (ADS)

    Koçak, H.; Dahong, Z.; Yildirim, A.

    2011-05-01

    In this study, a range-free method is proposed in order to determine the Antoine constants for a given material (salicylic acid). The advantage of this method is mainly yielding analytical expressions which fit different temperature ranges.

  19. Temperature shift of intraband absorption peak in tunnel-coupled QW structure

    NASA Astrophysics Data System (ADS)

    Akimov, V.; Firsov, D. A.; Duque, C. A.; Tulupenko, V.; Balagula, R. M.; Vinnichenko, M. Ya.; Vorobjev, L. E.

    2017-04-01

    An experimental study of the intersubband light absorption by the 100-period GaAs/Al0.25Ga0.75As double quantum well heterostructure doped with silicon is reported and interpreted. Small temperature redshift of the 1-3 intersubband absorption peak is detected. Numerical calculations of the absorption coefficient including self-consistent Hartree calculations of the bottom of the conduction band show good agreement with the observed phenomena. The temperature dependence of energy gap of the material and the depolarization shift should be accounted for to explain the shift.

  20. Temperature imaging with ultrasonic transmission tomography for treatment control

    NASA Astrophysics Data System (ADS)

    Chu, Zheqi; Pinter, Stephen. Z.; Yuan, Jie; Scarpelli, Matthew L.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Duric, Neb; Carson, Paul L.

    2017-03-01

    Hyperthermia is a promising method to enhance chemo- or radiation therapy of breast cancer and the time-temperature profile in the target and surrounding areas is the primary monitoring method. Unlike with thermal ablation of lesions, in hyperthermia there are not good alternative treatment monitoring quantities. However, there is less problem with non-monotonic thermal coefficients of speed of sound used with ultrasonic imaging of temperature. This paper tests a long discussed but little investigated method of imaging temperature using speed of sound and proposes methods of reducing edge enhancement artifacts in the temperature image. Normally, when directly using the speed of sound to reconstruct the temperature image around the tumor, there will be an abnormal bipolar edge enhancement along the boundary between two materials with different speeds of sound at a given temperature. This due to partial volume effects and can be diminished by regularized, weighted deconvolution. An initial, manual deconvolution is shown, as well as an EMD (Empirical Mode Decomposition) method. Here we use the continuity and other constraints to choose the coefficient, reprocess the temperature field image and take the mean variations of the temperature in the adjacent pixels as the judgment criteria. Both methods effectively reduce the edge enhancement and produce a more precise image of temperature.

  1. Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis.

    PubMed

    Hartner, Sonja; Ali, Moazzam; Schulz, Christof; Winterer, Markus; Wiggers, Hartmut

    2009-11-04

    Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K. The measurements under hydrogen as well as under synthetic air show transport properties depending on temperature and doping level. Under hydrogen atmosphere, a decreasing conductivity with increasing dopant content is observed, which can be explained by enhanced scattering processes due to an increasing disorder in the nanocrystalline material. The temperature coefficient for the doped samples switches from positive temperature coefficient behavior to negative temperature coefficient behavior with increasing dopant concentration. In the presence of synthetic air, the conductivity firstly increases with increasing dopant content by six orders of magnitude. The origin of the increasing conductivity is the generation of free charge carriers upon dopant incorporation. It reaches its maximum at a concentration of 7.7% of aluminum, and drops for higher doping levels. In all cases, the conductivity under hydrogen is higher than under synthetic air and can be changed reversibly by changing the atmosphere.

  2. Fiber-optical method of pyrometric measurement of melts temperature

    NASA Astrophysics Data System (ADS)

    Zakharenko, V. A.; Veprikova, Ya R.

    2018-01-01

    There is a scientific problem of non-contact measurement of the temperature of metal melts now. The problem is related to the need to achieve the specified measurement errors in conditions of uncertainty of the blackness coefficients of the radiating surfaces. The aim of this work is to substantiate the new method of measurement in which the influence of the blackness coefficient is eliminated. The task consisted in calculating the design and material of special crucible placed in the molten metal, which is an emitter in the form of blackbody (BB). The methods are based on the classical concepts of thermal radiation and calculations based on the Planck function. To solve the problem, the geometry of the crucible was calculated on the basis of the Goofy method which forms the emitter of a blackbody at the immersed in the melt. The paper describes the pyrometric device based on fiber optic pyrometer for temperature measurement of melts, which implements the proposed method of measurement using a special crucible. The emitter is formed by the melt in this crucible, the temperature within which is measured by means of fiber optic pyrometer. Based on the results of experimental studies, the radiation coefficient ε‧ > 0.999, which confirms the theoretical and computational justification is given in the article

  3. Composite materials research and education program: The NASA-Virginia Tech composites program

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  4. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  5. Resonance analysis of a high temperature piezoelectric disc for sensitivity characterization.

    PubMed

    Bilgunde, Prathamesh N; Bond, Leonard J

    2018-07-01

    Ultrasonic transducers for high temperature (200 °C+) applications are a key enabling technology for advanced nuclear power systems and in a range of chemical and petro-chemical industries. Design, fabrication and optimization of such transducers using piezoelectric materials remains a challenge. In this work, experimental data-based analysis is performed to investigate the fundamental causal factors for the resonance characteristics of a piezoelectric disc at elevated temperatures. The effect of all ten temperature-dependent piezoelectric constants (ε 33 , ε 11 , d 33 , d 31 , d 15 , s 11 , s 12 , s 13 , s 33 , s 44 ) is studied numerically on both the radial and thickness mode resonances of a piezoelectric disc. A sensitivity index is defined to quantify the effect of each of the temperature-dependent coefficients on the resonance modes of the modified lead zirconium titanate disc. The temperature dependence of s 33 showed highest sensitivity towards the thickness resonance mode followed by ε 33 , s 11 , s 13 , s 12 , d 31 , d 33 , s 44 , ε 11 , and d 15 in the decreasing order of the sensitivity index. For radial resonance modes, the temperature dependence of ε 33 showed highest sensitivity index followed by s 11 , s 12 and d 31 coefficient. This numerical study demonstrates that the magnitude of d 33 is not the sole factor that affects the resonance characteristics of the piezoelectric disc at high temperatures. It appears that there exists a complex interplay between various temperature dependent piezoelectric coefficients that causes reduction in the thickness mode resonance frequencies which is found to be agreement in with the experimental data at an elevated temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor

    NASA Astrophysics Data System (ADS)

    Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata

    2015-09-01

    Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.

  7. Thermal-stress-free fasteners for joining orthotropic materials

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1987-01-01

    Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stresses and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTEs) in each of the three material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.

  8. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2013-10-04

    A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. 1.55 um aluminum gallium indium arsenide strained MQW laser diodes

    NASA Astrophysics Data System (ADS)

    Yang, Chi

    At the 1.55 mum eye-safe, telecommunications operating wavelength, semiconductor diode lasers must have low threshold currents and operate at high temperatures without thermoelectric coolers. Existing diode lasers in this wavelength range based on the GaInAsP/InP materials system are very sensitive to operating temperature. To obtain high temperature, high power 1.55 mum semiconductor diode lasers, the AlGaInAs/InP materials system with strained quantum well (QW) active regions was investigated with the goal of improving temperature performance. A set of lasers with active regions consisting of different numbers of QWs (2 to 4) and different QW strains (1.2% and 1.6%) were designed taking into account the quaternary alloy bandgap of AlGaInAs, the effect of strain on the bandgap, and the quantum size effects within the QW. The active region growth temperature was optimized using photoluminescence intensity. The wafers were first processed into broad-area lasers and measured under pulsed injection. The characteristic threshold current temperature, T0, for all AlGaInAs lasers was higher (60-70 K) than for GaInAsP lasers. No strong dependence of temperature parameters on strain was observed, while properties varied significantly with the number of QWs. With more QWs, both internal efficiency and T0 increases, but internal loss increases, reducing the characteristic temperature of the differential efficiency T1. The results show that uncooled laser operation at 1.55 mum is very promising with strained AlGaInAs QWs. Ridge waveguide devices demonstrated low threshold and high output power as well as good temperature performance under continuous wave operation. Devices with different ridge heights were fabricated from one wafer and their performance was compared. It was found that current spreading was significant in these devices and a simple current density-versus-applied voltage analysis was developed to determine the spreading factor. The analysis shows that the current spreading was not effectively limited until etching went below the doped cladding layer. A recombination coefficient analysis was performed to investigate the effect of strain on Auger recombination predicted by theory. An indirect method to infer both the nonradiative recombination coefficient and the Auger recombination coefficient was initially used. The measured values of the recombination coefficients were consistent with theoretical predictions and measurements based on other material systems. The Auger recombination was lower than expected, indicating that Auger recombination is reduced in these strained QWs. To understand the carrier dynamics, impedance measurements were carried out for the first time in AlGaInAs strained QW lasers. A small-signal, sub-threshold equivalent circuit model was derived from the laser rate equations to model the measured laser impedance. Several characteristic carrier lifetimes were obtained directly from these electrical impedance measurements. From the temperature dependence of the QW escape time, it was found that hole rather than electron leakage is dominant in the AlGaInAs system due to the relatively low valence band offset. This may explain why the improvement of T0 in AlGaInAs QW 1.55 mum active regions is limited.

  10. Temperature Effects on the Magnetization and Magnetoimpedance in Ferromagnetic Glass-Covered microwires

    NASA Astrophysics Data System (ADS)

    Uddin, A.; Evstigneeva, S. A.; Dzhumazoda, A.; Salem, M. M.; Nematov, M. G.; Adam, A. M.; Panina, LV; Morchenko, A. T.

    2017-11-01

    The effect of temperature on static and dynamic magnetization in Co-based amorphous microwires was investigated with the aim of potential applications in miniature temperature sensors. The wires of two compositions with different magnetostriction and Curie temperature in glass-cover and after removing the glass layer demonstrated very different temperature behaviour of the magnetization loops and magnetoimpedance. The mechanisms of the temperature effects are related to the residual stress distribution due to fast solidification, the difference in thermal expansion coefficient of metal and glass and the proximity to the Curie temperature. The interplay of these factors may result in a very strong temperature dependence of magnetoimpedance in a moderate temperature range (room temperature -373K). Such elements may be incorporated in various composite materials for a local temperature monitoring.

  11. Trends of microwave dielectric materials for antenna application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my; Idris, M. S., E-mail: sobri@unimap.edu.my

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  12. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    NASA Astrophysics Data System (ADS)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  13. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge 4SbTe 5

    DOE PAGES

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  14. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    PubMed

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-15

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  15. ON THE DEGREE OF CONVERSION AND COEFFICIENT OF THERMAL EXPANSION OF A SINGLE FIBER COMPOSITE USING A FBG SENSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, M.; Botsis, J.; Coric, D.

    2008-08-28

    The increasing needs of extending the lifetime in high-technology fields, such as space and aerospace, rail transport and naval systems, require quality enhancing of the composite materials either from a processing standing point or in the sense of resistance to service conditions. It is well accepted that the final quality of composite materials and structures is strongly influenced by processing parameters like curing and post-curing temperatures, rate of heating and cooling, applied vacuum, etc. To optimize manufacturing cycles, residual strains evolution due to chemical shrinkage and other physical parameters of the constituent materials must be characterized in situ. Such knowledgemore » can lead to a sensible reduction in defects and to improved physical and mechanical properties of final products. In this context continuous monitoring of strains distribution developed during processing is important in understanding and retrieving components' and materials' characteristics such as local strains gradients, degree of curing, coefficient of thermal expansion, moisture absorption, etc.« less

  16. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability.

    PubMed

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-11-09

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (T g ) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C -1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.

  17. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability

    NASA Astrophysics Data System (ADS)

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-11-01

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100-200 kHz and in the temperature range of 25-300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C-1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature.

  18. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-05-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  19. Use of a liquid-crystal and heater-element composite for quantitative, high-resolution heat-transfer coefficients on a turbine airfoil including turbulence and surface-roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  20. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-01-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  1. Activation volumes of oxygen self-diffusion in fluorite structured oxides

    DOE PAGES

    Christopoulos, S-R G.; Kordatos, A.; Cooper, Michael William D.; ...

    2016-10-27

    In this study, fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 formore » a wide range of temperature (300–1700 K) and pressure (–7.5 to 7.5 GPa).« less

  2. Effect of temperature on the spectrum of fiber Bragg grating sensors embedded in polymer composite

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Shipunov, G. S.; Voronkov, A. A.; Shardakov, I. N.

    2017-12-01

    This work presents the experimental results on the effect of temperature on the spectrum of fiber Bragg grating (FBG) sensors embedded in a polymer composite material manufactured by the prepreg method. The tests are carried out for flat bar specimens made of fiberglass with five embedded FBG sensors. For measuring the reflected wave power, the ASTRO X322 Interrogator is used. It is shown that embedding leads to the occurrence of an additional power peak and decreases the reflection spectrum signal by 10-12 dB. This is due to the effect of transverse compression force and the anisotropic character of the thermal expansion coefficient of the material. In heating, the reflected spectrum is close to the initial state of the material, but it has a less power.

  3. Evaluation of tribological properties of selected engine oils during operation of the friction pairs of steel-on-steel

    NASA Astrophysics Data System (ADS)

    Barszcz, Marcin; Józwik, Jerzy; Dziedzic, Krzysztof; Stec, Kamil

    2017-10-01

    The paper includes an assessment of the tribological properties of mineral and synthetic Lotos oil marked SAE 15W/40 and SAE 5W/40 at ambient temperature and 100 °C. The evaluation was based on the analysis of the tribological properties of friction couple consumables. Tribological tests were performed using the Anton Paar THT 1000 high temperature tribotester according to ASTM G133. Tribological properties were investigated using the "ball on disc" method. The change of friction coefficient, friction couple temperature, volume wear of samples and counter-samples and Hertz stresses were evaluated. In addition, hardness tests of the friction couple materials as well as surface roughness before and after friction were performed. On the basis of tribological studies, it was noted that Lotos Synthetic 5W/40 oil has better cooling properties compared. For both oils the coefficient of friction was lower at ambient temperature than at 100 °C. The highest value of volume wear of the sample was noted for the combination lubricated with Mineral Oil 15W/40 at 100 °C (0.0143 mm3) while for counter-sample lubricated with synthetic oil at ambient temperature (0.0039 mm3). The highest sample wear coefficient was recorded for the mineral oil lubricated at temperature of 100 °C (3.585*10-7 mm3/N/m) while for counter-sample lubricated with synthetic oil at ambient temperature (9.8768*10-8 mm3/N/m). The Hertz stress for each test couple had a value of 1.787 GPa.

  4. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

    PubMed

    Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali

    2011-01-12

    Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

  5. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    NASA Astrophysics Data System (ADS)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  6. Structure and tribological properties of composite materials based on Al-Cu-Fe formed at high pressure

    NASA Astrophysics Data System (ADS)

    Golovkova, E. A.; Ekimov, E. A.; Ivanov, A. S.; Kruglov, V. S.; Pal', A. F.; Ryabinkin, A. N.; Serov, A. O.; Starostin, A. N.; Tsetlin, M. B.

    2017-11-01

    The use of high pressure ( 8 GPa) in the formation of composite quasi-crystalline materials from powders made it possible to create practically poreless samples with a density close to the maximum known for this type of quasi-crystals. For samples with a nickel binder, sintered at a temperature of 550°C, a very low coefficient of friction was obtained, which retain its value during the testing.

  7. Annular convective-radiative fins with a step change in thickness, and temperature-dependent thermal conductivity and heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Barforoush, M. S. M.; Saedodin, S.

    2018-01-01

    This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin's material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.

  8. Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Wei, Jingsong; Gan, Fuxi

    2012-03-01

    The current study proposes a model based on the weakening of the resonant bond to explore the giant optical nonlinear saturable absorption of Sb-based phase change materials. In order to analyze the weakening of resonant bond effectively, we take the Sb2Te3 as an example. First-principle calculations show that both the Born effective charge and optical dielectric constant of crystalline Sb2Te3 in the 300 K to 500 K temperature range monotonically decrease with the temperature, indicating a weakening of the resonant bond. This weakening induces a decline in the absorption coefficient at a rate of 103 m-1 K-1, which results in a nonlinear saturable absorption coefficient in the order of 10-2 m/W. The nonlinear absorption characteristics of the crystalline Sb, Sb7Te3, and Sb2Te3 thin films at 405 nm laser wavelength are measured via z-scan technique using nanosecond laser pulses to validate the above-proposed model. The experimental results are in good agreement with theoretical prediction.

  9. Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis

    2015-06-14

    Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermalmore » conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)« less

  10. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  11. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.

    2016-10-01

    Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, L.B.; Mace, A.E.; Grieser, D.R.

    Various ceramic and cermet materials were evaluated for unlubricated wear resistance at high sliding speed (100 to 200 fps) and low unit load (5to 50 psi) in 1000 to 1800 deg F air. A statistical correlation was obtained between the measured wear rates under these conditions and the coefficient of friction, the thermal-stress resistance, and the thermal dlffusivity of the mated materials on which wear predominated. A mechanism of wear was evolved based on the above correlation and on the experimental study of friction and wear surface- temperature fluctuations using special transducers and color-motion-picture photography. During high-speed sliding, wear appearsmore » to be induced by the inability of ceramic and cermet materials to resist thermal stresses produced by temperature gradients within each rubbing surface between small asperities or hot spots. in frictional contact and the body of the respective materials. In this situation the wear rate is influenced both by the configuration of the rubbing pants and by the thermalstress-resistance properties of the materials. Promising materials for high-temperature high-speed sliding bearings and seals include Al/ sub 2/O/sub 3/-Cr-Mo cermets, SiC ceramics, and TiC-Ni-Mo cermets. (auth)« less

  13. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh

    2017-12-01

    Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.

  14. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  15. Hygrothermal properties of composites

    NASA Technical Reports Server (NTRS)

    Arsenovic, Petar

    1996-01-01

    The testing procedure and acceptance criteria for outgassing selection of materials to be used in spacecraft has been reviewed. Outgassing testing should be conducted according to ASTM Standard E 595-90. In general, materials with CVCM less than or equal to 0.10% and TML less than or equal to 1.00% are acceptable for space applications. Next, test data on several types of graphite-epoxy composite materials are presented over time at various relative humidity levels at room temperature for moisture absorption, and under vacuum at several temperatures for moisture desorption (outgassing). The data can be accurately represented by simple equations which are useful for materials characterization. Finally, a laser dilatometer systems of extremely high sensitivity and accuracy was assembled and used to measure the coefficient of thermal expansion (CTE) of several types of graphite-epoxy structures, culminating in the ability to perform loading and thermal expansion tests on a prototype optical bench.

  16. Heat Transfer Through Turbulent Friction Layers

    NASA Technical Reports Server (NTRS)

    Reichardt, H.

    1943-01-01

    The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

  17. Optical and solid state characterizaion of chemically deposited CuO/PbS double layer thin film

    NASA Astrophysics Data System (ADS)

    Chukwuemeka, Augustine; Nnabuchi Mishark, Nnamdi

    2018-02-01

    Optical and solid state characteristics of novel CuO/PbS double layer thin films were studied. Rutherford backscattering (RBS) technique deciphered the thicknesses of the films as 650 nm, 471 nm and 482 nm for as-deposited, annealed at 473 K and 673 K respectively. The XRD analysis depicts increase in grain size and peak intensity as temperature increases. The results of optical characterization show that thermal annealing has profound effects on all the optical and solid state parameters investigated. The absorbance increased with increase in temperature exhibiting maximum for the film annealed at 673 K. The transmittance of the film samples showed a decreasing trend with increase in temperature exhibiting minimum for the film annealed at 673 K. The absorption coefficient increases from 0.001 × 106 m-1 to 0.006 × 106 m-1 for as-deposited, 0.0025 × 106 m-1 to 0.0175 × 106 m-1 for the annealed at 473 K and 0.003 × 106 m-1 to 0.020 × 106 m-1 for the annealed at 673 K. The extinction coefficient increased with increased in temperature exhibiting a maximum for the film annealed at 673 K. The refractive index, real and imaginary dielectric constant do not have a trend with increase in annealing temperature. Increase in annealing temperature lowers the band gap from 4.13 eV for the as-deposited to 4.05 eV and 3.90 eV for the annealed at 473 K and 673 K respectively. The wide- bandgap materials permits devices to operate at much higher voltages, frequencies and temperatures than convection semiconductor materials. Thus, this film could be used for high power applications, light-emitting diodes, transducers and window layers for solar cell fabrication.

  18. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  19. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  20. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  1. New piezocrystal material in the development of a 96-element array transducer for MR-guided focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Qiu, Zhen; Habeshaw, Roderick; Fortine, Julien; Huang, Zhihong; Démoré, Christine; Cochran, Sandy

    2012-11-01

    Piezocrystal materials have been recognized as having better performance than piezoelectric ceramics, and have thus been widely adopted in ultrasound imaging arrays. Although their behaviour is susceptible to temperature and pressure, their large electromechanical coupling coefficients and other excellent piezoelectric properties also offer the potential for further improvements in the efficiency of therapeutic ultrasound transducers. Furthermore, new piezocrystals with modified compositions have been developed recently to increase their tolerance to temperature and pressure. In this work, a prototype of faceted bowl transducer was designed and manufactured as a proof of concept to explore practical issues associated with adoption of piezocrystals for magnetic resonance imaging guided focused ultrasound surgery.

  2. Theoretical study of the zero-gap organic conductor α-(BEDT-TTF)2I3

    PubMed Central

    Kobayashi, Akito; Katayama, Shinya; Suzumura, Yoshikazu

    2009-01-01

    The quasi-two-dimensional molecular conductor α-(BEDT-TTF)2I3 exhibits anomalous transport phenomena where the temperature dependence of resistivity is weak but the ratio of the Hall coefficient at 10 K to that at room temperature is of the order of 104. These puzzling phenomena were solved by predicting massless Dirac fermions, whose motions are described using the tilted Weyl equation with anisotropic velocity. α-(BEDT-TTF)2I3 is a unique material among several materials with Dirac fermions, i.e. graphene, bismuth, and quantum wells such as HgTe, from the view-points of both the structure and electronic states described as follows. α-(BEDT-TTF)2I3 has the layered structure with highly two-dimensional massless Dirac fermions. The anisotropic velocity and incommensurate momenta of the contact points, ±k0, originate from the inequivalency of the BEDT-TTF sites in the unit cell, where ±k0 moves in the first Brillouin zone with increasing pressure. The massless Dirac fermions exist in the presence of the charge disproportionation and are robust against the increase in pressure. The electron densities on those inequivalent BEDT-TTF sites exhibit anomalous momentum distributions, reflecting the angular dependences of the wave functions around the contact points. Those unique electronic properties affect the spatial oscillations of the electron densities in the vicinity of an impurity. A marked behavior of the Hall coefficient, where the sign of the Hall coefficient reverses sharply but continuously at low temperatures around 5 K, is investigated by treating the interband effects of the magnetic field exactly. It is shown that such behavior is possible by assuming the existence of the extremely small amount of electron doping. The enhancement of the orbital diamagnetism is also expected. The results of the present research shed light on a new aspect of Dirac fermion physics, i.e. the emergence of unique electronic properties owing to the structure of the material. PMID:27877282

  3. Atomic Layer-Deposited Titanium-Doped Vanadium Oxide Thin Films and Their Thermistor Applications

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...

    2016-11-30

    In this paper, we report the enhancement in the temperature coefficient of resistance (TCR) of atomic layer-deposited vanadium oxide thin films through the doping of titanium oxide. The Hall effect measurement provides a potential explanation for the phenomenon. The composition and morphology of the thin films are investigated by x-ray diffraction and scanning electron microscopy techniques. The high TCR, good uniformity, and low processing temperature of the material make it a good candidate for thermistor application.

  4. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  5. Temperature and emissivity measurements at the sapphire single crystal fiber growth process

    NASA Astrophysics Data System (ADS)

    Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Tsvetkov, V. B.

    2017-12-01

    We present a new method for evaluation the absorption coefficient of the crystal melt around the phase transition zone for the spectral range of semitransparency. The emissivity distribution across the crystallization front of the sapphire crystal fiber was measured at the quasi-stationary laser heated pedestal growth (LHPG) process (Fejer et al., 1984; Feigelson, 1986) and the data for solid state, melt and phase transition zone (melt-solid interface) were obtained. The sapphire melt absorption coefficient was estimated to be 14 ± 2 cm-1 in the spectral range 1-1.4 μm around the melt point. It is consistent with data, obtained by different other methods. This method can be applied to determine the absorption coefficient for other materials.

  6. Remote Heat Flux Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (k = 6 gm). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 gm) radiation transmitted through the sapphire disk. The thermal conductivity of the sapphire disk and the heat transfer coefficients h, and h2 of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  7. The effect of rare earth ions on structural, morphological and thermoelectric properties of nanostructured tin oxide based perovskite materials

    NASA Astrophysics Data System (ADS)

    Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.

    2017-11-01

    Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1-x RE x SnO3 (RE  =  La and Sr) materials with x  =  0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1-x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1-x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.

  8. Analysis of magneto-electronic, thermodynamic and thermoelectric properties of ferromagnetic CoFeCrAl alloy

    NASA Astrophysics Data System (ADS)

    Mohiuddin Bhat, Tahir; Gupta, Dinesh C.

    2017-11-01

    The structural stability, electronic, mechanical, thermodynamic and thermoelectric properties of CoFeCrAl have been investigated by modified Beck-Johnson (mBJ) exchange potential. From the optimized calculations, the indirect band gap of 0.65 eV in spin-down was found, which is enhanced than the previously reported data. The material offers the magnetic moment of 2µ B and displays brittle nature with mixed chemical bonding. The thermoelectric properties of the compound in the temperature range 50-550 K have been revealed. Seebeck coefficient at room temperature is  -46 µV K-1 which increases with temperature. At 550 K, the figure-of-merit for n-type compound maximizes up to ~0.41 suggesting a potential thermoelectric material at high temperatures. Meanwhile, quasi-harmonic Debye model was also used to investigate the effect of pressure and temperature on the thermal expansion, Grüneisen parameter and unit cell volume.

  9. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green's Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components.

    PubMed

    Rouse, James; Hyde, Christopher

    2016-01-06

    The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  10. Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang

    2015-04-22

    We report a significant enhancement of the thermoelectric performance of p-type SnTe over a broad temperature plateau with a peak ZT value of similar to 1.4 at 923 K through In/Cd codoping and a CdS nanostructuring approach. Indium and cadmium play different but complementary roles in modifying the valence band structure of SnTe. Specifically, In-doping introduces resonant levels inside the valence bands, leading to a considerably improved Seebeck coefficient at low temperature. Cd-doping, however, increases the Seebeck coefficient of SnTe remarkably in the mid- to high-temperature region via a convergence of the light and heavy hole bands and an enlargementmore » of the band gap. Combining the two dopants in SnTe yields enhanced Seebeck coefficient and power factor over a wide temperature range due to the synergy of resonance levels and valence band convergence, as demonstrated by the Pisarenko plot and supported by first-principles band structure calculations. Moreover, these codoped samples can be hierarchically structured on all scales (atomic point defects by doping, nanoscale precipitations by CdS nanostructuring, and mesoscale grains by SPS treatment) to achieve highly effective phonon scattering leading to strongly reduced thermal conductivities. In addition to the high maximum ZT the resultant large average ZT of similar to 0.8 between 300 and 923 K makes SnTe an attractive p-type material for high-temperature thermoelectric power generation.« less

  11. Thermoelectric Properties of In-Doped Cu2ZnGeSe4

    NASA Astrophysics Data System (ADS)

    Chetty, R.; Bali, A.; Femi, O. E.; Chattopadhyay, K.; Mallik, R. C.

    2016-03-01

    Recently, much research has been focused on finding new thermoelectric materials. Cu-based quaternary chalcogenides that belong to A2BCD4 (A = Cu; B = Zn, Cd; C = Sn, Ge; D = S, Se, Te) are wide band gap materials and one of the potential thermoelectric materials due to their complex crystal structures. In this study, In-doped quaternary compounds Cu2ZnGe1- x In x Se4 ( x = 0, 0.025, 0.05, 0.075, 0.1) were prepared by a solid state synthesis method. Powder x-ray diffraction patterns of all the samples showed a tetragonal crystal structure (space group I- 42m) of the main phase with a trace amount of impurity phases, which was further confirmed by Rietveld analysis. The elemental composition of all the samples showed a slight deviation from the nominal composition with the presence of secondary phases. All the transport properties were measured in the temperature range 373-673 K. The electrical resistivity of all the samples initially decreased up to ˜470 K and then increased with increase in temperature upto 673 K, indicating the transition from semiconducting to metallic behavior. Positive Seebeck coefficients for all the samples revealed that holes are the majority carriers in the entire temperature range. The substitution of In3+ on Ge4+ introduces holes and results in the decrease of resistivity as well as the Seebeck coefficient, thereby leading to the optimization of the power factor. The lattice thermal conductivity of all the samples decreased with increasing temperature, indicating the presence of phonon-phonon scattering. As a result, the thermoelectric figure of merit ( zT) of the doped sample showed an increase as compared to the undoped compound.

  12. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1

    PubMed Central

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat

    2017-01-01

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm−1. Significantly, these films show room temperature mobilities up to 120 cm2 V−1 s−1 even at carrier concentrations above 3 × 1020 cm−3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III–N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality. PMID:28474675

  13. Wide bandgap BaSnO 3 films with room temperature conductivity exceeding 10 4 S cm -1

    DOE PAGES

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; ...

    2017-05-05

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of sign ificant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO 3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 4 S cm -1 . Significantly, these films show room temperature mobilities up to 120 cm 2 V -1 s -1 even at carrier concentrations abovemore » 3 × 10 20 cm -3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.« less

  14. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  15. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance.

    PubMed

    Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A

    2017-01-31

    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.

  16. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  17. Acoustical and thermo physical properties of metal-ceramics composites in dependence on few volume concentration of metal

    NASA Astrophysics Data System (ADS)

    Abramovich, A.

    2016-04-01

    Metal-ceramics composites (cermets) are modern construction material used in different industry branches. Their strength and heat resistance depend on elastic and thermos physical properties. In this work cermets based on corundum and stainless steel (sintered in high vacuum at temperatures 1500 - 1600°C) are investigated. The volume steel concentration in the samples varies up 2 to 20 vol %. The elastic modules were measured by ultrasonic method at room temperature, measuring of thermo conductivity coefficient were carried out at temperatures 100, 200°C by method of continued heating in adiabatic calorimeter. We founded appearance of two extremes on dependences of elastic modules (E, G) on stainless steel concentrations, nature of which is unknown, modules values change in range: E = 110 - 310, G = 60 - 130GPa (for different temperatures of sintering). Similar dependence is observed for thermo conductivity coefficient which values varies up 10 to 40 W/(m.K). There is presented also discussion of results based on structure cermet model as multiphase micro heterogeneous media with isotropic physical properties in the work.

  18. Optical Properties of Si, Ge, GaAs, GaSb, InAs, and InP at Elevated Temperatures

    DTIC Science & Technology

    2010-03-01

    transmitted, and an absorbed (or scattered) component. The reflectance can be defined in terms of the index of refraction of the media on either side...of the interface. If the index of refraction of the material is n and the material is surrounded by air (nair ≈ 1), then the reflectance for near...the absorption coefficient and t is the sample thickness. 9 Since R depends on the refractive index and the refractive index depends on the

  19. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Lillo Gallardo, Patricio Andres

    Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the fatigue damage at room temperature. This is caused solely by the temperature dependence of the fatigue coefficient b which requires further experimental verification to validate the numerical results of the current study.

  20. Quantum Criticality and Black Holes

    ScienceCinema

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2017-12-09

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  1. Magnetothermoelectric properties of Bi2Se3

    NASA Astrophysics Data System (ADS)

    Fauqué, Benoît; Butch, Nicholas P.; Syers, Paul; Paglione, Johnpierre; Wiedmann, Steffen; Collaudin, Aurélie; Grena, Benjamin; Zeitler, Uli; Behnia, Kamran

    2013-01-01

    We present a study of entropy transport in Bi2Se3 at low temperatures and high magnetic fields. In the zero-temperature limit, the magnitude of the Seebeck coefficient quantitatively tracks the Fermi temperature of the three-dimensional Fermi surface at the Γ point as the carrier concentration changes by two orders of magnitude (1017 to 1019 cm-3). In high magnetic fields, the Nernst response displays giant quantum oscillations indicating that this feature is not exclusive to compensated semimetals. A comprehensive analysis of the Landau level spectrum firmly establishes a large g factor in this material and a substantial decrease of the Fermi energy with increasing magnetic field across the quantum limit. Thus, the presence of bulk carriers significantly affects the spectrum of the intensively debated surface states in Bi2Se3 and related materials.

  2. Study of CO 2 stability and electrochemical oxygen activation of mixed conductors with low thermal expansion coefficient based on the TbBaCo 3ZnO 7+ δ system

    NASA Astrophysics Data System (ADS)

    Vert, Vicente B.; Serra, José M.

    The influence of different application-oriented factors on the electrochemical activity and stability of TbBaCo 3ZnO 7+ δ when used as a solid oxide fuel cell cathode has been studied. Calcination at temperatures above 900 °C (e.g. 1000 °C) leads to a significant increase in the electrode polarization resistance. The effect of the sintering temperature of the TbBaCo 3ZnO 7+ δ cathode seems to be more important than the effect produced by the Tb substitution as observed when compared with 900 °C-sintered YBaCo 3ZnO 7+ δ; and ErBaCo 3ZnO 7+ δ electrode performances. The presence of CO 2 in the air flow leads to an increase of roughly 10% in the polarization resistance for the whole studied temperature range (500-850 °C) while this effect is reversible. Analysis of the impedance spectroscopy measurements shows that the exchange rate constant (k G from Gerischer element) is significantly affected by CO 2 at temperatures below 700 °C, while the diffusion coefficient related parameter is slightly influenced at low temperatures. Electrode degrades with a low constant rate of 1 mΩ cm 2 h -1 after 60 h. This cathode material exhibits high CO 2 tolerance, as shown by temperature programmed treatment under a continuous gas flow of air with 5% CO 2, and a relatively low thermal expansion coefficient.

  3. First Principles Simulations of P-V-T Unreacted Equation of State of LLM-105

    NASA Astrophysics Data System (ADS)

    Manaa, Riad; Kuo, I.-Feng; Fried, Laurence

    2015-03-01

    Equations of states (EOS) of unreacted energetic materials extending to high-pressure and temperatures regimes are of particular interest since they provide fundamental information about the associated thermodynamic properties of these materials at extreme conditions. Very often, experimental and computational studies focus only on determining a pressure-volume relationship at ambient to moderate temperatures. Adding elevated temperature data to construct a P-V-T EOS is highly desirable to extend the range of materials properties. Atomic scale molecular dynamics simulations are particularly suited for such a construct since EOSs are the manifestation of the underlying atomic interactions. In this work, we report dispersion-corrected density functional theoretical calculations of unreacted equation of state (EOS) of the energetic material 2,6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105). We performed large-scale constant-volume and temperature molecular dynamics simulations for pressures ranging from ambient to 35 GPa, and temperatures ranging from 300 K to 1000 K. These calculations allowed us to construct an unreacted P-V-T EOS and obtain bulk modulus for each P-V isotherm. We also report the thermal expansion coefficient of LLM-105 in the temperature range of this study. This work performed under the auspices of the U.S. Department of Energy Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.

    1980-01-01

    Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  5. Energy flux parametrization as an opportunity to get Urban Heat Island insights: The case of Athens, Greece (Thermopolis 2009 Campaign).

    PubMed

    Loupa, G; Rapsomanikis, S; Trepekli, A; Kourtidis, K

    2016-01-15

    Energy flux parameterization was effected for the city of Athens, Greece, by utilizing two approaches, the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) and the Bulk Approach (BA). In situ acquired data are used to validate the algorithms of these schemes and derive coefficients applicable to the study area. Model results from these corrected algorithms are compared with literature results for coefficients applicable to other cities and their varying construction materials. Asphalt and concrete surfaces, canyons and anthropogenic heat releases were found to be the key characteristics of the city center that sustain the elevated surface and air temperatures, under hot, sunny and dry weather, during the Mediterranean summer. A relationship between storage heat flux plus anthropogenic energy flux and temperatures (surface and lower atmosphere) is presented, that results in understanding of the interplay between temperatures, anthropogenic energy releases and the city characteristics under the Urban Heat Island conditions.

  6. Effects of thermal inhomogeneity on 4m class mirror substrates

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2016-07-01

    The new ground based telescope generation is moving to a next stage of performance and resolution. Mirror substrate material properties tolerance and homogeneity are getting into focus. The coefficient of thermal expansion (CTE) homogeneity is even more important than the absolute CTE. The error in shape of a mirror, even one of ZERODUR, is affected by changes in temperature, and by gradients in temperature. Front to back gradients will change the radius of curvature R that in turn will change the focus. Some systems rely on passive athermalization and do not have means to focus. Similarly changes in soak temperature will result in surface changes to the extent there is a non-zero coefficient of thermal expansion. When there are in-homogeneities in CTE, the mirror will react accordingly. Results of numerical experiments are presented discussing the impact of CTE in-homogeneities on the optical performance of 4 m class mirror substrates. Latest improvements in 4 m class ZERODUR CTE homogeneity and the thermal expansion metrology are presented as well.

  7. SAW parameters on Y-cut langasite structured materials.

    PubMed

    Puccio, Derek; Malocha, Donald C; Saldanha, Nancy; da Cunha, Mauricio Pereira

    2007-09-01

    This paper presents results and investigations of several new, man-made piezoelectric single crystal, Czochralski-grown substrate materials for surface acoustic waves (SAW) applications. These materials, langanite (LGN), langatate (LGT), Sr3TaGa3Si2O14 (STGS), Sr3NbGa3Si2O14 (SNGS), Ca3TaGa3Si2O14 (CTGS), and Ca3NbGa3Si2O14 (CNGS), have the same structure as langasite (LGS) and are of the same crystal class as quartz. These compounds are denser than quartz, resulting in lower phase velocities. They also have higher coupling. Unlike quartz and lithium niobate, there is no degradation of material properties below the material melting points resulting in the possibility of extreme high-temperature operation (> 1000 degrees C). This paper gives a summary of extracted SAW material parameters for various propagation angles on Y-cut substrates of the six materials. Parameters included are electromechanical coupling, phase velocity, transducer capacitance, metal strip reflectivity, and temperature coefficient of frequency. Using previously published fundamental material constants, extracted parameters are compared with predictions for LGT and LGN. In addition, power flow angle and fractional frequency curvature data are reported for propagation angles on CTGS and CNGS Y-cut substrates that exhibit temperature compensation near room temperature. Detailed descriptions of the SAW parameter extraction techniques are given. A discussion of the results is provided, including a comparison of extracted parameters and an overview of possible SAW applications.

  8. Effect of hydrostatic pressure on physical properties of strontium based fluoroperovskites for novel applications

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2018-02-01

    Density functional theory (DFT) is employed to calculate the effect of pressure variation on electronic structure, elastic parameters, mechanical durability, and thermodynamic aspects of SrRbF3, in combination with Quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which cubic stability of SrRbF3 fluoroperovskite remains valid. Significant influence of compression on wide range of elastic parameters and related mechanical properties have been discussed, to utilize this material in low birefringence lens fabrication technology. Apart of linear dependence on elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. Moreover, successful prediction of important thermodynamic aspects such as volume expansion coefficient (α), Debye temperature (θ D), heat capacities (Cp and Cv) are also done within wide pressure and temperature ranges.

  9. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-09-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  10. Theoretical studies on a (FGPM) system with Gaussian profile for a zero TCD SAW devices

    NASA Astrophysics Data System (ADS)

    Gharsellaoui, Rim; Takali, Farid; Njeh, Anouar

    We investigate the propagation of surface wave in a functionally graded piezoelectric material layer ZnO/AlN/ZnO on α-Al2O3 substrate in this study. The influence of buffer layer thickness on the temperature coefficient of delay (TCD) is studied. The stiffness matrix method (SMM) and the ordinary differential equation (ODE), treat the electrical and mechanical gradients. We demonstrate that for the second mode, the largest coupling coefficient of (5.43%) associated with a phase velocity of (5602 m/s) and a TCD of (66.16 ppm/°C) can be found for the (ZnO/AlN/ZnO)/R-Al2O3 structure. The simulation results indicate that for the first mode, a temperature compensation of (0 ppm/°C) and high velocities of up (6000 m/s).

  11. [Effect of investment composition ratio for pure titanium crown and bridge on some mechanical properties of mould].

    PubMed

    Yang, Se-fei; Wang, You-xu; Guo, Tian-wen; Liu, Hong-chen

    2011-11-01

    To determine the optimal composition of a self-developing investment material by measuring physical and mechanical properties of mould. L(9) (3(4)) orthogonal design was adopted. One hundred and fifty specimens with the size of 80 mm × 20 mm × 20 mm were prepared to measure the atmospheric temperature bending strength, high temperature bending strength and residual bending strength. Nine specimens with the size of 5 mm diameter 25 mm heigh were prepared to survey the thermal expansion curve from ambient temperature to 1150°C. Strengths were greatly affected by fine powder proportion in refractory and water/powder ratio. When the content of fine powder was 35% and water/powder ratio was 1:7.5, adequate atmospheric temperature strength and high temperature strength could be achieved. Moreover, the residual strength was moderate. The thermal extension curves of specimens in experiment group were almost similar. And the average linear expansion coefficient was (4 ∼ 5) × 10(-6)/°C. The three kinds of bending strength of self-developing investment material are compared with commercialized investment material for titanium casting when water/powder ratio and the content of fine powder are carefully controlled.

  12. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    NASA Astrophysics Data System (ADS)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  13. Powder processing and mechanical properties of Silver0.86Lead19Antimony telluride20 (LAST) and Lead0.95Tin0.05Tellurium - Lead sulfide 8% (Lead telluride -Lead sulfide) thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ni, Jennifer Elisabeth

    Thermoelectric (TE) materials convert between thermal and electrical energy and when used with existing processes will increase the efficiency via waste heat recovery. Ag0.86Pb19SbTe20 (LAST) and Pb0.95Sn0.05Te - PbS 8% (PbTe-PbS) materials exhibit good thermoelectric (TE) properties and have potential applications as thermoelectric generators in waste heat recovery. However, to fully characterize the thermo-mechanical behavior of LAST and PbTe-PbS materials under in-service conditions, knowledge is needed of the mechanical and thermal properties at room and high temperature. As fracture strength is inversely proportional to the square root of grain size, cast ingots were powder processed to reduce powder particle size. Three different powder processing methods were used (1) dry milling only, (2) wet milling only, or (3) dry milling and wet milling The specimens were fabricated using hot pressing or pulsed electric current sintering (PECS) from planetary ball milled powders. In this study, elastic moduli, including Young's modulus, shear modulus, and Poisson's ratio, were measured dynamically using resonant ultrasound spectroscopy (RUS) at room temperature and as a function of temperature up to 663 K. The room temperature porosity dependence for Young's modulus followed the empirical exponential relationships common for brittle materials, with a material dependent constant bPE of 3.5 and 1.3 for LAST and PbTe-PbS, respectively. The room temperature Young's modulus for a theoretically dense specimen was 58.4 +/- 0.6 GPa and 56.2 +/- 0.4 GPa for for LAST and PbTe-PbS, respectively. For hot pressed PbTe-PbS specimens, the Vickers indentations mean hardness and fracture toughness was 1.18 + 0.09 GPa and 0.35 +/- 0.04 MPa·m 1/2. The coefficient of thermal expansion is important for understanding the mechanical response of a material to a thermal gradient or a thermal transient. For PbTe-PbS the coefficient of thermal expansion measured using dilatometry and high temperature x-ray diffraction was 21.5 x 10-6 K -1. Bloating during post-densification annealing was measured indirectly using resonant ultrasound spectroscopy and dilatometry and directly using scanning electron microscopy. Dry milled only PECS-processed PbTe-PbS specimens did not bloat during post-densification anneals up to 936 K. Hot pressed and PECS-processed specimens processed from wet milled and dry and wet milled powder bloated during densification anneals at temperatures over 603 K.

  14. Creation of a Data Base on Energetic Materials

    DTIC Science & Technology

    1987-08-10

    Examples of booster explosives are Tetryl, RDX , and HMX . Examples of bursting explosives are Amatols, TNT, Compositions A, B, & C, and Picatrol. Within...Test Thermal Shock Resistance Glass Transition Temperature Toxicity Grain Size Viscosity Hardness Volatility Heat Capacity Water Resistance Heat of...Tensile Strength Flammability Thermal Conductivity Flexural Strength Thermal Expansion Coefficient Gap Test Thermal Shock Resistance Glass Transition

  15. Stable gas-dielectric capacitors of 5- and 10-pF values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, G.W.; McGregor, M.C.; Lee, R.D.

    1989-04-01

    The authors discuss the development of gas-dielectric capacitors of 5 and 10 pF. With Zerodur as the structural material, the capacitors are stable with time, have small temperature and voltage coefficients, and have been used successfully as traveling standards. A relatively large sensitivity to ionizing radiation is observed in these capacitors.

  16. Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.

    PubMed

    Thieme, Christian; Görls, Helmar; Rüssel, Christian

    2015-12-15

    The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured.

  17. Phonon shift in chemically exfoliated WS2 nanosheet

    NASA Astrophysics Data System (ADS)

    Sarkar, Abdus Salam; Pal, Suman Kalyan

    2018-04-01

    We have synthesized few layer WS2 nanosheets in a low boiling point solvent. Few layer of WS2 sheets are characterized by various techniques such as UV-visible and Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). UV-Vis absorption spectra confirm the well dispersed in isopropyl alcohol. SEM and TEM images indicate the sheet like morphology of WS2. Atomic force microscopy image and room temperature Raman spectroscopy confirm the exfoliation of few layer (4-5 layer) of WS2. Further, Raman spectroscopy was used as a meteorology tool to determine the temperature co-efficient. We have systematically investigated the temperature dependent Raman spectroscopic behavior of few layer WS2. Our results depict the softening of the Raman modes E12g in plane vibration and A1g out of plane vibration with increasing the temperature from 77 K to 300 K. Softening of the Raman modes could be explained in terms of the double resonance which is active in the layered materials. The observed temperature coefficients for two Raman peaks E12g and A1g, are - 0.022 cm-1 and -0.009 cm-1, respectively.

  18. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand and limestone are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125 K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient. The predicted values of heat transfer coefficient from the correlations proposed by Grewal andmore » Bansal et al. are found to be within + or - 25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included.« less

  19. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  20. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    NASA Astrophysics Data System (ADS)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.

  1. Equilibrium distribution of rare earth elements between molten KCl-LiCl eutectic salt and liquid cadmium

    NASA Astrophysics Data System (ADS)

    Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi

    1991-11-01

    Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.

  2. Synthesis and Characterization of Rare-Earth Tellurides and Their Composites For High-Temperature Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Cheikh, Dean

    Radioisotope thermoelectric generators (RTGs) are solid-state energy conversion devices and have been a vital power generation technology for deep space missions conducted by the National Aeronautics and Space Administration (NASA). At the heart of these generators are thermoelectric materials that convert heat given off by a radioisotope decay into electricity through the Seebeck effect. While these systems have demonstrated long-term reliability, the current state-of-practice materials have thermoelectric figures of merit, ZT, near 1, leading to low system level efficiencies of 6.5%. The figure of merit is defined as ZT = sigmaS 2/kappa T where sigma, S, kappa, and T are electrical conductivity, Seebeck coefficient, thermal conductivity, and temperature, respectively. Development of higher ZT materials would enable future NASA missions to perform a greater number of scientific experiments and extend mission lifetimes. Lanthanum telluride (La3-xTe4) is a state-of-the-art n-type high-temperature thermoelectric material, with a ZT of 1.1 at 1275 K. It has been demonstrated that the electrical resistivity and Seebeck coefficient of this material can be decoupled when nickel inclusions are added to form a composite. This new phenomenon, known as composite assisted funneling of electrons (CAFE), allows for the resistivity of the composite to decrease while leaving the Seebeck coefficient unaffected when 12-15 vol% nickel was incorporated. The initial work presented in this dissertation focused on microstructural modifications to La3-xTe4-Ni composites to attain a better understanding of the CAFE mechanism. This investigation was conducted by varying the size of the nickel particles compared to what were used in the previous composite study. A 60% increase in ZT to a value of 1.9 at 1200 K for the composites with the smallest Ni particle size was obtained due to an increased Seebeck coefficient and decreased thermal conductivity. The next study focused on the extension of the CAFE effect in La 3-xTe4 to use inclusions other than nickel. Cobalt of a similar size to the nickel in the initial La3-xTe4-Ni composite work was used. A series of La3-xTe4-Co composites were synthesized and their thermoelectric properties characterized. A gradual decrease in resistivity was observed above 8 vol% cobalt, suggesting the CAFE mechanism was occurring. An 18% increase to the Seebeck coefficient was observed between 5-8 vol% cobalt, likely due to contamination on the cobalt powder, altering the carrier concentration of the matrix. The increase to the Seebeck coefficient allowed for a ZT of 1.5 at 1225 K to be achieved at 5 vol% cobalt. The final investigation in this dissertation focused on the synthesis and thermoelectric characterization of praseodymium telluride (Pr3-x Te4). Density functional theory (DFT) calculations predicted a large peak in the density of states (DOS) of Pr3-xTe4 at its Fermi level compared to La3-xTe4, due to the 4ƒ electrons of praseodymium. This change in the band structure was predicted to increase the Seebeck coefficient of Pr3-xTe4 over La3-xTe4. A series of Pr3-xTe4 with varying vacancy concentrations were mechanochemically synthesized and characterized. A 25% improvement in the Seebeck coefficient and 25% decrease in the thermal conductivity compared to La3-xTe4 was observed. The thermoelectric properties were found to optimize at a composition of Pr2.74Te4, reaching a ZT of 1.7 at 1200 K.

  3. Pyroelectricity of silicon-doped hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.

    2018-04-01

    Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.

  4. Thermal Conductivity and Expansion Coefficient of (Sm1- x Yb x )2Ce2O7 Ceramics for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Xiaoge, Chen; Hongsong, Zhang; Kun, Sun; Xudan, Dang; Haoming, Zhang; Bo, Ren; An, Tang

    2017-12-01

    In the current paper, the (Sm1- x Yb x )2Ce2O7 ceramics were prepared via sol-gel and high-temperature solid reaction methods. The phase composition, microstructure, thermal conductivity, and expansion coefficient were investigated. Results indicate that pure (Sm1- x Yb x )2Ce2O7 ceramics with single defect-fluorite structure are synthesized successfully. Owing to the phonon scattering caused by Yb addition, the thermal conductivity of (Sm1- x Yb x )2Ce2O7 ceramics decreases with increasing Yb2O3 content at identical temperatures, which is lower than that of YSZ. Due to the relatively low ionic radius of Yb3+ ions, the addition of Yb2O3 decreases the thermal expansion coefficient of (Sm1- x Yb x )2Ce2O7 ceramics, which is higher than that of 8YSZ. The synthesized (Sm1- x Yb x )2Ce2O7 ceramics can be explored as candidate materials for thermal barrier coatings.

  5. Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature

    NASA Astrophysics Data System (ADS)

    Dinh, Toan; Viet Dao, Dzung; Phan, Hoang-Phuong; Wang, Li; Qamar, Afzaal; Nguyen, Nam-Trung; Tanner, Philip; Rybachuk, Maksym

    2015-06-01

    We report on the temperature dependence of the charge transport and activation energy of amorphous silicon carbide (a-SiC) thin films grown on quartz by low-pressure chemical vapor deposition. The electrical conductivity as characterized by the Arrhenius rule was found to vary distinctly under two activation energy thresholds of 150 and 205 meV, corresponding to temperature ranges of 300 to 450 K and 450 to 580 K, respectively. The a-SiC/quartz system displayed a high temperature coefficient of resistance ranging from -4,000 to -16,000 ppm/K, demonstrating a strong feasibility of using this material for highly sensitive thermal sensing applications.

  6. Temperature correction in conductivity measurements

    USGS Publications Warehouse

    Smith, Stanford H.

    1962-01-01

    Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.

  7. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability

    PubMed Central

    Yang, Ruiqi; Wei, Renbo; Li, Kui; Tong, Lifen; Jia, Kun; Liu, Xiaobo

    2016-01-01

    Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable dielectric constant and low dielectric loss are observed for this film in the frequency range of 100–200 kHz and in the temperature range of 25–300 °C. The temperature coefficient of dielectric constant is less than 0.001 °C−1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film will be a potential candidate as high performance film capacitor electronic devices materials used at high temperature. PMID:27827436

  8. Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers.

    PubMed

    Zhou, Jiawei; Zhu, Hangtian; Liu, Te-Huan; Song, Qichen; He, Ran; Mao, Jun; Liu, Zihang; Ren, Wuyang; Liao, Bolin; Singh, David J; Ren, Zhifeng; Chen, Gang

    2018-04-30

    Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.

  9. K1.33Mn8O16 as an electrocatalyst and a cathode

    NASA Astrophysics Data System (ADS)

    Jalili, Seifollah; Moharramzadeh Goliaei, Elham; Schofield, Jeremy

    2017-02-01

    Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K1.33Mn8O16 materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K1.33Mn8O16 that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn4+ ions to Mn3+, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-band center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K1.33Mn8O16 structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of 1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K1.33Mn8O16 nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries.

  10. Method of preparing corrosion resistant composite materials

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  11. Very High Output Thermoelectric Devices Based on ITO Nanocomposites

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave; Gregory, Otto J.

    2009-01-01

    A material having useful thermoelectric properties was synthesized by combining indium-tin-oxide (ITO) with a NiCoCrAlY alloy/alumina cermet. This material had a very large Seebeck coefficient with electromotive-force-versustemperature behavior that is considered to be excellent with respect to utility in thermocouples and other thermoelectric devices. When deposited in thin-film form, ceramic thermocouples offer advantages over precious-metal (based, variously, on platinum or rhodium) thermocouples that are typically used in gas turbines. Ceramic thermocouples exhibit high melting temperatures, chemical stability at high temperatures, and little or no electromigration. Oxide ceramics also resist oxidation better than metal thermocouples, cost substantially less than precious-metal thermocouples, and, unlike precious-metal thermocouples, do not exert catalytic effects.

  12. Oxygen self-diffusion in ThO 2 under pressure: Connecting point defect parameters with bulk properties

    DOE PAGES

    Cooper, Michael William D.; Fitzpatrick, M. E.; Tsoukalas, L. H.; ...

    2016-06-06

    ThO 2 is a candidate material for use in nuclear fuel applications and as such it is important to investigate its materials properties over a range of temperatures and pressures. In the present study molecular dynamics calculations are used to calculate elastic and expansivity data. These are used in the framework of a thermodynamic model, the cBΩ model, to calculate the oxygen self-diffusion coefficient in ThO 2 over a range of pressures (–10–10 GPa) and temperatures (300–1900 K). As a result, increasing the hydrostatic pressure leads to a significant reduction in oxygen self-diffusion. Conversely, negative hydrostatic pressure significantly enhances oxygenmore » self-diffusion.« less

  13. semiconducting nanostructures: morphology and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  14. Vibrational and thermal properties of β-HMX and TATB from dispersion corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron C.; Oleynik, Ivan I.

    2017-01-01

    Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of pressure-dependent crystal structure and the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra at each pressure. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in pressure-volume-temperature (PVT) EOS for each material that are in excellent agreement with experiment. Heat capacities, and coefficients of thermal expansion as functions of temperature are also calculated and compared with experiment.

  15. Base metal thermocouples drift rate dependence from thermoelement diameter

    NASA Astrophysics Data System (ADS)

    Pavlasek, P.; Duris, S.; Palencar, R.

    2015-02-01

    Temperature measurements are one of the key factors in many industrial applications that directly affect the quality, effectiveness and safety of manufacturing processes. In many industrial applications these temperature measurements are realized by thermocouples. Accuracy of thermocouples directly affects the quality of the final product of manufacturing and their durability determines the safety margins required. One of the significant effects that affect the precision of the thermocouples is short and long term stability of their voltage output. This stability issue occurs in every type of thermocouples and is caused by multiple factors. In general these factors affect the Seebeck coefficient which is a material constant, which determines the level of generated voltage when exposed to a temperature gradient. Changes of this constant result in the change of the thermocouples voltage output thus indicated temperature which can result in production quality issues, safety and health hazards. These alternations can be caused by physical and chemical changes within the thermocouple lead material. Modification of this material constant can be of temporary nature or permanent. This paper concentrates on the permanent, or irreversible changes of the Seebeck coefficient that occur in commonly used swaged MIMS Type N thermocouples. These permanent changes can be seen as systematic change of the EMF of the thermocouple when it is exposed to a high temperature over a period of time. This change of EMF by time is commonly known as the drift of the thermocouple. This work deals with the time instability of thermocouples EMF at temperatures above 1200 °C. Instability of the output voltage was taken into relation with the lead diameter of the tested thermocouples. This paper concentrates in detail on the change of voltage output of thermocouples of different diameters which were tested at high temperatures for the overall period of more than 210 hours. The gather data from this testing was used to establish the relation between the level of EMF drift and the lead diameter of the thermocouple thermoelements. Furthermore this data was also used to create a drift function which mathematically expresses the dependency between the drift rate and the diameter of the thermocouple leads.

  16. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.

    2005-11-01

    Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.

  17. Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe)n(TiSe2)n (n = 1,3,4,5).

    PubMed

    Li, Zhen; Bauers, Sage R; Poudel, Nirakar; Hamann, Danielle; Wang, Xiaoming; Choi, David S; Esfarjani, Keivan; Shi, Li; Johnson, David C; Cronin, Stephen B

    2017-03-08

    We report cross-plane thermoelectric measurements of misfit layered compounds (SnSe) n (TiSe 2 ) n (n = 1,3,4,5), approximately 50 nm thick. Metal resistance thermometers are fabricated on the top and bottom of the (SnSe) n (TiSe 2 ) n material to measure the temperature difference and heat transport through the material directly. By varying the number of layers in a supercell, n, we vary the interface density while maintaining a constant global stoichiometry. The Seebeck coefficient measured across the (SnSe) n (TiSe 2 ) n samples was found to depend strongly on the number of layers in the supercell (n). When n decreases from 5 to 1, the cross-plane Seebeck coefficient decreases from -31 to -2.5 μV/K, while the cross-plane effective thermal conductivity decreases by a factor of 2, due to increased interfacial phonon scattering. The cross-plane Seebeck coefficients of the (SnSe) n (TiSe 2 ) n are very different from the in-plane Seebeck coefficients, which are higher in magnitude and less sensitive to the number of layers in a supercell, n. We believe this difference is due to the different carrier types in the n-SnSe and p-TiSe 2 layers and the effect of tunneling on the cross-plane transport.

  18. Open System Tribology and Influence of Weather Condition.

    PubMed

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-08-30

    The tribology of an open system at temperatures ranging between 3 °C and -35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to -15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to -25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear.

  19. Open System Tribology and Influence of Weather Condition

    PubMed Central

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-01-01

    The tribology of an open system at temperatures ranging between 3 °C and −35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to −15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to −25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear. PMID:27573973

  20. Nanoscale Thermoelectrics: A Study of the Absolute Seebeck Coefficient of Thin Films

    NASA Astrophysics Data System (ADS)

    Mason, Sarah J.

    The worlds demand for energy is ever increasing. Likewise, the environmental impact of climate change due generating that energy through combustion of fossil fuels is increasingly alarming. Due to these factors new sources of renewable energies are constantly being sought out. Thermoelectric devices have the ability to generate clean, renewable, energy out of waste heat. However promising that is, their inefficiency severely inhibits applicability and practical use. The usefulness of a thermoelectric material increases with the dimensionless quantity, ZT, which depends on the Seebeck coefficient and electrical and thermal conductivity. These characteristic material parameters have interdependent energy transport contributions that classically prohibit the optimization of one with out the detriment of another. Encouraging advancements of ZT have occurred in the past ten years due to the decoupling of the thermal and electrical conductivity. Further advancements are necessary in order to produce applicable devices. One auspicious way of decoupling or tuning energy transport properties, is through size reduction to the nanoscale. However, with reduced dimensions come complications in measuring material properties. Measurements of properties such as the Seebeck coefficient, S, are primarily contingent upon the measurement apparatus. The Seebeck coefficient is defined as the amount of voltage generated by a thermal gradient. Measuring a thermally generated voltage by traditional methods gives, the voltage measured as a linear function of the Seebeck coefficient of the leads and of the material being tested divided by the applied thermal gradient. If accurate values of the Seebeck coefficients of the leads are available, simple subtraction provides the answer. This is rarely the case in nanoscale measurement devices with leads exclusively made from thin film materials that do not have well known bulk-like thermopower values. We have developed a technique to directly measure, S, as a function of temperature using a micro-machined thermal isolation platform consisting of a suspended, patterned SiN membrane. By measuring a series of thicknesses of metallic films up to the infinitely thin film limit, in which the electrical resistivity is no longer decreasing with increasing film thickness, but still not at bulk values, along with the effective electron mean free path, we are able to show the contribution of the leads needed to measure this property. Having a comprehensive understanding of the background contribution we are able to determine the absolute Seebeck coefficient of a wide variety of thin films. The nature of the design of the SiN membrane also allows the ability to accurately and directly measure thermal and electrical transport of the thin films yielding a comprehensive measurement of the three quantities that characterize a material's efficiency. This can serve to further the development of thermoelectric materials through precise measurements of the material properties that dictate efficiency.

  1. Hall coefficient measurement for residual stress assessment in precipitation hardened IN718 nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2017-02-01

    We investigated the feasibility of residual stress assessment based on Hall coefficient measurements in precipitation hardened IN718 nickel-base superalloy. As a first step, we studied the influence of microstructural variations on the galvanomagnetic properties of IN718 nickel-base superalloy. We found that the Hall coefficient of IN718 increases from ≈ 8.0×10-11 m3/C in its fully annealed state of 15 HRC Rockwell hardness to ≈ 9.4×10-11 m3/C in its fully hardened state of 45 HRC. We also studied the influence of cold work, i.e., plastic deformation, at room temperature and found that cold work had negligible effect on the Hall coefficient of fully annealed IN718, but significantly reduced it in hardened states of the material. For example, measurements conducted on fully hardened IN718 specimens showed that the Hall coefficient decreased more or less linearly with cold work from its peak value of ≈ 9.4×10-11 m3/C in its intact state to ≈ 9.0×10-11 m3/C in its most deformed state of 22% plastic strain. We also studied the influence of applied stress and found that elastic strain significantly increases the Hall coefficient of IN718 regardless of the state of hardening. The relative sensitivity of the Hall coefficient to elastic strain was measured as a unitless gauge factor K that is defined as the ratio of the relative change of the Hall coefficient ΔRH/RH divided by the axial strain ɛ = σ/E, where σ is the applied uniaxial stress and E is the Young's modulus of the material. We determined that the galvanomagnetic gauge factor of IN718 is κ ≈ 2.6 - 2.9 depending on the hardness level. Besides the fairly high value of the gauge factor, it is important that it is positive, which means that compressive stress in surface-treated components decreases the Hall coefficient in a similar way as plastic deformation does, therefore the unfortunate cancellation that occurs in fully hardened IN718 in the case of electric conductivity measurements will not happen in this case. Additionally, the temperature dependence of the Hall coefficient was measured at three different hardness levels and the influence of thermal exposure was studied in fully hardened IN718 up to 700 °C.

  2. Mechanical and electrical properties of low temperature phase MnBi

    DOE PAGES

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; ...

    2016-01-21

    The low temperature phase (LTP) MnBi is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and its large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have started to consider MnBi magnet for motor applications. In addition to the magnetic properties, there are other physical properties that could significantly affect a motor design. Here, we report the results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their dependence on temperature. We found at room temperature the sintered MnBi magnet fractures when the compression stressmore » exceeds 193 MPa; and its room temperature electric resistance is about 6.85 μΩ-m.« less

  3. Radiation effects on beta /10.6/ of pure and europium doped KCl

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Maisel, J. E.; Hartford, R. H.

    1975-01-01

    Changes in the optical absorption coefficient as the result of X-ray and electron bombardment of pure monocrystalline and polycrystalline KCl and of divalent europium doped polycrystalline KCl were determined. A constant heat flow calorimetric method was used to measure the optical absorption coefficients. Both 300 kV X-ray irradiation and 2 MeV electron irradiation produced increases in the optical absorption coefficient at room temperature. X-ray irradiation produced more significant changes in pure monocrystalline KCl than equivalent amounts of electron irradiation. Electron irradiation of pure and Eu-doped polycrystalline KCl produced increases in the absorption by as much as a factor of 20 over untreated material. Bleaching of the electron-irradiated doped KCl with 649 millimicron light produced a further increase.

  4. A Numerical Study of Coupled Non-Linear Equations of Thermo-Viscous Fluid Flow in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Pothanna, N.; Aparna, P.; Gorla, R. S. R.

    2017-12-01

    In this paper we present numerical solutions to coupled non-linear governing equations of thermo-viscous fluid flow in cylindrical geometry using MATHEMATICA software solver. The numerical results are presented in terms of velocity, temperature and pressure distribution for various values of the material parameters such as the thermo-mechanical stress coefficient, thermal conductivity coefficient, Reiner Rivlin cross viscosity coefficient and the Prandtl number in the form of tables and graphs. Also, the solutions to governing equations for slow steady motion of a fluid have been obtained numerically and compared with the existing analytical results and are found to be in excellent agreement. The results of the present study will hopefully enable a better understanding applications of the flow under consideration.

  5. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    NASA Astrophysics Data System (ADS)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  6. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    PubMed

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.

  7. Friction behaviour of aluminium composites mixed with carbon fibers with different orientations

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2016-08-01

    The primary goal of this study work it was to distinguish a mixture of materials with enhanced friction and wearing behaviour. The composite materials may be differentiated from alloys; which can contain two more components but are formed naturally through different processes such as casting. The load applied on the specimen during the tests, is playing a very important role regarding friction coefficient and also the wearing speed. Sintered composites are gaining importance because the reinforcement serves to reduce the coefficient of thermal expansion and increase the strength and modulus. The friction tests are carried out, at the room temperature in dry condition, on a pin-on-disc machine. The exponentially decreasing areas form graphs, represented to the curves coefficient of friction, are attributed to the formation of lubricant transfer film and initial polishing surface samples. The influence of the orientation of the carbon fibers on the friction properties in the sintered polymer composites may be studied by the use of both mechanical wear tests by microscopy and through the use of phenomenological models.

  8. Thermoelectric properties of FeAs based superconductors, with thick perovskite- and Sm-O fluorite-type blocking layers

    NASA Astrophysics Data System (ADS)

    Singh, S. J.; Shimoyama, J.; Ogino, H.; Kishio, K.

    2015-11-01

    The transport properties (electrical resistivity, Hall and Seebeck coefficient, and thermal conductivity) of iron based superconductors with thick perovskite-type oxide blocking layers and fluorine-doped SmFeAsO were studied to explore their possible potential for thermoelectric applications. The thermal conductivity of former compounds depicts the dominated role of phonon and its value decreases rapidly below the Tc, suggesting the addition of scattering of phonons. Both the Seebeck coefficient (S) and Hall coefficient (RH) of all samples were negative in the whole temperature region below 300 K, indicating that the major contribution to the normal state conductivity is by electrons. In addition, the profile of S(T) and RH(T) of all samples have similar behaviours as would be expected for a multi-band superconductors. Although the estimated thermoelectric figure of merit (ZT) of these compounds was much lower than that of practically applicable thermoelectric materials, however its improvement can be expected by optimizing microstructure of the polycrystalline materials, such as densification and grain orientation.

  9. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    PubMed Central

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control. PMID:28079161

  10. Thermoelectric transport coefficients in mono-layer MoS{sub 2} and WSe{sub 2}: Role of substrate, interface phonons, plasmon, and dynamic screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Krishnendu, E-mail: kghosh3@buffalo.edu; Singisetti, Uttam, E-mail: uttamsin@buffalo.edu

    2015-10-07

    The thermoelectric transport coefficients of electrons in two recently emerged transition metal di-chalcogenides (TMD), MoS{sub 2} and WSe{sub 2}, are calculated by solving Boltzmann transport equation using Rode's iterative technique in the diffusive transport regime and the coupled current (electrical and heat) equations. Scattering from remote phonons along with the hybridization of TMD plasmon with remote phonon modes and dynamic screening under linear polarization response are investigated in TMDs sitting on a dielectric environment. The transport coefficients are obtained for a varying range of temperature and doping density for three different types of substrates—SiO{sub 2}, Al{sub 2}O{sub 3}, and HfO{submore » 2}. The Seebeck co-efficient for MoS{sub 2} and WSe{sub 2} is found to be higher than 3D semiconductors even with diffusive transport. The electronic thermal conductivity is found to be low, however, the thermoelectric figure of merit is limited by the high phonon thermal conductivity. It is found that judicious selection of a dielectric environment based on temperature of operation and carrier density is crucial to optimize the thermoelectric performance of TMD materials.« less

  11. High thermoelectric figure of merit by resonant dopant in half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Chen, Long; Liu, Yamei; He, Jian; Tritt, Terry M.; Poon, S. Joseph

    2017-06-01

    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in enhancing the ZT of n-type half-Heusler alloys based on Hf0.6Zr0.4NiSn0.995Sb0.005. The V doping was found to increase the Seebeck coefficient in the temperature range 300-1000 K, consistent with a resonant doping scheme. In contrast, Nb and Ta act as normal n-type dopants, as evident by the systematic decrease in electrical resistivity and Seebeck coefficient. The combination of enhanced Seebeck coefficient due to the presence of V resonant states and the reduced thermal conductivity has led to a state-of-the-art ZT of 1.3 near 850 K in n-type (Hf0.6Zr0.4)0.99V0.01NiSn0.995Sb0.005 alloys.

  12. Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio

    2013-02-01

    We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.

  13. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects.

    PubMed

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-19

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10(-8) Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  14. Thermal Fatigue Limitations of Continuous Fiber Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Arya, Vinod K.

    1997-01-01

    The potential structural benefits of unidirectional, continuous-fiber, metal matrix composites (MMC's) are legendary. When compared to their monolithic matrices, MMC's possess superior properties such as higher stiffness and tensile strength, and lower coefficient of thermal expansion in the direction of the reinforcing fibers. As an added bonus, the MMC density will be lower if the fibers are less dense than the matrix matErial they replace. The potential has been demonstrated unequivocally both analytically and experimentally, especially at ambient temperatures. Successes prompted heavily-funded National efforts within the United States (USAF and NASA) and elsewhere to extend the promise of MMC's into the temperature regime wherein creep, stress relaxation, oxidation, and thermal fatigue damage mechanisms lurk. This is the very regime for which alternative high-temperature materials are becoming mandatory, since further enhancement of state- of-the-art monolithic alloys is rapidly approaching a point of diminishing returns.

  15. ZnO for solar cell and thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Ghods, Amirhossein; Yunghans, Kelcy L.; Saravade, Vishal G.; Patel, Paresh V.; Jiang, Xiaodong; Kucukgok, Bahadir; Lu, Na; Ferguson, Ian

    2017-03-01

    ZnO-based materials show promise in energy harvesting applications, such as piezoelectric, photovoltaic and thermoelectric. In this work, ZnO-based vertical Schottky barrier solar cells were fabricated by MOCVD de- position of ZnO thin films on ITO back ohmic contact, while Ag served as the top Schottky contact. Various rapid thermal annealing conditions were studied to modify the carrier density and crystal quality. Greater than 200 nm thick ZnO films formed polycrystalline crystal structure, and were used to demonstrate Schottky solar cells. I-V characterizations of the devices showed photovoltaic performance, but but need further development. This is the first demonstration of vertical Schottky barrier solar cell based on wide bandgap ZnO film. Thin film and bulk ZnO grown by MOCVD or melt growth were also investigated in regards to their room- temperature thermoelectric properties. The Seebeck coefficient of bulk ZnO was found to be much larger than that of thin film ZnO at room temperature due to the higher crystal quality in bulk materials. The Seebeck coefficients decrease while the carrier concentration increases due to the crystal defects caused by the charge carriers. The co-doped bulk Zn0:96Ga0:02Al0:02O showed enhanced power factors, lower thermal conductivities and promising ZT values in the whole temperature range (300-1300 K).

  16. Finite Element Analysis of Active and Sensory Thermopiezoelectric Composite Materials. Degree awarded by Northwestern Univ., Dec. 2000

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2001-01-01

    Analytical formulations are developed to account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. The coupled response is captured at the material level through the thermopiezoelectric constitutive equations and leads to the inherent capability to model both the sensory and active responses of piezoelectric materials. A layerwise laminate theory is incorporated to provide more accurate analysis of the displacements, strains, stresses, electric fields, and thermal fields through-the-thickness. Thermal effects which arise from coefficient of thermal expansion mismatch, pyroelectric effects, and temperature dependent material properties are explicitly accounted for in the formulation. Corresponding finite element formulations are developed for piezoelectric beam, plate, and shell elements to provide a more generalized capability for the analysis of arbitrary piezoelectric composite structures. The accuracy of the current formulation is verified with comparisons from published experimental data and other analytical models. Additional numerical studies are also conducted to demonstrate additional capabilities of the formulation to represent the sensory and active behaviors. A future plan of experimental studies is provided to characterize the high temperature dynamic response of piezoelectric composite materials.

  17. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  18. Thermoelectric properties of cerium monopnictides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.

    1987-01-01

    Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.

  19. Thermophysical ESEM and TEM Characterization of Carbon Fibers CTE, Spectroscopy and Roughness Studies at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ochoa, Ozden O.

    2004-01-01

    Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.

  20. Thermal cycling properties of a lead-free positive temperature coefficient thermistor in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Choi, Soon-Mok; Choi, Duck-Kyun

    2016-01-01

    A Pb-free PTC (positive temperature coefficient thermistor) heater was developed in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system especially for automotive part applications. The reliability was verified by using a thermal cycling test designed on the basis of the result from a quality function deployment (QFD) analysis. We compared the thermal cycling test results from the newly-developed Pb-free PTC heaters with the results from PTC heaters currently on the market, namely, PTC heaters containing Pb. Life prediction and stress-strength relationships were analyzed together with a thermal diffusivity evaluation. We discuss the potential failure mechanisms during the thermal cycling test, focusing on the fact that electrical degradation in PTC materials is closely related to mechanical degradation due to the internal stress in the materials that comes from repeated phase changes. Different grain size distributions on the sintered bulks were considered to a key factor for explaining the different results of the reliability tests between the new Pb-free PTC heaters developed in this study and the commercial PTC heaters containing Pb.

  1. Taguchi optimization of bismuth-telluride based thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank

    2017-07-01

    In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.

  2. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT

    PubMed Central

    Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F.

    2013-01-01

    Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10−7 sm−1. PMID:23443562

  3. Thermoelectric Properties of the Perovskite-Type Oxide SrTi1-xNbxO3 Synthesized by Solid-State Reaction Method

    NASA Astrophysics Data System (ADS)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2018-05-01

    The perovskite-type oxide materials SrTi1-xNbxO3 (X = .02, 0.03, 0.04, 0.05 and 0.06) were synthesized by the conventional solid-state reaction method and the thermoelectric properties in terms of Nb doping at the B-site in the oxides were investigated in this study. The formation of single phase cubic perovskite structure was confirmed by the powder X-ray diffraction analysis. Negative conduction is shown in this materials system. The absolute value of Seebeck coefficient increased with increasing temperature over the measured temperature. The electrical conductivity decreased monotonically with increasing temperature, showing degenerating conduction behavior. The thermal conductivity, k, generally decreased with increasing temperature. The power factor increased with increasing Nb-doping level up to 5.0 mol% and hence the dimensionless figure of merit ZT, increased up to 5.0 mol%. The maximum ZT value was observed for SrTi0.95Nb0.05O3 at 873 K.

  4. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Fasong; Departments of Physics, College of Science, Beijing University of Chemical Technology, Beijing 100029; Tan, Yidong

    2015-04-15

    The noncooperative and ultrahigh sensitive length measurement approach is of great significance to the study of a high-precision thermal expansion coefficient (TEC) determination of materials at a wide temperature range. The novel approach is presented in this paper based on the Nd:YAG microchip laser feedback interferometry with 1064 nm wavelength, the beam frequency of which is shifted by a pair of acousto-optic modulators and then the heterodyne phase measurement technique is used. The sample is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams are perpendicular and coaxial on each surfacemore » of the sample, the configuration which can not only achieve the length measurement of sample but also eliminate the influence of the distortion of the sample supporter. The reference beams inject on the reference mirrors which are put as possible as near the holes, respectively, to eliminate the air disturbances and the influence of thermal lens effect out of the furnace chamber. For validation, the thermal expansion coefficients of aluminum and steel 45 samples are measured from room temperature to 748 K, which proved measurement repeatability of TECs is better than 0.6 × 10{sup −6}(K{sup −1}) at the range of 298 K–598 K and the high-sensitive non-contact measurement of the low reflectivity surface induced by the oxidization of the samples at the range of 598 K–748 K.« less

  5. Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships.

    PubMed

    Ojovan, Michael I; Travis, Karl P; Hand, Russell J

    2007-10-17

    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO 2 , GeO 2 , B 2 O 3 , anorthite, diopside, xNa 2 O-(1-x)SiO 2 , xPbO-(1-x)SiO 2 , soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found.

  6. Transparent athermal glass-ceramics in Li2O-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Himei, Yusuke; Nagakane, Tomohiro; Sakamoto, Akihiko; Kitamura, Naoyuki; Fukumi, Kohei; Nishii, Junji; Hirao, Kazuyuki

    2005-04-01

    An attempt has been conducted to develop multicomponent transparent glass-ceramics which have athermal property better than silica glass. Transparent Li2O-Al2O3-SiO2 (LAS) glass-ceramics with small thermal expansion coefficient was chosen as a candidate. Athermal property of the glass-ceramics was improved by the independent control of temperature coefficients of electronic polarizability and thermal expansion coefficient, both of which govern the temperature coefficient of optical path length. It was found that temperature coefficient of electronic polarizability and thermal expansion coefficient of the LAS glass-ceramics were controllable by the additives and crystallization conditions. The doping of B2O3 and the crystallization under a hydrostatic pressure of 196 MPa were very effective to reduce temperature coefficient of electronic polarizability without a remarkable increase in thermal expansion coefficient. It was deduced that the reduction in temperature coefficient of electronic polarizability by the crystallization under 196 MPa resulted from the inhibition of the precipitation of beta-spodumene solid solution. The relative temperature coefficients of optical path length of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 x 10-6/°C, which was slightly larger than that of silica glass. Nevertheless, the thermal expansion coefficient of this glass-ceramic was smaller than that of silica glass.

  7. Spin-dependent Peltier effect in 3D topological insulators

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard

    2013-03-01

    The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.

  8. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang

    Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful formore » the pyroelectric materials (DB mode) applications.« less

  9. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2018-04-01

    The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt-Reuss approximation, we calculated the various elastic constants, the shear and Young's moduli, and Poisson's ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to D directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

  10. Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2010-01-01

    Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S(exp 2)(sigma)T/Kappa, T is temperature, S is the Seebeck coefficient, sigma is conductance and Kappa is thermal conductivity. For a lower thermal conductivity Kappa and high power factor (S(exp 2)(sigma)), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe "twin lattice structure (TLS)" plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60 X rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.

  11. Apparatus and method for measuring the Seebeck coefficient and resistivity of materials

    NASA Technical Reports Server (NTRS)

    Hadek, V. (Inventor)

    1973-01-01

    An apparatus for measuring the thermoelectric properties of materials under high pressure is described that includes a pair of force transmitting assemblies constructed of thermally and electrically conductive material positioned between the ram and anvil of a press. Each force transmitting assembly has a small diameter pressing portion for contacting a face of the sample so that the sample can be squeezed between them. Each assembly also includes a heat exchanger to maintain the sample face at a controlled temperature, and an electrical conductor to carry current generated by the sample. A sleeve of thermally and electrically insulative material closely surrounds the pressing portions of the two assemblies.

  12. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  13. Fractal patterns of fracture in sandwich composite materials under biaxial tension

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Yao, Xuefeng; Qi, Jia

    1996-04-01

    The paper presents a successful experiment to generate a fractal pattern of branching cracks in a brittle material sandwiched in ductile plates. A glass sheet bonded between two polycarbonate plates was heated at different levels of temperatures and the stress field due to the difference of thermal coefficients of the materials was solved by combining the results from isochromatic fringes and thermal stress analysis. At a critical degree of temperature, a crack was initiated at a point and soon produced crack branches to release the stored energy. A tree—like fractal patterns of the branch cracks was then developed with the growth of the branches that subsequently produced more branches on their ways of propagation. The fractal dimension of the fracture pattern was evaluated and the mechanism of the fragmentation was analyzed with the help of the residual stress field of isochromatic and isoclinic patterns.

  14. Fabrication and test of experimental automotive friction materials

    NASA Technical Reports Server (NTRS)

    Halberstadt, M. L.

    1976-01-01

    Three classes of experimental ingredients having good high temperature stability were substituted, singly and in combination, for corresponding ingredients in a standard friction material. The effects of substitution were evaluated by physical and chemical analysis, and principally by determination of friction and wear properties as a function of temperature on a sample drag dynamometer. The major finding was the demonstration of the potential of potassium titanate fiber for the improvement of a friction material of the secondary lining type. For example, the maintenance of a mean friction coefficient of 0.35 between 232 and 343 C (450 and 650 F) was achieved in the presence of the titanate fiber, as opposed to a value of 0.30 in its absence. Wear improvement of the order of 30 to 40% also becomes possible by proper adjustment of resin content and potassium titanate fiber-to-asbestos ratio.

  15. Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder

    NASA Astrophysics Data System (ADS)

    Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki

    Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).

  16. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano-Sánchez, F.; Gharsallah, M.; Nemes, N. M.

    SnSe has been prepared by arc-melting, as mechanically robust pellets, consisting of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy, and transport measurements. A microscopic analysis from NPD data demonstrates a quite perfect stoichiometry SnSe{sub 0.98(2)} and a fair amount of anharmonicity of the chemical bonds. The Seebeck coefficient reaches a record maximum value of 668 μV K{sup −1} at 380 K; simultaneously, this highly oriented sample exhibits an extremely low thermal conductivity lower than 0.1 W m{sup −1} K{sup −1} around room temperature, which are two of the main ingredients of good thermoelectric materials. Thesemore » excellent features exceed the reported values for this semiconducting compound in single crystalline form in the moderate-temperatures region and highlight its possibilities as a potential thermoelectric material.« less

  18. Measurement of gas-liquid partition coefficient and headspace concentration profiles of perfume materials by solid-phase microextraction and capillary gas chromatography-mass spectrometry

    PubMed

    Liu; Wene

    2000-09-01

    An empirical model describing the relationship between the partition coefficients (K) of perfume materials in the solid-phase microextraction (SPME) fiber stationary phase and the Linearly Temperature Programmed Retention Index (LTPRI) is obtained. This is established using a mixture of eleven selected fragrance materials spiked in mineral oil at different concentration levels to simulate liquid laundry detergent matrices. Headspace concentrations of the materials are measured using both static headspace and SPME-gas chromatography analysis. The empirical model is tested by measuring the K values for fourteen perfume materials experimentally. Three of the calculated K values are within 2-19% of the measured K value, and the other eleven calculated K values are within 22-59%. This range of deviation is understandable because a diverse mixture was used to cover most chemical functionalities in order to make the model generally applicable. Better prediction accuracy is expected when a model is established using a specific category of compounds, such as hydrocarbons or aromatics. The use of this method to estimate distribution constants of fragrance materials in liquid matrices is demonstrated. The headspace SPME using the established relationship between the gas-liquid partition coefficient and the LTPRI is applied to measure the headspace concentration of fragrances. It is demonstrated that this approach can be used to monitor the headspace perfume profiles over consumer laundry and cleaning products. This method can provide high sample throughput, reproducibility, simplicity, and accuracy for many applications for screening major fragrance materials over consumer products. The approach demonstrated here can be used to translate headspace SPME results into true static headspace concentration profiles. This translation is critical for obtaining the gas-phase composition by correcting for the inherent differential partitioning of analytes into the fiber stationary phase.

  19. Iron-rich (Fe1-x-yNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.

    2018-05-01

    As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.

  20. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    NASA Astrophysics Data System (ADS)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  1. Stepwise and Pulse Transient Methods of Thermophysical Parameters Measurement

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár; Dieška, Peter

    2016-12-01

    Stepwise transient and pulse transient methods are experimental techniques for measuring the thermal diffusivity and conductivity of solid materials. Theoretical models and experimental apparatus are presented, and the influence of the heat source capacity and the heat transfer coefficient is investigated using the experiment simulation. The specimens from low-density polyethylene (LDPE) and polymethylmethacrylate (PMMA) were measured by both methods. Coefficients of variation were better than 0.9 % for LDPE and 2.8 % for PMMA measurements. The time dependence of the temperature response to the input heat flux showed a small drop, which was caused by thermoelastic wave generated by thermal expansions of the heat source.

  2. Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.J.; Chun, Y.J.

    2005-07-01

    The separation of four kinds of nitrogen heterocyclic compounds (NHCs) from a model mixture comprising NHCs (indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)), three kinds of bicyclic aromatic compounds (BACs; 1-methyl-naphthalene (IMN), 2-methyl naphthalene (2MN), dimethylnaphthalene (DMN)), biphenyl (Bp) and phenyl ether (Pe) was examined by a solvent extraction. The model mixture used as a raw material of this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: 240-265{sup o}C). An aqueous solution of methanol, ethanol, iso-propyl alcohol, N,N-dimethyl acetamide, DMF, formamide, N-methylformamide/methanol, and formamide/methanol were used as solvents.more » An aqueous solution of formamide was found suitable for separating NHCs contained in coal tar fraction based on distribution coefficient and selectivity. The effect of operation factors on separating NHCs was investigated by the distribution equilibrium using an aqueous solution of formamide. Increasing the operation temperature and the volume ratio of solvent to feed at initial (S/F)(o) resulted in improving the distribution coefficients of each NHC, but increasing the volume fraction of water in the solvent at initial (y(w,O)) resulted in deteriorating the distribution coefficients of each NHC. With increasing y(w,O) and (S/F)(o), the selectivities of each NHC in reference to DMN increased. Increase in operation temperature resulted in decrease in selectivities of each NHC in reference to DMN. At an experimental condition fixed, the sequence of the distribution coefficient and selectivity in reference to DMN for each NHC was In {gt} iQ {gt} Q {gt} Qu, and also the sequence of the distribution coefficient for each BAC was IMN {gt} 2MN {gt} DMN. The sequence of the distribution coefficient for entire compounds analyzed by this work was In {gt} iQ {gt} Q {gt} Qu {gt} BP {gt} 1MN {gt} 2MN {gt} Pe {gt} DMN.« less

  3. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-).

    PubMed

    Ohta, Hiromichi; Sugiura, Kenji; Koumoto, Kunihito

    2008-10-06

    Thermoelectric energy conversion technology to convert waste heat into electricity has received much attention. In addition, metal oxides have recently been considered as thermoelectric power generation materials that can operate at high temperatures on the basis of their potential advantages over heavy metallic alloys in chemical and thermal robustness. We have fabricated high-quality epitaxial films composed of oxide thermoelectric materials that are suitable for clarifying the intrinsic "real" properties. This review focuses on the thermoelectric properties of two representative oxide epitaxial films, p-type Ca 3Co 4O 9 and n-type SrTiO 3, which exhibit the best thermoelectric figures of merit, ZT (= S (2)sigma Tkappa (-1), S = Seebeck coefficient, sigma = electrical conductivity, kappa = thermal conductivity, and T = absolute temperature) among oxide thermoelectric materials reported to date. In addition, we introduce the recently discovered giant S of two-dimensional electrons confined within a unit cell layer thickness ( approximately 0.4 nm) of SrTiO 3.

  4. High temperature coefficient of resistance achieved by ion beam assisted sputtering with no heat treatment in V{sub y}M{sub 1−y}O{sub x} (M = Nb, Hf)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vardi, Naor; Sharoni, Amos, E-mail: amos.sharoni@biu.ac.il

    2015-11-15

    Thermal imaging based on room temperature bolometer sensors is a growing market, constantly searching for improved sensitivity. One important factor is the temperature coefficient of resistance (TCR), i.e., the sensitivity of the active material. Herein, the authors report the improved TCR properties attainable by the “ion beam assisted deposition” method for room temperature deposition. V{sub y}M{sub 1−y}O{sub x} (M = Nb, Hf) thin-film alloys were fabricated on 1 μm thermal SiO{sub 2} atop Si (100) substrates by reactive magnetron cosputtering at room temperature using a low energy ion source, aimed at the film, to insert dissociated oxygen species and increase film density. Themore » authors studied the influence of deposition parameters such as oxygen partial pressure, V to M ratio, and power of the plasma source, on resistance and TCR. The authors show high TCR (up to −3.7% K{sup −1}) at 300 K, and excellent uniformity, but also an increase in resistance. The authors emphasize that samples were prepared at room temperature with no heat treatment, much simpler than common processes that require annealing at high temperatures. So, this is a promising fabrication route for uncooled microbolometers.« less

  5. The pressure coefficient of the Curie temperature of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Konno, R.; Hatayama, N.

    2012-12-01

    The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.

  6. Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates

    NASA Astrophysics Data System (ADS)

    Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo

    2003-12-01

    For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named 'hybrid sensor' and 'laminate sensor', respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic. Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glued to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion, both strain and temperature can be measured. The latter sensor is a laminate of two 90° plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors was experimentally confirmed.

  7. Temperature-compensated strain measurement using FBG sensors embedded in composite laminates

    NASA Astrophysics Data System (ADS)

    Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo

    2002-07-01

    For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named hybrid sensor and laminate sensor, respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic (GFRP). Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glue to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion (CTEs), both strain and temperature can be measured. The latter sensor is a laminate of two 90 degree(s) plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors were experimentally confirmed.

  8. Solvent-Based Synthesis of Nano-Bi0.85Sb0.15 for Low-Temperature Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Kaspar, K.; Fritsch, K.; Habicht, K.; Willenberg, B.; Hillebrecht, H.

    2017-01-01

    In this study we show a preparation method for nanostructured Bi0.85Sb0.15 powders via a chemical reduction route in a polyol medium, yielding material with particle sizes of 20-150 nm in scalable amounts. The powders were consolidated by spark plasma sintering (SPS) in order to maintain the nanostructure. To investigate influence of the sinter process, the powders were characterized by x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM) measurements before and after SPS. Transport properties, Seebeck effect, and thermal conductivity were determined in the low temperature range below 300 K. The samples showed excellent thermal conductivity of 2.3-2.6 W/m × K at 300 K and Seebeck coefficients from -97 μV/K to -107 μV/K at 300 K with a maximum of -141 μV/K at 110 K, thus leading to ZT values of up to 0.31 at room temperature. The results show that Bi-Sb-alloys are promising materials for low-temperature applications. Our wet chemical approach gives access to scalable amounts of nano-material with increased homogeneity and good thermoelectric properties after SPS.

  9. Effects of sintering process on wear and mechanical behavior properties of titanium carbide/hexagonal boron nitrid/steel 316L base nanocomposites

    NASA Astrophysics Data System (ADS)

    Sadooghi, Ali; Payganeh, Gholamhassan

    2018-02-01

    Powder metallurgy process is one of the approaches to manufacture nanocomposite samples, in which the product quality depends upon the pressure, temperature, and sintering time. In this manuscript, steel is selected as the base material together with 2% carbon-based reinforcing TiC particles, and 2% hBN particles as the self-lubricant material. The powders were mixed for 5 h in high ball milling, and compacted with two pressures of 350 and 450 MPa, sintered in the furnace for 2 and 4 h, and sintering temperatures of 1350 and 1450 °C were utilized. SEM, XRD, and EDX tests are performed to identify the nanocomposite structure, and DTA tests are carried out to specify the temperature graph of the material. Finally, hardness, wear, and bending tests are done to find the corresponding mechanical properties of the samples. As a result, the optimum process parameters, including pressure, temperature and sintering duration is achieved. Results show that adding the reinforcing particles into a steel matrix increase the hardness, as well as flexural strength of the nanocomposite product. Also, coefficient of friction shows a decreases.

  10. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures.

    PubMed

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng; Zhou, Peng

    2018-04-01

    2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS 2 /GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.

  11. Low-energy collisions between electrons and BeD+

    NASA Astrophysics Data System (ADS)

    Niyonzima, S.; Pop, N.; Iacob, F.; Larson, Å; Orel, A. E.; Mezei, J. Zs; Chakrabarti, K.; Laporta, V.; Hassouni, K.; Benredjem, D.; Bultel, A.; Tennyson, J.; Reiter, D.; Schneider, I. F.

    2018-02-01

    Multichannel quantum defect theory is applied in the treatment of the dissociative recombination and vibrational excitation processes for the BeD+ ion in the 24 vibrational levels of its ground electronic state ({{X}}{}1{{{Σ }}}+,{v}{{i}}+=0\\ldots 23). Three electronic symmetries of BeD** states ({}2{{\\Pi }}, {}2{{{Σ }}}+, and {}2{{Δ }}) are considered in the calculation of cross sections and the corresponding rate coefficients. The incident electron energy range is 10-5-2.7 eV and the electron temperature range is 100-5000 K. The vibrational dependence of these collisional processes is highlighted. The resulting data are useful in magnetic confinement fusion edge plasma modeling and spectroscopy, in devices with beryllium based main chamber materials, such as ITER and JET, and operating with the deuterium-tritium fuel mix. An extensive rate coefficients database is presented in graphical form and also by analytic fit functions whose parameters are tabulated in the supplementary material.

  12. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass

    NASA Astrophysics Data System (ADS)

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-01

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnOx (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  13. Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface.

    PubMed

    Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V

    2014-08-21

    The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.

  14. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass.

    PubMed

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-31

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnO x (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  15. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures

    PubMed Central

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng

    2018-01-01

    Abstract 2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field‐effect transistors. However, 2DLM‐based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM‐based integrated circuits based on amplifier circuits. PMID:29721428

  16. Calibration test of the temperature and strain sensitivity coefficient in regional reference grating method

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Huang, Junbing; Wu, Hanping; Gu, Hongcan; Tang, Bo

    2014-12-01

    In order to verify the validity of the regional reference grating method in solve the strain/temperature cross sensitive problem in the actual ship structural health monitoring system, and to meet the requirements of engineering, for the sensitivity coefficients of regional reference grating method, national standard measurement equipment is used to calibrate the temperature sensitivity coefficient of selected FBG temperature sensor and strain sensitivity coefficient of FBG strain sensor in this modal. And the thermal expansion sensitivity coefficient of the steel for ships is calibrated with water bath method. The calibration results show that the temperature sensitivity coefficient of FBG temperature sensor is 28.16pm/°C within -10~30°C, and its linearity is greater than 0.999, the strain sensitivity coefficient of FBG strain sensor is 1.32pm/μɛ within -2900~2900μɛ whose linearity is almost to 1, the thermal expansion sensitivity coefficient of the steel for ships is 23.438pm/°C within 30~90°C, and its linearity is greater than 0.998. Finally, the calibration parameters are used in the actual ship structure health monitoring system for temperature compensation. The results show that the effect of temperature compensation is good, and the calibration parameters meet the engineering requirements, which provide an important reference for fiber Bragg grating sensor is widely used in engineering.

  17. Low Intensity Low Temperature (LILT) Measurements and Coefficients on New Photovoltaic Structures

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Jenkins, Phillip P.; Brinker, David J.; Appelbaum, Joseph

    1995-01-01

    Past NASA missions to Mars, Jupiter and the outer planets were powered by radioisotope thermal generators (RTGs). Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for future planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaics (PV) and thermophotovoltaics (TPV). Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV data base for planetary mission planners and cell designers, we have compiled low intensity low temperature (LILT) I-V data on single junction and multi-junction high efficiency solar cells. The cells tested here represent the latest photovoltaic technology. Using this LILT data to calculate Short Circuit Current (I(sub sc)), Open Circuit Voltage (V(sub os)), and Fill Factor (FF) as a function of temperature and intensity, an accurate prediction of cell performance under the AM0 spectrum can be determined. When combined with QUantum efficiency at Low Temperature (QULT) data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview of LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GaInP/GaAs/GaAs, InP, InGaAs/InP, InP/InGaAs/InP, and GaInP. Temperatures range down to as low as -180 C and intensities range from 1 sun down to 0.02 suns. The coefficients presented in this paper represent experimental results and are intended to provide the user with approximate numbers.

  18. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.

    PubMed

    Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  19. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadlia, L.; Mayoufi, M.; Gasser, F.

    2014-09-15

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in thismore » paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.« less

  20. Anisotropic Thermal Behavior of Silicone Polymer, DC 745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Jillian Cathleen; Torres, Joseph Angelo; Volz, Heather Michelle

    In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it ismore » determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.« less

  1. Tribological properties of PM212: A high-temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1989-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  2. Tribological properties of PM212 - A high temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1990-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  3. Polarization Stability of Amorphous Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  4. SPME-Based Ca-History Method for Measuring SVOC Diffusion Coefficients in Clothing Material.

    PubMed

    Cao, Jianping; Liu, Ningrui; Zhang, Yinping

    2017-08-15

    Clothes play an important role in dermal exposure to indoor semivolatile organic compounds (SVOCs). The diffusion coefficient of SVOCs in clothing material (D m ) is essential for estimating SVOC sorption by clothing material and subsequent dermal exposure to SVOCs. However, few studies have reported the measured D m for clothing materials. In this paper, we present the solid-phase microextraction (SPME) based C a -history method. To the best of our knowledge, this is the first try to measure D m with known relative standard deviation (RSD). A thin sealed chamber is formed by a circular ring and two pieces of flat SVOC source materials that are tightly covered by the targeted clothing materials. D m is obtained by applying an SVOC mass transfer model in the chamber to the history of gas-phase SVOC concentrations (C a ) in the chamber measured by SPME. D m 's of three SVOCs, di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and tris(1-chloro-2-propyl) phosphate (TCPP), in a cotton T-shirt can be obtained within 16 days, with RSD less than 3%. This study should prove useful for measuring SVOC D m in various sink materials. Further studies are expected to facilitate application of this method and investigate the effects of temperature, relative humidity, and clothing material on D m .

  5. Significant increase of Curie temperature and large piezoelectric coefficient in Ba(Ti0.80Zr0.20)O3-0.5(Ba0.70Ca0.30)TiO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Fu, Bi; Yang, Yaodong; Gao, Kun; Wang, Yaping

    2015-07-01

    Ba(Ti0.80Zr0.20)O3-0.5(Ba0.7Ca0.3)TiO3 (abbreviated as BTZ-0.5BCT) is a piezoelectric ceramic with a high piezoelectric coefficient d33 (˜620 pC N-1) and has been regarded as one of the most promising candidates to replace PZT-based materials (200-710 pC N-1). However, its Curie temperature TC is relatively low (93 °C) limiting its application. In this letter, we found a temperature dependent Raman spectrum in BTZ-0.5BCT nanofibers (NFs), demonstrating a diffused tetragonal-to-cubic phase transition at 300 °C. This means that the TC of the NFs is nearly 207 °C higher than that of the normal bulk material. The increased TC is considered to be associated with the size effect of BTZ-0.5BCT nanoceramic subunits and the nanoporous nature of the fiber, resulting in discontinuous physical properties. The variation of the ferro/piezoelectricity over the fiber surface is attributed to the polycrystalline structure. The d33 (173.32 pm V-1) is improved in terms of the decreased Q factor result in an increase in d33 of 236.54 pm V-1 after polarization. With a high TC and a very large d33, BTZ-0.5BCT NFs are capable of providing electromechanical behavior used in moderate temperatures.

  6. Crystal growth and characterization of europium doped lithium strontium iodide scintillator as an ionizing radiation detector

    NASA Astrophysics Data System (ADS)

    Uba, Samuel

    High performance detectors used in the detection of ionizing radiation is critical to nuclear nonproliferation applications and other radiation detectors applications. In this research we grew and tested Europium doped Lithium Strontium Iodide compound. A mixture of lithium iodide, strontium iodide and europium iodide was used as the starting materials for this research. Congruent melting and freezing temperature of the synthesized compound was determined by differential scanning calorimetry (DSC) using a Setaram Labsys Evo DSC-DTA instrument. The melting temperatures were recorded at 390.35°C, 407.59°C and freezing temperature was recorded at 322.84°C from a graph of heat flow plotted against temperature. The synthesized material was used as the charge for the vertical Bridgeman growth, and a 6.5 cm and 7.7cm length boule were grown in a multi-zone transparent Mullen furnace. A scintillating detector of thickness 2.53mm was fabricated by mechanical lapping in mineral oil, and scintillating response and timing were obtained to a cesium source using CS-137 isotope. An energy resolution (FWHM over peak position) of 12.1% was observed for the 662keV full absorption peak. Optical absorption in the UV-Vis wavelength range was recorded for the grown crystal using a U-2900 UV/VIS Spectrophotometer. Absorption peaks were recorded at 194nm, 273nm, and 344nm from the absorbance spectrum, various optical parameters such as absorption coefficient, extinction coefficient, refractive index, and optical loss were derived. The optical band gap energy was calculated using Tauc relation expression at 1.79eV.

  7. CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials.

    PubMed

    Bocher, L; Aguirre, M H; Logvinovich, D; Shkabko, A; Robert, R; Trottmann, M; Weidenkaff, A

    2008-09-15

    Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K < T < 1070 K). Furthermore, lower thermal conductivity values are achieved for the SC-derived phases (kappa < 1 W m(-1) K(-1)) compared to the SSR compounds. High power factors combined with low thermal conductivity (leading to ZT values > 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.

  8. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity

    NASA Astrophysics Data System (ADS)

    Ahmadi Nadooshan, Afshin; Hemmat Esfe, Mohammad; Afrand, Masoud

    2017-08-01

    In the present paper, the dynamic viscosity of 10W40 lubricant containing hybrid nano-materials has been examined. Hybrid nano-materials were composed of 90% of silica (SiO2) with 20-30 nm mean particle size and 10% of multi-walled carbon nanotubes (MWCNTs) with inner diameter of 2-6 nm and outer diameter of 5-20 nm. Nano-lubricant samples were prepared by two-step method with solid volume fractions of 0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 1%. Dynamic viscosity of the samples was measured at temperatures between 5 and 55 °C and at shear rates of 666.5 s-1 up to 11,997 s-1. Experimental results indicated that the nano-lubricant had non-Newtonian behavior at all temperatures, while 10w40 oil was non-Newtonian only at high temperatures. With the use of the curve fitting technique of experimental data, power law and consistency indexes were obtained; furthermore, these coefficients were assessed by shear stress and viscosity diagram.

  9. Temperature scaling in a dense vibrofluidized granular material.

    PubMed

    Sunthar, P; Kumaran, V

    1999-08-01

    The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error.

  10. Measurement setup for the simultaneous determination of diffusivity and Seebeck coefficient in a multi-anvil apparatus

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Liu, W.; Li, B.

    2012-09-01

    In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce0.8Fe3CoSb12, up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.

  11. Measurement setup for the simultaneous determination of diffusivity and Seebeck coefficient in a multi-anvil apparatus.

    PubMed

    Jacobsen, M K; Liu, W; Li, B

    2012-09-01

    In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce(0.8)Fe(3)CoSb(12,) up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena.

  12. La 1−x Ca x MnO3 semiconducting nanostructures: morphology and thermoelectric properties

    PubMed Central

    2014-01-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1−x Ca x MnO3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content. PMID:25206315

  13. Reverberatory screen for a radiant burner

    DOEpatents

    Gray, Paul E.

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  14. La 1-x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties.

    PubMed

    Culebras, Mario; Torán, Raquel; Gómez, Clara M; Cantarero, Andrés

    2014-01-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1-x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  15. Perfect sound insulation property of reclaimed waste tire rubber

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Harjana, Yahya, Iwan; Kristiani, Restu; Muqowi, Eki; Mazlan, Saiful Amri

    2016-03-01

    This article reports an experimental investigation of sound insulation and absorption performance of a materials made of reclaimed ground tire rubber which is known as un-recyclable thermoset. The bulk waste tire is processed using single step recycling methods namely high-pressure high-temperature sintering (HPHTS). The bulk waste tire is simply placed into a mold and then a pressure load of 3 tons and a heating temperature of 200°C are applied to the mold. The HPHTS conducted for an hour and then it is cooled in room temperature. The resulted product is then evaluated the acoustical properties namely sound transmission loss (STL) and sound absorption coefficient using B&K Tube Kit Type 4206-T based on ISO 10534-2, ASTM E1050 and ASTM E2611. The sound absorption coefficient is found about 0.04 until 0.08 while STL value ranges between 50 to 60 dB. The sound absorption values are found to be very low (<0.1), while the average STL is higher than other elastomeric matrix found in previous work. The reclaimed tire rubber through HPHTS technique gives good soundproof characteristic.

  16. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity.

    PubMed

    Liu, Guigen; Han, Ming; Hou, Weilin

    2015-03-23

    We report a fiber-optic sensor based on a silicon Fabry-Pérot cavity, fabricated by attaching a silicon pillar on the tip of a single-mode fiber, for high-resolution and high-speed temperature measurement. The large thermo-optic coefficient and thermal expansion coefficient of the silicon material give rise to an experimental sensitivity of 84.6 pm/°C. The excellent transparency and large refractive index of silicon over the infrared wavelength range result in a visibility of 33 dB for the reflection spectrum. A novel average wavelength tracking method has been proposed and demonstrated for sensor demodulation with improved signal-to-noise ratio, which leads to a temperature resolution of 6 × 10⁻⁴ °C. Due to the high thermal diffusivity of silicon, a response time as short as 0.51 ms for a sensor with an 80-µm-diameter and 200-µm-long silicon pillar has been experimentally achieved, suggesting a maximum frequency of ~2 kHz can be reached, to address the needs for highly dynamic environmental variations such as those found in the ocean.

  17. Electrical and Infrared Optical Properties of Vanadium Oxide Semiconducting Thin-Film Thermometers

    NASA Astrophysics Data System (ADS)

    Zia, Muhammad Fakhar; Abdel-Rahman, Mohamed; Alduraibi, Mohammad; Ilahi, Bouraoui; Awad, Ehab; Majzoub, Sohaib

    2017-10-01

    A synthesis method has been developed for preparation of vanadium oxide thermometer thin film for microbolometer application. The structure presented is a 95-nm thin film prepared by sputter-depositing nine alternating multilayer thin films of vanadium pentoxide (V2O5) with thickness of 15 nm and vanadium with thickness of 5 nm followed by postdeposition annealing at 300°C in nitrogen (N2) and oxygen (O2) atmospheres. The resulting vanadium oxide (V x O y ) thermometer thin films exhibited temperature coefficient of resistance (TCR) of -3.55%/°C with room-temperature resistivity of 2.68 Ω cm for structures annealed in N2 atmosphere, and TCR of -3.06%/°C with room-temperature resistivity of 0.84 Ω cm for structures annealed in O2 atmosphere. Furthermore, optical measurements of N2- and O2-annealed samples were performed by Fourier-transform infrared ellipsometry to determine their dispersion curves, refractive index ( n), and extinction coefficient ( k) at wavelength from 7000 nm to 14,000 nm. The results indicate the possibility of applying the developed materials in thermometers for microbolometers.

  18. The Modeling of Coupled Electromagnetic-Thermo-Mechanical Laser Interactions and Microstructural Behavior of Energetic Aggregates

    DTIC Science & Technology

    2015-01-01

    analytical Beer - Lambert absorption profile to model laser heating of pure energetic crystals without considering any EM wave propagation effects...temperature. These aggregates were studied using both an analytical distribution for laser heating following Beer - Lambert absorption and the full EM finite...surface (ysurface - y) and material absorption coefficient, α, following a Beer - Lambert absorption relation given by , = !()

  19. Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Zhang, Minghao; Fang, Chengcheng; Meng, Ying Shirley

    2018-08-01

    A urea-based hydrothermal approach has been applied to synthesize LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials with focus on investigating the influence of the reaction conditions on their electrochemical performance. The compositions of the carbonate precursor are precisely controlled by tuning urea concentration, hydrothermal reaction temperature, and time. The mole ratio between urea and transition metal ions and reaction temperature influence the composition of the precursor; while the reaction time influences the electrochemical performance of the final product. The optimized materials show better cyclability and rate capability compared with the materials synthesized with other hydrothermal reaction conditions. The enhancement is attributed to the larger Li+ diffusion coefficient and lower charge transfer resistance, which are due to the lower degree of Li/Ni cation mixing and more uniform distribution of transition metal ions. This work is a systematic study on the synthesis of NCM523 cathode material by a urea-based hydrothermal approach.

  20. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  1. Synthesis and characterization of novel nanostructured thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaofeng; Burda, Clemens

    2005-08-01

    Having been hibernated for almost 50 years, research in thermoelectric materials is beginning to regain activity because of the recent advances in nanoscience and nanotechnology. Thermoelectric is an old topic, which was discovered as early as 1821 by Thomas Johann Seebeck. During the following 120 years, great advances in both the theories and experiments were achieved. Since the 1950s, studies in thermoelectric have developed very little, because of the painful difficulties in elevating the efficiency of these kinds of materials. The efficiency of thermoelectric materials is determined by a dimensionless parameter--figure of merit (ZT), given by ZT = S2σT/κ where T is the temperature, S is the thermoelectric power (or Seebeck coefficient), σ is the electrical conductivity, and κ is the thermal conductivity. The best commercially available thermoelectric materials nowadays have a ZT around 1.0, which can be only used in some special cases. To be competitive to the kitchen refrigerators or air-conditioners, a ZT >= 3 at room temperature is required. Recently, some exciting results indicated that higher ZT values can be realized by nanoengineering of these materials. Both theoretical calculations and experimental modulations have shown the promising potentials in the elevation of the efficiency of thermoelectric materials.

  2. Impact of alkaline alterations to a Brazilian soil on cesium retention under low temperature conditions.

    PubMed

    Calábria, Jaqueline Alves de Almeida; Cota, Stela Dalva Santos; de Morais, Gustavo Ferrari; Ladeira, Ana Cláudia Queiroz

    2017-11-01

    To be used as backfilling materials in radioactive waste disposal facilities, a natural material must have a suitable permeability, mechanical properties and a high sorption capacity for radionuclides. Also important when considering a material as a backfill is the effect of its interaction with the alkaline solution generated from concrete degradation. This solution promotes mineralogical alterations that result in significant changes in the material key properties influencing its performance as a safety component of the repository. This paper presents results of an investigation on the effect of alkaline interaction under a low temperature on cesium retention properties of a local soil being considered suitable as a backfill for the Brazilian near surface disposal facility. A sample of the Brazilian soil was mixed with an alkaline solution, simulating the pore water leached in the first stage of cement degradation, during 1, 7, 14 and 28 days. The experiments were conducted under low temperature (25 °C) aiming to evaluate similar conditions found on a low and intermediate level radioactive waste disposal installation. A non-classical isotherm sorption model was fitted to sorption data obtained from batch experiments, for unaltered and altered samples, providing parameters that allowed us to assess the effect of the interaction on material quality as Cs sorbent. The sorption parameters obtained from the data-fitted isotherm were used then to estimate the corresponding retardation factor (R). Alkaline interaction significantly modified the soil sorption properties for Cs. The parameter Q, related to the maximum sorption capacity, as well as the affinity parameter (K) and the retardation coefficients became significantly smaller (about 1000 times for the R coefficient) after pretreatment with the simulated alkaline solutions. Moreover, the increase in n-values, which is related with the energy distribution width and heterogeneity of surface site energies, demonstrated that the adsorbent surface became more homogenous as a consequence of the alkaline alteration. Together these results suggest that cementitious leachate has a profound effect on Cs retention and should be accounted for estimating radionuclide retention in radioactive waste disposal systems containing cementitious materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal

    NASA Technical Reports Server (NTRS)

    Murthy, V. Rama

    1992-01-01

    If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.

  4. Anisotropy analysis of thermoelectric properties of Bi{sub 2}Te{sub 2.9}Se{sub 0.1} prepared by SPS method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zybala, Rafal; Wojciechowski, Krzysztof T.

    2012-06-26

    The n-type Bi{sub 2}Te{sub 2.9}Se{sub 0.1} materials were synthesized by the direct fusion technique. The polycrystalline samples were fabricated by the uniaxial pressing of powders in spark plasma sintering (SPS) apparatus. The materials were subjected to the heat treatment in H{sub 2}-Ar atmosphere at 470 K for 24 h. The influence of preparation conditions on the anisotropy of electrical and thermal properties was thoroughly studied for the direction perpendicular and parallel to the pressing force. The microstructure and the chemical composition of both types of samples were examined using a scanning microscope (SEM) equipped with an X-ray energy dispersion detectormore » (EDX). The XRD method was applied for the phase analysis of materials, as well as, for determination of preferred orientation of Bi{sub 2}Te{sub 2.9}Se{sub 0.1} grains. The Seebeck coefficient distribution was studied by the scanning thermoelectric microprobe (STM). Temperature dependences of thermoelectric properties (thermal and electrical conductivities, Seebeck coefficient) were measured in the temperature from 300 K to 550 K. The statistical analysis of results has shown strong influence of pressing force direction both on structural and transport properties. The applied heat treatment of materials significantly improves their thermoelectric figure of merit. Particularly, it was found that annealing in H2-Ar atmosphere leads to enhancement of the ZT three times up to {approx}0.7 at 370 K in perpendicular direction to the pressing force.« less

  5. Synthesis of Nanocrystalline CaWO4 as Low-Temperature Co-fired Ceramic Material: Processing, Structural and Physical Properties

    NASA Astrophysics Data System (ADS)

    Vidya, S.; Solomon, Sam; Thomas, J. K.

    2013-01-01

    Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.

  6. Fabrication and thermoelectric properties of Ca-Co-O ceramics with negative Seebeck coefficient

    NASA Astrophysics Data System (ADS)

    Gong, Chunlin; Shi, Zongmo; Zhang, Yi; Chen, Yongsheng; Hu, Jiaxin; Gou, Jianjun; Qin, Mengjie; Gao, Feng

    2018-06-01

    Ca-Co-O ceramics is typically p-type thermoelectric materials and possesses positive Seebeck coefficient. In this work, n-type Ca-Co-O ceramics with negative Seebeck coefficients were fabricated by sintering and annealing in a reducing atmosphere. The microstructures and thermoelectric properties of the ceramics were investigated. The results show that the carrier concentration and the carrier mobility dramatically increase after the samples were annealed in the reducing atmosphere. The electrical resistivity increases from 0.0663 mΩ·cm to 0.2974 mΩ·cm, while the negative Seebeck coefficients varies from -24.9 μV/K to -56.3 μV/K as the temperature increases from 323 K to 823 K, and the maximum power factor (PF, 1.536 mW/m·K2) is obtained at 623 K. The samples have n-type thermoelectric properties with large PF values and ZT value (ZT = 0.39, 823 K). The unusual results will pave a new way for studying Ca-Co-O thermoelectric ceramics.

  7. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand (d/sub p/ = 888 to 1484 ..mu..m) and limestone (d/sub p/ = 716 to 1895 ..mu..m) are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125/sup 0/K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient.more » The predicted values of heat transfer coefficient from the correlations proposed by Grewal (1981) and Bansal et al. (1980) are found to be within +-25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included. 5 figures, 5 tables.« less

  8. Synthesis/literature review for determining structural layer coefficients (SLC) of bases.

    DOT National Transportation Integrated Search

    2014-12-01

    FDOTs current method of determining a base material structural layer coefficient (SLC) is detailed in the : Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement Base Materials. : Currently, any new base material not a...

  9. How fragility makes phase-change data storage robust: insights from ab initio simulations

    PubMed Central

    Zhang, Wei; Ronneberger, Ider; Zalden, Peter; Xu, Ming; Salinga, Martin; Wuttig, Matthias; Mazzarello, Riccardo

    2014-01-01

    Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations. PMID:25284316

  10. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com; Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the wholemore » temperature range.« less

  11. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.

  12. Insight into mechanical properties and thermoelectric efficiency of Zr2CoZ (Z  =  Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2017-11-01

    We investigated the electronic, mechanical and thermoelectric properties of Zr2CoZ (Z  =  Si, Ge) Heusler alloys using the first-principles calculation. From the analysis of various elastic constants, the shear and Young’s moduli, Poisson’s ratio, the ductile nature of the alloys is predicted. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing linearly increasing Seebeck coefficient with temperature. The value of total absolute Seebeck coefficients at 1200 K of Zr2CoSi and Zr2CoGe are 60 µV K-1 and 40 µV K-1 respectively mainly because of the existence of almost flat conduction bands along L to Г directions of high symmetry Brillouin zone. Further, the chemical potential variation of power factor confirms the n-type doping fruitful to increase their TE performance. The figure of merit achieves an upper-limit of 0.95 at 850 K and can favour their use for waste heat recovery at higher temperatures and thermoelectric spin generators.

  13. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology lubrication task because of their potential for superior friction and wearf properties in air and in an ultrahigh vacuum, spacelike environment. At the NASA Glenn Research Center, two-phase oxide ceramic eutectics, Al2O3/ZrO2(Y2O3), were directionally solidified using the laser-float-zone process, and carbon nanotubes were synthesized within a high-temperature tube furnace at 800 C. Physical vapor deposition was used to coat all quartz substrates with 5-nm-thick iron as catalyst and bondcoat, which formed iron islands resembling droplets and serving as catalyst particles on the quartz. A series of scanning electron micrographs showing multiwalled carbon nanotubes directionally grown as aligned "nanograss" on quartz is presented. Unidirectional sliding friction eperiments were conducted at Glenn with the two-layered CNT coatings in contact with the two-phase Al2O3/ZrO2(Y2O3) eutectics in air and in ultrachigh vacuum. The main criteria for judging the performance of the materials couple for solid lubrication and antistick applications in a space environment were the coefficient of friction and the wear resistance (reciprocal of wear rate), which had to be less than 0.2 and greater than 10(exp 5) N(raised dot)/cubic millimetes, respectively, in ultrahigh vacuum. In air, the coefficient of friction for the CNT coatings in contact with Al2O3/ZrO2 (Y2O3) eutectics was 0.04, one-fourth of that for quartz. In an ultrahigh vacuum, the coefficient of friction for CNT coatings in contact with Al2O3/ZrO2 (Y2O3) was one-third of that for quartz. The two-phase Al2O3/ZrO2 (Y2O3) eutectic coupled with the two-layered CNT coating met the coefficient of friction and wear resistance criteria both in air and in an ultrahigh vacuum, spacelike environment. This material's couple can dramatically improve the stiction (or adhesion), friction, and wear resistance of the contacting surfaces, which are major issues for microdevices and micromachines.

  14. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    DOE PAGES

    Wang, H.; Leonard, K. J.

    2017-07-25

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This paper is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 10 18 n/cm 2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, makingmore » the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300–400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. Finally, these results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.« less

  15. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Leonard, K. J.

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This paper is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 10 18 n/cm 2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, makingmore » the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300–400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. Finally, these results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.« less

  16. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    NASA Astrophysics Data System (ADS)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  17. Quartz tuning-fork oscillations in He II and drag coefficient

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.

    2011-07-01

    The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.

  18. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  19. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, Chao M.; Yuh, Chao-Yi

    1999-01-01

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  20. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

Top